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CHAPTER I

OVERVIEW

1.1 Introduction

Decision makers are increasingly demanded climate information at the

national to local scale in order to address the risk posed by projected climate changes

and their anticipated impacts. Readily available climate change projections are

provided at global and continental spatial scales for the end of the 21st century

(Intergovernmental Panel on Climate Change (IPCC), 2007). These projections,

however, do not fit the needs of sub-national adaptation planning that requires

regional and or local projections of likely conditions five to 10 years from now.

Moreover, decision makers are interested in understanding the impacts of climate

change on specific sectors, e.g., agricultural production, food security, disease

prevalence, and population vulnerability.

In response to this demand, numerous impact and vulnerability assessments

produced at different scales, from global to local, provide climate change impact

results at spatial scales much finer than those at which projections are initially made.

To produce such results, combinations of methods and indicators are often used, each

with its own assumptions, advantages, and disadvantages. In reports, these essential

factors may not be adequately communicated to the reader, thus leaving him/her

without the ability to understand potential discrepancies between different reports.
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Often, global or continental-scale information is directly used to produce local-scale

impact maps, which is not appropriate since this large-scale information does not

account for differences at the local scale. In order to derive climate projections at

scales that decision makers desire, a process termed downscaling has been developed.

The impact assessment studies of climate change in various basins different part of

the world indicate changes in the amount of precipitation, its frequency and intensity

affecting the magnitude and seasonal pattern of streamflow.

Flood inundation maps are a major tool for mitigating the effects of flooding.

They provide predictions of flood extent and depth that are used in the development

of spatially accurate hazard maps. These allow the assessment of risk to life and

property in the floodplain, and the prioritization of either the maintenance of existing

flood defenses or the construction of new ones. Flood plain maps indicate the

geographical areas, which could be covered by a flood according to one or several

probabilities: floods with a very low probability or extreme events scenarios; floods

with a medium probability (likely return period 100y); floods with a high

probability.

Flood hazard maps are detailed flood plain maps complemented with: type of

flood, the flood extent; water depths or water level, flow velocity or the relevant water

flow direction.

Flood risk maps indicate potential adverse consequences associated with

floods under several probabilities, expressed in terms of the indicative number of

inhabitants potentially affected type of economic activity of the area potentially

affected installation which might cause accidental pollution in case of flooding; other

information which the member state considers useful. To overcome some of the
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inconveniences of traditional flood risk assessment methods, a qualitative multi

criteria index, called Flood Risk Index (FRI) is currently applied.  This approach

considers not only flood properties but also social-economic characteristics of the

affected area and population (Zonensein et al. 2008).

Flood vulnerability maps present the degree of fragility of a (natural or socio-

economic) community or a (natural socioeconomic) system towards natural hazards.

It is a set of conditions and processes resulting from physical, social, economical and

environmental factors, which increase the susceptibility of the impact and the

consequences of natural hazards. Vulnerability is determined by the potential of a

natural hazard, the resulting risk and the potential to react to and/or to withstand it, i.e.

its adaptability, adaptive capacity and/or coping capacity.

Floods are destructive natural phenomena which can lead to serious problems

in lowland regions, resulting in significant loss of human life and affecting fertility of

natural resources and man-made properties. For example, during August and

September 2005, the Chiang Mai Province had experienced at least 4 severe floods

resulted from overbank flow from Ping River after having prolonged upstream intense

rainfall. This event resulted in almost half of the municipal area was inundated for

several days and was regarded as being worst flooding scenario ever seen in the

province for almost 50 years. The total damage was estimated about more than 5

billion baths. At the peak flood, the water level recorded from gauge station P.1 at the

Navarat Bridge was as high as 4.93 meter while the critical value for having flood (or

overbank flow) was approximately at 3.70 meter only (Chatchawan, 2005).

Minyan et al., (2009) applied 1D flood model HEC-RAS for the Ping River

and estimated the inundation area and flood depth for the year 2005 flood event in
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Chiang Mai province. The sub objectives were to verify the model by comparing the

flood inundation area and depth with the remote sensing image and surveyed data and

prepared hazard map. HEC-GeoRAS was used as an interface between Arc-View and

HEC-RAS. The final inundation map was visualized in ArcView GIS and used for

hazard analysis. The general procedure adopted for inundation modeling consists

basically of four steps; i) GeoRAS pre-processing to generate a HEC-RAS import file,

ii) running of HEC-RAS to calculate water surface profiles, and iii) post-processing of

HEC-RAS results, and iv) flood hazard mapping. The pre-processing phase included

generation of DEM of the floodplain and the riverbed followed by centerline

extraction of the river and creating cross-sections in the river. Geometric corrections

of the floodplain and the river cross-sections in HEC-RAS were a part of the running

of HEC-RAS phase. The post-processing comprised of the comparison of the model

outputs with the extent and depth of satellite image and field data. Hazard analysis

comprised of the using the model output for hazard zone in a GIS-based analysis.

From the result, it was observed that the areas of 14 districts were inundated by the

year 2005 flood, which was reasonably close to the base map classified from Landsat7

(ETM+) data acquired during the flood time. And the flood depth varies from 0 to

1.68 meter depth in the flood plain which is in conformity with the data taken during

the field survey. The total area under hazard was 1,579 km2. Out of this area, 274 km2

was low hazard, 410 km2 was medium hazard while 555 km2 was high hazard and 338

km2 was under very high hazard category. The numbers of schools, hospitals,

factories affected by the 2005 flood were calculated by overlaying them with the final

hazard map. And there are 590 numbers of schools, 142 numbers of hospitals, and

451 factories were affected by this flood event.
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Duong et al., (2015) used runoff generation data from the MRI-AGCM3.2S

dataset. This data was fed into distributed flow routing model 1K-FRM to project

river discharge under a changing climate. Flow routing model 1K-FRM was

developed in the Hydrology and Water Resources Research Laboratory, Kyoto

University. The MRI-AGCM3.2S is the latest version of super-high-resolution

atmospheric general circulation model which was jointly developed by Japan

Meteorological Agency (JMA) and Meteorological Research Institute (MRI). Two

river basins located in Kyushu (Japan) were selected as study areas, the Chikugo river

basin and the Oyodo river basin. Since the observed runoff generation data is not

available, the land surface model Simple Biosphere including Urban Canopy (SiBUC)

was applied to reproduce runoff generation data to use in bias correction of the MRI-

AGCM3.2S’s output. SiBUC model was developed in the Disaster Prevention

Research Institute, Kyoto University. Corrected runoff generation data were used to

project river discharge and examined the changes in river discharge in those two

basins under a changing climate.

Takahiro et al., (2015) presents a method to evaluate the impact of climate

change by using GCM output and a Rainfall-Runoff-Inundation (RRI) model. The

GCM used in this study is MRI-AGCM3.2S and 3.2H, the former one is the finest

spatial resolution GCM in the world (20 km), while the latter one (60 km) is used to

provide ensemble information with different cumulous schemes and sea surface

temperature clusters to assess the uncertainty. In particular, this study focuses on

flood inundation volumes in the Chao Phraya River basin in Thailand to evaluate how

the frequency of devastating flooding like the one in 2011 will change in future under

SRES-A1B scenario (2075-2099). The simulation results indicated the possible
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increase in average monsoon rainfall by approximately 1.1 times and the average

flood inundation volume by 1.4 times, and accordingly shorten the return period of

the large scale flooding in the future.

Pukongduean (2014) applied MIKE21 (2D hydrodynamic model) to generate

urban flood severity map for Mueang Nakhon Ratchasima. Combining with the

integration of physical, social, economic and environmental factors using GIS-based

multiplication to generate urban flood vulnerability index and its classification map.

From the result, simulated urban flood of reducing historical discharge in 2010 at Kud

Hin Watergate by 10% was applied to simulate flood extent and economic value loss

in different scenarios to optimize minimal flood extent and economic value loss for

flood mitigation and prevention. Based on calibration process of MIKE 21 between

the derived flood extent by model and flood record of Nakhon Ratchasima province in

2010 by Geo-Informatics and Space Technology Development Agency, it found that

constant Manning's N is capable to give good comparable flood extent. Urban flood

extent had represented the highest extent on 24 October 2010 with area of 88.36 km2.

The agricultural land is the main land use that was affected from flood with area of

76.89 km2, followed by urban and built-up area of 7.74 km2. The simulated flood

depth during 14-27 October 2010 ranged between 0.10 and 3.91 m. while flood

velocity varied from 0.00 to 2.06 m/s. Meanwhile, 8 days flood duration created the

highest flooded area of 18.48 km2. For urban flood severity analysis, the combination

of the normalized of flood depth and velocity was classified into 5 classes: very low,

low, moderate, high and very high using standard deviation classification method

covered area of 29.27, 36.24, 16.76, 4.16 and 2.31 km2, respectively. Meanwhile,

urban flood vulnerability index values were classified into 5 classes: very low, low,
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moderate, high and very high using standard deviation classification covered area of

83.70, 2.17, 1.11, 0.66 and 1.13 km2, respectively. Furthermore, urban flood

simulation for flood mitigation and prevention had illustrated that when historical

discharge in 2010 at Kud Hin Watergate was reduced by 60% or less than 17.82 m3/s,

it can mitigate urban flood and when discharge was reduced by 67% or less than

14.70 m3/s, it can prevent urban flood in Mueang Nakhon Ratchasima district.

The objective of this work is to study the impacts of climate change on

maximum annual discharges in the upper Ping River of Thailand and focusing on the

future expansion of flood inundation in community area of Chiang Mai municipality

and its vicinity, which is an initial step to develop flood hazard map (Osti, et al.,

2008)

1.2 Aim and Significance

1.2.1 Develop bias corrected RCM data or distribution mapping based on

derived Adjustment Factors (AF), which is the ratio between observed and simulated

rainfall for a given frequency of occurrence.

1.2.2 Develop 1-D flood routing model and quasi 2-D floodplain inundation

model which is applied for mapping space-time flood extent to the floodplains of

Chiang Mai, north of Thailand and used to estimate a time series of hourly flood

maps.

1.2.3 Construct future flood inundation map of Ching Mai Municipality as a

consequence of climate change.



8

Flood inundation map with 100 years return period is a standard indicators for

flood protection and mitigation. For Chiang Mai municipality, only observed flood

extent from past floods was recorded to draw inundation map.

Reliable flood inundation map (100 years return period) which including the

pact of climate changes is still not available for Chiang Mai municipality. This flood

inundation map will be required for implementation and assessment of future flood

protection measures for both structural and non-structural measures such as flood

likes, diversion channel, building permits, environmental regulations and flood

insurance.

1.3 Background

1.3.1 GCMs and RCMs data

(1) General Circulation Models

General or global circulation models (GCMs) simulate the Earth’s climate

via mathematical equations that describe atmospheric, oceanic, and biotic processes,

interactions, and feedbacks. They are the primary tools that provide reasonably

accurate global-, hemispheric-, and continental-scale climate information and are used

to understand present climate and future climate scenarios under increased greenhouse

gas concentrations.

A GCM is composed of many grid cells that represent horizontal and

vertical areas on the Earth’s surface (see Figure 1.1). In each of the cells, GCMs

compute the following: water vapor and cloud atmospheric interactions, direct and

indirect effects of aerosols on radiation and precipitation, changes in snow cover and

sea ice, the storage of heat in soils and oceans, surfaces fluxes of heat and moisture,
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and large-scale transport of heat and water by the atmosphere and oceans (Wilby et

al., 2009).

The spatial resolution of GCMs is generally quite coarse, with a grid size of

about 100-500 kilometers. Each modeled grid cell is homogenous, (i.e., within the cell

there is one value for a given variable).

Figure 1.1 Conceptual structure of a GCM, Source: Wilby et al. (2009).

Uncertainty of GCM projections

Confidence in global-scale GCM projections is based on well-understood

physical processes and laws, the ability of GCMs to accurately simulate past climate,

and the agreement in results across models (Daniels et al., 2012). Multiple model

comparisons unanimously project warming of globally averaged near-surface

temperature over the next two decades in response to increased greenhouse gas
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emissions. However, the magnitude of this increase varies from one model to another.

Additionally, in certain regions, different models project opposite changes in rainfall

amount, which highlights the uncertainty of future climate change projections even

when sophisticated state-of-the art GCM tools are used.

There are four main sources of uncertainty in climate projections:

1. Uncertainty in future levels of anthropogenic emissions and natural

forcings (e.g., volcanic eruptions);

2. Uncertainty linked to imperfect model representation of climate

processes;

3. Imperfect knowledge of current climate conditions that serve as a

starting point for projections; and

4. Difficulty in representing interannual and decadal variability in long-

term projections.

Efforts are made to quantify these uncertainties. The future evolution of

greenhouse gas emissions is highly uncertain due to socio-economic, demographic,

and technological evolution. Alternative greenhouse gas emissions scenarios are used

to drive GCMs in order to obtain a range of possible future outcomes. Additionally,

models require initial conditions (Current state of the atmosphere.) to begin the

forecast, and these are also not known with high accuracy. Therefore, projections are

performed starting from slightly modified initial conditions to obtain a series of

simulations, termed an ensemble. Finally, models cannot perfectly simulate all

climate processes; therefore, simulations from multiple models are produced, and a

multi-model ensemble mean or median (Different GCMs simulate certain climate
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processes accurately and others erroneously. Thus, a variety of GCMs are run, and the

mean of this ensemble is determined to be the best estimate projection) is thought to

be the most probable future climate trajectory. The spread among the individual

simulations in a multi-model ensemble are an estimate of uncertainty due to sources 2

and 3 in the preceding list. It is important to communicate uncertainty in climate

change projections and provide the following messages:

- Uncertainty does not mean that future projections are unknown or false.

- Uncertainty can be quantified.

- Decisions can be made in the face of uncertainty. For example, decisions

are routinely made in the context of military operations and financial investments

when uncertainty is greater than that of climate projections.

