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The underlying aim of this thesis is to develop a distributed multi-agent

coverage control scheme for cooperative wireless sensor networks (WSNs) based on

multiple objectives optimization. In a particular, each sensor node takes role as an

agent which makes a decision to activate or remain deactivated in order to achieve the

objective of maintaining coverage and energy efficiency. The proposed multi-agent

system (MAS) algorithms are distributed, requires localized information and exhibits

scalability. In addition, the MAS algorithms have the ability to optimize conflicting

objective functions to find the optimal policy in coverage control in WSNs. The

framework is applied to lighting coverage control in smart homes or buildings.

The main contribution of this research proposal is four–fold. The first

contribution is the MAS coverage control scheme based on the modified cost function

in a distributed value function (DVF) algorithm for a distribution adaptive and

scalable area coverage control algorithm which maintains the required coverage

control and reduces redundant coverage area to reduce energy consumption. The

second contribution is the multiple objective optimization (MOO) framework called,

Scalarized Q Multi-Objective Reinforcement Learning (SQMORL) algorithm, to

address coverage control and energy efficient automatic lighting control. The third
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CHAPTER I

INTRODUCTION

1.1 Significance of the problem

A wireless sensor networks (WSNs) is a wireless network consisting of

spatially distributed autonomous sensory devices that can communicate with each

other to perform sensing and data processing cooperatively (Stankovic, 2006). The

overall objective of a WSNs is to provide a low-cost solution to gather physical data

from the environment, such as humidity, sound, pressure, noise, light, vibration or

temperature, at different locations, observation and transmit it to a base station. The

most common energy storage device used in a sensor node is a battery which is

suitable for a micro-sensor with very low power consumption (Yick et al., 2008).

Therefore, WSNs promises unlimited potential for numerous application areas

including environmental (Chitnis et al., 2009), medical, military, transportation,

entertainment, crisis management, homeland defense, and smart space (Han et al.,

2007), (Yu et al., 2007), (Li et al., 2006).

Recently, the production of low-cost, low-power, multifunction, and tiny

sensors (Akyildiz et al., 2002), allow numerous of sensors to be deployed to monitor

an area. The large number of sensors prolongs the network lifetime and increases the

quality of the monitored area. As one main function of a WSN is gathering physical

data, coverage control is of significant importance. To accomplish this function, it

must schedule, and organize the network in such a way that it can effectively observe
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the environment of interest, and then collect desired information. This problem is the

main focus in this thesis.

Various types of coverage problems and coverage control protocols has been

presented in the literature. In coverage control problems, the objective of coverage

control problem is to cover some areas such as a forest. In some other cases, its

objective is to cover a set of subjects such as collection of paintings in a museum.

Other research works investigate coverage problem where sensor nodes have

adjustable sensing range. In most of the work, sensors could not change their sensing

radii, i.e., they have fixed sensing ranges. To give the sensors flexible choices to

accomplish their optimization job, sensors are assumed to adjust their sensing ranges

in some of the recent works (Vu et al., 2009), (Chen et al., 2009).

There are some research works focusing on the k-coverage problem. Due to

the uncertainty of sensors, 1-coverage may not be enough for applications that require

highly accurate and reliable data transmission. For such applications, each point in the

area may need to be covered by at least k sensors at the same time where k >1 and k is

a user-specific parameter (Wang et al., 2003).

Some research works place emphasis on maximization of coverage areas. Ye

et al. (2002), (2003) present the design of PEAS, a simple protocol that can build a

long-lived sensor network and maintain robust operations using large quantities of

economical, short-lived sensor nodes. PEAS extends system functioning time by

keeping only a necessary set of sensors working and putting the rest into sleep mode.

The ones in sleep mode wake up now and then, probing the local environment and

replacing failed ones. The sleeping periods are self-adjusted dynamically, so as to

keep the sensors wakeup rate roughly constant, thus adapting to high node densities.
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On the other hand, the optimal geographical density control algorithm

(OGDC) is a recently developed coverage control scheme for wireless sensor

networks (Shang et al., 2005). The algorithm captures several of the aforementioned

new aspects introduced by wireless sensor networks. The optimal geographical

density control algorithm (OGDC) is a power-aware algorithm, whose goal is to

maintain complete sensing coverage and connectivity for as long as possible.

From an operation point of view, OGDC and PEAS algorithms control the

area coverage in wireless sensor network in a distributed manner. Each sensor makes

its own decision based on it own objective (i.e. coverage area). Each sensor can be

considered as an agent with a single objective of maintaining its own coverage area.

However, apart from the coverage area, in most deployment situations, energy

efficiency is also a critical factor. This is because maintaining coverage with a

minimal number of active nodes can reduce energy consumption, prolong network

lifetime as well as minimize costs. Both PEAS and OGDC, sensor nodes do not

consider energy efficiency in making their coverage decision. Furthermore, both

OGDC and PEAS are non-learning algorithms. This is because in deciding every

action of the sensor, the decision of the sensor node is only based on the information

sent from the neighboring sensor nodes. There will be no adjustment to improve the

choice of action for the subsequent decisions. Therefore, sensor nodes may not attain

the global optimal of the system, particularly upon changing environment conditions.

This thesis therefors is focused on developing a learning scheme for

distributed coverage control in WSNs based on multiple objectives i.e. coverage and

energy efficiency. The framework can be applied to coverage control problems in

smart home or buildings as described next.
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1.2 Automatic lighting control protocol in our focus

Smart home requires use of technology to control home appliances which is

based on three key technologies: electronic and embedded systems, automatic control

systems and information and communications. Smart homes aim to facilitate the

residents, energy management system, and automatic security system inside and

around the house. A widespread application is the automatic lighting control which

has a purpose to adjust the light bulbs to suit every situation for energy saving and

user convenience. The key part of the system is the control algorithm embedded in the

sensor node. There are many researches on this subject.

We can classify the automatic lighting control algorithms according to their

ability to recognize environmental changes and quickly adapt to different situations.

Ref. (Mohamaddoust et al., 2011) designed a lighting automatic control system

(LACS) with the use of finite state machine method. LACS divided the local control

unit into zones, which consist of a light sensor and a sensor that detects the user's

location for system information. The system is capable of calculating and

communicating to enable illumination that best suits the needs and activities of the

user by taking account effect of external brightness as well. However, LACS is based

on a single agent with a single objective framework. In particular, the system requires

the intensity of light produced by the effect of the neighboring light bulbs. Therefore,

if the bulb location is changed or the surrounding is changed, it is necessary to

measure the effect of the light intensity every time before use. In other lighting

control works, agents can make their own decisions based on the information they

need from their neighbors. Kumaar et al. (2010) has implemented a wireless sensor

network system which the sensor node can measure the light intensity and transmit
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the data to the master node. Then, the master node makes a decision, based on the

light intensity measured by the sensor node and compares it to a reference value, to

turn the light bulb on or off, or select the appropriate action to save energy. This

system is shown to reduce energy consumption due to external daylight. However, in

this research the only purpose is to save energy but not optimizing light intensity.

Huynh et al. (2011) propose an algorithm that manages light intensity in a smart

lighting system using the principle of PID closed-loop control. Meng-Shiuan et al.

(2008) presents an intelligent lighting control system for indoor use based on usage

patterns in each user activity. The systems divides illumination into two types, i.e.

whole lighting device and local lighting device, which can adjust light intensity more

suitably for the user. Meng-Shiuan et al. (2008) also demonstrates the installation of

equipment and the actual use within the building. Okada et al. (2015) proposes

wireless sensor network-driven intelligent lighting system (WSN-ILS) for dealing

with illumination for each user. WSN-ILS system manages the light from each sensor

node and provides the most efficient power and environment for the user. In research

works (Huynh et al., 2011), (Meng-Shiuan et al., 2008), (Okada et al., 2015),

information from many agents is required to decide the appropriate lighting control to

achieve the optimal light intensity, energy saving, and adjust to user behavior. Singhiv

et al. (2005) proposes an intelligent method to control the energy saving light bulb,

based on the optimization problem to find a tradeoff between the lux intensity and

minimal energy consumption. Their work demonstrates the use of the wireless sensor

network to study the optimal between user, brightness, and power consumption.

In most aforementioned researches related to automatic lighting control, most

systems are non-learning and use the threshold value of light intensity, or use other
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principles to determine the optimal decision based on a particular tradeoff to make

decisions to control the light bulbs depending on the environment condition. In

addition, most lighting control schemes are centralized, as it is necessary to send data

to sensor nodes which act as a base stations or personal computer to determine the

optimal choice of action. Thus, such a centralized scheme is prone to communication

overhead, decision-making delay.

1.3 Algorithm design requirement

In this section, we list out desired features of coverage control algorithm in

WSNs which include:

 Energy-efficiency: A sensor is a battery-driven device and in most

cases, the battery is irreplaceable. However, every operation of a

sensor consumes a certain amount of energy. Thus, to extend network

lifetime, a sensor network algorithm must be energy-efficient. The best

way to maximize network lifetime is to balance energy consumption

among all the sensors in the network. Load balancing should be in the

sense that sensors with more energy should have more chance to be

active, and the more exhausted ones should have more chance to go to

remain inactive.

 Distributed algorithms: Sensors have limited computational ability and

small memory size. Therefore, they are not able to perform complex

operations. The task of running any algorithm should be shared among

sensors or alternate nodes work in the network. To cater network

scalability and possible frequent topology changes, the convergence
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time of any algorithm designed for deployment in WSN needs to be

short enough to keep up with the changes in the networks. For these

reasons, in most cases, only localized, distributed algorithms are

suitable for WSNs.

 Area coverage: Coverage is usually referred as how well a sensor

network can monitor a field of interest. Coverage can be a measure of

quality-of-service, of which can be measured in different ways

depending on the application. In this proposal, the problem under

consideration is how to maintain required coverage for area monitoring

with low energy consumption.

 Multi-objective optimization: In wireless sensor networks, there may

be several objectives which need to be optimized simultaneously. If we

were to address only single objective optimization problem separately,

one objective may contradict with another objective. One direct

approach to address this issue is to combine such objective functions

into one single objection function. The optimization problem may have

a feasible solution in less complicated problems or with small number

of sensor nodes. However, with conflicting objective or with a larger

number of sensor nodes. The incorporation of the problem into a single

objective function may not be sufficient. A multi objective

optimization framework is more suitable to find the right policy.

1.4 Multi-Agent Systems (MAS) and Multi-Objective

Reinforcement Learning (MORL)
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From the previous section, a localized, distributed adaptive coverage control

method which is not computationally or resource demanding is therefore needed.

Reinforcement learning (RL) (Sutton et al.,1998), (Kaelbling et al., 1996) has been a

common approach to coordinately and cooperatively improve the performance in

WSNs. RL is usually defined as the problem faced by a learner of how to take actions,

or make optimal decisions, through trial and error interactions with a dynamic

environment. A common RL method called Q-learning is an algorithm which directly

approximates the optimal action-value function (a function that describes how good

an action was, given that the agent is at a particular state). Each learning agent takes

an action, receives a reward, updates local information with an input from the

environment, and repeats the process by learning its own optimal strategy. Guestrin et

al. (2002) proposed the Frequency Maximum Q- learning (FMQ) to encourage

cooperative coverage control in WSNs. FMQ is based on Q-learning, which enables

autonomous self learning/adaptive applications with inherent support for efficient

resource/task management. In (Tham et al., 2005), the authors considered a multi-

agent system controlling coverage in a lighting control experiment. Each agent

controls a light bulb illuminating a room represented by a 10x10 grid. Therefore, the

coverage of each agent was considered in terms of the number of grids illuminated.

Although MAS has conceptually been shown to perform well under this setting,

factors such as actual overlapping sensing coverage area has not been considered.

Phuphanin et al. (2016) use multi-agent system combined with reinforcement learning

for area coverage control in wireless sensor networks. Results show that the use of RL

in conjunction with the MAS can work well compared to non-learning algorithms.

The advantages of RL do not only include online learning, but also a high degree of
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scalability, low algorithm complexity and fast convergence. It is suitable for use in

systems that are distributed and limited in computational resources, such as wireless

sensor networks. Although (Phuphanin et al., 2016) perform online learning coverage

control, it is a single objective optimal algorithm.

Since energy efficiency is of significant importance, the algorithms should

also have the ability to solve complex and conflicting objective functions to find the

optimal policy for dealing with area coverage control in wireless sensor network.

Therefore, the contribution of this research proposal is four–fold:

1) A distribution adaptive and scalable area coverage control algorithm

which maintains the required coverage control with low energy

consumption to extend network lifetime,

2) Algorithm for energy efficient automatic lighting control,

3) Hardware implementation and evaluation the proposed algorithm,

4) An adaptive algorithm for automatic lighting control based on feature

approximation of continuous state space.

1.5 Research objective

1) To study cooperative coverage control schemes in wireless sensor

networks using multi-agent reinforcement learning.

2) To apply MAS to a sensing coverage control problem in a WSN which

considers coverage area and overlapping area.

3) To develop a distributed adaptive and scalable coverage control algorithm

which maintains the required coverage control with reduced overlapping

area.
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4) To develop and evaluate hardware implementation of the proposed

approach as prototype for smart home illumination control.

5) To develop algorithm a self-adaptive for automatic lighting control

scheme based on continuous state space.

1.6 Research hypothesis

1) Cooperative coverage control is beneficial when the network is sparse or

when the environment is hostile.

2) Determining the overlapping area coverage together the MAS can provide

energy efficiency and extend network lifetime.

3) A multi objective optimization method integrated with the reinforcement

learning algorithm can deal with conflicting objectives.

4) The multi objective optimization reinforcement leaning can be applied to

automatic lighting control in smart homes.

5) The continuous state space using feature approximation can reduce

training time and quickly to responded to the changing environment.

1.7 Basic agreements

1) Visual C++ and Matlab is used to simulation the cooperative coverage

control in wireless sensor networks.

1.8 Scope and limitation
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1) The multi-agent system includes sensor nodes randomly placed in a 35x35

m2 region. Each sensor node has to make coverage decisions based on the

status of neighboring sensor node.

2) Three algorithms are compared, namely, the Optimal Geographical

Density Control or OGDC (Shang et al., 2005)., A Robust Energy

Conserving Protocol for Long-lived Sensor Network or PEAS (Ye et al.

2003) and the proposed MAS algorithm to maximize coverage and

minimize energy consumption which takes into account the overlapping

coverage area of the sensor node.

1.9 Research procedures

1)  Progressions

1.1 Review of literatures and related theories.

1.2 Study the methodologies which motivate cooperation in coverage

wireless sensor networks and their effects.

1.3 Design and test the proposed algorithm by simulation using Visual

C++ and Matlab.

1.4 Analyze and conclude results.

1.5 Prepare publication.

1.6 Write thesis.

2) Research methodology

Objective 1: To study cooperative coverage control schemes in wireless

sensor networks using multi-agent reinforcement learning.
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1. Review literatures and related works in cooperative

coverage control and topology control in WSNs.

Objective 2: To apply MAS to a sensing coverage control problem in a

WSN which considers coverage area and overlapping area.

1. Review literatures and related works in sensing coverage

control by using MAS approach.

2. Evaluate performance of sensing coverage control scheme.

Objective 3: To develop a distributed adaptive and scalable coverage

control algorithm which maintains the required coverage control with

reduced overlapping area.

1. Review literatures and related works in distributed

coverage control algorithm.

2. Develop an algorithm can maintains the required coverage

control with low overlapping area.

3. Evaluate performance of distribution coverage control

algorithm.

Objective 4: To develop and evaluate hardware implementation of the

proposed approach as prototype for smart home illumination control.

1. Review literatures and related works in illumination

coverage control application.

2. Develop and evaluate hardware implementation of the

proposed approach.

3. Evaluate performance of hardware implementation.
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Objective 5: To develop algorithm a self-adaptive for automatic lighting

control scheme based on continuous state space.

1. Review literatures and RL related works in continuous state

space.

2. Develop and evaluate proposed approach algorithm.

3. Evaluate performance of algorithm.

3) Research location

Wireless Communication Research and Laboratory, F4

111 University Avenue, Muang District, Nakhon Ratchasima 30000,

Thailand

4) Research equipments

4.1 Personal Computer

4.2 Visual C++ software

4.3 Matlab software.

5) Data collection

5.1 Information collected by reviewing literatures and related works.

5.2 Data collected from Visual C++ simulations.

5.3 Data collected from Matlab simulations.

6) Data analysis

Information collected from the node cooperation experiment will be

analyzed, compared and concluded in terms of graphs and tables.

1.10 Expected benefit

The expected benefit of this research proposal is five–fold:
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1) A distributed adaptive and scalable area coverage control algorithm

which maintains the required coverage control with low overlapping

area which is adaptive to perturbation such as external lighting or node

faults.

2) A modified multi-agent coverage control scheme based on a

redundancy coverage area cost function.

3) A multi-objective algorithm which can find the multiple or conflict.

4) Algorithm can be applied to the automatic lighting control for and

energy efficiency.

5) Hardware implementation and evaluation the proposal algorithm.



CHAPTER II

BACKGROUND THEORY

2.1 Characteristics of WSNs

Many protocols have been applied to wired and traditional wireless networks

(such as wireless LAN). However, those protocols cannot be directly employed to

sensor networks. This is mainly because sensor networks possess some special

characteristics and constrains that distinguish it from the other types of networks.

Those constraints of sensor network may include:

 Limited support for networking. Sensor nodes are likely to

communicate with very low quality, high latency, limited bandwidth,

and high failure-rate links. A sensor’s transmission range is short and

greatly affected by energy. In a WSN, the communication mainly

depends on broadcasting. Moreover, the network is peer-to-peer, with a

mesh topology and dynamic, possibly mobile, and unreliable

connectivity.

 Energy constraint. In most cases, the sensor’ battery of a sensor cannot

be reused. Therefore, energy conservation is always the most critical

requirement on designing a sensor network protocol. A sensor

consumes significantly more energy on communication than on

computation, thus the designed protocols for WSN usually try to attain

efficient computation to compensate for communication cost.
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 Dynamic topology. The topology of a WSN may change very

frequently due to the movement of sensors, the sensors’ temporary or

permanent failure and the battery depletion of sensors.

 Scalability and heterogeneity. A WSN may consist of a large number

of sensors with different sensing units, communicational ability,

computational power, and memory size. Many sensors may be

deployed in hostile environments, thus it can be difficult to maintain

and manage the network.

 Failure of sensor node. A sensor node may fail to operate due to

numerous reasons such as depletion of energy and environmental

interference making it vulnerable to the environment, i.e. node can be

physically damaged easily. Sensing data is prone to error under the

environment effects such as noise and obstacles.

2.2 Challenging issues in WSNs

Before a WSN can be deployed, many issues need to be resolved. In this

section, some issues ones that draw the much attention from researchers are presented.

 Hardware for WSNs: A mote (sensor node) consists of processor,

memory, battery, analog-to-digital (A/D) converter for connecting a

sensor to a radio transmitter for forming an ad hoc network. A mote

and sensor together form a sensor node. The structure of the sensor

node is as shown in Figure 2.1 there can be different sensors for

different purposes mounted on a mote. A sensor node forms a basic

unit of the sensor network (Vieira et al., 2003).
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Figure 2.1 Structure of Sensor node

The nodes used in sensor networks are small and have significant

energy constraints. The hardware design issues of sensor nodes are

quite different from other wireless networks, which include in (Zhang

et al., 2004):

1) Radio range of nodes high: The radio range is critical for

ensuring network connectivity and data collection in a network. This is

because the environment being monitored may not have an installed

infrastructure for communication. In many networks, the nodes may

not establish connection for many days or may go out of range after

establishing connection.

2) Use of memory chips: Flash memory is recommended for

sensor networks as they are non-volatile and inexpensive.

 Wireless radio communication characteristics: Performance of wireless

sensor networks depends on the quality of wireless communication.

However, wireless communication in sensor networks is known for its

unpredictable nature. Examples of communication issues in WSNs

include low power consumption in sensor networks which is needed to
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enable long operating lifetime by facilitating low duty cycle operation,

local signal processing. The research issues that can be considered are

different strategies to improve signal reception, design of low power,

less cost sensors and processing units. Various schemes to conserve

node power consumption and node optimization and simple

modulation schemes may also be considered for sensor nodes.

