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In this chapter we introduce the notion of measure of a set and discuss some of it properties.
Measuring the size of a set is not really a new concept: we already have studied this idea in the
case of Euclidean spaces R”. In one dimension, it is the length of an interval, in two dimensions it
is the area of a bounded set while in three dimensions, it is the volume of a bounded set. Recall that
not every bounded subset of the plane can be assigned an area: its boundary has to be sufficiently
“nice”. Thus when generalizing the concept of area or volume to arbitrary spaces, we first must
introduce the class of sets to which we will assign such a measure; this leads to the concept of a
o-algebra.

Preliminaries

Let us first review and clarify some concepts and notations used throughout.

Given an arbitrary set Q, we denote the collection of all subsets of Q by 2(Q) or 2* and call
it the power set of Q.

Any collection &7 of sets can be indexed as &7 = {A; },ca. Thus, we may denote the intersec-
tion of all set in &/ by

A
AeA
for convenience, and we can treat the union of all sets in &7 in a similar way.
A set E is called countable if there exists a surjection f : N — E. Thus, countable sets may be
both, finite or infinite. In the latter case we will call E countably infinite or denumerable.
A topology on Q is a collection 7 C F2(Q) satisfying
l.0etand Qe T,
2. for every collection {Ug }geca C T we have | Jyeq Ug € T,
3. for every finite collection {U;}!_, C T we have (i_; Uy € 7.
The elements in 7 are called closed sets, and F' C Q is called a closed set if F© is open.



2 Chapter 1. Measure Spaces

1.1 Algebras and Sigma-Algebras
Definition 1.1.1 Let Q be an arbitrary set, and .% a non-empty collection of subsets of Q (i.e.
F C Z(Q)). Then
1. Z is called an algebra of subsets of Q (or an algebra on Q) provided the following hold:
(Al) Whenever A € .%, then A € Z#,

N
(A2) Whenever A1,A,...,Ay € %, then |J A, € Z.
=1

fi=
”F is closed under formation of complements and finite unions”
2. 7 is called a o-algebra of subsets of Q (or a 6-algebra on Q) provided the following
hold:
(A1) Whenever A € ., then A° € F,
(A20) Whenever Ay,A,,...,Ap,... € F,then |J A, € Z.

n=1
”.% is closed under formation of complements and countable unions”

‘p Clearly, every c-algebra .# on Q is also an algebra on Q. Conversely, Example 1.1 shows
“+  that not every algebra is also a ¢-algebra.

‘R From the above definitions, the following additional properties of algebras and c-algebras
« follow immediately:

1. Let % be an algebra on Q. Then
N
(A3) Whenever Ay,As,...,Ay € %, then | A, € Z.

n=1
”.% is closed under finite intersections”
Proof. This follows from the fact that

N N ¢
An= 0]
n=1 n=1
together with properties (A1) and (A2). |
(A4) Whenever A,B € %, then A\B € 7.
”.% is closed under formation of differences”
Proof. This follows from the fact that

A\B=A[B,

together with properties (A1) and (A3). |
(AS) 0.7 and Qe 7.

Proof. By (Al) and (A2) above we have Q = A|JA® € Z. It follows immediately
that ) = Q¢ € .Z. |

2. Let .% be a o-algebra on Q. Then
(A30) Whenever A1,Ay,...,A,,... € %, then N A, € Z.

n=1
"% is closed under countable intersections”
Proof. This follows from the fact that

ﬂAn: I:UA;:| 3
n=1 n=1

together with properties (A1) and (A20). |
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= Example 1.1 Let Q be any set, and y £2(Q) its power set.

1:

2.

Fs={0,Q} is a o-algebra. In fact, it is the smallest o-algebra (and also the smallest algebra)
on Q.

F = P(Q) is a o-algebra. In fact, it is the largest o-algebra (and also the largest algebra)
on Q.

Fix any E C Q. Then % = {0,E,E¢,Q} is a o-algebra. In fact, it is the smallest o-algebra
(and also the smallest algebra) on Q containing E.

. Suppose that Q is infinite. Then

F) :={E C Q:E is finite}
is not an algebra as (A1) does not hold. However,
F={E C Q: E is finite, or E€ is finite}

is an algebra, as one easily verifies. Clearly, .7, is the smallest algebra on Q containg all
finite subsets of Q.
On the other hand, .%; is not a o-algebra. In fact, let {x;,x2,x3,...} be a countable subset of

Q. Set E = | {xx} = {x2,%4,%,... }. Now each singleton {xy } is in .7, while E and E¢
k=1

are both infinite sets, an hence, E & .%,. Thus, (A20) does not hold.

. On the other hand,

F3:={F CQ:F is countable, or F is countable}

is a g-algebra for any Q, as one easily checks. Clearly, .%3 is the smallest algebra on Q
containg all countable subsets of Q.

Let Q be infinite, and {E, } 7 be a countable family of pairwise disjoint subsets of & whose
union is Q. Set

Fy:={E C Q: E is the union of some of the sets E, } = {U E, i S'C N} .
nes

It is left as an exercise to verify that .7, is a o-algebra on Q.

The next two exercises may be taken as alternative definitions of algebras and o-algebras.

Exercise 1.1 Let Q be a set, and let .# be a non-empty collection of subsets of Q satisfying

1. Whenever A € %, then A€ € %,
2. Whenever A,B € %, thenA\B € %.

- Show that .% is an algebra on Q. "

Exercise 1.2 Let Q be a set, and let # be a non-empty collection of subsets of Q. Suppose, .7
satisfies:

1. Whenever A € .%, then A° € .%,
2. Whenever {A,}>_; C #, then ﬂ A, e F.

Hi=1
n=1

Show that .% is a ¢-algebra on Q. “
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We will often make use of the next theorem which allows us to replace any finite or countably
infinite collection of sets in .% with a collection of disjoint sets in .%.

Theorem 1.1.1 Let % be an algebra on Q, and {4, };"_; a countably infinite family of sets in
% . Then there exists a family {B,}*_, of pairwise disjoint sets in .# satisfying

1. B,CA,Vn,and

2. UBi=JAi Vn

i=1 i=1

Furthermore, U B, = U A,.
n=1 n=l

Proof. We construct the sets B, inductively. First, set Bj = A;. Then the assertion is true for n = 1.
In general, suppose we have constructed pairwise disjoint sets By, ..., B, € % satisfying B; C A;
foralli=1,...,n and

LB=|)As (1.1)

Set By+1 =A,11\UL, B; € %. Then by construction, the sets By, ..., B, are pairwise disjoint,
and

G -seu(()- (oo Ge)ufen)

ln . n n+1
=AnJ (U Bi) L U (UAi> = UAi~
E1 =1 izl

By induction, we thus obtain a family {B,} ", of pairwise disjoint sets, with B, € .# for all n, so
that 1. and 2. hold for all n.
Finally, by 2. we have

=5} oo n L n e
U= 0(0a) =0 (0a) - U
n=1 n=1 \i=1 n=1 \i=1 n=1

This completes the proof. |

‘p . The above proof also shows that every finite collections Ay,As,... Ay € Z can be modified
to a pairwise disjoint collection By,Bs,...By € % so that 1. and 2. hold forall n, 1 <n <N.
‘We simply stop in the induction step when n = N.

Proposition 1.1.2 Let A be an index set, and for each A € A, let %, be a c-algebra on Q. Then

M %

LeA

is again a o-algebra on Q.
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Proof. We need to show that properties (A1) and (A20) hold for . =y cn Z2-

1. LetA € ) %;. Then A € %, for all A. Since each .%, is a c-algebra, then A° € .%,, for
A€EA
all A, and hence

AC e m Ty
AeA

n=1

2. Let {A,}7., C N #. Then {A,};r, C %, forall A. Since each .7 is a o-algebra, then
AEA

U A, € .F,, for all A, and hence
1

n=

UA,,E ﬂ ).

n=1 AEA

We have shown that (A1) and (A20) both hold for .% which hence is a c-algebra. [}

| Definition 1.1.2 Given a collection %" of subsets of Q (i.e. %2 C & (Q)), let {-Fy }, 5 denote
the collection of all o-algebras on Q containing ./#". That is,
| 1. Each %, is a o-algebra on Q,

2. ¥ C.% forall A € A,
3. If Z is a o-algebra on Q with ¥ C .7, then JA € A with & = 7.

Note that the collection {.; }, ., is not empty, as & C 22(Q) and P (Q) is itself a o-algebra.
| We set

g,} = m g’\l.
AeA

| Then ¥ C .%,, so that by Proposition 1.1.2, .%, is itself a o-algebra containing .%". Furthermore,
| if .Z is any o-algebra containing ¢, then .# =.%, for some A € A, so that %, C .7.

Thus .%, is the smallest c-algebra containing %, called the o-algebra generated by A,
and denoted by o (%).

= Example 1.2 1. Let Q be any set. If £ C Q, then
oc({E}) ={0,E,E°,Q}

(which is the o-algebra .Zg of Example 1.1).
2. Let Q be any (possibly uncountable) set, and &/ = {{x} : x € Q}, the collection of all
one-element subsets of Q (”singletons”). Then

o/ C{F C Q:F is countable or F° is countable} C o (/)

Since the set in the middle is nothing else but the o-algebra .%3 of Example 1.1, it follows
that

o() = F3={F CQ:F is countable or F* is countable}.

3. Let Q be an infinite set, and ¢ = {E, }>"_, be a countable family of pairwise disjoint subsets
of Q whose union is Q. Then ¢ (%) is the o-algebra .%4 of Example 1.1 (The proof is left
as an easy exercise).
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‘p Let &, C P(Q) with & C B. Then &/ C B C 6(%B). Since o() is the smallest
‘ o-algebra containing <7, it follows that (/) C (%) .

E.g. Let Q be any set, and let
o ={{x}:x€eQ} and B ={ECQ:Eisfinite }.

Since &7 C % C %3 (the o-algebra of Example 1.1), it follows from Example 1.2 that
P3=0() C 0(B) < F,

and hence %3 = (%) as well.

Borel Sigma-Algebras
¢ Definition 1.2.1 Let Q be a metric space (or more generally, a topological space), and let

h 7:={UCQ : Uisopen }
§ denote the collection of open sets. Then ¢(7), the o-algebra generated by the open sets, is
. called the Borel o-algebra on Q, and is denoted by Z(Q). The elements of Z(Q) are called

Borel sets.

‘p Itisin general not possible to describe all Borel sets. However, the following subsets of Q
are always Borel sets:

1. If U is an open subset of Q, then by definition, U € o(7).
2. If F is a closed subser of Q, then F€ is open, and hence by (A1), F = (F¢) € o(1).

3. A setof the form M = (") G;, with G; open for all i, is called a G set. Note that a G

i=1
set need not be open. By (A30), every G subset of Q is a Borel set.
4. Similarly, a set of the form M = | F;, with F; closed for all i, is called an Fg set. Note

=
that an Fi set need not be closed. By (A20), every Fs subset of Q is a Borel set.
5. If in addition, Q is a T space (this is always true for metric spaces), then singletons
{x} are closed, and thus they are Borel sets. It follows from (A20) that all countable
subsets of Q are Borel sets.

Next we want to study generating sets for the Borel o-algebra Z8(IR) on the real line. The main
tool will be Lindeloff’s Theorem.
p . Let # be the collection of all non-empty open intervals with rational endpoints,
’ Fo:={lrs=(ns) : r<s, rs€Q}.
The map
Jrs € Iy (r,s) eQxQ

clearly is injective. Since Q x QQ is a countable set, it follows that .%, must be countable as
well: There exist only countably many distinct open intervals with rational endpoints.
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Lemma 1.2.1 (Lindelott’s Theorem for the real line)
Every non-empty open set U C R is the countable union of bounded, open intervals with rational
endpoints. That is,

N
= U (Fisp) N € NU{eo}, ry,sn € Q.

n=1

Proof. Let U C R be open, U # 0. Thus, for each x € U, there exists € = &, > 0 such that
(x—e,x+€)CU.

Now by density of the rational numbers in R, there exist r = ry,s = sy € Q so that
X=ELr<X<§ <L H+E.