Figure 1.2 illustrates uncertainty in GCM simulation of historical global

temperature change (IPCC, 2007). The black line represents observed temperature

anomalies, and each yellow line is a simulation produced by an individual GCM with

the red line being the multi-model ensemble mean. The spread between the

simulations illustrates uncertainty. Note that although the individual GCM simulations

provide different results, there is consensus and general agreement between the

models.
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Figure 1.2 Global mean temperature anomalies (Relative to the 1901–1950 mean).

Observations (black), simulations by 14 different GCMs (yellow) driven

by

natural and anthropogenic emissions, and the mean (red),

Source: IPCC (2007).

Uncertainty is compounded with downscaling due to assumptions that are

inherent in models. With each modeling stage, uncertainties are naturally added

because more assumptions are made. Although downscaling can provide decision

makers with the ability to visualize relevant, fine-resolution climate features, a

tradeoff is that uncertainty and error are difficult to quantify. Thus, evaluating

tradeoffs in error created by the downscaling process versus uncertainties in GCM

outputs is important. Often, practical information can be derived from GCMs alone

(e.g., magnitude of temperature increase), which may be sufficient to identify

potential impacts and a range of possible management options.
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Figure 1.3 Four families of scenarios depending on these behavioral patterns of future

societies as described in the Special Report on Emissions Scenarios

(SRES). Adapted from IPCC, 2001: Climate Change 2001: Synthesis

Report.

Different Future Socio-Economic Development Paths

Each of these four families has a storyline that describes the global

population and energy consumption patterns and the associated greenhouse gas

emissions (IPCC, 2001). (see Figure 1.3)

Scenario A1 represents high economic growth and global perspectives to

economic and environmental issues. It is further subdivided into a scenario continuing

to emphasize intensive use of fossil fuels (A1FI), one being energy intensive but with

emphasis on use of non-fossil energy (A1T), and a scenario with a balance of fuel

sources between fossil and non-fossil (A1B). Global population peaks about 2050 and

then declines.

Scenario A2 assumes self-reliance and preservation of local identities.

Developing regions are less influenced by developed countries, so that, for instance,
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fertility follows local historical traditions rather than patterns of developing countries.

Global population does not peak in mid-century. Economic development is linked to

regional rather than global patterns.

Scenario B1 has global population peaking around 2050 and declining

thereafter. Economic growth is more globally linked but with introduction of clean

and resource-efficient technologies. Social equity is emphasized with global attention

to economic, social and environmental problems. However, there are no global

restrictions on emissions of greenhouse gases.

Scenario B2 has an increasing global population, but somewhat less than

A2, which does not peak in mid-century. Emphasis is on a local approaches to

addressing economic, social, and environmental sustainability. Emphasis is on

environmental protection and social equity through local approaches. Economic

development is not as rapid as in B1 and A1 but with more diverse technological

change.

(2) Regional Climate Model

Regional climate model (RCM), similar to a GCM in its principles but

with high resolution. RCMs take the large-scale atmospheric information supplied by

GCM output at the lateral boundaries and incorporate more complex topography, the

land-sea contrast, surface heterogeneities, and detailed descriptions of physical

processes in order to generate realistic climate information at a spatial resolution of

approximately 20-50 kilometers (see Figure 1.4). Mean annual temperature is

presented at 500 kilometer typical GCM grid cell; 50 kilometer typical RCM grid cell;

and 1 meter, which requires statistical downscaling.
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Figure 1.4 Mean annual temperature (1961–1990), Source: Daniels et al. (2012).

1.3.2 Downscaling technique

Although GCMs are valuable predictive tools, they cannot account for

fine-scale heterogeneity of climate variability and change due to their coarse

resolution. Numerous landscape features such as mountains, water bodies,

infrastructure, land-cover characteristics, and components of the climate system such

as convective clouds and coastal breezes, have scales that are much finer than 100-

500 kilometers. Such heterogeneities are important for decision makers who require

information on potential impacts on crop production, hydrology, species distribution,

etc. at scales of 10-50 kilometers.

Various methods have been developed to bridge the gap between what

GCMs can deliver and what society/businesses/stakeholders require for decision

making. The derivation of fine-scale climate information is based on the assumption

that the local climate is conditioned by interactions between large-scale atmospheric

characteristics (circulation, temperature, moisture, etc.) and local features (water

bodies, mountain ranges, land surface properties, etc.). It is possible to model these
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interactions and establish relationships between present-day local climate and

atmospheric conditions through the downscaling process. It is important to understand

that the downscaling process adds information to the coarse GCM output so that

information is more realistic at a finer scale, capturing sub-grid scale contrasts and

inhomogeneities. Figure 1.5 presents a visual representation of the concept of

downscaling. Many of the processes that control local climate, e.g., topography,

vegetation, and hydrology, are not included in coarse-resolution GCMs. The

development of statistical relationships between the local and large scales may

include some of these processes implicitly.

Figure 1.5 The Concept of spatial downscaling, Source: Viner. (2012).

Downscaling can be performed on spatial and temporal aspects of climate

projections. Spatial downscaling refers to the methods used to derive finer-resolution
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spatial climate information from coarser-resolution GCM output, e.g., 500 kilometers

grid cell GCM output to a 20 kilometers resolution, or even a specific location.

Temporal downscaling refers to the derivation of fine-scale temporal information

from coarser-scale temporal GCM output (e.g., daily rainfall sequences from monthly

or seasonal rainfall amounts). Both approaches detailed below can be used to

downscale monthly GCM output to localized daily information.

(1) Dynamical Downscaling

General Theory

Dynamical downscaling refers to the use of an RCM driven by a GCM to

simulate regional climate. An RCM is similar to a GCM but has higher resolution and

additional regional information, which enables it to better represent local landscape

and possibly local atmospheric processes. The global model simulates the response of

the global circulation to changes in atmospheric composition through a large number

of processes, but some of them need to be approximated due to the coarse resolution

of the models. On the other hand, at the resolution of 25-50 km for portions of the

globe, the RCM is able to capture some of those smaller-scale processes more

realistically. Atmospheric fields (e.g., surface pressure, wind, temperature, and

humidity) simulated by a GCM are fed into the vertical and horizontal boundaries of

the RCM. Locally specific data and physics-based equations are then used to process

this information and obtain regional climate outputs. The primary advantage of RCMs

is their ability to model atmospheric processes and land cover changes explicitly.

Assumptions and Caveats

Although there has been great advancement during the past decade in the

technical ability of RCMs to simulate regional climate, significant challenges and
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concerns still exist. Since smaller grid cells, more surface information, and often more

processes are included in an RCM, the number of computations might be as large, if

not larger, than in a GCM that covers the entire globe. Thus, RCMs are

computationally demanding and may require as much processing time as a GCM to

compute projections (Wilby et al., 2009). They also require a substantial amount of

input, e.g., surface properties and high-frequency GCM information. In addition,

complex calibration procedures are often needed to make realistic simulations.

Just like GCMs, RCMs have difficulty accurately simulating convective

precipitation, which is a major concern for tropical regions. Most RCMs also do not

accurately simulate extreme precipitation. A systematic bias that can worsen as the

resolution is increased. Statistical bias corrections often need to be performed to better

match the model output to the observations (Brown et al., 2008). In some cases, fine

adjustments to the convective schemes can improve the realism of simulated rainfall,

but these adjustments require substantial expertise and reduce geographic portability

Regional Climate Models and Application

RCMs are developed by research institutions that have sufficient

computational capacity and technical expertise. Various RCMs differ in their

numerical, physical, and technical aspects. The most commonly used RCMs in

climate change downscaling studies include the U.S. Regional Climate Model Version

3 (RegCM3); Canadian Regional Climate Model (CRCM); UK Met Office Hadley

Centre’s Regional Climate Model Version 3 (HadRM3); German Regional Climate

Model (REMO); Dutch Regional Atmospheric Climate Model (RACMO); and

German HIRHAM, which combines the dynamics of the High Resolution Limited

Area Model (HIRLAM) and European Centre-Hamburg (ECHAM) models.



19

Although the above models have been developed primarily over North

America and Europe, they can be adapted to any region of the globe by incorporating

appropriate information on terrain, land-cover, hydrology, and so on; hence, several

RCM can be used over a given region. However, downscaled results can differ

depending on which RCM(s) is used. It is important to recognize that a single RCM

will most likely not provide ‘accurate’ results; therefore, researchers, practitioners,

and decision makers should utilize the results with caution, keeping in mind

dynamical downscaling assumptions and caveats.

Most intensive downscaling studies and projects utilize various RCMs to

produce a multi-model ensemble and further validate results against observations. A

variety of climate change assessment projects have been established to provide high-

resolution climate change scenarios for specific regions. They are usually multi-

country, multi-institutional, large-scale projects. They are an important source of

regional projections as well as of additional information about RCMs, methods, and

even characteristics of current regional climate.

(2) Statistical Downscaling

General Theory

Statistical downscaling involves the establishment of empirical

relationships between historical large-scale atmospheric and local climate

characteristics. Once a relationship has been determined and validated, future large-

scale atmospheric conditions projected by GCMs are used to predict future local

climate characteristics. In other words, large-scale GCM outputs are used as

predictors to obtain local variables or predictands. Statistical downscaling
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encompasses a heterogeneous group of methods that vary in sophistication and

applicability (see Table 1.1).

Statistical downscaling methods are computationally inexpensive in

comparison to RCMs that require complex modeling of physical processes. Thus, they

are a viable and sometimes advantageous alternative for institutions that do not have

the computational capacity and technical expertise required for dynamical

downscaling. Unlike RCMs, which produce downscaled projections at a spatial scale

of 20-50 kilometers, statistical methods can provide station-scale climate information.

Assumptions and Caveats

Although statistical downscaling is efficient, computationally inexpensive,

and consists of a diverse group of methods, it contains the following inherent

assumptions:

1. The statistical relationship between the predictor and predictand does

not change over time.

2. The predictor carries the climate change signal.

3. There is a strong relationship between the predictor and predictand.

4. GCMs accurately simulate the predictor.

The first point is known as the stationarity assumption and postulates that

the statistical relationship between the predictor and predictand remains stable into the

future. Whether relationships based on present associations will be upheld under

future climate conditions is unknown. The second is the assumption that the large-

scale variable represents the climate system and captures any change that may occur

in the future. Assumption three implies that the strength of the relationship should be

initially evaluated to determine its validity. Assumption four relates to the ability of a
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GCM to simulate climate variables observed in the past as well as their future

evolution. Predictor validations are usually performed prior to a given GCM’s use in

downscaling schemes.

Main Categories

Statistical downscaling consists of a heterogeneous group of methods that

vary in sophistication and applicability. They are all relatively simple to implement

but require a sufficient amount of high-quality observational data.

Methods can be classified into three main categories:

1. Linear methods: Establish linear relationships (i.e., some type of

proportionality), between predictor(s) and predictand. Linear methods are very

straightforward and widely used, and they can be applied to a single predictor-

predictand pair or spatial fields of predictors-predictands. The greatest constraint is

the requirement of a normal distribution of the predictor and the predictand values,

which means that it cannot be used to predict the distribution of daily rainfall because

it is typically non-normal (frequent small amounts of rainfall and a few heavy events

generally make the distribution not symmetrical). These methods are primarily used

for spatial downscaling.

2. Weather classifications: The local variable is predicted based on large-

scale atmospheric states. The states can be identifiable synoptic weather patterns or

hidden, complex systems. The future atmospheric state, simulated by a GCM, is

matched with its most similar historical atmospheric state. The selected historic

atmospheric state then corresponds to a value or a class of values of the local variable,

which are then replicated under the future atmospheric state. These methods are

particularly well suited for downscaling non-normal distributions, such as daily
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rainfall. However, a large amount of observational daily data (e.g., 30 years of daily

data for the region of interest) is required in order to evaluate all possible weather

conditions. In addition, these methods are more computationally demanding in

comparison to linear ones, due to the large amount of daily data analyzed and

generated.

3. Weather generators: These statistical methods are typically used in

temporal downscaling. For example, they are used to generate daily sequences of

weather variables (e.g., precipitation, maximum and minimum temperature, humidity,

etc.) that correspond to monthly or annual averages or amounts. Temporal

downscaling is necessary for some impact models that require local spatial data at a

daily resolution, which GCMs cannot reliably provide. Weather generators produce

sequences of daily values, but since different weather sequences may be associated

with a given set of, for example, monthly values, multiple sequences commonly are

generated to be further used in impact models. Weather generators are data-intensive,

require long sequences of daily data, and are sensitive to missing or erroneous data in

the calibration set (Wilby et al., 2009). In addition, only some weather generators

have the ability to account for the coherency among variables when multiple variables

are predicted, e.g., to generate a daily sequence of insolation that matches the

generated daily sequence of rainy and dry days.

Table 1.1 identifies various statistical downscaling methods under the

linear, weather classification, and weather generator categories, along with particular

variable requirements, advantages, and disadvantages.
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Table 1.1 Statistical downscaling category, method, predictor and predictand

variables, advantages, and disadvantages.

Category & Method Predictor&
predictand

Advantages Disadvantages

Linear
Methods
spatial

Delta
method

Same type of variable
(e.g., both monthly
temperature, both
monthly precipitation)

- Relatively
straight-forward to
apply
- Employs full
range of available
predictor variables

- Requires
normality of data
(e.g., monthly
temperature,
monthly
precipitation, long-
term average
temperature)
- Cannot be applied
to non-normal
distributions (e.g.,
daily rainfall)
- Not suitable for
extreme events

Simple and
multiple
linear
regression

Variables can be of the
same type or different
(e.g., both monthly
temperature or one
monthly wind and the
other monthly
precipitation)

CCA&
SVD

Weather
Classification
Spatial and
temporal

Analog
method

Variables can be of the
same type or different
(e.g., both monthly
temperature, one large-
scale atmospheric
pressure field and the
other daily rainfall)

- Yields physically
interpret-able
linkages to surface
climate
- Versatile, i.e.,
can be applied to
both normally and
non-normally
distributed data

- Requires
additional step of
weather type
classification
- Requires large
amount of data and
some
computational
resources
- Incapable of
predicting new
values that are
outside the range of
the historical data

Cluster
analysis
ANN
SOM



24

Table 1.1 Statistical downscaling category, method, predictor and predictand

variables, advantages, and disadvantages (cont.).

