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Fall has been life threatening for the elderly. The related injuries have a serious
effect on their lives. Furthermore, if the elderly remains lying for prolonged time post
fall, the chance of suffering from serious complications increases. Such complications
should be avoided when possible. Thus, it is essential to study fall detection.

In fall detection, frequency domain feature of inertial body movement enables
multi-resolution analysis. However, frequency domain feature extraction methods are
typically computationally intensive. This thesis proposes a computationally light
frequency domain feature extraction method based on lifting wavelet transform
(LWT) which provides efficient computation suitable for low-powered devices such
as wearable sensors for human fall detection. Features extracted LWT is then input
into a machine learning method called support vector machine (SVM) to identify falls
from activities of daily living. Performance of the Haar and Biorthogonal2.2 (Bior2.2)
wavelets, under different multiresolution levels, are compared with the time domain
feature of root-mean square acceleration using a dataset contains human falls. Results
show that the 1-level-detail-coefficient features for both Haar and Biorthogona 2.2

wavel ets achieved good overall accuracy, sensitivity, and specificity.
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In order to use SVM in a better way and further evaluate the performance of
different frequency domain features, the use of SVM has been improved and the
proposed LWT integrated with SVM algorithm has been compared with continuous
wavelet transform (CWT) integrated with SVM. The performance has been evaluated
in terms of accuracy, sensitivity, specificity and computational time. Results show that
the proposed LWT with Haar wavelet integrated with SVM can outperform the CWT
using customized wavelets and Haar wavelet, integrated with SVM. The proposed
method also consumes less computational time than the CWT method. The
contributions and findings in this thesis serve as guidelines for applying efficient and
computationally light wavelet based features in off-line fall detection and maybe

further used as a reference for on-line fall detection.
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CHAPTER |

INTRODUCTION

1.1 Background and related works

Nowadays, aging is an obvious tendency all over the world since the birth rate
isdecreasing. On one hand, global aging forces younger generation into working harder
than ever before to support larger size of senior population. This tendency, on the other
hand, leads to an increasing number of senior citizensliving alone. By 2014, 9% of the
senior citizens live aone and 19% of them live only with their spouse. Therefore,
healthcare for elderly peopleisaserioussocial problem, especially in acountry without
a sound social security system. One of the biggest health threats of elderly who live
alone are falls and related complications (Pierleoni, Pernini, et a., 2015). The Internet
has brought forward potential applications which aid the elderly particular in fall
detection. Information can be collected by wireless sensors such as accelerometer,
gyroscope, magnetometer, and pressure sensors or the combination of this sensors.
Considering the need of continuous measurement and ease of use, wearable sensor

systems are one of the most promising systems.

111 Fall detection
When it comes to wearable sensor systems, several researchers have
focused on processing the data collected from such sensors. They highlighted the need

of pre-collected data to help with detecting new falls.
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On the other hand, wearable sensors could be used to identify balance problems as
well. This ability may lead to detecting falls and other disorders (Pierleoni, Pernini, et
a., 2015) in advance. Thus, the purpose of wearable sensor systems can be divided into
two categories. pre-fall detection and after-fall detection. Pre-fall detection is focused
on balance monitoring and prevent any injury which may occur (Noshadi, Dabiri,
Ahmadian, Amini, & Sarrafzadeh, 2013), (Paradiso, Hu, & Hsiao, 1999) when people
falling down. Though the research objective was for dance movement not for fall
detection, (Paradiso et al., 1999) was one of the earliest works about wearable sensor. It
was a shoe-based posture recognition system which bridged the gap between human
movements. (Noshadi et al., 2013) analyzed data in-depth and placed emphasis on
images to detect abnormal balance before a fall happens.

As for after-fall detection, the aim is to detect falls without quick recovery and
avoid long-lie on the ground which has a close relationship with after fall injury and
mortality rate. Typically, those systems are evaluated by accuracy, sensitivity and
specificity. Sensitivity isthe ability of the algorithm to detect afall (True Positive, TP),
and specificity is the ability to distinguish the fall and non-fall (True Negative,
TN)(Kianoush, Savazzi, Vicentini, Rampa, & Giussani, 2015). Though the two
categories focus on different incidents, after-fall and pre-fall detection methods are

similar in terms of data acquisition and feature extraction process.

1.1.2 Featureextraction in time domain
The two main assignments for fall detection, whether it is a pre-fal or
post-fall detection, are feature extraction and decision making. Feature extraction is

performed before decision making and has a significant influence on the decision.
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Firstly, there are numerous amount of data, however, not al the data are equally
important for fall detection. The part that is not as important as the other parts is
considered a burden for any algorithm to calculate. Therefore, the challenge is to
extract the features that contain appropriate information to represent fall movement.

Time domain features are the most traditional features for fall detection. The
commonly extracted features are numerical features such as root mean square (RMS),
root sum square, mean, variance. The data were collected by wearable sensors such as
accelerometer, gyroscope, pressure sensor and fusion of such sensory data.

For instance, (Tang & Sazonov, 2014) presented a shoe-based posture recognition
system. Common features such as mean, maximum, minimum, variance, standard and
deviation of smart-shoe were extracted. Other features such as entropy and vertical
direction were extracted depending on the actual situation in their work. Similar
features were extracted in many related works, such as (Pierleoni, Pernini, et a., 2015)
(Carlsson, 2015) (Ozdemir & Barshan, 2014).

As for wearable sensors, data have been widely acquired in time-series. Time
domain features are obtained from raw data directly. It is straightforward and easy to
visualize.

However, time domain features have certain limitation in that it may not make full
use of information by merely display observable trends (Banaee, Ahmed, & Louitfi,
2013). For example, according to time domain series, the amplitude change can be
easily observed while the frequency change is not always clear. However, fal is a
sudden change correspond to frequency change. Therefore, feature extraction in the

frequency domain has to be investigated.



1.1.3 Featureextraction in frequency domain
Fall detection is regarded as a subset of human activities recognition. In
thisthesis, human activities are classified into two categories: activities of daily living
(ADLs) and falls. Frequency domain feature extraction methods have been successfully
applied to distinguish falls and ADLs in many works (Hanai, Nishimura, & Kuroda,
2009), (Yazar, Keskin, Toreyin, & Cetin, 2013), (Wojtowicz, Dobrowolski, &
Tomczykiewicz, 2015). It displays the spectral domain information which may not be
visually observed in time domain for fall detection. Typically, falls are often related to
high frequency and ADLSs are often related to periodic signals which has relatively
lower frequency. Such frequency changes can be visualized after frequency analysis of
the signal.
Frequency domain features were commonly extracted by Fourier transform
based methods and wavelet transform based methods. (Lara & Labrador, 2013)
summarized the main feature extraction methods using acceleration signal. Raw
accelerometer signals are difficult to recognize since it contains high fluctuation. Thus,
frequency transform methods such as Fourier transform (Bjorklund, Petersson, &
Hendeby, 2015), discrete cosine transform and principle component analysis
coefficients have been used to extract features from raw signals (He & Jin, 2009).
However, for fall detection, such algorithms have to encounter activities in
different frequency bands. On the one hand, Fourier transform based methods are
unsuitable for deal with non-stationary signals since it has a fixed window size. On the
other hand, the computational complexity of Fourier transform (FFT) is O(Nlog, N)
whilethat of discrete wavelet transformis O(N) for N data points (Yazar et a., 2013).

Wavelet transform based methods include continuous wavelet transform (CWT) and



5
discrete wavelet transform (DWT). (Pamerini et al., 2015) described a CWT-based

approach for fall detection. This work created a prototype wavelet of a typica fall
pattern by the vector of average acceleration. By CWT, the degree of similarity of the
new activity signals to the prototype was measured in terms of CWT coefficients.
Another work in 2015 (Wéjtowicz et a., 2015), compared performance of individual
sensor and classifiers, accelerometer data with 5-level DWT and achieved 100%
sensitivity, specificity and accuracy. Our work was inspired by these promising results.
This thesis proposes the use of the lifting scheme of DWT which has been proposed to
extract frequency domain features. Such features are input for the decision making

algorithms for fall identification which are presented in the following section.

1.1.4 Decison making
Feature extraction enhances the domain features from wearable sensors.
However, detecting afall relies on decision making mechanism aswell. In this section,
decision making methods which regard extracted features mentioned above as input
data are discussed. According to the same input data, different decision making
methods or different models may make different decisions. There exist models that
work better than the others for fall detection. Therefore, it worthwhile to have a close
look at the decision making mechanisms for fall detection.
Thethreshold is one of the most basic methods for fall detection. (Bourke, O’brien,
& Lyons, 2007) used the upper fall threshold (UFT) and lower fall threshold (LFT) to
determineif afixed threshold can distinguish fallsand ADLs. The dataused in (Bourke
et al., 2007) were collected by wearable tri-axial accelerometer sensors that were

attached to the trunk of young volunteers, respectively. Based on their results, UFT
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showed better results than LFT since it detected all ADLs. A comparison was made

between this fixed-threshold method with machine learning methodsin (Aziz, Musngi,
Park, Mori, & Robinovitch, 2017). It was found that machine learning methods,
especialy support vector machine (SVM), offered an increased accuracy when the
experiment was conducted in a laboratory with data from waist-mounted tri-axial
accelerometers.

The decision tree method is a widely used machine learning methods. It is a
tree structure model used to develop a classification rule that decides the class of any
objectives. The decision tree consists of two parts. nodes and |leaves. Nodes represent
the attribute-test with a branch for each possible outcome. Leaves of the tree are class
names, which are usually set as negative (-1) or positive (+1). The root node contains
all the samples and those samples are divided into child nodes. From root nodes to
leaves, there a series of decisionsare made. Theroot should be the most robust attribute
of thetree. If an error occurs earlier in adecision tree, more child nodes would classify
samples based on the wrong decision, giving rise to a phenomenon called “error
accumulation”.

The information entropy of a decision tree is a method to measure the degree
of object class similar to each other (Myles, Feudale, Liu, Woody, & Brown, 2004). The
more the number of objects belonging to same class, the smaller information entropy.
Because the number of objects in each node is different, the ratio of number of objects
in one node over the total number of nodes was used as aweight parameter for this node,
to calculate information gain. Higher information gain means more objects which were
classified by this attribute-based test belong to the same class. The ID3 decision treeis

a well-known decision tree method that uses information gain as attribute-test (J. R.
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layers called hidden layers between the input layer and output layer. Neural networks

with hidden layers are called multi-layer feedforward neural networks. Neuronsin both
input/output layer and hidden layers are connected with neurons in neighboring layers.
But the neurons in the same layer have no connection nor any cross-layer connection.

As indicated in (Z. Wang, Jiang, Hu, & Li, 2012), an incrementa learning
method based on neura network was proposed for ADL classification. Compared with
other machine learning methods, for example, the decision tree, the training time of
ANN was shorter while achieving high classification accuracy. However, (Parkkaet a.,
2006) stated that ANN may not be as stable as decision tree. This is because human
activity monitoring data may be noisy for ANN. Furthermore, ANN may easily overfit
without any protecting strategy for its learning ability.

Hidden Markov Model (HMM) is a type of probabilistic graphical model
(Koller & Friedman, 2009). It is based on a dynamic Bayesian network. One of the
earliest applications of HMM is for speech recognition (Baker, 1975). If a Markov
process has N discrete states, the system transits among the N states according to
certain transition probabilities. Different from anormal Markov model, the observation
of a HMM state is a probabilistic function of this state. That is, the state of HMM
cannot be observed directly (hidden). The hidden variables can only be observed from
other stochastic processes (Rabiner, 1989). Sequences of human activities can be
modeled as a Markov chain. One posture represents a state and movements from one
posture to another posture are simulated as state transitions. (Tong, Song, Ge, & Liu,
2013) came up with aHMM-based fall detection and prediction algorithm using data
collected by wearable sensors. The results showed that the HMM-based method can

predict afall event 200-400 ms ahead of the incident. Although not deployed for fall



9
detection off-line, (Kianoush et a., 2015) applied HMM to trade-off between

decreasing sampling rate and achieving the requirement of real-time fall detection
system. Apart from traditional HMM, (Li et al., 2015) proposed an extended HMM to
overcome the problem which HMM cannot handle large volume of data. Due to the
high computational cost of HMM, the extended HMM in (Li et a., 2015) was shown to
be a promising method for fall detection. The advantage lays on the ability to find out
hidden or unexpected information from observed data for fall detection while the
disadvantage is the high computational burden of this algorithm.

Support vector machine (SVM) is a popular machine learning method (Banaee
eta., 2013). Theideaof SVM isto map data points from input space to afeature space.
A planein feature space called a hyperplane or decision boundary is used to classify the
samplesinto two regions (Pierleoni, Pernini, et al., 2015). The further away the samples
arefrom the hyperplane, the lessthe classification error occurs. Therefore, ahyperplane
needs to be placed in such a position that the distance between the boundary and the
nearest sample (support vector) is maximum.

This method has been mathematically proven (Cortes & Vapnik, 1995) and was
implemented in a convenient toolbox named LIBSVM (Chang & Lin, 2011). SVM was
used successfully used in speech recognition (Ma, Randolph, & Drish, 2001), facial
recognition (Heisele, Ho, & Poggio, 2001), stress and influenza classification (Wijaya,
Prihatmanto, & Wijaya, 2016). SVM has also been used for fall detection based on
wearabl e sensors (Pierleoni, Belli, et al., 2015), (Ozdemir & Barshan, 2014) and (Liu &
Cheng, 2012). SVM in (Pierleoni, Belli, et al., 2015) was used to find a proper
hyperplane to detect falls based on acceleration by the training process. (Liu & Cheng,

2012) and (Ozdemir & Barshan, 2014) investigated the computational cost of SVM by



10

measuring training time and testing time. They came to a conclusion that SVM
algorithm for fall detection has an acceptable performance. (Ozdemir & Barshan, 2014)
proposed an approach to reduce computational complexity of SVM in fall detection
based on three tri-axial sensors (accelerometer, gyroscope, and magnetometer or
compass). Because not al the collected data were equally important to detect a fall,
(Ozdemir & Barshan, 2014) extracted a part of features to reduce the volume of data
input and decrease computational complexity. Thiswas carried out by only focusing on
features inside a 4-second window instead of inputting the entire activity into the
algorithm directly.