 Algorithm efficiency: An important resource of a sensor node is energy

because every operation requires energy. Though most sensors are

battery-driven, battery is not always replaceable. Thus, energy-

efficiency has been a critical aspect for any protocol designed for a

WSN. Another limitation is the limited memory size, communication

and computation capability. Thus, algorithms designed for WSNs need

to be simple but robust and fault-tolerant. That is also the reason why

decentralized algorithm is always preferable in WSNs. Other

requirements for a “good” protocol are simplicity, energy-efficiency,

localized, distributed, scalability and flexibility, robustness, fault-

tolerance, and low communication overhead.

 Topology control: For a prone-to-failure network such as WSN, the

sensors may fail at any time or any place. In addition, the topology

may change due to the status selection of the sensors in the network. It

follows that the topology of a WSN may be highly dynamic and

unpredictable.
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 Routing: After sensors collect information, streams of data need to be

sent to the base station. The challenge is thus of how to efficiently,

reliably, and securely route the data through the network.

2.3 Multi-agent systems in WSNs

Due to scarce battery supply, maintaining and maximizing coverage control

has become a challenging issue in WSNs. Distributed self-adaptive coverage control

schemes are of particular interest as WSNs are typically deployed in dynamically

changing environments which may be difficult to access and manually configure.

Such autonomous coverage control can be achieved by multi-agent systems (MAS).

The implementation of MAS in a WSN requires sensor-actuator nodes with

processing capability which enable these nodes to perform tasks in a coordinated

manner to achieve some desired system-wide objective.

Multi-agent systems (MAS) differ from single-agent systems in that there are

many different agents that learn a task. Furthermore, all of the agents’ actions affect

the state of the environment. Thus, the optimal policy not only relies on only one

agent, but on all agents. There are works which directly applied a commonly used RL

method called Q-learning to multi-agent systems whereby each agent disregards other

agents in the system and takes action to maximize its own benefit. By neglecting the

presence of other agents, suboptimal decisions are likely to be achieved. Therefore, an

individual agent should consider the effect of joint actions from other agents as well

to achieve better decisions in MAS.

To promote cooperation between sensor nodes, multi–agent systems (MAS)

have been applied in WSNs. MAS has the potential to tackle the resource constraints
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inherent in these networks by efficiently coordinating the activities among the nodes.

MAS is made up of a number of agents, each with its own set of states and actions.

Each agent must coordinate with one another in order to maximize the overall benefit

for all agents. The work in (Seah et al., 2007) examined how coordination between the

wireless sensor nodes could lead to maximization of coverage of the sensing field as

well as minimization of the total energy consumption, thereby increasing the lifetime

of network. They tested three algorithms, i.e. the Fully Distributed Q-learning, the

Distributed Value Function (DVF) and the Coordinated algorithm (COORD). The

work in (Tham et al., 2005) presented an algorithm for multi-agent reinforcement

learning called coordinated reinforcement learning. In this algorithm, agents

coordinate both their action selection and their parameter update. Within the limits of

their parametric representation, the agent determines a joint action without explicitly

considering every possible action in their exponentially large joint action space. In

(Tham et al., 2005), the authors implemented a multi-agent system on a wireless

sensor network comprising sensor-actuator nodes with processing capability. Their

approach enabled these nodes to perform tasks in a coordinate manner to achieve

maximum coverage. In (Tham et al., 2005), authous considered the implementation of

several algorithms including the Ind learners algorithm, the DVF algorithm and the

OptDRL algorithm. The optimal algorithm for coverage control in multi-agent system

was found to be the DVF algorithm, in terms of trade-off between achieved area

coverage and energy consumption. The DVF algorithm extendeds a commonly used

RL method called, Q-learning, to encourage cooperative behavior between agents in

multi-agent systems to achieve maximum coverage area in the network. In this thesis,

this algorithm was used as a benchmark for coverage control comparison in WSN.
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This chapter presents the fundamental theory of reinforcement learning which

is the basis of the contribution of this thesis is. The next section explains the concept

of single-agent and multi-agent RL. The next section provides a theoretical

background on Markov decision process (MDP). A description of reinforcement

learning is given in section 2.4. Section 2.5 presents the multi-agent Q-learning.

Section 2.6 presents the distributed reinforcement learning and a summary is

presented in the final section.

2.4 Single-agent and multi-agent systems

2.4.1 Single-agent systems

Before studying and categorizing MAS, we first consider the most

obvious centralized, single-agent systems. Centralized systems have a single agent

which makes all the decisions. A single-agent system may have multiple entities,

several actuators, or several physically separated components. However, if each entity

sends its perceptions to and receives its actions from a single central process, then

there is only a single agent in the central process. The central agent models all of the

entities as a single “self”.

In general, the agent in a single-agent system models itself, the

environment, and the interactions between the agent and environment. The agent is an

independent entity with its own goal, action, and domain knowledge. In a single-agent

system, other agents are not recognized by the agent. Thus, even if there are other

agents in the system, they are not modeled as having a goal. That is, they are just

considered part of the environment. The point being emphasized is that although
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agents are also a part of the environment, they are explicitly modeled as having their

own goals, actions, and domain knowledge can be shown in Figure 2.3.

SENSORS
Effectors

Figure 2.2 A general-agent framework. The agent models itself, the environment,
and their interaction. If other agents exist, they are considered part of the
environment.

2.4.2 Multi-agent systems

Multi-agent systems differ from single-agent systems in that several

agents co-exist, each with their own goals and actions. From an individual agent’s

point of view, multi-agent systems differ from single-agent systems in that the

environment’s dynamics can be affected by other agents. Thus, all multi-agent

systems can be viewed as having dynamic environments. Figure 2.4 depicts a multi-

agent system where each agent is both part of the environment and modeled as a

separate entity. There may be any number of agents, with different degrees of

heterogeneity and with or without the ability to communicate directly.
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Environment

Goals
Actions
Domain
knowledge

SENSORS
Effectors

Agent

Goals
Actions
Domain
knowledge

Agent

Figure 2.3 A multi-agent scenario. Each agent models each other’s goals, actions, and
domain knowledge. Direct interaction (communication) are indicated by
the arrows between the agent.

2.5 Markov decision process theory

Markov decision process (MDP) has been used for system modeling and has

many potential applications over a wide range of topics such as inventory control,

computer science, maintenance, resource allocation, etc.

MDP is based on the concept of Markov process (Stroock, 2005). Markov

processes (also called Markov chains), in turn, are based on two fundamental

concepts: states and state transitions. A state is treated as a random variable which

describes some properties of the system. A state transition describes a change in the

system state at a given time instance. One can classify Markov processes into

discrete-time and continuous-time Markov processes. In many cases, the system can
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be modeled in either of these categories. If one is interested only in the state sequence,

it is more convenient to use the discrete-time description. In this thesis, it is assumed

that the environment the multi-agent systems is a discrete-time. The foundation of

Markov decision process is presented as follows.

2.5.1 Markov Decision Process

In the preceding description of Markov processes, we assumed that the

system model is known so that the transition probabilities and the transition rates are

given. Nevertheless, in many cases the state transitions can be controlled by the

system itself or the system user. In such situations, the goal is thus to find the optimal

control decisions. Markov decision theory provides a framework for analysis of the

probabilistic sequential decision processes. In this section, we concentrate on discrete-

time stationary processes with infinite planning horizon. In general, a Markov

decision model can be formulated from the system cost or the system reward

perspective. These two perspectives are basically equivalent since the maximization

of the system reward under given potential maximum reward corresponds to the

minimization of the system cost. In addition, the corresponding decision models are

essentially the same. In this thesis, we use the reward maximization formulation. The

objective of our Markov decision is thus to find an optimal control policy which

maximizes the long-time average reward per unit time.

A Markov decision process (MDP) is a discrete-time random decision

process contains a set of possible states (S), a set of possible actions (A), a real-valued

reward function ( , , )R s a s , and the one-step state transition of the environment. The
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goal for a agent is to maximize the expected sum of (discounted) rewards for a state

[ ( )]t
t

t

E R s , where 0 1  is the discount factor.

In MDP, it is assumed that the probability of transiting to another state

only depends on the current state. Since the ultimate goal is to maximize the expected

utility, we will need to learn a policy function  that maps states to actions. Given

any state s and action a, the probability of occurrence of each possible next state s' is

1( | , ) ( | , ).t t tP s s a P S s S s a a     (2.1)

This equation is called the state transition probability. At time step t, at a current state

ts s and action ta a , a reward 1tr is obtained. A MDP model can be shown in

Figure 2.5. The expected value of the incurred reward for any given state, action, and

next state is

1 1( , , ) [ | , , ],t t tR s a s E r S s S s a a      (2.2)

where [ ]E  is the expectation operator. Equation (2.1) and (2.2), completely specify

the most important aspects of the dynamics of the MDP.

Figure 2.4 A MDP model.

In order to find an optimal policy, we need to define the optimal value

function of a state. In other words, the optimal value function is the expected utility

we will get at state s if the optimal action is selected, i.e.,
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'

* ' ' * '( ) max ( , , )[ ( , , ) ( )]
a

s

V s P s a s R s a s V s  (2.3)

This equation can be called the Bellman Equations which characterize the optimal

values. It is also common to define a new quantity called a Q-value with respect to

state-action pairs

'

* ' ' * '( , ) ( , , )[ ( , , ) ( )]
s

Q s a P s a s R s a s V s  (2.4)

In other words, ( , )Q s a is the expected utility for starting at state s, taking action a,

and taking optimal actions thereafter. Thus, ( )V s and ( )Q s are related according to

the following equation

* *( ) max ( , ).
a

V s Q s a (2.5)

To determine the optimal policy, policy iteration and value iteration

algorithms are used (Puterman, 1994). However, policy iteration is generally an

improvement over value iteration because policies often converge long before the

value functions do. Policy iteration, we alternate between policy evaluation and policy

improvement steps. In policy iteration starts with an initial policy π. Then the value

functions of each state when following policy π is determined by

'

' ' '( ) ( , ( ), )[ ( , ( ), ) ( )].
s

V s P s s s R s s s V s     (2.6)

Note that the maximum operator no longer needed become policy π(s) gives us the

action for state s. A policy improvement is obtained by finding an action at state s

such that
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'

* ' ' * '( ) arg max ( , , )[ ( , , ) ( )]a
s

s P s a s R s a s V s   (2.7)

After policy improvement, policy evaluation following (2.6) under the improved

policy is performed. Then policy according to (2.7) is performed. The iterated until

convergence is achieved.

2.6 Reinforcement learning

“Machine Learning is the study of computer algorithms that improve

automatically through experience” (Mitchell, 1997). There exists three major learning

methods in Machine Learning, i.e., supervised learning, unsupervised learning and

reinforcement learning (RL). In supervised learning, the learning system is provided

with training data in the form of pairs of input objects (often vectors) and correct

outputs. The task of the supervised learner is to learn from these samples the function

that maps the input to outputs and to predict the value of this function for any valid

input object and to generalize from the presented data to unseen situations. On the

other hand, in unsupervised learning, the system is given no a priori output and the

learner has to learn a model that fits to the observations. RL is located between

supervised and unsupervised learning. In particular, RL is “learning what to do –how

to map situations to actions– so as to maximize a numerical reward signal” (Sutton et

al., 1998). The learner is not told which the correct actions are but it has to determine

(learn) them through continuous trial-and-error interactions with a dynamic

environment in order to achieve a particular goal.

In the standard RL model, the learner and decision-maker is called an agent

and is connected to its environment via perception or sensing, and actions. Figure 2.6

shows the agent can detect changes in the environment from the reward signal and
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respond to the changes by taking an action. More specifically, the agent and

environment interact at each of a sequence of discrete time steps t. At each step of the

interaction, the agent senses some information about its environment (input),

determines the world state and then chooses and takes an action (output). The action

changes the state of the environment and this of the agent. One time step later, the

value of the state transition following that action is given to the agent by the

environment as a scalar called reward. The agent should behave so as to maximize the

received rewards, or more particularly, a long-term sum of rewards.

Let st be the state of the system at time t and assume that the learning agent

chooses action at, leading to two consequences. First, the agent receives a reward rt+1

from the environment at the next time step t+1. Second, the system state changes to a

new state st+1.

Figure 2.5 Diagram of agent-environment interaction in reinforcement learning.

As oppose to policy iteration or value iteration which require models of the

system, RL is a model-free learning schemes. Model-free learning schemes does not
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require computation of the state transition model but instead, but only compute the

actual value function directly by estimating form interacting with the environment.

Given that certain conditions are satisfied, the value function do coverage albeit

slowly, since direct value function estimation does not take into account the Bellman

Equations.

In particular, in model-free learning, the value functions are updated according

to the following equation after each state transition '( , , , ),s a s r

' '( ) (1 ) ( ) [ ( , ( ), ) ( )].V s V s R s s s V s         (2.8)

Such method is called temporal difference (TD) learning (Sutton et al., 1998). TD

learning works by adjusting the value function estimates towards the ideal equilibrium

as stated by the Bellman equations. Because TD learning does not require state

transition probabilities, Q-values are learned instead, since it is easier to extract

actions from Q-values. The Q-values are updated according to,

'

' ' '( , ) (1 ) ( , ) [ ( , , ) max ( , )].
a

Q s a Q s a R s a s Q s a      (2.9)

Because the Q-value makes the action explicit, we can estimate the Q values on-line

using a method essentially the same as TD. These Q values are also used to define the

policy, because an action can be chosen just by taking the one with the maximum Q

value for the current state. The Q-learning rule is

'

' '( , ) ( , ) [ max ( , ) ( , )].
a

Q s a Q s a r Q s a Q s a     (2.10)

where '( , , , )s a s r is an experience tuple as described earlier. If each action is executed

in each state an infinite number of times on an infinite run and ,  is decayed
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appropriately, the Q-values will converge with probability 1 to *( , )Q s a . However, the

above mentioned principle is based on a single agent Q-learning, which is appropriate

for the small size and low complexity problem. However, in this thesis, Q-learning is

applied to the area coverage control, which requires a large number of sensor nodes in

the same area. Therefore, Single agent Q-learning is not suitable for our framework.

The multi-agent Q-learning scheme is more suitable to cater decision-making of

several sensor nodes so that the agent (each sensor node) can find the optimal policy

for the entire coverage area.

2.7 Multiple agent Q-learning algorithm

Multi-agent systems differ from single-agent systems in that there are many

different agents that learn a task and that all of the agents’ actions affect the

environment. Thus, the optimal policy does not rely on only one agent, but conditions

on all agents. There are works which directly applied single agent Q-learning to multi-

agent systems where an individual agent maximizes its own benefit. By doing so,

their works neglect the presence of the other agents. As a result, suboptimal decisions

may be obtained. Therefore, an individual agent should take account of the effect of

joint actions as a more suitable strategy for multi-agent systems.

2.8 Distributed reinforcement learning

In recent years, several extensions to RL and Q-learning for distributed

systems have been proposed. Many interesting problems which require solving with

reinforcement learning (RL) also have properties that make distributed solutions

desirable. In scenarios where the state and/or action space are large, a distributed
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approach to perform the computation is desirable because it speeds up computation.

In many systems such as WSNs, access to sensors and actuators is inherently

distributed, thus making a distributed solution method an attractive alternative to

implementing a global high bandwidth communication network. Potential

applications include control of power grids (or any other distribution of a resource

such as water, gas, etc.), automobile traffic control, electronic network routing,

control of robot teams, and communication networks. Figure 2.7 illustrates a

distributed RL framework.
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Figure 2.6 Distributed RL diagram representing logical nodes in the distributed RL
formulation. Each node senses its own state of the environment, takes its

own action, and receives its own reward signal.

2.8.1 Distributed value functions
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In this section, we present an algorithm for distributed reinforcement

learning based on distributing the representation of the value function between nodes.

Each node in the system only has the ability to sense state locally, choose actions

locally, and receive rewards locally. The goal of the system is to maximize the sum of

the discounted rewards over all nodes and over time. However, each node is allowed

to give its neighbors the current estimate of its value function for the states it transits

through. A value function learning rule (described in the next section) uses

information that allows each node to learn a value function that is an estimate of a

weighted sum of future rewards for all the nodes in the network. With this

representation, each node can choose actions to improve the performance of the

overall system.

2.8.2 Distributed value function (DVF) algorithm

Usually, in MAS, agents only have local state information since the

global state of the system is not fully observable from each agent's point of view.

Hence, (Schneider et al., 1999) proposed a Q-learning based algorithm for the

distributed value function (DVF) algorithm. This approach allows each node to

compute its local value function based only on available local information. Hence,

agents only need to transmit the estimated value of the current state they land in, i.e.

( )i i
tV s for agent i at time t at each iteration. The update rule at time step t for agent i

is given by

1 1 1 1
( )

( , ) (1 ) ( , ) ( ( ) ( ) ( ))i i i i i i i i i j j
t t t t t t t t t t

j Neigh i

Q s a Q s a r s f j V s     


     (2.11)

,
i

i i i i
t + 1 t t + 1 t

a A
V (s ) = m a x Q (s ,a )


(2.12)
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where  is the learning rate, ( )if j are factors that weigh the value functions of the

neighbors of agent i such that

1
( ) , if ( ) 0

| ( ) |

1 , otherwise,

if j Neigh i
Neigh i

 



(2.13)

where ( )j Neigh i is the set of neighbors of node i .

2.9 Summary

In this chapter, an overview of the Markov Process, Markov Decision process,

reinforcement learning and a multi-agent Q-learning algorithm called Distributed

Value Function (DVF) has been given. This algorithm was used to determine

maximum coverage control in WSNs. The main point for selecting this method was

that the algorithm allows the agent to rationally determine the near-optimal policy and

receive maximum coverage and maximum trade-off between achieved coverage with

energy consumption in WSNs. In the next chapter, the DVF algorithm is applied to

the coverage control problem is WSNs.



CHAPTER III

A MULTI-AGENT SCHEME FOR ENERGY-EFFCIENT

COVERAGE CONTROL IN WIRELESS

SENSOR NETWORKS

3.1 Introduction

Wireless sensor networks (WSNs) are a collection of numerous cheap sensory

devices installed within a particular environment to gather the physical parameters of

interest. Measurements of these sensor devices are then acquired and relayed through

the network to be processed or collected at the base station. Such data acquisition

gives the ability to continuously monitor the particular surroundings of interest and

respond quickly to any changes that may incur. WSNs have emerged in biomedical,

military, agricultural monitoring and control applications (Alaiad et al., 2015),

(Hussain et al., 2009), (Santoshkumar et al., 2015). In smart homes or buildings,

lighting control have been a particular application which coverage control is needed to

reduce energy consumption while maintaining a required level of light intensity.

Coverage control problems have been a significant issues arising in wireless

sensor networks with the aim to extend the longevity of network lifetime and efficient

energy consumption in the network due to the limited on-board battery power of a

sensor node (Wang et al., 2011).  Vu et al. (2009) and (Chen et al., 2009) proposed a

distributed wireless sensor network with adjustable sensing radii enabling a flexible

and efficient coverage. In (Ye et al., 2006), the authors proposed a Probing

Environment and Adaptive Sleeping (PEAS) scheme which is a coverage
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maintenance scheme that increases the network lifetime by maintaining a necessary

number of working nodes and shutting down the rest as reserve. By querying

neighboring nodes, a particular working node can determine the status of neighboring

working and sleeping nodes prior to deciding on its own status. In (Zhang et al.,

2005), the optimal geographical density control (OGDC) scheme was proposed as a

guaranteed full coverage control scheme based on grid redundancy check and

sequential node activation. The grid redundancy requires that each sensor node

maintain a list of the grid points it covers. The sequential node activation requires that

each active node sends out activation messages to neighboring nodes to reset their

timers.

The aforementioned coverage control methods are non-learning schemes

which require reconfiguration should the environment change. Due to node

deployment in potentially wide areas, direct access to reconfigure the nodes may not

be feasible. On the other hand, multi-agent system (MAS) technologies have shown to

be promising due to their flexibility and self- adaptability which caters autonomous

self-awareness at sensor nodes (Phuphanin et al., 2016). In a multi-agent system

(MAS), nodes act as agents which have the ability to learn and adjust their coverage

in a distributed manner thereby enabling a light weight self-adaptive coverage control.