Category & Method Predictor& predictand Advantages Disadvantages
Weather
Generator
Spatial and
temporal

LARS-WG Same type of variable,
different temporal
scales (e.g., predictor is
monthly precipitation
and predictand is daily
precipitation)

- Able to simulate
length of wet and
dry spells
- Produces large
number of series,
which is valuable
for uncertainty
analysis
- Production of
novel scenarios

- Data-intensive
- Sensitive to
missing or
erroneous data in
the calibration set
- Only some
weathers generators
can check for the
coherency between
multiple variables
(e.g., high
insolation should
not be predicted on
a rainy day)
- Requires
generation of
multiple time-series
and statistical post-
processing of
results

Mark Sim
GCM

NHMM Variables can be of the
same type or different
(e.g., both monthly
temperature, one large-
scale atmospheric
pressure and the other
daily rainfall)

CCA: Canonical Correlation Analysis
SVD: Singular Value Decomposition
ANN: Artificial Neural Network
SOM: Self-Organizing Map
LARS-WG: Long Ashton Research Station Weather Generator
GCM: General Circulation Model
NHMM: Nonhomogeneous Hidden Markov Model

Summary of Downscaling Approaches

Table 1.2 attempts to summarize and compare different aspects of the

dynamical and statistical downscaling approaches.
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Table 1.2 Advantages, disadvantages, outputs, requirements, and applications of

dynamical and statistical downscaling.

Dynamical downscaling Statistical downscaling
Provides - 20-50 km grid cell information

-Information at sites with no
observational data
-Daily time-series
-Monthly time-series
-Scenarios for extreme events

-Any scale, down to station-level
information
-Daily time-series (only some methods)
-Monthly time-series
-Scenarios for extreme events (only
some methods)
-Scenarios for any consistently
observed variable

Requires -High computational resources and
expertise
-High volume of data inputs
-Reliable GCM simulations

-Medium/low computational resources
-Medium/low volume of data inputs
-Sufficient amount of good quality
observational data
-Reliable GCM simulations

Advantages -Based on consistent, physical
mechanism
-Resolves atmospheric and surface
processes occurring at sub-GCM grid
scale
-Not constrained by historical record so
that novel scenarios can be simulated
-Experiments involving an ensemble of
RCMs are becoming available for
uncertainty analysis

-Computationally inexpensive and
efficient, which allows for many
different emissions scenarios and GCM
pairings
-Methods range from simple to
elaborate and are flexible enough to
tailor for specific purposes
-The same method can be applied
across regions or the entire globe, which
facilitates comparisons across different
case studies
-Relies on the observed climate as a
basis for driving future projections
-Can provide point-scale climatic
variables for GCM-scale output
-Tools are freely available and easy to
implement and interpret; some methods
can capture extreme events
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Table 1.2 Advantages, disadvantages, outputs, requirements, and applications of

dynamical and statistical downscaling (cont.).

Dynamical downscaling Statistical downscaling
Disadvantages -Computationally intensive

-Due to computational demands, RCMs
are typically driven by only one or two
GMC/emission scenario simulations
-Limited number of RCMs available and
no model results for many parts of the
globe
-May require further downscaling and
bias correction of RCM outputs
-Results depend on RCM assumptions;
different RCMs will give different
results
-Affected by bias of driving GCM

-High quality observed data may be
unavailable for many areas or variables
-Assumes that relationships between
large and local-scale processes will
remain the same in the future
(stationarity assumptions)
-The simplest methods may only
provide projections at a monthly
resolution

Applications -Country or regional level (e.g.,
European Union) assessments with
significant government support and
resources

-Future planning by government
agencies across multiple sectors

-Impact studies that involve various
geographic areas

-Weather generators in widespread
use for crop-yield, water, and other
natural resource modeling and
management

-Delta or change factor method can
be applied for most adaptation
activities

Sources: STARDEX, 2005; Fowler et al., 2007; Wilby et al., 2009; and Daniels et al.,

2012.

Since the RCM is nested in a GCM, the overall quality of dynamically

downscaled RCM output is tied to the accuracy of the large-scale forcing of the GCM

and its biases (Seaby et al., 2013). Despite recovering important regional-scale

features that are underestimated in coarse-resolution GCMs, RCM outputs are still

subject to systematic errors and therefore often require a bias correction as well as

further downscaling to a higher resolution.



27

Statistical downscaling involves the establishment of empirical

relationships between historical and/or current large-scale atmospheric and local

climate variables. Once a relationship has been determined and validated, future

atmospheric variables that GCMs project are used to predict future local climate

variables. Statistical downscaling can produce site-specific climate projections, which

RCMs cannot provide since they are computationally limited to a 20-50 kilometers

spatial resolution. However, this approach relies on the critical assumption that the

relationship between present large-scale circulation and local climate remains valid

under different forcing conditions of possible future climates (Zorita and von Storch,

1999). It is unknown whether present-day statistical relationships between large- and

regional-scale variables will be upheld in the future climate system.

Oftentimes, dynamical and statistical approaches are used in conjunction.

Dynamical-statistical downscaling involves the use of an RCM to downscale GCM

output before statistical equations are used to further downscale RCM output to a

finer resolution. Dynamical downscaling improves specific aspects of regional climate

modeling and provides better predictors for further statistical downscaling to higher-

resolution output (Guyennon et al., 2013). Statistical-dynamical downscaling is a

somewhat more complex approach but is less computationally demanding in

comparison to dynamical downscaling. This method statistically pre-filters GCM

outputs into a few characteristic states that are further used in RCM simulations

(Fuentes and Heimann, 2000).

Downscaling consists of a variety of methods, each with their own merits

and limitations. International organizations or national governments currently provide

no official guidance that assists researchers, practitioners, and decision makers in
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determining climate projection parameters, downscaling methods, and data sources

that best meet their needs.

1.3.3 Rainfall-Runoff model

The development and the application of rainfall-runoff models have been a

corner-stone of hydrological research for many decades. In general, the purpose of the

development of these models is a two-fold. The first is to advance our understanding

and state of knowledge about the hydrological processes involved in the rainfall-

runoff transformation. The second is to provide practical solutions to many of the

related environmental and water resources management problems.

Progress in the development of rainfall-runoff models has been accelerated

by the fast advancement in the technology of digital computers which has allowed the

storage and the processing of long records of data. These technological advances have

provided fertile ground for the development of what might now be called a glut of

rainfall-runoff models. Common features of all of these developed models are that,

each is a simplified form of the real-world system and that all such models are to a

greater or lesser extent, in error. Depending on the degree of the physical abstraction

from the real world system, the rainfall-runoff model structures may be classified into

three broad types (Clarke, 1994).

Distributed Physically-based Models which are based on the complex

law of physics generally expressed as systems of non-linear partial differential

equations.

Systems-Based (Black or Grey box) Models which make little or no

attempt to simulate the individual constituent hydrologic processes and which rely

heavily on systems theory developed in other branches of engineering science. The
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essence of these models is the empirical discovery of transfer functions which

interrelate in the time domain the input (usually rainfall) and the output (usually

discharges) functions.

Quasi-Physical Conceptual Models which occupy an intermediate

position between the other two types of models in terms of complexity,

disaggregation and data requirements.

The physically-based distributed models are well suited to solving

problems such as predicting the effects of land use changes and studying the hazards

of pollution (Beven, 1989). However, their implementation in practice has many

difficulties, most notably, their intense data requirements and the estimation of

meaningful values of the parameters. The other two more conventional types of

models are often too primitive to present scientifically sound solutions to such

problems. Nevertheless, these last two types of models have often proved to be

effective in the solution of a wide spectrum of important hydrological problems, such

as river flow forecasting and the extension of hydrological records.

1.3.4 Flood routing model

The term flood routing refers to procedures to determine the outflow

hydrograph at a point downstream in a river (or reservoir) as a function of the inflow

hydrograph at a point upstream. As flood waves travel downstream they are

attenuated and delayed. That is, the peak flow of the hydrograph decreases and the

time base of the hydrograph increases. The shape of the outflow hydrograph depends

upon the channel geometry and roughness, bed slope, length of channel reach, and

initial and boundary flow conditions.
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The propagation of flood waves in a channel is a gradually varied unsteady

flow process, which is governed by conservation of mass and momentum equations.

The solution of these equations in a distributed manner is referred to as distributed

routing of flood waves. When no spatial variability is taken into account and when the

channel reach or reservoir is considered as a black box, the corresponding routing

procedure is referred to as lumped routing.

Jothityangkoon and Sivapalan, 2013 formulated a routing model a based

on a non-linear storage-discharge relationship which is converted from an observed

and synthetic rating curve. To draw the rating curve, required parameters for each

reaches are estimated from hydraulic properties, floodplain geometry and vegetation

and building cover of compound channels. Boonrawd and Jothityangkoon, 2015(b)

defined the shape of the floodplain by using fitting exercise based on the reverse

approach between past and simulated inundation flood extent, to solve the current

problem of inadequate topographic input data for floodplain.

1.3.5 Floodplain inundation model

Flood inundation models are a major tool for mitigating the effects of

flooding. They provide predictions of flood extent and depth that are used in the

development of spatially accurate hazard maps. These allow the assessment of risk to

life and property in the floodplain, and the prioritisation of either the maintenance of

existing flood defences or the construction of new ones.

There have been significant advances in flood inundation modelling over

the past decade. Progress has been made in the understanding of the processes

controlling runoff and flood wave propagation, in simulation techniques, in low cost
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high power computing, in uncertainty handling, and in the provision of new data

sources.

One of the main drivers for this advancement is the veritable explosion of

data that have become available to parameterise and validate the models. The

acquisition of the vast majority of these new data has been made possible by

developments in the field of remote sensing (Smith et al., 2006; Schumann et al,

2008a). Remote sensing, from both satellites and aircraft, allows the collection of

spatially distributed data over large areas rapidly and reduces the need for costly

ground survey. The two-dimensional synoptic nature of remotely sensed data has

allowed the growth of two- and higher-dimensional inundation models, which require

2D data for their parameterisation and validation. The situation has moved from a

scenario in which there were often too few data for sensible modelling to proceed, to

one in which (with some important exceptions) it can be difficult to make full use of

all the available data in the modelling process.

One dimensional (1-D) hydraulic modeling of full St.Venant equation is a

standard practice to generate the space-time variation of flood depth and magnitudes.

The drawback of this approach is that flood inundation extent is drawn by linear

interpolation between each cross section. Recent advance of remotely sensed

topographic data and high computational capacity, encourages two dimensional (2-D)

hydraulic models flood inundation modeling to overcome the limitation over 1-D

modeling (Horritt and Bates, 2002; Merwade, 2008). Recently, 2-D hydraulic models

become practical tools to estimate floodplain inundation characteristic (Bates and De

Roo, 2000).
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The data requirements of flood inundation models have been reviewed by

Smith et al. (2006). They fall into four distinct categories, (a) topographic data of the

channel and floodplain to act as model bathymetry, (b) time series of bulk flow rates

and stage data to provide model input and output boundary conditions, (c) roughness

coefficients for channel and floodplain, which may be spatially distributed, and (d)

data for model calibration, validation and assimilation.

The basic topographic data requirement is for a high quality Digital

Terrain Model (DTM) representing the ground surface with surface objects removed.

For rural floodplain modelling, modelers require that the DTM has vertical accuracy

of about 0.5m and a spatial resolution of at least 10 m. (David et al, 2010). Whilst this

level of accuracy and spatial scale is insufficient to represent the micro-topography of

relict channels and drainage ditches existing on the floodplain that control its initial

wetting, at higher flood depths inundation is controlled mainly by the larger scale

valley morphology, and detailed knowledge of the micro-topography becomes less

critical (Horritt and Bates, 2002) Important exceptions are features such as

embankments and levees controlling overbank flow, for which a higher accuracy and

spatial scale are required (~10cm vertical accuracy and 2m spatial resolution) (Smith

et al., 2006). This also applies to the topography of the river channels themselves. On

the other hand, for modelling over urban floodplains knowledge of the micro-

topography over large areas becomes much more important, and a vertical accuracy of

5cm with a spatial resolution of 0.5m is needed to resolve gaps between buildings

(Smith et al., 2006). Modellers also require a variety of features present on the ground

surface to be measured and retained as separate Geographic Information System

(GIS) layers to be used for tasks such as determining distributed floodplain roughness
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coefficients. Layers of particular interest include buildings, vegetation, embankments,

bridges, culverts and hedges. One important use for these is for adding to the DTM

critical features influencing flow paths during flooding, such as buildings, hedges and

walls. A further use is the identification and removal of false blockages to flows

which may be present in the DTM, such as bridges and culverts. It should be borne in

mind that different modelling applications may have different requirements for a

DTM as well as other data, with wide area inundation models used for high level

assessment of flood risk requiring lower resolution data than more detailed models

used for the design of remedial works or for planning emergency response.

Flood inundation models also require discharge and stage data to provide

model boundary conditions. The data are usually acquired from gauging stations

spaced 10-60km apart on the river network, which provide input to flood warning

systems. Modelers ideally require gauged flow rates to be accurate to 5% for all flow

rates, with all significant tributaries in a catchment gauged. However, problems with

the rating curve extrapolation to high flows and gauge bypassing may mean discharge

measurement errors may be much higher than this acceptable value during floods. At

such times gauged flow rates are likely only to be accurate to 10% at best, and at

many sites errors of 20% will be much more common. At a few sites where the gauge

installation is significantly bypassed at high flow errors may even be as large as 50%.

