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การหกลมน้ัน ถือเปนความเสี่ยงตอชีวิตในผูสูงอายุ การบาดเจ็บที่เกี่ยวของกับการหกลม
น้ัน มีผลกระทบอยางมากตอชีวิตผูสูงอายุ ยิ่งกวาน้ัน หากผูสูงอายุยังคงนอนอยู ภายหลังการหกลม
โอกาสที่จะเกิดความภาวะแทรกซอนยิ่งเพิ่มสูงขึ้น จึงควรหลีกเลี่ยงภาวะแทรกซอน เหลาน้ันหาก
เปนไปได  ดังน้ัน การศึกษาการตรวจจับการหกลม จึงมีความจําเปนและควรแกการศึกษาอยางยิ่ง

ในการตรวจจับการหกลมน้ัน การใชคุณลักษณะโดเมนเชิงความถี่ในการเคลื่อนไหวดวย
แรงเฉื่อยของรางกาย ทําใหสามารถวิเคราะหความถี่ไดหลายระดับ อยางไรก็ตาม การสกัด
คุณลักษณะเชิงโดเมนความถี่น้ัน มักใชความตองการทางการคํานวณสูง วิทยานิพนธน้ี จึงเสนอ
วิธีการสกัดคุณลักษณะเชิงโดเมนความถี่ ที่ใชการคํานวณตํ่า เรียกวาการแปลงเวฟเล็ตแบบลิฟทิง
(Lifting Wavelet Transform, LWT) ซึ่งใหการคํานวณอยางมีประสิทธิภาพ เหมาะสมสําหรับ
อุปกรณกําลังงานตํ่า เชน อุปกรณเซ็นเซอรแบบสวมใสเพื่อการตรวจจับการหกลมในมนุษย
คุณลักษณะซึ่งสกัดจาก LWT น้ัน นํามาเปนอินพุตของวิธีการแมชชีน เลิรนนิง วิธีการหน่ึงเรียกวา
ซับพอรตเวคเตอรแมชชีน (Support Vector Machine, SVM) เพื่อระบุการหกลมจากการเคลื่อนไหว
ในกิจกรรมประจําวันทั่วไป สมรรถนะของเวฟเล็ตแบบฮาร และ ไบออรทอกอนอล 2.2 ในระดับ
ความถี่ตางๆ ไดรับการเปรียบเทียบกับคุณลักษณะโดเมนเชิงเวลา ของรากเฉลี่ยกําลังสองของ
ความเรง โดยใชชุดขอมูลการหกลมในมนุษย  ผลการทดลองแสดงใหเห็นวา คุณลักษณะ
สัมประสิทธิ์แบบละเอียดในระดับที่ 1 สําหรับเวฟเล็ตแบบฮาร และ ไบออรทอกอนอล 2.2 น้ัน
ไดผลคาความแมนยํา คาความไว และคาความจําเพาะในระดับดี

เพื่อการประเมินสมมรรถนะเพิ่มเติม จึงมีการเปรียบเทียบกับคุณลักษณะโดเมนเชิงความถี่
ตางๆ วิธีการ LWT ผนวกกับ SVM ที่นําเสนอ ถูกนํามาเปรียบเทียบกับการแปลงเวฟเล็ต
แบบตอเน่ือง (Continuous Wavelet Transform, CWT) ผนวกกับ SVM และประเมินผลในเทอม
ของความแมนยํา คาความไว คาความจําเพาะ และและคาการคํานวณเชิงเวลา จากผลการทดลอง
พบวา LWT ดวยเวฟเล็ตแบบฮาร  ผนวกกับ SVM ใหผลการทดลองเหนือกวา CWT ผนวกกับ
SVM โดยวิธีการนําเสนอน้ันใหคาการคํานวณเชิงเวลาตํ่ากวาวิธีการ CWT ผลองคความรูและผล
การคนพบในวิทยานิพนธน้ี เปนแนวทางในการประยุกตใชคุณลักษณะโดเมนเชิงความถี่ที่มี
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Fall has been life threatening for the elderly. The related injuries have a serious

effect on their lives. Furthermore, if the elderly remains lying for prolonged time post

fall, the chance of suffering from serious complications increases. Such complications

should be avoided when possible. Thus, it is essential to study fall detection.

In fall detection, frequency domain feature of inertial body movement enables

multi-resolution analysis. However, frequency domain feature extraction methods are

typically computationally intensive. This thesis proposes a computationally light

frequency domain feature extraction method based on lifting wavelet transform

(LWT) which provides efficient computation suitable for low-powered devices such

as wearable sensors for human fall detection. Features extracted LWT is then input

into a machine learning method called support vector machine (SVM) to identify falls

from activities of daily living. Performance of the Haar and Biorthogonal2.2 (Bior2.2)

wavelets, under different multiresolution levels, are compared with the time domain

feature of root-mean square acceleration using a dataset contains human falls. Results

show that the 1-level-detail-coefficient features for both Haar and Biorthogonal 2.2

wavelets achieved good overall accuracy, sensitivity, and specificity.
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CHAPTER I

INTRODUCTION

1.1 Background and related works

Nowadays, aging is an obvious tendency all over the world since the birth rate

is decreasing. On one hand, global aging forces younger generation into working harder

than ever before to support larger size of senior population. This tendency, on the other

hand, leads to an increasing number of senior citizens living alone. By 2014, 9% of the

senior citizens live alone and 19% of them live only with their spouse. Therefore,

healthcare for elderly people is a serious social problem, especially in a country without

a sound social security system. One of the biggest health threats of elderly who live

alone are falls and related complications (Pierleoni, Pernini, et al., 2015). The Internet

has brought forward potential applications which aid the elderly particular in fall

detection. Information can be collected by wireless sensors such as accelerometer,

gyroscope, magnetometer, and pressure sensors or the combination of this sensors.

Considering the need of continuous measurement and ease of use, wearable sensor

systems are one of the most promising systems.

1.1.1 Fall detection

When it comes to wearable sensor systems, several researchers have

focused on processing the data collected from such sensors. They highlighted the need

of pre-collected data to help with detecting new falls.
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On the other hand, wearable sensors could be used to identify balance problems as

well. This ability may lead to detecting falls and other disorders (Pierleoni, Pernini, et

al., 2015) in advance. Thus, the purpose of wearable sensor systems can be divided into

two categories: pre-fall detection and after-fall detection. Pre-fall detection is focused

on balance monitoring and prevent any injury which may occur (Noshadi, Dabiri,

Ahmadian, Amini, & Sarrafzadeh, 2013), (Paradiso, Hu, & Hsiao, 1999) when people

falling down. Though the research objective was for dance movement not for fall

detection, (Paradiso et al., 1999) was one of the earliest works about wearable sensor. It

was a shoe-based posture recognition system which bridged the gap between human

movements. (Noshadi et al., 2013) analyzed data in-depth and placed emphasis on

images to detect abnormal balance before a fall happens.

As for after-fall detection, the aim is to detect falls without quick recovery and

avoid long-lie on the ground which has a close relationship with after fall injury and

mortality rate. Typically, those systems are evaluated by accuracy, sensitivity and

specificity. Sensitivity is the ability of the algorithm to detect a fall (True Positive, TP),

and specificity is the ability to distinguish the fall and non-fall (True Negative,

TN)(Kianoush, Savazzi, Vicentini, Rampa, & Giussani, 2015). Though the two

categories focus on different incidents, after-fall and pre-fall detection methods are

similar in terms of data acquisition and feature extraction process.

1.1.2 Feature extraction in time domain

The two main assignments for fall detection, whether it is a pre-fall or

post-fall detection, are feature extraction and decision making. Feature extraction is

performed before decision making and has a significant influence on the decision.
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Firstly, there are numerous amount of data, however, not all the data are equally

important for fall detection. The part that is not as important as the other parts is

considered a burden for any algorithm to calculate. Therefore, the challenge is to

extract the features that contain appropriate information to represent fall movement.

Time domain features are the most traditional features for fall detection. The

commonly extracted features are numerical features such as root mean square (RMS),

root sum square, mean, variance. The data were collected by wearable sensors such as

accelerometer, gyroscope, pressure sensor and fusion of such sensory data.

For instance, (Tang & Sazonov, 2014) presented a shoe-based posture recognition

system. Common features such as mean, maximum, minimum, variance, standard and

deviation of smart-shoe were extracted. Other features such as entropy and vertical

direction were extracted depending on the actual situation in their work. Similar

features were extracted in many related works, such as (Pierleoni, Pernini, et al., 2015)

(Carlsson, 2015) (Özdemir & Barshan, 2014).

As for wearable sensors, data have been widely acquired in time-series. Time

domain features are obtained from raw data directly. It is straightforward and easy to

visualize.

However, time domain features have certain limitation in that it may not make full

use of information by merely display observable trends (Banaee, Ahmed, & Loutfi,

2013). For example, according to time domain series, the amplitude change can be

easily observed while the frequency change is not always clear. However, fall is a

sudden change correspond to frequency change. Therefore, feature extraction in the

frequency domain has to be investigated.
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1.1.3 Feature extraction in frequency domain

Fall detection is regarded as a subset of human activities recognition. In

this thesis, human activities are classified into two categories: activities of daily living

(ADLs) and falls. Frequency domain feature extraction methods have been successfully

applied to distinguish falls and ADLs in many works (Hanai, Nishimura, & Kuroda,

2009), (Yazar, Keskin, Töreyin, & Çetin, 2013), (Wójtowicz, Dobrowolski, &

Tomczykiewicz, 2015). It displays the spectral domain information which may not be

visually observed in time domain for fall detection. Typically, falls are often related to

high frequency and ADLs are often related to periodic signals which has relatively

lower frequency. Such frequency changes can be visualized after frequency analysis of

the signal.

Frequency domain features were commonly extracted by Fourier transform

based methods and wavelet transform based methods. (Lara & Labrador, 2013)

summarized the main feature extraction methods using acceleration signal. Raw

accelerometer signals are difficult to recognize since it contains high fluctuation. Thus,

frequency transform methods such as Fourier transform (Björklund, Petersson, &

Hendeby, 2015), discrete cosine transform and principle component analysis

coefficients have been used to extract features from raw signals (He & Jin, 2009).

However, for fall detection, such algorithms have to encounter activities in

different frequency bands. On the one hand, Fourier transform based methods are

unsuitable for deal with non-stationary signals since it has a fixed window size. On the

other hand, the computational complexity of Fourier transform (FFT) is ( log )
while that of discrete wavelet transform is ( ) for N data points (Yazar et al., 2013).

Wavelet transform based methods include continuous wavelet transform (CWT) and
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discrete wavelet transform (DWT). (Palmerini et al., 2015) described a CWT-based

approach for fall detection. This work created a prototype wavelet of a typical fall

pattern by the vector of average acceleration. By CWT, the degree of similarity of the

new activity signals to the prototype was measured in terms of CWT coefficients.

Another work in 2015 (Wójtowicz et al., 2015), compared performance of individual

sensor and classifiers, accelerometer data with 5-level DWT and achieved 100%

sensitivity, specificity and accuracy. Our work was inspired by these promising results.

This thesis proposes the use of the lifting scheme of DWT which has been proposed to

extract frequency domain features. Such features are input for the decision making

algorithms for fall identification which are presented in the following section.

1.1.4 Decision making

Feature extraction enhances the domain features from wearable sensors.

However, detecting a fall relies on decision making mechanism as well. In this section,

decision making methods which regard extracted features mentioned above as input

data are discussed. According to the same input data, different decision making

methods or different models may make different decisions. There exist models that

work better than the others for fall detection. Therefore, it worthwhile to have a close

look at the decision making mechanisms for fall detection.

The threshold is one of the most basic methods for fall detection. (Bourke, O’brien,

& Lyons, 2007) used the upper fall threshold (UFT) and lower fall threshold (LFT) to

determine if a fixed threshold can distinguish falls and ADLs. The data used in (Bourke

et al., 2007) were collected by wearable tri-axial accelerometer sensors that were

attached to the trunk of young volunteers, respectively. Based on their results, UFT
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showed better results than LFT since it detected all ADLs. A comparison was made

between this fixed-threshold method with machine learning methods in (Aziz, Musngi,

Park, Mori, & Robinovitch, 2017). It was found that machine learning methods,

especially support vector machine (SVM), offered an increased accuracy when the

experiment was conducted in a laboratory with data from waist-mounted tri-axial

accelerometers.