SVM isarobust method for fall detection when compared with other methods
such as threshold-based methods (Aziz et a., 2017) and decision tree methods
(Ozdemir, 2016) under the same circumstances. It was proved that performance of
SVM cannot be improved straightforwardly by adding more sensors (Ozdemir, 2016),
changing the training or testing data size (Ustuner, Sanli, & Abdikan, 2016) or varying
sensor locations (Shibuya et al., 2015). More specifically, (Shibuya et al., 2015)
compared the effect of wearable sensor location on the performance of SVM. They
found that no matter where the sensors were placed (i.e. on the back, chest or other
body parts), SVM cannot effectively detect the “sliding” type of fall (for example, fall
whilesitting on achair). Asfor the effect of training sizeon SVM, (Shibuyaet al., 2015)
found that SVM was robust against imbalanced training and testing data size in image
classification. Later, (Ozdemir, 2016) investigated the overall accuracy of SVM for fall
detection using wearable sensors. They showed that SVM accuracy for fall detection
did not significantly depend on the number or location of sensors. In particular, SVM

achieved 99.27% accuracy with a single sensor located on the thigh whereas achieved
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99.48% accuracy with datafrom 6 sensors placed on different locations of human body.

In terms of SVM agorithm itself, (Nukala et al., 2014) compared with linear,
polynomia and radial basis function (RBF) kernel functions. RBF performs better
wherever sensors were |located and whatever was training and testing size. With so
several factors affecting its performance, (Nukala et al., 2014) stated that though the
original SVM isawidely used tool for fall detection and human posture recognition, it
may not attain consistent detection accuracy. Thisis dueto the existence of certain data
points located near the hyperplane. Therefore, (Tang & Sazonov, 2014) proposed a
SVM with datarejection for human postures and activities recognition. They measured
the distance between samples and the hyperplane, samples that may be too close to the
hyperplane were rejected. Furthermore, the result of (Tang & Sazonov, 2014) showed
that by using the data rejection method, the mean accuracy rate increased by 17.5%
with feature extraction and al so increased about 2% without feature extraction. Thisisa
considerable increase for fall detection algorithms. One possible explanation for this
may be that some important information for accurate classification was covered by data
positioned close to the hyperplane.

From previousworks, it should be noted that most works which deployed SVM
for fall detection used time-seriesfeatures (Aziz et d., 2017), (Shibuyaet al., 2015) and
(Colkesen, 2012). To the best of our knowledge, only (Ozdemir & Barshan, 2014)
investigated the usage of spectral domain and time domain features together with SVM.
The spectral features were thefirst 11 values of autocorrelation sequence and thefirst 5
peaks of the corresponding frequency after discrete wavelet transform (DWT). Their
DWT performance showed a good accuracy, achieving more than 97% when the testing

the data size was significantly larger than the training data size. Since the unbalanced
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training data and testing date size is usually the case in the real-world, it may be
worthwhile to investigate other spectral features to be used with SVM. Therefore, the

underlying objectives of this research are as follows.

1.2 Research objectives
1.2.1 To design a lightweight wavelet transform frequency domain feature
extraction method integrated with an appropriate SVM model to detect falls based on a

tri-accel erometer collected data

1.2.2 To study the impact of wavelet transform methods on the performance of

1.2.3 To construct afall detection based on lifting wavelet transform with lifting
wavelet transform and SVM which has low computational requirement and performs

well in terms of accuracy, specificity and sensitivity.

1.3 Research hypothesis

1.3.1 The proposed wavelet transform based algorithm works better than the
traditional time domain a gorithm for fall detection.
1.3.2 Wavelet transform achieves better results than time domain features, and
LWT is even better than CWT in the same situation.
1.3.3 The suitable window length depends on frequency because fall occursina
very short period of time.
1.3.4 Wavelet transform with threshold works better than wavelet alone.

1.3.5 CWT is more complex than LWT in terms of computational complexity.
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1.4 Basc agreements

1.4.1 MATLAB R2014b @win10 was used to imply this experiment.

1.4.2 Data used in this work was collected by a single tri-accelerometer. Two
different datasets were used, one is from (Kwolek, B., & Kepski, M., 2014) and the
other one from Imperia College London (Pannurat, N., Thiemjarus, S., &
Nantajeewarawat, E., 2017).

1.4.3 The dataset with video includes 40 activities of daily living (ADLS) and
30 fals (Falls) collected by atri-accelerometer attached on waist.

1.4.4 The data set from Imperial College of London includes 13 types of falls

and 12 types of ADLs conducted by 12 objects with a sensor attached on the waist.

1.5 Scopeand limitation
1.5.1 Two different datasets were studied in this thesis.
1.5.2 The proposed algorithm is based on a single accel erometer data.
1.5.3 All the activities used in experiments were performed by young subjects.

1.5.4 Simulation is conducted by MATLAB and Python based on LIBSVM.

1.6 Expected benefits

1.6.1 To obtain computational light wavelet transform based features to detect
falls based on SVM with data collected by a wearable tri-accel erometer.

1.6.2 To compare performance of the wavelet transform based features and the

time domain features with SVM for fall detection.
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1.7 Synopsisof thesis

The remaining parts of thisthesis are organized as follows.

Chapter I1 illustrates the methodology used in this work. This chapter presents
discrete wavelet transform with lifting scheme (LWT) and continuous wavelet
transform (CWT). Then followed by the theory of support vector machine (SVM).

Chapter 111 presents performance eval uation based on the proposed LWT and
SVM integration method. The performanceis compared to that of asimpletime domain
feature. LWT provides computational efficiency that is suitable for on-board data
processing and SVM isused asafall identifier. The Haar and Bior2.2 mother wavelets
for LWT are compared since they performed best. The best LWT multiresolution level
of coefficients are analyzed in this chapter. Since SVM isused to classify sample points,
athreshold was determined to classify falls from ADLSs.

Chapter IV presents a performance evaluation based on another data. In
particular, this chapter focused on the comparison between CWT and LWT feature
based on the Haar and customized wavelets. The findings of this chapter emphasi ze that
the proposed lifting scheme is computationally light and can outperform the higher
computationa continuous wavelet transform feature.

Chapter V concludes the thesis, highlighting the findings and contributions in

chapter 111 and chapter 1V.



CHAPTER II

FUNDAMENTAL THEORY

SVM is a supervised machine learning method. The main steps can be simply
concluded as training and testing. The input datais called features. The way we extract
features from the original data has an impact on the performance of SVM. Since there
are numbers of previous works discussed how to improve SVM itself, we focused on
finding suitable specific features for fall detection. The two aspects used to analyze
signals are usually time domain and frequency domain. Time domain features are
features such as root-sum-sguare, maximum, minimum and so on. Frequency domain
features may include CWT coefficients, LWT coefficients and maximum frequency.
Therefore, in this chapter, SVM is first introduced. Followed by the introduction of
CWT and LWT. At the end of this chapter, data preprocessing and classification details

such as windowing, |abeling and the way to cal cul ate threshold was presented.

2.1 Lifting Wavelet Transform (LWT)

Discrete wavelet transform (DWT) comes later than CWT which will be
introduced in next section. It went back to 1976 when A. Corosier and D. Esteban
proposed a method to split channels (Esteban & Galad, 1976). One of the earliest
applications of DWT was in speech recognition (Krishnan, Neophytou, & Prescott,
1994). Identically, DWT has advantages on resolution over STFT as CWT. DWT uses

filters to split high or low frequency part of the signal and uses upsampling or
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Furthermore, LWT is asimpler way to implement DWT. The cost of LWT amost half
lessthan DWT for LWT using lazy wavelet transform instead of filters (Daubechies &
Sweldens, 1998). Hence, LWT is suitable for fall detection in respect of computational

complexity.

2.2 Continuous Wavelet Transform (CWT)

Short-time Fourier transform (STFT) has been a widely used tool to anayze
signals in time-frequency domain (Daubechies, 1992). STFT assumes that a
non-stationary signal to be a stationary signal in narrow windows and does Fourier
transform in this narrow window. However, there is an issue that first found by
Heisenberg called “uncertain principle”. The principle implies that we cannot know
what frequency exists at what time instance but only know that what frequency bands
exist at what time interval (Chui, 1992). In other words, if we know the exact location
of a data point in time domain, we will never know the exact frequency of this data
point at that time. As aresult, there has to have atrade-off between time resolution and
frequency resolution when choosing a constant window for STFT. A smaller window
has a higher time resolution but lower frequency resolution and vice versa. Usualy,
ADLs are periodic and fal is a suddenly change of frequency. WT allows using long
time window to obtain precise low-frequency information and short time window to
localize high-frequency bands in time domain precisely. Let’s take a closer look at this

property of WT.
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entire signal. Contrarily, lower scales correspond to less “stretched” (high frequency)
wavelet and correspond to a hidden quick-changing details since sudden change usually
lasts in a short time duration. Shifting or translation parameter “b” means “delay” or
“advancing” the wavelet centered by value “b” in time-axis.

The definition of CWT given by formula (2. 2) is the inner product of signal
function f (t) and transforming function¥, ,, (t), where W, , (t)=W¥ (:—b) From this

perspective, CWT definition shows the similarity between mother wavelet and the
transformed function f (t) (Palmerini et al., 2015). The product value is non-zero only
inside the support region of wavelet. It means that if the tested signal exists a spectral
component correspond to current frequency (scale) and located inside current time
interval (trandation), the product value (CWT coefficients) will be relatively large. If
no current spectral component exist or not located inside this time interval, the
coefficients will be relatively small or even zero. Thus, by various scale and shifting
values, wavelets in different location of time (interval) and frequency (bands)
multiply with different part of tested signals.

CWT coefficients, on the other hand, becomes large around abrupt change in
the signal since the abrupt transition in the shifted function results in large CWT

coefficients at the discontinuity. As shown in

Figure 2.5 A typical fall with aclear peak, fallsin daily life often come with a
sudden change of frequency compared with periodic human activities. Thus, CWT
adapt to detect a fall by observing the coefficient value of human activity signals. The
CWT coefficientslocalize the discontinuity best at small scalesfor the reason that small

support region of the wavelet ensures that the singularity only affects a small set of
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2.3  Support Vector Machine (SVM)

SVM is a popular machine learning method which was first proposed and
proved by Cortes and Vapnik in 1995 (Cortes & Vapnik, 1995). It is a binary
classification machine. The basic concept for SVM s that it is the largest margin
classifier in the feature space. This is what makes SVM different from other machine
learning methods.

The concept of SVM is to find the largest margin hyperplane to divide the
negative and positive instances (samples). This hyperplane is used to predict instances
whose labels are unknown. Moreover, if the instances are non-linearly separable, the
use of some kernel function can map instances into a high dimension feature space

where instances can be separated by a hyperplane.

O @)

positive class O

. O
® o
U
negative class support vector

largest margin

Figure 2.7 The largest margin depends on support vectors on the "edge"
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Apart from kernel function, a soft margin method is also use to deal with
non-linear problems. Thus, according to the concept of SVM, this section consists of
three parts, the basic idea of SVM, the soft margin SVM and the kernel function, and

the sequential minimal optimization (Scholkopf & Smola,2001).

231 Basicideaof SVM

Spouse that the input space and feature space are two different spaces.
Theinput space is Euclidean space and the feature space is Hilbert space. The classifier
assumes that the element in this two spaces correspond one-to-one. Assume that there
exists akernel function that can map the input space into a feature space. SVM classify
in feature space. The input data set is called input instances. Assume that a group of
input training data set Tr ={ (X1,Y1),(X2,¥2), ..., (Xi,¥i), --., XnoYn)}, 1 < i < N ,where
X ERY, is thei featureandy; {-1, +1} isthelabel of thei™ feature. When y; equals +1,
X; is a positive sample vector and when y; equals -1, x; iS a negative sample vector. Let
(xi, i) bethei™ instance. The objective of SVM isto find a hyperplane in feature space
to classify the instance in feature space. A plane can be defined by a normal vector and
an intercept. Therefore, if thetraining set Tr islinearly separable, the hyperplane can be
defined by

w-x+b=0, (2. 4)

where « isanormal vector of hyperplane and b is the intercept. Then, the decision is
given by

f(x) =sgn(w - x + b), (2.5)
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where sgn is short for sign function. Equation (2. 5) implies that the classification
result f(x) is compared with zero.

However, from

Figure 2.7, it can located be seen that some instances are more important than
the other because they are located at the edge of the margin. Those vectors are called
support vectors. Apparently, there exists various hyperplanes (various e and b) to
classify those instances. To determine aparticular b for such classification, assume that
the positive instance is larger than a constant. Similarly, we insist the negative instance
is less than the opposite constant as well. For convenience, the constant isto be +1 and

-1. In particular, the decision rule is defined by

w-xy+b>1, (2.6)

w-x_+b<-1, (2.7)

where x, and x_ are positive support vector and negative support vector,

respectively. Equations (2. 6) and (2. 7) can be rewritten in terms of y; as
yl'((b' - X + b) =>1. (2 8)

The distance between hyperplane («, b) and support vector is given by

d=(x; — x_) — . (2.9)

lawll

By substituting x, @ and x_ - @ by (2. 6) and (2. 7), we get
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=2 (2. 10)

el

Thus, the task of finding the largest margin between the two classes of instances
becomes to find the maximum value of d, subject to (2. 8).