The data requirements of an alternative scenario in which input flow rates are

predicted by a hydrological model using rainfall data as an input, rather than being

measured by a gauge.

Estimates of bottom roughness coefficients in the channel and floodplain

are also required. The role of these coefficients is to parameterise those energy losses
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not represented explicitly in the model equations. In practice, they are usually

estimated by calibration, which often results in them compensating for model

structural and input flow errors. As a result, it can be difficult to disentangle the

contribution due to friction from that attributable to compensation. The simplest

method of calibration is to calibrate using two separate global coefficients, one for the

channel and the other for the floodplain. However, ideally friction data need to reflect

the spatial variability of friction that is actually present in the channel and floodplain,

and be calculable explicitly from physical or biological variables.

A final requirement is for suitable data for model calibration, validation

and assimilation. If a model can be successfully validated using independent data, this

gives confidence in its predictions for future events of similar magnitude under

similar conditions. Until recently, validation data for hydraulic models consisted

mainly of bulk flow measurements taken at a small number of points in the model

domain, often including the catchment outlet. However, the comparison of spatially

distributed model output with only a small number of observations met with only

mixed success (Lane et al., 1999). The 2D nature of modern distributed models

requires spatially distributed observational data at a scale commensurate with model

predictions for successful validation. The observations may be synoptic maps of

inundation extent, water depth or flow velocity. If sequences of such observations can

be acquired over the course of a flood event, this allows the possibility of applying

data assimilation techniques to further improve model predictions.

For mapping space-time flood extent of Chiang Mai floods, Boonrawd and

Jothityangkoon, 2015(b) developed a coupling of a 1-D flood routing model and quasi

2-D floodplain inundation model to simulated temporal extent of flood area.
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1.3.6 Hydrologic Modeling System HEC-RAS

Mapping a floodplain requires a forecasting of the behavior of the

stream in question for various recurrence interval storm events and the ability to

translate the forecasted results into a plan-view extent of flooding. The Hydrologic

Engineering Center’s River Analysis System (HEC-RAS) was developed by the U.S.

Army Corps of Engineers (USACE) led by Gary W. Brunner. HEC-RAS has the

ability to model flood events and produce water surface profiles over the length of the

modeled stream. With the companion GIS utility, HEC-GeoRAS, those water surface

profiles can easily be converted to flood inundation maps. This software allows the

user to perform one-dimensional steady flow, one and two-dimensional unsteady flow

calculations, sediment transport/mobile bed computations, and water

temperature/water quality modeling.

HEC-RAS is a Hydrologic Modeling System that is designed to describe

the physical properties of streams and rivers, and to route flows through them. Given

the discharge computed by HEC-HMS or by other means, HEC-RAS computes the

resulting water surface elevation. Using a program HEC-GeoRAS, these elevations

can be mapped in ArcGIS to form a flood inundation map. In this exercise, we can run

a HEC-RAS model and use ArcGIS to create the corresponding floodplain map. The

geometric data required to define in HEC-RAS includes:

- Cross-section data

- Reach lengths (measured between cross sections)

- Stream junction information (Reach lengths a cross junctions and

tributary angles)
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HEC-GeoRAS is a GIS extension that provides the user with a set of

procedures, tools, and utilities for the preparation of GIS data for import into HEC-

RAS and generation of GIS data from RAS output. While the GeoRAS extension is

designed for users with limited geographic information systems (GIS) experience,

knowledge of GIS is advantageous. Users, however, must have experience modeling

with HEC-RAS and have a thorough understanding of river hydraulics to properly

create and interpret GIS data sets.

1.4 Methodological steps

Overview of a conceptual framework of this research methodology and

processes is presented in Figure 1.6

1.4.1 Data preparation

The observed flood inundation area from past floods was defined based on

relationship between flood level at P1 and flood depth measured in the city during

past flood events. Flood warning system for Chiang Mai city was set up in the form of

flood hazard maps by Civil Engineering Natural Disaster Research Unit (CENDRU).

The water level, channel cross section, channel profile, floodplain

characteristics, inundation area, rating curve and the other field data are provided by

The Thai Meteorological Department, Royal Irrigation Department and google map.

The topography of land surface substantially influence on the magnitude

and dynamics of surface runoff. To illustrate the shape of land surface, The Digital

Elevation Model (DEM) can be used to generate topographic map. DEM contains

spatially distributed elevation information to allow an automatic delineation of

watershed boundary. Topographic data from the Land Development Department is
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formatted are converted to text/shape file by ArcGIS, HEC-RAS, MATLAB and

Microsoft Excel

1.4.2 Data correction

Bias correction can be used to reduce uncertainty and risk of projection

bias of regional climate model (RCM) simulation in climate change studies. Many

bias correction approaches have been developed to manage these biases. The simple

one is distribution mapping based on derived adjustment factors (AF), which is the

ratio between observed and simulated rainfall for a given frequency of occurrence.

Five methods are used to estimate the distribution between adjustment factors and

exceedance probability.

1.4.3 Simulated and calculated processes

The future projection rainfall from a time series of corrected future

rainfall from a grid that give the shortest distance between the centroid of RCM grid

and the subcatchment is assigned to the subcatchment.

This part contributes to generating of flood maps for study area during

October’s flood 2010 based on the simulated flood extent map. A flood extent map is

simulated by flood map model which is developed from rainfall-runoff, flood routing,

and floodplain inundation model. A hydrologic model is used development a flood

map model based on the original lumped model detailed in Jothityangkoon et al.

(2001; 2013) as showing in chapter 3. The model is developed with ArcGIS/Erdas/

MATLAB software packet. The simulated flood extent map are compared with the

observed flood extent map (of the same event) calibrated with surveying data and

collecting data. The result to be re-developed until outcome is significant and

acceptable. If the result of flood extent map is acceptable, the product can use to
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generate projection flood map. This rainfall-runoff model and inundation model are

used to receive future projection rainfall after bias correction and to delineate flood

map in this study.

1.4.4 Prediction scenarios

Projection flood maps in 2D/3D are generated and constructed based

on different scenarios (rain frequency, land use change and climate change) and flood

management (Diversion channel and Retention basin).

Adaptation measures will be further studied based on the consequences of

climatic impact with baseline period from year 1985-2014 (30 years) and future

projection period from year 2015-2074 (60 years). The first scenario is climate change

for the simulation covers the Intergovernmental Panel on Climate Change (IPCC)

emission scenarios A2 and B2. The second scenario is based on the extreme condition

10, 25, 50, 100 years return periods. The finally scenario is land use change in the

Upper Ping River catchment.
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Figure 1.6 Conceptual framework of the research methodology and processes.
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1.5 Summary of results

Coupling of water balance model and floodplain inundation model was

developed to receive projected rainfall time series from two types of regional climate

model (RCM); Providing Regional Climates for Impacts Studies (PRECIS) and

Meteorological Research Institute (MRI). They are RCM with resolution 0.2 x 0.2

degree (grid size 20 x 20 km) daily time step, from year 2015-2044 and generated

from ECHAM 4 climate models.

For chapter 2 empirical quantile mapping is used for bias correction of

projection rainfall that its adjustment factors (AFs) are estimated from comparison

between observed and past projection rainfall from base-time period, year 1985-2014.

AFs in the first step are applied to correct seasonal pattern of monthly rainfall within a

year and applied to correct daily rainfall intensity in the second step. Results further

show that whereas bias correction does not seem to affect the change signals in

rainfall means, it can introduce extra uncertainty to the change signals in high and low

rainfall amounts, and consequently, in runoff.

For chapter 3 the quasi 2-D raster model is tested and applied to generate more

realistic water surface and is used to estimate flood extent. The model is applied to the

floodplains of Chiang Mai, north of Thailand and used to estimate a time series of

hourly flood maps. Extending from daily to hourly flood extent, mapping

development provides more details of flood inundation extent and depth.

For chapter 4 by using a synthetic rating curve for compound channel which

includes the effect of trees and buildings distribution on floodplain, floodplain

inundation model based on flat water surface assumption can be formulated with a

number of selected channel cross sections. Although the vertical resolution of existing
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DEM (based on scale 1:50,000) for the floodplain of Chiang Mai Municipality is too

low to represent any change of flood level, the assumed shape of floodplain can be

defined and tested from a good fit between observed and simulated flood extent using

the reverse engineering approach. This model can be used with confidence to

construct a daily flood extent map. The shape of the floodplain is defined by using

fitting exercise based on the reverse approach between past and simulated inundation

flood extent, to solve the current problem of inadequate topographic input data for

floodplain. Mapping of daily flood can be generated relying on flat water levels. This

model receives peak runoffs as results from the water balance model, and generate

flood extent in flood plain and draw flood inundation map of Chiang Mai

municipality with different return periods. These expected results show the increase of

flood inundation extent as a consequence of climate change.

The limitations of flood plain inundation mapping delineate areas which are

assessed as being subject to inundation along the generated relying on flat water

levels.  The maps do not show real time flooding from unsteady flow model. The

flood mapping are based on channel cross sections survey, hydrological and hydraulic

modelling to an accuracy sufficient only for broad scale floodplain inundation

mapping. This simplified floodplain inundation modeling are potential and alternative

tools for developing countries where no spatial input data with high resolution are

available.

Further simulation from chapter 4 when a fine spatial resolution of DEM are

available based on spatial resolution of 5 meters (cell size 5, 5) data in Figure 1.7,

then this data can be used to simulate more reliable inundation map and apply to the

whole flooding area of Chiang Mai municipality, including the assessment of flood
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inundation extent from flood peaks with return period. Flood inundation maps and its

boundary are presented in Figure 1.8-1.9 for MRI input and Figure 1.10 for

comparison of simulated and observed flood inundation extent using DEM and MRI

input at return period, 10 year, 25 year, 50 year and 100 year.

Figure 1.7 Digital Elevation Model (DEM) data of Chiang Mai municipality.

(a) Future rainfall from MRI, Q=1,014 m3/s (T= 10 year)
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(b) Future rainfall from MRI, Q=1,298 m3/s (T= 25 year)

Figure 1.8 Boundary of simulated flood inundation using DEM from MRI at return

period, (a) 10 year and (b) 25 year.

(c) Future rainfall from MRI, Q=1,509 m3/s (T= 50 year)
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(d) Future rainfall from MRI, Q=1,718 m3/s (T= 100 year)

Figure 1.8 Boundary of simulated flood inundation using DEM from MRI at return

period, (c) 50 year and (d) 100 year (cont.).
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(b) Simulated and observed inundation

Figure 1.9 Comparison of (a) simulated and (b) simulated overlay on observed flood

inundation extent using DEM and MRI input at return period, 10 year, 25

year, 50 year and 100 year.
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1.6 Recommendation for future research

1. If digital elevation data at a fine spatial resolution are available from an

airborne laser altimetry survey or LiDAR data, then this data can be used to simulate

more reliable inundation map by using the quasi 2-D raster model and apply to the

whole flooding area of Chiang Mai municipality, including the assessment of flood

inundation extent from flood peaks with different exceedance probability or return

period (Yin et al., 2013). The accuracy of flow patterns on floodplain depends on land

surface characteristics and properties which can be interpreted from high resolution

topographic information such as LiDAR data.

2. Future research will continue to examine the implications of climate change

mitigation for sustainable development, scenarios depending on these behavioral

patterns of future societies as described in the IPCC’s Fifth Assessment Report (AR5)

AR5, The extremely likely (>95% confidence) that human influence has been

the dominant cause of the observed warming since the middle 20th century from the

Summary for Policy Makers (SPM AR5)
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CHAPTER II

BIAS CORRECTION TEST OF SIMULATED RAINFALL

FROM PRECIS USING ADJUSTMENT FACTORS BASED

ON DISTRIBUTION MAPPING

2.1 Summary

To reduce uncertainty and risk of projection bias of regional climate model

(RCM) simulation in climate change studies, many bias correction approaches have been

developed to manage these biases. The simple one is distribution mapping based on

derived adjustment factors (AF), which is the ratio between observed and simulated

rainfall for a given frequency of occurrence. Five methods are used to estimate the

distribution between adjustment factors and exceedance probability.  Method 1, AFs are

derived from all daily rainfall data and used to shift distribution of daily rainfall intensity.

Method 2, temporal scaling of input rainfall data is changed from daily to monthly.

Method 3 is similar to Method 2, the difference is AFs are used to adjust distribution of

daily rainfall. For Method 4, seasonal AFs are derived from monthly rainfall data for each

month of all years and used to shift distribution of monthly rainfall of each month.

Method 5 is the combination of Method 4 for the first step and Method 1 for the second

step. These methods are tested to correct simulated rainfall from Providing Regional
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Climates for Impacts Studies (PRECIS) and ECHAM4 climate models with resolution

0.2 x 0.2 degree (grid size 20x20 km) daily time step, baseline period from year 1982-

2005. The performance of all methods is evaluated by using the plot of inter-annual

variability, intra-annual variability and daily intensity distribution against exceedance

probability. The best improvement of simulated rainfall is achieved with Method 5.

2.2 Introduction

Hydrological modeling of climate change impact studies, large-scale climate

variables for current and future conditions are generally provided by global climate

models (GCMs). To resolve processes and features relevant to hydrology at the

catchment scale, regional climate models (RCMs) are commonly used to transfer coarse-

resolution GCM data to a higher resolution.

Downscaling is a technique commonly used in hydrology when investigating the

impact of climate change. It is a way of bridging the gap between low spatial resolution

global climate models (GCMs) and the catchment- or regional-scale hydrological models

(Fowler et al., 2007).

Hydrological simulations driven with the higher-skill bias corrected RCM data

performed generally better than corresponding simulations driven with lower-skill bias-

corrected RCM data.