The nodes in a MAS decide their actions in a cooperative manner to achieve a mutual

goal of maximizing the network coverage by using the minimal amount of energy. To

do so, a cost function based on a function of redundant coverage areas of a sensor

node is introduced.

The contribution of this chapter is thus twofold: 1) a modified multi-agent

coverage control scheme based on a redundancy coverage area cost function; 2)
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comparison of the scheme with non-learning coverage control schemes, i.e., OGDC

and PEAS. The objective of the proposed algorithm is to maximize the coverage

control efficiency by maximizing the obtained coverage control per unit of energy

consumed. Our results suggests the suitability of applying MAS in coverage control in

WSNs.

3.2 Multi-agent coverage control

3.2.1 Distributed Value Function Scheme

A multi-agent coverage control scheme called the Distributed Value

Function (DVF) has been proposed to co-ordinately and cooperatively improve the

coverage control performance in wireless sensor networks (Tham et al., 2005). In this

method, each node communicates and exchanges information about its value function.

A value function is a function that quantifies how well the agent (sensor node)

performs at a given state s S where S is a discrete set of all possible states of the

sensor network. Let a A be the action selected by an agent, where A is the discrete

set of all possible actions available at each state. The decision rule of an agent, so

called policy  , is defined as a rule which the agent selects an action as a function of

its state. In other words, it is the mapping from a state s S and a A action to the

probability of selecting action a at state s . The value function of state s under a

given policy  is formally defined by
1

0

( ) k
t k t

k

V s E r s s  


 


   
 
 , where 1tr  is

the reward of taking a particular action in a given state s at time t ,  is the discount

factor and {}E is the expectation operator. Similarly, we define the action value

function of taking action a at a given state under policy  by
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1
0

( , ) ,k
t k t t

k

Q s a E r s s a a  


 


    
 
 (3.1)

The objective is to find a policy * such that * ( , )argmax Q s a





 . To achieve this

objective, each agent i (node) in the DVF algorithm performs an update of its own

action value function. The update rule at time step t for agent i is given by (Tham et

al., 2005):

1 1 1 1
( )

( , ) (1 ) ( , ) ( ( ) ( ) ( ))i i i i i i i i i j j
t t t t t t t t t t

j Neigh i

Q s a Q s a r s f j V s     


     (3.2)

i

i i i i
t+1 t t+1 t

a A
V (s ) = m a x Q (s ,a )


(3.3)

where  is the learning rate, ( )if j are factors that weigh the value functions of the

neighbors of agent i such that

1
( ) , if ( ) 0

| ( ) |

1 , otherwise

if j Neigh i
Neigh i
 



(3.4)

where ( )j Neigh i is the set of neighbors of node i (Tham et al.,2005).

3.2.2 Modified DVF Framework for Coverage Control

Consider a wireless sensor network comprising multiple light sensor

nodes. For a particular sensor node i, the local state and actions taken are defined as

follows.

Local agent state: Each sensor node i can sense the level of coverage

in its area. Its local state is is state of each agent based on its mode and coverage area.
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Local agent actions: Each sensor node i has the ability to take one of

the following actions in any state it lands in. The action space iA is the set of all

possible actions for each state iA  {Action_0, Action_1} where Action_0 (Action_1)

refers to sensor node i turning off (on).

Each action decided by sensor node i results in a reward, denoted as

 i i
tr s which is a function of sensor node i’s state is at time t defined by

( ) ( )i i i i i
t tr s G s C  (3.5)

where ( )i i
tG s is a function of the number of cells within the coverage area of sensor

node i such that

( ) _cov ( ) _ _ ,i i i
tG s Area erage a GAIN CELL BRIGHT  (3.6)

and iC is the area overlapped as a result from the action taken by sensor node i at

time t.

3.3 Performance Evaluation

To compare the coverage control performance of a WSN, we considered a

gridded area of 1000 x 1000 sq.m. containing a number of sensor nodes ranging from

100,200,300,400,500 sensor nodes placed randomly in the area.

The objective is for the sensor node to learn to cooperate with one another in

order to completely coverage area in an energy-efficient way, i.e. minimize the

number of sensor node turned on. The coverage area of node (agent) i was given

within a transmission range of 100m. The initial energy of each sensor node was 10

Joule.  Comparison was based on the number of working nodes, coverage percentage
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and coverage lifetime. The DVF was compared with OGDC, PEAS8 and PEAS9,

where the latter two are PEAS with probing ranges of 80 and 90m, respectively.

According to equations (3.2) and (3.6), the value of the learning rate  = 0.4,

the discount factor  = 0.7 and the GAIN_CELL_BRIGHT = 0.5. The values of the

learning rate and discount factor were obtained from experimenting a range of values

and selecting the parameters which received the best performance in terms of average

accumulated reward in (3.5). The simulation results were averaged over 10 runs to

achieve the desired accuracy.

Figure 3.1 depicts the number of working nodes against the number of

deployed nodes in each algorithm. Note that OGDC, PEAS8 and PEAS9 consistently

use a gradually increasing number of working nodes which is higher than DVF. The

reason is due to DVF determines the working nodes which achieves the best coverage

while saving energy consumption.

Figure 3.2 shows the percentage of coverage achieved by all algorithms

against the number of deployed nodes. Note that above 200 deployed nodes, all

algorithms can achieve full coverage with DVF attaining 99.2% coverage at 200

nodes and 99.8% at 500 deployed nodes. The reason is because DVF must

conservatively select working nodes so as to reduce the amount of energy

consumption. Even so, the modified DVF can achieve a nearly full coverage with

only 13-64% of active sensor nodes whereas the OGDC and PEAS required 14-68%

and 16-76% of active sensor nodes, respectively for high to low node densities.

Figure 3.3 illustrates the efficiency in terms of coverage area per working

node for each algorithm. The rational is from the fact that coverage area attained is a
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trade-off with the energy dissipated by the working node. Results show that DVF

achieved the highest coverage per working node, followed by OGDC and PEAS.

Figure 3.4 - 3.6 depict the area coverage lifetime for each algorithm for

various numbers of deployed nodes. The area coverage lifetime is defined by the

duration from the start of network operation until the coverage requirement is no

longer satisfied. It is evident that the coverage lifetime for DVF is prolonged the most

in terms of number of time steps due to the least number of working nodes. PEAS8

attained the least coverage lifetime. This is because PEAS requires acknowledgement

messages in addition to the higher number of working nodes than OGDC and DVF.

0 100 200 300 400 500 600
10

20

30

40

50

60

70

80

90

Number of deployed nodes

N
um

be
r 

of
 w

or
ki

ng
 n

od
es

OGDC
PEAS 8
PEAS 9
DVF

Figure 3.1 Average number of working nodes against the number of deployed nodes.
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Figure 3.4 Coverage lifetime for DVF.

Figure 3.5 Coverage lifetime for OGDC.

Figure 3.6 Coverage lifetime for PEAS8.



43

3.4 Summary

In this chapter, we have proposed a cost function-modified distributed value

function (DVF) scheme which is a multi-agent scheme aimed at energy-efficient

coverage control in wireless sensor networks. Results were compared with two non-

learning coverage control schemes i.e., PEAS which is a partial coverage control

scheme and OGDC which is a guaranteed coverage control scheme. Results showed

that the proposed modified DVF attained the least working nodes of all while still

achieving nearly complete coverage. Therefore, DVF outperformed PEAS and OGDC

in terms of area coverage energy efficiency and area coverage lifetime. Results

suggest the suitability of employing MAS for coverage control problems in WSNs.

Note that the proposed objective function in (3.5) give are to a single objective

optimization framework. However, to cater conflicting objectives or multiple

objectives, a multiple objective optimization framework is need. This is propose in the

following chapter.



CHAPTER IV

SCALARIZED Q MULTI OBJECTIVE REINFORCEMENT

LEARNING FOR AREA COVERAGE CONTROL AND LIGHT

CONTROL IMPLEMENTATION

4.1 Introduction

Wireless sensor networks (WSNs) consist of small computing devices with

limited computational capabilities and energy supply. Various systems have

developed and implemented such devices for a wide range of applications, such as

automatic systems, environmental monitoring systems, elderly people monitoring

systems and smart homes. These systems rely on the interaction and cooperation

between the sensor nodes to carry out the operation. There are several key

performance indicators to measure the performance of a WSN, such as coverage area,

energy consumption, the number of working nodes, the coverage area per working

node, or coverage area per unit energy consumed, etc. These metrics are vital in

measuring the quality-of-service (QoS) of the network.

Coverage control has gained much research interest in wireless sensor

networks. Typically, coverage control has the aim to maintain or maximize coverage

while preserving network lifetime and energy consumption of the WSN. Due to the

multiple parameters which can affect coverage, coverage control problems are

typically formulated as optimization problems with single or multiple objectives. In

this work (Zhang et al., 2005) proposed a single objective coverage control, the
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optimal geographical density control (OGDC) scheme was proposed for guaranteed

full coverage control. The scheme is based on grid redundancy check and sequential

node activation. The grid redundancy requires that each sensor node maintains a list

of the grid points it covers. Each active node sends out activation messages to

neighboring nodes to reset their timers. Thus, the OGDC scheme is a deterministic

optimization scheme which aims to maximize a single objective (i.e. maximize the

coverage area).

Single objective coverage control has also been applied to enable energy

efficient usage and convenience in smart homes or smart buildings. Ref. (Kumaar et

al., 2010), (Huny et al., 2011), (Mohamaddoust et al., 2015), (Meng-Shiuan et al.,

2008), (Okada et al., 2015) apply coverage control for lighting control applications.

Similar to (Zhang et al., 2005), (Kumaar et al., 2010), (Huny et al., 2011),

(Mohamaddoust et al., 2015), (Meng-Shiuan et al., 2008), (Okada et al., 2015) are

also based on a single objective which is to maintain coverage (light intensity)

required by user. These works do not consider energy consumption which is an

important parameter in WSNs.

Most aforementioned literature focus on applying wireless sensor networks to

manage a single objective of maximizing coverage (Zhang et al., 2005) or satisfying

light intensity requirements (Kumaar et al., 2010), (Huny et al., 2011),

(Mohamaddoust et al., 2015), (Meng-Shiuan et al., 2008), (Okada et al., 2015).

However, such single objective optimization schemes may well conflict with other

objectives such as minimizing energy consumption, or wasteful overlapping areas. In

certain applications such as in visible light communication (VLC), overlapping

coverage areas is undesirable as the identification data cannot be read in the light
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overlapping areas. On the other hand, the principles of multi-objective optimization

(MOO) can support multiple objectives and be used to determine solutions (Iqbal et

al., 2016). Multiple objectives have been considered simultaneously in many wireless

sensor network applications. In (Ratnasingham et al., 2009), a multiple target tracking

sensor management algorithm was investigated. The problem was to select subsets of

sensors and assign frequency and minimize transmission power to working sensors in

order to maximize the tracking performance of multiple targets. As for coverage

control application, MOO is generally used for optimizing contradicting objectives,

for example, coverage maximization, minimization of working sensor nodes,

minimization the unbalanced energy consumption and minimization of energy

consumption to prolong the network lifetime (Iqbal et al., 2015), (Fei et al., 2016).

Singhiv et al. (2005) presented an intelligent lighting control which considered two

objectives of maintaining light intensity for users and minimizing energy expenditure.

Each round of decision is dependent on light intensity information gathered from the

immediate indoor and outdoor environment of the occupants.  It can be seen that these

aforementioned works in (Iqbal et al., 2016), (Ratnasingham et al., 2009), (Iqbal et al.,

2015), (Fei et al., 2016), (Singhiv et al., 2005) rely on rule-based or threshold-based

decisions. Such works may not adapt well in constantly changing surroundings such

as lighting control with changing external lights. Furthermore, these algorithms have

centralized operations which may be suitable for small scale coverage. However, such

schemes may not be suitable for implementation in individual sensor nodes for

distributed coverage control.

On the other hand, there are several researches in the existing literature which

applied adaptive learning methods to the MOO framework. Such learning methods
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can predict the optimal policy form learning experience in presence of a constantly

changing environment. (Carlos et al., 2004) presents an approach in which Pareto

dominance is incorporated into particle swarm optimization (PSO) in order to allow

this heuristic to handle problems with several objective functions. Jia et al. (2009)

applied the multi-objective genetic algorithm (GA), called Energy-efficient Coverage

Control Algorithm (ECCA), to the coverage control problem in WSNs. The objective

of ECCA is to minimize the number of working sensor nodes while maximizing the

coverage area. Another common algorithm to solve MOO problems is the Artificial

Neural Network (ANN). Barbancho et al. (2007) used ANN to find the optimal

transmission path with the objective to minimize the global energy consumption. Tafa

et al. (2016) also applied ANN a problem of selecting randomly placed sensors to

maximize a barrier coverage and minimize energy consumption. Although PSO, GA

and ANN approaches can solve MOO problems, such algorithms are typically

complex and slow in finding the optimal policy (Fei et al., 2016). Another method

used to solve MOO problems is reinforcement learning (RL). RL is a learning scheme

which is based on the actual interaction between an agent and the environment. Upon

each action decided by the agent when the environment is in a particular state, a

reward is returned and the agent uses the reward to iteratively improve its action. One

common RL tool is Q-learning which is an algorithm that an agent updates iteratively

to improve its actions based the goodness of state-action pair function. RL approach

can be easily implemented in a distributed architecture like in WSNs. Rovcanin et al.

(2015) propose a service-wise protocol optimization technique for multi-objective, co-

located and complex heterogeneous network. The proposed solution efficiently

combines MOO with the reinforcement learning (RL) method. Phuphanin et al.
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(2016) applied a multi-agent Q-learning scheme to an energy efficient coverage

control problem in WSNs. Their results show that the multi-agent learning scheme is

scalable and can outperform non-learning coverage control schemes despite its low

complexity. However, their multi-agent RL scheme is based on a single cost function

of multiple conflicting objectives. Such a single combined objective function may not

attain the best policy particularly if each objective is contradicting.

Therefore, this chapter is focused on the application of a MOO framework to

an online learning scheme for coverage control in WSNs. In particular, the Scalarized

Q Multi-Objective Reinforcement Learning (SQMORL) method, which uses a MOO

framework is applied to the coverage control problem in WSNs. Such online learning

scheme is also adaptive to changes and perturbations. The algorithm has low

complexity and is distributed. Therefore, it provides a promising implementation in

sensor nodes which are resource constrained. Furthermore, this work also implements

a hardware testbed to evaluate the performance of SQMORL in a multi-agent lighting

control experiment.

The contribution of this capter is therefore three-fold: 1) The SQMORL

coverage control and performance evaluation by means of simulation in uniform

random and grid sensor layout; 2) Comparison of SQMORL with both learning and

non-learning coverage control schemes in WSNs; 3) Development of a testbed and

hardware performance evaluation of an automatic lighting control using SQMORL

algorithm.

4.2 Multi-objective reinforcement learning for coverage control
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Coverage control is a critical issue in WSNs as it is one of the parameters

which affects the QoS of the network. However, an increase in area coverage may

have influence on other resources such as more energy consumption as well.

Furthermore, if the network has a large number of sensor nodes placed in the network,

excessive number of working sensor nodes in nearby areas may result in overlapping

areas which is a waste of energy. Therefore, multi-objective reinforcement learning

can be applied to find the optimum policy to select sensor nodes to maintain its

coverage while simultaneously reducing overlapping area and hence energy

consumption.

4.2.1 Multi-objective optimization

In general, multi-objective optimization (MOO) problems include a

number of objectives required for optimization simultaneously. Each objective, may

be related or conflicting. Therefore, the main function of MOO is to find the

equilibrium points of different objectives. A multi-objective optimization problem

(MOP) with n variables and m objectives (m > 1) can be formulated as (Jameii et al.,

2014):

1 2( ) [ ( ), ( ),..., ( )]mmin or max g x g x g x g x (4.1)

subject to x , where nR  is the decision space, g G and : mG R consist

of m real valued objective functions, and Rm is the objective space.

4.2.2 Scalarized Q multi objective reinforcement learning for area coverage

control

Multi-objective reinforcement learning (MORL) problems differ from

general RL problem in that there are multiple objectives to be achieved by the
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learning agent. Each objective has its own reward or penalty signals. This is a basic

architecture which a single agent is simultaneously faced with a set of different

objectives. For each objective m and a stationary policy , there is a corresponding

action value function, ( , )iQ s a

,  which satisfies the Bellman equation. Let the vector

MQπ be defined by

1 2( , ) [ ]TmMQ s a Q Q Q     (4.2)

where MQπ is the vectored action value function, which also satisfies the Bellman

equation. The optimal vector state–action value function is defined as

*( , ) max ( , ).MQ s a MQ s a


 (4.3)

Thus, the optimal policy * can be obtained by

* *( ) arg max ( , )
a

s MQ s a  (4.4)

In this basic architecture, the optimization problems of max ( , )MQ s a


and

*arg max ( , )MQ s a are both MOO problems.

In the design of the area coverage control Scalarized Q Multi-Objective

Reinforcement Learning (SQMORL), a weighted-sum approach (Moffaert et al.,

2013) is used. For the SQMORL algorithm, the state-action value function of each

objective determined by ( , , )Q s a o which is a function of a state-action pair and an

objective function. By applying the weighted-sum approach, we obtain the weighted

sum of the objective functions



51

1

( , ) ( , , )
m

o
o

SQ s a w Q s a o


  (4.5)

whereby the weights are such that [0,1]ow  and
1

1
m

oo
w


 . In the SQMORL scheme,

each agent i (i.e., sensor node i) in the SQMORL algorithm performs an update of its

own action-value function. The update rule at time step t for agent i is given by

1 , 1 1

1
( )

( , , ) (1 ) ( , , ) ( ( )

( ) ( )) , 1, 2

i i i i i i i i
t t t t t t o t t

ji j
t t
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


  

 
(4.6)

, ,
i

i i i i
t+1 t t+1 t

a A
V (s ) = m ax Q (s ,a o )


(4.7)

where  is the learning rate where 1  refers to a rapid learning rate as the old

estimate ( ( , , )i i i
t t tQ s a o ) is forgotten rapidly, ( )if j is a factor that weighs the value

function of neighbour j of agent i such that

1
( ) , if ( ) 0

| ( ) |

1 , otherwise

if j Neigh i
Neigh i

 



(4.8)

where ( )j Neigh i is in the set of neighbors of node i. Thus, the optimal policy * is a

policy that satisfies

* *( ) arg max ( , ).
a

s SQ s a  (4.9)

In this chapter, the SQMORL framework is applied to the coverage control problem.

The following assumptions are used.
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Local agent state: Assume that each agent can sense the coverage area. Let i be the

index of a sensor node and i
tS be the local state of sensor node i (agent i) at time t. Its

local state i
tS is the state of each agent i which is based on its coverage area.

Local agent actions: Let iA be the set of all possible actions for each agent. Each

agent i has the ability to take one of the following two actions in any state it lands in,

i.e., i ia A where iA  {Action 0 (Turn off sensor), Action 1 (Turn on the sensor)}.

Objective functions: There are two objective functions. The first objective function is

to achieve maximized coverage area. The reward function of objective function is

given by:

1( , ) _ cov ( ) _ _ ,i i i i
tr s a Area erage a GAIN CELL BRIGHT  (4.10)

where _ ( ) _ _iArea coverage a GAIN CELL BRIGHT is a function of the number of cells within the

coverage area of sensor node i. The second objective is to achieve minimized

overlapping area that occurs between sensor nodes located nearby in order to reduce

the energy consumption.

2 ( , ) ,i i i i
tr s a C (4.11)

where Ci is the overlapping area in terms of the number of cells in state i
tS as a result

from action i ia A taken by sensor node i. Thus, the objective function can be

defined separately for each of the objective function as

1( , ) [ ]g s a max areacoverage and 2 ( , ) [ _ ].g s a min area overlapping Figure 4.1

depicts the pseudo code of SQMORL. The algorithm converges provided that all

state-action pairs are visited infinitely often (Moffaert et al., 2013).
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Scalarized Q Multi Objective Reinforcement Learning for area coverage control

BEGIN
1 Random topology
2 for time step 1: end time step
3        Each agent chooses action i ia A , reward
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5       Update iQ
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9    endfor
END

Figure 4.1 Pseudo code of SQMORL for lighting coverage control.

