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ABSTRACT

We propose a framework of incorporating the deductive
database system with the view-induction feature. These
additional views benefit query answering. However, to
make view induction practical for the real-world
databases, biasing the discovery process is a necessity due
to a huge search space. We thus develop the algorithm to
generate a bias for the problem of view discovery. The
bias generation is driven by a sequence of user’s queries.
The participation level of query predicates in the
discovered view definitions is allowed to be adjusted
accordingly.
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1. INTRODUCTION

A view is a virtual relation derived from base relations.
Most database systems provide their users the mechanism
to define views in order to isolate the data of interest and
to speed up querying. Typically, a set of view definitions
is created by the database designer. We propose to turn
the conventional database into an intelligent system by
adding the ability to learn from database contents the view
definitions that are relevant to the user's queries.

The learning capability comes from the integration of
Machine Learning technique into the database system.
The technique of particular interest is Inductive Logic
Programming (ILP)[1][2]. This consideration is due to the
knowledge representation format and the learning power
of the ILP systems. The ILP representation formalism
conforms to the language of first-order logic used in
deductive databases. The ILP technique also provides
sufficient power of inducing views defined among
relations, rather than within a relation as do other
Machine Learning techniques, such as decision tree
induction [3][4].

However, incorporating an ILP into the deductive
database system as a learning unit requires some
mechanism to automatically control the search space of
view discovery. Otherwise, the discovery process could
be so inefficient that the view-induction feature is less
desirable. It is thus the purpose of this paper to present the
algorithm to generate the appropriate bias for the view-
discovery task. This bias is in the form of a language bias,
which can control the size of the search space by putting
restriction on the format of view definitions allowed in the
search space. Our algorithm of generating the language
bias is directed by the user's queries. Thus, only view
definitions relevant to the user's interest are discovered.

The rest of this paper is organized as follows. The next
section discusses the method to discover views, the
learning system, and the technique to bias the view-
discovery process. Section 3 presents our algorithms of
generating bias to control the view discovery. In Section
4, we show the results of some experiments. The
conclusion is presented in Section 5.

2. ILP AND VIEW DISCOVERY

2.1 The Framework of Discovering Views

Conventional deductive database systems consist of three
finite sets: a set of facts or base relations (called
extensional database —EDB), a set of deductive rules or
views (called intensional database —IDB), and a set of
integrity constraints (IC). All of these are in clausal form
[5]. Once the database is created, its contents (i.e. , EDB,
IDB, IC) are statically stored and remain unchanged until
the next update. The proposed system (as shown in Figure
1) transforms the static deductive database system into the
dynamic one by incorporating the ability to induce
additional views. This induction process is triggered by
the query and the induced views are eventually added into
the database storage.

2.2 ILP Learner

There are a number of successful ILP systems, for
example, MIS [6], FOIL[7], GOLEM][8], LINUS[9]. Most
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Figure 1: Deductive database system with view-induction feature

of these systems induce new definitions or concepts from
positive and negative examples. But in the environment of
deductive databases in which solely positive examples
(represented as true facts and rules) exist, this kind of ILP
setting seems to be less beneficial. Nevertheless, there
have been some attempts [9][10] on applying this kind of
ILP systems to learn interesting rules from deductive
databases by giving negative examples either explicitly or
automatically generated under the closed world
assumption, i.e., all examples not stated in the database
are negative examples. Apparently, this means of
representing negative examples is not practical for the
real-world databases. Fortunately, there is an alternative
setting of learning from positive examples only, that is,
nonmonotonic setting [11].

In the nonmonotonic setting each example is a
Herbrand interpretation, not a clause as in the normal ILP
setting. An example can be viewed as a set of facts that
describe the specific properties of the example. Such an
example is called a model. A model may contain multiple
facts about multiple relations. For example, consider the
single example consisting of the following facts {animal
(snoopy), animal(tweetie), can_walk(snoopy), can_fly
(tweetie)}, the concepts induced by a nonmonotonic ILP
system are {animal(X) <« can_walk(X), animal(X) <«

can_fly(X) }.

The induced concepts are no longer aimed at implying
the positive examples, classifying positive examples from
the negative ones, nor predicting the unseen examples as
in the normal ILP. They indeed aim at representing a set
of regularities that hold for the examples. These
regularities are actually views or virtual relations in the
context of databases. Thus, this nonmonotonic setting is
well suited for the problem of view discovery in the

databases. An ILP system that operates in this setting is
CLAUDIEN (CLAUsal Discovery Engine) [12][13].