The higher-skill bias corrected RCM data or distribution mapping based on

derived adjustment factors (AF), which is the ratio between observed and simulated

rainfall for a given frequency of occurrence. It corrects most of the statistical
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characteristics and has the narrowest variability ranges, combined with the best fit of the

ensemble median.

2.3 Study area

The Study area covers Upper Ping River basin, Thailand is located in the northern

region of Thailand.  The main stream of the river flows through Chiang Mai, one of the

most popular tourist destination of the northern Thailand.  It flows to Bhumibol Dam on

the south of the basin.  The catchment area upstream of Bhumibol Dam is 26,386 km2.

Observed precipitation dataset extends over Upper Ping River basin and covers the period

1982–2005, selected a 24 years sequence of daily rainfall time series were used in this

study. Projected rainfall from grid points shown in Figure 2.1 Are compared to observed

data from selected 42 rain gauges.

2.4 RCM data

These methods are tested to correct simulated and projected rainfall from

Providing Regional Climates for Impacts Studies (PRECIS) which receives input data

from ECHAM4 climate models with resolution 0.2 x 0.2 degree (grid size 20x20 km)

daily time step, baseline period from year 1982-2005. (Chinvanno et.al., 2009)

The simulation covers the Intergovernmental Panel on Climate Change (IPCC)

emission scenarios A2 and B2.
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Figure 2.1 Study area covers Upper Ping River basin and present location of rain gauges

(+) and grid points of projected rainfall ().



57

2.5 Methodology

Bias correction method

A solution to the problem of RCM misrepresentation of precipitation is to pre-

process the RCM output through bias correction a number of bias correction methods to

adjust RCM simulations were utilized (1) linear scaling, (2) local intensity scaling, (3)

power transformation, (4) variance scaling, (5) distribution mapping and (6) delta-change

approach. Bias correction approaches is given in Table 2.1. (Gudmundsson et al.2012)

When using the linear scaling method, RCM daily rainfall amounts, P are

transformed into P* such that

∗ = (2.1)

Using an adjustment factor ,= (2.2)

Where and are Observed and RCM simulated daily or monthly rainfall data

with the same frequency from 20x20 km grid size, respectively. Here, the daily, monthly

adjustment factors and combination of them are applied to each uncorrected daily

observation of that month, generating the corrected daily time series. The linear

correction method belongs to the same family as the factor of change or delta change

method. This method has the advantage of simplicity and modest data requirements.

When using the distribution mapping method, to describe the probability

distribution of a random variable X, we use a cumulative distribution function. The value
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of this function ( ) is simply the probability P of the event that the random variable

takes on value equal to or less than the argument such that

( ) = [ ≤ ] (2.3)

However, correcting only the monthly mean precipitation can distort the relative

variability of the inter-monthly precipitation distribution, and may adversely affect other

moments of the probability distribution of daily precipitations. For bias correction test in

this study, the complexity of derived AFs is added in 5 steps (5 methods)

Method 1, AFs are derived from all daily rainfall data and used to shift

distribution of daily rainfall intensity.

Method 2, temporal scaling of input rainfall data is changed from daily to

monthly.

Method 3 is similar to Method 2, the difference is AFs are used to adjust

distribution of daily rainfall.

Method 4, seasonal AFs are derived from monthly rainfall data for each month of

all years and used to shift distribution of monthly rainfall of each month.

Method 5 is the combination of Method 4 for the first step and Method 1 for the

second step. The comparison of observed, projected and adjusted rainfall station using

frequency analysis of its distribution based on exceedance probability.
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Table 2.1. Overview of methods used to correct RCM-simulated precipitation (P) and/or

temperature (T) data.

Methods Short Description
linear scaling P,T adjusts RCM time series with correction values

based on the relationship between long-term monthly
mean observed and RCM control run
valuesprecipitation is typically corrected with a
factor and temperature with an additive term

local intensity scaling P combines a precipitation threshold with linear
scaling (both described above)

power transformation P is a non-linear correction in an exponential form
(a*Pb) that combines the correction of the coefficient
of variation (CV) with linear scaling

variance scaling T combines standard linear scaling with a scaling based
on standard deviations

distribution mapping P,T matches the distribution functions of observations
and RCM-simulated climate values. a precipitation
threshold can be introduced to avoid substantial
distortion of the distribution caused by too many
drizzle days (i.e., very low but non-zero
precipitation) also known as quartile - quartile
mapping, probability mapping, statistical
downscaling or histogram equalization.

delta-change approach P,T ∙RCM-simulated future change signals (anomalies)
are superimposed upon observational time series
∙usually done with a multiplicative correction for
precipitation and an additive correction for
temperature
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2.6 Results and Discussion

For Method 1, AFs is applied to projected daily rainfall with the same frequency

(Figure 2.2 (a)). Distribution of adjusted daily rainfall is shifted to give a perfect fit to

distribution of observed rainfall (Figure 2.2(b)).

After these adjusted rainfalls are accumulated to annual and monthly rainfall. The

distribution of annual and monthly rainfall present a little improvement. Under-estimate

annual rainfall for wet years and over-estimate annual rainfall for dry years are still exist

(Figure 2.2 (c)). Seasonal pattern of average monthly rainfall is far different from the

pattern of observed rainfall (Figure 2.2(d)).

Second trial for Method 2, AFs are estimated for projected monthly rainfall with

the same frequency (Figure 2.3(a)). Although, distribution of adjusted monthly rainfall is

shifted to give a perfect fit to the distribution of observed monthly rainfall, discrepancy

between adjusted annual and monthly rainfall and observed rainfall is found. Compare to

Method 1, better results of seasonal patterns of average monthly rainfall are presented.

Third trial for Method 3, AFs are estimated similar to Method 2 but applied for

projected daily rainfall with the same frequency. Shitted distribution of adjusted daily

rainfall show a good agreement with distribution of observed daily rainfall (Figure

2.3(b)). However, the difference between adjusted annual and monthly rainfall and

observed rainfall is not resolved fitting. Results are the same as the previous results from

Method 2.
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Figure 2.2 Method 1, Comparison of observed, projected and adjusted rainfall at Sta.

327023 using adjustment factors from daily rainfall for 24 years (1982-2005)

to adjust the time series of daily rainfall (a) exceedance probability of

adjustment factor, (b) exceedance probability of daily rainfall, (c) exceedance

probability of annual rainfall, (d) mean monthly rainfall.
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Figure 2.3 Method 2, Comparison of observed, projected and adjusted rainfall at Sta.

327023 using adjustment factors from monthly rainfall for 24 years

(1982-2005) to adjust the time series of monthly rainfall (a) exceedance

probability of adjustment factor, (b) exceedance probability of monthly

rainfall,

(c) exceedance probability of annual rainfall, (d) mean monthly rainfall.



63

Figure 2.4 Method 3, Comparison of observed, projected and adjusted rainfall at Sta.

327023 using adjustment factors from monthly rainfall for 24 years

(1982-2005) to adjust the time series of daily rainfall (a) exceedance

probability

of adjustment factor, (b) exceedance probability of daily rainfall, (c)

exceedance probability of annual rainfall, (d) mean monthly rainfall.
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Figure 2.5 Method 4, Comparison of observed, projected and adjusted rainfall at Sta.

327023 using seasonal adjustment factors from monthly rainfall for each

month

to adjust the time series of monthly rainfall (a) exceedance probability of

adjustment factor for Month No 4: July, (b) exceedance probability of July

rainfall, (c) exceedance probability of annual rainfall, (d) mean monthly

rainfall.
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Figure 2.6 Method 5, Comparison of observed, projected and adjusted rainfall at Sta.

327023 using the first step: adjustment factors from monthly rainfall for each

month to adjust the time series of daily rainfall and the second step:

adjustment

factors from previous daily rainfall to adjust the time series of daily rainfall

(a) exceedance probability of adjustment factor for Month No 5: August,

(b) exceedance probability of daily rainfall,

(c) exceedance probability of annual rainfall, (d) mean monthly rainfall.
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Figure 2.7 Method 5, Comparison of observed, projected and adjusted rainfall at Sta.

327007 using the first step: adjustment factors from monthly rainfall for each

month to adjust the time series of daily rainfall and the second step:

adjustment

factors from previous daily rainfall to adjust the time series of daily rainfall

(a) exceedance probability of adjustment factor for Month No 5: August,

(b) exceedance probability of daily rainfall,

(c) exceedance probability of annual rainfall, (d) mean monthly rainfall.
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Fourth trial for Method 4, Seasonal AFs are estimated from monthly rainfall for

each month of the year and applied for projected monthly rainfall. AFs for July in Figure

2.5(a), can shift the distribution of adjusted July rainfall and give a perfect fit to observed

July rainfall (Figure 2.5(b)). However, when this method is used for every months of the

year, annual adjusted rainfall show under-estimated results for the whole annual series.

Seasonal pattern of adjusted monthly rainfall is shifted close to observed monthly pattern

(Figure 2.5(d)).

Final trial for Method 5, two steps of AFs estimation from Method 1 and Method

4 are combined. Distribution of adjusted daily, monthly and annual rainfall are shifted to

give a better fit to distribution of observed rainfall, compare to the other method (Figure

2.6 (b)-(d)).

To confirm the accuracy of Method 5, this bias correction test is applied to many

locations of available observed rainfall. Figure 2.6 and 2.7 present an example of this test.

Projected rainfall data from 2 grid points close to rain gauge station sta. 327023 and

327007 can be shifted its distribution close to observed rainfall data with satisfied results.

2.7 Conclusion

The performance of all methods is evaluated by using the plot of inter-annual

variability, intra-annual variability and daily intensity distribution against exceedance

probability.  The best improvement of projected rainfall using AFs is achieved with

Method 5. AFs in the first step are applied to correct seasonal pattern of monthly rainfall

within a year and applied to correct daily rainfall intensity in the second step.
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Results further show that whereas bias correction does not seem to affect the

change signals in rainfall means, it can introduce extra uncertainty to the change signals

in high and low rainfall amounts, and consequently, in runoff. Future climate change

impact studies need to take this into account when deciding whether to use raw or bias

corrected RCM results. Nevertheless, the bias in RCM simulations will continue to

reduce as RCM accuracy is improved and RCMs will become increasingly useful for

hydrological studies.
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CHAPTER III

MAPPING TEMPORAL EXTENT OF CHIANG MAI

FLOOD USING COUPLED 1-D AND QUASI 2-D

FLOODPLAIN INUNDATION MODELS

3.1 Summary

A coupling of a 1-D flood routing model and quasi 2-D floodplain inundation

model is applied for mapping space-time flood extent. The routing model is formulated

based on a non-linear storage-discharge relationship which is converted from an observed

and synthetic rating curve. To draw the rating curve, required parameters for each reaches

are estimated from hydraulic properties, floodplain geometry and vegetation and building

cover of compound channels. The shape of the floodplain is defined by using fitting

exercise based on the reverse approach between past and simulated inundation flood

extent, to solve the current problem of inadequate topographic input data for floodplain.

Mapping of daily flood can be generated relying on flat water levels. The quasi 2-D raster

model is tested and applied to generate more realistic water surface and is used to

estimate flood extent. The model is applied to the floodplains of Chiang Mai, north of

Thailand and used to estimate a time series of hourly flood maps. Extending from daily to
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hourly flood extent, mapping development provides more details of flood inundation

extent and depth.

3.2 Introduction

To assess an impact of severe flood and at the same time mitigate economic and

social losses, mapping of floodplain inundation extent including flood depth and flood

duration is an import ant tool for the improvement of flood management systems.

Extrapolation work from historical to future potential flood mapping under different

possibilities and scenarios are necessary information for stake holders in choosing

appropriate measures to reduce flood risks. The magnitude and frequency of floods

possibly tend to increase in near future which is the consequence of climate and human

induced changes (IPCC, 2007).

The devastating results of past floods in Chiang Mai City, particularly in the core

economic and residential zones, has brought great public concern about the performance

of flood protection and warning systems managed by local authorities. Questions are also

being raised by the local people on what are the potential impacts of future land use

changes, the forest loss to agricultural plantation, and the uncontrolled urban expansion

(Chatchawan, 2005; CENDRU, 2013).

Flood inundation mapping can be formulated in a number of ways including historical

flood investigation through field survey and/or remote sensing survey, using hydrological

or hydraulic modeling or their combination. Compared to different approaches, hydraulic

modeling gives advantages over other methods. It incorporates spatial terrain data and
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generates the space-time variation of flood depth and magnitudes. One dimensional (1-D)

hydraulic modeling of full St. Venant equation is still a standard practice. By receiving

design flood inputs, it can simulate flood magnitude and depth downstream and convert

to flood inundation extent such as MIKE, HEC (Fread, 1993; Ervine and MacLeod 1999;

De Kok and Grossmann, 2010). The limitation of this method is that the map of flood

inundation extent is drawn by linear interpolation of flood characteristics between each

cross section. Recently, many cases of uncertainties are studied in form of probabilistic

flood inundation map (Merwade et al., 2008; Sarhadi et al., 2012)). To overcome this

limitation, two dimensional (2-D) hydraulic models have been proposed to have

advantages over 1-D modeling (Horritt and Bates, 2002; Tayefi et al., 2007; Cook and

Merwade, 2009). Recent advances in availability of remotely sensed topographic data

and high computational capability, allows 2-D flood inundation modeling based on finite

difference and finite element numerical method to become practical tools to estimate

floodplain inundation extent, flood depth and depth-averaged velocity vector for each

node and time step (Bates and De Roo, 2000).