4.3 SQMORL for area coverage control performance evaluation:

simulation part

This section evaluates the performance of the SQMORL algorithm for area

coverage control in WSNs. We consider an area of 35 x 35 sq.m. space. Each sensor

node has an area coverage of radius 5 m which covers an area of 81 cells per sensor

node. Therefore, there are 82 possible states for each agent in the system. The sensors

are laid out in 1) a uniform randomly placement with varying number of 25, 50, 75,

100 sensor nodes; and 2) a grid placement with varying number of 25, 81, 121,169

sensors nodes. From Figure 4.1, the learning rate α is 0.4, the discount factor γ is 0.7

and GAIN_CELL_BRIGHT is 0.5. These are the values of the learning rate and

discount factor which allows the system to perform best and have been evaluated
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from the experiment. In the MOO framework, the weights in line 8 of Figure 4.1

represent a trade-off which is parameterized by 1 2, 0.5w w  . This represents a

scenario which both objectives are equally important. The simulation results are

averaged over 10 repeated runs.

When each sensor node is placed in the area, each sensor node must learn to

adjust its decision in order to discover the optimal action. The optimal action is one

which satisfies the purpose of covering the maximum possible area and attaining the

least number of active nodes. For performance comparison the following metrics are

measured: the number of working sensor nodes selected, the percent of coverage area

and the ratio of coverage area per working sensor node. The SQMORL algorithm is

compared to the Distributed Value Function (DVF) (Phuphanin et al., 2016) which is

a multi-agent reinforcement learning scheme and the non-learning Optimal

Geographical Density Control (OGDC) scheme which has guaranteed full coverage

(Zhang et al., 2005).

4.3.1 Simulation results: uniform random layout

In this scenario, the sensor nodes are placed in the area following a

uniform random placement. We first consider the number of working sensor nodes

which each algorithm decides to cover the area. Figure 4.2 shows the number of

working sensors nodes at node densities of 25 to 100 nodes per area. The DVF and

SQMORL algorithms use 8 to 16 and 8 to 15 working nodes, respectively. As for the

OGDC algorithm, it uses 18 to 26 working nodes to cover the area. From the figure,

results indicate that SQMORL algorithm uses a comparable number of working nodes

to the DVF algorithm while the OGDC algorithm uses the most number of working

nodes.
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Figure 4.3 depicts the percentage of coverage area obtained by each algorithm given

the number of working nodes, for node densities of 25 to 100 nodes per area. Note

that the DVF, SQMORL and OGDC algorithm can attain 75 to 95, 79 to 97 and 88 to

100% of coverage, respectively. At node density of 25 sensor nodes, no algorithm can

attain full coverage due to the insufficient number of nodes. In terms of coverage area,

the OGDC algorithm has more coverage than the other algorithms. At 100 nodes,

SQMORL algorithm attains 96.5% coverage which is 1% more than DVF algorithm

and 3.5% less than OGDC algorithm. However, SQMORL uses 1 and 11 fewer nodes

than DVF and OGDC, respectively (see Figure 4.2).

To show the energy efficiency, in terms of the coverage area size (in cells) per

working node, we compare the ratio of the number of cells in the coverage area over

the number of working sensor nodes in Figure 4.4. The SQMORL algorithm can

outperform DVF and OGDC algorithm in all cases. This is because SQMORL uses

fewer number of working nodes, while the coverage area is comparable to the two

other algorithms. Results show that though OGDC can attain the maximum coverage,

it is at the expense of high number of working nodes.



56

20 30 40 50 60 70 80 90 100
8

10

12

14

16

18

20

22

24

26

28

Node per area

N
um

be
r 

of
 w

or
ki

ng
 n

od
es

OGDC
DVF
SQMORL

Figure 4.2 Number of active nodes against number of nodes placed in the network.
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Figure 4.3 Percentage area coverage against number of nodes placed in the network.
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Figure 4.4 Ratio between the coverage area and working sensor nodes

4.3.2 Simulation result: grid position

In order to evaluate SQMORL in a scenario similar to the light bulb

placement as the automatic lighting control testbed, simulation was also conducted in

a grid layout of sensors nodes. The number of sensor nodes is varied to 25, 81, 121

and 169 nodes. The sensors are placed in a regular grid spaced 5m apart in an area of

30 x 30, 50 x 50, 60 x 60 sq.m. space, respectively. The purpose of this experiment is

to evaluate each algorithm in a setting of light bulbs placed indoors of a building. The

SQMORL, DVF and OGDC algorithms have been compared.

Figure 4.5 shows the number of working nodes selected to cover the

area. The SQMORL algorithm used 9 to 49 node working nodes, the DVF algorithm

used 9 to 54 working nodes, whereas OGDC used the most working nodes with its

selection of 22 to 166 nodes. This is because the SQMORL algorithm can select non-
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overlapping working nodes which cover the most area, whereas the DVF algorithm

missed some positions. On the other hand, OGDC is only focused on uncovered area

and thereby activated almost every node in the uncovered area, thus used the most

number of working nodes.

Figure 4.6 depicts the percentage of area coverage that each algorithm

attained given their selected number of working nodes. It is found that the coverage

remains relatively constant as the sensor nodes are placed at regular grid positions

throughout the area. The DVF and SQMORL algorithm attained approximately 80%

coverage. Note that the OGDC algorithm achieved 98% coverage area for all cases as

it selects working node based on cells which are not yet covered by other nodes.

Figure 4.7 shows the energy efficiency of the working nodes selected.

SQMORL algorithm achieved the highest number of cell coverage per working node

at 80 cells/working node. This is because SQMORL algorithm uses fewer working

nodes while attaining 80% coverage of the area (as seen in Figure 4.6). On the other

hand, the DVF algorithm obtained 73 to 77 cells per working node and the OGDC

algorithm obtained the least energy efficiency. Even though OGDC can achieve the

most percentage of coverage area (Figure 4.6), a trade-off exists as OGDC uses the

highest number of working nodes (see Figure 4.7). This is because OGDC considers

uncovered areas and selects working nodes which overlap. Consequently, as the

number of nodes placed in the area increases, the energy efficiency of OGDC

algorithm decreases.
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Figure 4.7 Ratio between the coverage area and active sensor nodes.

4.3.3 Discussion on simulation results

In the simulation part, we present the MOO framework for area

coverage control in WSNs. There are two objective functions, i.e. to maximize area

coverage objective and to reduce the area overlapping that occurs between

neighboring nodes. A multi-objective reinforcement learning method in conjunction

with the weighted-sum approach, called Scalarized Q Multi Objective Reinforcement

Learning (SQMORL), is then applied to find the optimal policy in area coverage

control. To evaluate the performance of the SQMORL algorithm, the simulation is

divided into two parts, i.e., uniform random and the grid sensor layout. The

performance of SQMORL is compared with DVF algorithm and OGDC algorithm. In
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terms of the number of cells covered per working node ratio, the SQMORL algorithm

outperforms DVF and OGDC algorithm in all cases as it requires the fewest number

of working nodes. Similar results were obtained from both the uniform random and

grid layout.

In the next section, SQMORL and DVF algorithms have been selected

for performance evaluation in an implemented automatic lighting control testbed.

These two algorithms have been selected because they both have self-learning

characteristics, good efficient energy consumption with respect to area coverage and

outperform OGDC.

4.4 Performance Evaluation: testbed

In this section, SQMORL and DVF are evaluated in an automatic lighting

control testbed. In the testbed, each sensor is initialized to the initial default value

setting i.e., Q-value, state, action and reward of each agent equal zero. There are two

actions, i.e., “action 0” refers to turning off a light bulb, and “action 1” refers to

turning on a light bulb. As the SQMORL convergence condition requires that every

state-action pair be visited infinitely often, an “explore and exploit” scheme is

implemented at each agent. In particular, each agent is set to randomly select

(explore) actions for 100 times step in the training phase. This enables each agent to

explore all possible state-action pairs and update the action value functions. After the

training phase, these values are then used to select (exploit) optimal action according

to (4.4) with some probability   and explore other actions randomly with the

remaining probability. This is referred to as the ε-greedy action selection scheme.

When an action is selected, every node waits for 5 seconds for the light intensity to
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become stable as a certain amount of delay is required in the hardware to turn on or

off each light bulb. The nodes then measure the resulting light intensity and obtain the

reward values from equations (4.10), (4.11). Each node then updates their state-action

value functions according to equation (4.6). Then agent sends its own value function

in (4.7) to its neighboring sensor nodes. The neighbors can then have the up-to-date

value functions for their own state-action value updates. The process is repeated as

shown in Figure 4.8 until convergence is achieved, i.e., agent can find the optimal

action.

4.4.1 SQMORL automatic lighting control result

In order to evaluate the performance of the DVF and SQMORL

algorithm, an automatic lighting control test bed was developed in the Wireless

Communication Laboratory F4, Suranaree University of Technology (SUT),

Thailand.

The automatic lighting control system consists of sensor nodes, each of

which is equipped with a wireless communication module with XBee Series 2, a

microcontroller part with Arduino Uno R3 and an additional external memory unit for

recording measurements for control purposes, a light dependent resistor (LDR) to

measure the light intensity. Each sensor node has the ability to measure the intensity

of light within its own area, exchange information between the neighboring node

sensors and collect the data at the memory unit.  Five sensors nodes are placed at the

positions as shown in Figure 4.9, in the experiment room of which external light is

blocked. The results are averaged over 20 repeated runs.
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Figure 4.8 Diagram of SQMORL for automatic lighting control testbed.
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Figure 4.9 Automatic lighting control testbed.

Figure 4.10 shows the final policy obtained by SQMORL and DVF

algorithms. Since there are 5 sensor nodes and each sensor node has 2 actions, there

are 32 possible policies. Sensor node 0 is placed in the middle of the room (see Figure

4.9). If sensor node 0 turns on, its light coverage would overlap with that from all the

other sensor nodes. As the light intensity of the 4 sensor nodes in the corner provides

sufficient coverage area, the sensor node placed at the center can be turned off to save

energy. Thus, the optimal policy for this setting is where the 4 sensors in the corner of

the room are turned on and sensor node in the middle of the room is turned off (i.e.,

the 16th policy). Note that both algorithms were programed to select random actions

for exploration during training in the first 100 time steps. Then the algorithms learned
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on their own according to the ε-greedy action selection scheme. However, it was

initially found that a training phase of 100 time steps was insufficient as both

algorithms could not find the optimal policy. This is shown by the Direct Learning

DVF graph in

Figure 4.10, which the optimal policy (the 16th policy) was not found

at all in the 20 repeated runs. Therefore, to enhance the learning rate, we trained the

sensor nodes off-line through simulation to obtain the state-action value tables prior to

the testbed implementation. Then, we saved the trained value tables in the memory

unit of each sensor node. With this off-line training method, the sensor nodes are able

to quickly adjust their actions to the testbed environment. Results are shown by the

graphs labeled Trained DVF and Trained SQMORL which are the algorithms that

learned policies from off-line training, i.e. with initialization from the trained the

value tables. Figure 4.10 shows that the Trained DVF and Trained SQMORL

algorithms are able to find the optimal policy at 55% and 80% of the 20 repeated runs,

respectively.

Figure 4.11 shows the measured light intensity of each sensor node

running the DVF algorithm (sensor node 0 is placed at the center and the rest of the

sensor nodes are placed in the corners). It should be noted that these measurements

are made only after the DVF algorithm has learned the optimal policy. During training

in the first 100 time steps, each node explores all actions by randomly selecting its

actions. After training, each sensor node makes its decision based on exploitation of

its trained value table. Sensor node 0 achieves the least light intensity of 116 lux as its

own light bulb is turned off. Its light intensity obtained is from the 4 neighboring

sensor nodes.
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Figure 4.12 shows the average reward of all sensor nodes running the

DVF algorithm. Note that during the training phase with the random selection of

actions, the average reward of all sensor nodes does not increase. However, once the

training period is over at the 100th time step, each sensor node can choose the optimal

action at the 117th time step, which is seen from the increase in average reward

consistently.

Figure 4.13 shows the measured light intensity of each sensor node

under the SQMORL algorithm. The SQMORL algorithm can learn the optimal policy.

This result is similar to that of the DVF algorithm as the same the optimal policy (i.e.,

the 16th policy) is expected.

Figure 4.14 shows the average reward of all 5 sensor nodes obtained

from the 1st objective function which aims to maximize the light intensity. Results

show that during training period in the first 100 time steps, the average reward does

not increase due to the exploration from randomly selected actions. But after the

training period, each sensor node can choose its optimal action consistently from

time step 130 onwards, as seen from an increase of the average reward of the sensor

nodes. Figure 4.15 shows the average cost of all 5 sensor nodes obtained from the 2nd

objective function, which aims to reduce the overlapping areas. Results show that the

consistently decreasing average cost at all sensor nodes occurs after time step 130,

implies that the light intensity which occur from overlapping area decreases after this

time step.
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Figure 4.12 Average reward of all 5 sensor nodes from the DVF algorithm.
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algorithm.

0 50 100 150 200 250
-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

Time step

A
v

er
ag

e 
co

st
 o

f 
2

n
d

 o
b

je
ct

iv
e 

fu
n

ct
io

n
 (

lu
x

)

Node 0
Node 1
Node 2
Node 3
Node 4
Average

Figure 4.15 Average reward of 2st objective of all 5 sensor nodes from the SQMORL

algorithm.



70

4.4.2 Discussion on test bed results

To test the performance of both the SQMORL and DVF algorithms, an

automatic lighting control testbed has been implemented to evaluate the performance

of SQMORL and DVF algorithms. From the experiment results, the DVF and

SQMORL algorithms can obtain the optimal policy at 55% and 80% from the 20

repeated runs, respectively. In terms of the convergence speed, the DVF and

SQMORL algorithm reached the optimal policy at time step 117 and 130,

respectively. Such results suggest that the SQMORL algorithm can find the optimal

policy more frequently than the DVF algorithm at a comparable convergence rate.

Therefore, results suggest that MOO framework based on the SQMORL algorithm

may be suitable for coverage control in WSNs, particularly for applications which

require maximum (or maintaining coverage) and minimum overlapping coverage.

4.5 Summary

The objective of this chapter is to extend coverage control using the single

combined objective reinforcement learning algorithm to a multi-objective

optimization (MOO) reinforcement learning framework. In particular, this chapter

proposes the Scalarized Q Multi-Objective Reinforcement Learning (SQMORL)

which uses a MOO based on a weighted-sum approach, for the coverage control

problem in WSNs. The algorithm has advantages of low complexity and scalability.

Thus, the MOO framework also allows the optimal policy particularly for

contradicting objectives to be found more effectively than the combined single

objective function. This is evident from the simulation results in the uniform random

node placement and grid node placements. In addition, this chapter has also developed



71

a hardware testbed to evaluate the performance of SQMORL and the DVF in a multi-

agent lighting control experiment which SQMRL algorithm can efficiently find the

optimal policy more accurately over the DVF algorithm. However, despite its

advantages, the SQMORL is based on a discretized state space. The current

SQMORL is appropriate for control problems with inherent discrete states. However,

light intensity is of continuous value. It is expected that SQMORL for lighting control

can be further improved by using appropriate function approximation to represent the

continuous states as shown in the next chapter.



CHAPTER V

CONTINUOUS STATE MULTI-AGENT

REINFORCEMENT LEARNING FOR LIGHT CONTROL

5.1 Introduction

Automatic lighting control is among the applications for smart homes which

typically use a computer or smartphone to control light bulbs via wireless sensor

network embedded in a house. Wang et al. (2014) proposes an adaptive algorithm

design for smart buildings, which controls constant illumination when external

lighting varies. In particular, this system measures the light intensity at each position

and then decides whether to switch light on or off for the targeted area based on non-

linear programming.  However, for decision-making purposes, it is necessary to

gather the light intensity on each lamp, which could be inconvenient if the location or

position of the lamp is changed. Sung el at. (2013) uses a Self-Adaptive Weighted

Data Fusion algorithm in a Smart LED lighting system which controls LEDs through

applications on tablets or smartphones to achieve suitable brightness for each activity.

Jabbar et al., (2016) propose low cost devices for smart home applications such as the

Arduino. Based on this system, residents can enjoy the convenience of controlling

LEDs via the Internet by using Android applications. These application can also

monitor the temperature and status of the LEDs of each room through the mobile

screen as well. The work also demonstrates the convenience of power management of

home electrical appliances via the Internet. However decision systems are systems
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that do not learn and optimization because they need to be setting suitable value for

light intensity, which may be inconvenient when the environment changes, such as

changing the position of the lamp or changing the location.

Khalili et al. (2010) propose a system for optimized light control in smart

home by considering energy efficiency and user preference that is called Hierarchical

Reinforcement Learning (HRL). The method is based on learning the user preferences

online and different status such as time, location and activity. The HRL algorithm

learns user preferences when the given feedback to the system through changing the

offered light control. Gokul et al. (2016) presents deep reinforcement learning model

for home automation systems, where the system learns the patterns and behaviors of

the user automatically from experience and take actions accordingly. The system was

tested based on its ability to predict actions for lights. Result show that the system can

choose to switch on and off the light bulbs were 98% accurate. Based on both

researches, the strengths of reinforcement learning system include precise action

selection and requirement of only a single feedback value (state value) such on user

preference, location and time, etc. Such RL based algorithm enable easy and simple

implementation. However, the drawback of learning systems is that the training time

requires for the system to find the optimal policy if the state space is large may take a

long time.

Typically, Reinforcement Learning (RL) uses the Markov decision process

(MDPs) framework which defines action and state sets as discrete finite sets (Hasselt

et al., 2007). which (Khlili el al., 2010) and (Gokul et al., 2016) used discrete finite

sets for light intensity setting. Therefore, the system requires a Q-table to decide

choose actions are appropriate for each state, which causes of learning systems
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problems as mentioned above. In addition in the real world, certain parameters are

continuous, such as the light intensity. By quantizing the continuous state into discrete

states, certain features of the state may be lost.  As a result, the RL may not be able to

find the optimal policy. Hasselt et al. (2007) propose a function approximation to

handle the RL problem regarding the continuous state space. However, to select a

policy that is optimal and suitable for use in real world, the optimal policy should be

based on actual light intensity that is appropriate for the user. Furthermore, the

continuous reinforcement learning may reduce system memory requirement. This is

because it does not require a complete table of action-value function for every state-

action pair. Instead, it uses function approximation to represent the state of light

intensity for finding the optimal policy.

Therefore, the contribution of this chapter is four-fold: 1) Applying function

approximation to the automatic lighting framework where light intensity is considered

a continuous state. 2)  Study of parameters that effect to continuous state

reinforcement learning. 3) Comparison of the Continuous state RL algorithm with

Discrete state RL and Threshold algorithm. 4) Development of a testbed and hardware

performance evaluation of an automatic lighting control using SQMORL algorithm.

5.2 Continuous state reinforcement learning for automatic lighting

control

In reinforcement learning agents have explicit goals. Agents can sense aspects

of their environments, and can choose actions to influence their environments (Sutton

et al., 1998). The goal of an agent is to achieve the highest long term average reward

or lowest long term average cost. However, if reinforcement learning method is
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applied to problems with large states a significant amount of memory is required to

store the value functions. Moreover, if we want to apply the RL method for automatic

lighting control, the continuous state of lighting intensity should be considered in

order to allow a finer state transition. In addition, if we consider the external light that

may change the environment of the system, we can see that there is a continuity in

state space. Therefore, continuous state reinforcement learning a promising tool for

the lighting coverage control.

In this dissertation, the definition of continuous state reinforcement learning

for lighting control which use in Figure 5.1 is following:

Definition 1. Q-value: Q-value function in continuous state reinforcement

learning defined by:

1( , ) ( , )i i i i i i
t t tQ s a s a    (5.1)

where ( , )i i is a call feature define as (4) , ( , )i i is a denote the value of feature for

state-action pair ( , )i is a . Note that ( , )iQ s a which has

0 1 (1) (1) (1) (1) 2a a         element which used in comparison to select

the maximum Q value for the appropriate action. When 0 1,a a is action off and on the

Light bulb and  are member of real number which is the weight vector specifying

the contribution of each feature across all state-action pairs.