Now, we can construct an equivalent of such problem using

min,,, = o, (2. 11)
s.t yi(w-x;+b) =1 (2.12)

The problem is proved feasible and has exactly one largest margin hyperplane. We are
going to assume that the optimized result is hyperplane (w , b").
In order to solve the primal problem defined in (2. 11)-(2. 12), the dual problem

iseasier to solve. Let us now introduce the Lagrange function given by

L(w, o, b) = % lwl> + X1 o yi0w - x; + b) — S, a;, (2.13)
where = [ay, @ .., a;, .., ay]" , a; =0 isalLagrange multiplier vector. The partial
derivative of « and b equal to zero where the gradients of primal problem and

constraint are paraldl.

wl(w,ab)=w—-3", viax; =0, (2.14)

bL(a},a,b) :z;\r:l aiyi =O' (2 15)
Therefore,

w = Z?:l a;yiXi. (2. 16)
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o1y =0. (2.17)

Substitute into equation (2. 13), the dual problem is

mina;ii‘il Y ey (g xp) — TiL, @, (2.18)

sitd, @y = 0, (2. 19)

a; = 0. (2. 20)

Assuming that the optimize solution is a = [aj, a3, .., ay]” . Thus,

w =YL a;x;y; . If chose one of af >0, is chosen such that b* =y, -

=

N *
i=1 4 Yi(xi - x;5).

2.3.2 Soft Margin SVM and kernel function
In last section, we talked about the linear separable situation.
However, the method is not available for non-linear training data unless a soft largest
margin was proposed. More specifically, soft margin allows classifier make mistakes

and add a penalty to the mistake.
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Figure 2.8 A soft margin SVM schematic
Similar process and hypothesis as previous section, we want the hyperplane to

have largest margin as well as less mistakes. The soft margin SVM therefore can be

described as
ming, ¢ - lwl? + CXL, &. (2. 21)
S. 1. y[-(o;-xi+b) 21—&, (222)
§Qgirsct 4 1N, (2. 23)

where &; represent scalar variables for the i™ instance, and C > 0 is the regularization
parameter. Scalar variables are to characterize the unsatisfactory degree of this
mistaken instance. And regularization is a classic way to control model complexity to
avoid overfitting. Still, thisis a convex quadratic problem as the “hard margin” SVM
we talked in previous section. In hence, after Lagrange and duality, (2. 21)-(2. 23) are

given by,
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. 1
ming EZ?:I Zj‘\;l aiafyiyj(xf ' xj) - Z?‘r:l a;. (2 24)
s.t. YN ay; =0, (2. 25)
O<a;<Ci=12..,N. 2. 26)

Compared (2. 24)-(2. 26) with (2. 18)-(2. 20), the only difference lays one the constraint

(2. 20) and (2. 26).
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Figure 2.9 Kernel function example

Noticed that no matter in linear or non-linear situation, there only inner product

instances x; - x; involved. For non-linear problems, for examplein

Figure 2.7 and

Figure 2.9, it is natural to think to map the data from low-dimension input space to
hich-dimension feature space that can find a hyperplane divide instances correctly.
¢(x;) is usudly used to represent x;,x; in feature space, Thus, equation (2. 24) is

given by
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ming > i1, T iy b(x) - d(xp) — T . (2.27)

Unfortunately, the dimension of feature space can be high or even infinite, itis
sometimes impossible to calculate directly in feature space. Due to the high

dimensionality of feature space, researchers tried to define akernel function,

K(xi, xj) = ¢(xy) - ‘35(35;')- (2.28)

Kernel function is an implicit function of inner product of feature space vectors. More
information about the existence of kernel function, pleaserefersto (Scholkopf & Smola,

2001). Substitute (2. 28) into (2. 27),

. 4 B
min, Ez?;l Y1 Gk (x, X)) — e, ;. (2.29)

Polynomial kernel function, Gaussian kernel function are often used in signal
processing. For fall detection based on wearable sensors, radial basis function (RBF)
classifier based on Gaussian kernel achieved best result (Hsu, Chang, & Lin, 2003).
RBF is described as

l|lx—z||?

K(x,z) =e 242, (2. 30)

where x and z are instances and g is the various.

2.3.3  Sequential Minimal Optimization (SMO) and Cross Validation
Though the primal problem was transferred to dual problem which

was proved to have and only have one optimize solution, it is still not easy to solve
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when the data size is large. This section, a method that is called sequential minimal
optimization (SMO) will be introduced to solve dual problem.
SMO was first proposed by a scientist in Microsoft in 1998 (Chui, 1992). The

method mainly focused on the convex quadratic programming problem looks like,

1
min, 52?:1 Yoy iy yiK (x0 %) — Y1, @, (2.31)
s.t. YN ay; =0, (2.32)

O<a <Ci=12..N. 2. 33)

where N is the total number of data point.

SMO dgorithm is a kind of heuristic algorithm. The idea of SMO is that the
algorithm chooses a pair of Lagrange multiplayers (a4, a,) randomly as two unknown
various and fix the left Lagrange multiplayers. From constraint (2. 32), we can get the

relationship between this two parameters,

a, = - Ziz aiyi- (2.34)

Thus, the N various problem becomes a two various sub problem with two
equations. If we know one of the chosen unknown parameter, the other oneis also fixed.
In this term, the sub problem aways updates two various together. The solution of sub
problem will make the N various problem closer to fina solution. Moreover, by
transferring, the calculation speed is greatly improved. More information about how to

solve a sub problem please look at (Chang & Lin, 2011).
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There comes a problem that how to choose various pair. Firstly, we need to
determine one of the two a. This is called outer loop. The instance that break the
Karush-Kuhn-Tucker (KKT) conditions most seriously is chosen asthefirst various. In
other words, the outer loop trends to choose support vectors as the first various for the
reason that support vectors are at the edge of the hyperplane. Instances at this place are
most likely to violate KKT conditions. If they satisfy KKT conditions, al the instance
satisfy it.

Secondly, SMO uses inner loop to decide the next various. Assuming that in
outer loop, the first various has been chosen. Inner loop trends to find the various that
achieveslargest change. If function E(X;) represent the difference between the predicted
yi for input x; and the real y;, a that has larger E(x;) is more likely to be chosen.

In conclusion, there are two main part for SMO agorithm. The first part is
choose two various a time using heuristic method and the second part is to solve
corresponding sub problem. Repeat this two parts, until all various satisfy KKT
conditions.

The complexity of SMO depends on the number of support vectors instead of
the number of feature space dimensions. This means SMO avoids to calculate in
high-dimension space where overfitting trends to occur. Except this, cross validation
helps to avoid overfitting as well.

As | mentioned above, SVM is a optimize problem, the result of this kind of
machine learning method usually output various models in different complexities. In
order to find a suitable model which is supposesto be the closest one to the best model.
However, if we pursue high prediction accuracy of a model only, the chosen model is

definitely more complex than “real model” which is assumed to be the perfect model.
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Thisiscalled overfitting. There is an example of overfitting below.

Figure 2.10 Overfitting

There are 20 data pointsin

Figure 2.10 Overfitting. We assume that the data set is represented by

Q={(x1,y1). ... (x20,¥20) }, (2. 35)

wherey; ={-1, 1} islabel of corresponding data. Then, if the data can be fitted by a

polynomial given by

flx,w) = wy + wix + wox? + -+ wyxM = ¥M wxt, (2. 36)

where w; is parameters of this model. First of all, we need to know how many
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items we need to fit the given data. In other words, we need to decide the value of M
and the complexity of the model.

Figure 2.10 shows different values of M. We can find that when M=0, the fitting
curveisaconstant which failed to match the sample data. When M= 1, the fitting curve
isaline which also failed to match the sample perfectly. In contrast to this, when M=3,
it looksthat thefitting curve matchestraining datawell enough. If the model is set more
complex than this, for instance, M=10, the fitting curve matches training data perfectly
and the deviation of model equalsto zero for the training data set. It seemsto be the best
model for training data. However, generalization ability which represents the ability of
model to predict unknown dataislow. The reason overfitting occursisthat training data
sizeis limited while the unknown data various.

Cross validation is another way to choose models. In this thesis, a 5-fold cross
validation was used. The simplest cross validation will beillustrated below.

At the beginning, given dataset is divided into two parts according to a specific
ratio randomly. One part is used as training dataset and the other part is used astesting
dataset. Using training dataset in different situations and settings, models with different
parameters are obtained. Those models are evaluated by the testing dataset, and the
model with least deviation is chosen.

The cross validation we often use is S-fold cross validation. Instead of divide
dataset into two part, S-fold divide dataset into S subsets equally. And then, S-1 subsets
are used as training dataset and the left one is used for testing. Repeat this S times until
all the subset has been used as testing set. Finally, the model with least average testing

error isthe model we want to find (Kohavi, 1995).
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24 Others

Datasets used in this thesis come from (Kwolek & Kepski, 2014) and Imperia
of London, respectively. Both of the data are collected by atri-accelerometer attached
to the waist of objects.

The dataset used in chapter 111 of thisthesisisthe former one. Those activities
were conducted by 14 young volunteers. Two kinds of falls (from standing to fall and
from sitting to fall) and four kinds of ADLs (squatting, sitting, lying down and bend
over) were conducted. The dataset used in chapter 1V is the latter one. There were

thirteen kinds of falls and eleven kinds of ADLSs.

24.1 Feature extraction
For the reason that fall detection data are collected in along term and
the samplerate is about 60 Hz which isrelatively high. Thereis alarge volume of data
need to be processed in a short period of time. On the other hand, the datais not always
equally important in terms of human activity recognition. Thus, before applying SVM
on collected data, feature extraction is necessary. Larger dataset leads to more time to
calculate. Before input thisdatainto SVM which isrelatively complex, windowing and

labeling are used to prepare the data as well.
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where A, Ay, and A; are the value of correspond oriental .

24.2 Threshold

This thesis compared the performance of different features including
CWT and LWT coefficients. And compared the result of SVYM with and without
threshold. Threshold in chapter 111 was used to decide a fall according to the ratio of
data point labelled as “+1” in an activity. In chapter IV, the threshold was calculated
before wavelet transform to select falls which were difficult to distinguish from ADLSs.
It means that if the maximum SV Of an activity was larger than threshold value, this
activity would be regard as afall directly. Detail algorithm would beillustrated in |later

chapters.

25 Summary

In this chapter, background theory of the algorithm proposed in thisthesis were
talked. Support Vector Machine (SVM) isasupervised machine learning method which
has been widely used in data classification and regression analysis. The classifier tries
to divide the falls and activities of daily living (ADLS) into two parts correctly. Basic
SVM isgood at dealing with linear problems which human activities data collected by
wearable sensor isusually not. Thus, kernel function isintroduced to map the datafrom
input space to higher dimension feature space. Then a hyperplane (model) based on
training dataset can be found in feature space. In order to avoid overfitting which isa
common problem for modeling with limited training data, soft margin and cross
validation were described. Mathematical definition and explanation were given

following the concept. In particularly, SVM was attributed to a convex quadratic
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programming problem which sequential minimal optimization (Scholkopf & Smola,
2001) isone of the most efficient methods to solve.

After that, continuous wavelet transform (CWT) and lifting wavelet transform
(LWT) wereillustrated in the following two sections. Both CWT and LWT areincluded
in wavelet transform (WT). CWT insists the scale and shift change continuously while
that of LWT is discrete. From the definition, CWT coefficients can be regard as the
similarity degree between mother wavelet and input signals. Therefore, an average fall
was used to draw the similarity as a frequency domain feature for SVM.

LWT is an dternative of discrete wavelet transform (DWT). Instead of using
filterswhich is complicated to split signals, LWT simply spilt input sequence into even
and odd. LWT has advantages over CWT in computational complexity aswell as better
performance we suppose.

What last but not least was that the raw data which come from wearabl e sensors
cannot be used directly since the data has three orients for one sample. Pre-processing
helps to decrease the volume of data without losing useful information. The methods
and equations about how to processing raw data before they are input in to wavelet
transform algorithm and SVM are briefly described in the last section of this chapter.

The detail illustration can be found on later chapters.



CHAPTER I11

FALL DETECTION USING LIFTING WAVELET

TRANSFORM AND SUPPORT VECTOR MACHINE

Frequency domain features of inertial movement enables multi-resolution
analysis for fall detection, yet they are computationally intensive. This chapter
proposes a computationally light frequency domain feature extraction method based
on lifting wavelet transform (LWT) which provides computational efficiency suitable
for real-time low power devices such as wearable sensors for human fall detection.
LWT is combined with support vector machine (SVM) to identify falls from activities
of daly living. Performance of the Haar and Biorthogonal 2.2 wavelets were
compared with the time domain feature of root-mean square acceleration using a
human fall dataset. Results show that the first level detail coefficients features for
both Haar and Biorthogonal 2.2 wavelets achieved good overall accuracy, sensitivity

and specificity.

3.1 Introduction

As many countries enter the era of aging society, they face critical elderly
people’s health threats which are fall and related complications caused by the injury
(Pierleoni, Pernini, et al., 2015). Considering the need of real-time monitoring and ease

of use, wearable sensor systems are one of the most promising systems.
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Wearable sensor-based fall detection systems, inherently generate continuous
monitoring of physiological measurements. Such system is usualy a multi-sensor
system. Comprising sensors such as accelerometers, gyroscopes, pressure sensors and
magnetometers. Datasets collected by such wearable sensors are thus, typicaly
multi-dimensional and in large volumes. Such characteristics may cause hinder data
processing and fal detection capabilities. Some researches therefore use feature
extraction to reduce the amount and the dimensions of data (Banaee et a., 2013) by
extracting only necessary features. Existing techniques include two main domains, i.e.,
time and frequency domains. Research such as (Pierleoni, Pernini, et al., 2015),
(Carlsson, 2015), (Ozdemir & Barshan, 2014) extracted time domain featuresincluding
the mean value, maximum value, minimum value and variance, standard deviation of
the patient’s physiological movements and other special features such as entropy and
vertical direction.