However, the application of the complex 2-D models require massive input data

together with consuming high computational cost and time which makes this model less

attractive for large-scale floodplain analysis. Application of simplified raster-based

hydraulic model is widely used due to some advantages over full 2-D model to simulate

dynamic flood inundation (Bradbrook et al., 2004; Yu and Lane, 2006). The raster based

model can simply integrate spatial topographic data and process them with high

computational efficiency. These models consist of coupling the 1-D and 2-D model
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representing channel flow and flow over the floodplain (Bates and De Roo, 2000; Yin, et

al., 2013). The raster-based storage model is developed further to adaptive time step

diffusion model (Hunter et al., 2005), including inertial term (Bates et al., 2010) for high

efficiency of computation with stable solutions. To improve the quality of river flood

inundation prediction with given high resolution of topographic data, comparison study

of different hydraulic models were examined for different topographic complexity

(Tayefi et al., 2007). However, scarcity of high resolution and detailed topographic data

for floodplain, i.e. Lidar and synthetic aperture radar (SAR), still exists in developing

countries.

3.3 Approaches for floodplain inundation model

3.3.1 Storage-discharge approach

The 1-D channel routing model proposed here is based on a

conceptualization of each channel link in the network as non-linear storages. The water

balance of each channel reach is modeled by solving equation dSc/dt=I(t)-Q(t), combined

with a non-linear storage (Sc) to discharge (Q). The storage-discharge relationship

expresses as a power function Sc = kQm where k and m are model parameters, I(t)

represents the summation of upstream channel reaches and lateral inflow. The parameter

k and m are estimated a priori for each of the stream reaches. These parameters reflect

different physical properties of river flow transition from normal to extreme floods or

from in-bank to over-bank flow (Jothityangkoon and Sivapalan, 2003; Jothityangkoon et

al., 2013).
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For estimation of k and m in study river, recorded stage-discharge curve (rating curve)

are used, together with surveyed data on the geometry of main channel, cross section of

floodplain and length of the river reach. The estimation of the rating curves beyond

recorded data can be achieved by a simple hydraulic approach. The compound channel is

subdivided to main channels and floodplain sections, and discharges in each section are

estimated separately. For the main channel, the measured rating curve can be used and

estimated Manning coefficient given cross section area and slope of the channel at this

stream gauge. At the other cross sections without measured rating curve, synthetic rating

curves can be estimated given cross section area, slope of the channel and simulated

Manning coefficient from neighbor cross section. Details of this procedure are described

by Jothityangkoon and Sivapalan (2003) and Jothityangkoon et al. (2013). To capture the

effect of houses and other buildings on the floodplain, the flow resistance in floodplain

due to its size and spacing is considered in the same manner as the case of vegetation on

the floodplain.

3.3.2 Raster based storage cell approach

(1) Diffusive model

The advantages of the storage cell formulation are that (i) it is a simple

concept to calculate flow rate. Computational times and costs are much lower than

solving numerical solution of full shallow water equations, (ii) this method interface well

with a regular grid-based cell representing topographic characteristics generating from

current remote sensing technology. For these reasons, this method is popular for
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floodplain inundation modeling (Hunt et al., 2007). The volumetric flow rate between

floodplain cells is calculated by using Manning equation,
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where is the flow rate in x direction at node (i, j), jih , is the elevation of free water

surface at node (i, j), x and y are the cell dimensions on rectangular coordinate [L], n is

the Manning’s friction coefficient [L-1/3T], hf is the difference between the highest free

water surface from two cells and the highest elevation of floodplain bed between nodes.

Interaction between inflow outflow and water surface height within a cell can be

explained by water balance or continuity equation of the storage cell
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where ht and htt  are flow depth at time t and t+t, ji
x

tQ , ,   is flow rate at time t

and t is the time step.

Assuming that the depth-averaged velocity u is constant with steady and uniform

flow in x direction, 1D Saint-Venant equation or momentum equation is simplified to an

ordinary non-linear differential equation (neglecting acceleration and advection term),
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where S0 is the bed slope, if flood wave propagates over flat plane, S0 = 0,

analytical solution can be derived (Hunter et al., 2005),
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where h is the water depth which is a function of location on space x and at any

time t, C is a constant depending on the initial condition form integration results.

(2) Inertial Model

For inertial model formulation, only advection term is neglected from 1-D

Saint-Venant equation. By assuming flow in a rectangular channel a momentum equation

in term of flow per unit width (q) [L2T-1] is:
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where z is the bed elevation [L], R is the hydraulic radius [L], g is the gravity

acceleration [LT-2]. For wide shallow flow, R is assumed equal h. Equation 5 can be

discretize with respect to the time step t and qt in the friction term is replaced by a qt+t
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(the third term in Equation 3.5). Equation 3.5 is rearranged to give flows at the next time

step, derived by Bates et al. (2010):
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3.3.3 Reverse engineering approach

For some developing countries with inadequate available hydrological input

data, Hagen et al. (2010) proposed a parsimonious model based on the reverse

engineering approach to generate nationwide flood hazard maps from past inundation

extents. Motivated by this study, floodplain characteristics can be defined from the map

of observed flood extent and depth for lacking good quality of DEM. To evaluate the

quality of flood inundation estimation, observed and simulated inundation maps are

compared by considering fit index ( F ).
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where Aop is the inundated area where both observed and simulated flood extent

are completely are overlaid, Ao is the total observed area of inundation, and Ap is the total

simulated area of inundation. F varies between zeros to 100; zero means no overlap

between simulated and observed inundated area and 100 means a perfect match.
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3.4 Application to Chiang Mai Municipality

3.4.1 Study area

The Upper Ping River catchment is located in the north of Thailand (see

Figure 3.1). The river flows southward through the valley of Chiang Mai. The catchment

area upstream of stream gauge station P1 (Navarat Bridge) and P68 (Ban Nam Tong) are

6,350 and 6,430 km2, respectively. The flood study area covers about half of Chiang Mai

municipality (40.2km2) and two districts (Pa Daet, 25 km2 and Nong Hoi, 3.67 km2)

which lie on the floodplain of the Upper Ping River.

3.4.2 Historical flood map and flood warning system

The severe floods usually arrive during August and September. The recent

ones (in the past 20 years) occurred in 1994, 1995, 2001, 2005, and 2011 with maximum

water levels at the P1 station of 4.43, 4.27, 4.18, 4.93 and 4.94 m, respectively. From an

experience in observed flood routing from past flooding events between input flood

hydrograph at stream gauge P.67 (Ban Mae Tae, 32 km upstream of P1) and output

hydrograph at P1, it was found that if the maximum depth of flood at P.67 equals 4.70 m,

the maximum depth of flood at P.1 equals 3.7 m, within about 7-8 hrs later (Chatchawan,

2005). Based on this correlation and observed relationship between flood level at P1 and

flood depth measured in the city during flood events, flood warning system for Chiang

Mai city was set up in the form of flood hazard maps. Chiang Mai flood maps given by

Civil Engineering Natural Disaster Research Unit (CENDRU) Chiang Mai University
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divides inundation areas into seven zones depending on upstream referenced water level

at P1 (Chatchawan, 2005; CENDRU, 2013).

0 1000 m

N

CS1

P1

CS2

CS3

CS4

CS5

CS6
CS7

Y

30 km.0

N

Map of upper Ping catchment

Map of Thailand

StudyArea
Chiang Mai municipality

Chiang Mai municipality

Pi
ng

 ri
ve

r

Station

Figure 3.1 Location map of the Upper Ping River Basin, study reach and floodplain of

Chiang Mai Municipality.
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3.4.3 Parameter estimation for 1-D routing model

Figure 3.2 presents required hydraulic information at a cross section. Details

of using these parameters for floodplain resistance model are presented in Appendix B:

Flow resistance for one-dimensional over-bank flow in Jothityangkoon and Sivapalan

(2003). Provided channel cross-section, measured rating curve at station P1 and channel

bed slope, a Manning coefficient is estimated first by fitting the simulated with the

observed rating curve, prior converting to the effective Chezy coefficient of the main

channel (Cm). The Chezy coefficient in the flood plain is assumed to be the same as Cm.

Figure 3.2 Required hydraulic information at a cross section, parameters for tree and

building distribution on floodplain, L= W= 6-8 m (trees), = 10-15 m

(building),

a = 7-7.5 m (trees), = 9.5-12 m (building), d = 0.3-0.4 m (trees), = 9.5-12 m

(building), and β = 0.2-0.5 (trees), = 0.4-0.8 (building).
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3.4.4 Application of the model for flood extent estimation

Estimation procedures consist of four main steps (Figure 3.4).

(1) Formulate 1-D floodplain inundation model by fitting the simulated to observe

flood extent maps based on assumed floodplain cross section (step 1-6 in Figure 3.4),

upstream boundary condition and inputs are observed flood peaks at station P1.

(2) Convert input flood hydrograph to daily flood extent maps using 1-D flood

routing model and flat water level assumption (step 7 in Figure 3.4).

(3) Simulate a time series of hourly flood extent maps by using 1D raster model

(step 8-9 in Figure 3.4). After channel cross sections are converted to grid based-storage

cells in series and given water surface elevation in main channel of the river, flow rates

from Equation 1 and water surface elevations from Equation 3.2 are simultaneously

calculated for each time step to generate water surface elevation on floodplain for each

cross section. Upstream boundary condition and inputs are water surface elevations in the

main channel at each cross section.

(4) Generate a pilot map of 3-D floodplain inundation extent 2-D raster model

(step 10 in Figure 3.4). Similar to the previous step, except the flow rates are determined

on both directions (x: on floodplain, y: along main channel). Water surface elevation are

generate for floodplain at each cross section and between cross sections.
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Figure 3.3 Steps to estimate flood extent at CS 1 (a) comparison of the measured and

simulated rating curves for main channel at Station P1, (b) synthetic rating

curve at CS 1, (c) estimated flood extents on both size of cross section at CS

1.



83

3.4.5 Approach to estimate 3-D flood map

Hourly flood extent mapping from previous section is generated from the

interpolation of water surface level from seven cross sections of floodplain. To test

whether the raster models are able to simulate 2-D flood propagation over more realistic

floodplain topography, grid-based storage cell from step 10 in Figure 3.4 is generated

again from 1-D to 2-D in a short interval of a floodplain cross section.

3.5 Results and Discussion

3.5.1 Synthetic rating curves and flood extent for different water levels and

flood peaks

Given surveyed cross section and channel slope of Ping River at stream

gauge P1 (slope = 0.0087), simulated rating curve fit to observed rating curve can be

drawn with assumed Manning n=0.065 for in-bank flow in main channel (Figure 3.3a).

Figure 3.3b presents an example of estimated rating curves at cross section CS1 for two

cases: (i) main channel only, (ii) compound channel including the effect of trees and/or

building distribution. The parameter m and k from calculated storage-discharge curve for

seven cross sections are in the range of m=0.66-0.72 (for main channel) 1.55-2.15 (for

floodplain) and k = 18417-4536 (main channel) and 0.19-20.35 (floodplain).

The next cross section (CS1) is about 450 m downstream of P1 where there

is no stream gauge; a synthetic rating curve is drawn by using n the same as P1 and

surveyed cross sections from the profile and cross section surveying project along Ping

River for Chiang Mai’s flood warning, completed in 2007 by the Royal Irrigation
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Department. The rating curve is extended to over-bank flows on floodplain based on trial

and error processes until assumed shape of floodplain provides a good fit between

estimated and observed flood extent and inundation depth in the form of flood inundation

mapping (see Figure 3.4). Final shape of compound channel at CS1 is shown in Figure

3.3c. Over-bank flow occurs when Q>510 m3/s. For Q=530 m3/s, water level, inundation

extent from left and right river bank are 304.28, 1, and 255 m (line of sight toward

downstream). The estimated distance of inundation extent for Q=530 m3/s can be plotted

on the map in Figure 3.5b. Plan view of the flood map shows that there is no over-bank

flow on the right bank of Ping River but over-bank is found on the left bank. Estimated

and observed flood extents on the left bank are identical. Inundation extents for the other

Qs are estimated and plotted in the flood map; see Figure 3.5c, d, e, and f. By using the

method similar to CS1 step 1 to 6 in Figure 3.4, water level and inundation extent from

the river bank are calculated for the other six cross sections (CS2-CS7) downstream of

CS1. The estimated distant of inundation extent for all cross sections with the same Q is

plotted in the same map to present the boundary and area of inundation cover. These

maps present a good agreement between observed and simulated flood extent where the

fit index is higher than 75%. Some discrepancies between estimated and observed

inundation extent are found, for example, at CS2, Q=580 m3/s and at CS5, Q=600 m3/s,

mostly are underestimations.
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3.5.2 Daily flood extent mapping

Flood plain inundation modeling from a snap shot of inundation extent on

floodplain can be used to simulate a time series of flood extent. Moderate daily flood

events during 19-22 September 2005 with Q=164, 543, 679 and 472 m3/s are selected as

an input to the proposed floodplain inundation model and used to generate daily

floodplain inundation extents. Figure 3.6 presents a time series of daily flood map

showing an expansion and contraction of flood extent along both sides of the Ping River.

However, verification of these results with satellite images during this flood event is

required. The results of flood routing model show that the simulated flood hydrograph

from each river reaches are almost identical. This indicates that the attenuation of

hydrograph due to the effect of routing in short channel storages (3,850 m from P1 to

CS7) with some lateral inflows is not significant.
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Figure 3.4 Flowcharts for constructing a map of floodplain inundation extent.

(a) 510 m3/s
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(b) 530 m3/s

Figure 3.5 Comparison of observed and simulated flood inundation extent when flood

peaks are (a) 510 m3/s, (b) 530 m3/s, (c) 560 m3/s, (d) 580 m3/s, (e) 600 m3/s,

and (f) 673 m3/s.
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(d) 580 m3/s

Figure 3.5 Comparison of observed and simulated flood inundation extent when flood

peaks are (a) 510 m3/s, (b) 530 m3/s, (c) 560 m3/s, (d) 580 m3/s, (e) 600 m3/s,

and (f) 673 m3/s (cont.).