Then, agent   needs to calculate  , the temporal difference (TD) error at each

is the error in the estimate made at that time. Because the TD error at time step t

depends on the next state and next reward, it is not actually available until time step
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t+1. So updating the value function with the TD error is called a backup, which is the

difference of Q-value in the previous time step and the current time step

1 1( , ) ( , ).i i i i i
t t tQ s a Q s a    (5.2)

There is always at least one policy that is better than or equal to all other policy. This

is an optimal policy which can achieve maximize average reward in long term. We

denote optimal policies by * . Thus, the optimal policy * can be obtained by

( , ) argmax ( , ).i iQ s a Q s a  (5.3)

Definition 2. Action: Each sensor node can take one of the following two

actions in any state. The action space iA is the set of all possible actions for each state

{ 0
ia Action 0 (Turn off light), 1

ia Action 1 (Turn on light)}.

Definition 3. State: In order to represent a continuous state and to represent

the light intensity, let ( , )s a call the feature be the light intensity that occurs at any

point. The feature function ( , )i s a has (1) (2) 2S A    entries at each agent.

The intensity of light in spherical coordinates is defined by (Rea, 2000):

2
1

cos
( , )

4

i n
i i i

i
i i

a F
s a

D










  (5.4)

where D is the distance between the light bulb to the sensor node,

 is the angle between the normal lines of sensor nodes with distance D ,

F is the luminous flux of 1030 lumen (Panasonic fluorescent 36 watt),

n is the number of neighboring sensor node.
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Definition 4. Reward: Sensor node can detect the lux intensity which may

from its own light bulb or its neighbors. If a sensor node attains lux intensity by itself

and not from neighboring sensor node, the lux intensity is considered as that sensor’s

reward. In other words, if a particular sensor node i and neighbors turn the light bulb

on at the same time, we consider this as a lux overlap calculated by equation (4) and

that sensor i’s reward is deducted. Therefore, the reward function for sensor node i is

given by

( , )i i ir s a Lux received Lux overlapping  (5.5)

CONTINUOUS STATE REINFORCEMENT LEARNING FOR LIGHTING CONTROL

BEGIN
1 Topology setting

2 0 Initialize arbitrarityi 
3 for time step 1: end time step*
4 Each agent choose action

0 1[ , ]i i iA a a , and next

state '
1( , ) 1 5 ( )i i i

ts s a for i five node sensor in testbed   

5              Receive reward ir Lux receiced Lux overlapping 

6 Update ,i i iQ and 

7
1( , ) ( , )i i i i i

t t tQ s a s a   

8 when

2
1

cos
( , ) ,

4

i n
i i i

t
i i

a F
s a n num ber of sensor node

D










  
9

1 1( , ) ( , )i i i i i
t t tQ s a Q s a   

10 '
1 1 1( , )i i i i i

t t t t s a      

11 endfor
END
* Algorithm can find optimal policy

Figure 5.1 Pseudo code of continuous state reinforcement learning for lighting

control.
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Figure 5.2 The location of the five node sensors.

5.3 Result of simulation

To test algorithm, a simulation was carried out a room containing five light

bulbs, four were placed in each corner of the rectangle, and one was placed in the

center as shown in Figure 5. 2. The purpose of this simulation is to allow each light

bulb or sensor node to learn the optimal actions of each light bulbs for appropriate

brightness in their work and to turn off unnecessary light bulbs to save energy. The

optimal policy which is appropriate for this room is that the 4 sensors in the corner of

the room are turned on and sensor node in the middle of the room is turned off. As the

light intensity of the four sensor nodes in the corner provides sufficient illumination,

the sensor node placed at the center can be turned off to save energy. Based on this

optimal policy, sensor node 1 to 4 (placed at the four corners) receive the same light

intensity of 86.7 lux and sensor node 5 (located at the center) received 74.5 lux.  This
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indicates that the algorithm can maintain a level of optimal light intensity and reduce

power consumption as sensor node 0 is turned off. The results of the simulations are

averaged over a total of 10 runs.

From the pseudo code in Figure 5.1, there are two parameters that could affect

the learning of the algorithm, i.e., the discount factor ( ) and learning rate ( ) .

Therefore, to attain the best possible efficiency of algorithm, the effect of both

parameters have been studied.

Figure 5.3 Effect of discount factor against average reward.
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Figure 5.4 Effect of discount factor on policy accuracy.

Figure 5.3 shows the impact of the discount factor on the average reward.

From the graph, at a discount factor of 0.04, the average reward is maximum at 68.35

lux. After that the average reward of the system decreases as the discount factor

increases. Therefore, the discount factor of 0.04 was chosen. Figure 5.4 shows the

effect of the discount factor on the percentage of policy accuracy. The policy accuracy

is the percentage of runs that the final policy learned is actually the optimal policy

from the total number of runs. Results show that when the discount factor increases,

the percentage of policy accuracy decreases. This corresponds to the average reward

in Figure 3. Note that the discount factor range between 0.02 - 0.08 achieves 100%
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policy accuracy, which suggests that the discount factor of 0.04 is the most suitable

value for the algorithm.

Figure 5.5 Effect of learning rate on average reward.

Figure 5.6 Effect of learning rate on policy accuracy.
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Figure 5.5 shows the effect of learning rate on the average reward. The higher

the learning rate, the lower the average reward. This is at high learning rate, the step

size determines to what extent the newly acquired information will override the old

information. In the case where the learning rate between 0.02-0.06, the average

reward is the highest at 69.27 lux. After this, the average reward gradually decreases.

In Figure 5.6, it is evident that when the learning rate in the range of 0.02 - 0.06, the

algorithm can accurately find the optimal policy. Note that when the learning rate is

0.2 - 0.3, the algorithm cannot find the optimal policy, thus the learning rate of 0.02 is

the chosen value which the algorithm performed best.

Given the selected values of discount factors and learning rate, Figure 5.7

shows the average reward received from the selected action at each time step of each

node sensor. The first 1000 time steps is the learning duration. After that, each sensor

node learns and selects its own action in a distributive manner. Based on Figure 5.7,

sensors node 1-4 (placed at four corners) choose  the same action which is to turn on

their bulbs, so they achieve comparable average reward, while the sensor node 5

(placed at the center) chooses to shut itself down to achieve reward from its

neighbouring sensor nodes. Therefore, the average reward is slightly higher than the

other sensor nodes. The ascending average reward over time shows that every node

sensor can learn the optimal policy over time.
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Figure 5.7 Average reward of each sensor node.

Figure 5.7 shows the average reward received from the selected action of each

node sensor. The first 1000 time steps is the learning duration. After that, each sensor

node distributively learns and selects its own action. Based on Figure 5.7, sensor

nodes 1-4 (placed at four corners) choose  the same action which is to turn on their

bulbs, so they achieved the same average reward, while sensor node 5 (placed at the

center) chooses to shut itself down to achieve reward from its neighbouring sensor

nodes. Therefore, the average reward is slightly higher than the other sensor nodes.

The ascending average reward over time shows that every node sensor can learn the

optimal policy over time.

To evaluate the approximation function approach for continuous state

reinforcement learning, we compare the continuous state RL algorithm with discrete

state RL algorithm and the threshold algorithm. The performance is evaluate in terms

of policy accuracy, convergence rate and the adaptability to certain perturbation.
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In discrete state RL algorithm, since there are 5 sensor nodes. Each sensor

node has 2 actions, so there are 32 possible policies. Thus, we calculate the lux

intensity using equation (5.4) to represent state in the algorithm. The lux intensity for

each sensor node is quantized equally into 4 states shown in Table 5.1. We also

consider another method of discretizing state space to evaluate how the method of

state discretization affects the performance. In particular, the lux intensity calculated

by equation (5.4) is rearranged in increasing order, then grouped into quartiles to

create 4 states. The resulting discretization of state space is shown in Table 5.2.

Table 5.1 State quantization: type 1.

Sensor nodes State discretization: type 1

0 1 2 3
Node

1, 2, 3, 4
0 - 23 24 - 47 48 - 71 72 – 95

Node 5 0 - 38 39 - 77 78 - 116 117 – 155

Table 5.2 State quantization: type 2.

Sensor nodes
State discretization: type 2

0 1 2 3
Node

1, 2, 3, 4
0 - 7.05 7.06-14.76 14.77-84.88 84.89-92.59

Node 5 0 - 37.14 37.15-55.71 55.72-114.97 114.98-152.12

Table 5.3. shows the final optimal policy of each algorithm. The first 1000

time steps is the training period for the two discrete state RL algorithm and the

continuous state RL algorithm. After this period, all the algorithms learned

independently until the end of the run. After that, we consider the final policy each

algorithm. Results show that continuous state RL algorithm achieves 100% of policy
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accuracy. For both discrete state RL algorithms of type 1 and 2 achieve only 50, 60 %

of policy accuracy, respectively. This result suggested that the training duration of

1000 time steps may not be enough to learn for discrete state RL algorithms possibly

due to the number of state. In addition, how the state space is discretized also affected

the learning and the ability to find optimal policy. This is evident from type 2 state

discretization which every state actually occurs, thereby achieving higher policy

accuracy than type 1. As for the Threshold algorithm, we define a threshold for

decisions to switch the bulb at 77.77 lux. If sensor node detects lux intensity less than

this threshold, the bulb is turned on. Otherwise, the sensor node turns off the bulb.

From Table 5.3 the Threshold algorithm chooses to turn on all light bulbs in all the

runs. The reason for this may be caused by unsuitable value of threshold. However, it

is difficult to know the appropriate threshold values for each situation if the system

does not learn.

Apart from policy accuracy, the convergence rate to the optimal policy of each

algorithm is also investigated. The algorithms are considered to converge once the

standard deviation of the average reward is less than 2%. Results show that the

continuous state RL algorithm can converge to the optimal policy at time step 95

whereas the discrete state RL algorithms of type 1, 2 can converge to  the optimal

policy at time step 1796 and 1815, respectively. This is because the discrete state RL

algorithms require that all state-action pairs in the Q-value table need to be visited

infinitely. However, the continuous state RL algorithm uses parametric feature

approximation to represent the continuous state in eq. (5.4) and is updated at every

time step, regardless of the state-action pair. Hence, the parametric function

approximation is updated every time step thereby increasing the convergence speed.



86

Furthermore, such representation allows for a reduced dimension of learned

parameters thereby contributing to the convergence speed.

To demonstrate the adaptability to perturbation, we introduced certain

perturbations to simulate scenarios that the environment can change at any time. For

example, some external light is introduced to the system, or a sudden shutdown of

nodes. Results are compared with the performance of continuous state RL algorithm

with Threshold algorithm and discrete state RL algorithm of type 2. Note that type 1

has not been selected due to its poor performance.

Table 5.3 Final policy of each algorithm.

Final policy

Number of runs
Discrete state
RL algorithm

(type 1)

Discrete state
RL algorithm

(type 2)

Threshold
algorithm

Continuous
state RL

algorithm

1 01111 11101 11111 11110

2 11110 11110 11111 11110

3 11110 10111 11111 11110

4 01101 11110 11111 11110

5 11110 01111 11111 11110

6 11011 11110 11111 11110

7 10101 11110 11111 11110

8 10111 11110 11111 11110

9 11110 10011 11111 11110

10 11110 11110 11111 11110

% accuracy 50% 60% 0% 100%

Convergence
(time steps)

1796 1815 - 95

Note: The optimal policy is 11110.
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In the experiment, certain light bulbs are switched off and external lighting is

introduced during certain periods as shown in Figure 5.8 and 5.9 for discrete state RL

algorithm of type 2. From Figure 5.8, it can be seen that during the first 1000 time

steps, the algorithms select actions randomly so that all state-action pairs can be

visited. After this phase, the algorithms can find the optimal policy. Recall that the

optimal policy is the one which the senor node located at the center of the room

(sensor node 5) chooses to shut down its own light bulb to reduce the overlaping of

light intensity and reduce energy consumption, while the remaining four sensor nodes

(sensor node 1, 2, 3 and 4) located at the corners of the room turn on their light bulbs.

The average reward shown in Figure 5.9 steadily increases after the first 1000 time

steps because each sensor node can choose suitable action and achieved maximize

average reward. To test the response to perturbations, during time step 2500 to 3000,

the light bulb at sensor node 1 is deliberately turned off resulting in a reduced average

reward for sensor node 1. Sensor nodes 2, 3, 4 keep their light bulbs switched on.

These the average reward of sensor node 2, 3, 4 is not affected the turning off of

sensor node1. However, it affects sensor node 5 located at the center of the room,

because without light intensity from sensor node 1, sensor node 5 must be turned on.

However, when sensor node 5 turns on, as the intensity of light overlaps and Q-values

of sensor node 5 alternates causing switching between on and off. In time step 5000 –

5500, additional perturbation is introduced by adding external light into the system.

As a result, every node sensor switches off its own light bulb and receives the light

from the outside. As it is the correct decision, the average reward of every node

sensor increases. However, after the external light is removed after time step 5500,

sensor node 5 turns on its light bulb which correct decision. In the time step 7500 -
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8000, we deliberately set sensor node 1, 2 to turn off their light bulbs. As a result,

sensor node 5 still chooses to turn on its light bulb. This is a correct decision. During

time step 10000 - 10500, we add external lighting again. All sensor nodes correctly

turn off their light bulbs. In the time step 12500 – 13000, sensor node 2, 3 were

deliberately turned off. However, sensor node 5 incorrectly turns off its bulb. Results

show that the discrete state RL algorithm of type 2 occasionally make incorrect

decisions in time step 2500-3000 and 12500-13000.

Figure 5.8 Action selection of each sensor of Discrete state RL algorithm.
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Figure 5.9 Average reward of each sensor node of Discrete state RL algorithm.

In the Threshold algorithm, we set the decision threshold to turn off the bulb if

the light intensity is greater than 77.77 lux. This is the light intensity attained if the

sensor node turns on bulb by itself and all other light bulbs are off. The same

perturbation conditions are introduced at the same time steps to the system. Figure

5.10 shows that every sensor node decides to turn on the bulbs. The light intensity

received from the neighbor sensor node is not enough. Thus, the sensor node chooses

to turn on its own light bulb. When sensor nodes 1, 2 and 2, 3 are deliberately turned

off in time steps 7500 - 8000 and 12500 – 13000, respectively, the Threshold

algorithm incorrectly decides choose turn on the remaining light bulbs. In time step

7500 - 8000 and 10000 – 10500, external light is introduced to the system, every

0 5000 10000 15000
10

20

30

40

50

60

70
Average reward VS Time step

Time step

A
ve

ra
ge

 re
w

ar
d

Node 1
Node 2
Node 3
Node 4
Node 5



90

sensor node correctly switches off its light bulb as the light intensity is greater than

the threshold. Figure 5. 11 depicts the average reward at each sensor over time. Note

that the average reward of sensor node   5 is minimal. This is because sensor node 5

selects to turn on its light bulb which creates overlapping light coverage with that of

the neighboring sensor node.

Figure 5.10 Action selection of each sensor of Threshold algorithm.
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Figure 5.11 Average reward of each sensor node of Threshold algorithm.
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5500, the external light is removed, and every sensor goes back to the optimal action

which is to switch on sensor nodes at all corners and switched off the center sensor

node. Then, during the time step 7500 to 8000, we tested the system again by

deliberately switching off sensor node 1 and 2. Results show that sensor node 3 and 4

still turn on their light bulbs but sensor node 5 changes from switching off to on. This

indicates that the system has decided that with the two light bulbs turned on has

insufficient light intensity. Thus, sensor node 5 is turned on to maintain the brightness

of the room. At time step 10000 to 10500, external light is introduced to the room.

Once again, all five sensor nodes are switched off again to save energy because there

is sufficient external light. Finally, at time step 12500, we deliberately switch off light

bulbs at sensor node 2 and 3. The algorithm chooses to turn on sensor node 5 (similar

to time step 7500) to maintain the brightness level. The Continuous state RL

algorithm can thus correctly respond to all the perturbation in the experiment.
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Figure 5.12 Action selection of each sensor of Continuous state RL algorithm.

Figure 5.13 Average reward of each sensor node of Continuous state RL

algorithm.
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The memory requirement for storing entries for each algorithm is also

considered. The Continuous state RL algorithm does not need to store Q-values for all

state-action pairs. It only requires memory storage for storing the parametric values of

( , )iQ s a which has 0 1 (1) (1) (1) (1) 2a a         entries, and for storing

the feature function of the current state ( , )i s a which has (1) (2) 2A     entries

at each agent. Suppose that each entry requires 8 Bytes, a reasonable amount of

memory of 48 Bytes ((4 x 8) + (2 x 8)) Bytes) is required. As only the parametric

value, , is learned, the training time is reduced and convergence speed increases. On

the other hand, the Discrete state RL algorithm requires memory storage for storing

Q-values for state-action pairs, which has (4)(2) 8S A   entries at each node.

Suppose that each entry requires 8 Bytes, a reasonable amount of memory of 64 Bytes

(8 x 8 Bytes) is required. However, the continuous state is coarsely discretized into 4

state and performed poorly in terms of policy accuracy percentage. Thus, a finer

discretization maybe needed. For example, a finer discretized state of 81 states,

requires memory storage for storing all Q-values of (81)(2) 162S A   entries,

resulting in 1296 Bytes (162 x 8 bytes) for memory storage at each agent.

5.4 Light control test bed

In this section, Continuous state RL and Discrete state RL algorithm type 2 are

evaluated in an automatic lighting control testbed. The Discrete state RL algorithm of

type 1 is not studied due to its poor performance in the simulation part in section 3. In

the testbed, each sensor is initialized to the initial default value setting (i.e., the weight

vector specifying the contribution of each feature across all state-action pairs each
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agent equal zero). There are two actions, i.e., “action 0” refers to turning off a light

bulb, and “action 1” refers to turning on a light bulb. As the Discrete state RL

algorithm convergence condition requires that every state-action pair be visited

infinitely often, an “explore and exploit” scheme is implemented at each agent. In

particular, each agent is set to randomly select (explore) actions for 100 time steps in

the training phase. This enables each agent to explore all possible state-action pairs

and update the action value (Q) functions. On the other hand, the continuous state RL

does not require state quantization. Instead, the Q function is a function of a

parametric value θ which is updated at every time step, regardless the state-action pair

visited. After the training phase, the parametric Q value are then used to select

(exploit) optimal action according to (5.3) with some probability and explore other

actions randomly with the remaining probability. This is referred to as the ε-greedy

action selection scheme. When an action is selected, each node waits for 5 seconds for

the light intensity to become stable as a certain delay is required in the hardware to

turn on or off each light bulb. The nodes then measure the resulting light intensity and

obtain the reward values from equations (5.5). Each node then updates their Q value

functions according to equation (5.1). The process is repeated as shown the flow chart

in Figure 14 until convergence is achieved, i.e., agent can find the optimal policy.

In order to evaluate the performance of the Continuous state RL and Discrete

state RL algorithms, an automatic lighting control testbed as shown in Figure 15 was

developed in the Wireless Communication Laboratory, Suranaree University of

Technology (SUT), Thailand.
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Figure 5.14. Diagram of Continuous state RL for automatic lighting control testbed.

The automatic lighting control system consists of sensor nodes, each of which

is equipped with a wireless communication module with XBee Series 2, a

microcontroller part with Arduino Uno R3 and an additional external memory unit for

recording measurements for control purposes, a light dependent resistor (LDR) to

measure the light intensity. Each sensor node has the ability to measure the intensity

of light within its own area, exchange information between the neighboring node

sensors and collect the data at the memory unit.  Five sensors nodes are placed at the
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positions as shown in Figure 5.2 in the experiment room of which external light is

blocked. The results were averaged over 20 repeated runs.

Figure 5.15. Automatic lighting control test bed.
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Table 5.4. Final policy of each algorithm from the test bed.