Then
Joi=(rns)C(x—e,x+€)CU.

That is, each J, is a bounded, open interval with rational endpoints (i.e. Jy € #p), andx € J, C U.
Now

v=UcUkrcu

xeU xelU
shows that
= | 4 (1.2)
x€U

However, by the previous Remark only countably many of the intervals J, are distinct, and we can
list the distinct interval as {J,,}ﬁ’zl, with N € N or N = oo, Thus, the union in (1.2) is really a union
of the intervals {J,}"

n=1°

N
Ve=| |y
n=1

which proves the lemma. |

Next we show that the Borel o-algebra on R is generated by the collection of open intervals
with rational endpoints.

Theorem 1.2.2 B(R) = o(%), where l

Jy= Al = (ns) dr <5 s €Q} E

Proof. Let
7:={UCR : Uisopen}.

Clearly, % C 1, and hence 6(%) C o(7) = B(R).
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To prove the reverse inclusion, let U € 7 be arbitrary. By Lindeloff’s Theorem, we can write
N
U=J, ne€NU{w=}, J,€ 5.
n=1

Since J, € S C o(H) for all n, it now follows from (A2) or (A20) that U € o(#). AsU € T
was arbitrary, we conclude that

7 C o(H)
Now Z(R) is the smallest o-algebra containing 7; hence

B(R) C o(H).
Thus the theorem is proved |
Exercise 1.3 (Additional generators of Z(RR).)
1. Show that Z(RR) contains all intervals (i.e. open / closed / half open — both bounded and

unbounded — intervals).
2. Let

f] = {Ja,b: (a,b) : a<ba a1b€R}7

denote the collection of all bounded, open intervals. Show that Z(R) = o(.#).
3. Let

]2 = {J}‘,S = {r’s] i P8BS & Q}
Hai=A{lpy = {rs8] : r<s, nec )
j4 = {Jr,s:[ns) : r<s7 r’SEQ}'

Show that Z(R) = 6 (%) = o(H) = o(S).
4. Let

Is = {Jgp =la,b] : a<bya;becR}
Fgi={Jap=1(a,b) : a < b, a,b cRY
Fqi={Ipp=[a;b) : a< b, a;be R}

Show that B(R) = o(5) = o(F%) = 6(F).

1.3 The Extended Real Numbers

In measure theory and the theory of integration, it is very convenient to treat the symbols oo and
—oo as if they were numbers:

§ Definition 1.3.1 The set
R* :=RU {eo, —o0} (also written [—oo,c0] )

. 1s called the set of extended real numbers.
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1. We extend addition from R to R* as follows: For all a € R,

o+ =a+o0 =00
—oo4-a=a+(—o0) = —oo
00 00 = o0

o0+ (—00) = —o0

Naturally, we define oo — g := o+ (—a), etc. Observe that co — o is undefined ! Similarly,
we define multiplication by

oo ifa>0 —oo  ifa>0
co-a=qa-c0=<¢0 ifa=0 and (—)-a=a-(—)=1¢0 ifa=0
—oo ifa<0 oo ifa<0

for a € R*. Observe here that 0-c = 0 is defined ! Division is defined as usual, and
a |-~ ifa<0,

while £ =0 and Z is undefined.
2. Next we extend the order to R* by setting

—o0o < < o Va€eR.

By this definition, every set E C R* is bounded above and bounded below. Furthermore,
supE and infE always exist in R*:

(a) case oo € E: Then supE = oo.

(b) case e ¢ E, and E MR is not bounded above in R: Then sup £ = oo.

(c) case o ¢ E, and E NR +# @ is bounded above in R: Then supE in R* coincides with
the usual supremum of E as a subset of R.
(d) case E=0or E = {—ec}: Then supE = —oo,
3. Limits of sequences (x;,) in R* may now include +oo.
(a) Finite limits: If L € R, then

limx,=L & Ve>0 INeN, |x,—L|<e VYn>N.

n—o0

(b) Infinite limits:

limx, =00 & VM >0 INeEN, x,>M Vn>N.

n—oo

limx,=—o & VM>0 IANeN, x,<-M Vn>N.

n—o

Every increasing sequence (x;,) T in R* converges to its supremum:

lim x, = sup{x, : n€ N}.

n—o

Similarly, every decreasing sequence (x,) | in R* converges to its infimum.
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4. Limit superior and limit inferior are defined as usual. If (x,) is any sequence in R*, then

limsupx, = hmxn = inf supxy.
n n k>n

Since the sequence (yy), y» := supx;, is decreasing, it converges to its infimum, and hence
k>n

11mx,, = hm 0y = ,}gn Sup x. (1.3)
* k>n

Similarly,

liminfx, = lim x,, := sup infxy,
n n k>n

n

and setting z,, := inf x; then
k>n

lim x,, = hm 1 7, = lim infx. (L4
n n—oo k>n

Since z,, <y, for all n, then by (1.3) and (1.4),

lim x,, < limx;,,.
n n

Furthermore, the sequence (x,) converges to a limit L € R* if and only if

him x5 = limay = L
n n

The details are left as an exercise.

. Next consider an infinite series

iiak, ap € R*.
=1

As usual, we say that this series converges in R, if the sequence of its partial sums converges,
ie. if

n
S=1lim ) a
n—roo =

exists in R*, and we call S the sum of the series.

Recall: If ¥ ay is a series in R, 0 < g < oo for all k, then we can freely rearrange the series:
If o : N+ N is any bijection, then

Lo

even in case of divergence to co. The same is true for series of non-negative terms in R*: If
ay € [0,00] for all k, then
(a) The series Y a; always converges in R*, as its sequence of partial sums is increasing,
(b) for every bijection & : N — N (=rearrangement),

Lo-

IIMB

Aok

(1.5)

uMz
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The details are left as an exercise.
It thus makes sense to introduce unordered sums: let I be a countable set, and for each i € I,
let 0 < a; < . We define the unordered sum Y ;c;a; by

Y ai:= ) aaw
k=1

iel

where o : N — [ is any bijection. By (1.5) this sum is inaepenaent oI tne cnoice or .

1.4 Measures

We are now ready to formally introduce the concept of a measure.
Definition 1.4.1 Let Q be a set and .# a o-algebra on Q.

The pair (Q,.%) is called a measurable space, and elements E of .% are called measurable
sers.
1. A measure on (Q,.%) is a function u : % — [0,00] satisfying:
M1) u(0)=0.
(M2) Whenever {E,};._; C .% is a countable collection of pairwise disjoint sets, then

u (U E,,) = Z w(Ey,) ("o-additivity™)
n=1 n=1 :

The triple (Q,.%, ) is called a measure space.
2. If u(Q) < oo, then u is called a finite measure, and (Q,.%, L) a finite measure space.
3. If there exists a countable collection {E, }; ; C % satisfying

(@) Q= U E,, and
n=1
(b) M(En) < oo Vn,
then p is called a o-finite measure, and (Q,.7 , ) is called a o-finite measure space
(Note that the sets E, need not be disjoint).

(R Since unions of sets are unordered, the sum on the right-hand side of (M2) is really an
" unordered sum,

#(U En> =) u(E).

neN neN

n=1
Then {E,};_, is a countable collection of pairwise disjoint sets in %, and applying (M1) and

(M2) we obtain

‘R, Let{E, W_. C .Z be afinite collection of pairwise disjoint sets. Set Ex | = Eyi2 =+ =0.

(M27) H UEn =H UEn = ZIJ(En) = Z“(En)‘i' Z u(0)
n=1 n=1 n=1 n=1 n=N+1
M1) N N N
= Y uE)+ Y 0= Y u(E).
n=1 n=N+1 n=1

This property is called (finite) additivity.
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s Example 1.3 The following measures can be defined on any measurable space (Q,.%):
1. A trivial measure is given by

U(E)=0 VEe Z.

2. Another trivial measure is given by

0 ifE=0
U(E) =
o Ec.ZF,E#0.

Note that

V(E) = 0 ifE=0
1 Ee€ZF E+0

is not a measure (unless % = {0,Q}). In fact, pick E € %, E # 0,E # Q. Then
VIE)+V(E)=14+1=2#V(EUE")=v(Q)=1,

which shows that v is not even additive.
3. The counting measure is defined by

He(E) =

card(E) if E € 7 is finite
if E € .7 is infinite.

Then

(a) U isfinite < Qisa finite set.

(b) u.is o-finite < Qs a countable set.
Note: The counting measure is the natural measure when Q is a countable set. It is not a
”good” measure when Q is an uncountable set. because it is not o-finite in this case.

To illustrate the non-suitability of the counting measure in case of an uncountable set, consider
the case where Q = R with .# = Z7(Q) and p. the counting measure. Set

1
Elz{E:kEN} and  E;=[0,1].

Then p.(E)) = u.(Ez) = oo, which contradicts our intuition that the two sets have very
different “’sizes”.
4. Fix a point a € Q and set

8,(E) = 0 ifa¢ E
N1 ifacE

for all E € .#. Then &, is a finite measure on (Q,.%#) called the Dirac one-point measure.
u

Exercise 1.4 Prove the assertions in 3. and 4. of Example 1.3 above. n
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s Example 1.4 (The Lebesgue measure on the real line) Consider the measurable space (R, Z(R)).
In Chapter 4 we will study the following:
1. There exists a unique measure A on Z(R) with the property

A(l)=b—a
for any bounded interval / with endpoints a < b. This measure A is called the Lebesgue
measure.
2. Since

and
A(E,) =n—(—n) =2n < oo,

it follows that A is o-finite.
3. The Lebesgue measure A is compatible with the topology of R in the following way:
(a) A(K) <o VK C R compact,
(b) A(E)=inf{A(U): ECU,UCRisopen} VEcZ%B(R).
("outer regularity”)
() A(E)=sup{A(K): KCE, KCRiscompact} VE e B(R).
("inner regularity”)
(Because these three properties hold, A is called a regular Borel measure.)

xercise 1.5 Given A C R and x € R, set

x+A:={x+y:y€A}
—-A:={-y:yeA}
xA:={xy:y€A}:

1. #:={x+A:AcPB(R)} isa o-algebra on R.

2. % contains all open intervals.

3. 1 =%BR).

- Thus #(R) is invariant under translations. Similarly show that

1. #H={-A:Ac BR)} = B(R).

L 2. Ifx>0,then &3 :={xA: Ac B(R)} = B(R).

In fact, in a later exercise in Chapter 4 you will show that VA € Z(R),

Alx+A)=A(A) the Lebesgue measure A is ’translation invariant’
A(—A) =A(A) the Lebesgue measure A is ’inversion invariant’
A(xA) =xA(A) (x>0)

L4
@ muyssmmmaz#omsﬁnm
= WMo malylagasy 3
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Theorem 1.4.1 (Properties of Measures). Let (Q,.%, |L) be a measure space.

1. Whenever A,B € .% and A C B then

(M3) H(A) < u(B).

(”monotonicity”)
2. Whenever A,B € % with A C B and 1(B) < oo then

K(B\A) = u(B) — (A).

3. Whenever {E,z};',":1 C Z is a countable collection of measurable sets (not necessarily
disjoint), then

u< E> < Y B(En)
n=1 n=1
then

4. Whenever {En}f;’:] C % is a finite collection of measurable sets (not necessarily disjoint),

N N
u (U En) = Z [J(E,,)
n=1 n=1

1. Decompose B as

B=(B\A)UA,

("o-subadditivity”)

(’subadditivity”)
Proof.

a disjoint union. Since 0 < p(B\A) and u is additive, then
1(A) < u(B\A)+ u(A) = u(B)

(1.6)
2. If 1(B) < oo, then by monotonicity, [L(A) < e as well. We may thus subtract (t(A) from all
sides of (1.6), and obtain
1(B) — n(A) = u(B\A).
3. Let {E,}>_; C .% be given. By Theorem 1.1.1, there exists a collection {B,};_, C & of
pairwise disjoint sets satisfying
(a) B, C E, for all n,

(b) U;ozl Bn = ‘::] En~
Thus,

#(U) - u(0n) @ Euon "2 uce 1)
=1 n=1 n=1 =1
4. Additivity follows from (1.7) by setting Ex| = Eypp=---=0

the counting measure. Set

|
Inspection of the proof shows that condition ft(B) < oo in part 2. can be weakend to f1(A) < eo.
It cannot be removed completely, however. For example, Let Q = N, .# = Z(Q) and 1 be

A={2k : keN}, B=N.