In genera, time domain features are straightforward and easy to visualize
which means light computational burden for feature extraction. So the system is
computationaly efficient in achieving a real-time fall detection. However, the time
domain statistical features considers only the displayed observable trends (Ozdemir &
Barshan, 2014). Consequently, time domain features may not suffice for accurate fall
detection.

Conversdly, frequency domain features make use the spectra domain of the
collected data which may not be clearly observable in the time domain. Frequency
domain features were deployed for fall detection by (Su, Ho, Rantz, & Skubic, 2015)
which used discrete stationary wavelet transform (SWT). In (Bjorklund et a., 2015), a

short time Fourier transform (STFT) was used for human activity recognition, whereby
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afall was asubset of datain aseries of continuous activities of daily living (ADLS). In
(Pamerini et al., 2015), created a prototype wavel et of typical fall pattern by using the
average accel eration sum vector. The degree of similarity of the signal to the prototype
was then computed though wavelet analysis. Results from the same classifier and
real-world dataset revealed that the wavelet based features outperformed than other
time domain features. upper and lower peak values.

Feature extraction alone only enhance the features of the data acquired by the
wearable sensors. However, to detect weather afall occurred relies on the performance
of the detection mechanism. The most common and simplest fall detection is the
threshold method (Aziz et al., 2017). Nevertheless, the performance heavily dependson
the fixed threshold level. Hence, it is rarely used alone, and often combined with other
machine learning methods such as decision tree (DT) (Bilski, Mazurek, Wagner, &
Winiecki, 2015), (Parkkaet al., 2006), artificial neural networks (ANN) (Z. Wang et dl.,
2012), hidden Markov model (HMM) (Tong et a., 2013) and Support Vector Machine
(SVM) (Ozdemir & Barshan, 2014), (Pierleoni, Belli, et al., 2015), (Liu & Cheng,
2012) can be combined to outperform the threshold method (Aziz et a., 2017), (Aziz et
al., 2017). Among the machine learning methods, SVM was found the most robust for
fall detection when compared to other methods such as threshold-based methods and
the decision tree method (Aziz et al., 2017). However, most works which deploy SVM
for fall detection use time-series features (Aziz et a., 2017), (Shibuya et al., 2015). It
was found that SVM fall detection performance can be improved by a combination of
time and frequency domain features (Ozdemir & Barshan, 2014). In particular, the
discrete Fourier transform (DFT) was used to determine the spectral coefficients which

is computationally intensive (Ozdemir & Barshan, 2014). On the other hand, the lifting
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wavelet transform (LWT) is an efficient, light weight frequency domain extraction
method (Sweldens, 1998). To the best of our knowledge, thereis no previous work that
has combined LWT with SVM for fall detection. This chapter is therefore focused on
the study of feature extraction based on LWT used with SVM to detect fallsfrom ADLs
using root-mean square value from a single tri-axial acceleration sensor.

The part is organized as follows. Section Il presents the proposed frequency
analysis and the support vector machine scheme proposed in the chapter. The time
domain feature which is used for comparison is also introduced. In section Ill, the
experiment based on a comprehensive fall detection dataset is described. Section 1V

presents the results and discussion and finally conclusionsis given in the final section.

3.2 Method
321 Frequency domain feature extraction

Feature extraction based on frequency anaysis of the body inertia
collected from sensors has been studied in the recent literature. Discrete wavelet
transform (DWT) has been proposed for mobility monitoring, posture transition and
activities classification in (W¢jtowicz, Dobrowolski, & Tomczykiewicz, 2015b) using
a single chest-mounted sensors. In (Shin et a., 2015), another frequency domain
feature extraction method using short-time Fourier transform (STFT) was proposed to
shorten the calculation time of DWT. Despite good results, the short time windows in
STFT may not always be suitable for human motion which varies greatly. If windows
are too short, STFT may be unable to identify the frequency in such a short period of
time. If windows are too large, more information in time domain will lost. If the STFT

window size is fixed, STFT may not be suitable for fall detection as human activities
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are flexible. Unlike DFT in (Ozdemir & Barshan, 2014), LWT can be constructed
from time series signal directly. Unlike DWT in (W¢jtowicz et al., 2015b), LWT does
not require convolution, trandation or dilation of traditional mother wavelets.
Furthermore, LWT allows in place calculation, with no need for auxiliary memory.
Therefore, LWT provides computational efficiency suitable for rea-time low power
devices such as wearable sensors. In the following subsection, we describe LWT in

more details.

3.2.2 Lifting Wavelet Transform
LWT has been introduced by Sweldens in 1997 (Sweldens, 1998).
The scheme theory is often described as three steps: split, predict and update. The split
stepisto split asignal into to two independent sequences, i.e, the even half and odd half
sequences. Let x; be the origina discrete signal at time index i. Let even; (odd;)
denote the i"™ index of the even (odd) sequence. We have that even; = x,; and
odd; = x5;41,1 €.

LWT is a recursive agorithm whereby if the original signal has 2"
elements, then the next level will operate on 2™ elements. Hence, if the original signal
has 256 elements, there will be 8 levels with the next level having 128 elements. The
subsequent levelswill have 64, 32, 16, 8, 4, 2 and 1 element. The odd valuesin the next

level j+1 is predicted from the even value at level |:

cDjyq; = odd;; — P(evenf_l-). (3.1)



where P is the predict function which approximates the signal. And cD is the high
frequency part of x; usedtoreplace odd;;. Thisis called the Predict phase. The even

values at the next level can be found from

CAj1,; = even;; — U(cDjH_E). (3.2

where U is the update operation that updates on the differences from the odd values.
And cA is the low frequency part of x; used to replace even;;. This is called the
Update phase. The multi-level lifting scheme can be summarized in Figure 3.1. The
averages are sometimes called approximate coefficients whereas the differences are

called the detail coefficients. There are two types of wavelets used in this chapter.

1) Haar wavelet:
Predict:
cDjyq1; = oddj; — even;;. 3.3
Update :
cAjyq1; = evenj; + icD}-ﬂ’i. (3.4

2) Biorthogonal 2.2 wavelet:

Predict :
1
cDjy1; = odd;; — = (even;; + even;;i1). (3.5)
Update :

1
CAjs1,; = eveny; + —(cDjyqi-1 + Djs). (3.6)
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Figure 3.1 Forward lifting scheme

Figure 3.2 shows asamplefall plot of the original signal and thefirst level LWT
coefficient. The number of coefficients of cA1 (average or low frequency part) and cD1
(detail or high frequency part) are half of the original signal according to the number of
data points. By comparing cA1, cD1 and the root-mean square acceleration (SVigtg) in

Figure 3.2, it is seen that cAl greatly correlates with the origina signal. Note
that cD1 aso shows a peak similar to the original signal signifying a fall which
occurred during the red highlighted window of one second. However, the baseline zero
illustrated a more distinguished fall feature than cAl. Therefore, cD1 was preferable

than cA1 for feature extraction of falls.
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Figure3.2 A samplefall plot of SViwa and after LWT cD1 and cA1 with data points

inside window highlighted
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3.2.3 Timedomain feature
The tri-axial acceleration data collected contains Ay, Az, Ayin X-axis,
z-axis and y-axis as a function of time. All accelerometer data were in factors of
gravity units (g). The accelerometer components were used to calcul ate the root-mean

square accel eration denoted by total sum vector SViga:

S y= J;xz +A,° +A,°. (3.7)

3.24 Support Vector Machine

Support Vector Machine (SVM) is a supervised machine learning
model which is commonly used for anomaly detection and classification (Hsu et al.,
2003), (Cortes & Vapnik, 1995), (Chang & Lin, 2011). As a supervised learning
model, SVM requires training from datasets with “labels.” The SVM concept is to
map a set of data points from the real-world to a higher dimensiona space. A
boundary or hyperplane is created in a high dimensiona space by training datasets to
classify the features into fall or non-fall. Since the fall detection system inherently
generates long-term continuous monitoring of physiologica measurements, such
datasets are usually large. Such characteristic may cause difficulty in data processing.
To reduce the amount of data and achieve a higher calculating speed, the features of
the data may be extracted from these raw datasets.

To train the SVM, the data points in the dataset must be labeled. For example,
in time domain, SV.a Was directly used as input feature. We labeled all the ADLs
data points with “-1” whereas falls were labeled “1.”

Figure 3.3 depicts a sample plot of a fall along with non-fall activities like

walking around and lying on the ground. Point A shows the peak value of the dataset.
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A highlighted window size with point A placed at the middle of the window is
constructed. Within such window, all the data points are labeled “1” and the
remaining data points outside this window are labeled “-1.” The goal of SVM is
therefore to distinguish the labels among the tested datasets using the model obtained
from the trained data. The data points are typically non-linearly separable to classify
in low dimensional space. However, if these points are projected onto a higher
dimensional space, it is possible to find a hyperplane to classify the labels. Such
projection is obtained through use of kernel functions such as linear, polynomial,
sigmoidal, or the Gaussian radial base functions. It is with this kernel trick that makes
SVM a powerful model to classify the labels in higher dimensiona space. In the next

section, the experiment settings are presented.
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Figure 3.3 A sample plot of fall SV .y With data points inside widow highlighted
3.3 Experiment

As mentioned in the previous section, SVM requires training |abeled datasets.
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Asdatainput in the fall detection scenario involves both non-falls and falls data, we
trained with both falls and non-fallsitalic in Table 3.1.

Wefirst evaluate different SVM model with three different groups of
activities, namely, non-fall only activities, fall only activities and a hybrid fall and
non-fall activities. The objective isto determine the suitable training dataset for SVM
model to detect falls. For the sake of simplicity, only the time domain feature (SVota)
is studied.

Once a suitable SVM model is found, we proceed to study the comparison
between features in the time domain and frequency domain. Note that there are existing
works which combined features in both time domain and frequency domain of data, the
type of sensors, the number and position of sensors on human body, and in the volume
of dataset for training and testing (Pierleoni, Pernini, et a., 2015), (Su et a., 2015).
From results gathered from existing literature, we focus on data collected from asingle
tri-axial acceleration sensor dueto its low cost, reliability and efficiency.

331 Perfor mance metrics

We measure the True Positives or True Negatives which refer to the
number of events correctly identified or correctly. Fall Detection using Lifting Wavel et
Transform and Support Vector Machine. It is worth noting that SVM classifies data
points individually. However, to detect afall within a certain window as shown in

Figure 3.3, a set of data points must be classified rather than just a single data
point.

Therefore, to determine a suitable decision region to decide whether afall has
occurred, we use a simple calculation for the percentage of predicted fall label “1” over

the number of labels observed in an activity to compare with a fixed threshold:

the number of predicted "1"
Th =

~ the number of testing data points’

(3.8)

If Th > threshold, the activity isafall, elseit isnon-fall.



Table 3.1 Datasets used in this experiment

DataFile

fall-0l-acc
fall-02-acc
fall-03-acc
fall-04-acc
fall-05-acc
fall-06-acc
fall-07-acc
fall-08-acc
fall-09-acc
fall-10-acc
fall-11-acc
fall-12-acc
fall-13-acc

fall-14-acc

DataFile

adl-01-acc
adl-02-acc
adl-03-acc
adl-04-acc
adl-05-acc
adl-06-acc
adl-07-acc
adl-08-acc
adl-09-acc
adl-10-acc
adl-11-acc
adl-12-acc
adl-13-acc
adl-14-acc
adl-15-acc
adl-16-acc
adl-17-acc
adl-18-acc
adl-19-acc
adl-20-acc

332

Activities Description

From vertical falling left on the floor
From sitting falling | eft on the floor
From vertical faling left on the floor
From sitting falling left on the floor
From vertical falling right on the floor
From sitting falling right on the floor
From vertical faling left on the floor
From sitting falling right on the floor
From vertical faling left on the floor
From sitting falling left on the floor
From vertical faling right on the floor
From sitting falling right on the floor
From vertical falling forward on the
floor

From sitting falling right on the floor

Non-fallsActivities (ADL )

Activities Description

Walking, then squatting

Walking, then squatting

Walking, then squatting

Bending 90 degree to pick up something
Squatting to pick up something
Squatting to pick up something

From vertical to sitting onto a chair
From vertical to sitting onto a chair
From vertical to sitting onto a bed

From vertical lying on the bed

From vertical lying rightward on the bed
Walking, then squatting

Walking, then squatting

Walking, then squatting

Bending 90 degree to pick up something
Bending 90 degree to pick up something
Sguatting to pick up something

From vertical to sitting onto a bed

From vertical to sitting onto a chair
From vertical to sitting onto a bed

DataFile

Falls

fall-16-acc
fall-17-acc
fall-18-acc
fall-19-acc
fall-20-acc
fall-21-acc
fall-22-acc
fall-23-acc
fall-24-acc
fall-25-acc
fall-26-acc
fall-27-acc
fall-28-acc

fall-29-acc

DataFile

adl-21-acc
adl-22-acc
adl-23-acc
adl-24-acc
adl-25-acc
adl-26-acc
adl-27-acc
adl-28-acc
adl-29-acc
adl-30-acc
adl-31-acc
adl-32-acc
adl-33-acc
adl-34-acc
adl-35-acc
adl-36-acc
adl-37-acc
adl-38-acc
adl-39-acc
adl-40-acc

Evaluating SYM M odel
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Activities Description

From sitting falling right on the floor
From vertical falling forward on the floor
From sitting falling left on the floor
From vertical falling right on the floor
From sitting falling right on the floor
From vertical falling right on the floor
From sitting falling left on the floor
From vertical falling right on the floor
From sitting falling left on the floor
From vertical falling forward on the floor
From sitting falling forward on the floor
From vertical falling forward on the floor
From sitting falling forward on the floor

From vertical falling forward on the floor

Activities Description

From vertical lying on the bed

From vertical lying on the bed

From vertical lying on the bed

Walking, then squatting

From vertical to sitting onto achair
Walking, then squatting

From vertical to sitting onto a chair
Walking, then squatting

From vertical to sitting onto a chair

From vertical lying leftward on the ground
From vertical lying forward on the ground
From vertical lying forward on the ground
From vertical lying forward on the ground
From vertical lying forward on the ground
From vertical lying forward on the ground
From vertical lying rightward on the ground
From vertical lying rightward on the ground
From vertical lying forward on the ground
From vertical lying forward on the ground
From vertical lying forward on the ground

We hypothesized that the best type of training dataset will be the

combined set of both fall and ADLs dataset. Since not only falsbut also ADLsdataare

contained in the hybrid training dataset, the more comprehensive information contained

! Theitalic activities were used as training data set
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in training dataset, the more correctly decision the model will make.