The decision tree method is a widely used machine learning methods. It is a

tree structure model used to develop a classification rule that decides the class of any

objectives. The decision tree consists of two parts: nodes and leaves. Nodes represent

the attribute-test with a branch for each possible outcome. Leaves of the tree are class

names, which are usually set as negative (-1) or positive (+1). The root node contains

all the samples and those samples are divided into child nodes. From root nodes to

leaves, there a series of decisions are made. The root should be the most robust attribute

of the tree. If an error occurs earlier in a decision tree, more child nodes would classify

samples based on the wrong decision, giving rise to a phenomenon called “error

accumulation”.

The information entropy of a decision tree is a method to measure the degree

of object class similar to each other (Myles, Feudale, Liu, Woody, & Brown, 2004). The

more the number of objects belonging to same class, the smaller information entropy.

Because the number of objects in each node is different, the ratio of number of objects

in one node over the total number of nodes was used as a weight parameter for this node,

to calculate information gain. Higher information gain means more objects which were

classified by this attribute-based test belong to the same class. The ID3 decision tree is

a well-known decision tree method that uses information gain as attribute-test (J. R.
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Quinlan, 1986), (S. Quinlan & Khatib, 1993). (Parkka et al., 2006) used it to classify

real-world postures. The decision tree algorithm was found to work well on classifying

sitting and standing, running and walking.

The artificial neural network (ANN) method was inspired by neural network (Xu,

Wong, & Chin, 2013). In 1943, W. S. McCulloch and W. H. Pitts describe the way ANN

works simply by an McCulloch-Pitts model (McCulloch, & Pitts, 1943) shown in

Figure 1.1.

Figure 1.1 A typical construction of neuron T with input Xi and corresponding weight Wi

From the figure above, neuron T receives information X1, X2 and X3 from other

3 neurons. W1, W2 and W3 are the weights of each respective neuron connection. The

input is fed into the weighted connection, respectively. T compares the received value

with a pre-defined threshold. If it is larger than the threshold, this value will be sent to

an active function to create output for this neuron. Normally, the connection weight and

threshold are acquired by learning from input. In other words, the weight needs to be

pre-defined and then learned by training. Neural networks are made of layers of

connected neurons. The simplest neural network is called perceptron which is made of

an input layer and an output layer only. In more complicated structures, there are more
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layers called hidden layers between the input layer and output layer. Neural networks

with hidden layers are called multi-layer feedforward neural networks. Neurons in both

input/output layer and hidden layers are connected with neurons in neighboring layers.

But the neurons in the same layer have no connection nor any cross-layer connection.

As indicated in (Z. Wang, Jiang, Hu, & Li, 2012), an incremental learning

method based on neural network was proposed for ADL classification. Compared with

other machine learning methods, for example, the decision tree, the training time of

ANN was shorter while achieving high classification accuracy. However, (Parkka et al.,

2006) stated that ANN may not be as stable as decision tree. This is because human

activity monitoring data may be noisy for ANN. Furthermore, ANN may easily overfit

without any protecting strategy for its learning ability.

Hidden Markov Model (HMM) is a type of probabilistic graphical model

(Koller & Friedman, 2009). It is based on a dynamic Bayesian network. One of the

earliest applications of HMM is for speech recognition (Baker, 1975). If a Markov

process has N discrete states, the system transits among the N states according to

certain transition probabilities. Different from a normal Markov model, the observation

of a HMM state is a probabilistic function of this state. That is, the state of HMM

cannot be observed directly (hidden). The hidden variables can only be observed from

other stochastic processes (Rabiner, 1989). Sequences of human activities can be

modeled as a Markov chain. One posture represents a state and movements from one

posture to another posture are simulated as state transitions. (Tong, Song, Ge, & Liu,

2013) came up with a HMM-based fall detection and prediction algorithm using data

collected by wearable sensors. The results showed that the HMM-based method can

predict a fall event 200-400 ms ahead of the incident. Although not deployed for fall
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detection off-line, (Kianoush et al., 2015) applied HMM to trade-off between

decreasing sampling rate and achieving the requirement of real-time fall detection

system. Apart from traditional HMM, (Li et al., 2015) proposed an extended HMM to

overcome the problem which HMM cannot handle large volume of data. Due to the

high computational cost of HMM, the extended HMM in (Li et al., 2015) was shown to

be a promising method for fall detection. The advantage lays on the ability to find out

hidden or unexpected information from observed data for fall detection while the

disadvantage is the high computational burden of this algorithm.

Support vector machine (SVM) is a popular machine learning method (Banaee

et al., 2013). The idea of SVM is to map data points from input space to a feature space.

A plane in feature space called a hyperplane or decision boundary is used to classify the

samples into two regions (Pierleoni, Pernini, et al., 2015). The further away the samples

are from the hyperplane, the less the classification error occurs. Therefore, a hyperplane

needs to be placed in such a position that the distance between the boundary and the

nearest sample (support vector) is maximum.

This method has been mathematically proven (Cortes & Vapnik, 1995) and was

implemented in a convenient toolbox named LIBSVM (Chang & Lin, 2011). SVM was

used successfully used in speech recognition (Ma, Randolph, & Drish, 2001), facial

recognition (Heisele, Ho, & Poggio, 2001), stress and influenza classification (Wijaya,

Prihatmanto, & Wijaya, 2016). SVM has also been used for fall detection based on

wearable sensors (Pierleoni, Belli, et al., 2015), (Özdemir & Barshan, 2014) and (Liu &

Cheng, 2012). SVM in (Pierleoni, Belli, et al., 2015) was used to find a proper

hyperplane to detect falls based on acceleration by the training process. (Liu & Cheng,

2012) and (Özdemir & Barshan, 2014) investigated the computational cost of SVM by
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measuring training time and testing time. They came to a conclusion that SVM

algorithm for fall detection has an acceptable performance. (Özdemir & Barshan, 2014)

proposed an approach to reduce computational complexity of SVM in fall detection

based on three tri-axial sensors (accelerometer, gyroscope, and magnetometer or

compass). Because not all the collected data were equally important to detect a fall,

(Özdemir & Barshan, 2014) extracted a part of features to reduce the volume of data

input and decrease computational complexity. This was carried out by only focusing on

features inside a 4-second window instead of inputting the entire activity into the

algorithm directly.

SVM is a robust method for fall detection when compared with other methods

such as threshold-based methods (Aziz et al., 2017) and decision tree methods

(Özdemir, 2016) under the same circumstances. It was proved that performance of

SVM cannot be improved straightforwardly by adding more sensors (Özdemir, 2016),

changing the training or testing data size (Ustuner, Sanli, & Abdikan, 2016) or varying

sensor locations (Shibuya et al., 2015). More specifically, (Shibuya et al., 2015)

compared the effect of wearable sensor location on the performance of SVM. They

found that no matter where the sensors were placed (i.e. on the back, chest or other

body parts), SVM cannot effectively detect the “sliding” type of fall (for example, fall

while sitting on a chair). As for the effect of training size on SVM, (Shibuya et al., 2015)

found that SVM was robust against imbalanced training and testing data size in image

classification. Later, (Özdemir, 2016) investigated the overall accuracy of SVM for fall

detection using wearable sensors. They showed that SVM accuracy for fall detection

did not significantly depend on the number or location of sensors. In particular, SVM

achieved 99.27% accuracy with a single sensor located on the thigh whereas achieved
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99.48% accuracy with data from 6 sensors placed on different locations of human body.

In terms of SVM algorithm itself, (Nukala et al., 2014) compared with linear,

polynomial and radial basis function (RBF) kernel functions. RBF performs better

wherever sensors were located and whatever was training and testing size. With so

several factors affecting its performance, (Nukala et al., 2014) stated that though the

original SVM is a widely used tool for fall detection and human posture recognition, it

may not attain consistent detection accuracy. This is due to the existence of certain data

points located near the hyperplane. Therefore, (Tang & Sazonov, 2014) proposed a

SVM with data rejection for human postures and activities recognition. They measured

the distance between samples and the hyperplane, samples that may be too close to the

hyperplane were rejected. Furthermore, the result of (Tang & Sazonov, 2014) showed

that by using the data rejection method, the mean accuracy rate increased by 17.5%

with feature extraction and also increased about 2% without feature extraction. This is a

considerable increase for fall detection algorithms. One possible explanation for this

may be that some important information for accurate classification was covered by data

positioned close to the hyperplane.

From previous works, it should be noted that most works which deployed SVM

for fall detection used time-series features (Aziz et al., 2017), (Shibuya et al., 2015) and

(Colkesen, 2012). To the best of our knowledge, only (Özdemir & Barshan, 2014)

investigated the usage of spectral domain and time domain features together with SVM.

The spectral features were the first 11 values of autocorrelation sequence and the first 5

peaks of the corresponding frequency after discrete wavelet transform (DWT). Their

DWT performance showed a good accuracy, achieving more than 97% when the testing

the data size was significantly larger than the training data size. Since the unbalanced
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training data and testing date size is usually the case in the real-world, it may be

worthwhile to investigate other spectral features to be used with SVM. Therefore, the

underlying objectives of this research are as follows.

1.2 Research objectives

1.2.1 To design a lightweight wavelet transform frequency domain feature

extraction method integrated with an appropriate SVM model to detect falls based on a

tri-accelerometer collected data.

1.2.2 To study the impact of wavelet transform methods on the performance of

SVM.

1.2.3 To construct a fall detection based on lifting wavelet transform with lifting

wavelet transform and SVM which has low computational requirement and performs

well in terms of accuracy, specificity and sensitivity.

1.3 Research hypothesis

1.3.1 The proposed wavelet transform based algorithm works better than the

traditional time domain algorithm for fall detection.

1.3.2 Wavelet transform achieves better results than time domain features, and

LWT is even better than CWT in the same situation.

1.3.3 The suitable window length depends on frequency because fall occurs in a

very short period of time.

1.3.4 Wavelet transform with threshold works better than wavelet alone.

1.3.5 CWT is more complex than LWT in terms of computational complexity.
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1.4 Basic agreements

1.4.1 MATLAB R2014b @win10 was used to imply this experiment.

1.4.2 Data used in this work was collected by a single tri-accelerometer. Two

different datasets were used, one is from (Kwolek, B., & Kepski, M., 2014) and the

other one from Imperial College London (Pannurat, N., Thiemjarus, S., &

Nantajeewarawat, E., 2017).

1.4.3 The dataset with video includes 40 activities of daily living (ADLs) and

30 falls (Falls) collected by a tri-accelerometer attached on waist.

1.4.4 The data set from Imperial College of London includes 13 types of falls

and 12 types of ADLs conducted by 12 objects with a sensor attached on the waist.

1.5 Scope and limitation

1.5.1 Two different datasets were studied in this thesis.

1.5.2 The proposed algorithm is based on a single accelerometer data.

1.5.3 All the activities used in experiments were performed by young subjects.

1.5.4 Simulation is conducted by MATLAB and Python based on LIBSVM.

1.6 Expected benefits

1.6.1 To obtain computational light wavelet transform based features to detect

falls based on SVM with data collected by a wearable tri-accelerometer.

1.6.2 To compare performance of the wavelet transform based features and the

time domain features with SVM for fall detection.
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1.7 Synopsis of thesis

The remaining parts of this thesis are organized as follows.

Chapter II illustrates the methodology used in this work. This chapter presents

discrete wavelet transform with lifting scheme (LWT) and continuous wavelet

transform (CWT). Then followed by the theory of support vector machine (SVM).

Chapter III presents performance evaluation based on the proposed LWT and

SVM integration method. The performance is compared to that of a simple time domain

feature. LWT provides computational efficiency that is suitable for on-board data

processing and SVM is used as a fall identifier. The Haar and Bior2.2 mother wavelets

for LWT are compared since they performed best. The best LWT multiresolution level

of coefficients are analyzed in this chapter. Since SVM is used to classify sample points,

a threshold was determined to classify falls from ADLs.

Chapter IV presents a performance evaluation based on another data. In

particular, this chapter focused on the comparison between CWT and LWT feature

based on the Haar and customized wavelets. The findings of this chapter emphasize that

the proposed lifting scheme is computationally light and can outperform the higher

computational continuous wavelet transform feature.

Chapter V concludes the thesis, highlighting the findings and contributions in

chapter III and chapter IV.
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CHAPTER II

FUNDAMENTAL THEORY

SVM is a supervised machine learning method. The main steps can be simply

concluded as training and testing. The input data is called features. The way we extract

features from the original data has an impact on the performance of SVM. Since there

are numbers of previous works discussed how to improve SVM itself, we focused on

finding suitable specific features for fall detection. The two aspects used to analyze

signals are usually time domain and frequency domain. Time domain features are

features such as root-sum-square, maximum, minimum and so on. Frequency domain

features may include CWT coefficients, LWT coefficients and maximum frequency.