Final policy

Number of runs
Discrete state RL algorithm

(Type 2)
Continuous state RL

algorithm

1 11110 11110
2 11100 11110
3 11110 11110
4 01111 11110
5 01110 11110
6 11110 11110
7 11110 11110
8 11110 11110
9 11100 11110
10 11110 11110
11 11110 11110
12 11110 11110
13 01110 11110
14 11110 11110
15 01110 11110
16 11110 11110
17 11110 11110
18 11110 11110
19 10110 11110
20 11110 11110

% accuracy 65% 100%
Convergence

rate time (time steps)
497 395

Table 5.4 shows the final optimal policy of each algorithm test bed result. The

first 100 time steps is the training period for the Discrete state RL algorithm and the

Continuous state RL algorithm. After this period, all the algorithm learned

independently until the end of the run. In Discrete state RL algorithm, we trained the

sensor nodes off-line through simulation to obtain the Q value tables prior to the test

bed implementation. Then, we saved the trained Q value tables in the memory unit of
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each sensor node. However, the Continuous state RL algorithm does not require

training Q values because this is parameterized by a feature function based on a

parametric weight. At the end of each run, we consider the final policy each

algorithm. Results show that Continuous state RL algorithm achieves 100% of policy

accuracy. This algorithm does not quantization status, but uses the parametric feature

function to determine the Q value and thus the appropriate action and subsequent state

to help the algorithm learn better. Furthermore the parametric value is updated at

every time step regardless the state or action visited. Therefore, Continuous state RL

algorithm can learn the optimal policy faster than the discrete state RL algorithm.

Note that Discrete state RL algorithm which is a state discretization of (Type 2) can

achieve only 65 % of policy accuracy.

Apart from policy accuracy, the convergence rate to the optimal policy of each

algorithm is also investigated. The algorithms are considered to converge once the

standard deviation of the average reward (see Figure 5.15, 5.16) varies less than 2%.

Results show that the Continuous state RL algorithm can converge to the optimal

policy at time step 395 whereas the Discrete state RL algorithm (Type 2) can

converge to the optimal policy at time step 497. This is because the Discrete state RL

algorithms requires that all state-action pairs in the Q-value table to be visited

infinitely. However, the Continuous state RL algorithm use feature approximation to

represent the continuous state. Such approximation is governed by a parametric value

and is updated at every time step, regardless the state-action pair. Hence, the

parametric representation allows for a reduced dimension of learning parameters

which is updated at every time step thereby increasing the convergence speed.
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Figure 5.16 and 5.17 show the average reward of all 5 sensor nodes obtained

from the selected action of the Discrete state and Continuous state RL algorithms,

respectively. The first 100 time steps is the learning duration, which the average

reward of all sensor nodes does not increase. After that, each sensor node learns and

selects its own action in a distributed manner. The result shows that when both

algorithms have can achieve the optimal policy (11110) which is seen from the

increase in average reward consistently. It can be seen that sensor nodes 1-4 (in the

corner) receive comparable average reward from choosing action 1 (turn on the light

bulb) while sensor node 5 will converge to a light intensity of 178 lux since it

switched off its light bulb. However, the Continuous state RL algorithm is able to

learn faster Discrete state RL algorithm due to its reduced dimension of learned

parameters.

Figure 5.16. Average reward of all 5 sensor nodes from the Discrete state RL

algorithm
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Figure 5.17. Average reward of all 5 sensor nodes from the Continuous state RL

algorithm.

5.5 Summary

This chapter proposed a continuous state multi-agent reinforcement for

maintaining light coverage and, save energy consumption. The algorithm for

automatic lighting control application. The proposed approach is an adaptive and

distributed multi-agent scheme. We proposed to use function approximation method

to deal with continuous light intensity as well as, reduce memory storage and training

time from the Discrete state RL algorithm. In particular, to represent continuous

lighting intensity state, we applied the intensity of diffused light in spherical

coordinates equation for create characteristic function to represent lighting intensity

state. In this chapter first we study the effect of parameters related to learning in the

system on continuous state reinforcement learning. Based on the simulation result, the
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suitable learning rate for the system is 0.02-0.04, the discount factor between 0.02-

0.08 which achieved the maximum average reward. With respect to the ability to find

the optimal policy, the learning rate value and discount factor in this range can

consistently achieve the optimal policy.

In the second part to demonstrate the increased efficiency of the function

approximation approach for Continuous state reinforcement learning. We compare the

Continuous state RL algorithm with Discrete state RL algorithm and Threshold

algorithm. In terms of final policy accuracy, the Continuous state RL can find optimal

policy 100%, while the Discrete state RL algorithm of state quantization type 1, 2

achieve only 50%, 60% respectively. This is due to the fact that state-action pairs

have not been visited. Thus, the Q-values have not been updated frequently enough to

learn in the Discrete state RL algorithm. For the Threshold algorithm, we define

threshold for deciding to switch the bulb at 77.77 lux. Although the Threshold

algorithm is simple, but choosing the optimal threshold value is difficult when light

intensity, sensor node position and energy consumption must be considered.

In terms of convergence rate, Continuous state RL algorithm can converge much

faster to the optimal policy than Discrete state RL algorithm type 1, 2. Since, this is

because Discrete state RL algorithms require that all state-action pairs be visited

during training in order to learn the Q-values correctly. On the other hand, Continuous

state RL algorithm uses features and function approximation to represent the

continuous state. The function approximation is a parametric form which the

parametric value is updated at each time step, regardless of the state-action pair

visited. This the reason to that the training is reduced significantly.
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Finally, to test algorithm in response to the environment perturbation that may

change over time, the Continuous state RL algorithm, Discrete state RL algorithm and

Threshold algorithm have been evaluated. Results have shown that the Continuous

state RL algorithm can consistently make correct decisions while the other algorithms

do not.  Therefore, the Continuous state multi-agent reinforcement learning is a

promising tool for dealing with changing environments such as automatic lighting

control application in smart homes.

In terms of memory requirement for storing entries in the Q-value, continuous

state multi-agent reinforcement algorithm not need used Q-value table only requires

memory storage for storing all values of ( , )iQ s a which has

0 1 (1) (1) (1) (1) 2a a         and feature of state value ( , )i s a which has

(1) (2) 2A     entries at each agent. Thus, Continuous state RL algorithm

require 48 Bytes for memory storage. On the other hand, the Discrete state RL

algorithm requires 64 Byte for storing all values of Q-values which has

(4)(2) 8S A   entries at each agent. However, the state is a coarse discretization

of 4 states which results in poor performance. Thus, to improve the performance of

the Discrete state RL algorithm, a finer discretization may be needed. However, this

results in an increase of memory storage for storing all values in the Q-value table

which has (81)(2) 162S A   entries at each agent, which is a total of 1296 Bytes

for memory storage.

In the final section to test the efficiency of each algorithm we have create a

testbed. The results of testbed correspond with the simulation results. In terms of

accuracy, the Continuous state RL algorithm is more accurate in finding an optimal
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policy of 100% than a discrete state RL algorithm that finds an optimal policy of 65%.

When considered convergence speed, Continuous state, Discrete state RL algorithm

converges to the optimal policy at time step 395, 497, respectively. The better

performance of the Continuous state RL algorithm due to the use of the suitable

equation as a continuous-state representation. The Continuous state RL algorithm has

the ability to learn more precisely and quickly.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In multi-agent system applications in wireless sensor networks, information

exchange and cooperation between the agents are required to achieve a desired

objective. In this thesis, we have studied the multi agent system for coverage control,

which exchanges information between agents in their own area, until they can learn to

adapt to changes in the environment. Therefore, the work this thesis is divided in to

three parts: 1) Chapter 3 proposes a distributed, adaptive and scalable area coverage

control algorithm based on a single combined objective function called the modified

distributed value function (DVF) algorithm; 2) Chapter 4 focuses on improving the

efficiency of the algorithm with multi-objective optimization (MOO) framework

whereby the Scalarized Q Multi-Objective Reinforcement Learning (SQMORL)

algorithm was applied to the coverage control problem. The algorithm is applied in a

test bed for automatic lighting control in smart home applications for the purpose of

maintaining lighting suitably and energy efficiency; 3) Chapter 5 centers on

incorporating function approximation to cater continuous state multi-agent

reinforcement learning systems. The original contributions and findings in this thesis

can be summarized as follows.

6.1.1 Chapter 3

The objective of this chapter is
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 To show that reinforcement learning (RL) can be applied to multi-

agent system (MAS) coverage control in wireless sensor networks.

In this chapter, we present an algorithm for control the coverage area

using the Distributed Value Function (DVF) algorithm. In order to increase

effectiveness of the algorithm we propose the overlapping area of the neighboring

node is the cost function (3.5), which controlled the sensor node to maintain the

coverage itself and reduced the overlapping area for energy efficiency.

The modified DVF algorithm presented in this chapter is compared

with guaranteed complete coverage algorithmม namely, the optimal geographical

density control (OGDC) and a partial area coverage algorithm, called Probing

Environment and Adaptive Sleep (PEAS). Results show that the modified DVF can

achieve nearly full coverage with only 13-64% of active sensor nodes, whereas the

OGDC and PEAS required 14-68% and 16-76% of active sensor nodes, respectively,

for high to low node densities. Results suggest that the MAS coverage control scheme

based on the modified DVF can achieve efficient coverage control, is self-adaptive

and therefore suitable for coverage control applications in WSNs.

The contribution of this chapter is thus twofold: 1) a modified multi-

agent coverage control scheme based on a redundancy coverage area cost function; 2)

comparison of the scheme with non-learning coverage control schemes, i.e., OGDC

and PEAS.

6.1.2 Chapter 4

In Chapter 3, the multi-agent system which is based on RL is found

suitable for controlled the area coverage in wireless sensor networks. RL has the

advantage of an online learning algorithm which can adapt to the environment. The
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tool can find the optimal policy to maintain coverage based on energy efficiency by

using the proposed cost function (3.5) to reduce the energy consumption of sensor

nodes. However, the modified DVF algorithm developed in Chapter 3 can be further

enhanced to cater coverage area control in denser WSNs. In the particular, when the

number of sensor nodes density increases, the number of active nodes selected by the

algorithm increases too. To alleviate this problem, a multi-objective optimization

(MOO) is introduced in Chapter 4. Furthermore, we want to evaluate the performance

of the algorithm when this approach is applied to automatic illumination control with

grid placement of light bulb in the Wireless Communication Laboratory F4, SUT. The

purpose of the test bed is to construct and evaluate the performance for lighting

control based on the MOO framework in a smart home application. This leads to the

following objectives in Chapter 4.

The objectives of this chapter are

 To study multi objective optimization for coverage control

simulation in uniform randomly placed sensor nodes.

The modified DVF algorithm in Chapter 3 is an algorithm that

combines multiple objectives into a single combined objective function. This is

suitable for uncomplicated solutions and fewer number of sensor nodes. However,

when the problem is complex and the number of nodes increases or when the

objective function is contradictory, the single objective optimization algorithm may

not be able to find the most appropriate policy. This leads us to study a multi

objective optimization based on reinforcement learning that targets multiple agents

with different functionalities and objectives in the online learning system. In
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particular, chapter 4 applies a multi objective reinforcement learning algorithm, called

the SQMORL algorithm to the area coverage control in the wireless sensor network.

When compared the SQMORL algorithm is compared against the

OGDC and DVF algorithms. The results show that when the sensor nodes are placed

randomly, the SQMORL algorithm selects fewer working nodes than the DVF

algorithm. At the highest node density, SQMORL algorithm has a coverage area close

to that of OGDC algorithm. In the case of 100 nodes, SQMORL algorithm attained a

96.5% coverage which is more than DVF algorithm by 1% but used 1 node less than

DVF. Similarly, SQMORL can attain 3.5% less coverage but used 11 nodes less than

OGDC.

 To study multi objective optimization for coverage control

simulation in a grid layout WSN.

The purpose of this experiment is to evaluate SQMORL performance

in a simulation model for automatic lighting control for smart home application with

light bulbs placed in a grid layout. Based on the results of the grid layout simulation,

the results agree with the uniform randomly placed sensor nodes. In a grid of 25, 81,

121 sensor nodes, SQMORL DVF and OGDC algorithm selects 9 - 36, 10 - 39, 23 -

115 active nodes and attained coverage of 80%, 80%, 96-98%, respectively. The

results show that SQMORL algorithm is the most efficient algorithm based on the

metrics considered.

 To construct a prototype for automatic lighting control using

SQMORL algorithm and evaluate its performance.

The performance evaluation is based on DVF and SQMORL algorithms.

The results are averaged over 20 runs to achieve the desired accuracy. The DVF
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algorithm attained the optimal policy rate of 55% from the 20 repeated trials, while

the SQMORL algorithm attained an optimal policy rate of 80% from the 20 repeated

trials. However, in terms of the convergence speed, the DVF algorithm reached the

optimal policy at time step 127 whereas the SQMORL algorithm reached the optimal

policy at time step 135 which is slightly slower than the DVF algorithm. Such results

show that the SQMORL algorithm is suitable for controlled indoor lighting

automation in order to save energy and obtain good illumination in smart home

applications.

The contribution of this chapter is therefore three-fold: 1) The multi-

objective optimization based on SQMORL for coverage control by simulation of a

uniform randomly placed sensor nodes and grid layout; 2) Comparison of SQMORL

with both learning and non-learning coverage control wireless sensor networks; 3)

Development of prototype and performance evaluation of an automatic lighting

control using SQMORL algorithm.

6.1.3 Chapter 5

While Chapter 4 applied a multi objective optimization based on a

reinforcement learning approach called SQMORL for automatic lighting control in

smart home, significant memory storage and training time is required due to the

discrete state space. In particular, in Chapter 4, the state of the light intensity detected

at each sensor node is quantized to discrete levels of light intensity. However, in the

real world, such light intensity is a continuous value. This leads us to the objectives in

Chapter 5 as follows.
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 To propose a function approximation for continuous state multi-

agent reinforcement learning and apply it to the automatic lighting

control application.

Continuous state reinforcement learning method uses function

approximation to map continuous state to a particular function, in order to minimize

the loss of data attributes when data is discretized by quantization. However, it is

difficult to implement a large number of discretized continuous states for wireless

sensor networks with limited onboard power and memory storage. Therefore, it is

necessary to introduce the concept of function approximation to create a feature which

can represent the continuous state. Therefore, in order to cater lighting automation

control, this chapter proposes a function approximation for light intensity to be used

in continuous state RL. The proposed function approximation is calculated by the

light intensity generated from the light source. In terms of memory requirement for

storing entries of the Q-values in the SQMORL algorithm, continuous state SQMORL

needs memory storage for storing all values of ( , )iQ s a which has

old newA A    entries and a feature of state ( , )i s a which has A  entries

at each agent. By reducing the Q-value table, the number of state visits and training

time also reduces, so convergence rate is increased.

 To study the effects of parameters related to learning based on

continuous state multi-agent reinforcement learning.

Chapter 5 also investigates parameters that affect learning and the

ability to find the optimal policy in continuous state multi-agent reinforcement

learning, which are the learning rate and the discount factor. Based on the simulation
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results, the suitable learning rate for the system is 0.02-0.04, the discount factor

between 0.02-0.08 which achieves the best performance. With respect to the ability to

find the optimal policy, the learning rate value and discount factor in this range can

consistently determine the optimal policy.

 To compare of the Continuous state RL algorithm with Discrete

state RL and Threshold algorithm in terms of final policy accuracy,

convergence rate and adaptability to certain perturbations.

The Continuous state RL can find the final optimal policy consistently,

while the Discrete state RL algorithm with is state discretization type 1 and 2 achieve

only 50% and 60% , respectively. This is because the discrete state algorithms require

visits to all state-action pairs, to correctly learn their Q-values. For the Threshold

algorithm, we assign the decision threshold for switching each bulb at 77.77 lux. The

resulting final policy is that all sensor nodes switch on the light bulbs in this

experiment. Although Threshold algorithm is simple, but choosing the optimal

threshold value is tedious as light intensity, position of the sensor nodes and energy

consumption must be considered.

In terms of convergence rate, Continuous state RL algorithm can

converge to the final optimal policy at time step 97, whereas Discrete state RL

algorithms type 1, 2 can convergence into optimal policy at time step 1796, 1815

respectively. Since the Discrete state RL algorithms requires visits to all state-action

pairs of the Q-value table. However, the Continuous state RL algorithm uses

parametric feature approximation to represent the continuous state, thus visits to all

state action pairs it is unnecessary. The parameter is tuned at every state-action visit.
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Therefore, the algorithm updates the parametric weight vector across all state-action

pair simultaneously resulting in an increased convergence speed.

Finally, to demonstrate the efficiency of algorithm in response to

environment perturbations that may change over time as well as presence of faulty

nodes, the continuous state SQMORL has been evaluate in situations which sudden

shut down of some nodes and some external lighting is introduced into the system at

some period. Based on simulation results, the SQMORL algorithm is able to adjust its

light control decisions when subject to external lighting, by shutting off some light

bulbs to reduce power consumption. In presence of faulty nodes when some of the

nodes close the light bulbs, the system chooses to turn on the remaining light bulbs to

maintain the desired brightness level.

The contribution of this chapter is three-fold: 1) The application of

function approximation to the automatic lighting framework where light intensity is

considered a continuous state. 2) The study parameters that affect Continuous state

RL algorithm. 3) Performance comparison of the Continuous state RL algorithm with

Discrete state RL algorithms and Threshold algorithm.

6.2 Future work

6.2.1 Extend SQMORL algorithm to densely deployed network

In thesis, to study the coverage control performance of a WSN, we

assumed the agent functions as a lighting controller which illuminates an area size of

1000 x 1000 sq.m. The area contains a number of sensor nodes ranging from

100,200,300,400,500 sensor nodes placed randomly in the area. However, in the
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practice, the number of sensor nodes can extend to even more nodes may be

considered and how it effects the coverage control problem may be investigated.

6.2.2 Extension SQMORL algorithm to weight learning approach

The MOO framework may be extended to handle multiple objectives

in coverage control simultaneously such as maximizing covered area, balanced energy

consumption, minimizing the transmission range of nodes, minimizing the number of

active nodes, and maintaining the connectivity of active nodes, etc. As the importance

of each problem may differ depending on the intended application, the SQMORL

algorithm with a fixed weight factor may not be appropriate. Therefore, the weight

factors may require different values and may need adjustment to suit a particular

application. Therefore, the weight learning approach is worthwhile investigating.

6.2.3 Extension SQMORL algorithm to continuous action space

In this thesis, the SQMORL algorithm has been applied to an

automatic lighting control problem, which is designed for continuous state of light

intensity. However, a continuous action change of system may be required in order to

minimize the effect on the users’ perceptions. Thus, continuous action SQMORL may

warrant further investigation.

6.2.4 Extend MOO framework to other systems in smart home

So far in this thesis, SQMORL algorithm is used for automatic lighting

control in smart homes. However, the multi-objective optimization framework can be

applied to control other appliances in smart homes. The framework may also serve as

a guideline to intelligent homes that brings convenience to everyday life and attains

efficient energy usage.



114

REFERENCES

Agarkhed, J. and Ankalgi, R. (2016). Energy efficient smart home monitoring system

in wireless sensor network. IEEE International Conference on Circuit,

Power and Computing Technologies (ICCPCT).

Akyildiz, F., Su, W., Sankarasubramaniam, Y. and Cayirci, E. (2002). Wireless sensor

networks: a survey. Computer Networks Journal, vol. 38, pp. 393-422.

Alaiad, A. and Zhou, L. (2015). Patients’ Behavioral Intentions toward Using WSN

based Smart Home Healthcare Systems: An Empirical Investigation.

Proceedings of the 2015 Hawaii International Conference on System

Sciences (HICSS), p.824-833.

Atzori, L., Iera, A. and Morabito, G. (2010). The Internet of Things: A survey.

Journal of Computer Networks, Vol. 54, pp. 2787-2805.

Barbancho, J., Leon, C., Molina, F.J. and Barbancho, A. (2007). Using artificial

intelligence in routing schemes for wireless networks. Journal of computer

Communications, Vol. 30, pp. 2802-2811.

Brito, J., Gomes, T., Miranda, J., Monteiro, J., Cabral, J., Mendes, J. and Monteiro, J.

(2014).  An intelligent home automation control system based on a novel heat

pump and Wireless Sensor Networks. IEEE International Symposium on

Industrial Electronic (ISIE).