The dataset we used to train and test the SVM models were from (Kwolek & Kepski,
2014) including 70 activities (tri-axial acceleration of 30 falls and 40 non-falls
collected and video recorded with Kinect camera) with details given in Table 3.1.

Thetri-axia accelerometer data was sampled at 60Hz. Therefore, a one-second
window for fall detection consists of 60 data points. The dataset was divided into
training set and testing set based on activities in the matching video of each data file.
Table 3.1 consists of fal and non-fal (ADLSs) activities. For simplicity, only the
hybrid-dataset-training model is used to evaluate the performance of features. The
models under study include:

Model-1 (ADLs only). To learn a wide variety of non-fall activities, the
following datasets were used to train model-1, including, adl-Ol-acc, adl-04-acc,
adls-07-acc, adl-10-acc, adl-31-acc were chosen as training dataset.

Model-2 (Fallsonly). Totrain thefallsonly model we used awide variety of fal
datasets, including, fall-0l-acc, fall-02-acc, fall-05-acc, fal-06-acc, fall-13-acc,
fall-26-acc.

Model-3 (trained by Falls and ADLs). This SYM model was trained with all
datasets previously used in model-1 (ADLs only) and model-2 (Falls only).

Once the data points are labeled and trained, SVM models based on the training
dataset are obtained. The SVM models are then used to classify the testing data. The
dataset remaining (not italic activities) in Table 1 is used for testing. For each dataset
tested, a data point is labeled “1” for data points predicted as a fall data point, or “-1” for
data points predicted as non-fall data point. If the ratio of fal labels in an activity

exceeds the determined threshold, then afall has been detected. For each tested dataset,
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TP, TN, FP and FN is measured for the calculation of SE, SP and AC to evauate the

SVM models. Results are shown in Table 3.2.

Table 3.2 SVM model comparison? for time domain feature

Training Data Model-1 (ADLs) Modd-2 (Falls) Model-3 (Both)

SE (%) 100 100 100
SP (%) 0 35 97.14
AC (%) 46.88 59.32 98.31

333 Comparing Time and Frequency domain feature
This part of the experiment is to compare the time domain feature
(based on SV4) and the frequency domain features (based on Haar and Biorthogonal
2.2 wavelets). Using the SVM models obtained in the previous experiment, a suitable
level threshold level to detect a fall event for each feature is then found. For each
feature, the percentage levels of threshold is tested at 10%, 20%, 30%, 40% and 50%.

Then level istested at finer threshold values. Results are shown in Table 3.3.

Table3.3  Performance comparison® at different thresholds of time and frequency
domain features
stema Initial Estimate Threshold Fine Tuned Threshold

tics Time Domain (SViotal)
Metrics

2 Bold fonts indicate the best performance
* Trained with SYM Model-3 and tested by ADLs and Falls dataset



Threshold
SE (%)
SP (%)
AC (%)

Threshold
SE (%)
SP (%)
AC (%)

Threshold
SE (%)
SP (%)
AC (%)

10%
100
80
87.93

10%
95.83
100
98.28

10%
95.83
100
98.31

20%
95.83
100
98.28

20%
87.50
100
94.83

20%
87.50
100
94.92

30% 40% 50% @ 15% @ 17%*
9167 8750 8750 100 100
100 100 100 9429 97.14
96.55 9483 94.83 96.55 98.28
Frequency Domain (Haar, cD1)
30% 40% 50% 2% 4%
8750 66.67 33.33 100 100
100 100 100 8235 85.29
9483 8621 7241 89.66 91.38
Frequency Domain (Bior 2.2, cD1)
30% 40% 50% 4% 5%
8333 6250 3333 100 100
100 100 100 88.57 97.14
0322 8475 72838 9322 9831

18%
100
97.14
98.28

6%
100
97.06
98.28

6%
100
100
100
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19%
100
91.43
94.83

8%
100
100
100

We then investigate closely how multiple levels of LWT coefficients affect the

fall detection performance by evaluating the first five levels of coefficients of the

Haar and Biorthogonal 2.2 wavelets. Only the SVM model which performed the best

from the previous experiment was evaluated. Results are shown in Table 3.3 and

Table 3.4.

Table 3.4 Performance comparison® at different components® in frequency domain

W
Metrics

SE (%)
SP (%)
AC (%)

SE (%)
SP (%)
AC (%)

cD1 cD2 cD3 cD4 cD5
Haar
100 83.33 9583 8750 95.83
100 100 100 100 100
100 93.10 9828 9483 98.28
Bior 2.2

100 100 91.67 100 100
100 94.29 100 8286 571
100 96.61 96.61 89.83 44.07

3.4 Resultsand Discussion

34.1

Results and Discussion of Evaluating SVM Models

4 Bold fonts indicate the best performance for each feature
5 Trained with SYM Model- and tested by ADLs & Falls dataset
5 Bold fonts indicate the best performance for each feature

The experiment shows the sensitivity, specificity and accuracy of the
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SVM model. The results show that model-1 trained by ADLs only performed the worst
because no ADL recognized from aADLs-only testing set. Model -3 the best sensitivity,
specificity and accuracy is 100%, 97.14%, 98.31%, respectively. This 100% of
sensitivity means all falls were detected. It may be because model-1 only had no-fall
label of “-1,” and fall label “1” was not used in the one-class model in LIBSVM. The
fallsin the dataset collected from a mere handful of people, not as many patternsasin

real world.

3.4.2 Results and Discussion of Comparing Time and Frequency

domain feature

Table 3.2 shows the performance comparison between time and
frequency domain features at different levels of thresholds.

Root-mean sguare acceleration: Table 3.2 shows that the best
threshold for the time domain feature should be between 10% to 20%. With fine
threshold tuning, it is found that a threshold of 17-18% showed better preference than
others (shownin bold fonts). Therefore, we chose 17% as the threshold to classify afal
or non-fall for time domain features.

LWT with Haar Wavelet: The appropriate threshold for Haar LWT is
found by also ranged from 10% to 50%. As shown in Table 3.2, the best achieved
threshold should be under 10%. To fine tune the threshold levels, the threshold is varied
from 2% to 10%. It is found that the threshold at 8% outperformed other levels (shown
in bold fonts). Thus, we chose 8% as the threshold for LWT using Haar wavelet. In
Table 3.3, multiplelevels of LWT coefficients (cD1 to cD5) are evaluated. When tested

with ADLs & Fallsdataset, all specificity, specificity and accuracy values of 100% was



achieved only in cD1 (shown in bold fonts). This result indicated that Haar LWT CD1
coefficients achieved a goal that no ADL was misclassified as afall and detected most
of the falls when training and testing using finite activitiesin Table 3.1.

LWT with Biorthogonal 2.2 Wavelet: From Table 3.2, the optimal
threshold for biorthogonal 2.2 (Bior 2.2) should be under 10% as well. With a finer
threshold search, resultsindicate that threshold level of 6% is the best level with 100%
sengitivity, specificity and accuracy (shown in bold fonts). Similar to Haar LWT,
Bior2.2 LWT coefficients also show a good performance distinguishing falls from
ADLs when using most cD levels. In Table 3.3, cD1 aso outperformed other levels of
coefficients similar to Haar wavelet (shown in bold fonts). The reason maybe the
information contained by the data that is helpful when using SVM to classify activity.
Such information is level by level. Thus, cD1 had the most information while cD5 had
the least information. Generally, Haar was slightly better at distinguish ADLs from
falls than Bior2.2, whereas both LWT features outperform the root-mean square
acceleration alone. It isworth noting that these results are obtained by a comprehensive
human fall dataset with video captures obtained from (Kwolek & Kepski, 2014) which
allow the thresholds and detail coefficients can be predetermined. Current ongoing
work involves implementing the LWT and SVM on actual wearable sensor devices to

be evaluated online for human fall detection for accuracy and efficiency.

35 Summary

In this chapter, we propose a computationally light frequency domain feature
extraction method called lifting wavel et transform (LWT) for awearable sensor human

fall detection device combined with a fall identifier using support vector machine
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model. The performance of the LWT using Haar and Biorthogona2.2 wavelets,
together with the time domain feature of root-mean square acceleration have been
evaluated with raw dataset acquired from a single tri-axia acceleration sensor from an
existing human fall and activities of daily living dataset.

Based on the dataset, suitable thresholds and level of detail coefficients can be
predetermined. Consequently, the LWT frequency domain features are shown to have
better performance than time domain features in terms of sensitivity, specificity and
accuracy. Given a one-second window size under a sampling frequency of 60Hz, the
best threshold in terms of the percentage of fall labels “1” per window is as follows, 18%
for the time domain feature using the root-mean square acceleration, 8% for Haar and 6%
for Biorthogonal2.2 LWT wavelets when the SVM model is trained with both fall and
non-fall datasets (Model-3). The frequency domain feature from cD1 for both Haar and
Biorthogonal2.2 wavelets achieved 100% overall accuracy whereas 98.31% overall
accuracy was attained for the time domain feature, SV ig. All features achieved 100%
sengitivity from this dataset. In terms of specificity, the time domain feature, SV o,
attained up to 97.14% whereas the two LWT features attained 100%. Results suggest
that the proposed LWT and SVM model based on the findings in this chapter can serve
as a guideline for implementation in actual wearable sensor devices for human fall

detection in real time.



CHAPTER IV

FALL DETECTION COMPARISON BETWEEN

LIFTING AND CONTINUOUSWAVELET

TRANSFORM WITH SUPPORT VECTOR MACHINE

In the previous chapter, the performance of the proposed LWT and SVM model
for fall detection was investigated. Results show that the extracted frequency domain
features have significant influence on the performance of fall detection. In this chapter,
the performance of the proposed LWT combined with the SYM model is further
evaluated and compared with other frequency domain features. In particular, the
proposed scheme is compared with an existing frequency domain feature extraction
method for fall detection, caled the continuous wavelet transform (CWT). The
performance is evaluated in terms of accuracy, specificity, sensitivity and time

computational complexity.

4.1 Introduction

With the development of economics, there is an increasing requirement for
healthcare, especially for senior citizens. In 2015, 10% of the population in Thailand
were 65 or older and the proportion of old peopleisstill increasing rapidly (World Bank,

2017).
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Fals are life threatening risks for old people not only because fall-related
injuries, but also because the long-lie posture associated sequel ae after afall. Since the
elderly maybe unconscious or unableto call for help (Ozcan, Donat, Gelecek, Ozdirenc,
& Karadibak, 2005), it is necessary to develop afall detection system to help the elderly
people avoid falling down and long-lie posture after fall.

Wearable sensor systems make it possible to monitor human movement in daily
lifewithout invasion of privacy which isoften a concernin camera based fall detection
systems (Solanas et a., 2014), (Mazurek, Wagner, & Morawski, 2018). Moreover,
wearable sensor is cheap and light. Wearable sensors are often used in the form of
sensor fusion that contains accel erometers, gyroscope, pressure sensor and Sso on.

When it comes to the fall detection algorithms that identify falls from signals
obtained from wearable sensors, machine learning is a promising technique. Decision
tree (DT) is a basic machine learning method for fall detection. The simplest DT
follows the divide-and-conquer strategy (Mingers, 1989). Though DT is a smple
machine learning agorithm, it is difficult for DT to deal with continuous segments
according to the characteristics of tree model. In addition, the “error accumulation”
phenomenon (Q. R. Wang & Suen, 1984) is an inherent drawback of tree model or
algorithm. The artificial neural network (ANN) is also a commonly used machine
learning method inspired by brain neural network (Xu et a., 2013). ANN can handle
big and complex non-linear data, simultaneously. However, this ability may also lead to
long-time training process or even the failure of learning.

SVM isanother supervised machine learning method. The main ideaof SVM is
to map nonlinear separable samples into a high dimensional feature space where

samples can be divided by a plane called “hyperplane”. Many works applied SVM in
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fall detection (Pierleoni, Belli, et al., 2015) (Ozdemir & Barshan, 2014) due to its
generdization ability. However, kernel functions must be chosen according to the
specific problem, and there is no standard approach to find the best kernel type. Despite
these disadvantages, SVM is still a standard tool which means that there is a mature
toolbox for use, for instance, LIBSVM (Chang & Lin, 2011) and LIBLINEAR (Fan,
Chang, Hsieh, Wang, & Lin, 2008).