Therefore, in this chapter, SVM is first introduced. Followed by the introduction of

CWT and LWT. At the end of this chapter, data preprocessing and classification details

such as windowing, labeling and the way to calculate threshold was presented.

2.1   Lifting Wavelet Transform (LWT)

Discrete wavelet transform (DWT) comes later than CWT which will be

introduced in next section. It went back to 1976 when A. Corosier and D. Esteban

proposed a method to split channels (Esteban & Galad, 1976). One of the earliest

applications of DWT was in speech recognition (Krishnan, Neophytou, & Prescott,

1994). Identically, DWT has advantages on resolution over STFT as CWT. DWT uses

filters to split high or low frequency part of the signal and uses upsampling or
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subsampling techniques to scale. Instead of inner product of two functions, DWT

definition is convolution of the discrete signal x[n] and a half band digital low pass

filter h[n]. y[n] = x[n] ∗ h[n], (2. 1)

where * represents convolution operator and n is the number of samples. The half band

filter here is to half the frequency band of original signal. That is to say if a signal’s

highest frequency is 100Hz, after the half band filter, the highest frequency of the

output signal will be 50Hz. According to Nyquist’s rule, we can throw away another

half of the samples after filter without losing main information since it is redundant.

This is called downsampling or subsampling. It changes the scale of signal. For

instance, if subsampling by two, it will simply remove every the other sample. And if

upsampling by 0.5, an interpolation will be insert in every two samples. Noticed that

filtering halves the resolution (frequency band) but leaves the value of scale unchanged

while downsampling by two doubled the scale. Figure 2.1 below illustrates a two-level

DWT, where g[n] and h[n] implies high-pass filter and low-pass filter respectively, and

down arrow “↓2” means downsamping by 2

.Figure 2.1 A 2-level traditional DWT
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Lifting wavelet transform (LWT) is an alternative to implement DWT and an

in-place algorithm. Instead of using filters to split, LWT use the “lazy wavelet” which is

simply split the sequence into even and odd. It is the first step for LWT. Secondly, the

odd sequence was predicted based on even sequence. Thirdly, the difference between

predicted odd and real odd which is called detail information is used to update even

samples.

Figure 2.2 A 2-level LWT

Figure 2.2 is a flow chat of a two-level LWT, where cD is the detail information

or high frequency part and cA is low frequency part. It is easy to find that resolution of

LWT depends on the level that the information appears. If it is in low frequency area,

apparently, it has high frequency because of splitting, and has a low time resolution

since less data left in time domain. If information is in high frequency area, it has low

frequency resolution with precise time localization. This is often the case in fall

detection for the reason that falls are along with high frequency signal.

Compared with CWT, DWT deals with discrete signal which is actually

sampled from the continuous signal. This sampled sequence also provided enough

information in terms of reconstruction. Less data means lighter computational load.
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Furthermore, LWT is a simpler way to implement DWT. The cost of LWT almost half

less than DWT for LWT using lazy wavelet transform instead of filters (Daubechies &

Sweldens, 1998). Hence, LWT is suitable for fall detection in respect of computational

complexity.

2.2 Continuous Wavelet Transform (CWT)

Short-time Fourier transform (STFT) has been a widely used tool to analyze

signals in time-frequency domain (Daubechies, 1992). STFT assumes that a

non-stationary signal to be a stationary signal in narrow windows and does Fourier

transform in this narrow window. However, there is an issue that first found by

Heisenberg called “uncertain principle”. The principle implies that we cannot know

what frequency exists at what time instance but only know that what frequency bands

exist at what time interval (Chui, 1992). In other words, if we know the exact location

of a data point in time domain, we will never know the exact frequency of this data

point at that time. As a result, there has to have a trade-off between time resolution and

frequency resolution when choosing a constant window for STFT. A smaller window

has a higher time resolution but lower frequency resolution and vice versa. Usually,

ADLs are periodic and fall is a suddenly change of frequency. WT allows using long

time window to obtain precise low-frequency information and short time window to

localize high-frequency bands in time domain precisely. Let’s take a closer look at this

property of WT.
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Figure 2.3 The area of each box is equal. Higher frequency resolution (smaller

height) always with lower time resolution (larger width)

Figure 2.3 illustrates the relationship between time and frequency resolution in

WT. Assuming that each box is a non-zero value and the X-Y plane is called

time-frequency plane. According to Heisenberg’s uncertain principle, we cannot know

the exact data point on x-axis and y-axis simultaneously. However, the area of each box

is depend on the type of wavelet and it is a constant value. In hence, longer height (poor

frequency resolution) comes with short width (better time resolution) and vice versa.

Continuous wavelet transform (CWT) is a kind of WT (Daubechies, 1992). It is

defined as follows:

C( , ) = √ ∫ ( )Ψ∗ , (2. 2)

where * denotes the complex conjugate, and f(t) represents the function being
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transformed. And Ψ( ) is the transforming function which is also called “mother

wavelet”. The mother wavelet has two important properties. Firstly, Ψ( ) should be

compactly supported which implies that Ψ( ) is a finite length function (window).

Secondly, mother wavelet can be scaled and shifted by parameters a and b, respectively.

Scale refers to “stretch” or “compress” the mother wavelet (Polikar, 1996). For

instance, there is a mother wavelet

Ψ( ) = sin , (2. 3)

where ϵ[− π, π], ≠ 0. For convenience, we call it “original wavelet” when

a = 1. Apparently,Ψ( ) is “compressed” to be half the length of original wavelet when

a = 0.5 and is “stretched” to be double length of original wavelet when a = 2.

Figure 2.4 sin( ), a = 0.5, 1, 2. When "a" is increasing, frequency is decreasing

From
Figure 2.4, an inverse relationship between frequencies and “a” can be

observed. Higher scales are related to more “stretched” (low frequency) wavelet and a

roughly view of signal for the reason that low frequency components usually exist
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entire signal. Contrarily, lower scales correspond to less “stretched” (high frequency)

wavelet and correspond to a hidden quick-changing details since sudden change usually

lasts in a short time duration. Shifting or translation parameter “b” means “delay” or

“advancing” the wavelet centered by value “b” in time-axis.

The definition of CWT given by formula (2. 2) is the inner product of signal

function f (t) and transforming functionΨ , ( ), where Ψ , ( )= Ψ . From this

perspective, CWT definition shows the similarity between mother wavelet and the

transformed function f (t) (Palmerini et al., 2015). The product value is non-zero only

inside the support region of wavelet. It means that if the tested signal exists a spectral

component correspond to current frequency (scale) and located inside current time

interval (translation), the product value (CWT coefficients) will be relatively large. If

no current spectral component exist or not located inside this time interval, the

coefficients will be relatively small or even zero. Thus, by various scale and shifting

values, wavelets in different location of time (interval) and frequency (bands)

multiply with different part of tested signals.

CWT coefficients, on the other hand, becomes large around abrupt change in

the signal since the abrupt transition in the shifted function results in large CWT

coefficients at the discontinuity. As shown in

Figure 2.5 A typical fall with a clear peak, falls in daily life often come with a

sudden change of frequency compared with periodic human activities. Thus, CWT

adapt to detect a fall by observing the coefficient value of human activity signals. The

CWT coefficients localize the discontinuity best at small scales for the reason that small

support region of the wavelet ensures that the singularity only affects a small set of
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wavelet coefficients.

Figure 2.5 A typical fall with a clear peak

After CWT (Haar), we get the coefficients which give large values at the sudden

interrupt and also implies the similarity to mother wavelet.

Figure 2.6 CWT coefficients of the typical fall
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2.3 Support Vector Machine (SVM)

SVM is a popular machine learning method which was first proposed and

proved by Cortes and Vapnik in 1995 (Cortes & Vapnik, 1995). It is a binary

classification machine. The basic concept for SVM is that it is the largest margin

classifier in the feature space. This is what makes SVM different from other machine

learning methods.

The concept of SVM is to find the largest margin hyperplane to divide the

negative and positive instances (samples). This hyperplane is used to predict instances

whose labels are unknown. Moreover, if the instances are non-linearly separable, the

use of some kernel function can map instances into a high dimension feature space

where instances can be separated by a hyperplane.

Figure 2.7 The largest margin depends on support vectors on the "edge"
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Apart from kernel function, a soft margin method is also use to deal with

non-linear problems. Thus, according to the concept of SVM, this section consists of

three parts, the basic idea of SVM, the soft margin SVM and the kernel function, and

the sequential minimal optimization (Scholkopf & Smola,2001).

2.3.1 Basic idea of SVM

Spouse that the input space and feature space are two different spaces.

The input space is Euclidean space and the feature space is Hilbert space. The classifier

assumes that the element in this two spaces correspond one-to-one. Assume that there

exists a kernel function that can map the input space into a feature space. SVM classify

in feature space. The input data set is called input instances. Assume that a group of

input training data set Tr ={(x1,y1),(x2,y2), …, (xi,yi), …, (xN,yN)}, 1 ≤ ≤ ,where

xi∈ℝ , is the ith feature and yi∈{-1, +1} is the label of the ith feature. When yi equals +1,

xi is a positive sample vector and when yi equals -1, xi is a negative sample vector. Let

(xi, yi) be the ith instance. The objective of SVM is to find a hyperplane in feature space

to classify the instance in feature space. A plane can be defined by a normal vector and

an intercept. Therefore, if the training set Tr is linearly separable, the hyperplane can be

defined by ∙ + = 0, (2. 4)

where is a normal vector of hyperplane and b is the intercept. Then, the decision is

given by ( ) = sgn( ∙ + ), (2. 5)
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where sgn is short for sign function. Equation (2. 5) implies that the classification

result f(x) is compared with zero.

However, from

Figure 2.7, it can located be seen that some instances are more important than

the other because they are located at the edge of the margin. Those vectors are called

support vectors. Apparently, there exists various hyperplanes (various and b) to

classify those instances. To determine a particular b for such classification, assume that

the positive instance is larger than a constant. Similarly, we insist the negative instance

is less than the opposite constant as well. For convenience, the constant is to be +1 and

-1. In particular, the decision rule is defined by

∙ + ≥ 1, (2. 6)

∙ + ≤ −1, (2. 7)

where and are positive support vector and negative support vector,

respectively. Equations (2. 6) and (2. 7) can be rewritten in terms of yi as

( ∙ + ) ≥ 1. (2. 8)

The distance between hyperplane ( , ) and support vector is given by

= ( − ) ∙ ‖ ‖ . (2. 9)

By substituting ∙ and ∙ by (2. 6) and (2. 7), we get
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= ‖ ‖ . (2. 10)

Thus, the task of finding the largest margin between the two classes of instances

becomes to find the maximum value of d, subject to (2. 8).

Now, we can construct an equivalent of such problem using

min , ‖ ‖ , (2. 11)

s. t. ( ∙ + ) ≥ 1. (2. 12)

The problem is proved feasible and has exactly one largest margin hyperplane. We are

going to assume that the optimized result is hyperplane ( ∗, ∗).

In order to solve the primal problem defined in (2. 11)-(2. 12), the dual problem

is easier to solve. Let us now introduce the Lagrange function given by

L( , , ) = ‖ ‖ + ∑ ∙ + ) − ∑ , (2. 13)

where = [ , … , , … , ] , ≥ 0 is a Lagrange multiplier vector. The partial

derivative of and b equal to zero where the gradients of primal problem and

constraint are parallel.

∇ ( , , ) = − ∑ = 0, (2. 14)

∇ ( , , ) = ∑ = 0. (2. 15)

Therefore, = ∑ , (2. 16)
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∑ = 0. (2. 17)

Substitute into equation (2. 13), the dual problem ismin ∑ ∑ ( ∙ ) − ∑ , (2. 18)

. . ∑ = 0, (2. 19)

≥ 0. (2. 20)

Assuming that the optimize solution is ∗ = [ ∗, ∗, … , ∗ ] . Thus,

∗ = ∑ ∗ . If chose one of ∗ > 0 , is chosen such that ∗ = −∑ ∗ ( ∙ ).

2.3.2 Soft Margin SVM and kernel function

In last section, we talked about the linear separable situation.