115

Carlos, A.C.C., Pulido, G.T. and Lechuga, M.S. (2004). Handling Multiple Objectives

with Particle Swarm Optimization. IEEE Transactions on Evolutionary

Computation, Vol. 8, pp. 256-279.

Chandrakasan, A.P. et.al. (2000). An Architecture for a Power-Aware Distributed

Microsensor Nodes. In IEEE workshop on Signal Processing Systems

(SiPS’00), Lafayette, LA.

Chen, G., Vu, C. T., Zhao, Y. and Li, Y. (2009). A Universal Framework for α-

Coverage Problem in Wireless Sensor Network. Proceedings of the 2009

IEEE International Conference on Network Protocols (ICNP).

Chitnis, L., Dobra A. and Ranka, S. (2009). Fault tolerant aggregation in

heterogeneous sensor network. Journal Parallel Distrib. Comput.

Cho-hoang, T. and Duy, C.N. (2017). Environment monitoring system for agricultural

application based on wireless sensor network. IEEE International

Conference on Information Science and Technology (ICIST).

D&R International, Ltd. (2011). Buildings Energy Data Book.

Gokul, V., Kannan, P. and Kumar, S. (2016). Deep Q-Learning for Home

Automation. International Journal of Computer Applications, Vol. 152-

No.6.

Guestrin, C., Lagoudakis, M.G., and Parr, R. (2002). Coordinated reinforcement

learning. In ICML '02: Proceedings of the Nineteenth International

Conference on Machine Learning. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc.



116

Han, X., Cao, X., Lloyd, E.L. and Shen, C.C. (2007). Fault-tolerant Relay Node

Placement in Heterogeneous Wireless Sensor Networks. Proceedings of

IEEE Communications Society subject matter experts for publication in

the IEEE (INFOCOM).

Haobijam, B., Huang, Y.P. and Lee, T.T. (2016).  Intuitive IoT-based H2U healthcare

system for elderly people. IEEE International Conference on Networking,

Sensing, and Control (ICNSC).

Hasselt, H.V. and Wiering M.A. (2007). Reinforcement Learning in Continuous

Action Spaces. Proceedings of the 2007 IEEE Symposium on Approximate

Dynamic Programming and Reinforcement Learning (ADPRL).

Hill, J., Horton, M., Kling, R. and Krishnamurthy, L. (2004). The Platforms Enabling

Wireless Sensor Networks. Communications of the ACM Journal, Vol. 47,

No.6.

Hussain, Md.A., Khan, P. and Sup K.K. (2009). WSN Research Activities for

Military Application. Proceedings of 2009 International Conference on

Advanced Communication Technology, p.271-274.

Huynh, T.P., Tan, Y.K. and Tseng, K.J. (2011). Energy-Aware Wireless Sensor

Network with Ambient Intelligence for Smart LED Lighting System Control.

Annual Conference on IEEE Industrial Electronics Society (IECON).

Iqbal, M., Naeem, M., Anpalagan, A., Ahmed, A. and Azam, M. (2015). Wireless

Sensor Network Optimization: Multi-Objective Paradigm. Journal of sensors,

Vol. 15, pp.17572-17620.



117

Iqbal, M., Naeem, M., Anpalagan, A., Qadri, N.N. and Imran, M. (2016). Multi-

objective optimization in sensor networks: Optimization classification,

applications and solution approaches. Journal of Computer Networks, Vol.

99, pp. 134-161.

Jabbar, Z.A. and Kawitkar, R.S. (2016). Implementation of Smart Home Control by

Using Low Cost Arduino & Android Design. International Journal of

Advanced Research in Computer and Communication Engineering, Vol.

5, pp. 248-256.

Jameii, S.M., Faez, K. and Dehghan, M. (2014). Multi-objective Optimization for

Topology and Coverage Control in Wireless Sensor Networks. International

Journal of Distributed Sensor Networks, vol. 2015, 11 page.

Jia, J., Chen, J., Chang, G. and Tan, Z. (2009). Energy efficient coverage control in

wireless sensor networks based on multi-objective genetic algorithm. Journal

of Computers and Mathematics with Application, Vol. 57, pp. 1756-1766.

Fei, Z., Li B., Yang S., Xing C., Chen H. and Hanzo L., (2016) A Survey of Multi-

Objective Optimization in Wireless Sensor Networks: Metrics, Algorithms,

and Open Problems, IEEE Communications Surveys & Tutorials, Vol. 19,

pp. 550-586.

Kaelbling, L., Littman, M., and Moore, A. (1996). Reinforcement learning: A survey.

Journal of Artificial Intelligence Research, vol. 4.

Khalili, A.H., Wu, C. and Aghajan, H. (2010). Hierarchical preference learning for

light control from user feedback. Workshops on IEEE Computer Society

Conference on Computer Vision and Pattern Recognition.



118

Kuh, A., Zhu, C. and Mandic, D. (2006). Sensor Network Localization Using Least

Squares Kernel Regression. International Conference on Knowledge-Based

and Intelligent Information and Engineering Systems, pp. 1280-1287.

Kul, B., Sen, M. and Ksa, K. (2016). IP Based Smart Energy Metering with Energy

Saving. Proceedings of International Scientific Electronic (ET2016).

Kumaar, A.A., Kiran, G., and Sudarshan TSB. (2010). Intelligent Lighting System

Using Wireless Sensor Networks. International Journal of Ad hoc, Sensor

& Ubiquitous Computing (IJASUC), Vol.1, No.4, pp. 17-27.

Li, M., Lu1, Y. and Wee, L. (2006). Target Detection and Identification a

Heterogeneous Sensor Network by Strategic Resource Allocation and

Coordination. Proceedings of IEEE 6th International Conference on ITS

Telecommunications.

Meng-Shiuan, P., Lun-Wu, Y., Yen-Ann, C., Yu-Hsuan, L. and Yu-Chee, T. (2008).

A WSN-Based Intelligent Light Control System Considering User Activities

and Profiles. IEEE Sensor Journal, vol. 8, pp. 1710-1721.

Ministry of energy, Thailand 20-Year Energy Efficiency Development Plan (2011-

2030)

Moffaert, K.V., Drugan, M.M. and Nowe, A. (2013). Scalarized Multi-Objective

Reinforcement Learning: Novel Design Techniques. IEEE Symposium on

Adaptive Dynamic Programming and Reinforcement Learning (ADPRL).

Mohamaddoust, R., Haghighat, A.T., Sharif, M.J.M. and Capanni, N. (2011). A Novel

Design of an Automatic Lighting Control System for a Wireless Sensor



119

Network with Increased Sensor Lifetime and Reduced Sensor Numbers.

Journal of sensors, ISSSN 1424-8220, pp. 8933-8952.

Mitchell, T. (1997). Machine Learning, Cambridge, MA, USA: McGraw-Hill Press.

Nangtin, P., Kumhom, P. and Chamnongthai, K. (2016). Adaptive actual load for

energy saving in split type air conditioning. International Symposium on

Communications and Information Technologies (ISCIT).

Okada, M., Aida, H. and Ichikawa, H. (2015). Design and Implementation of an

Energy-Efficient Lighting System Driven by Wireless Sensor Networks.

International Conference on Mobile Computing and Ubiquitous

Networking (ICMU).

Phuphanin, A. and Usaha, W. (2011). Secure Coverage Control in Wireless Sensor

Networks with Malicious Nodes using Multi-Agents. Proceedings of the 2011

IFIP International Conference on Embedded and Ubiquitous Computing

(EUC).

Phuphanin, A. and Usaha, W. (2016). A Multi-Agent Scheme for Energy-Efficient

Coverage Control in Wireless Sensor Networks. Proceedings of

International Conference on Information Technology and Science

(ICITS).

Puccinelli, D. and Haenggi, M. (2005). Wireless Sensor Networks: Applications and

Challenges of Ubiquitous Sensing. IEEE Circuits and Systems Magazine,

Volume 5, Issue 3, pp. 19-31.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic

Programming. Wiley-Interscience.



120

Ratnasingham, T. and Thiagalingam, K. (2009). Optimization-Based Dynamic Sensor

Management for Distributed Multitarget Tracking. IEEE Transaction on

Systems, Man, and Cybernetics, Vol. 39, pp. 534-546.

Rea, M.S. (2000). The IESNA lighting handbook. Illuminating Engineering Society

of North America, New York.

Rovcanin, M., Poorter, E.D., Akker, D.V.D., Moerman, I., Demeester, P. and Blondia,

C. (2015). Experimental validation of a reinforcement learning based approach

for a service-wise optimisation of heterogeneous wireless sensor networks.

Journal of Wireless Networks, Vol. 21, pp. 931-948.

Santoshkumar and Udaykumar, R.Y. (2015). Development of WSN System for

Precision Agriculture. Innovations in Information Embedded and

Communication Systems (ICIIECS), 2015 International Conference, pp.1-

5.

Seah, M. W. M., Tham, C. K., Srinivasan, V. and Xin. A. (2007). Achieving

Coverage through Distributed Reinforcement Learning in Wireless Sensor

Networks. Proceedings of IEEE Intentional Conference on Intelligent

Sensors, Sensor Networks and Information, 2007.

Schneider, J., Wong, W. K., Moore, A. and Riedmiller, M. (1999). Distributed value

functions. Proceedings of 16th International Conference on Machine

Learning.

Sinha, A. and Chandrakasan, A. (2001). Dynamic Voltage Scheduling using adaptive

filtering of workload traces. In proceedings of the 11th International

Conference on VLSI Design.



121

Singhiv, V., Krause, A., Guestrin, C., Jame, Jr. and Matthews, H. (2005). Intelligent

Light Control using Sensor Networks. Proceedings of the 3rd international

conference on Embedded networked sensor systems, pp. 218-229.

Souto, W., Pazzi, R.W. and Pramudianto, F. (2015). User Activity Recognition for

Energy Saving in Smart Home Environment. IEEE Symposium on

Computers and Communication (ISCC).

Stankovic, A.J. (2006). Wireless Sensor Networks. Department of Computer

Science University of Virginia.

Sung, W.T. and Lin, J.S. (2013). Design and Implementation of a Smart LED

Lighting System Using a Self Adaptive Weighted Data Fusion Algorithm.

Journal of Sensors, vol. 13, pp. 16915-16939.

Sutton, R.S. and Barto, A.G. (1998). Introduction to Reinforcement Learning,

Cambridge, MA, USA: MIT Press.

Stroock, D.W. (2005). An Introduction to Markov Processes, Cambridge, MA, USA:

Springer Press.

Tafa, Z. (2016). Artificial Neural Networks in WSNs Design:  Mobility Prediction for

Barrier Coverage. IEEE International Symposium on Signal Processing

and Information Technology (ISSPIT).

Tham, C.K. and Renaud, J.C. (2005). Multi-Agent Systems in Sensor Networks: A

Distributed Reinforcement Learning Approach. Proceedings of the 2005

International Conference on Intelligent Sensors, Sensor Networks and

Information Processing.



122

Vieira, M.et.al. (2003). Survey on Wireless sensor Network Devices. In proceedings

of Emerging Technologies and Factory Automation, 2003 IEEE

Conference, Vol. 1, 16-19, pp. 537-544.

Vinyals, M., Rodriguez-Aguilar, J.A. and Cerquides, J. (2011). A Survey on Sensor

Networks from a Multi-agent Perspective. The Computer Journal, 54(3),

pp.455-470.

Vu, C. T., Cai, Z. and Li, Y. (2009). Distributed Energy-Efficient algorithms to

maximize network lifetime for coverage problem in adjustable sensing radii

Wireless Sensor Networks. Submitted to Discrete Mathematics, Algorithms

and Applications (DMAA).

Vu, C. T., Cai, Z. and Li, Y. (2009). A universal framework for α-coverage problem

in Wireless Sensor Network. Submitted to The 17th IEEE International

Conference on Network Protocols (ICNP).

Ye, F., Zhang, H., Lu, S., Zhang, L. and Hou, J. (2006). A Randomized Energy-

Conservation Protocol for Resilient Sensor Networks. Wireless Networks,

12(5), pp.637-652.

Yick, J., Mukherjee, B. and Ghosal, D. (2008). Wireless sensor network survey.

Journal of Computer Networks, 52.

Yu, L., Wang, N., Zhang, W. and Zheng, C. (2007). Deploying a Heterogeneous

Wireless Sensor Network. This work is supported in part by Shanghai

Municipal Science and Technology Commission under Grants, No.

05dz15004 IEEE.



123

Wang, B. (2011) Coverage Problems in Sensor Networks: A Survey. ACM

Computing Surveys, 43(4), Article 32, 53 pages.

Wang, X., Xing, G., Zhang, Y., Lu, C., Pless, R. and Gill, C. (2003). Integrated

coverage and connectivity configuration in wireless sensor networks.

SenSys'03, Los Angeles, California, USA.

Wang, Y. and Dasgupta, P. (2014). Designing  Adaptive  Lighting  Control

Algorithms for  Smart  Buildings  and  Homes. IEEE 11th International

Conference on Networking, Sensing and Control (ICNSC).

Zhang, H. and Hou, J. C. (2005). Maintaining Sensing Coverage and Connectivity in

Large Sensor Networks. Ad Hoc & Sensor Wireless Networks, 1(1), pp.89-

124.

Zhang, P., Sadler, M., Lyon, A. and Martonosi, M. (2004). Hardware Design

Experiences in ZebraNet. In proceedings of SenSys’04, Baltimore, USA.



APPENDIX A

AUTOMATIC LIGHTING CONTROL TEST BED CODE
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This appendix show distributed value function (DVF) algorithm and scalarized

Q multi objective reinforcement learning (SQMROL) employed in chapter 4. To

prove the efficiency of proposed algorithms, we setup automatic lighting control

application consisted of Arduino Uno for test bed. And used code following.

Distributed Value Function algorithm:

#include <XBee.h>
#include <EEPROM.h>
#include <SPI.h>
#include <SD.h>
// create the XBee object
XBee xbee = XBee();
uint8_t payload[7];
// SH + SL Address of receiving XBee
XBeeAddress64 addr64 = XBeeAddress64(0x0, 0xFFFF);
ZBTxRequest zbTx = ZBTxRequest(addr64, payload, sizeof(payload));
ZBTxStatusResponse txStatus = ZBTxStatusResponse();
//For receive command packet
XBeeResponse response = XBeeResponse();
// create reusable response objects for responses we expect to handle
ZBRxResponse rx = ZBRxResponse();
ModemStatusResponse msr = ModemStatusResponse();
File myFile;
const int chipSelect = 4;
int LUX_Voltage = 0;
int statusLed = 13;
int errorLed = 13;
int dataLed = 13;
int RELAY = 8;
int addr = 0;
int value = 0;
int Status = 0;
int State = 0;
long Time_step = 0;
int LDR_itself = 0;
int Reward = 0;
double Sum_reward = 0;
double Ave_reward = 0;
int Value_func = 0;
int Neigh_fac = 0;
const float Alpha = 0.1;
const float Gamma = 0.2;
int full_value = 0;
int Value_neighbor = 0;
int Value_neighbor_all = 0;
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int A=0,B=0,C=0,D=0,E=0,F=0,G=0;
//Creat Q table
int Q00 = 0,Q01 = 0;
int Q10 = 0,Q11 = 0;
int Q20 = 0,Q21 = 0;
int Q30 = 0,Q31 = 0;
int Q[4][2] = {13,29,15,32,12,27,12,32};
byte BH_Q[6][2];
byte BL_Q[6][2];
int addrBH_Q[6][2] = {0,2,4,6,8,10,12,14,16,18,20,22};
int addrBL_Q[6][2] = {1,3,5,7,9,11,13,15,17,19,21,23};

void flashLed(int pin, int times, int wait)
{

for (int i = 0; i < times; i++)
{

digitalWrite(pin, HIGH);
delay(wait);
digitalWrite(pin, LOW);
if (i + 1 < times) { delay(wait); }

}
}

void setup()
{

pinMode(statusLed, OUTPUT);
pinMode(errorLed, OUTPUT);
pinMode(dataLed,  OUTPUT);
pinMode(RELAY, OUTPUT);
Serial.begin(9600);
xbee.setSerial(Serial);
randomSeed(analogRead(0));

Serial.print("Initializing SD card...");
pinMode(4, OUTPUT);
if (!SD.begin(chipSelect))

{
Serial.println("initialization failed!");
return;

}

Serial.println("initialization done.");
flashLed(statusLed, 3,25);

//Setting Q table
for(int i=0;i<=3;i++)

{ for(int j=0;j<=1;j++)
{ BH_Q[i][j] = Q[i][j] >> 8 & 0xff;

BL_Q[i][j] = Q[i][j]      & 0xff;
}

}
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addr = 0;
for(int i=0;i<=3;i++)

{ for(int j=0;j<=1;j++)
{ EEPROM.write(addr,BH_Q[i][j]);

addr++;
EEPROM.write(addr,BL_Q[i][j]);
addr++;

}
}

for(int i=0;i<=3;i++)
{ for(int j=0;j<=1;j++)

{
Q[i][j] = ((BL_Q[i][j] << 0) & 0xFF) + ((BH_Q[i][j] << 8) & 0xFF00);

}
}

}

void loop()
{

Serial.println("");
Serial.print("Time_step = ");
Serial.print(Time_step);
Serial.println("");
Serial.println(" Q table ");

for(int i=0;i<=3;i++)
{ for(int j=0;j<=1;j++)

{ Serial.print(Q[i][j]);Serial.print('\t');
}

Serial.println();
}

if(Time_step < 100)
{ Serial.println("Choose action by random(e-greedy)");

Status = random(2);
if (Status == 0)
{ Serial.println("Turned off the lamp");

digitalWrite(RELAY, LOW);
}

else
{ Serial.println("Turned on the lamp");

digitalWrite(RELAY, HIGH);
}

}

if (Time_step >= 100)
{
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Serial.println("Choose action by greedy");
if(Q[State][0]>Q[State][1])
{ Status = 0;

Serial.println("Turned off the lamp");
digitalWrite(RELAY, LOW);

}
else

{ Status = 1;
Serial.println("Turned on the lamp");
digitalWrite(RELAY, HIGH);

}
}

Serial.print("Status =  ");
Serial.println(Status);
delay(5000);
LUX_Voltage = analogRead(0);
payload[0] = LUX_Voltage >> 8 & 0xff;
payload[1] = LUX_Voltage & 0xff;
EEPROM.write(addr,payload[0]);
EEPROM.write(addr +1 ,payload[1]);

if(LUX_Voltage >= 0 && LUX_Voltage <= 32){State = 0; goto out_quanti;}
if(LUX_Voltage > 32 && LUX_Voltage <= 55){State = 1; goto out_quanti;}
if(LUX_Voltage > 55 && LUX_Voltage <= 194){State = 2; goto out_quanti;}
else{State = 3; goto out_quanti;}
out_quanti:

//Calculate reward
if(Status == 0){LDR_itself = 0;}
else{LDR_itself = 168;}
Reward =  LUX_Voltage - LDR_itself;
Sum_reward = Sum_reward + Reward;
Ave_reward = Sum_reward/Time_step;

myFile = SD.open("datalog.txt",FILE_WRITE);

if (myFile)
{ myFile.print(Time_step); // สั่งใหเขียนขอมูล

myFile.print("\t");
myFile.print(Status);
myFile.print("\t");
myFile.print(LUX_Voltage);
myFile.print("\t");
myFile.print(State);
myFile.print("\t");
myFile.println( Ave_reward);
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myFile.close(); // ปดไฟล
//Serial.println("done.");

}
else

{ // ถาเปดไฟลืไมสําเร็จ ใหแสดง error

Serial.println("error opening datalog.txt");
}

//Find value function from Neighbor
if(Q[State][0]>Q[State][1]){Value_func = Q[State][0];}
else{Value_func = Q[State][1];}
payload[5] = Value_func >> 8 & 0xff;
payload[6] = Value_func & 0xff;

//Calculate neighbor of factor
Neigh_fac = 1/4;
Value_neighbor_all =  Neigh_fac*(A+B+C+D);

//Calculate Q value
Q[State][Status] = ((1-Alpha)*Q[State][Status])+((Alpha)*(Reward+(Gamma*Value_neighbor_all)));
BH_Q[State][Status] = Q[State][Status] >> 8 & 0xff;
BL_Q[State][Status] = Q[State][Status]      & 0xff;
EEPROM.write(addrBH_Q[State][Status],BH_Q[State][Status]);
EEPROM.write(addrBL_Q[State][Status],BL_Q[State][Status]);

if(digitalRead(RELAY)==0){payload[2] = 144 & 0xff;}
if(digitalRead(RELAY)==1){payload[2] = 145 & 0xff;}

byte Byte1 = EEPROM.read(addr);
byte Byte2 = EEPROM.read(addr + 1);
value = ((Byte2 << 0) & 0xFF) + ((Byte1 << 8) & 0xFF00);

Serial.print(" analogRead A0 =  ");
Serial.println(value);
Serial.print("State =  ");

Serial.println(State);
Serial.print("Reward =  ");
Serial.println(Reward);
Serial.print(" Value function  =  ");
Serial.println(Value_func);
Serial.print("Q value =  ");
Serial.println(Q[State][Status]);

Time_step = Time_step + 1;
payload[3] = Time_step >> 8 & 0xff;
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payload[4] = Time_step & 0xff;
EEPROM.write(260,payload[3]);
EEPROM.write(261,payload[4]);
byte Time_byte1 = EEPROM.read(260);
byte Time_byte2 = EEPROM.read(261);
Time_step = ((Time_byte2 << 0) & 0xFF) + ((Time_byte1 << 8) & 0xFF00);

addr = addr + 1;
if (addr == 512) addr = 0;

for(int i=0;i<=9;i++)
{

xbee.send(zbTx);
// flash TX indicator
flashLed(statusLed, 1, 100);
// after sending a tx request, we expect a status response
// wait up to half second for the status response

if (xbee.readPacket(500))
{ // got a response!