2.3 Bias in ILP

One problem that most ILP systems have in common is
the huge size of the concept search space. The enormous
size makes a complete search very inefficient. In order to
make search more tractable, most ILP systems use bias. A
bias is any mechanism that can constrain the search for
the desired concepts in a learning system [14]. Bias can be
divided into two categories: preference bias and language
bias. Preference bias [15] constrains how the learner
searches the search space and when to stop searching.
Language bias constrains the concept space itself by
imposing restriction on the form of concepts allowed in
the search space. Thus, this kind of bias defines what to
search.

Early ILP system embedded language bias in the
system [16]. But in recent systems, language bias is
implemented as a modifiable unit in which users can
specify bias to better suit their specific tasks. The kind of
bias used in the CLAUDIEN system is a language bias
called DLAB (Declarative LAnguage Bias) [17]. The
CLAUDIEN system employs the concept of template,
called dlab template, to specify the set of concepts
allowed in the search space. For instance,

dlab_template(‘P(X,Y) € 1-4: [Q(X),0(Y),P(X,Y),
PY.X)]).

dlab_variable(‘P’, I-1, [ parent, father, mother]).

dlab_variable(‘Q’, 1-1, [male, female]).

is the specification of concepts allowed in the concept
space. The induced concepts are in the form of rules:



head € body. The concepts should have one predicate in
the head, which is either the predicate parent, father, or
mother, and one to four predicates in the body. The body
predicates are the combinations of the predicates parent,
father, mother, male, and female. The dlab_variables P
and Q are placeholders for real predicates. The variable P
can be substituted by the predicates parent, father, or
mother, and Q can be substituted by the predicates male
or female.

Formally, DLAB is composed of a finite set of dlab-
templates to which the concepts in the search space
conform. The formal syntax and semantics of DLAB can
be defined as follows.

Definition 2.1 DLAB syntax [13]

1. A DLAB grammar is a pair (7, V'), where T is a set of
DLAB templates , and V'is a set of DLAB variables ( V'
can be an empty set).

2. A DLAB template has the form

dlab_template( Template)
where Template is a string surrounded by single quote,
and has the form 4 « B in which A and B are DLAB
atoms.

3. A DLAB variable is of the form

dlab_variable ( P,, Min - Max, [ P;, ..., P,] )
where P, is the quoted atom, Min and Max are integers,
0 <Min £ Max <n, and P; is a predicate symbol or a
function symbol.

4. A DLAB atom is either of the form

P(t;,....t,) or Min-Max: [ ListAtoms]
where P is a predicate symbol, ¢, is a DLAB term, Min
and Max are integers, 0 < Min < Max < length of
[ListAtoms], and ListAtoms is a list of DLAB atoms.

5. A DLAB term is either

(a) a variable, or

(b) of the form f(¢;, ..., t,)

where fis a function symbol, #; is a DLAB term, or

(c) of the form Min-Max : [ ListTerms]

where Min and Max are integers, 0 < Min < Max < length
of [ListTerms), ListTerms is a list of DLAB terms. O

Definition 2.2 DLAB semantics [13]
Let G be a DLAB grammar, then dlab_gen(G) =
{dlab_dcg(A) < dlab_dcg(B) | (A« B) € G }.

dlab_dcg(E) — [E], { E#Min—Max: L }.

dlab_dcgMin—Max:[]) > {Min<0 },[].

dlab_dcg(Min—Max:[ |L] — dlab_dcg( Min — Max: L)

dlab_dcg (Min — Max: [E|[L] — {Max > 0},
dlab_dcg(E),dlab_dcg( (Min-1) — (Max-1): L). O

From the DLAB semantics, dlab gen generates all
concepts in the corresponding concept space, whereas
dlab_dcg generates a list of all logical atoms. The head
and the body of concepts generated by dlab_gen(G) are
written as lists: [ A, ... ,An] < [Bi,...,Bn ]

The following examples [13] demonstrate the
generation of all valid concepts from each DLAB
grammar. These examples illustrate the effect of the
different declaration of “Min-Max” constructs.

Example 2.1: A DLAB grammar G, =
{h <« O-len: [a,b,c] }.
All valid concepts in the search space, according to the
grammar G, are
{ [h] « ]
[h] « [a]
[h] « [b]
[h] « [c]
[h] < [a,b]
[h] « [a,c]
[h] < [b,c]
[h] < [a,b,c] }.
The size of the search space = §. O

Example 2.2: A DLAB grammar G, =
{h « l-len: [a,b,c] }.
All valid concepts in the search space, according to the
grammar G, are
{ [h] < [a]

[h] < [b]
[h] «[c]
[h] < [a,b]

[h] « [a,c]
[h] < [b.c]
[h] < [a,b,c] }.
The size of the search space = 7. O

Example 2.3: A DLAB grammar G; =
{h « 1-1:[a,b,c] }.
All valid concepts in the search space, according to the
grammar G, are
{ [h] « [a]
[h] « [b]
[h] «[c] }.