As dimension of the dataset increases in SVM, the data becomes sparser.
Furthermore, the large volume of data collected over along timetypically containsonly
asmall fraction needed to identify falls. Hence, feature extraction is essential to reduce
the amount of data and computational complexity. (Hossain, Islam, & Ali, 2017) and
(Tang & Sazonov, 2014) concentrated on extracting time domain features such as
average, maximum, minimum, variance of signals. Time domain features are simple
and can achieve arelatively satisfying results. (Hossain et a., 2017) used the mean and
standard deviation and reached an accuracy of 96.45%. (Tang & Sazonov, 2014)
proposed a time domain data reection SVM for human postures and activity
recognition.

However, signals contain more information than just time domain features. As
far as our knowledge, frequency domain features in fal detection were rarely
researched. CWT is a classic wavelet transform algorithm to extract time-frequency
information of signals. It is an improvement of STFT in terms of multiresolution.
Similarly, when the original signals are discrete sequences, DWT can be applied on the
sequences. In terms of computational complexity, that of wavelet transform is lighter
compared with STFT. Assuming that there is a signal with N samples, the

computational complexity of STFT is O(Nlog,N), and that of CWT is O(N). LWT
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reduced 50% computational complexity of CWT with similar overall accuracy (Yazar
et d., 2013).

Therefore, the main contribution of this chapter include, i) we proposed a fall
detection scheme based on a low computational frequency domain method based on
LWT combined with SVM using a dataset from waist-mounted accelerometer sensor
and ii) we compared it with an existing fall detection method based on CWT using Haar

wavelet and a customized wavelet based on average fals The chapter is organized as

follows. Section 4.2 gives a background on the underlying concept of wavelet
transform for frequency time domain feature extraction. Then fall detection method
based on support vector machine (SVM) is presented. In section 4.3, the dataset and
pre-processing method are described. Section 4.4 presents the experiment, results and

the discussion of the experiment. The conclusion is given in the last section.

42 Method
4.2.1 Continuous Wavelet Transform
Continuous wavelet transform (CWT) is a kind of WT (Daubechies,

1992). It is defined as follows:

Cla,b) == J,o fOW (=)dt. (4.1)

where * denotes the complex conjugate, and f(t) represents the function being
transformed, the function W(t) is the transforming function which is also called
“mother wavelet”. The mother wavelet has two important properties. Firstly, W(t)

should be compactly supported which implies that W(t) is a finite length function
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(window). Secondly, mother wavelet can be scaled and shifted by parameters “a” and
“b”, respectively. Scaling refers to “stretching” or “compressing” the mother wavelet
(Polikar, 1996). Shifting or translation parameter “b” means “delay” or “advancing” the

wavelet centered by value “b” in time-axis.

4.2.2 Lifting-based discrete wavelet transform
As described in section 2.1, lifting wavelet transform (LWT) is an
aternativeto DWT and an in-place a gorithm. Instead of using filtersto split, LWT uses
the “lazy wavelet” which simply splits the sequence into even and odd. It is the first
step for LWT. Secondly, the odd sequence is predicted based on the even sequence.
Thirdly, the difference between predicted odd and real odd which is called detail

information is used to update the even samples.

4.2.3 Support vector machine
Support Vector Machine (SVM) is a popular machine learning
method which was first proposed by Cortes and Vapnik in 1995 (Cortes & Vapnik,
1995). SVM isasupervised machine learning technique because the “label” of instance
when training the model isrequired. Basic SVM isalinear classification model defined
in the feature space. However, when combined with a Kernel function, SVM can

perform non-linear classification.

4.3 Proposed fall detection method

The proposed fall detection method is shown in
Figure 4.1. The WT sub-process represents CWT with Haar wavelet and the

customized average fall wavelet as well as LWT with Haar wavelet. The sub-process
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SVM, for thetesting set, is used to classify the testing dataset based on the trained SVM

mode!.

data

: windowing ;

/training, se/ /csti ng set /

max
(data points of an activity)

>threshold

yes
fall

no

WT

SVM

[ end

Figure 4.1 Experiment flow chart

The dataset used is collected by atri-accelerometer attached on subjects’” waist.
The subjects include 12 volunteers, 5 males and 7 females. Every volunteer applies 13
types of falls and 12 types of ADLs successively with free break intervals. Table 4.1

summarizes all the activity types collected.
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Table 4.1 The type of activities collected

No. Falls ADLs

1 Forward collapse (on knees) Sitting down on chair

2 Forward collapse (lying down) Standing up from chair

3 Forward fal (trying to get up for 30s) Collapsing into a chair

4 Backward collapse (sitting) Resting against a wall, then dliding

vertically down to the end of the
sitting position

5 Backward collapse (lying down) Lying down on a bed

6 Backward collapse (trying to get up for 30s) Getting up from a bed

7 Sideways collapse (Right) Jumping vertically

8 Sideways collapse (L eft) Pick up something from the floor
9 Fall from chair (slide) Bend forward and tie shoe laces

10 Forward fal with recovery (then walking)  Takethelift down
11  Forward fall with recovery (then standing) Take alift up
12  Collapsing into a bed -
13  Fall from bed (try to get up then fall) -

4.3.1 Perfor mance metrics

In order to evaluate the impact of different inputs on the performance

of SVM for fall detection based on tri-accelerometer data, we measured the true
positives (TPs) and true negatives (TNs), which correspond to the correctly identified
falls (positives) and ADLSs (negatives). We also measured false positives (FPs) and
false negatives (FNs), which correspond to the false identification of falls and ADLS,
respectively. These measurements are for the sake of the following metrics required to
evauate thefall detection metrics: sensitivity (SE), specificity (SP) and accuracy (AC).
The definition of these metrics can be found in chapter 111.

The results in the previous chapter showed that “Haar” wavelet outperformed
Bior2.2 wavelet for fall detection based on single tri-accelerometer sensor. Thus, LWT
and CWT in this chapter are based on the Haar wavelet. Furthermore, as did in

(Pamerini et a., 2015), we also compared CWT using Haar and a customized mother

wavelet based on averaged fall signals.
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The acquired datais then compared with athreshold before wavel et transform.
Activities whose maximum SV q4 is higher than the threshold are considered as falls
immediately. However, activities with amaximum SV lower than the threshold need
further analysis by the proposed WT-SVM agorithm. By adding a threshold, we have
less data which undergo wavelet transform and SVM, and thereby further reducing
computation.

It isnecessary to have aproper threshold value. There are 296 activitiesin total,
of which half of them are used astraining set and the other half are used astesting set. In
the training set, 78 of them are falls and the other 70 are ADLs. The average maximum
SViaa Of training falls is used as the threshold. Let the window size denoted by n.
Assume that, after windowing, the dataset is { A; , Fj | i=1.2....140, j=1.2....,156}
where Ai={x} x? . x['} denotesthei™ ADL, vector Fj ={y} y? . . yI'} denotes
thej™ fall, x} and y! arethe|™ value of SV ua of the ADL and fall dataset, respectively.

Thetraining dataset is{A1, Az, ..., Ao, F1, Fo, ..., Frg}, and the testing dataset is{ A,

A72,..., A140, Fro, Fso, ..., F155}. Thethreshold is glven by

¥ /2 max (Fj)
78 ’

Threshold = 4.2

where max(F;) is the maximum value functionin afall. If the seriesof { s} |1=1,2,...n},

78 ¥ . . L )
where s}= é% is a series of averaged sample points overall activities. This average
serieswill beused in MATLAB to create a customized fall mother wavelet for CWT.

(3) SVM sub-process after LWT and CWT

In the previous chapter, we found that Haar wavelet performed better than
Bior2.2 for fal detection based on tri-accelerometer data (Liang & Usaha, 2017).
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Therefore, Haar is used as mother wavelet for CWT and LWT in this chapter.
Additionally, the custom average fall wavelet is applied to construct CWT as in
(Pamerini et a., 2015) for comparison. The detailed process of SVM after CWT and
LWT isshownin

Figure 4.3.
SVM
WT WT
coefficients coefficients
for training for testing J

Y

scaling

 J

{

scaling

{

5-fold cross 5-fold cross
validation validation
model
~— e |
‘ results '
Figure 4.3 SVM detailed flow chart
Asshownin

Figure 4.3, after wavelet transform, the coefficients are the input of SVM.
Scaling is for normalization purposes. The next step is a 5-fold cross validation. Cross
validation is important for SVM since it prevents overfitting. This experiment uses
5-fold cross validation as suggested in (Chang & Lin, 2011). For the training set, SVM
creates a set of parameters which are called model. This moddl is used to classify the

testing dataas afall or an ADL.
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44 Resultsand discussion

This experiment uses sensitivity, specificity and accuracy to measure the
performance of input. The result showsthat LWT cD coefficients with threshold works
better than WT-SVM aone (without threshold). The best performance reaches up to
100% of accuracy, sensitivity and specificity which means that every activity in the
testing dataset is correctly identified. The worst performance appears in the maximum
coefficient of 2-second-window-CWT without threshold. A possible reason may be that
most falls occur in ashort period of time. Hence, there may not always be enough data

within a 2-second window.

4.4.1 CWT with Haar

The objective of this part is to compare the performance of CWT
coefficient features. The CWT coefficients are calculated from SV . Two different
features have been derived from the CWT coefficients. For the first feature, all CWT
coefficients are chosen as a high dimension feature to represent the activity. For the
second feature, only the maximum value of the CWT coefficients is selected as a
featureto represent an activity. In particular, let a fall dataset be-given by Fy ={y}, y7....,
y['}. After CWT, the coefficientsbecome C; ={¢;'. ¢/...., ¢/*}. Thus, these two features
are defined as follows: feature-1= C; ,and feature-2 = max(C;). Table 4.2 shows
comparable performance between the two features for CWT (Haar wavelet). More
significant improvement can be observed when the threshold for preliminary screening
of fals, prior to CWT is employed. The 1- and 2-second windows do not show

significant differences.
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Table 4.2 The performance of CWT (Haar wavelet) coefficients input into SVM

CWT (Haar) coefficients input into  SVM alone SVM + Threshold
SVM AC(%) SP(%) SE(%) AC (%) SP (%) SE (%)
l-second = All CWT Coefficients 59.5 58.6 60.3 90.5 97.1 84.6
Window Input Into SVM
Max. Coefficient Input 58.1 50.0 65.4 89.2 92.9 85.9
into SVM
2-second | All CWT Coefficients 55.4 343 74.4 90.5 100 82.1
Window Input Into SVM
Max. Coefficient Input 56.8 67.1 47.4 92.6 97.1 88.5
Into SVM

442 CWT customized wavelet and entire and max coefficients
Table 4.3 aso compares the performance of CWT coefficients
together with SYM (CWT-SVM) as well. However, in this part, the Haar wavelet was
replaced by a customized average fall wavelet calculated from described in section

4.3.2.

Table 4.3 The performance of CWT (Customize Wavelet) coefficients input into SVM

CWT (Customized Wavelet) coefficients SVM alone SVM + Threshold
input into SVM AC (%) SP (%) SE(%) AC(%) SP(%) SE (%)
l-second  All CWT Coefficients Input Into 59.5 58.6 60.3 89.9 914 88.5
Window SVM

Max. Coefficient Input Into SVM  64.2 729 56.4 91.9 95.7 88.5
2-second | All CWT Coefficients Input Into 54.7 44.3 64.1 89.9 97.1 83.3
Window SVM

Max. Coefficient Input Into SVM 50.7 18.6 795 90.5 100 82.1

Similar to Table 4.2, the threshold prior to CWT performs significantly better
than the method without threshold. In Table 4.3, the best total accuracy is 91.9% using

the 1-second window with threshold and max-coefficient CWT features.

4.4.3 LWT (Haar wavelet) coefficients
Table 4.4 shows the performance comparison between using LWT

with detailed coefficients (cD) and with both approximate and detailed coefficients (CA



and cD respectively) as features.

Table 4.4 The performance of LWT (Haar) coefficients input into SVM

LWT (Haar) coefficientsinput into SVYM SVM alone SVM + Threshold
AC (%) SP (%) SE(%) AC((%) SP(%)
1-second LWT coefficients cD input into 60.1 72.6 48.7 100 100
Window SVM
LWT coefficientscD and cA Input  62.8 58.6 66.7 90.5 100
Into SVM
2-second LWT coefficients cD input into 59.5 55.7 62.8 90.5 100
Window SVM
LWT coefficientscD and cA input  58.1 47.1 67.9 89.2 94.3
into SVM
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SE (%)
100

821
821

84.6

The 1-second-window LWT cD coefficients with threshold outperform the

other features. In thissituation, the accuracy, specificity and sensitivity achieved 100%.

In other words, using LWT (Haar) coefficients cD as features, SVM is able to classify

all thetesting activities correctly. Interestingly, the 1-second window with LWT ¢D and

CcA coefficients has the same number of input data as the 2-second window with LWT

cD coefficients, and they have exactly the same results. Moreover, cD consistently

outperforms cD and cA in same scenario. It may imply that cD and cA feature is

redundant compared with cD.

444 Computational complexity of LWT and CWT

Table 4.5 The time consumption of LWT and CWT

Time Time/loop(sec) Create Mother Total (sec)
wavelet (sec)
LWT (Haar) 6.9 - 6.9
CWT (Haar) 10.8 - 10.8
CWT(Custom Wavelet) 10.8 2.8 13.6

Table 4.5 illustrates the execution time for each agorithm using MATLAB
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R2014b @Windows 10.1. Because it is difficult to maintain a controlled performance
throughout the duration of simulation on the computer, we measured the oneloop (i.e. a
1-second window) of LWT and CWT, respectively. LWT shows shorter computational

time than CWT using Haar and customized fall wavelets.