Then B\A = {2k—1 : k € N}, the set of odd, positive integers. We have
H(B) — H(A) = oo —co

which is undefined, while also ((B\A) = .
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| Exercise 1.6 For each n € N, let u, be a measure on (Q,.%#). Choose a sequence (),
< 0 <o ¥n.
1. Define u : ZF — [0,00] by u = oqp; + opptp. That is,

K(E) = o1 (E)+ pi(E) VEEZ.

Show:
(a) u is a measure on (Q,.%).
(b) If 1y and yy are finite measures, then i is a finite measure.
(c) If puy and py are o-finite measures, then U is a o-finite measure.
(Note: By induction, the above statements extend to finite sums (4 = ):fqul Ol ldn-)
2. Next define p : & — [0,00] by t = Y Oty That is,

WE) =Y dupn(E)  VECF.
n=1

Show:
(a) W is a measure on (Q,.7).
(b) If there exists M < o so that 1,(Q) < M for all n, and if ;7 ; &, < oo, then y is a
finite measure.
(c) Show by example: Even when the u, are all finite measures and ) ;> _; ¢, < o, then
1 need not be o-finite.

Definition 1.4.2 A countable collection {A,};.; of sets is called
e increasing, if A, C A, forall n. We write {A,} 1.
e decreasing, if A, D A,y for all n. We write {A,} |.

Theorem 1.4.2 Let (Q,.%, 1) be a measure space, and {A,},_, C Z.

1. If {A,}1, then p (UA,,) = lim 1(An).

n=1

2. If {A,} ], and (A,,) < oo for some n, € N, then u (ﬂAn) = 1311 WU(Ay).
n—yo0

n=1

Proof. 1. Suppose that {A,} 7. By Theorem 1.1.1, there exists a collection {B,}; ; C .7 of
pairwise disjoint sets satisfying
(a) B, C A, foralln,
(b) UY_ B, =Y A, forall N € NU {eo}.
Thus,

oo oo o N
u (UAn) @y (Um) Y uB) = lim Y u(B,)
n=1

n=1 n=| n=1
M2") N (b) N (A}t
2 Jim (U Bn> ® lim (U An> 2 lim p(ay)

N—oo
n=1 n=1

which was to be shown.
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2. Suppose that {A,} | and p(A,,) < e. For each n € N, set
E,:=A,\A, € Z.

Then {E,} 7, so that by the first part,

M (nL:Jl En) = ,}]_1330 W(En) = ’}1_{?0 1(An, \An)

T tim [(An,) — 1(AR)] = p(An,) - Tim u(A,).

n—o0 n—oo

(1.8)

On the other hand, as

oo

| ) By = O (An,\An) O(A,,ODA‘ = Az, N (OAﬁ)
n=1 n=1

n=1 n=1
2
= An,, n (ﬂAn> = An,,\ (mAn>
n=1 n=1

it follows that

u (O E,,) = u (A,,,,\ (ﬁAn> )T’“m:l-“-l LA, -1 (ﬁAn> . (1.9)
n=1 n=1 n=1

Comparing (1.8) and (1.9) gives
n,, ( qAn> = n,, - )13210“(An) .
n=

Since [ (Ap,) < oo, we conclude that

() e

Thus, the theorem is proved. @

‘g Inpart2. above, the condition 1(A,,) < e can not be removed.
" Forexample, Let Q =N, .Z = Z(Q) and p be the counting measure. For each n € N, set

Ap={nn+1,n+2,...}.

Then {A,} | and p(A,) = oo for all n. The fact that (";_; A, = 0 gives

n—so0

<ﬂA ) 1 (0) =0 lim u(A,) = lim co = co,

n=1
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Corollary 1.4.3 (Borel-Cantelli Lemma). Let (Q,.%, 1) be a measure space, and {A, };, | € .F
a countable family of measurable sets. If

Z W(A,) < oo (1.10)

then

Proof. For each n, set E, := |J A;. Then

=n

1. {E,}|{,and
2. l(EBp)= u( C) A,-) < Z,u(Ai) = Z,u(Ai) < o for all n by assumption.
J il

i=n thm 1.4.1 i=n

We can thus apply part 2. of Theorem 1.4.2 to the sets {E, } to obtain

u( F] DA[) = U ( ﬁ En) L= Jim p(Ey)
n=I

n=li=n

= tim u(UAr) < lim Yuta) =0

by assumption (1.10). [ ]

‘R One easily checks that

e ﬂ UA,- < w € A, for infinitely many i.

n=li=n

So Borel-Cantelli’s theorem says that if )oi U(A,) < oo then

n=1
{weQ: e A, for infinitely many n}

has measure zero.

Exercise 1.7 Recall that (Q, %, ) is called o-finite, if there exists a collection {E, } C .# with
(i) 1(En) < oo Vn,
(”) Q= U;c:] E;.
Show:
1. the sets E,, above may be assumed to be disjoint.
2. the sequence of sets {E, } may be assumed to be increasing.
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Null Sets

. Definition 1.4.3 Let (Q,.7, 1) be a measure space. A set E € % is called a null set (or a -null
| set or a set of measure zero) if W(E) = 0.

s Example 1.5 Let (Q,.%) be any measurable space.
1. Fix a € Q and consider the one-point Dirac measure 8,. Then

EcZisanullset < §(E)=0 < ad¢E.
2. Let U, denote the counting measure. Then
EcFisamnllset < U(E)=0 <& card(E)=0 <& E=0.

3. Let it be any measure on (Q,.%).
(a) If E € # isanull set, and A € # with A C E, then by monotonicity,

0<u(A) <u(E)=0

so that ((A) = 0 also. ("Measurable subsets of null sets are null sets™)
(b) If {E,}Y_| € F, N € NU{e} is a countable collection of null sets, then by subadditiv-
ity, respectively o-subadditivity, by

0§u<LNJEn> Zu

n=1

H
M"Jz
O

which shows that UQ’: 1 E, is a null set. ("Countable unions of null sets are null sets”)
| |

s Example 1.6 (Some A-null sets in Z(R))
1. Let E = {x}, x € R be a singleton. Since E =1L, I,= (x~ o ) then by
Theorem 1.4.2, part 2,
2
A(E) = lim A(I,) = lim = =0.
n—ro0 n—o

Thus, all singletons are A-null sets.

2. Let E = {x,}_, C R be countable, where N € NU {}. We can write E as a countable
union of singletons, E = JY_, {x,}. It follows from Example 1.5, part 3, that E is a null set.
Thus, all countable subsets of R are A-null sets.

3. Recall the Cantor set ¢ which is of the form

gzﬂE,,,

where each E, is the disjoint union of 2" intervals of length each,

Iyl
£=[a Ui

1, 12 35 6 Ty 8
Er=[0,5]U[5 5]V [z 5] Vi ]

3
1, 23, 6 7, 89
Ey=[0,5]U 5 5]V g 5]V (55 3]
18 19, 20 21, (24 25, 26
Ulzm plviznHlvisslviz ]
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Since {E, } | and A(E,) =2"- % = (%)n for all n, then by Theorem 1.4.2, part 2,

A(€) = lim A(E,) = lim (%) =0.

n—o0 1—ro0

The Cantor set is an example of a A-null subset of R which is uncountable.

1.5 Measurable Functions

In the realm of topological spaces, one is naturally interested in mappings which are compatible with
the topologies. These are the continuous maps. Recall that a map f : Q — Il between topological
spaces (€, 7) and (IT, k) is said to be continuous, if f~1(U) € T VU € k. That is, pre-images of
open sets are open.

In the realm of maps between measurable spaces, we impose a similar requirement:

# Definition 1.5.1 Let (Q,.%) and (I1,&) be measurable spaces. A mapping f : Q — [T is said
to be (.#,&)-measurable, if

ffUE)e F VYEe€é. (1.11)

(That is, pre-images of measurable sets are measurable sets.)

When IT is a topological space and & = Z(I1) is the Borel c-algebra on I, then we simply
call f an .# -measurable mapping.

When  and IT are both topological spaces, and .% and & are their Borel o-algebras, then
we call f a Borel mapping.

We are mainly interested in mappings f : Q — R (or more generally, & — R"), that is,
in functions. By the above definition, such a function f is .%-measurable, provided that
fYE) € .Z forall Borel subsets E of R.

The next theorem says thatin (1.11) it suffices to only consider the generators of the o-algebra
&.

Theorem 1.5.1 Let (Q,.%) and (I1,&) be measurable spaces and f: Q — II. Suppose that
& =0(X) (ie. & is the o-algebra generated by a collection & of subsets of IT). Then

i
|
!
{
|
|
i
!
i

fis (#,£)-measurable < fYE)e F VEecX

Proof. =: Obvious by (1.11).
<=: Suppose that

ffUE)eF VYVEecx. (1.12)
Let us set
& ={Ec&: . fYE)eZF}.

Clearly, % C &, by assumption (1.12), and also &, C &.
Claim: &, is a o-algebra.
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(Al) Let E € &,, so that f~!(E) € .Z. Since .Z is a c-algebra, we have

¢ (AD)

UE) = [771|) e 2

which shows that E€ € &, as well.
(A20) Let{E,}7_ , C &, sothat f~!(E,) € & for all n. Since .% is a c-algebra, we have

(A20)

f_1<OEn) = []f_l(En) g &,
n=1 n=1

which shows that | J;_, E, € &, as well.
Thus the claim is proved: &, is a c-algebra containing % .
Now as o (%) is the smallest o-algebra containing %/, it follows from the claim that 6(¢") C &,
and hence that

&=0(X)Cé6CE.

This shows that &, = &, so that (1.11) holds. That is, f is an (.%#,&")-measurable function. |

Corollary 1.5.2 Let (Q,7) and (I1, ) be topological spaces (for example, metric spaces). Then
very continuous function f : Q — IT is a Borel function.

Proof. Recall that the Borel o-algebras are generated by the open sets: .# := Z£(Q) = o(71)
and & := #(I1) = o(x), where 7 and K denote the collections of open sets (“topologies™) on Q,
respectively IT.

Now let E € k. Since E is open and f is continuous, it follows that ' (E) is also open, that is,
fUE) € T C B(Q). We have shown that

fUE)eF VEex,
hence by Theorem 1.5.1, f is (%, & )-measurable. &

Theorem 1.5.1 allows us to give a simple characterization of real valued, % -measurable
functions:

Corollary 1.5.3 Let (Q,.%#) be a measurable space and f : @ — R. Then

fis F-measurable & f'((a,0))€F  VaeR. (1.13)

Proof. Let us set
H :={(a,») :a €R}.

Choosing & = #(RR), by Theorem 1.5.1 we only need to prove the following claim:

Claim: Z(R) =o(X%).
In fact, clearly % C #(R), so that 6(#) C B(R). To prove the reverse inclusion, recall
that by Theorem 1.2.2,

B(R)=0(H), where FH={(rhs)CR:r<s, rnseQ}.
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We first show that .%, C o(#"). To this end, let an arbitrary interval (r,s) € % be given.
We can write

(r,s) = (—o0,8) N (r,00) = {m (S— %,m)} N (r,00).
n=1

Now since (r,0) € % and (s— %,oo) € 4 for all n, it follows from properties (Al), (A3)
and (A30) of o-algebras that (r,s) € (). This shows that % C o (J%).
It follows immediately that

B(R) = 6(A) C o(H),

which proves the claim and the corollary.

Observe that condition (1.13) can be restated as:
f:Q = Ris.F-measurable < {weQ: f(w)>a}eF VaeR.

Since we will work with extended real-valued functions, we can make use of this characteriza-
tion to extend the concept of measurability to functions f : Q — R™:

? Definition 1.5.2 A function f : Q — R* is said to be .% -measurable if

T (a,])={wcQ: f(0) >a} €F  Va€eR.