However, the method is not available for non-linear training data unless a soft largest

margin was proposed. More specifically, soft margin allows classifier make mistakes

and add a penalty to the mistake.
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Figure 2.8 A soft margin SVM schematic

Similar process and hypothesis as previous section, we want the hyperplane to

have largest margin as well as less mistakes. The soft margin SVM therefore can be

described as min , , ‖ ‖ + ∑ , (2. 21)

s. t. ( ∙ + ) ≥ 1 − , (2. 22)

≥ 0, = 1,2, … , N, (2. 23)

where represent scalar variables for the ith instance, and C > 0 is the regularization

parameter. Scalar variables are to characterize the unsatisfactory degree of this

mistaken instance. And regularization is a classic way to control model complexity to

avoid overfitting. Still, this is a convex quadratic problem as the “hard margin” SVM

we talked in previous section. In hence, after Lagrange and duality, (2. 21)-(2. 23) are

given by,
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Figure 2.9 Kernel function example

Noticed that no matter in linear or non-linear situation, there only inner product

instances ∙ involved. For non-linear problems, for example in

Figure 2.7 and

Figure 2.9, it is natural to think to map the data from low-dimension input space to

high-dimension feature space that can find a hyperplane divide instances correctly.ϕ( ) is usually used to represent , in feature space, Thus, equation (2. 24) is
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min ∑ ∑ ( ) ∙ ( ) − ∑ , (2. 27)

Unfortunately, the dimension of feature space can be high or even infinite, it is

sometimes impossible to calculate directly in feature space. Due to the high

dimensionality of feature space, researchers tried to define a kernel function,

K , = ϕ( ) ∙ . (2. 28)

Kernel function is an implicit function of inner product of feature space vectors. More

information about the existence of kernel function, please refers to (Scholkopf & Smola,

2001). Substitute (2. 28) in to (2. 27),

min ∑ ∑ ( , ) − ∑ . (2. 29)

Polynomial kernel function, Gaussian kernel function are often used in signal

processing. For fall detection based on wearable sensors, radial basis function (RBF)

classifier based on Gaussian kernel achieved best result (Hsu, Chang, & Lin, 2003).

RBF is described as

K( , ) = e ‖ ‖
, (2. 30)

where x and z are instances and σ is the various.

2.3.3 Sequential Minimal Optimization（SMO）and Cross Validation

Though the primal problem was transferred to dual problem which

was proved to have and only have one optimize solution, it is still not easy to solve
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when the data size is large. This section, a method that is called sequential minimal

optimization（SMO）will be introduced to solve dual problem.

SMO was first proposed by a scientist in Microsoft in 1998 (Chui, 1992). The

method mainly focused on the convex quadratic programming problem looks like,

min ∑ ∑ ( , ) − ∑ , (2. 31)

s. t. ∑ = 0, (2. 32)

0 ≤ ≤ , = 1,2, … , , (2. 33)

where N is the total number of data point.

SMO algorithm is a kind of heuristic algorithm. The idea of SMO is that the

algorithm chooses a pair of Lagrange multiplayers ( , ) randomly as two unknown

various and fix the left Lagrange multiplayers. From constraint (2. 32), we can get the

relationship between this two parameters,

= − ∑ , (2. 34)

Thus, the N various problem becomes a two various sub problem with two

equations. If we know one of the chosen unknown parameter, the other one is also fixed.

In this term, the sub problem always updates two various together. The solution of sub

problem will make the N various problem closer to final solution. Moreover, by

transferring, the calculation speed is greatly improved. More information about how to

solve a sub problem please look at (Chang & Lin, 2011).
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There comes a problem that how to choose various pair. Firstly, we need to

determine one of the two α. This is called outer loop. The instance that break the

Karush-Kuhn-Tucker (KKT) conditions most seriously is chosen as the first various. In

other words, the outer loop trends to choose support vectors as the first various for the

reason that support vectors are at the edge of the hyperplane. Instances at this place are

most likely to violate KKT conditions. If they satisfy KKT conditions, all the instance

satisfy it.

Secondly, SMO uses inner loop to decide the next various. Assuming that in

outer loop, the first various has been chosen. Inner loop trends to find the various that

achieves largest change. If function E(xi) represent the difference between the predicted

yi for input xi and the real yi, α that has larger E(xi) is more likely to be chosen.

In conclusion, there are two main part for SMO algorithm. The first part is

choose two various a time using heuristic method and the second part is to solve

corresponding sub problem. Repeat this two parts, until all various satisfy KKT

conditions.

The complexity of SMO depends on the number of support vectors instead of

the number of feature space dimensions. This means SMO avoids to calculate in

high-dimension space where overfitting trends to occur. Except this, cross validation

helps to avoid overfitting as well.

As I mentioned above, SVM is a optimize problem, the result of this kind of

machine learning method usually output various models in different complexities. In

order to find a suitable model which is supposes to be the closest one to the best model.

However, if we pursue high prediction accuracy of a model only, the chosen model is

definitely more complex than “real model” which is assumed to be the perfect model.
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This is called overfitting. There is an example of overfitting below.

Figure 2.10 Overfitting

There are 20 data points in

Figure 2.10 Overfitting. We assume that the data set is represented by

Ω = {( , ), … , ( , ) }, (2. 35)

where yi = {-1, 1} is label of corresponding data. Then, if the data can be fitted by a

polynomial given by

( , ) = + + +⋯+ = ∑ , (2. 36)

where wi is parameters of this model. First of all, we need to know how many
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items we need to fit the given data. In other words, we need to decide the value of M

and the complexity of the model.

Figure 2.10 shows different values of M. We can find that when M=0, the fitting

curve is a constant which failed to match the sample data. When M= 1, the fitting curve

is a line which also failed to match the sample perfectly. In contrast to this, when M=3,

it looks that the fitting curve matches training data well enough. If the model is set more

complex than this, for instance, M=10, the fitting curve matches training data perfectly

and the deviation of model equals to zero for the training data set. It seems to be the best

model for training data. However, generalization ability which represents the ability of

model to predict unknown data is low. The reason overfitting occurs is that training data

size is limited while the unknown data various.

Cross validation is another way to choose models. In this thesis, a 5-fold cross

validation was used. The simplest cross validation will be illustrated below.

At the beginning, given dataset is divided into two parts according to a specific

ratio randomly. One part is used as training dataset and the other part is used as testing

dataset. Using training dataset in different situations and settings, models with different

parameters are obtained. Those models are evaluated by the testing dataset, and the

model with least deviation is chosen.

The cross validation we often use is S-fold cross validation. Instead of divide

dataset into two part, S-fold divide dataset into S subsets equally. And then, S-1 subsets

are used as training dataset and the left one is used for testing. Repeat this S times until

all the subset has been used as testing set. Finally, the model with least average testing

error is the model we want to find (Kohavi, 1995).
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2.4 Others

Datasets used in this thesis come from (Kwolek & Kepski, 2014) and Imperial

of London, respectively. Both of the data are collected by a tri-accelerometer attached

to the waist of objects.

The dataset used in chapter III of this thesis is the former one. Those activities

were conducted by 14 young volunteers. Two kinds of falls (from standing to fall and

from sitting to fall) and four kinds of ADLs (squatting, sitting, lying down and bend

over) were conducted. The dataset used in chapter IV is the latter one. There were

thirteen kinds of falls and eleven kinds of ADLs.

2.4.1 Feature extraction

For the reason that fall detection data are collected in a long term and

the sample rate is about 60 Hz which is relatively high. There is a large volume of data

need to be processed in a short period of time. On the other hand, the data is not always

equally important in terms of human activity recognition. Thus, before applying SVM

on collected data, feature extraction is necessary. Larger dataset leads to more time to

calculate. Before input this data into SVM which is relatively complex, windowing and

labeling are used to prepare the data as well.
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Figure 2.11 The red part are fall data points after windowing

As shown in

Figure 2.11, the dot line is a typical fall and the red solid line is the data inside

window. The maximum value is always centered in the window for both falls which are

labelled as “+1” and ADLs which are labelled as “-1”. The window size in this thesis is

set to 60 data points and 120 data point respectively since the total number of data

points for an activity in the dataset we used is not enough for larger window. Further, a

fall usually occurs in a short time interval, it doesn't need to have a too large window.

Because the tri-accelerometer data has three oriental values for a sample point, the

root-sum-square is the vertical axis in

Figure 2.5 which is given by

SV = + + , (2. 37)
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where Ax, Ay, and Az are the value of correspond oriental.

2.4.2 Threshold

This thesis compared the performance of different features including

CWT and LWT coefficients. And compared the result of SVM with and without

threshold. Threshold in chapter III was used to decide a fall according to the ratio of

data point labelled as “+1” in an activity. In chapter IV, the threshold was calculated

before wavelet transform to select falls which were difficult to distinguish from ADLs.

It means that if the maximum SVtotal of an activity was larger than threshold value, this

activity would be regard as a fall directly. Detail algorithm would be illustrated in later

chapters.

2.5 Summary

In this chapter, background theory of the algorithm proposed in this thesis were

talked. Support Vector Machine (SVM) is a supervised machine learning method which

has been widely used in data classification and regression analysis. The classifier tries

to divide the falls and activities of daily living (ADLs) into two parts correctly. Basic

SVM is good at dealing with linear problems which human activities data collected by

wearable sensor is usually not. Thus, kernel function is introduced to map the data from

input space to higher dimension feature space. Then a hyperplane (model) based on

training dataset can be found in feature space. In order to avoid overfitting which is a

common problem for modeling with limited training data, soft margin and cross

validation were described. Mathematical definition and explanation were given

following the concept. In particularly, SVM was attributed to a convex quadratic



38

programming problem which sequential minimal optimization (Scholkopf & Smola,

2001) is one of the most efficient methods to solve.

After that, continuous wavelet transform (CWT) and lifting wavelet transform

(LWT) were illustrated in the following two sections. Both CWT and LWT are included

in wavelet transform (WT). CWT insists the scale and shift change continuously while

that of LWT is discrete. From the definition, CWT coefficients can be regard as the

similarity degree between mother wavelet and input signals. Therefore, an average fall

was used to draw the similarity as a frequency domain feature for SVM.

LWT is an alternative of discrete wavelet transform (DWT). Instead of using

filters which is complicated to split signals, LWT simply spilt input sequence into even

and odd. LWT has advantages over CWT in computational complexity as well as better

performance we suppose.

What last but not least was that the raw data which come from wearable sensors

cannot be used directly since the data has three orients for one sample. Pre-processing

helps to decrease the volume of data without losing useful information. The methods

and equations about how to processing raw data before they are input in to wavelet

transform algorithm and SVM are briefly described in the last section of this chapter.

The detail illustration can be found on later chapters.
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CHAPTER III

FALL DETECTION USING LIFTING WAVELET

TRANSFORM AND SUPPORT VECTOR MACHINE

Frequency domain features of inertial movement enables multi-resolution

analysis for fall detection, yet they are computationally intensive. This chapter

proposes a computationally light frequency domain feature extraction method based

on lifting wavelet transform (LWT) which provides computational efficiency suitable

for real-time low power devices such as wearable sensors for human fall detection.

LWT is combined with support vector machine (SVM) to identify falls from activities

of daily living.  Performance of the Haar and Biorthogonal 2.2 wavelets were

compared with the time domain feature of root-mean square acceleration using a

human fall dataset. Results show that the first level detail coefficients features for

both Haar and Biorthogonal 2.2 wavelets achieved good overall accuracy, sensitivity

and specificity.

3.1 Introduction

As many countries enter the era of aging society, they face critical elderly

people’s health threats which are fall and related complications caused by the injury

(Pierleoni, Pernini, et al., 2015). Considering the need of real-time monitoring and ease

of use, wearable sensor systems are one of the most promising systems.
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Wearable sensor-based fall detection systems, inherently generate continuous

monitoring of physiological measurements. Such system is usually a multi-sensor

system. Comprising sensors such as accelerometers, gyroscopes, pressure sensors and

magnetometers. Datasets collected by such wearable sensors are thus, typically

multi-dimensional and in large volumes. Such characteristics may cause hinder data

processing and fall detection capabilities. Some researches therefore use feature

extraction to reduce the amount and the dimensions of data (Banaee et al., 2013) by

extracting only necessary features. Existing techniques include two main domains, i.e.,

time and frequency domains. Research such as (Pierleoni, Pernini, et al., 2015),

(Carlsson, 2015), (Özdemir & Barshan, 2014) extracted time domain features including

the mean value, maximum value, minimum value and variance, standard deviation of

the patient’s physiological movements and other special features such as entropy and

vertical direction.

In general, time domain features are straightforward and easy to visualize

which means light computational burden for feature extraction. So the system is

computationally efficient in achieving a real-time fall detection. However, the time

domain statistical features considers only the displayed observable trends (Özdemir &

Barshan, 2014). Consequently, time domain features may not suffice for accurate fall

detection.

Conversely, frequency domain features make use the spectral domain of the

collected data which may not be clearly observable in the time domain. Frequency

domain features were deployed for fall detection by (Su, Ho, Rantz, & Skubic, 2015)

which used discrete stationary wavelet transform (SWT). In (Björklund et al., 2015), a

short time Fourier transform (STFT) was used for human activity recognition, whereby
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a fall was a subset of data in a series of continuous activities of daily living (ADLs). In

(Palmerini et al., 2015), created a prototype wavelet of typical fall pattern by using the

average acceleration sum vector. The degree of similarity of the signal to the prototype

was then computed though wavelet analysis. Results from the same classifier and

real-world dataset revealed that the wavelet based features outperformed than other

time domain features: upper and lower peak values.