(e) 600 m3/s
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(f) 673 m3/s

Figure 3.5 Comparison of observed and simulated flood inundation extent when flood

peaks are (a) 510 m3/s, (b) 530 m3/s, (c) 560 m3/s, (d) 580 m3/s, (e) 600 m3/s,

and (f) 673 m3/s (cont.).
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(b) 21 September 2005 (679m3/s)

Figure 3.6 Simulation of daily flood inundation extent with (a) 20 September 2005

(543m3/s), (b) 21 September 2005 (679m3/s), (c) 22 September 2005 (472

m3/s).

(c) 22 September 2005 (472m3/s)
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Figure 3.6 Simulation of daily flood inundation extent with (a) 20 September 2005

(543m3/s), (b) 21 September 2005 (679m3/s), (c) 22 September 2005 (472

m3/s)

(cont.).

3.5.3 Hourly flood extent mapping

(1) Testing of raster model

Equations 3.1-3.6 were used to determine the water surface profile of

encroached flood level by converting to MATLAB codes based on numerical approaches.

The formulation of 2 types of raster models was assessed through the tests of numerical

exercises similar to Bates et al. (2010) as follow: Test 1: Flood wave propagation over a

horizontal floodplain and comparison to an analytical solution; Test 2: Flood wave run-up

on slope floodplain and comparison to a numerical solution; and Test 3: Tidal cycle of

wetting and drying or rising and falling hydrograph on slope floodplain.

22 Sep.2005, Q = 472 CMS.
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For the first test, using u=1 ms-1, x=50 m, t=0.2 s, n=0.01 m-1/3s to

represent possible roughness on floodplain, total time=3,600 s and maximum water

level=0.93 m, analytical solution from Equation 3.4 is presented in Figure 3.7a. Given

initial condition, h(t) at x=0 from Equation 3.4, the diffusive and inertial models can

generate the water surface curve almost fit to the curve from analytical solution. The

inertial model performs better than the diffusive model.

For the second test, there is no direct analytical solution. The solution of

Equation 3.3 can be obtained by numerical method using 4th order Runge-Kutta method.

The common parameter values for this test similar to Test 1, but including S0=10-3,

n=0.09 m-1/3s, maximum water level=8.5 m, t=0.05 and 0.02 s for inertial and diffusive

model, respectively. Maximum t is chosen to give no instability. Figure 3.7b shows

estimated water surface elevation from the diffusive and inertial model compare to the

numerical model.

For the third test, to investigate the simulation results from the whole cycle of

flow reversals including rising front of flood waves during floodplain wetting and

recession front during floodplain drying, a sinusoidal wave boundary condition is used at

x=0, with wave amplitude 6.1 m period 4 hrs and S0=10-3 for simulation period 7,200 s.

There is no analytical solution for this test. Only the difference between the inertial and

diffusive model is investigated (Figure 3.7c).



93

Figure 3.7 Testing results of raster model (a) simulated water surface elevation (z) at

t = 3600 s and x = 50 m for wave propagation over a horizontal floodplain

section using diffusive model, inertial model compare to analytical model,

(b) z at t = 3,600 s and x = 50 m for wave propagation up an incline

floodplain

section using diffusive model, inertial model compare to numerical solution,

(c) a time series of z at different time during wetting and drying for wave

propagation up an incline floodplain section using diffusive model and

inertial
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model.

(2) Simulation of one dimensional hourly flood extent

Test 1 to 3 are series of idealized case with increasing complexity. To

demonstrate the numerical performance of the raster model working over complex

topography, surveyed data at each cross-section is interpolate to grid-based storage cell

with fine spatial resolution x=50 m. A time series of observed flood hydrograph (during

20-21 September 2005) is interpolated for selected time step with smooth shape transition

from daily to hourly or smaller time step. Receiving these input hydrograph, the inertial

and diffusive model can be used to simulate a time series of water surface profile (Figure

3.8). For a longer duration (48 hrs), the diffusive model generates distance of flood extent

longer than the inertial model.  At a corner of steep river banks, simulated water levels

likely encroached into the river banks. This unrealistic water profile can be minimized if

the resolution of x is decreased less than 50 m. The final step is the same as in Section

4.1, as the distance of inundation extent from all cross sections are combined to draw the

map of time series of floodplain inundation extents, as shown in Figure 3.9.
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Figure 3.8 Simulated hourly flood levels at cross section No. 5 between 20 September

2005 to 21 September 2005.

(a) 1 hour
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(b) 3 hour

Figure 3.9 Comparison of simulated hourly flood map and inundation extent from

inertial

and diffusive model between 20-21 September 2005 with different simulation

times (a) 1 hr, (b) 3 hrs, (c) 6 hrs, (d) 12 hrs, (e) 18 hrs, (f) 24 hrs, (g) 30 hrs,

(h) 36 hrs, (i) 42 hrs, and (j) 48 hrs.

(c) 6 hour
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(d)  12 hour

Figure 3.9 Comparison of simulated hourly flood map and inundation extent from

inertial

and diffusive model between 20-21 September 2005 with different simulation

times (a) 1 hr, (b) 3 hrs, (c) 6 hrs, (d) 12 hrs, (e) 18 hrs, (f) 24 hrs, (g) 30 hrs,

(h) 36 hrs, (i) 42 hrs, and (j) 48 hrs (cont.).
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(e) 18 hour

(f) 24 hour

Figure 3.9 Comparison of simulated hourly flood map and inundation extent from

inertial

and diffusive model between 20-21 September 2005 with different simulation

times (a) 1 hr, (b) 3 hrs, (c) 6 hrs, (d) 12 hrs, (e) 18 hrs, (f) 24 hrs, (g) 30 hrs,



99

(h) 36 hrs, (i) 42 hrs, and (j) 48 hrs (cont.).

(g) 30 hour

(h) 36 hour

Figure 3.9 Comparison of simulated hourly flood map and inundation extent from

inertial

and diffusive model between 20-21 September 2005 with different simulation
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times (a) 1 hr, (b) 3 hrs, (c) 6 hrs, (d) 12 hrs, (e) 18 hrs, (f) 24 hrs, (g) 30 hrs,

(h) 36 hrs, (i) 42 hrs, and (j) 48 hrs (cont.).

(i) 42 hours

(j) 48 hours

Figure 3.9 Comparison of simulated hourly flood map and inundation extent from

inertial
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and diffusive model between 20-21 September 2005 with different simulation

times (a) 1 hr, (b) 3 hrs, (c) 6 hrs, (d) 12 hrs, (e) 18 hrs, (f) 24 hrs, (g) 30 hrs,

(h) 36 hrs, (i) 42 hrs, and (j) 48 hrs (cont.).

3.5.4 Flood extent in 3-D

A pilot test of 2-D grid-based storage cells are generated with a distance of

2,500 m along the Ping River downstream of CS6 and assuming an input flood level with

constant depths of 0.95 m for the left bank and 1.20 m for the right bank, shown in Figure

3.10. This 3-D map shows a more realistic shape of flood wave propagation on the

floodplain. The upper and lower surface represents propagated water surface and

floodplain surface, respectively.

Figure 3.10 Simulated hourly flood inundation extent in 3-D map downstream of section

CS6 generated from 2-D raster model (diffusion model) with 1,500 m length
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along the channel, slope = 0.0005, n = 0.09 m-1/3s, x = y = 50 m, t = 0.1

s.,

Running time = 3 hrs.

3.6 Conclusions

By using a synthetic rating curve for compound channel which includes the effect

of trees and buildings distribution on floodplain, floodplain inundation model based on

flat water surface assumption can be formulated with a number of selected channel cross

sections. Although the vertical resolution of existing DEM (based on scale 1:50,000) for

the floodplain of Chiang Mai Municipality is too low to represent any change of flood

level, the assumed shape of floodplain can be defined and tested from a good fit between

observed and simulated flood extent using the reverse engineering approach. This model

can be used with confidence to construct a daily flood extent map.

To generate a time series of flood inundation maps from daily to hourly extents, a

raster model consisting of diffusive and inertial formation are applied. The inertial model

performs slightly better than the diffusive model for a horizontal floodplain and a slope

floodplain, when compare to the analytical solution. The difference of simulated water

level between the inertial and diffusive model become less pronounced for more

complexity of floodplain topography and when receiving dynamic wetting and drying

hydrograph. Inertial model can generate stable results with a time step larger than

diffusive model due to increased stability with the addition of the inertial term. This study

did not consider the computational performance and efficiency between different models.
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If digital elevation data at a fine spatial resolution are available from an airborne

laser altimetry survey or LiDAR data, then this data can be used to simulate more reliable

inundation map and apply to the whole flooding area of Chiang Mai municipality,

including the assessment of flood inundation extent from flood peaks with different

exceedance probability or return period (Yin et al., 2013). The accuracy of flow patterns

on floodplain depends on land surface characteristics and properties which can be

interpreted from high resolution topographic information such as LiDAR data. This

simplified floodplain inundation modeling are potential and alternative tools for

developing countries where no spatial input data with high resolution are available.
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CHAPTER IV

ASSESSING THE CLIMATE IMPACT ON FLOODPLAIN

INUNDATION MAP IN THE CHIANG MAI

MUNICIPALITY, UPPER PING RIVER BASIN

OF THAILAND

4.1 Summary

Coupling of water balance model and floodplain inundation model is

developed to receive projected rainfall time series from two types of regional climate

model (RCM). Providing Regional Climates for Impacts Studies (PRECIS) and

Meteorological Research Institute (MRI) are RCM with resolution 0.2 x 0.2 degree

(grid size 20 x 20 km) daily time step, from year 2015-2044. They are generated from

ECHAM 4 climate models.  Empirical quantile mapping is used for bias correction of

projection rainfall that its adjustment factors are estimated from comparison between

observed and past projection rainfall from base-time period, year 1985-2014. A

floodplain inundation model is applied based on 1D rating curve approach. This

model receives peak runoffs as results from the water balance model, and generate

flood extent in flood plain and draw flood inundation map of Chiang Mai

municipality with different return periods. These expected results show the increase of

flood inundation extent as a consequence of climate change.



108

4.2 Introduction

The impact assessment studies of climate change in various basins different

part of the world indicate changes in the amount of precipitation, its frequency and

intensity affecting the magnitude and seasonal pattern of streamflow. Sharma and

Babel (Sharma and Babel, 2013) use the rainfall-runoff model (HEC-HMS) to receive

time series of future projection rainfall from ECHAM4/OPYC general circulation

model (GCM) for upper Ping river basin after they are improved by bias-correction

and spatial disaggregation. Simulated results suggest a decrease of 13-19 % in annual

streamflow and a shift in seasonal streamflow pattern.  For regional and national scale

studies, GCMs are a common tool to generate future projection climate variables at a

coarse scale. For local scale such as basin level, many studies have applied different

bias-correction and downscaling approaches to improve the local patterns of climate

variables.  Regional climate models (RCMs) are commonly used to transform coarse

resolution GCM data to the local scale. Sharma and Babel (Sharma and Babel, 2013)

use Gamma-Gamma distribution for rainfall intensity correction and use

disaggregation model based on multiplicative random cascade approach for

downscaling. To reduce bias of RCM simulation from Providing Regional Climates

for Impacts Studies (PRECIS) and ECHAM4 climate models, Boonrawd and

Jothityangkoon (Boonrawd and Jothityangkoon, 2015) use distribution mapping based

on derived adjustment factors (AF), which is the ratio of observed and simulated

rainfall depth for a given frequency of occurrence. They found that the combination of

using seasonal AFs derived from monthly rainfall data for each month of all years,

and AFs derived from all daily rainfall data and used to shift distribution of daily

rainfall intensity provide the best improvement of simulated rainfall. Potential effect
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of both climate and land use change on the extreme flood for the upper Ping River

Basin was studied by Jothityangkoon et al. (Jothityangkoon et al., 2013). A distributed

rainfall–runoff model appropriate for extreme flood conditions is used to generate

revised estimates of the Probable Maximum Flood (PMF). For mapping space-time

flood extent of Chiang Mai floods, developed a coupling of a 1-D flood routing model

and quasi 2-D floodplain inundation model to simulated temporal extent of flood area

(Boonrawd and Jothityangkoon, 2015). This rainfall-runoff model and inundation

model is used to receive future projection rainfall after bias correction and to delineate

flood map in this study. Wuthiwongyothin et al. (Wuthiwongyothin et al., 2017)

assessed the effects of climate change of the upper Ping River basin by using future

projection rainfall from the ECHAM5 and the CCSM3 global climate model (GCM)

They found that averaged discharge of inflow to Bhumibol dam increase to 17.3 %

from 5.25 to 6.36 billion m3 at the end of the 21th century (2016-2099). (Tangang,

2017) presents simulation output of more than ten CMIPS Global Climate Model

(GCMs) from Southeast Asia Regional Climate Downscaling Experiment/

Coordinated Regional Climate Downscaling Experiment (SEACLID/CORDEX).

Simulated results show a tendency of wetting in the northern area of equator by the

increasing frequency of projected rainfall intensity 20 and 50 mm/day for near, mid,

and end-of-century, and the increase of projected annual maxima for daily rainfall and

daily rainfall intensity with 10 year return period. In contrast, the drying tendency is

clearly increased such as the increase of projected consecutive dry day.

This chapter assesses the impacts of climate change on maximum annual discharges

in the upper Ping River of Thailand and focusing on the future expansion of flood
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inundation in community area of Chiang Mai municipality and its vicinity, which is

an initial step to develop possible flood hazard map (Osti et al., 2008).

4.3 Study area and RCM data

The Upper Ping River catchment is located in the north of Thailand.  The river

flows southward through the valley of Chiang Mai. The catchment area upstream of

stream gauge station P1 (Navarat Bridge) and P68 (Ban Nam Tong) are 6,350 and

6,430 km2, respectively. The flood study area covers about half of Chiang Mai

municipality (40.2 km2) and two districts (Pa Daet, 25 km2 and Nong Hoi, 3.67 km2)

which lie on the floodplain of the Upper Ping River.