- Theorem 1.5.4 Let (Q,.%) be a measurable space and f: Q — R*.
T.EA.E. ("The following are equivalent’)
. {weQ: flw)>a}leF Va € R. (ie. f is .#-measurable.)
2. {weQ: flw)>aleF VaeR.
3. {weQ: flw<aleF VaeR
4. {weQ: f(w)<aleF  VaeR
5. {weQ: f(lw)>ateF VacQ 7
6. {weQ: flw)>a}leF Ya < Q.
7. {weQ: f(co)<a}e? Va e Q.
8. {weQ: f(w)<a}leZF YaeQ.

Proof. We will make use of properties (A1), (A2) and (A3) of o-algebras.
First we show the implications 1. = 2. = 3. = 4. = 1.
1. = 2.: Suppose that 1. holds. Then for every a € R,

. s . 1 7
{weQ: flo)>a} = ({0eQ: fl0)>a—; } € F
= €Z by L.
which shows that 2. holds.
2. = 3.: Suppose that 2. holds. Then for every a € R,
{weQ: flo)<a} = |[{weQ: f(w)>a} ‘eg

% by 2.

which shows that 3. holds.
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3. = 4.: Suppose that 3. holds. Then for every a € R,

oo

{oeQ: fw)<a} = N{weQ: flo)<a+l}eZ,

n=1

Ef‘gy 3
which shows that 4. holds.
4. = 1.: Suppose that 4. holds. Then for every a € R,
c
{0eQ: flw)>a)} = [{weng(w)ga}} €Z,

€7 by 4.

which shows that 1. holds.
The implications 5. = 6. = 7. = 8. = 5. are proved in exactly the same way.
It is left to show that 1.« 5.
1. = 5.: This is trivial.
5. = 1.: Suppose, 5. holds. Let a € R be arbitrary. By density of QQ in R, we can pick a sequence
() in Q so that
(i) a < g, for all n, and
(i) gn —a.
Soif f(w) > athen f(®w) > g, > a for sufficiently large n, and hence

{weQ: flw)>a} = D{weQ:f(w)>qn}eﬁ,

n=1

€F bys.

which shows that 1. holds.
This completes the proof. u

m Example 1.7 Let (Q,.%) be any measurable space.
1. Given a subset A of Q, we define a function 14 : Q@ — R by

o [l Hfeca
A0 ifeea

It is called the characteristic function or indicator function of the set A.
Claim: 14 is an .%#-measurable function < A€ .%.
To see this, for each a € R, set

E,:={0eQ : 14(w)>a}.

Then
0 ifa>1
E,= <A if0<a<1
Q ifa<0.

Since 0,Q € # always, we see that
E,c¢F VaeR & AeZ

which, by Definition 1.5.2 of an .#-measurable function, proves the claim.
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2. Every constant function f(®) = ¢ is .% -measurable.
To see this, note that for every a € R,

0 ifa>e
Q fa<c

Ea::{th:f(a))>a}:{

Since 0,Q € .Z, the assertion follows by Definition 1.5.2 of an .% -measurable function.

Exercise 1.8 Show:

For all A,B C Q we have 143 = 1415.

Forall A,BC Q we have 14,3 =14+ 15— 141p.

Forall A C Q we have 14 =1—14.

ForallA,...,A,,C Qwehave 1 4, = [Ti_ 14,

For all A,...,A, C Q which are pairwise disjoint (i.e. AyNA; =0 if k # j) we have
IUZ:]Ak 3 Z;cl=1 lAk'

6. The last two assertion also hold for n = oo,

P e =

E

Exercise 1.9 Show that every monotone increasing function f : R — R is a Borel function.
| (Increasing means: x; < x = f(x1) < f(x2)). 2

Exercise 1.10 Let Q =R and % = {E C R : E is countable or E€ is countable }. Show:
1. The function 1g is .#-measurable.
2. The function f(x) = x is not .%-measurable.
3. If h: R — R is continuous, then A is .% -measurable < A is constant.
=

- Theorem 1.5.5 Let (Q,.%) be a measurable space, and f,g : @ — R* be .#-measurable func- l
. tions. Then ?
. {weQ: f(w)<g(w)}e
2. {weQ: f(o)<g(w)}c
3. {weQ: flw)=¢g(w)} €

? {

N

Proof. 1. We make the following observation: Suppose that f(®) < g(®) at some @ € . Then
by density of @ in R, there exists ¢ € @ so that

flw) < g <g(w).

Hence,

{0eQ: flw)<g(®)} = J{ocQ: flw)<qg and g<gl(w)}

qeQ
= |lJ{weQ: flo)<gin{ocQ:g<glo)})cs
9€Q €. by Thm 1.5.4. €7 by def. of meas. fn.

by properties (A20) and (A3) of a o-algebra.
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2. By property (A1) of c-algebras,

{oeQ: flo) <glw) {weQ g(w) w)}° e 7.
T

€% by Part 1.

(Al

3. By property (A3) of c-algebras,

{(0eQ: f(0)=go) |
={weQ: f(w)gg(w)j}m{weﬁ : g(a))éf(a))l} € Z.
€. by Part 2. €% by Part 2. T

(A3)
|

Let f,g: Q — R* and @ € R. As usual, algebraic operations on these extended real valued
functions are defined pointwise. Thus, we define functions

af by (af)(w)=af(e) Voel
f+sg by (f+g)(o)=f(o)+g(w) VoeQ

(this requires that f(®)+ g(®) # {°_°;:_°oo Vo)
fg by (fg)(w)=f(w)g(w) VoecQ

f> f(®)
b L, =127 SwdO
r (PG pose

(this requires that g(®) # 0 and ﬁ% #32 Vo)

max(f,g) by max(f,g)(®)=max(f(®),g(®)) VoeQ
min(f,g) by min(f,g)(®)=min(f(®)g(w)) VoecQ

o I

We then set
fT =max(f,0) “positive part of f
f~ = —min(f,0) “negative part of
lfl=f"+f “absolute value of f

Some observations:
1. Forall w € Q,

(o) det max(f,0)(®w) = max(f(w),0) = {f(a)) if f(w)>0

0 if f(w) <O0.
Similarly,
= def. . ~ i B 0 if f(w)>0
£7(©) & —min(£,0)(0) = —min(f(©),0) = {_ P
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2. Forallw € Q, f7(w)f (®) =0, thatis, f7f~ =0.
3. Forall w € Q,

. o flo)+0=fl@)  iff(@>0) _ .,

o = { ORI L2t | = )
and hence,

Fl@) E (Fr 4 ) (@) = fro)+f (o) = [flo),

so that | f] is the usual pointwise defined absolute value function.
4. Similarly, for all @ € Q,

o ey _ | f@=0=F@)  iff@)>0) _
@ = { ol S im <o } = @

and thus,

Theorem 1.5.6 Let (Q, F) be a measurable space, f,g: Q — R* be .%#-measurable functions,
- and & € R. Then the following functions are all #-measurable (provided that they are defined
on Q):

af’ f+g) fg’ g, max(f’g)7 mln(f'/‘g)7 f‘+7 f_? ’-f’l'

Proof. af : Let o be any real number. Then for every a € R,

{weQ: flw)>4 if o0 >0

0weQ: flo)< £ ifoa<0
E, = {wcQ af(®)>a} = { @ <&}

0 ifoe=0 and a>0

Q ifa=0 and a<0,

which, by Theorem 1.5.4, shows that E, € .%. It follows by Definition 1.5.2 that a/f is
Z -measurable. (Note that this argument works even when f (@) = e for some ®.)
f+g: First we claim: foreacha € Rand o € Q,

flo)+gw)>a < Fq€Q, f(w)>q and g(w)>a—gq. (1.14)

In fact the "<=" part is obvious (even when f(®) = oo and/or g(®) = ).
To prove the "=>" part, we assume that the left-hand side of (1.14) holds. Then in particular,
f(®) # —o0 and g(@) # —oo, and

flw)>a—g(w). (1.15)
Now by (1.15) and density of Q in R, we may pick g € Q so that

fl@)>q>a—g(w)
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from which the two inequalities on the right-hand side of (1.14) follow. (Note that the above
argument works even in the case where f(®) = oo and/or g(®) = 0.) Thus, the claim is
proved.

Now for every a € R, we have by the claim and properties (A20) and (A3) of a c-algebra
that

{weQ: f(o)+g(w)>a}

= U{oeQ: f(0)>q and g(®)>a—q}
q€Q

= U ({a)EQ:f(a))>q}ﬂ{\a)€§2:g(a))>a—q})69,
q€Q

€% by def. of meas. fn. €.% by def. of meas. fn.

which, by definition, shows that f+ g is .#-measurable.
max(f,g): Foreverya R,

{weQ: max [f(o),g(0)] >a}
={weQ: flo)>a or g(w)>a}
={weQ: fw)>alu{weQ : g(w)>a} €ZF,

€ by def. of meas. fn. €.% by def. of meas. fn.

by property (A2) of o-algebras. This shows that max(f,g) is .# -measurable.
min(f,g): Forevery a € R,

{weQ : min[f(w),g(w)] >a}
={weQ: f(o)>a and g(w)>a}
= {0eQ: flw)>a}n{weQ : g(o)>a} € Z,

€.Z by def. of meas. fn. €.% by def. of meas. fn.

by property (A3) of o-algebras. This shows that min(f, g) is % -measurable.
£/, |fl: Measurability of these three functions follows from the fact that

fT=max(f,0), f~=-min(f,0), |f|=f +[;

that constant functions are .% -measurable, and from what has already been proved above.
fg: 1. First suppose that f,g : Q — [0,°0]. We claim: foreach0 < a < e and ® € Q,

flw)g(w)>a < 3qeQF, flw)>gq and g(w)>§. (1.16)

In fact the "<=" part is obvious (even when f(®) = e and/or g(®) = o).
To prove the =" part, we assume that the left-hand side of (1.16) holds. Then in
particular, f(®) > 0 and g(®) > 0, and

(1.17)

Now by (1.17) and density of Q in R, we may pick g € Q" so that
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From here the two inequalities on the right-hand side of (1.16) follow. (Note that
the above argument works even in the case where f(®) = o and/or g(®) = oo, since
£ =(.) Thus, the claim is proved.

Thus, for every 0 < a < =, we have by the claim and properties (A20) and (A3) of a
sigma-algebra that

E, = {weQ: flo)g(w)>a}

= U {weQ: f(w)>gq and g(w)>f‘7}
qeQ*

U ({(DEQ  fl@)>gin{we : g(w)> ] )e?
qEQ'F ~~

Il

€F by def. of meas. fn. €.Z by def. of meas. fn.

On the other hand, when —eo < a < 0 then obviously, E, = Q € .%. This shows that
E, € % foralla € R, thatis, fg is .%-measurable.
2. Now let f,g: Q — R* be arbitrary. Then for all ® € Q,

flo)g(w) = (ff(0)—f (0) (g (0) ¢ (®))
= fHo)g"(w) = fM(w)g (0)-f (0)g (0)+f (0)g (@)

Note that for a given ®, at most one single term on the right-hand side is nonzero (why
?), so we don’t encounter oo — oo and all expressions are defined. It follows from what
has been already shown above that fg is .% -measurable.

é : This is Exercise 1.11 below.

| Exercise 1.11 1. Complete the proof of the theorem by showing that
(a) 1/gis & -measurable (provided that g(@) # O for all @),
(b) f/gis &-measurable (provided that f/g is defined for all ® € Q).
2. Suppose, f,g: Q — R are .#-measurable. (i.e. both functions are finite valued.) Then
measurability of fg can be proved in an easier way:
(a) Use the definition of a measurable function to show that f2 is .#-measurable.
(b) Use the fact that

fa=3[(F+87~(F~8)]

and the results for f 4+ g and o.f to show that fg is .7 -measurable.

\R“; It follows from the Theorem that the set of all real valued .% -measurable functions is a real
" vector space. However, the set of extended real valued .7 -measurable functions is obviously
not a vector space.
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Sequences of Measurable Functions

Consider a sequence (fy ), (also written {f,}"_) of extended real valued functions,

fr: QR

As usual, we define new functions sup f,,, inf f,,, lim f,,, lim f, : @ — R* pointwise by
" n n n

{Sgpﬁ; (@) :=sup [fn(@)]
linf f,] (@) := in [ £, (0)]
Tim ) (@) == Tm|fu(0)]

=

{HTmfn (@) :=lim[f,(®)],

n

for each w € Q. (These functions are defined for all @ € Q, since
exist for all sequences (a,) in R*.)