Feature extraction alone only enhance the features of the data acquired by the

wearable sensors. However, to detect weather a fall occurred relies on the performance

of the detection mechanism. The most common and simplest fall detection is the

threshold method (Aziz et al., 2017). Nevertheless, the performance heavily depends on

the fixed threshold level. Hence, it is rarely used alone, and often combined with other

machine learning methods such as decision tree (DT) (Bilski, Mazurek, Wagner, &

Winiecki, 2015), (Parkka et al., 2006), artificial neural networks (ANN) (Z. Wang et al.,

2012), hidden Markov model (HMM) (Tong et al., 2013) and Support Vector Machine

(SVM) (Özdemir & Barshan, 2014), (Pierleoni, Belli, et al., 2015), (Liu & Cheng,

2012) can be combined to outperform the threshold method (Aziz et al., 2017), (Aziz et

al., 2017). Among the machine learning methods, SVM was found the most robust for

fall detection when compared to other methods such as threshold-based methods and

the decision tree method (Aziz et al., 2017). However, most works which deploy SVM

for fall detection use time-series features (Aziz et al., 2017), (Shibuya et al., 2015). It

was found that SVM fall detection performance can be improved by a combination of

time and frequency domain features (Özdemir & Barshan, 2014). In particular, the

discrete Fourier transform (DFT) was used to determine the spectral coefficients which

is computationally intensive (Özdemir & Barshan, 2014). On the other hand, the lifting
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wavelet transform (LWT) is an efficient, light weight frequency domain extraction

method (Sweldens, 1998). To the best of our knowledge, there is no previous work that

has combined LWT with SVM for fall detection. This chapter is therefore focused on

the study of feature extraction based on LWT used with SVM to detect falls from ADLs

using root-mean square value from a single tri-axial acceleration sensor.

The part is organized as follows. Section II presents the proposed frequency

analysis and the support vector machine scheme proposed in the chapter. The time

domain feature which is used for comparison is also introduced. In section III, the

experiment based on a comprehensive fall detection dataset is described. Section IV

presents the results and discussion and finally conclusions is given in the final section.

3.2 Method

3.2.1 Frequency domain feature extraction

Feature extraction based on frequency analysis of the body inertia

collected from sensors has been studied in the recent literature. Discrete wavelet

transform (DWT) has been proposed for mobility monitoring, posture transition and

activities classification in (Wójtowicz, Dobrowolski, & Tomczykiewicz, 2015b) using

a single chest-mounted sensors. In (Shin et al., 2015), another frequency domain

feature extraction method using short-time Fourier transform (STFT) was proposed to

shorten the calculation time of DWT. Despite good results, the short time windows in

STFT may not always be suitable for human motion which varies greatly. If windows

are too short, STFT may be unable to identify the frequency in such a short period of

time. If windows are too large, more information in time domain will lost. If the STFT

window size is fixed, STFT may not be suitable for fall detection as human activities
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are flexible. Unlike DFT in (Özdemir & Barshan, 2014), LWT can be constructed

from time series signal directly. Unlike DWT in (Wójtowicz et al., 2015b), LWT does

not require convolution, translation or dilation of traditional mother wavelets.

Furthermore, LWT allows in place calculation, with no need for auxiliary memory.

Therefore, LWT provides computational efficiency suitable for real-time low power

devices such as wearable sensors. In the following subsection, we describe LWT in

more details.

3.2.2 Lifting Wavelet Transform

LWT has been introduced by Sweldens in 1997 (Sweldens, 1998).

The scheme theory is often described as three steps: split, predict and update. The split

step is to split a signal into to two independent sequences, i.e, the even half and odd half

sequences. Let be the original discrete signal at time index i. Let ( )
denote the ith index of the even (odd) sequence. We have that = and= , ∈ .

LWT is a recursive algorithm whereby if the original signal has 2n

elements, then the next level will operate on 2(n-1) elements. Hence, if the original signal

has 256 elements, there will be 8 levels with the next level having 128 elements. The

subsequent levels will have 64, 32, 16, 8, 4, 2 and 1 element. The odd values in the next

level j+1 is predicted from the even value at level j:

, = , − , , (3. 1)
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where P is the predict function which approximates the signal. And cD is the high

frequency part of used to replace , . This is called the Predict phase. The even

values at the next level can be found from

, = , − , , (3. 2)

where U is the update operation that updates on the differences from the odd values.

And cA is the low frequency part of used to replace , . This is called the

Update phase. The multi-level lifting scheme can be summarized in Figure 3.1. The

averages are sometimes called approximate coefficients whereas the differences are

called the detail coefficients. There are two types of wavelets used in this chapter.

1) Haar wavelet:

Predict:

, = , − , . (3. 3)

Update :

, = , + , . (3. 4)

2) Biorthogonal 2.2 wavelet:

Predict :

, = , − ( , + , ). (3. 5)

Update :

, = , + ( , + , ). (3. 6)
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Figure 3.1 Forward lifting scheme

Figure 3.2 shows a sample fall plot of the original signal and the first level LWT
coefficient. The number of coefficients of cA1 (average or low frequency part) and cD1
(detail or high frequency part) are half of the original signal according to the number of
data points. By comparing cA1, cD1 and the root-mean square acceleration (SVtotal) in

Figure 3.2, it is seen that cA1 greatly correlates with the original signal. Note

that cD1 also shows a peak similar to the original signal signifying a fall which

occurred during the red highlighted window of one second. However, the baseline zero

illustrated a more distinguished fall feature than cA1. Therefore, cD1 was preferable

than cA1 for feature extraction of falls.

Figure 3.2 A sample fall plot of SVtotal and after LWT cD1 and cA1 with data points

inside window highlighted
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3.2.3 Time domain feature

The tri-axial acceleration data collected contains Ax, Az, Ay in x-axis,

z-axis and y-axis as a function of time. All accelerometer data were in factors of

gravity units (g). The accelerometer components were used to calculate the root-mean

square acceleration denoted by total sum vector SVtotal:

= + + . (3. 7)

3.2.4 Support Vector Machine

Support Vector Machine (SVM) is a supervised machine learning

model which is commonly used for anomaly detection and classification (Hsu et al.,

2003), (Cortes & Vapnik, 1995), (Chang & Lin, 2011). As a supervised learning

model, SVM requires training from datasets with “labels.” The SVM concept is to

map a set of data points from the real-world to a higher dimensional space. A

boundary or hyperplane is created in a high dimensional space by training datasets to

classify the features into fall or non-fall. Since the fall detection system inherently

generates long-term continuous monitoring of physiological measurements, such

datasets are usually large. Such characteristic may cause difficulty in data processing.

To reduce the amount of data and achieve a higher calculating speed, the features of

the data may be extracted from these raw datasets.

To train the SVM, the data points in the dataset must be labeled. For example,
in time domain, SVtotal was directly used as input feature. We labeled all the ADLs
data points with “-1” whereas falls were labeled “1.”

Figure 3.3 depicts a sample plot of a fall along with non-fall activities like

walking around and lying on the ground. Point A shows the peak value of the dataset.
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A highlighted window size with point A placed at the middle of the window is

constructed. Within such window, all the data points are labeled “1” and the

remaining data points outside this window are labeled “-1.” The goal of SVM is

therefore to distinguish the labels among the tested datasets using the model obtained

from the trained data. The data points are typically non-linearly separable to classify

in low dimensional space. However, if these points are projected onto a higher

dimensional space, it is possible to find a hyperplane to classify the labels. Such

projection is obtained through use of kernel functions such as linear, polynomial,

sigmoidal, or the Gaussian radial base functions. It is with this kernel trick that makes

SVM a powerful model to classify the labels in higher dimensional space. In the next

section, the experiment settings are presented.

Figure 3.3 A sample plot of fall SVtotal with data points inside widow highlighted

3.3 Experiment

As mentioned in the previous section, SVM requires training labeled datasets.
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constructed. Within such window, all the data points are labeled “1” and the

remaining data points outside this window are labeled “-1.” The goal of SVM is

therefore to distinguish the labels among the tested datasets using the model obtained

from the trained data. The data points are typically non-linearly separable to classify

in low dimensional space. However, if these points are projected onto a higher

dimensional space, it is possible to find a hyperplane to classify the labels. Such

projection is obtained through use of kernel functions such as linear, polynomial,

sigmoidal, or the Gaussian radial base functions. It is with this kernel trick that makes

SVM a powerful model to classify the labels in higher dimensional space. In the next

section, the experiment settings are presented.
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As data input in the fall detection scenario involves both non-falls and falls data, we

trained with both falls and non-falls italic in Table 3.1.

We first evaluate different SVM model with three different groups of

activities, namely, non-fall only activities, fall only activities and a hybrid fall and

non-fall activities. The objective is to determine the suitable training dataset for SVM

model to detect falls. For the sake of simplicity, only the time domain feature (SVtotal)

is studied.

Once a suitable SVM model is found, we proceed to study the comparison

between features in the time domain and frequency domain. Note that there are existing

works which combined features in both time domain and frequency domain of data, the

type of sensors, the number and position of sensors on human body, and in the volume

of dataset for training and testing (Pierleoni, Pernini, et al., 2015), (Su et al., 2015).

From results gathered from existing literature, we focus on data collected from a single

tri-axial acceleration sensor due to its low cost, reliability and efficiency.

3.3.1 Performance metrics

We measure the True Positives or True Negatives which refer to the
number of events correctly identified or correctly. Fall Detection using Lifting Wavelet
Transform and Support Vector Machine. It is worth noting that SVM classifies data
points individually. However, to detect a fall within a certain window as shown in

Figure 3.3, a set of data points must be classified rather than just a single data

point.

Therefore, to determine a suitable decision region to decide whether a fall has

occurred, we use a simple calculation for the percentage of predicted fall label “1” over

the number of labels observed in an activity to compare with a fixed threshold:

ℎ = " "
. (3. 8)

If Th > threshold, the activity is a fall, else it is non-fall.
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Table 3.1 Datasets used in this experiment1

Data File Activities Description Data File Activities Description

Falls

fall-01-acc From vertical falling left on the floor fall-16-acc From sitting falling right on the floor

fall-02-acc From sitting falling left on the floor fall-17-acc From vertical falling forward on the floor

fall-03-acc From vertical falling left on the floor fall-18-acc From sitting falling left on the floor

fall-04-acc From sitting falling left on the floor fall-19-acc From vertical falling right on the floor

fall-05-acc From vertical falling right on the floor fall-20-acc From sitting falling right on the floor

fall-06-acc From sitting falling right on the floor fall-21-acc From vertical falling right on the floor

fall-07-acc From vertical falling left on the floor fall-22-acc From sitting falling left on the floor

fall-08-acc From sitting falling right on the floor fall-23-acc From vertical falling right on the floor

fall-09-acc From vertical falling left on the floor fall-24-acc From sitting falling left on the floor

fall-10-acc From sitting falling left on the floor fall-25-acc From vertical falling forward on the floor

fall-11-acc From vertical falling right on the floor fall-26-acc From sitting falling forward on the floor

fall-12-acc From sitting falling right on the floor fall-27-acc From vertical falling forward on the floor

fall-13-acc From vertical falling forward on the
floor

fall-28-acc From sitting falling forward on the floor

fall-14-acc From sitting falling right on the floor fall-29-acc From vertical falling forward on the floor

Non-falls Activities (ADLs)
Data File Activities Description Data File Activities Description
adl-01-acc Walking, then squatting adl-21-acc From vertical lying on the bed

adl-02-acc Walking, then squatting adl-22-acc From vertical lying on the bed

adl-03-acc Walking, then squatting adl-23-acc From vertical lying on the bed

adl-04-acc Bending 90 degree to pick up something adl-24-acc Walking, then squatting

adl-05-acc Squatting to pick up something adl-25-acc From vertical to sitting onto a chair

adl-06-acc Squatting to pick up something adl-26-acc Walking, then squatting

adl-07-acc From vertical to sitting onto a chair adl-27-acc From vertical to sitting onto a chair

adl-08-acc From vertical to sitting onto a chair adl-28-acc Walking, then squatting

adl-09-acc From vertical to sitting onto a bed adl-29-acc From vertical to sitting onto a chair

adl-10-acc From vertical lying on the bed adl-30-acc From vertical lying leftward on the ground

adl-11-acc From vertical lying rightward on the bed adl-31-acc From vertical lying forward on the ground

adl-12-acc Walking, then squatting adl-32-acc From vertical lying forward on the ground

adl-13-acc Walking, then squatting adl-33-acc From vertical lying forward on the ground

adl-14-acc Walking, then squatting adl-34-acc From vertical lying forward on the ground

adl-15-acc Bending 90 degree to pick up something adl-35-acc From vertical lying forward on the ground

adl-16-acc Bending 90 degree to pick up something adl-36-acc From vertical lying rightward on the ground

adl-17-acc Squatting to pick up something adl-37-acc From vertical lying rightward on the ground

adl-18-acc From vertical to sitting onto a bed adl-38-acc From vertical lying forward on the ground

adl-19-acc From vertical to sitting onto a chair adl-39-acc From vertical lying forward on the ground

adl-20-acc From vertical to sitting onto a bed adl-40-acc From vertical lying forward on the ground

3.3.2 Evaluating SVM Model

We hypothesized that the best type of training dataset will be the

combined set of both fall and ADLs dataset. Since not only falls but also ADLs data are

contained in the hybrid training dataset, the more comprehensive information contained

1 The italic activities were used as training data set
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in training dataset, the more correctly decision the model will make.