45 Summary

In this chapter, we developed afall detection agorithm based on the proposed
LWT combined with the SYM model and compared it with additional frequency

domain features based on CWT-SVM with a new dataset from a tri-accelerometer
sensor. Since the 2-second window did not consistently contain sufficient amount of

data when the position of the peak is located towards the end of the dataset, the

1-second window performs better than the 2-second window. This is the case for both
LWT-SVM and CWT-SVM. Given an average of the maximum SVug Of training set
falls as a threshold prior to the wavelet transform, the WT-SVM algorithm shows a
significant improvement in accuracy from around 60% to over 90%.

Asfor theresults of CWT-SVM, we notice that the total accuracy isaround 90
with threshold, and under 60+ for most CWT without threshold cases The specificity is

typically higher than sensitivity, implying that CWT coefficients features tend to

classify testing activities asfalls Though not as good as LWT in the same condition, in

2-second window with threshold scenario, CWT has better result than LWT.

LWT cD coefficients with Haar using the 1-second-window with threshold can

achieve the highest accuracy, specificity and sensitivity of 100%. However, the best
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performance of CWT is 926« accuracy, 97.1% sensitivity and 88. 5% specificity, is
attained from the CWT with maximum-CD coefficient with Haar using the
2-secondwindow with threshold. Therefore, despite its light computational

requirement, LWT can outperform CWT frequency domain features. LWT aso
provides the shortest computational time per window when compared with CWT using

Haar and customized fall wavelets.



CHAPTER V

CONCLUSION AND FUTURE WORK

51 Conclusion
This thesis proposed lightweight algorithm to extract frequency domain

features for fall detection. The contribution of this work mainly lays on the light

computational cost frequency domain feature extraction method we proposed for fall

detection. Wavelet transforms were used in experiments to extract timefrequency
domain features In chapter 111, the proposed timefrequency domain features extracted

by LWT were compared with the time domain root sum square (RSS) features. Various
SVM models were investigated to determine the best possible model to be combined
with the LWT feature extraction. The best performance was achieved by the level 1

detailed coefficients (cD1) LWT with Haar wavelets using an 8% threshold, which
achieved atota accuracy, sensitivity and specificity of 100v.

Later in chapter 1V, additional frequency domain features, namely, the CWT
coefficients were compared with LWT coefficients combined with SVM. In particular,
the CWT based on Haar wavelet and CWT based on customized average fall wavelet

were compared with the proposed LWT with Haar wavelet. The proposed scheme

outperformed the CWT schemes for extracting fal detection frequency domain

features The best performance was attained from the LWT scheme using Haar wavel et

with level 1 coefficients (cD1) using a 1-second window with athreshold, achieving the
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highest accuracy, specificity and sensitivity of 100v%.
LWT aso showed a significant advantage over CWT in respect of time
computational complexity. As a feature extraction technique for SVM based fall

detection, LWT was amost twice as fast as CWT in the same scenario.

Despite the advantages of the proposed LWT-SVM method for fall detection, there

are certain limitations.

(1) Wearable sensors will encounter the dilemma of battery power usage despite
itslow computational requirement onboard in order to achieve long battery operationin
wearable sensors. The effect of the proposed LWT-SVM on the battery lifetime is not
yet investigated.

(2) The dataset used for experiments in this thesis were simulated falls from
young and healthy volunteers. Thus, the results of thiswork may not fully represent the
redistic falls of the elderly in their daily lives

3 The algorithm was designed based on data collected by an accelerometer

sensor aone for off-line fall detection. In order to achieve full online fall detection,
additional sensory data from other types of sensors as well as sensor fusion may be

needed.

5.2 Futurework

In the future, the issues worthwhile to investigate are the followings.

5.2.1 Developing thereated hardware

In this thesis, two datasets were used to evaluate the proposed
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algorithm. However, the dataset may be collected from actual hardware implementation
which has not been considered in thisthesis Issues related to the effects of the proposed

algorithm on the battery lifetime of the wearable sensor is also a significant matter for

investigation.

5.2.2 Multi-sensor nodes may wor ks better in some cases

The number of sensor nodes is also worthwhile investigating. In
(Ozdemir, 2016), the influence of the number of sensors on the performance of SVM
was studied. Whether the number of sensors have the same influence on our proposed

algorithm and the types of sensors required for the best performance should be

investigated.

523 Real world fall dataset
The experiments in this thesis are entirely based on simulated and
controlled fall datasets which have been collected from young and healthy volunteersin

the laboratory. Thus, even though the proposed method performs well in this thesis, it

remains uncertain whether or not this is the case in presence of real falls from the

elderly. Dueto thelack of real world fallsand activitiesin daily living environment, the

dataset of such nature will be vital for validating any fall detection scheme.
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Dataset used in chapter 111

There are more exampl es about the dataset used in chapter 111. Only 10 fallsand
10 ADLs are displayed below. In addition, only LWT with Haar wavelet was used to
illustrate the data processing since LWT with Bior2.2 follows a similar method.

The accelerometer was attached on the waist of the subjects.

A.1 Simulation data
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A.2 Simulation data after LWT
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Dataset used in chapter 1V
Only the dataset from one subject is illustrated as an example below. Other

subjects display similar movements.

B.1 Simulation data SV qa
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B.2 Simulation data SV after a 60 data points window
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B.3 Simulation data SV44 after LWT cD
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Abstract—Frequency domain features of inertial movement
enables multi-resolution analysis for fall detection, yet they are
computationally  intensive. This paper proposes a
computationally light frequency domain feature extraction
method based on lifting wavelet transform (LWT) which
provides computational efficiency suitable for real-time low
power devices such as wearable sensors for human fall detection.
LWT is combined with support vector machine (SVM) to
identify falls from activities of daily living. Performance of the
Haar and Biorthogonal 2.2 wavelets were compared with the
time domain feature of root-mean square acceleration using a
buman fall dataset. Results show that the first level detail
coeflicients features for both Haar and Biorthogonal 2.2
wavelets achieve good overall fall detection accuracy, sensitivity

and specificity.

L INTRODUCTION

A S many countries enter the era of aging society, they

face critical elderly people’s health threats which are fall
and related complications caused by the injury [1].
Considering the need of real-time monitoring and ease of use,
wearable sensor systems are one of the most promising
systems.

‘Wearable sensor-based fall detection systems, inherently
generate  comtinuous  monitoring of  physiological
measurements. Such system is usually a multi-sensor system,
comprising sensors such as accelerometers, gyroscopes,
pressure sensors and magnetometers. Datasets collected by
such wearable sensors are thus, typically multi-dimensional
and in large volumes. Such characteristics may cause hinder
data processing and fall detection capabilities. Some
researches therefore use feature extraction to reduce the
amount and the dimensions of data [2] by extracting only
necessary features. Existing feature extraction techniques
include two main domains. i.e., time and frequency domains.
Research such as [1], [3], [4] extracted time domain features
including the mean value. maximum value, minimum value
and variance, standard deviation of the patient’s physiological
movements and other special features such as entropy and
vertical direction.

'Cnu'rt—spuudiug authar
This work was financially supported by Suranaree University of
Technology under the MOU with Huazhong University of Science and
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In general. time domain features are straightforward and
easy to visualize which means light computational burden for
feature extraction. So the system is computationally efficient
in achieving a real-time fall detection. However, the time
domain statistical features considers only the displayed
observable trends [2]. Consequently, time domain features
may not suffice for accurate fall detection.

Conversely. frequency domain features make use the
spectral domain of the collected data which may not be clearly
observable in the time domain. Frequency domain features
were deployed for fall detection by [5] which used discrete
stationary wavelet transform (SWT). In [6], a short time
Fourier transform (STFT) was used for human activity
recognition, whereby a fall was a subset of data in a series of
continuous activities of daily living (ADLs). Ref. [7] created
a prototype wavelet of typical fall pattern by using the average
acceleration sum vector. The degree of similarity of the signal
to the prototype was then computed though wavelet analysis.
Results from the same classifier and real-world dataset
revealed that the wavelet based features outperformed than
other time domain features: upper and lower peak values.

Feature extraction alone only enhance the features of the
data acquired by the wearable sensors. However, to detect
weather a fall occurred relies on the performance of the
detection mechanism. The most common and simplest fall
detection is the threshold method [8]. Nevertheless, the
performance heavily depends on the fixed threshold level.
Hence., it is rarely used alone, and often combined with other
machine leaming methods such as decision tree (DT) [9].
[10], artificial neural networks (ANN) [11], hidden Markowv
model (HMM) [12]  and Support Vector Machine (SVM)
[4], [14], [15] can be combined to outperform the threshold
method [8], [14]. Among the machine learning methods,
SVM was found the most robust for fall detection when
compared to other methods such as threshold-based methods
and the decision tree method [8]. However, most works which
deploy SVM for fall detection use time-series features [8],
[16]. It was found that SVM fall detection performance can
be improved by a combination of time and frequency domain
features [4]. In particular, the discrete Fourier transform
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(DFT) was used to determine the spectral coefficients which
is computationally intensive [4]. On the other hand, the lifting
wavelet transform (LWT) is an efficient. light weight
frequency domain extraction method [17]. To the best of our
knowledge, there is no previous work that has combined LWT
with SWM for fall detection. This paper is therefore focused
on the study of feature extraction based on LWT used with
SVM to detect falls from ADLs using root-mean square value
from a single tri-axial acceleration sensor.

The paper is organized as follows. Section II presents the
proposed frequency analysis and the support vector machine
scheme proposed in the paper. The time domain feature which
is used for comparison is also introduced. In section IIL, the
experiment based on a comprehensive fall detection dataset is
described. Section IV presents the results and discussion and
finally conclusions is given in the final section.

1. METHOD

A. Frequency domain feature extraction

Feature extraction based on frequency analysis of the body
inertia collected from sensors has been studied in the recent
literature. Discrete wavelet transform (DWT) has been
proposed for mobility monitoring, posture transition and
activities classification in [18] using a single chest-mounted
sensors. In [19], another frequency domain feature extraction
method using short-time Fourier transform (STFT) was
proposed to shorten the calculation time of DWT. Despite
good results, the short time windows in STFT may not always
be suitable for human motion which varies greatly. If
windows are too short, STFT may be unable to identify the
frequency in such a short period of time. If windows are too
large, more information in time domain will lost. If the STFT
window size is fixed, STFT may not be suitable for fall
detection as human activities are flexible. Unlike DFT in [4].
LWT can be constructed from time series signal directly.
Unlike DWT in [I8]. LWT does not require convolution,
translation or dilation of traditional mother wavelets.
Furthermore, LWT allows in place calculation, with no need
for awpxiliary memory. Therefore, LWT  provides
computational efficiency suitable for real-time low power
devices such as wearable sensors. In the following subsection,
we describe LWT in more details.

B. Lifting Wavelet Transform

LWT has been introduced by Sweldens in 1997 [17]. The
scheme theory is often described as three steps: split, predict
and update. The split step is to split a signal into to two
independent sequences, i.e, the even half and odd half
sequences. Let x; be the original discrete signal at time index
i. Let even; (odd;) denote the i index of the even (odd)
sequence. We have that even; = x5; and odd; = x5,,4,i €
I

LWT is a recursive algorithm which splits the signal into
halves at each level. If the original signal has 2® elements, then
the next level will operate on 201} elements. Hence, if the
original signal has 256 elements, there will be 8 levels with
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the next level having 128 elements. The subsequent levels
will have 64, 32, 16, 8. 4. 2 and | element. The odd values in
the next level j+/ is predicted from the even value at level j:
cDjeri = odd;; - P( eveny: ) [§3]

where Pis the predict function which approximates the signal,
cD is the high frequency component of x;. This is called the
Predict phase. The even values at the next level can be found
from

cAjeri = evenii+ U ( cDjei ) 2)
where U is the update operation that updates on the
differences from the odd values, cA is the low frequency
component of x;. This is called the Update phase. The multi-
level lifting scheme can be summarized in Fig. 1. The
averages are sometimes called approximate coefficients
whereas the differences are called the detail coefficients.
There are two types of wavelets used in this paper.

1) Haar wavelet:

Predict :
Dy = oddii - eveny (3)

Update :
cAji1j = EVeni; 4—2CD}|I.i 4)

2) Biorthogonal 2.2 wavelet:

Predict :
cDjeri = oddji — %{B\’Enjj + Evenji. ) (5)

Update :
cAji = BVED;; +%{th15.| + cDjiid 6)

L]

o]

Even

| (3}
predict update
f

L5

ol

chl

Fig. | Forward lifting scheme

Figure 2 shows a sample fall plot of the original signal
and the first level LWT coefficient. The number of
coefficients of cAl {average or low frequency part) and cD1
(detail or high frequency part) are half of the original signal
according to the number of data points. By comparing cAl,
¢D 1 and the root-mean square acceleration (8 V) in Fig. 2,
it is seen that cAl greatly correlates with the original signal.
Note that cD1 also shows a peak similar to the original signal
signifying a fall which occurred during the red highlighted
window of one second. However, the baseline zero illustrated
a more distinguished fall feature than cAl. Therefore, cD1
was preferable than cAl for feature extraction of falls.
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C. Time domain feature

The tri-axial acceleration data collected contains Ax. Az, Ay
in x-axis, z-axis and y-axis as a function of time. All
accelerometer data were in factors of gravity units (g). The
accelerometer components were used to calculate the root-
mean square acceleration denoted by total sum vector SV g

Ly JAIZ+A3,2+A22 ; (M

D. Support Vector Machine

Support Vector Machine (VM) is a supervised machine
leamning model which is commonly used for anomaly
detection and classification [20], [21], [22]. As a supervised
learning model, SVM requires training from datasets with
“labels.” The SVM concept is to map a set of data points from
the real-world to a higher dimensional space. A boundary or
hyperplane is created in a high dimensional space by training
datasets to classify the features into fall or non-fall. Since the
fall detection system inherently generates long-term
continuous monitoring of physiological measurements, such
datasets are usually large. Such characteristic may cauose
difficulty in data processing. To reduce the amount of data
and achieve a higher calculating speed, the features of the data
may be extracted from these raw datasets.