The size of the search space = 3. O

Example 2.4: A DLAB grammar G, =
{h <« len-len: [a,b,c] }.
The only valid concept in the search space, according to
the grammar Gy, is
{ [h] < [abyc]}.
The size of the search space = 1. O

The next example [11] illustrates how to specify a
DLAB grammar in a more complex domain than the
previous examples.



Example 2.5: Suppose the train-schedule database has the
schema train(Hour, Min, From, To). The following is
the instances of a train-schedule traveling from one city to
another city with the leaving time being specified as hour
and minute.

Train( 8,08 ,chicago, denver).

Train( 8,10 ,st_Louis, washington _DC).

Train( 9,08 ,chicago, denver).

Train( 9,10 ,st_Louis, washington_DC).

Train( 8,13 ,chicago, buffalo).

Train( 8,43 ,chicago, buffalo).

Train( 9,13 ,chicago, buffalo).

Train( 9,43 ,chicago, buffalo).

Train( 8,25 ,chicago, denver).

Train( 9,25 ,chicago, denver).

Train( 8,17 ,madison, buffalo).

Train( 8,47 ,madison, buffalo).

Train( 9,17 ,madison, buffalo).

The concept to be learned in this example is a
functional dependency among the database instances. The
DLAB grammar, which is the specification to induce a
functional dependency from the train-schedule database,
is as follow.

DLAB grammar (dlab_template, dlab_variable).
dlab variable = ¢.
dlab_template =
{“ 1-1: [ Hourl = Hour2, Minl = Min2,
Froml = From2, Tol = To2 ]
(_
len-len : [ train ( Hourl, Minl, Froml, Tol ),
train ( Hour2, Min2, From2, To2 ),
0-len : [ Hourl = Hour2, Minl = Min2,
Froml = From2, Tol = To2]]’}

The functional dependency induced by CLAUDIEN,
according to the given database and the language bias
specification, is the constraint rule

Froml = From2 <« train(Hourl, Minl, Froml, Tol),
train(Hour2, Min2, From2, To2),
Minl = Min2, Tol = To2. 0

The challenge of controlling the concept discovery via
a bias is that the bias specification has to be expressive in
order to capture a broad group of concepts. But the price
is a large search space. On the contrary, if the bias is too
restrictive, it might exclude all interesting concepts.
Finding the appropriate form of bias specification for the
problem of view discovery is thus the objective of our
research.

3. BIAS GENERATOR

In this section we present some notation used in our bias
generator algorithm. The algorithm configures the

appropriate form of the bias grammar from the query and
the input parameter specifying number of query atoms
expected to appear in the discovered views.

A = a set of variables appeared as terms in the predicates.

B = a set of all predicates appeared in the EDB and IDB.

S = a set of considered queries. This set may contain
either a query or a sequence of queries if inter-query
relationship is expected.

hmin , hmax = the minimum (maximum) number of

predicates p , p € B, appeared in the head of
the derived views.

bmin , bmax = the minimum (maximum) number of

predicates q , q € S, appeared in the body of
the derived views.

head = a set of predicates allowed to appear (in

disjunctive form) as the head of the derived
rules. The number of predicates is in the range
hmin to hmax.

{[plas as ..., ay) ] hmin-hmax | @i € 4, p € B}

body = a set of predicates allowed to appear (in
conjunction form) as the body of the derived
rules.

{[Q(ab az ..., an) ]bmin—bmax | a; EA; C]ES}

Definition 3.1 Participation weight (W)
W specifies the minimum number of query predicates
expected to appear in the body of the derived views. O

Example 3.1 Given the query :

?- grandfather (X, john), male(john) .
and W = 50%. This implies that the discovered view
definitions are expected to have at least one atom,
grandfather or male, appeared as part of the body of
views. The discovered view might be

grandson(Y,X) « grandfather(X,Y) O

Algorithm 3.1 BIAS GENERATOR
Input: a set S of query or sequence of queries
a participation weight W (in percent)
Output: the grammar G specifying bias for view discovery

Method:
(1) Initialization
hmin =1, hmax =1
(2) Initialize set of variables and constants
A'=A U{C|C: constant(s) appeared in q;, q € S}
(3) Compute the minimum length of view body
(maximum length can be directly computed from S)
bmin = [W* bmax /100 |
(4) Define the specification for sead and body

head = {[p(ajay, ....a)] hmin-hmax | a;€ A", p € B}

body = {[q(a},a;, ....a,)] bmin-bmax | a;i€ A, g€ S}
G : head < body



Algorithm 3.2 VIEW DISCOVERY

Input:  a bias grammar G
the learning system CLAUDIEN [12]
a dataset D

Output: discovered view definitions

Method:

(1) Transform the bias grammar G into the DLAB
grammar [17] format.