The dataset we used to train and test the SVM models were from (Kwolek & Kepski,

2014) including 70 activities (tri-axial acceleration of 30 falls and 40 non-falls

collected and video recorded with Kinect camera) with details given in Table 3.1.

The tri-axial accelerometer data was sampled at 60Hz. Therefore, a one-second

window for fall detection consists of 60 data points. The dataset was divided into

training set and testing set based on activities in the matching video of each data file.

Table 3.1 consists of fall and non-fall (ADLs) activities. For simplicity, only the

hybrid-dataset-training model is used to evaluate the performance of features. The

models under study include:

Model-1 (ADLs only). To learn a wide variety of non-fall activities, the

following datasets were used to train model-1, including, adl-01-acc, adl-04-acc,

adls-07-acc, adl-10-acc, adl-31-acc were chosen as training dataset.

Model-2 (Falls only). To train the falls only model we used a wide variety of fall

datasets, including, fall-01-acc, fall-02-acc, fall-05-acc, fall-06-acc, fall-13-acc,

fall-26-acc.

Model-3 (trained by Falls and ADLs). This SVM model was trained with all

datasets previously used in model-1 (ADLs only) and model-2 (Falls only).

Once the data points are labeled and trained, SVM models based on the training

dataset are obtained. The SVM models are then used to classify the testing data. The

dataset remaining (not italic activities) in Table 1 is used for testing. For each dataset

tested, a data point is labeled “1” for data points predicted as a fall data point, or “-1” for

data points predicted as non-fall data point. If the ratio of fall labels in an activity

exceeds the determined threshold, then a fall has been detected. For each tested dataset,
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TP, TN, FP and FN is measured for the calculation of SE, SP and AC to evaluate the

SVM models. Results are shown in Table 3.2.

Table 3.2 SVM model comparison2 for time domain feature

Training Data Model-1 (ADLs) Model-2 (Falls) Model-3 (Both)

SE (%) 100 100 100

SP (%) 0 35 97.14

AC (%) 46.88 59.32 98.31

3.3.3 Comparing Time and Frequency domain feature

This part of the experiment is to compare the time domain feature

(based on SVtotal) and the frequency domain features (based on Haar and Biorthogonal

2.2 wavelets). Using the SVM models obtained in the previous experiment, a suitable

level threshold level to detect a fall event for each feature is then found. For each

feature, the percentage levels of threshold is tested at 10%, 20%, 30%, 40% and 50%.

Then level is tested at finer threshold values. Results are shown in Table 3.3.

Table 3.3 Performance comparison3 at different thresholds of time and frequency

domain features

Systema
tics
Metrics

Initial Estimate Threshold Fine Tuned Threshold
Time Domain (SVtotal)

2 Bold fonts indicate the best performance
3 Trained with SVM Model-3 and tested by ADLs and Falls dataset
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Threshold 10% 20% 30% 40% 50% 15% 17%4 18% 19%

SE (%) 100 95.83 91.67 87.50 87.50 100 100 100 100

SP (%) 80 100 100 100 100 94.29 97.14 97.14 91.43

AC (%) 87.93 98.28 96.55 94.83 94.83 96.55 98.28 98.28 94.83

Frequency Domain (Haar, cD1)
Threshold 10% 20% 30% 40% 50% 2% 4% 6% 8%

SE (%) 95.83 87.50 87.50 66.67 33.33 100 100 100 100

SP (%) 100 100 100 100 100 82.35 85.29 97.06 100

AC (%) 98.28 94.83 94.83 86.21 72.41 89.66 91.38 98.28 100

Frequency Domain (Bior 2.2, cD1)
Threshold 10% 20% 30% 40% 50% 4% 5% 6%

SE (%) 95.83 87.50 83.33 62.50 33.33 100 100 100

SP (%) 100 100 100 100 100 88.57 97.14 100

AC (%) 98.31 94.92 93.22 84.75 72.88 93.22 98.31 100

We then investigate closely how multiple levels of LWT coefficients affect the

fall detection performance by evaluating the first five levels of coefficients of the

Haar and Biorthogonal 2.2 wavelets. Only the SVM model which performed the best

from the previous experiment was evaluated. Results are shown in Table 3.3 and

Table 3.4.

Table 3.4 Performance comparison5 at different components6 in frequency domain

Features
Metrics

cD1 cD2 cD3 cD4 cD5
Haar

SE (%) 100 83.33 95.83 87.50 95.83

SP (%) 100 100 100 100 100

AC (%) 100 93.10 98.28 94.83 98.28

Bior 2.2
SE (%) 100 100 91.67 100 100

SP (%) 100 94.29 100 82.86 5.71

AC (%) 100 96.61 96.61 89.83 44.07

3.4 Results and Discussion

3.4.1 Results and Discussion of Evaluating SVM Models

The experiment shows the sensitivity, specificity and accuracy of the

4 Bold fonts indicate the best performance for each feature
5 Trained with SVM Model- and tested by ADLs & Falls dataset
6 Bold fonts indicate the best performance for each feature
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SVM model. The results show that model-1 trained by ADLs only performed the worst

because no ADL recognized from a ADLs-only testing set. Model-3 the best sensitivity,

specificity and accuracy is 100%, 97.14%, 98.31%, respectively. This 100% of

sensitivity means all falls were detected. It may be because model-1 only had no-fall

label of “-1,” and fall label “1” was not used in the one-class model in LIBSVM. The

falls in the dataset collected from a mere handful of people, not as many patterns as in

real world.

3.4.2 Results and Discussion of Comparing Time and Frequency

domain feature

Table 3.2 shows the performance comparison between time and

frequency domain features at different levels of thresholds.

Root-mean square acceleration: Table 3.2 shows that the best

threshold for the time domain feature should be between 10% to 20%. With fine

threshold tuning, it is found that a threshold of 17-18% showed better preference than

others (shown in bold fonts). Therefore, we chose 17% as the threshold to classify a fall

or non-fall for time domain features.

LWT with Haar Wavelet: The appropriate threshold for Haar LWT is

found by also ranged from 10% to 50%. As shown in Table 3.2, the best achieved

threshold should be under 10%. To fine tune the threshold levels, the threshold is varied

from 2% to 10%. It is found that the threshold at 8% outperformed other levels (shown

in bold fonts). Thus, we chose 8% as the threshold for LWT using Haar wavelet. In

Table 3.3, multiple levels of LWT coefficients (cD1 to cD5) are evaluated. When tested

with ADLs & Falls dataset, all specificity, specificity and accuracy values of 100% was
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achieved only in cD1 (shown in bold fonts). This result indicated that Haar LWT CD1

coefficients achieved a goal that no ADL was misclassified as a fall and detected most

of the falls when training and testing using finite activities in Table 3.1.

LWT with Biorthogonal 2.2 Wavelet: From Table 3.2, the optimal

threshold for biorthogonal 2.2 (Bior 2.2) should be under 10% as well. With a finer

threshold search, results indicate that threshold level of 6% is the best level with 100%

sensitivity, specificity and accuracy (shown in bold fonts). Similar to Haar LWT,

Bior2.2 LWT coefficients also show a good performance distinguishing falls from

ADLs when using most cD levels. In Table 3.3, cD1 also outperformed other levels of

coefficients similar to Haar wavelet (shown in bold fonts). The reason maybe the

information contained by the data that is helpful when using SVM to classify activity.

Such information is level by level. Thus, cD1 had the most information while cD5 had

the least information. Generally, Haar was slightly better at distinguish ADLs from

falls than Bior2.2, whereas both LWT features outperform the root-mean square

acceleration alone. It is worth noting that these results are obtained by a comprehensive

human fall dataset with video captures obtained from (Kwolek & Kepski, 2014) which

allow the thresholds and detail coefficients can be predetermined. Current ongoing

work involves implementing the LWT and SVM on actual wearable sensor devices to

be evaluated online for human fall detection for accuracy and efficiency.

3.5 Summary

In this chapter, we propose a computationally light frequency domain feature

extraction method called lifting wavelet transform (LWT) for a wearable sensor human

fall detection device combined with a fall identifier using support vector machine
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model. The performance of the LWT using Haar and Biorthogonal2.2 wavelets,

together with the time domain feature of root-mean square acceleration have been

evaluated with raw dataset acquired from a single tri-axial acceleration sensor from an

existing human fall and activities of daily living dataset.

Based on the dataset, suitable thresholds and level of detail coefficients can be

predetermined. Consequently, the LWT frequency domain features are shown to have

better performance than time domain features in terms of sensitivity, specificity and

accuracy. Given a one-second window size under a sampling frequency of 60Hz, the

best threshold in terms of the percentage of fall labels “1” per window is as follows, 18%

for the time domain feature using the root-mean square acceleration, 8% for Haar and 6%

for Biorthogonal2.2 LWT wavelets when the SVM model is trained with both fall and

non-fall datasets (Model-3). The frequency domain feature from cD1 for both Haar and

Biorthogonal2.2 wavelets achieved 100% overall accuracy whereas 98.31% overall

accuracy was attained for the time domain feature, SVtotal. All features achieved 100%

sensitivity from this dataset. In terms of specificity, the time domain feature, SVtotal,

attained up to 97.14% whereas the two LWT features attained 100%. Results suggest

that the proposed LWT and SVM model based on the findings in this chapter can serve

as a guideline for implementation in actual wearable sensor devices for human fall

detection in real time.



CHAPTER IV

FALL DETECTION COMPARISON BETWEEN

LIFTING AND CONTINUOUS WAVELET

TRANSFORM WITH SUPPORT VECTOR MACHINE

In the previous chapter, the performance of the proposed LWT and SVM model

for fall detection was investigated. Results show that the extracted frequency domain

features have significant influence on the performance of fall detection. In this chapter,

the performance of the proposed LWT combined with the SVM model is further

evaluated and compared with other frequency domain features. In particular, the

proposed scheme is compared with an existing frequency domain feature extraction

method for fall detection, called the continuous wavelet transform (CWT). The

performance is evaluated in terms of accuracy, specificity, sensitivity and time

computational complexity.

4.1 Introduction

With the development of economics, there is an increasing requirement for

healthcare, especially for senior citizens. In 2015, 10% of the population in Thailand

were 65 or older and the proportion of old people is still increasing rapidly (World Bank,

2017).
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Falls are life threatening risks for old people not only because fall-related

injuries, but also because the long-lie posture associated sequelae after a fall. Since the

elderly maybe unconscious or unable to call for help (Ozcan, Donat, Gelecek, Ozdirenc,

& Karadibak, 2005), it is necessary to develop a fall detection system to help the elderly

people avoid falling down and long-lie posture after fall.

Wearable sensor systems make it possible to monitor human movement in daily

life without invasion of privacy which is often a concern in camera based fall detection

systems (Solanas et al., 2014), (Mazurek, Wagner, & Morawski, 2018). Moreover,

wearable sensor is cheap and light. Wearable sensors are often used in the form of

sensor fusion that contains accelerometers, gyroscope, pressure sensor and so on.

When it comes to the fall detection algorithms that identify falls from signals

obtained from wearable sensors, machine learning is a promising technique. Decision

tree (DT) is a basic machine learning method for fall detection. The simplest DT

follows the divide-and-conquer strategy (Mingers, 1989). Though DT is a simple

machine learning algorithm, it is difficult for DT to deal with continuous segments

according to the characteristics of tree model. In addition, the “error accumulation”

phenomenon (Q. R. Wang & Suen, 1984) is an inherent drawback of tree model or

algorithm. The artificial neural network (ANN) is also a commonly used machine

learning method inspired by brain neural network (Xu et al., 2013). ANN can handle

big and complex non-linear data, simultaneously. However, this ability may also lead to

long-time training process or even the failure of learning.