We also define lim f, : Q — R* as a pointwise limit by
n—oe

n—oo

[lim £,] (@) = lim f,(0)

provided that the right-hand side limit exists for all ® € Q.

{p Here are some remarks to put these definitions into perspective.
" 1. Forall ® € Q we have by the definition of Tima, that
n
e 1.20) +— k.
[h’gnf,,] (@) w2 fim [fn(@)] ©L infsup [fi(o)]

0 j>n

A8 o <|:Sllpfk] (w)) = [infsupfk
n k>n " k>n

that is,

lim f, = infsup fi.
n n an

In a similar way,

limf, = supinf f;.
n n k>n

2: If f= le Jn exists, then we say that f, converges pointwise to f and write
n—yoo

](w),

(o) — f(o) or fon—f or fo 25 f.

(1.18)

(1.19)

(1.20)

(1.21)

sup a, inf a,, lim a,, lim a,
n n

n

(1.22)

(1.23)
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Now recall: if a,,a € R*, then a = lima, < a=lima, = lim a,. Thus,
n—»oo n n

p-w.

fa—f & f=limf,
n—oo

& f(w):r}imf,,(w) Vo e Q

& flo) = T[f(0)] = m[A(@)] voeo

(1,20)
<~
(1.21)

o) = [h]@ = [imp|@ voco
& f= an = lim f,.

3. Suppose that (f,,) . By this we mean that (f,) is an increasing sequence:
fifALhZ . 8 HE It
which in turn means that
filo) < fo(o) < filw) <... < ful@) < fir(0)...  Yoel.

Since every increasing sequence (a,) 1 in R* converges, then the sequence (f,(®)) T
converges for every @ € Q. That is, lim f,, exists.
n

4. We recall here the concept of uniform convergence. Let f,, f : Q — R be real valued
functions. Then by definition,

(fu) converges uniformly to f
& Ve>0 INeN sothat [fy(0)—f(w)<e YoeQVn>N.

{The important point here is that the same N = N(&) can be chosen for all @.) We write
f = f to denote uniform convergence. It is known and easy to show that

H=f <  lim sup |fu(w)— f(w)] =0.
B2 oc@

Theorem 1.5.7 Let (Q,.%) be a measurable space, and (f,) a sequence of % -measurable
 functions, f, : Q — R*.
1. The functions sup f;, inf f,, lim f,, and lim f, are all #-measurable.

n 2 L& n

2. If the sequence (f,) converges pointwise, say fo 25 f, then f: Q — R* is also #-
measurable.

Proof. supf, : Foreveryac Rand o € Q,
n

supfy(®) >a < ais notan upper bound of {f,(®):n € N}
n

& dneN, filw)>a

& e O{weQ:fn(w)>a}.

=l
Hence for all a € R,
{a) €Q: [sup fu](@) > a} = {a) € Q:sup[fu(w)] > a}
n n

= U{a)EQ:f”(a))>a}65Z

n=1

€F as fy is .Z -meas.
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by property (A20) of o-algebras. This shows that sup, f, is .% -measurable.
inf f, : In a similar way, for every a € R,
n

{WE.QZ [ix;ffn](a)) <a} = {wEQ:irnlf[f,,(a))] <a}

= D{a)EQ:f,z(a))<a}63Z

n=1

g
€F as f, is F-meas.

by property (A20) of o-algebras. This shows that inf,, f;, is .% -measurable.

lim f,,, lim f, : By the above, for each n € N, the functions
n "

8n = sup fu and hy = inf f,
k>n

k>n

are all .7 -measurable. Applying the above again, it follows that

limf, =infsupfy =infg, and  limf, = supinf fy = sup h,
n " k>n n n n k>n n

are both .%#-measurable.
lim f, : Suppose, f, —— f. Since by Remark 1.5
n—yoo

f:]—ﬁfm
n

it follows from the above that f is .% -measurable.
|

Exercise 1.12 Let (Q,.%) be a measurable space, {E,} C .% and f, = 1g, for each n. Show:
1. If {E;} T and E = J;_{ E,, then {f,} T and 1z = ]Hn o
n—oo

2. If{E,} l and E =("_, Ep, then {f,} L and 1z = 1i_r>n i
n—po0

1.6 Simple, Measurable Functions

In this section, we prove a theorem about measurable functions which will of fundamental impor-
tance when discussing the Lebesgue integral. It says that every measurable functions is the limit of
a sequence of measurable functions with finite range.

Throughout this section, (€,.%#) will denote a measurable space.

| Definition 1.6.1 A function ¢ : Q — R whose range is a finite set is called a simple function.

jp: Here are some properties which will be used throughout.
1. Let ¢ : Q — R be simple, say range(9) = {ay,...an}. Set

Ac = o '({a}) = {weQ:p(w)=a}, k=1,...,n (1.24)

Then clearly
(@ ANA;j=0 fork+#j
n

b  |Ja=Q
k=1
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We can thus write
n
0 =Y aly, (1.25)
k=1

This is called the canonical representation (or canonical form) of @.
2. If a; = 0 for some &, say a;, = 0, then ay, 14, (@) =0 for all @ € Q. We may thus
remove this term from the canonical representation (1.25), and write

n

0 =) ala,. (1.26)
iz,

Note, however, that [J Ay # Q.
kstko
3. If Ay € % for all k, then by Example 1.7, each function 1, is % -measurable, so that
by Theorem 1.5.6, ¢ is .%-measurable.
Conversely, suppose @ is .%-measurable. Since each singleton {a} is a Borel set, then
by (1.24), A € % for all k.
We have shown:

Wis F-measurable < Ap €% V. |

when @ has the canonical representation.
4. Consider a function of the form

¢ =Y clg (cx €R, C, C Q). (1.27)
k=1

Since range(@) C {¥F_, oxex : ox € {0,1} }, which is a finite set, then @ is simple.
However (1.27) is not its canonical representation unless the sets Cy, are disjoint and the
numbers ¢ are distinct.

When C; € .Z for all k, then clearly, @ is %-measurable. However, when ¢ is .-
measurable, we cannot conclude in general that Cy € .7 |

« Example 1.8 Consider (Q,.#) = (R, Z(R)).
1. A function of the form

n
0= Z aily, (Ix an interval)
k=1

is called a step function. Since Iy € $(R) Vk (intervals are Borel sets), then every step
function is a simple, Borel-measurable function.
2. A function of the form

¢ =alg+Blge (a,B €R, a#p)

is a simple, Borel-measurable function which is not a step function.

Notation: Let us set

¥ = L(Q,.F) :={f: Q> R*|fis F-measurable}
Z*t = 2T (Q,7F) ={feZ|fz0}

Note that these are not vector spaces. However, for all f,g € ¢ and real numbers ¢, 3 > 0 we
have that o f + g€ £™.
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Next we consider the sets of simple functions,
S = S(Q,F) ={p:Q—R|gis simple and .#-measurable}
It = STQ,F) ={peF|p>0}

Then
. #C% and ¥+ C L.
2. Let ¢ € . with canonical representation ¢ =Y a;14,. Then

(PEy_‘— &S oaq >0 Yk

3. & is a vector space. In fact, let @,y € & and o, € R. If
n m
=Y ala, and Y=Y bjlp
k=1 =1

are the canonical representations, then the linear combination
n m
ap+By=Y) Z otar+Bbj) 1o,
k=1 j=1

is a simple and .% -measurable function, since Ay, B; € % for all k, j.
4. In a similar way, whenever ¢, v € ., then @y € .%. This can be seen from

n m

n n n
V= (ZaklAk> (Zb.ilB/) Z Zakb Lo dp, = Z Zakb Layn;-
k=1 j=1

Theorem 1.6.1 (Structure Theorem for non-negative, measurable functions.)
1. Let f € .#7. Then there exists a sequence (¢,) Tin . " with @, ™= f.
2. If f € %7 is finite valued and bounded in R (i.e. 0 < f < N, N € N), then the sequence

(@n) 1 can be chosen so that @, = f.

Proof. 1. Let f € £ be given. The idea is to split range(f) into small intervals and define the
functions ¢, using these intervals, as follows:
Let n € N be given. For each k, 1 < k < n2", we set

k—1 k
A(n.k) e {(DEQ?S]F( )<§}

and we also set

Apo) = { 0wEQ: flw)>n }
Note that A, ;) € F for all k since the function f is #-measurable, so that

n2" k—

P =Y

and this is the canonical form of ¢,. We perform the following steps.

o IAM +n1A y_’“,
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(a) By definition of ¢y, for all ® € Q we have

L it Bl < flo) <4, 1<k<n2
(@) = .
n if f(w)>n.
In particular,
0<pu(w)<n Vo e Q.

(b) Let us compare the values of ¢,(®) and @,+1(®) for ® € Q. As in (1.28),

S <fo) <z, 1Sk (124
Oni1(@) =

n+1 if flo)>n+1.

Consider three cases:
Case 1: 0 < f(®) < n. In this case, Jk, 1 <k < n2" so that

[ —1
flw)e [ %), and thus go(a)):%_.

Now going from 7z to n+ 1, this interval is split into the two subintervals
k=1 k=3 _ r2k—2 2=l k=3 &\ _r2e=1 2
[7’7‘7—2%) = [Z,TF'QTIF) and {*irz,z—n = [—Zr_ﬂ‘u'z_l)
Now if f(w) € {Zzlfx—j?,zz’fl—jll) then

2k—2 k-1
Pni1(@) = 2] :7:%(@)7

while if f(w) € [35,55) then

2k—1  2k-2 k-1
(p’H'l(w): on+1 & n+1 T :(p"(w)'

Combining both possibilities, we see that

(Pn(w) < (Pn+1(w)'
Case2: n< f(w) <n-+1. Then

. k—1
o) =n while Qi1 (@) = T

where k is the unique integer so that ;‘,T—fl < flow) < 27"+—1 Note that

nzn-!-l

so that n2"+1 < k — 1. It follows that

(P'l(w):n: nt1 < ntl Z(Pn+l(w)‘

(1.28)



Having discussed measure spaces and measurable functions, we are now ready to introduce the

Lebesgue integral on such spaces, and study its properties. Of particular interest is the behaviour of

the integral with regards to limits of sequences of functions, and over sets of measure zero.
Throughout this chapter, (Q,.%, i) will denote an arbitrary measure space.

2.1 The Integral of Simple, Nonnegative Measurable Functions

Definition 2.1.1 Let ¢ € .% " be given, expressed in canonical form
Q= ZaklAk, where Ak:{(x)E.QI(P(CO)Zak}Ek%.
k=1

We define

/fp di =Y ap(Ay). 2.1)
k k=1

R A couple of remarks:

1. Since a; > 0 for all k, then 0 < [ @du < oo for @ € ..
2. When a; = 0 then a; 1t (Ax) = 0- u(Ag) = 0, even in case where [1(Ay) = oo ! We may
thus remove this term,

[odu = ¥ aw. (2.2)
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= Example 2.1 Let (Q,7#,u) = (R, B(R),A).
LIf =21+ 112 +3 13+ % 135 is a step function, then using (2.2),

'/mdl::2'AQQID4—LA(UWQ)+3-AG2D—%%-lﬂlSD
=24+14+&o+%2:4
2. If y=1g€.5", then
_/wdx==/{L1@+04@4d1=:Lx@m+4yx@y):1-0+0::o

3. If f =c=const >0, then f € & and

/.fdl = /.c-lel:c-oo:{oo ch>0

0 if ¢=0.
| |

é Exercise 2.1 Let (Q = (R,%(R),A). Find /(pd)L if
é ij if0<x<10
. { else.
% B ifO<x<3
% - { else.
% [1+sinx] if0<x<2m
{ else.
- (Recall here that |x] = max{n € Z : n < x} is the greatest integer function. "

:

Definition 2.1.2 A finite or countably infinite collection {BJ} ', of subsets of Q (m € N or
m = {eo}) is called a (finite resp. countable) partition of Q, if
(P1) the sets in {B;}"_, are mutually disjoint: B¢NB; =0 fork # j,

S

m

P2) |JBj=Q
j=1
If in addition, B; € F for all j, then {B,}", is called a partition of Q by #-measurable sets or

a measurable partition.