// should be a znet tx status
if (xbee.getResponse().getApiId() == ZB_TX_STATUS_RESPONSE)

{ xbee.getResponse().getZBTxStatusResponse(txStatus);
// get the delivery status, the fifth byte
if (txStatus.getDeliveryStatus() == SUCCESS)

{ // success.  time to celebrate
flashLed(statusLed, 5, 50);

}
else

{ // the remote XBee did not receive our packet. is it powered on?
flashLed(errorLed, 3, 500);

}
}
}

else if (xbee.getResponse().isError())
{ //nss.print("Error reading packet.  Error code: ");

//nss.println(xbee.getResponse().getErrorCode());
} else {

// local XBee did not provide a timely TX Status Response -- should not happen

flashLed(errorLed, 2, 50);
}

delay(1000);

//Recive value function from neighbor

xbee.readPacket();

if (xbee.getResponse().isAvailable())
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{ // got something
if (xbee.getResponse().getApiId() == ZB_RX_RESPONSE)

{ // got a zb rx packet
Serial.println(" ");
Serial.println("got a zb rx packet");
// now fill our zb rx class

xbee.getResponse().getZBRxResponse(rx);
if (rx.getOption() == ZB_PACKET_ACKNOWLEDGED) {

// the sender got an ACK
flashLed(statusLed, 10, 10);
} else {

// we got it (obviously) but sender didn't get an ACK
flashLed(errorLed, 2, 20);

}

XBeeAddress64 senderLongAddress = rx.getRemoteAddress64();
uint32_t DH_sensor = senderLongAddress.getMsb();
Serial.print(DH_sensor,HEX);
Serial.print(" ");
uint32_t DL_sensor = senderLongAddress.getLsb();
Serial.println(DL_sensor);

// READ LUX Voltage
uint8_t V_High = rx.getData(5);
uint8_t V_Low = rx.getData(6);
Value_neighbor = ((V_Low << 0) & 0xFF) + ((V_High << 8) & 0xFF00);
if(DL_sensor == 1086054566)

{ A = Value_neighbor;
//Serial.print(" Value function neighbor from EOA6 =   ");
//Serial.println(A);
goto out_Value;

}
if(DL_sensor == 1085895355)

{ B = Value_neighbor;
//Serial.print(" Value function neighbor from 72BB = ");

//Serial.println(B);
goto out_Value;

}

if(DL_sensor == 1084938783)
{ C = Value_neighbor;

//Serial.print(" Value function neighbor from DA1F =   ");
//Serial.println(C);
goto out_Value;

}
if(DL_sensor == 1085895347)

{ D = Value_neighbor;
//Serial.print(" Value function neighbor from 72B3 =   ");
//Serial.println(D);
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goto out_Value;
}

if(DL_sensor == 1085895338)
{ E = Value_neighbor;

//Serial.print(" Value function neighbor from 72AA =   ");
//Serial.println(E);
goto out_Value;

}
if(DL_sensor == 1084938838)

{ F = Value_neighbor;
//Serial.print(" Value function neighbor from DA56 =   ");
//Serial.println(F);
goto out_Value;

}
else

{ G = Value_neighbor;
//Serial.print(" Value function neighbor from 7281 =   ");
//Serial.println(G);
goto out_Value;

}
out_Value:
//Serial.println(A);Serial.println(B);Serial.println(C);

Serial.println(D);Serial.println(E);Serial.println(F);Serial.println(G);
Serial.print(" Value function neighbor =   ");
Serial.println(Value_neighbor);
full_value = 1;

} else if (xbee.getResponse().getApiId() == MODEM_STATUS_RESPONSE) {
xbee.getResponse().getModemStatusResponse(msr);
// the local XBee sends this response on certain events, like association/dissociation

if (msr.getStatus() == ASSOCIATED)
{ // yay this is great.  flash led

flashLed(statusLed, 10, 10);
} else if (msr.getStatus() == DISASSOCIATED) {

// this is awful.. flash led to show our discontent
flashLed(errorLed, 10, 10);

} else {

// another status
flashLed(statusLed, 5, 10);

}
} else {

// not something we were expecting
flashLed(errorLed, 1, 25);

}
} else if (xbee.getResponse().isError())
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{ //nss.print("Error reading packet.  Error code: ");
//nss.println(xbee.getResponse().getErrorCode());

}

full_value = 0;
}

}

Scalarized Q multi objective reinforcement learning algorithm:

#include <XBee.h>
#include <EEPROM.h>
#include <SPI.h>
#include <SD.h>
// create the XBee object
XBee xbee = XBee();
uint8_t payload[9];

// SH + SL Address of receiving XBee
XBeeAddress64 addr64 = XBeeAddress64(0x0, 0xFFFF);
ZBTxRequest zbTx = ZBTxRequest(addr64, payload, sizeof(payload));
ZBTxStatusResponse txStatus = ZBTxStatusResponse();

//For receive command packet
XBeeResponse response = XBeeResponse();
// create reusable response objects for responses we expect to handle
ZBRxResponse rx = ZBRxResponse();
ModemStatusResponse msr = ModemStatusResponse();

File myFile;
const int chipSelect = 4;
int LUX_Voltage = 0;
int statusLed = 13;
int errorLed = 13;
int dataLed = 13;
int RELAY = 8;
int addr = 0;
int value = 0;
int Status = 0
int State = 0;
long Time_step = 0;
int LDR_itself = 0;
int Reward1 = 0;
int Reward2 = 0;
double Sum_reward1 = 0;
double Sum_reward2 = 0;
double Ave_reward1 = 0;
double Ave_reward2 = 0;
int Value_func1 = 0;
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int Value_func2 = 0;
int Neigh_fac = 0;
const float Alpha = 0.1;
const float Gamma = 0.2;
int full_value = 0;
int Value_neighbor1 = 0;
int Value_neighbor2 = 0;
int Value_neighbor_all1 = 0;
int Value_neighbor_all2 = 0;
int A_1=0,B_1=0,C_1=0,D_1=0,E_1=0,F_1=0,G_1=0;
int A_2=0,B_2=0,C_2=0,D_2=0,E_2=0,F_2=0,G_2=0;
int W1=0.5;
int W2=0.5;

//Creat Q table
int Q1[4][2] = {26,45,28,46,182,197,167,200};
int Q2[4][2] = {0,-16,0,-16,-151,-168,-151,-168};
int SQ[4][2] = {161,175,352,364,188,193,242,320};
/*int Q1[4][2] = {0,0,0,0,0,0,0,0};
int Q2[4][2] = {0,0,0,0,0,0,0,0};
int SQ[4][2] = {0,0,0,0,0,0,0,0};*/

void flashLed(int pin, int times, int wait)
{ for (int i = 0; i < times; i++)

{ digitalWrite(pin, HIGH);
delay(wait);
digitalWrite(pin, LOW);
if (i + 1 < times)

{ delay(wait);
}

}
}

void setup()

{ pinMode(statusLed, OUTPUT);
pinMode(errorLed, OUTPUT);
pinMode(dataLed,  OUTPUT);
pinMode(RELAY, OUTPUT);

Serial.begin(9600);
xbee.setSerial(Serial);
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randomSeed(analogRead(0));
Serial.print("Initializing SD card...");
pinMode(4, OUTPUT);
if (!SD.begin(chipSelect))

{ Serial.println("initialization failed!");
return;

}
Serial.println("initialization done.");
flashLed(statusLed, 3,25);

}

void loop()
{ Serial.println("");

Serial.print("Time_step = ");
Serial.print(Time_step);

if(Time_step < 100)
{ Serial.println("Choose action by random(e-greedy)");

Status = random(2);
if (Status == 0)

{ Serial.println("Turned off the lamp");
digitalWrite(RELAY, LOW);

}
else

{ Serial.println("Turned on the lamp");
digitalWrite(RELAY, HIGH);

}
}

if (Time_step >= 100)
{ Serial.println("Choose action by greedy");

if(SQ[State][0]>SQ[State][1])
{ Status = 0;

Serial.println("Turned off the lamp");
digitalWrite(RELAY, LOW);

}
else

{
Status = 1;
Serial.println("Turned on the lamp");
digitalWrite(RELAY, HIGH);

}
}

Serial.print("Status =  ");

Serial.println(Status);
delay(5000);
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LUX_Voltage = analogRead(0);
payload[0] = LUX_Voltage >> 8 & 0xff;
payload[1] = LUX_Voltage & 0xff;

if(LUX_Voltage >= 0 && LUX_Voltage <= 32){State = 0; goto out_quanti;}
if(LUX_Voltage > 32 && LUX_Voltage <= 55){State = 1; goto out_quanti;}
if(LUX_Voltage > 55 && LUX_Voltage <= 194){State = 2; goto out_quanti;}
else{State = 3; goto out_quanti;}
out_quanti:

//Calculate reward
if(Status == 0){LDR_itself = 0;}
else{LDR_itself = 168;}
Reward1 =  LUX_Voltage;
Reward2 = -LDR_itself;
Sum_reward1 = Sum_reward1 + Reward1;
Sum_reward2 = Sum_reward2 + Reward2;
Ave_reward1 = Sum_reward1/Time_step;
Ave_reward2 = Sum_reward2/Time_step;

myFile = SD.open("datalog.txt",FILE_WRITE);
if (myFile)

{ myFile.print(Time_step); // สั่งใหเขียนขอมูล
myFile.print("\t");
myFile.print(Status);
myFile.print("\t");
myFile.print(LUX_Voltage);
myFile.print("\t");
myFile.print(State);
myFile.print("\t");
myFile.print(Ave_reward1);
myFile.print("\t");
myFile.println(Ave_reward2);
myFile.close(); // ปดไฟล
//Serial.println("done.");

} else {
// ถาเปดไฟลืไมสําเร็จ ใหแสดง error

Serial.println("error opening datalog.txt");
}

//Find value function from Neighbor
if(Q1[State][0]>Q1[State][1]){Value_func1 = Q1[State][0];}

else{Value_func1 = Q1[State][1];}
if(Q2[State][0]>Q2[State][1]){Value_func2 = Q2[State][0];}

else{Value_func2 = Q2[State][1];}
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payload[5] = Value_func1 >> 8 & 0xff;
payload[6] = Value_func1 & 0xff;
payload[7] = Value_func2 >> 8 & 0xff;
payload[8] = Value_func2 & 0xff;

//Calculate neighbor of factor
Neigh_fac = 1/4;
Value_neighbor_all1 =  Neigh_fac*(A_1+B_1+C_1+D_1);
Value_neighbor_all2 =  Neigh_fac*(A_2+B_2+C_2+D_2);

//Calculate Q value
Q1[State][Status] = ((1-
Alpha)*Q1[State][Status])+((Alpha)*(Reward1+(Gamma*Value_neighbor_all1)));
Q2[State][Status] = ((1-
Alpha)*Q2[State][Status])+((Alpha)*(Reward2+(Gamma*Value_neighbor_all2)));

SQ[State][Status] = (W1*Q1[State][Status])+(W2*Q2[State][Status]);

if(digitalRead(RELAY)==0){payload[2] = 144 & 0xff;}
if(digitalRead(RELAY)==1){payload[2] = 145 & 0xff;}

Serial.print(" analogRead A0 =  ");
Serial.println(value);
Serial.print("State =  ");
Serial.println(State);
Serial.print("Reward =  ");
Serial.print(Reward1);
Serial.print("\t");
Serial.println(Reward2);
Serial.print(" Value function  =  ");
Serial.println(Value_func1);
Serial.print("Q value =  ");
Serial.print(Q1[State][Status]);
Serial.print("\t");
Serial.println(Q2[State][Status]);

Time_step = Time_step + 1;
payload[3] = Time_step >> 8 & 0xff;
payload[4] = Time_step & 0xff;

for(int i=0;i<=9;i++)
{ xbee.send(zbTx);

// flash TX indicator
flashLed(statusLed, 1, 100);
// after sending a tx request, we expect a status response
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// wait up to half second for the status response
if (xbee.readPacket(500))

{ // got a response!
// should be a znet tx status

if (xbee.getResponse().getApiId() == ZB_TX_STATUS_RESPONSE)
{ xbee.getResponse().getZBTxStatusResponse(txStatus);

// get the delivery status, the fifth byte
if (txStatus.getDeliveryStatus() == SUCCESS)

{ // success.  time to celebrate
flashLed(statusLed, 5, 50);

} else {
// the remote XBee did not receive our packet. is it powered on?

flashLed(errorLed, 3, 500);
}

}
} else if (xbee.getResponse().isError()) {
//nss.print("Error reading packet.  Error code: ");
//nss.println(xbee.getResponse().getErrorCode());

} else {
// local XBee did not provide a timely TX Status Response -- should not happen
flashLed(errorLed, 2, 50);

}

delay(1000);
//Recive value function from neighbor
xbee.readPacket();
if (xbee.getResponse().isAvailable())

{ // got something
if (xbee.getResponse().getApiId() == ZB_RX_RESPONSE)

{ // got a zb rx packet
Serial.println(" ");
Serial.println("got a zb rx packet");
// now fill our zb rx class
xbee.getResponse().getZBRxResponse(rx);

if (rx.getOption() == ZB_PACKET_ACKNOWLEDGED)
{ // the sender got an ACK

flashLed(statusLed, 10, 10);
} else {

// we got it (obviously) but sender didn't get an ACK
flashLed(errorLed, 2, 20);

}

XBeeAddress64 senderLongAddress = rx.getRemoteAddress64();
uint32_t DH_sensor = senderLongAddress.getMsb();

Serial.print(DH_sensor,HEX);
Serial.print(" ");
uint32_t DL_sensor = senderLongAddress.getLsb();
Serial.println(DL_sensor);
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// READ LUX Voltage
uint8_t V_High1 = rx.getData(5);
uint8_t V_Low1 = rx.getData(6);
uint8_t V_High2 = rx.getData(7);
uint8_t V_Low2 = rx.getData(8);

Value_neighbor1 = ((V_Low1 << 0) & 0xFF) + ((V_High1 << 8) & 0xFF00);
Value_neighbor2 = ((V_Low2 << 0) & 0xFF) + ((V_High2 << 8) & 0xFF00);

if(DL_sensor == 1086054566)
{ A_1 = Value_neighbor1; A_2 = Value_neighbor2;

//Serial.print(" Value function neighbor from EOA6 =   ");
//Serial.println(A);
goto out_Value;

}
if(DL_sensor == 1085895355)

{ B_1 = Value_neighbor1; B_2 = Value_neighbor2;
//Serial.print(" Value function neighbor from 72BB =   ");
//Serial.println(B);
goto out_Value;}

if(DL_sensor == 1084938783)
{ C_1 = Value_neighbor1; C_2 = Value_neighbor2;

//Serial.print(" Value function neighbor from DA1F =   ");
//Serial.println(C);
goto out_Value;

}
if(DL_sensor == 1085895347)

{ D_1 = Value_neighbor1; D_2 = Value_neighbor2;
//Serial.print(" Value function neighbor from 72B3 =   ");
//Serial.println(D);
goto out_Value;

}
if(DL_sensor == 1085895338)

{ E_1 = Value_neighbor1; E_2 = Value_neighbor2;
//Serial.print(" Value function neighbor from 72AA =   ");
//Serial.println(E);
goto out_Value;

}
if(DL_sensor == 1084938838)

{ F_1 = Value_neighbor1; F_2 = Value_neighbor2;
//Serial.print(" Value function neighbor from DA56 =   ");
//Serial.println(F);
goto out_Value;

}
else

{ G_1 = Value_neighbor1; G_2 = Value_neighbor2;
//Serial.print(" Value function neighbor from 7281 =   ");
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//Serial.println(G);

goto out_Value;}
out_Value:
full_value = 1;

}
else if (xbee.getResponse().getApiId() == MODEM_STATUS_RESPONSE) {

xbee.getResponse().getModemStatusResponse(msr);
// the local XBee sends this response on certain events,

if (msr.getStatus() == ASSOCIATED)
{ // yay this is great.  flash led

flashLed(statusLed, 10, 10);
} else if (msr.getStatus() == DISASSOCIATED) {

// this is awful.. flash led to show our discontent
flashLed(errorLed, 10, 10);

} else {
// another status
flashLed(statusLed, 5, 10);
}

} else {
// not something we were expecting
flashLed(errorLed, 1, 25);
}

} else if (xbee.getResponse().isError())
{ //nss.print("Error reading packet.  Error code: ");

//nss.println(xbee.getResponse().getErrorCode());
}

full_value = 0;
}

}
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APPENDIX B

FINAL POLICY POSSIBLE IN AUTOMATIC LIGHTING

CONTROL
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In appendix B we explain the automatic lighting control experimental position

setting. The automatic lighting control system consists of sensor nodes, each of

which are equipped with a wireless communication module with XBee Series 2, a

microcontroller part with Arduino Uno R3 and additional external memory unit for

recording measurements for control purposes, a light dependent resistor (LDR) to

measure the light intensity at every light bulb in the system. Each sensor node has the

ability to measure the intensity of light within their own area, exchange information

between the neighboring node sensors and collect the data inside the memory as

shown in figure B.1.

Figure B.1 The location of the five node sensors.

Figure B.1 represent the distance and height of each sensor node. Since there

are experimental room has 5 sensor nodes, each sensor node has 2 actions. Thus, there

are 32 possible policies. The optimal policy that is appropriate for this room is the 16th

policy, where the 4 sensors in the corner of the room are turned on and sensor node in

the middle of the room is turned off as show in table B.1
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Table B.1 Final policy possible of five sensor node.

Policy
Sensor nodes

E0A6 [0] 72BB [1] DA1F [2] 72B3 [3] 72AA [4]

1 0 0 0 0 0

2 0 0 0 0 1

3 0 0 0 1 0

4 0 0 0 1 1

5 0 0 1 0 0

6 0 0 1 0 1

7 0 0 1 1 0

8 0 0 1 1 1

9 0 1 0 0 0

10 0 1 0 0 1

11 0 1 0 1 0

12 0 1 0 1 1

13 0 1 1 0 0

14 0 1 1 0 1

15 0 1 1 1 0

16 0 1 1 1 1

17 1 0 0 0 0

18 1 0 0 0 1

19 1 0 0 1 0

20 1 0 0 1 1

21 1 0 1 0 0

22 1 0 1 0 1

23 1 0 1 1 0

24 1 0 1 1 1

25 1 1 0 0 0

26 1 1 0 0 1

27 1 1 0 1 0

28 1 1 0 1 1

29 1 1 1 0 0

30 1 1 1 0 1

31 1 1 1 1 0

32 1 1 1 1 1
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