SVM is another supervised machine learning method. The main idea of SVM is

to map nonlinear separable samples into a high dimensional feature space where

samples can be divided by a plane called “hyperplane”. Many works applied SVM in
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fall detection (Pierleoni, Belli, et al., 2015) (Özdemir & Barshan, 2014) due to its

generalization ability. However, kernel functions must be chosen according to the

specific problem, and there is no standard approach to find the best kernel type. Despite

these disadvantages, SVM is still a standard tool which means that there is a mature

toolbox for use, for instance, LIBSVM (Chang & Lin, 2011) and LIBLINEAR (Fan,

Chang, Hsieh, Wang, & Lin, 2008).

As dimension of the dataset increases in SVM, the data becomes sparser.

Furthermore, the large volume of data collected over a long time typically contains only

a small fraction needed to identify falls. Hence, feature extraction is essential to reduce

the amount of data and computational complexity. (Hossain, Islam, & Ali, 2017) and

(Tang & Sazonov, 2014) concentrated on extracting time domain features such as

average, maximum, minimum, variance of signals. Time domain features are simple

and can achieve a relatively satisfying results. (Hossain et al., 2017) used the mean and

standard deviation and reached an accuracy of 96.45%. (Tang & Sazonov, 2014)

proposed a time domain data rejection SVM for human postures and activity

recognition.

However, signals contain more information than just time domain features. As

far as our knowledge, frequency domain features in fall detection were rarely

researched. CWT is a classic wavelet transform algorithm to extract time-frequency

information of signals. It is an improvement of STFT in terms of multiresolution.

Similarly, when the original signals are discrete sequences, DWT can be applied on the

sequences. In terms of computational complexity, that of wavelet transform is lighter

compared with STFT. Assuming that there is a signal with N samples, the

computational complexity of STFT is Ο( ), and that of CWT is Ο( ). LWT
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reduced 50% computational complexity of CWT with similar overall accuracy (Yazar

et al., 2013).

Therefore, the main contribution of this chapter include, i) we proposed a fall

detection scheme based on a low computational frequency domain method based on

LWT combined with SVM using a dataset from waist-mounted accelerometer sensor

and ii) we compared it with an existing fall detection method based on CWT using Haar

wavelet and a customized wavelet based on average falls. The chapter is organized as

follows. Section 4.2 gives a background on the underlying concept of wavelet

transform for frequency time domain feature extraction. Then fall detection method

based on support vector machine (SVM) is presented. In section 4.3, the dataset and

pre-processing method are described. Section 4.4 presents the experiment, results and

the discussion of the experiment. The conclusion is given in the last section.

4.2 Method

4.2.1 Continuous Wavelet Transform

Continuous wavelet transform (CWT) is a kind of WT (Daubechies,

1992). It is defined as follows:

C( , ) = √ ∫ ( )Ψ∗ , (4. 1)

where * denotes the complex conjugate, and f(t) represents the function being

transformed, the function Ψ( ) is the transforming function which is also called

“mother wavelet”. The mother wavelet has two important properties. Firstly, Ψ( )
should be compactly supported which implies that Ψ( ) is a finite length function
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(window). Secondly, mother wavelet can be scaled and shifted by parameters “a” and

“b”, respectively. Scaling refers to “stretching” or “compressing” the mother wavelet

(Polikar, 1996). Shifting or translation parameter “b” means “delay” or “advancing” the

wavelet centered by value “b” in time-axis.

4.2.2 Lifting-based discrete wavelet transform

As described in section 2.1, lifting wavelet transform (LWT) is an

alternative to DWT and an in-place algorithm. Instead of using filters to split, LWT uses

the “lazy wavelet” which simply splits the sequence into even and odd. It is the first

step for LWT. Secondly, the odd sequence is predicted based on the even sequence.

Thirdly, the difference between predicted odd and real odd which is called detail

information is used to update the even samples.

4.2.3 Support vector machine

Support Vector Machine (SVM) is a popular machine learning

method which was first proposed by Cortes and Vapnik in 1995 (Cortes & Vapnik,

1995). SVM is a supervised machine learning technique because the “label” of instance

when training the model is required. Basic SVM is a linear classification model defined

in the feature space. However, when combined with a Kernel function, SVM can

perform non-linear classification.

4.3 Proposed fall detection method

The proposed fall detection method is shown in
Figure 4.1. The WT sub-process represents CWT with Haar wavelet and the

customized average fall wavelet as well as LWT with Haar wavelet. The sub-process
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SVM, for the testing set, is used to classify the testing dataset based on the trained SVM

model.

Figure 4.1 Experiment flow chart

The dataset used is collected by a tri-accelerometer attached on subjects’ waist.

The subjects include 12 volunteers, 5 males and 7 females. Every volunteer applies 13

types of falls and 12 types of ADLs successively with free break intervals. Table 4.1

summarizes all the activity types collected.
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Table 4.1 The type of activities collected

No. Falls ADLs
1 Forward collapse (on knees) Sitting down on chair
2 Forward collapse (lying down) Standing up from chair
3 Forward fall (trying to get up for 30s) Collapsing into a chair
4 Backward collapse (sitting) Resting against a wall, then sliding

vertically down to the end of the
sitting position

5 Backward collapse (lying down) Lying down on a bed
6 Backward collapse (trying to get up for 30s) Getting up from a bed
7 Sideways collapse (Right) Jumping vertically
8 Sideways collapse (Left) Pick up something from the floor
9 Fall from chair (slide) Bend forward and tie shoe laces
10 Forward fall with recovery (then walking) Take the lift down
11 Forward fall with recovery (then standing) Take a lift up
12 Collapsing into a bed -
13 Fall from bed (try to get up then fall) -

4.3.1 Performance metrics

In order to evaluate the impact of different inputs on the performance

of SVM for fall detection based on tri-accelerometer data, we measured the true

positives (TPs) and true negatives (TNs), which correspond to the correctly identified

falls (positives) and ADLs (negatives). We also measured false positives (FPs) and

false negatives (FNs), which correspond to the false identification of falls and ADLs,

respectively. These measurements are for the sake of the following metrics required to

evaluate the fall detection metrics: sensitivity (SE), specificity (SP) and accuracy (AC).

The definition of these metrics can be found in chapter III.

The results in the previous chapter showed that “Haar” wavelet outperformed

Bior2.2 wavelet for fall detection based on single tri-accelerometer sensor. Thus, LWT

and CWT in this chapter are based on the Haar wavelet. Furthermore, as did in

(Palmerini et al., 2015), we also compared CWT using Haar and a customized mother

wavelet based on averaged fall signals.
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4.3.2 Data processing

As mentioned in section 4.2, SVM is a supervised machine learning

algorithm. We label a fall instance as “+1” and an ADL instance as “-1”. As shown in

chapter II, the root-sum-square (RSS) feature is used to reduce calculations in different

directions separately. RSS disregards the orientation of falls for the reason that

orientation change does not always happen in falls (Abbate et al., 2012).

(1) Windowing

Once the RSS is calculated and labelled, we discard certain parts of the data for
the reason that not all the data are equally important. As shown in

Figure 4.2, a window (the red solid line) is used to select the dataset of interest.

Centered at the peak inside window, the data around the peak is chosen. In order to

compare the influence of window size, 60 data points (1-sencod window) and 120 data

points (2-second window) at a 60Hz sampling frequency are both used.

Figure 4.2 Typical fall after labeling and window

(2) Threshold
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The acquired data is then compared with a threshold before wavelet transform.

Activities whose maximum SVtotal is higher than the threshold are considered as falls

immediately. However, activities with a maximum SVtotal lower than the threshold need

further analysis by the proposed WT-SVM algorithm. By adding a threshold, we have

less data which undergo wavelet transform and SVM, and thereby further reducing

computation.

It is necessary to have a proper threshold value. There are 296 activities in total,

of which half of them are used as training set and the other half are used as testing set. In

the training set, 78 of them are falls and the other 70 are ADLs. The average maximum

SVtotal of training falls is used as the threshold. Let the window size denoted by n.

Assume that, after windowing, the dataset is { Ai , Fj | i=1,2,…140, j=1,2,…,156}

where Ai ={ , , ……， } denotes the ith ADL, vector Fj ={ , , ……， } denotes

the jth fall, and are the lth value of SVtotal of the ADL and fall dataset, respectively.

The training dataset is {A1, A2,…, A70, F1, F2, …, F78}, and the testing dataset is { A71,

A72,… , A140, F79, F80, …, F156}. The threshold is given by

ℎ ℎ = ∑ ( )
, (4. 2)

where max(Fj) is the maximum value function in a fall. If the series of { | l= 1, 2,…n},

where =
∑

is a series of averaged sample points overall activities. This average

series will be used in MATLAB to create a customized fall mother wavelet for CWT.

(3) SVM sub-process after LWT and CWT

In the previous chapter, we found that Haar wavelet performed better than
Bior2.2 for fall detection based on tri-accelerometer data (Liang & Usaha, 2017).
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Therefore, Haar is used as mother wavelet for CWT and LWT in this chapter.
Additionally, the custom average fall wavelet is applied to construct CWT as in
(Palmerini et al., 2015) for comparison. The detailed process of SVM after CWT and
LWT is shown in

Figure 4.3.

Figure 4.3 SVM detailed flow chart

As shown in
Figure 4.3, after wavelet transform, the coefficients are the input of SVM.

Scaling is for normalization purposes. The next step is a 5-fold cross validation. Cross

validation is important for SVM since it prevents overfitting. This experiment uses

5-fold cross validation as suggested in (Chang & Lin, 2011). For the training set, SVM

creates a set of parameters which are called model. This model is used to classify the

testing data as a fall or an ADL.
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4.4 Results and discussion

This experiment uses sensitivity, specificity and accuracy to measure the

performance of input. The result shows that LWT cD coefficients with threshold works

better than WT-SVM alone (without threshold). The best performance reaches up to

100% of accuracy, sensitivity and specificity which means that every activity in the

testing dataset is correctly identified. The worst performance appears in the maximum

coefficient of 2-second-window-CWT without threshold. A possible reason may be that

most falls occur in a short period of time. Hence, there may not always be enough data

within a 2-second window.

4.4.1 CWT with Haar

The objective of this part is to compare the performance of CWT

coefficient features. The CWT coefficients are calculated from SVtotal. Two different

features have been derived from the CWT coefficients. For the first feature, all CWT

coefficients are chosen as a high dimension feature to represent the activity. For the

second feature, only the maximum value of the CWT coefficients is selected as a

feature to represent an activity. In particular, let a fall dataset be given by Fj ={ , ,...,

}. After CWT, the coefficients become Cj ={ , ,..., }. Thus, these two features

are defined as follows: feature-1= Cj ,and feature-2 = max(Cj). Table 4.2 shows

comparable performance between the two features for CWT (Haar wavelet). More

significant improvement can be observed when the threshold for preliminary screening

of falls, prior to CWT is employed. The 1- and 2-second windows do not show

significant differences.
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Table 4.2 The performance of CWT (Haar wavelet) coefficients input into SVM

CWT (Haar) coefficients input into
SVM

SVM alone SVM + Threshold
AC (%) SP (%) SE (%) AC (%) SP (%) SE (%)

1-second
Window

All CWT Coefficients
Input Into SVM

59.5 58.6 60.3 90.5 97.1 84.6

Max. Coefficient Input
into SVM

58.1 50.0 65.4 89.2 92.9 85.9

2-second
Window

All CWT Coefficients
Input Into SVM

55.4 34.3 74.4 90.5 100 82.1

Max. Coefficient Input
Into SVM

56.8 67.1 47.4 92.6 97.1 88.5

4.4.2 CWT customized wavelet and entire and max coefficients

Table 4.3 also compares the performance of CWT coefficients

together with SVM (CWT-SVM) as well. However, in this part, the Haar wavelet was

replaced by a customized average fall wavelet calculated from described in section

4.3.2.

Table 4.3 The performance of CWT (Customize Wavelet) coefficients input into SVM

CWT (Customized Wavelet) coefficients
input into SVM

SVM alone SVM + Threshold
AC (%) SP (%) SE (%) AC (%) SP (%) SE (%)

1-second
Window

All CWT Coefficients Input Into
SVM

59.5 58.6 60.3 89.9 91.4 88.5

Max. Coefficient Input Into SVM 64.2 72.9 56.4 91.9 95.7 88.5

2-second
Window

All CWT Coefficients Input Into
SVM

54.7 44.3 64.1 89.9 97.1 83.3

Max. Coefficient Input Into SVM 50.7 18.6 79.5 90.5 100 82.1

Similar to Table 4.2, the threshold prior to CWT performs significantly better

than the method without threshold. In Table 4.3, the best total accuracy is 91.9% using

the 1-second window with threshold and max-coefficient CWT features.