(2) Run CLAUDIEN (controlled by the DLAB grammar)
on D, the expected outcome is a set V of discovered
views.

(3) Substitute each constant in V with a variable.

Running Example
Data set
EDB: female/l, male/l, mother/2, father/2, daughter/2,
son/2, husband/2, wife/2, uncle/2, aunt/2, grandson/2
IDB: grandfather/2, grandmother/2, parent/2

Predicates in query sequence :
{grandfather(Y, 'Ben') , aunt(Y,X),male('Ben')} = §

A participation weight (in percent) : W =60 %
Thus,

A'={X Y, 'Ben'}
B ={mother, father, daughter, son, husband, wife,
uncle, aunt, grandson, grandfather,

grandmother, parent}
head = { [p(name, Y), p(Y,name)] ;.; | p eB, name =
'‘Ben'}
body = { [grandfather(Y, name), aunt(Y, X), male
(name)] ,.; | name ='Ben'}

Transform the bias head<— body into the DLAB grammar:

dlab_template('l-1:[p(name,Y),p(Y,name) |
(_
2-len: [grandfather(Y, name), aunt(Y, X),
male(mame)] ' ).
dlab_variable (name, 1-1, ['Ben']).
dlab _variable (p, 1-1, [mother, father, daughter, son,
husband, wife, uncle, aunt, grandson,
grandfather, grandmother, parent]).

The rule discovered by CLAUDIEN is
grandson('Ben', A) :- grandfather(4, 'Ben’), male('Ben’).

Transform this rule into view definition by substituting
constant with variable:

grandson (X, A) :- grandfather (4, X) , male (X). O

4. EXPERIMENTS AND RESULTS

4.1 Data sets for Experiments

The experiments were designed to test our algorithm and
to see the effect of a parameter W on the discovered
views. The data sets used in the experiments are as
follows.

EDB predicates :

female /1 male /1

mother /2 father /2

daughter /2 son /2

husband /2 wife /2

uncle /2 aunt /2
IDB :

grandfather(X)Y) :- father(X,Z),parent(Z,Y).
grandmother(X,Y) :- mother(X,Z),parent(Z,Y).
parent(X,Y) :- father(X)Y).

parent(X,Y) :- mother(X,Y).

IC: none

Queries :
We test our algorithms on two kinds of queries: a
single query and a sequence of queries.

Example of a single query :
?- grandfather (Y,'Ben’), male ("Ben’), aunt (Y,X).

Example of a sequence of queries :
?- grandfather (Y,'Mark').
?-mother (Y,'Mark'), male ("Mark").
?-aunt (Y, X).

4.2 Results

A number of queries in both categories are generated and
tested on the algorithm. For each kind of queries, we
adjust the participation weight (W) on the bias grammar
to see its effect on the discovered view definitions. The
average number of views discovered, number of valid
views expected from all views discovered, learning time,
and size of the search space are summarized and shown in
Table 1.

The participation weight (W) on the bias reflects the
number of atoms allowed in the view-definition search
space. The more percentage of this weight is, the smaller
the search space will be. This effect is clearly shown in
the last column of Table 1. However, a small search space
does not always imply a good learning result. If we put
too much restriction on the bias grammar (W=100 %), the
ILP system could not learn anything. The appropriate
value is around 50-75%.



Table 1: View discovery triggered by queries at various weighting

Query Type W (%) #Views #Views CPU time Size of search space
discovered applicable (learning)

Single 30 1 0 0.516 238

60 1 1 0.600 136

100 0 0 0.116 34

Sequence 25 3 1 0.650 360
50 5 3 1.030 264

75 2 2 0.350 120

100 0 0 0.080 24

5. CONCLUSION [10]P. Brockhausen and K. Morik, Direct acess of an ILP

We have proposed the framework of including ILP
learner into a deductive database system in order to
induce additional view definitions from the database
contents. The discovered views can extend the deductive
power of the IDB. We also present the algorithms to
generate a bias in a format of DLAB grammar. This bias
can efficiently constrain the discovering process by
reducing the size of the search space into a tractable one.
The bias is generated by considering the user queries and
the number of query predicates expected to participate in
the view definitions. This number can be adjusted
accordingly. However, in order to identify the exact
appropriate-range of this number (the W-value), more
experimentation on a real-world database is needed.
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