[

For example, the collection of intervals { I, = [k,k+ 1) } rez 18 acountable partition of R by
Borel sets.

g If{Ac}j_, and {B;}"L, are partitions of Q by .7 -measurable sets, then
{Ae By 1 =15z atty J = Lyt
is also a partition of Q by measurable sets. In fact by (A3), A, NB; € .F forallk, j.
Now if ® € (Ak OBJ') n (A]'\, ﬁij), then o € Ay NAg and @ € BjﬁB], so that by (P1), k = k

and j = J. This shows that the sets Ay N B;, k=1,...n, j=1,...m, are mutually disjoint.
On the other hand,

m

e (s [00]) = o - G e
k=1 =1 k=1 k=1

Jj=1 k=1
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Lemma 2.1.1 Let ¢ € %", and let
m
Q= Z blej (23)
=1

be any representation of @, where {B,...B,,} is a finite partition of Q by measurable sets. Then

m

/sudu = Z bjit(B)).

Proof. Let
¢ = Z agla,
k=1

be the canonical representation of @. We make the following important observation:
Observation. Let k, j be given, 1 <k <n, | < j < m. Suppose first that Ay N B; # 0. Then we can
pick w € Ay N B, and by (P1),

It follows that
ar (AN B; ) ,LL(A/\ NB; ) (2.4)

On the other hand, when Ay N B; = 0, then p(Ax N B;) = 0, so that (2.4) holds trivially. Thus,
(2.4) holds for all choices of k and ;.
Now

/(Pdll =Y awu(Ar)

@ u(Akﬁ[OBjD Z (C) AmB])

=l =

n m
w p(AxNB;j Ay B; " are disjoint
JJj=1 ]
k=1 j=1
m n
Z Z arl(Ayg ﬁB
j: :
m n
@ ZZ (AyNB)) {AyNB;}I, are disjoint

; (QAmB> ZbJuGUAk}FBJ)
=Z u(@n )=j'_)§bju<3>

which proves the lemma. L
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- Theorem 2 1.2 (Properties of the integral). Let @,y € %" and ¢ > 0.
l. cpdu = ¢ / Qdu. ("the integral is positive homogeneous”)

2. /.(QH*‘I/) dp = /l(P du + /l}ldu. ("the integral is additive”)
3. If o<y then /(p du < /l//du. ("the integral is monotone”)

Proof. Clearly, cg € " and @ + y € .. Furthermore, let

m

n
Q= Z aila, and Y= Z bilp,
k=1 =i

denote the canonical representations.
1. Note that

n

cp = CZ aklAk = Z(C[lk)lAk.

k=1 k=1

(This is not the canonical representation when ¢ =0 !) Applying Lemma 2.1.1 we obtain that

n

/C(pdu]e:m Z(cak)u(A/\ = cZa;Hu Ag) —C/(pdu

k=1

2. Note that for each k,

m m
Ap=AN |:U Bj} = U(AkﬁB.,-),

j=1
a disjoint union. Thus,

m n m
Z aily, elx:er Z ai Z L, = Y, Y alaos;:
* k=1 =0
In a similar way,
m n m
Z bilp, = Z b; Z a8, = 3, Y, bilans;-
' k=1 j=1
It follows by the distributive law that
n m
(p + W = Z 2 (ak +bj)1AkﬁBj'
k=1 j=1

Thus by Remark 2.1 and Lemma 2.1.1,

/(<P+ w)du = Y Y (ax+bj)u(AcNBj)
k=1 j=1
=Y Y an@ns;) + ZZb,p, (AxNB;)
1j=1 =1 j=I

11

+/ww
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3. Suppose, @ < y. We begin with an observation which is similar to that in the proof Lemma

2.1.1: If Ay B; # 0, then we can pick @ € Ay N B}, and by (P1),
a; = @(w) < y(w) =b;.
It follows that

ar(AxNBj) <bju(AcNBj).

(2.5)

On the other hand, when Ay NB; = 0, then u(Ax N B;) = 0, so that (2.5) holds as well. This

shows that (2.5) holds for all choices of k and j. Then by Lemma 2.1.1,

n m n m

/cpdu w ZZaku AyNB;j) < ZZb,u A NBj) = /wdu.

Thus, the theorem is proved.

Corollary 2.1.3 Let ¢ € %" have an arbitrary representation

n
= Z Cklckv (Ck > O’ Ck = ‘702.)
k=]

. n
/(pdu = Y au(C).
k=1

Proof. Applying the above Theorem and Lemma 2.1.1, we obtain

3 n n -
/(p du = / [Z Cklck] du L Z/Clek du
; = g

n

= Z |:/CI\'1CI(+O‘1[C/(;":I du

k=1

= Z cr- (C) +0- 1 ([C]) ] chu Cy).
k=1 k=1

We have a preliminary result relating limits of functions and the Lebesgue integral, and will be

generalized later.
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Lemma 2.1.4 (Monotone Convergence Theorem for /") Let (¢,)* be an increasing sequence
n" and g e ", If

Gn

hen

/‘Pndu e /(Pdll-

Thatis, lim [ ¢, dpt = /3390% du.)

Nn—yo

Proof. By assumption,

Hence by monotonicity of the integral (Theorem 2.1.2),

/(hdus/(pzdug/rpsdué...s/(pndusfqomdug...s/qod#-

Since every increasing sequence in R* converges to its supremum,

lim | @,du exists, and lim/(p,, du g/(p du.
n—yoo0 n—yoo

It is thus left to show the reverse inequality, namely that
/cpdu & lim/(p,, du. (2.6)
J n—soo

Claim: Forevery €,0 < € < 1, there exists a sequence (¥,) in " (which depends on €) satisfying
i y, < Pn Vn,
(ii) nlgg/ Vpdu=(1—¢) /(p du.
To prove the claim, write ¢ in canonical form,

=Y ala,.
k=1

(Recall that @, > 0 Vk, and that {A,...,A,,} is a partition of Q by .% -measurable sets.) Now
let € be given, 0 < € < 1. Foreachn € N and 1 < k < m, we set

Aen = {@ €A (1—8)a; < @(w) },

and we then set

m

Yy = Z (1 = S)leAk‘,,-
k=1
Some observations:
(1) Clearly, y, > 0 for all n.
(2) As @, is F-measurable, and Ay, = Ap N { weEQ:p(w)> (1 —€)ag } it follows that
Agn € F for all k,n. Hence, each y, is & -measurable. Together with (1) we conclude
that y, € ./ for all n.
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(3) W, < @, for all n. In fact, let @ € Q and n be fixed. Then ¢(®) = a; for some k, and
hence w € Ay.
If w € Ay, then

(@) = (1 - E)Gk <a,= (Pn(w)
On the other hand, if ® € A;\Ag , then
Vn(@) =0 < ¢, ().

(4) For each k, the sequence of sets {Ak,n};":] is increasing. In fact, since ¢, < @, 1, then

Ak.n = {(D cAL: (1 —E)ak < (Pn(w)}
< {(D EAL: (] —S)ak < (Pn+l(w)} :Ak'"+1'

(5) For each k, Ax = U,—1 Akn-
In fact, since by definition, Ay, C Ay, then ;| Ak, C Ay, for all k.
To show the reverse inclusion, let @ € Ay be arbitrary. Since

(P'l(w) - (p(d)) = Ok and Oon < @,
IN = N(w, €) so that
(1-¢&)ax=(1-¢)p(0) < (@) < ¢() Vn=N.

It follows that @ € Ay, for all n > N. This shows that Ay C U,_ Ag -
Using these observations, we obtain

du

n—yoe n—oo

. m
lim [ y,dp = lim {Z (1—&)axla,,
k=1

2.1.3 n—oo

m
= lim ) (1—¢&)aeit(Axn)
23
m ’
= (1 Me)kg a lim p(Akn)

= (1 _8) Z ag i <UAk,n>
=1

n=1
E(1—-e) ) au(Ac) dch(l—s)/q)du.
=1

Thus, the claim is proved.
Now for each €, 0 < € < 1, let (y,) be as in the claim. Then by (i) and monotonicity of the integral,

/1//,1 du < /.(p,z du Vn.

Letting n — co we obtain

(l—s)/(pdud“:imli_r)n/y/,,dyg&gn/wndu Vo<e< 1.

Now letting € — 0 it follows that

/wdus,}gg/%du,

which proves (2.6) and the lemma. u
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The Integral of Nonnegative, Measurable Functions

Let us recall that

Lt =LT(Q,F,u) = {f:Q—> [0, 0] ’ fis ao?—measurab]e}.

| Definition 2.2.1 For f € .#7, we define

/.fd/.t = supE where E = { /(pdu Qe ST, (p§f}. (2.7)

R: Notethat 0 € E C [0,00], so that 0 < [ fdu < eo.

‘R Suppose f € .. Then we have two definitions of [ fdu : Definition (2.1) for the class
7, and the newer definition (2.7) for the class .#*. We must show that both definitions are
the same. In the following, all integrals will be according to definition (2.1).

Leta € E. Thena= [¢@dp for some ¢ € " with ¢ < f. Now by monotonicity of the
integral in .+ (Theorem 2.1.2), then

a:/q)d/,tg/fdu.

As a € E was arbitrary, it follows that

supE < /f du. 2.8)
On the other hand, as /' € T, then [ fdu € E itself. It follows that

/f du < supE. (2.9)
Combine (2.8) and (2.9),

/‘f du =supkE.

But the right-hand supremun is just [ fdpt according to definition (2.7). This shows that
both definitions coincide.

In general, it is difficult to work with the definition of the integral [ fdu given by (2.7). Instead,
we prefer to work with limits of sequences. Recall that by the Structure Theorem for Measurable
Functions, every f € £ is the pointwise limit of a sequence (@,)71 in .

Theoremn 2.2.1 Let f € " be given. If (¢,)1 is any increasing sequence in " with
On 5 f, then

[fau = tim [ g,an.

Proof. By definition of the integral,
/fdu = supkE, where E:{/(pdﬂ:(pé&’*, (pgf}. (2.10)
Now let a sequence (¢,) 1 be given, @, € . Vn, with @, f. By (2.10) we must show that

SupE = lim/(p,, du. (2.11)
n—oo
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First Observations: (i) As @, < @, for all n, then by monotonicity of the integral in .,
thm 2.1.2

/QDndIl < /¢n+ldu

for all n, that is, { [ ¢,dp} 1. Therefore, lim [ @,dp exists in [0,0].
(ii) Furthermore, as ¢, < f, then [ ¢@,du € E for all n, and hence,

/q),,d,u < supE Vn e N.
Letting n — oo, we obtain

lim [ ¢,du < supkE.

n—r00

It is left to prove the reverse inequality, namely that
supE < lim/(p,,d,u. (2.12)
n-—yoo

Claim: For each a € E, there exists a sequence ()7 in.%" with

(a) v, <@, Vn,

® [ ydy—a
To prove the claim, let a € E be given. Then a= [ ydu forsome y € " with y < f. Now for
each n € N, we set

Yp 1= min(‘l/» (pn) < Oy -

Observations:
(1) Clearly, v, < @, for all n.
(ii) Each v, is % -measurable by Theorem 1.5.6.
(iii) Since range(y,) C range(y) Urange(@,), it follows that each y;, is simple, and y, > 0.
Thus, y, € . for all n.
(iv) Since v < f and ¢, < f, then y, < f for all n.
(v) Since (¢,)1, then (y,)7T.

(vi) y, 2 y. To see this, let @ € Q be given.
(a) Case 1 y(o) < f(®). As ¢,(®) = f(®), Zn € N such that
y(0) < g,(0) < f(w)  Vn>N,
and hence

va(0) < min(y(0),¢.(0)) = w(@)  Yn>N,

so that trivially, y,(®) — y(w).
(b) Case2: y(w)= f(w). Then as ¢,(®) < f(®w) we have

Yn(@) = min(l//(a)),(p”(a))) = () Vn,

and hence, ¥,(®)= ¢,(0) = f(®) = y(o).
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By (v) and (vi) we can apply the Monotone Convergence Theorem for ., and obtain

a = /wdu = ng/wndu.