4.4.3 LWT (Haar wavelet) coefficients

Table 4.4 shows the performance comparison between using LWT

with detailed coefficients (cD) and with both approximate and detailed coefficients (cA
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and cD respectively) as features.

Table 4.4 The performance of LWT (Haar) coefficients input into SVM
LWT (Haar) coefficients input into SVM SVM alone SVM + Threshold

AC (%) SP (%) SE (%) AC (%) SP (%) SE (%)

1-second
Window

LWT coefficients cD input into
SVM

60.1 72.6 48.7 100 100 100

LWT coefficients cD and cA Input
Into SVM

62.8 58.6 66.7 90.5 100 82.1

2-second
Window

LWT coefficients cD input into
SVM

59.5 55.7 62.8 90.5 100 82.1

LWT coefficients cD and cA input
into SVM

58.1 47.1 67.9 89.2 94.3 84.6

The 1-second-window LWT cD coefficients with threshold outperform the

other features. In this situation, the accuracy, specificity and sensitivity achieved 100%.

In other words, using LWT (Haar) coefficients cD as features, SVM is able to classify

all the testing activities correctly. Interestingly, the 1-second window with LWT cD and

cA coefficients has the same number of input data as the 2-second window with LWT

cD coefficients, and they have exactly the same results. Moreover, cD consistently

outperforms cD and cA in same scenario. It may imply that cD and cA feature is

redundant compared with cD.

4.4.4 Computational complexity of LWT and CWT

Table 4.5 The time consumption of LWT and CWT
Time Time/loop(sec) Create Mother

wavelet (sec)
Total(sec)

LWT(Haar) 6.9 - 6.9
CWT(Haar) 10.8 - 10.8
CWT(Custom Wavelet) 10.8 2.8 13.6

Table 4.5 illustrates the execution time for each algorithm using MATLAB
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R2014b @Windows 10.1. Because it is difficult to maintain a controlled performance

throughout the duration of simulation on the computer, we measured the one loop (i.e. a

1-second window) of LWT and CWT, respectively. LWT shows shorter computational

time than CWT using Haar and customized fall wavelets.

4.5 Summary

In this chapter, we developed a fall detection algorithm based on the proposed

LWT combined with the SVM model and compared it with additional frequency

domain features based on CWT-SVM with a new dataset from a tri-accelerometer

sensor. Since the 2-second window did not consistently contain sufficient amount of

data when the position of the peak is located towards the end of the dataset, the

1-second window performs better than the 2-second window. This is the case for both

LWT-SVM and CWT-SVM. Given an average of the maximum SVtotal of training set

falls as a threshold prior to the wavelet transform, the WT-SVM algorithm shows a

significant improvement in accuracy from around 60% to over 90%.

As for the results of CWT-SVM, we notice that the total accuracy is around 90%

with threshold, and under 60% for most CWT without threshold cases. The specificity is

typically higher than sensitivity, implying that CWT coefficients features tend to

classify testing activities as falls. Though not as good as LWT in the same condition, in

2-second window with threshold scenario, CWT has better result than LWT.

LWT cD coefficients with Haar using the 1-second-window with threshold can

achieve the highest accuracy, specificity and sensitivity of 100%. However, the best



70

performance of CWT is 92.6% accuracy, 97.1% sensitivity and 88. 5% specificity, is

attained from the CWT with maximum-CD coefficient with Haar using the

2-second-window with threshold. Therefore, despite its light computational

requirement, LWT can outperform CWT frequency domain features. LWT also

provides the shortest computational time per window when compared with CWT using

Haar and customized fall wavelets.
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CHAPTER V

CONCLUSION AND FUTURE WORK

5.1 Conclusion

This thesis proposed lightweight algorithm to extract frequency domain

features for fall detection. The contribution of this work mainly lays on the light

computational cost frequency domain feature extraction method we proposed for fall

detection. Wavelet transforms were used in experiments to extract time-frequency

domain features. In chapter III, the proposed time-frequency domain features extracted

by LWT were compared with the time domain root sum square (RSS) features. Various

SVM models were investigated to determine the best possible model to be combined

with the LWT feature extraction. The best performance was achieved by the level 1

detailed coefficients (cD1) LWT with Haar wavelets using an 8% threshold, which

achieved a total accuracy, sensitivity and specificity of 100%.

Later in chapter IV, additional frequency domain features, namely, the CWT

coefficients were compared with LWT coefficients combined with SVM. In particular,

the CWT based on Haar wavelet and CWT based on customized average fall wavelet

were compared with the proposed LWT with Haar wavelet. The proposed scheme

outperformed the CWT schemes for extracting fall detection frequency domain

features. The best performance was attained from the LWT scheme using Haar wavelet

with level 1 coefficients (cD1) using a 1-second window with a threshold, achieving the
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highest accuracy, specificity and sensitivity of 100%.

LWT also showed a significant advantage over CWT in respect of time

computational complexity. As a feature extraction technique for SVM based fall

detection, LWT was almost twice as fast as CWT in the same scenario.

Despite the advantages of the proposed LWT-SVM method for fall detection, there

are certain limitations.

(1) Wearable sensors will encounter the dilemma of battery power usage despite

its low computational requirement onboard in order to achieve long battery operation in

wearable sensors. The effect of the proposed LWT-SVM on the battery lifetime is not

yet investigated.

(2) The dataset used for experiments in this thesis were simulated falls from

young and healthy volunteers. Thus, the results of this work may not fully represent the

realistic falls of the elderly in their daily lives.

(3) The algorithm was designed based on data collected by an accelerometer

sensor alone for off-line fall detection. In order to achieve full online fall detection,

additional sensory data from other types of sensors as well as sensor fusion may be

needed.

5.2 Future work

In the future, the issues worthwhile to investigate are the followings.

5.2.1 Developing the related hardware

In this thesis, two datasets were used to evaluate the proposed
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algorithm. However, the dataset may be collected from actual hardware implementation

which has not been considered in this thesis. Issues related to the effects of the proposed

algorithm on the battery lifetime of the wearable sensor is also a significant matter for

investigation.

5.2.2 Multi-sensor nodes may works better in some cases

The number of sensor nodes is also worthwhile investigating. In

(Özdemir, 2016), the influence of the number of sensors on the performance of SVM

was studied. Whether the number of sensors have the same influence on our proposed

algorithm and the types of sensors required for the best performance should be

investigated.

5.2.3 Real world fall dataset

The experiments in this thesis are entirely based on simulated and

controlled fall datasets which have been collected from young and healthy volunteers in

the laboratory. Thus, even though the proposed method performs well in this thesis, it

remains uncertain whether or not this is the case in presence of real falls from the

elderly. Due to the lack of real world falls and activities in daily living environment, the

dataset of such nature will be vital for validating any fall detection scheme.
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Dataset used in chapter III

There are more examples about the dataset used in chapter III. Only 10 falls and

10 ADLs are displayed below. In addition, only LWT with Haar wavelet was used to

illustrate the data processing since LWT with Bior2.2 follows a similar method.

The accelerometer was attached on the waist of the subjects.

A.1 Simulation data

Figure A.1 The simulation falls SVtotal (fall-01-acc to fall-10-acc)

84

Dataset used in chapter III

There are more examples about the dataset used in chapter III. Only 10 falls and

10 ADLs are displayed below. In addition, only LWT with Haar wavelet was used to

illustrate the data processing since LWT with Bior2.2 follows a similar method.

The accelerometer was attached on the waist of the subjects.

A.1 Simulation data

Figure A.1 The simulation falls SVtotal (fall-01-acc to fall-10-acc)

84

Dataset used in chapter III

There are more examples about the dataset used in chapter III. Only 10 falls and

10 ADLs are displayed below. In addition, only LWT with Haar wavelet was used to

illustrate the data processing since LWT with Bior2.2 follows a similar method.

The accelerometer was attached on the waist of the subjects.

A.1 Simulation data

Figure A.1 The simulation falls SVtotal (fall-01-acc to fall-10-acc)



85

Figure A.2 The simulation ADLs SVtotal (adls-01-ac to adls-10-acc)

A.2 Simulation data after LWT

Figure A.3 Falls after 1-level LWT (Haar) cD1
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Figure A.4 Falls : SVtotal after 2-level LWT (Haar) cD2

Figure A.5 Falls : SVtotal after 3-level LWT (Haar) cD3
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Figure A.4 Falls : SVtotal after 2-level LWT (Haar) cD2

Figure A.5 Falls : SVtotal after 3-level LWT (Haar) cD3
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Figure A.6 Falls : SVtotal after 4-level LWT (Haar) cD4

Figure A.7 Falls : SVtotal after 5-level LWT (Haar) cD5
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Figure A.6 Falls : SVtotal after 4-level LWT (Haar) cD4

Figure A.7 Falls : SVtotal after 5-level LWT (Haar) cD5
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Figure A.8 ADLs after 1-level LWT (Haar) cD1

Figure A.9 ADLs : SVtotal after 2-level LWT (Haar) cD2
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Figure A.8 ADLs after 1-level LWT (Haar) cD1

Figure A.9 ADLs : SVtotal after 2-level LWT (Haar) cD2
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Figure A.8 ADLs after 1-level LWT (Haar) cD1

Figure A.9 ADLs : SVtotal after 2-level LWT (Haar) cD2
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Figure A.10 ADLs : SVtotal after 3-level LWT (Haar) cD3

Figure A.11 ADLs : SVtotal after 4-level LWT (Haar) cD4
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Figure A.10 ADLs : SVtotal after 3-level LWT (Haar) cD3

Figure A.11 ADLs : SVtotal after 4-level LWT (Haar) cD4
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Figure A.10 ADLs : SVtotal after 3-level LWT (Haar) cD3

Figure A.11 ADLs : SVtotal after 4-level LWT (Haar) cD4
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Figure A.12 ADLs : SVtotal after 5-level LWT (Haar) cD5
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Figure A.12 ADLs : SVtotal after 5-level LWT (Haar) cD5
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Figure A.12 ADLs : SVtotal after 5-level LWT (Haar) cD5
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Dataset used in chapter IV

Only the dataset from one subject is illustrated as an example below. Other

subjects display similar movements.

B.1 Simulation data SVtotal

Figure B.1 Falls : SVtotal
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Figure B.2 ADLs : SVtotal

B.2 Simulation data SVtotal after a 60 data points window

Figure B.3 Falls after a window
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Figure B.2 ADLs : SVtotal

B.2 Simulation data SVtotal after a 60 data points window

Figure B.3 Falls after a window
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Figure B.4 ADLs after a window

Figure B.5 Average fall after a window
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Figure B.4 ADLs after a window

Figure B.5 Average fall after a window
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Figure B.4 ADLs after a window

Figure B.5 Average fall after a window
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B.3 Simulation data SVtotal after LWT cD

Figure B.6 Falls : SVtotal after LWT (Haar) cD1

Figure B.7 ADLs : SVtotal after LWT (Haar) cD1

95

B.3 Simulation data SVtotal after LWT cD

Figure B.6 Falls : SVtotal after LWT (Haar) cD1

Figure B.7 ADLs : SVtotal after LWT (Haar) cD1
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B.3 Simulation data SVtotal after LWT cD

Figure B.6 Falls : SVtotal after LWT (Haar) cD1

Figure B.7 ADLs : SVtotal after LWT (Haar) cD1
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Figure B.8 Average fall SVtotal after LWT (Haar) cD1

B.4 Simulation data SVtotal after CWT coefficients

Figure B.9 Falls : SVtotal after CWT (Haar) coefficients
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Figure B.8 Average fall SVtotal after LWT (Haar) cD1

B.4 Simulation data SVtotal after CWT coefficients

Figure B.9 Falls : SVtotal after CWT (Haar) coefficients
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Figure B.8 Average fall SVtotal after LWT (Haar) cD1

B.4 Simulation data SVtotal after CWT coefficients

Figure B.9 Falls : SVtotal after CWT (Haar) coefficients
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Figure B.10 ADLs : SVtotal after CWT (Haar) coefficients

Figure B.11 Average SVtotal after CWT (Haar) coefficients
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Figure B.10 ADLs : SVtotal after CWT (Haar) coefficients

Figure B.11 Average SVtotal after CWT (Haar) coefficients
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Figure B.10 ADLs : SVtotal after CWT (Haar) coefficients

Figure B.11 Average SVtotal after CWT (Haar) coefficients
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