Observed flood inundation area

The observed flood inundation area from past floods was defined based on

relationship between flood level at P1 and flood depth measured in the city during

past flood events. Flood warning system for Chiang Mai city was set up in the form of

flood hazard maps by Civil Engineering Natural Disaster Research Unit (CENDRU)

(CENDRU, 2013). Inundation areas were divided into seven zones depending on

upstream referenced water level at P1 (see Table 4.1 and Figure 4.1).

RCM data and observed rainfall

Two sets of time series of projection rainfall are generated from Providing

Regional Climates for Impacts Studies (PRECIS) and Meteorological Research

Institute (MRI) which receives input data from ECHAM4 climate models with

resolution 0.2 x 0.2 degree (grid size 20 x 20 km.) daily time step, baseline period

from year 1985-2014 (30 years) and future projection period from year 2015-2044 (30

years). The simulation covers the Intergovernmental Panel on Climate Change (IPCC)
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emission scenarios A2 and B2. For this study, only A2 is selected (Boonrawd and

Jothityangkoon, 2015). Japan Meteorological Agency (JMA) developed operational

forecast model for a quasi-equilibrium experiment under a doubled atmospheric CO2

condition called MRI-AGCM 3.1S version (AR4) (high-resolution atmosphere-only

general circulation models, AGCMs). Baseline periods of projected rainfall are

divided into 3 periods: past (1979-2006), near future (2015-2039), far future (2075-

2099). A 30 year time’s series (1985 - 2014) of observed daily rainfall from selected

42 rain gauges over the Upper Ping River basin is used to compare with projected

rainfall from RCMs.

Figure 4.1 Observed flood inundation area by Civil Engineering Natural Disaster

Research Unit (CENDRU).
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Table 4.1 Observed flood inundation area from past floods.

Observed flood
(m3/s)

Water level at P1
(m)

Inundation area
(km2)

Return period
(year)

510 3.90 0.353 7.90
530 4.00 1.259 9.15
560 4.10 1.761 11.40
580 4.20 2.689 13.25
600 4.30 6.505 15.40
673 4.60 8.138 26.80

4.4 Methodology

To construct a map of floodplain inundation, the flowchart of 7 main steps is

presented in Figure 4.2 and each step is explained in details in the following sub-

section.

4.4.1 Derived AFs

The method of higher-skill bias corrected RCM data or empirical

quantile mapping is operated based on derived adjustment factors (AF), which is the

ratio between observed and simulated rainfall for a given frequency of occurrence.

Correcting only the monthly mean precipitation can distort the relative variability of

the inter-monthly precipitation distribution, and may adversely affect other moments

of the probability distribution of daily precipitations. For bias correction test, the

complexity of derived AFs is added in 5 method (Boonrawd and Jothityangkoon,

2015).
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Figure 4.2 Flowcharts for constructing a map of floodplain inundation.

Method 1: AFs are derived from all daily rainfall data and used to shift distribution of

daily rainfall intensity (daily AFs for daily).

Method 2: temporal scaling of input rainfall data is changed from daily to monthly

(monthly AFs for monthly).

Method 3: is similar to Method 2, the difference is AFs are used to adjust distribution

of daily rainfall (monthly AFs for daily).
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Method 4: seasonal AFs are derived from monthly rainfall data for each month of all

years and used to shift distribution of monthly rainfall of each month (seasonal

monthly AFs for monthly).

Method 5: is the combination of Method 4 for the first step and Method 1 for the

second step (seasonal monthly AFs for monthly+ daily AFs for daily).

Boonrawd and Jothityangkoon, (2015) found that the Method 5 provides the

best derived AFs compare to the other methods. An example of testing results from

the Method 5 is shown in Figure 4.3 for PRECIS rainfall and Figure 4.4 for MRI

rainfall.  For calibration step, AFs are estimated from observed and simulated rainfall

from RCM rainfall during 1982-1996 (15 years). For verification step, these estimated

AFs are used to correct RCM rainfall during 1997-2011 (15 years) and compare to

observed rainfall in the same verified period. For further testing in this study, the

Method 5 is used to derive AFs for many locations of available observed rainfall.

Finally, this method is used to derive AFs for every grids of RCM data.

4.4.2 Application of AFs for future projection rainfall

AFs are estimated again using the whole historical data (1982-2011, 30

years) for each grid. These AFs are used for bias correction of future projection

rainfall at all grids of RCM data.

4.4.3 Assignment of corrected future rainfall to subcatchments

A time series of corrected future rainfall from a grid that give the

shortest distance between the centroid of RCM grid and the subcatchment is assigned

to the subcatchment.
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4.4.4 Generation of time series of simulated runoff

A hydrological model used in this study is an adaptation of a sub-

catchment based distributed water balance model developed by Jothityangkoon et al.

(2013). The model has two components: a hillslope runoff generation model and a

distributed flood routing model.  The hillslope water balance model contains a

number of parameters, which are measured or derived a priori from climate, soil and

vegetation data or streamflow recession analyses. Based on the dynamics of water

balance concept, discharges from each subcatchment are generated from 2 different

runoff generation processes: saturation excess runoff and subsurface runoff. The

catchment area upstream of P1 is divided into 62 subcatchments. The routing model

based on a configuration of channel storages in parallel and series using constant

averaged flow velocity (49.5 km/day) outlet at P1 estimated from time lag of observed

hydrographs within the catchment.  This model is applied to receive runoff from each

subcatchment and route through river network to the outlet at P1.

4.4.5 Construction of flood frequency curve

Annual maximum of observed or simulated runoff is estimated from a

time series of observed or simulated daily runoff and results from frequency analysis

of the annual maximum are plotted in Gumbel distribution paper.

4.4.6 Defining annual maximum floods

The Extreme Value Type I distribution or Gumbel distribution is used to

fit the observed or simulated annual maximum runoff. For a given specific return

period, annual maximum flood can be estimated.
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4.4.7 Mapping of flood inundation

Flood at specific return period is converted to flood level by using

simulated rating curve for a compound channel developed by Jothityangkoon et al.,

(2013) Flat level of water surface is assumed and used to define intersection point

between water surface and floodplain. At the same time, the shape or cross section of

floodplain is estimated based on trial and error processes until assumed shape

provides a good fit between estimated and observed flood extent in Figure 4.1. For

each river cross section with estimated rating curve and the shape of floodplain, the

distance of flood extent from the main channel for any flood magnitudes is calculated

and use to draw flood map.
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Figure 4.3 Input rainfall from PRECIS (Method 5), Comparison of observed,

projected
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and adjusted rainfall at Sta. 327021, for calibrated results (a) to (d) and for

validated results (e) to (h), consisting of exceedance probability of

observed,

projected and adjusted data (daily, monthly annual and mean monthly

rainfall).

Figure 4.4 Input rainfall from MRI (Method 5), Comparison of observed, projected
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and

adjusted rainfall at Sta. 327021, for calibrated results (a) to (d) and for

validated results (e) to (h), consisting of exceedance probability of

observed,

projected and adjusted data (daily, monthly annual and mean monthly

rainfall).

4.5 Results and Discussion

Return period of observed annual maximum flood in the fourth column of

Table 4.1 shows that the return period of maximum observed flood for flood warning

is about 27 years.  By using derived AF based on Method 5 (combination of seasonal

monthly AFs for monthly data and daily AFs for daily data), exceedance probability

of annual and mean monthly projected rainfall are shifted close to observed rainfall

(Figure 4.3, 4.4(b), (c), (f), (g)). For intra-annual variability, adjusted mean monthly

rainfall has a good agreement with observed mean monthly rainfall for both PRECIS

and MRI, calibration and validation period, coefficient of determination (R2) > 0.89

and Nush-Sutcliffle efficient (E) > 0.84.

Figure 4.5 and Table 4.2 present observed and simulated annual maximum

flood from different input rainfall. Simulated annual maximum flood from the water

balance model with receiving observed rainfall similar to observed runoff for all

return periods.  Although, the time series of past projected rainfall from PRECIS and

MRI are improved by bias correction using AFs, when the model receives past

projected rainfall, simulated annual maximum is about 22-24 % for PRECIS and 31-

35 % for MRI higher than simulated flood from observed rainfall.
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Table 4.2 Annual maximum flood from different methods.

Return period
(year)

Observed
Max. Q
(m3/s)

Simulated annual maximum flood from (m3/s)
Observed
rainfall

Past projected R
PRECIS MRI

10 524 542 649 696
25 663 664 806 869
50 754 754 923 998
100 843 844 1,038 1,125

Table 4.2 Annual maximum flood from different methods (cont.).

Return period
(year)

Observed
Max. Q
(m3/s)

Simulated annual maximum flood from (m3/s)
Observed
rainfall

Future projected R
PRECIS MRI

10 524 542 706 1,014
25 663 664 866 1,298
50 754 754 985 1,509
100 843 844 1,103 1,718
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Figure 4.5 Comparison of flood frequency curve between observed floods, simulated

annual maximum flood from observed rain, past projected rain and future

projected (a) input rainfall from PRECIS, (b) input rainfall from MRI.
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Table 4.3 Flood inundation area.

Due to climate change, if the model receives future projected rainfall,

simulated annual maximum flood is about 31-35 % for PRECIS and 94-104 % for

MRI, higher than simulated flood from observed rainfall (Table 4.2). In term of flood

inundation area, future projected rainfall gives about 89.5, 20.8, 10.2, 7.0 % increase

for PRECIS and 91.2, 30.4, 22.1, 21.5 % increase for MRI of inundation area

compare to past flood area for 10, 25, 50 and 100 years return period, respectively

(Table 4.3). Flood inundation maps and its boundary are presented in Figure 4.6 for

PRECIS input and in Figure 4.7 for MRI input.

Return period
(year)

Flood inundation area (km2)
Past floods Future rainfall : PRECIS Future rainfall : MRI

area Increase (%) area Increase (%)
10 0.895 8.493 89.47 10.208 91.24
25 7.677 9.692 20.79 11.030 30.40
50 9.010 10.036 10.23 11.563 22.08
100 9.621 10.339 6.95 12.258 21.51
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(a) Future rainfall from PRECIS, Q=706 m3/s (T= 10 year)

(b) Future rainfall from PRECIS, Q=866 m3/s (T= 25 year)

Figure 4.6 Boundary of simulated flood inundation from PRECIS at return period

(a) 10 year (b) 25 year (c) 50 year and (d) 100 year.
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(c) Future rainfall from PRECIS, Q=985 m3/s (T= 50 year)

(d) Future rainfall from PRECIS, Q=1,103 m3/s (T= 100 year)

Figure 4.6 Boundary of simulated flood inundation from PRECIS at return period

(a) 10 year (b) 25 year (c) 50 year and (d) 100 year (cont.).
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(a) Future rainfall from MRI, Q=1,014 m3/s (T= 10 year)

(b) Future rainfall from MRI, Q=1,298 m3/s (T= 25 year)

Figure 4.7 Boundary of simulated flood inundation from MRI at return period,

(a) 10 year, (b) 25 year, (c) 50 year and (d) 100 year.
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(c) Future rainfall from MRI, Q=1,509 m3/s (T= 50 year)

(d) Future rainfall from MRI, Q=1,718 m3/s (T= 100 year)

Figure 4.7 Boundary of simulated flood inundation from MRI at return period,

(a) 10 year, (b) 25 year, (c) 50 year and (d) 100 year (cont.).
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4.6 Conclusion

To assess the impact of climate change, a time series of future projection

rainfall from RCM rainfall models is used including PRECIS and MRI with bias

correction. Combination of a water balance model and flood inundation model is

linked to generate flood extent in flood plain and draw flood inundation map of

Chiang Mai municipality. Simulated results show that the increase of flood inundation

extent as a consequence of climate change. For bias correction method, adjustment

factor based on empirical quantile mapping from a combination of seasonal monthly

AF for monthly data and AFs for daily data is used to correct future projection rainfall

from both PRECIS and MRI. By using a coupling of the distributed water balance

model and floodplain inundation model to convert future projection rainfall from

PRECIS to runoff and peak discharges and comparing to inundation area of past

floods, the inundation area in Chiang Mai municipality is increased by 89.5, 20.8,

10.2 and 7.0 % with 10, 25, 50, 100 years return period, respectively. Similar trend

occurs for MRI with higher percentage than PRECIS, increased by 91.2, 30.4, 22.1

and 21.5 % with 10, 25, 50, 100 years return period, respectively.

Limitation of this study is the use of projection rainfall from only two RCM

outputs and using fixed landuse/ landcover. As being suggested by many studies of

climate change impact, the use of more GCM, RCM and future IPCC scenario are

required for decision-making processes in dealing with future uncertainty.  However,

it is expected that more RCM outputs are easily available in the future for this region.

Integrated approach between climate change and land use change is recommended for

future study.
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APPENDIX A

FLOODPLAIN INUNDATION MAPPING WITHOUT

HIGH RESOLUTION DEM
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Figure A.1 Flowcharts for floodplain inundation mapping without high resolution

DEM.



133

Brief method on how to construct flood inundation map for the area without

high resolution DEM is presented in Figure A 1

To draw the synthetic rating curve for compound channel, required parameters

for each reaches are estimated from hydraulic properties, floodplain geometry and

vegetation and building cover of compound channels (Figure A2). To solve the

current problem of inadequate topographic input data for floodplain, the shapes of

floodplain are defined by using fitting exercise based on the reverse approach between

snap shot series of past and simulated inundation flood extent (Figure A3(c)) . These

shapes are adjusted until the simulated and observed flood extents are similar and fit

index is high enough. Mapping of daily flood can be generated relying on flat water

levels.
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Figure A.2 Required hydraulic information at a cross section, parameters for tree and
building distribution on floodplain.
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Figure A.3 Steps to estimate flood extent at CS 1 (a) comparison of the measured and
simulated rating curves for main channel at Station P1, (b) synthetic rating
curve at CS 1, (c) estimated flood extents on both size of cross section at
CS 1.
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