Thus, the claim is proved.

Now given a € E, let (y,) 1 be as in the claim. Since ¥, < @,, then by monotonicity of the
integral in .9~

/' Yndu < /.%du Vn,

and letting n — oo,

claim

a = lim [ y,du < lim/(p,, di.
n—soo

n—seo

As a € E was arbitrary, then (2.12). and hence (2.11) follow. Thus. the theorem is proved |

The properties of the integral discussed for nonnegative simple functions in Theorem 2.1.2
naturally carry over to the integral of arbitrary measurable functions:

Theorem 2.2.2 (Properties of the integral). Let f,g € g andc > 0.
1. /cf du = c | fdu. (the integral is positive homogeneous”)

2. / (F+g)du = / Fdu + / = dlik (hiletmesral is additive”)

3. If f<g then /f du < /gdu. ("the integral is monotone”)

§ Exercise 2.2 Prove Theorem 2.2.2. (Hint: use Theorems 2.1.2 and 2.2.1.) ™

% Exercise 2.3 Consider the measure space (R, #(R),1). Set

zn < L ez ]
Fx) =x1p,n, g(x):{é gy h(x)={7; g

else

Use Theorem 2.2.1 to find

/fd?t, /gdl and /h dA.

§§ |

e

xercise 2.4 Consider the measure space (R, %(R),A), and let f : R — [0,00) be continuous.
how: If [ fdA =0 then f =0. u
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2.3 The Integral of Extended Real-Valued, Measurable Functions

We are now ready to define the integral of an arbitrary extended real-valued measurable function.
Recall that

L=2QF u)={f: Q>R

f is Z-measurable } .

Now if f € #, then clearly, [, f~ € £, so that
/f“‘r du and /f_ du
are both defined. Since f = f™ — f, then the following definition is very natural.

Definition 2.3.1 Let f € . be given. Then

[raw:= [rran- [ au (2.13)

provided that the right-hand side is not of the form co — oo !

Rf For f € .Z* we now have two definitions of [ fdy : Definition (2.7) for the class .2, and
" the newer definition (2.13) for the class .. It is easy (o see that both definitions coincide.

This is because f = f while f~ = 0. Thus (the integrals below are according to definition
(2.7)),

/f*du—/f*du :/fdu—/Odu :/fdu.

Since the left-hand difference is the integral according to definition (2.13), while the right-
hand side is the integral according to (2.7), it follows that both integrals coincide.

Definition 2.3.2 Let f € . be given. Since |f|= f"+ /", then

/mw“y/ﬁw+/fw6m%

We say that f is integrable, if

/UM#<N

= Example 2.2 Let (Q,.%#,4) = (R, #(R), A). Consider the step function
@=2-1p;)—3-115+0.5 1y ) € 5.

Then
¢ =2-1p+05 1y and @ =3-1y

so that

‘/wuxzzw(mu)+asxu4@):w, ‘/wdl=3%(mﬂw=3
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It follows that

/cpd)t . /<p+d/1—/<p—d,1 =

Thus, [ @dA exists while @ is not integrable. .

Q The above example shows that the two concepts ™ [ fdu exists” and ™ f is integrable” are not
the same !

1. By Definition 2.3.1

/fdu exists & /fwu <o i /f‘du <o,
2. On the other hand, by Definition 2.3.2.

[rian+ [1du<e

& /f*‘du<°° and /f*du<°°-

f isintegrable &

/n Suppose, [ f exists. By the triangle inequality and additivity of the integral in .ZT,
R

[re=[r|<|[s +’/f|

= [r+ [ [+ = [

'/fdui < [If]an.

def

J1=

That is,

‘p: Let f,gc.Z with |f| <|g| ("f is dominated by |g
= of the integral in £,

o< [1n"<" [lel < =

Thus, f is also integrable.

). If g is integrable, then by monotonicity

Let us set
L = La(Q,F,0) = L = LYQ,F ) = {feﬁ ‘ f is integrable }.
Thus,

L, = {f:Q—R*| fis #-measurable and integrable }.

We also set
Ly = L(Q,F,1) = {f: Q= R| fis F-measurable and integrable }.
The next theorem implies that .,?Rf is a real vector space, and that the map

£ [

is a monotone linear functional on %3.
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Theorem 2.3.1 (Properties of the integral). Let f,g € :.E,”Lé* and ¢ € R. Then
1.  efe ,,Sfﬁ* and /cf du =¢ / fdu. (7the integral is homogeneous™) ‘

2. If f+g is defined, then f+g € 4}, and
/(f+g) du = /f du + /g du.  (”the integral is additive”)

3. If f<g then /f du < /g du. (”the integral is monotone”)

Proof. By assumption on f and g,

/lfl<°°, /f*<°°, /f*<°°7 R

1. There are three possibilities.
(a) Case I: ¢=0.Then cf=0€ .Z", so thatclearly

/cf:/O:O:OA/f:c/f.

(b) Case2: ¢>0.Then (cf)” =cf" and (¢f)” =cf~, and hence,
[tery = [er ™ [ <
[efy = [ef ™ [ <o,

by assumption (2.14). As both of these integrals are finite, it follows that ¢ f is integrable
and that

Jer® Jlen = fen=efr-c [y
= [[#af) gafr

(c) Case3: ¢<0. Then (cf)" = (—|c|f)" =|c|f and (c¢f)” = (—|c|f)” =|c|f", and
hence,

Jery = [lelr "2 [ 1 <o
[t = [lelr 2l [ £+ <,

by assumption (2.14). As both of these integrals are finite, it follows that ¢ f is integrable
and that

Jer® [ = e =1 [ 1ol [ £
= —|c| {/er/f_} défc/f.
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2. Suppose that f(®) + g(w) is defined for all ® € Q. As

f(@)+g(0)| < |f(w)|+|s(w)]

(even when f(@)= oo or g(@)=eo !), then by monotonicity and additivity of the integral
i FT,

/ \f+g!mm§'2/ (Ifl+ \g!)mméz'z,/ 7 +/ gl <=

This shows that f + g is also integrable, and in particular,

[+ <o ad [ <o
We now decompose |
fre=(f+g)" = (f+8)~
while also
f+g={f"=F)+lg —g")
Equating both,
(f+8) (@)= (f+8) (o) =fT (o)~ (0)+g(0)—g () VYoeQ
We can add (f+¢)” (w), /(@) and g~ (@) to both sides, provided they are finite valued, to
obtain
(f+8) (@) +f (0)+g (0) = (f+8)T(0) + f (0) +&" ().

Note that this identity is true even when (f +¢) " (w), f~ (@) or g~ (®) take the value oo, as
can be seen by comparing both sides of the equation ! By additivity of the integral for £+
(Theorem 2.2.2),

/(f+g)*+/f‘+/g':/(f.+g)‘+/f++/g+

Since all of these integrals are finite, we may subtract freely,

/(f+g)+—/(f+g)“=/f*’—/f‘+/g+~/g‘

that is,

[ir+9=[r+ s

. If f < gthen

£ =max(f,0) < max(g,0) =g"
g~ = —min(g,0) < —min(f,0) = f".
By monotonicity of the integral in . (Theorem 2.2.2),

/ffé/g+ and /g_ S/f_-

As all integrals are finite, we can subtract,

/f=/f+—/f‘§/g+—/g'=/g-

This completes the proof. u
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The Integral of Vector-Valued and Complex-Valued Functions

In this section, we will extend the concept of measurable functions to complex-valued functions.
Since the set of complex numbers can be identified topologically with the real plane R?, it makes
sense to consider complex-valued functions as vector-valued functions, and thus first discuss
measurable functions of such type.

Vector-Valued, Measurable Functions

Let us briefly recall the basic concepts of the topology in R¢. The Euclidean norm of a vector
X =025 4 5 ,xd) eR%is

d
[l = 4/ ;X?-

Given x € R? and € > 0, the set
Be(x):={yeR’: [ly—x] <€}

is called the open ball with center x and radius €. If U C R4, then
U is open g vYxeU Je=g >0 suchthat B:(x) CU.

It is well known and easy to verify that if Uy, Us,. .., U, are open subsets of R, then
U=T XUs % == ¥ Uy

is an open subset of R.

First we give a version of Lindeloff’s Theorem for RY. By an open, bounded d-interval we
mean a subset

d

I'=TT](ai,b:) = (a1,b1) x (az,b2) X ==+ X (a4, ba)
=1

of RY, where a; < b, a;,b; € R, i = 1...d. We say that [ has rational endpoints if a;,b; € Q for
all i. Let use set

d
,]61= {IzH(ri,si):r;<s,~, r,si€Q, i= 1...d},
i=1

the collection of all open d-intervals with rational endpoints. We observe that ¢ is a countable
set, as the mapping
‘ 2d
Hrl) Ef]{) (rlasZﬂr27S27"'7rdvsd)EQ
i=1

is one-to-one.
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Lemma 2.4.1 (Lindel6ff’s Theorem for R%)
Every non-empty open set U C R is the countable union of bounded, open d-intervals with
rational endpoints. That is,

N
U=|JJh  NeNu{=}, e 5.

n=]

Proof. Let U C R be open, U # 0. Thus, for each x = (x1,...,x4) € U, there exists € = & >0
such that

Be(x) CU,  Be(x):={y=01,....ya) eR?: ly—x|| <&}

Set 6 = 6, = 8/\/3 Now by density of Q in R, for each i = 1,...,d, there exist r;, s; € Q
(depending on x), so that

Xi—0 <r<x;p<s<xi+96.
In particular,
yi—x| <8  Vyi€(ri,si) (2.15)

Set
d
Je=T](ris:) € F.
i1
Note that if y = (y1,...,y4) € J; is arbitrary, then by (2.15),

d d d
ly— x| = Z yi—xl* < 252 = Zez/d = g2,
i=1 i=1 i=I
which shows that
Jy © Belx) CU.
It follows that

U=J{xrcUkcu
xeU xeU
which gives
=] |z (2.16)
xelU

Now as fé’ is a countable set, only countably many of the intervals J, can be distinct, and we can

list the distinct interval as {Jn}fzv:p with N € N or N = co. Thus, the union in (2.16) is really a union
of the intervals {J,}V_,,
N
U=/,
n=1
which proves the lemma. |

Next we show that the Borel c-algebra on R¢ is generated by the collection of open d-intervals
with rational endpoints:
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l Corollary 2.4.2 B(RY) = o(I).

Proof. Let
1:={UCRY : Uisopen }.
Since open d-intervals are open sets, then . C 7, and hence o (5¢) C (1) = B(R?).

To prove the reverse inclusion, let U € 7 be arbitrary. By Lindeloff’s Theorem, we can write

N
U=JJ  neNU{=}, J,e5.

n=1

Since J, € I C o(F¢) for all n, it now follows from properties (A2) or (A20) of a c-algebra
that U € o(7{). As U € T was arbitrary, we conclude that

TC o(F)
Now Z(R?) is the smallest o-algebra containing 7; hence
BRY) = (1) C (S,

Thus the corollary is proved o

Let f: Q — R? be a vector-valued function. We write f in component form,

F=0fi;foy::+508) where Fid =R, i=1,...,d.

Theorem 2.4.3 Let f: Q — RY. Then

fis Z-measurable < each f;is Z-measurable , F= 155 el

Proof. Observe that

fis Z-measurable & fUE)e F VEeBRY
" fUE)eF VEe S

=: Suppose, f is .#-measurable. Then foreachi=1,...,d and a € R,

7 ((a,) ={weQ: fi(w) > a}
=f_I(RX---XRX(a,°°)XRX~--XR) e,
1— 1 copies d —icopies
as R™™! x (a,00) x R is an open subset of R, This shows that f; is % -measurable.

<: Suppose, each f; is .#-measurable. Let

- /
E = | |(ris:) € H
i=1
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be given. Then

fUE)={weQ: f(w) €E}
- {Q)EQZ (f]((l)),fz(w),,ﬁl((x))) S (rl,sl) £V (r2,52) S s e w3 (rd,ss)}
={weQ: fi(w) € (r,s), i=1,...,d}

d
=M{weQ: fiw) € (rns)} € Z.

i=1

€ . as fj1s F-meas.