To train the SVM, the data points in the dataset must be
labeled. For example, in time domain, SVies was directly
used as input feature. We labeled all the ADLs data points
with “-1" whereas falls were labeled “1.” Fig. 3 depicts a
sample plot of a fall along with non-fall activities like walking
around and lying on the ground. Point A shows the peak value
of the dataset. A highlighted window size with point A placed
at the middle of the window is comstructed. Within such
window, all the data points are labeled *1™ and the remaining
data points outside this window are labeled *.1.” The
goal of SVM is therefore to distinguish the labels among the
tested datasets using the model obtained from the trained data.
The data points are typically non-linearly separable to classify
in low dimensional space. However, if these points are
projected onto a higher dimensional space, it is possible to
find a hyperplane to classify the labels. Such projection is

obtained through use of kemel functions such as linear,
polynomial, sigmoidal, or the Gaussian radial base functions.
It is with this kernel trick that makes SVM a powerful model
to classify the labels in higher dimensional space. In the next
section, the experiment settings are presented.
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Fg. 3 Asample plot of fall 5V with data points inside window
highlighted

[II. EXPERIMENT

As mentioned in the previous section, SVM requires
training labeled datasets. As data input in the fall detection
scenario involves both non-falls and falls data. We trained
with both falls and non-falls italic in Table I.we first evaluate
the SVM model with a hybrid fall and non-fall activities. The
objective is to evaluate a suitable training dataset for SWM to
detect falls. For the sake of simplicity, only the time domain
feature (8Viou) 18 studied.

Once a SVM model is trained, we proceed to study the
comparison between features in the time domain (SViow) and
frequency domain (LWT using Haar and Biorgthogonal 2.2
wavelets). Note that there are existing works which combined
features in both time domain and frequency domain of data,
the type of sensors, the number and position of sensors on
human body, and in the volume of dataset for training and
testing [1]. [5]. From results gathered from existing literature,
we focus on data collected from a single tri-axial acceleration
sensor due to its low cost, reliability and efficiency.

A. Performance metrics

To ewvaluate the performance, we measure the True
Positives (TP) or True Negatives (TN) which refers to the
number of events correctly identified or comectly rejected.
False Positives (FP) or False Negatives (FN) which represent
the number of events incomectly identified or incomectly
rejected [23]. These measurements provide the following
necessary metrics required to evaluate the fall detection
method:

BT




1) Sensitivity (SE) or true positive rate is the capability to
detect a fall correctly. It is an indicator to judge whether a
system will miss a fall. It is given by

TP
SE = i 100% (8)

2) Specificity (SP) or true negative rate is the ability to detect
a fall only if a fall really occurred. It is to avoid false alarm
given by

™
5P =" X 100% (9)

3)Accuracy {AC) or correct rate refers to the overall freedom

from false. This is given by

TPATN
AC = pp—pp——_— 100% (10)

It is worth noting that SVM classifies data points
individually. However, to detect a fall within a certain
window as shown in Fig. 3. a set of data points must be
classified rather than just a single data point. Therefore, to
determine a suitable decision region to decide whether a fall
has occurred. we use a simple calculation for the percentage
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of predicted fall label *1” over the number of labels observed
in an activity to compare with a predetermined threshold:
- the number of predicted "1 n
the number of testing data polnts {
If T > threshold. the activity is a fall. Otherwise, else itis a
non-fall activity.

B. Training SVM Model

We hypothesize that the best type of training dataset will be
the combined set of both fall and ADLs dataset. Since not
only falls but also ADLs data are contained in the hybrid
training dataset, the more comprehensive information
contained in training dataset, the more likely the model will
decide correctly.

The dataset we used to train and test the SVM models have
been obtained from [24] including 70 activities (tri-axial
acceleration of 30 falls and 40 non-falls collected and video
recorded with Kinect camera) with details given in Table L
The tri-axial accelerometer data was sampled at 60Hz.
Therefore, a one-second window for fall detection consists of

TasLE L
DATASETS USED IN EXPERIMENT!

Data file Activities description Data file Activities description
Falls Activities
Jall-01-ace  From vertical falling left on the floor fall-16-ace From sitting falling right on the floor
Jall-02-gee  From siting falling left on the floor fall-17-ace From vertical falling forward on the floor
fall-03-ace  From vertical falling lefi on the floor fall-18-ace From sitting falling left on the floor
fall-04-acc  From sitiing falling lefi on the floor fall-19-acc From vertical falling right on the floor
Jall-05-ace  From vertical fulling right on the floor fall-20-acc From sitting falling right on the floor
Jall-§-ace  From sitting falling right on the fToor fall-21-acc From vertical falling right on the floor
fall-07-ace  From vertical falling lefi on the floor fall-22-ace From sitting falling left on the floor
fall-08-ace  From sitting falling right on the floor fall-23-ace From vertical falling right on the floor
fall-0%-acc  From vertical falling lefi on the floor fall-24-acc From sitting falling left on the floor
fall-10-acc  From sitting falling lefi on the floor fall-25-acc From vertical falling forward on the floor
fall-11-ace  From vertical falling right on the floor Jall-26-acc From sitting falling forward on the floor
fall-12-ace  From sitting falling right on the floor fall-27-ace From vertical falling forward on the floor
Jall-13-ace  From vertical fulling forward on the floor fall-28-ace From sitting falling forward on the floor
fall-14-ace  From sitting falling right on the floor fall-29-ace From vertical falling forward on the floor
fall-15-acc  From vertical falling forward on the floor [all-30-acc From sitting falling forward on the floor
Non-falls Activities (ADLs)
Data file  Activities description Data file Activities description
adl-01-ace  Walking, then squatting adl-21-ace From vertical lying on the bed
adl-02-ace.  Walking. then squatting adl-22-ace From vertical lying on the bed
adl-03-ace  Walking, then squatting adl-23-acc From vertical lying on the bed
adl-04-ace  Bending 90 degree to pick up something adl-24-ace Walking, then squatiing
adl-05-ace Squatiing to pick up something adl-25-acc From vertical to sitting onto a chair
adl-06-ace  Squatting to pick up something adl-26-acc Walking. then squatting
adl-07-ace  From vertical to sitting onte a chair adl-27-acc From vertical (o sitting onto a chair
adl-08-ace  From vertical 1o sitting onate a chair adl-28-ace Walking, then squatting
adl-08-acc  From vertical to sifting onto a bed adl-29-ace From vertical to sitting onto a chair
adl-If-ace  From veriical lying on the bed adl-30-acc From vertical lying lefiward on the ground
adl-11-acc  From vertical lying rightward on the bed adl-31-acc From vertical Fying forward on the ground
adl-12-ac¢  Walking, then squatting adl-32-acc From vertical lying forward on the ground
adl-13-ace  Walking. then squatting adl-33-acc From vertical lying forward on the ground
adl-14-acc  Walking, then squatting adl-34-acc From vertical lying forward on the ground
adl-15-acc  Bending 90 degree to pick up something adl-35-acc From vertical lying forward on the ground
adl-16-acc  Bending 90 degree to pick up something adl-36-acc From vertical lying rightward on the ground
adl-17-ace  Squatting to pick up something adl-37-acc From vertical lying rightward on the ground
adl-18-ace  From vertical 1o sitting onto a bed adl-38-acc From vertical lying forward on the ground
adl-19-ace  From vertical 1o sitting onto a chair adl-3%-ace From vertical lying forward on the ground
adl-20-acc  From vertical fo sitting onto a bed adl-4l-acc From vertical lying forward on the ground

Source: hitp:/ffenix_univ rzeszow_pli~mkepski/ds/uf htm]
! The italic activities were used as training dataset.
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60 data points. The dataset was divided into training set and
testing set based on activities in the matching video of each
data file. Table I consists of fall and non-fall (ADLs)
activities. The SVM model has been trained with the datasets
obtained in italics in Table I for a comprehensive dataset of
various falls and ADL activities.

Once the data points are labeled and trained, the SVM
model is obtained. The SVM model is then used to classify
the testing data. The dataset remaining (non-italic activities)
inTable I are used for testing. For each dataset tested, a data
point is labeled “1™ for data points predicted as a fall data
point, or “-17 for data points predicted as non-fall data point.
If the ratio of fall labels in an activity exceeds the determined
threshold, then a fall has been detected. For each tested
dataset, TP, TN, FP and FN is measured for the calculation of
SE. SP and AC to evaluate the SWVM model. Results are
presented in Section [V.

C. Comparing Time and Frequency domain features

This part of the experiment is to compare the time
domain feature (based on SViaa) and the frequency domain
features (based on Haar and Bioorthogonal 2.2 wavelets).
Using the SVM model obtained in the previous experiment. a
suitable level threshold level to detect a fall event for each
feature is then found. For each feature, the percentage levels
of threshold is tested at 10%, 20%, 30%. 40% and 50%. Then
level is tested at finer threshold values. Results are shown in
Table IL

We then investigate closely how multiple levels of LWT
coefficients affect the fall detection performance by
evaluating the first five levels of coefficients of the Haar and
Biorthogonal 2.2 wavelets. Results are shown in Table II1.

IV. RESULTS AND DISCUSSION

A. Training SVM Model

Results show that the SVM model trained and tested with
time domain datasets of both falls and ADL activities gave a
100% sensitivity, 97_14% of specificity and 98.31% accuracy.
It should be noted that the 100% sensitivity is obtained from
offline datasets with a predetermined threshold found from
observing these datasets. Furthermore, a larger dataset
collected from online simulated falls is currently under
investigation.

B. Comparing Time and Frequency domain feature

Table II shows the performance comparison between time
and frequency domain features at differemt levels of
thresholds.

1) Roor-mean square acceleration: Table II shows that the
best threshold for the time domain feature should be between
10% to 20%. With fine threshold tuning, it is found that a
threshold of 17-18% showed better preference than others
(shown in bold fonts). Therefore, we chose 17% as the
threshold to classify a fall or non-fall for time domain feature.

2)LWT with Haar Wavelet: The appropriate threshold for
Haar LWT is found by also ranged from 10% to 50%. As

shown in Table I, the best achieved threshold should be under
10%. To fine tune the threshold levels, the threshold is varied
from 2% to 10%. It is found that the threshold at 8%
outperformed other levels (shown in bold fonts). Thus, we
chose 8% as the threshold for LWT using Haar wavelet. In
Table II1, multiple levels of LWT coefficients (cD1 to cD5)
are evaluated. When tested with ADLs & Falls dataset, all
specificity, specificity and accuracy values of 100% was
achieved only in cD1 (shown in bold fonts). This result
indicated that Haar LWT CD1 coefficients achieved a goal
such that no ADL has been misclassified as a fall and detected
most of the falls when training and testing using finite
activities in Table [

3) LWT with Biorthogonal 2.2 Waveler: From Table II, the
optimal threshold for Biorthogonal 2.2 (Bior 2.2) should be
under 10%. With a finer threshold search., results indicate that
threshold level of 6% is the best level with 100% sensitivity,
specificity and accuracy (shown in bold fonts). Similar to
Haar LWT, Bior 2.2 LWT coefficients also show a good
performance distinguishing falls from ADLs when using most
cD levels. In Table IIL, cD1 also outperformed other levels of
coefficients similar to Haar wavelet (shown in beld fonts).
The reason may be the information contained in the frequency
components that is helpful to classify activities by SVM. The
c¢Dl components contained the most distinguishable
information of falls, while cD5 contained the least
information. Generally, Haar was slightly better at
distinguishing ADLs from falls than Bior 2.2, whereas both
LWT features outperform the time domain feature of root-
mean square acceleration alone. It is worth noting that these
results are obtained by a comprehensive human fall dataset
with video captures obtained from [24] which allow the
thresholds and detail coefficients to be predetermined offline.
Current ongoing work involves implementing the LWT and
SVM on actual wearable sensor devices to be evaluated online
for human fall detection for accuracy and efficiency.

V.CONCLUSIONS

In this paper, we propose a computationally light frequency
domain feature extraction method called lifting wavelet
transform (LWT) for a wearable sensor human fall detection
device combined with a fall identifier using support vector
machine model. The performance of the LWT using Haar and
Biorthogonal 2.2 wavelets, together with the time domain
feature of root-mean square acceleration have been evaluated
with raw dataset acquired from a single tri-axial acceleration
sensor from an existing human fall and activities of daily
living dataset.

Based on the dataset, suitable thresholds and level of detail
coefficients can be predetermined. Consequently, the LWT
frequency domain features are shown to have better
performance than time domain features in terms of sensitivity,
specificity and accuracy. Given a one-second window size
under a sampling frequency of 6(Hz, the best threshold in
terms of the percentage of fall labels (*17) per window is as
follows, 18% for the time domain feature using the root-mean
square acceleration, and 8% for Haar and 6% for




®E2

Biorthogonal 2.2 LWT wavelets when the SVM model is
trained with both fall and non-fall datasets. The frequency
domain feature from cD1 for both Haar and Biorthogonal 2.2
wavelets achieved 100% overall accuracy whereas 98.31%
overall accuracy was attained for the time domain feature,
SV All features achieved 100% sensitivity from this
dataset. In terms of specificity, the time domain feature,
SVigw, attained up to 97.14% whereas the two LWT features
attained 100%. In a final note, ongoing work involves
implementing the LWT and SVM on actual wearable sensor
devices to be evaluated for human fall detection accuracy and
reliability in real-time.
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