This shows that f is .#-measurable. |

Given f,g:Q — R and « € R, the functions f + g and o f are defined pointwise as usual by
(f +8)(@) = f(0) +g(w), (af)(@) = af ()
for all ® € Q. We also define a function [|f|| : Q — [0,00) by

d
LIl = 4/ X 77
=

Theorem 2.4.4 Let f,g: Q — RY be .#-measurable, and & € R. Then
- L {weQ:f(o)=glw)}ecZ.

2. f+gand af are .#-measurable.

3. [|f|l is #-measurable.

Exercise 2.5 Prove Theorem 2.4.4. (This is simply an application of Theorem 2.4.3, Theorem
¢ 1.5.5, Theorem 1.5.6 and Corollary 1.5.3.)

@

"
Recall: If (x,) is a sequence in RY and x € RY, say x,, = (x§") ,xg”, .. ,xﬁl'”) and x = (x1,X2,...,%d),
then
lef
=% & |m—x]| =0
From

il =4/3f < Ibll = (i=1,...,d) (2.17)
where y = (v1,y2....,yq) € RY, we obtain, setting y = x,, — x, that
X x & lxp —x|| =0
& KW-x|o0 Vi=l,...d (2.18)
& xf")—>xi Vi=1,...,d.

That is, the sequence (x,) converges to x if and only each component sequence (xi")) converges to
Xi.
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¢ Definition 2.4.1 Now let (fu) be a sequence of functions, f, : Q — R4 and f: Q — RY We
; say that (f,,) converges pointwise to f, if

(o) = flo) Yo € Q,
in which case we write f, —— f. That is,

def

i S (o) - fl@))|—=0  VeoeQ.

;»R' . Write the above functions in component form,
f”:(fl(”),fz("),...,fs")) and also F= (fisFaromentit)s
where £, f; : Q@ = R. Then by (2.18),
HI5SF e M2 vi=l,....d

(n)

Now suppose that each f, is .%#-measurable, and f, 2% f. By Theorem 2.4.3, each f;
is .Z-measurable, so that by Theorem 1.5.7, each component f; of the limit function is
Z -measurable. Applying Theorem 2.4.3 again, it follows that f is .%#-measurable.

55?55 Definition 2.4.2 Let f : Q — RY be .%-measurable. We say that f is integrable, if each
| component function f; : Q@ — R is integrable. In this case we define the integral of f as the

vector
[ fau:= (/fldu,/fzdu,...,/fdd@

We set

Loy = Lo, F 1) = {f: Q- R?| fis F-measurable and integrable } .

Theorem 2.4.5 Let f: Q — R? be .#-measurable. Then

fisintegrable < ||f|| is integrable.

Proof. From (2.17) we obtain that for each 1 <i<d and w € Q,

that is,

d
PR ES M
j=1
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=: Suppose, f is integrable, that is, [ |f;| < e forall i =1,...,d. Then by additivity and mono-
tonicity of the integral,

[l < /{Z[:fl} - ¥ f1si<=

which shows that || f]| is integrable.
«:If || f]| is integrable, then for each i = 1,...,d, by monotonicity of the integral,

[ [l <o,
which shows that £ is integrable. .

The next theorem says that Xﬂéd is a vector space, and that the mapping f +— [ fdu is a linear
map of .ffﬁéd into R4,

- Theorem 2.4.6 (Properties of the integral). Let f,g € .Z}RIM and o € R. Then
1. afe], and /ocfdu :a/fdu.

2 f+g€=2”}§d, and /(f+g)d,u:/fdu+/ga’u.

=

| Exercise 2.6 Prove Theorem 2.4.6. (This is simply an application of Theorem 2.4.3, Theorem
1.5.5, Theorem 1.5.6 and Theorem 2.3.1.) ®

SR

Complex-Valued, Measurable Functions
Recall that C can be identified with R? topologically and as a.real vector space, using the bijection

P:z=x+iycC — (x,y) €R%

The difference between C and R? lies in their algebraic structure: vectors (x,y) € R can only be
multiplied by real numbers &, while complex numbers z = x+ iy € C can be multiplied by other
complex numbers ¢ = & + if3.

Given z =x+iy € C, we write

x =Re(z) “real part of z”

y =1Im(z) “imaginary part of z”".

The Euclidean norm [|(x,y)|| of (x,y) € R? now corresponds to the absolute value (or modulus) |z|
of z=x+1iy € C, so that

2| = V2 +y* = ||(x,y)]-
The complex conjugate of z € C is

Z=x—1iy=Re(z) —ilm(z).
Then

Bl =212,  Imid=22  =vE (2.19)
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If (z,) is a sequence in C and z € C, say z; = X, + iy, Vn and z = x4 iy, then by (2.18),

=7 & XX and Vo =+ Y.

Next let f : Q — C be a complex-valued function. As usual, we define functions Re f,Im f, f, | f
Q — R pointwise by

(Ref)(®) = Re(f(w)) "real part of f”
(Imf)(w) = Im(f(®)) “imaginary part of f”
flw) = flo) “complex conjugate of [
[fl(@) = [f(w)] “absolute value of f”
for w € Q.
Using (2.19) one quickly verifies that
Refzfzif, Imfz%, f=Ref+ilmf

fl=\ff.  F=Ref—ilmf.

Continuing to identify C with R?, we can consider complex-valued functions as vector-valued
functions: Given f =Re f+ilm f : Q — C we identify f with the function f=(fi,r) : Q—R?
by setting fi =Re fand f, =Imf.

1. Applying Theorem 2.4.3, we obtain:

fis Z-measurable < Ref and Im f are both .%-measurable .
2. Remark 2.4 implies: Let f,,f : Q — C. Then
it f & Ref,23Ref  and Im f, * Im f.

Furthermore, if each f; is .#-measurable and f,, = f, then f is . -measurable.
3. Definition 2.4.2 becomes: If f is .%-measurable, then

fisintegrable <« Ref and Im f are both integrable.

In this case,

/fdu - /[Ref+i1mf} dp X /Refdu +i/Imfdu.
4. Theorem 2.4.5 becomes: If f is .#-measurable, then
fisintegrable < |f]is integrable.
5. Letus set
5 = ZHQ, F ) = {f:a-cC | f is #-measurable and integrable }.
Then % can be identified with ‘Zﬂéz using the map

f=Ref+ilmf ~ f=(Ref,Imf).
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As we already expect, the next theorem shows that ch is a complex vector space, and that the
map

£ [ fau

is a linear functional on ,iﬂcl.

Theorem 2.4.7 (Properties of the integral). Let f,g € fcl and c € C. Then
1. efe  and /cfdu:c/fdu.
(’the integral is homogeneous”)

2. f+ge&L  and /(f+g)du:/fdu+/gdu.
(”the integral is additive”)

3. fel and /fdu =7;l;.
4. '/fdu’ < [1ldu.

Proof. Since f is integrable, then so are the functions Re f and Im f. We also note that by Theorem
2.4.6, properties 1. and 2. already hold, at least for real scalars c.
1. Thus, letc =a-ib € C. Then

cf = (a+ib)(Ref+ilmf) = (aRe f —bImf) +i(alm f +bRef).
Now by Theorem 2.3.1,
Re(cf) =aRef—bImf and Im(cf) =almf+bRef

are both integrable. Thus, cf is integrable, and

/cf:/Re(cf)+i./Im(Cf)
- /(aRef—bImf)+i/(almf+bRef)
‘h'“:”"a/Ref—bl/‘Imf+i<a'/1mf+b./Ref>

— (a+ib) (/Ref+i/1mf> =C/f-

2. This is Theorem 2.4.6, part 2.
3. Clearly, the conjugate f = Re f +i(—Im f) is % -measurable and integrable, because Re f
and Im f are. Now

/f:/(Ref+i(—Imf)):/Ref+i/(—lmf)

‘h'“é}'l(/Ref—i/Imf = (/Refﬂ/lmf) :F




2.5 The Integral over a Set 57

4. Using the polar representation z = re'® of z € C, we can write
/f:rei9 for some r >0, 0 < 8 < 27m.
Solve this identity for r,
r=e¢" /‘f S /-e_"efz/Re(eA"ef) —l—i/.Im(e_“ef).
Since r on the left is a real number, then last integral on the right must be zero,
/Im(e—""f) 0.
Thus,
‘/f‘ = |rei6| = |r| = ‘/.Re(e”ief))

g/|Re(e—"9f)\ g/le""’fl = /If\,

where we have used the fact that |Rez| < |z| for z € C, together with monotonicity of the
integral.
|

2.5 The Integral over a Set

In the following, we will deal with both extended real-valued functions and with complex valued
functions, although our discussion can easily be adapted to vector-valued functions. We thus let
K=R*orK=C.
Definition 2.5.1 Let f: Q — K be .#-measurable. Given A € .#, we set
/Afdu = /flAdu, (2.20)

provided that the right-hand integral is defined. We say that f is integrable over A, if f14 is
integrable. That is,

fis integrable overA & /lf|1Adu<oo @ /A|f‘|du<oo.

s Example 2.3 Let (Q,.7,u1) = (R, B(R),A). If f(x) = x, then

i = / L =225
/[o»rx s 2
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xercise 2.7 Let A,B € .% and g : Q — K be .%-measurable.
1. Suppose, B C A. Show:

(a) If g € £, then /BgduS/Agdu.

(b) If /gdu is defined, then /ga’u is defined.
A

B
(c) If g is integrable over A, then g is integrable over B.
2. Let A, B be arbitrary. Show:

(a) If / gdu is defined, then /gd/,L is defined.

(b) Even when / gdu and / gdy are both defined, then / gdu need not be

defined.
(c) If g is integrable over AU B, then g is integrable over A.
(d) If g is integrable over A and integrable over B, then g is integrable over AU B.
3. Suppose that AN B = Q. Show:

/ gdu=/gdu+/gd/u
AUB A B

whenever the left-hand integral is defined.

Note: by induction, we obtain:
LetAy,...,A, € .Z be mutually disjoint, and A = [ JiL_ A;. If either [, gdu is defined or
g is integrable over each A;, then

gdy = /d.
'/Agu [;Aigu

Theorcm 2.5.1 (The integral over anull set) Let N € .% be a null set. Then every % -measurable
function f: Q — K is integrable over N, and

| fau=o.

Proof. Let N be a given null set.
1. Firstlet f =@ € 7, say ¢ =Y, agla,. Then

n n n
N= [Z aklAkl Iv=Y aldaly =) alsyweS",
k=1

k=1 k=1
so that
. S n
/Nqodué/<p1,vdu=/ Y anlaow | du
. k;
n n
=Y ap(AnN)=Y @-0=0
k=1 k=1

as measurable subsets of null sets are again null sets.
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2. Next, let f € £, By the Structure Theorem, there exists a sequence (¢,) Tin . with
¢, % f. By the first part, @,1y € .# for all n, and clearly, (¢,1y) T and @,1y > f1y.
Hence,

/Nfdu et /ledy thn 221 ’}i_r&/(pnl,vdu =L fim b = 0.

n—¥o

3. Now let f: Q — R* be .% -measurable. Clearly,
[fly]"=f"1ly  and  [fly] =f"1y.
By the second part,
/[le} + i = /f+1Ndp"“¥‘0 <oo  and
/[le} == /f“lNdu M) oo,
It follows that f1y is integrable, and
[ fan [ fivan® [ i) du [ (£ dn=0-0=o0.
4. Finally, let f : Q — C be .#-measurable. As 1y is real-valued, then clearly,
Re(fly) =Re(f)1y and Im(f1y) = Im(f)1y.
By part 3. these functions are integrable, and hence
[ ran [ fivdu® [Re(rin)du+i [ 1m(f1y)d
= /(Ref)lNdu +i/(1mf)1NduV“é3' = 0+i0=0.

s Example 2.4 Let (Q,.7,u) = (R,%4(R),1).
1. Let f : R — R* be any Borel function. Since Q is a countable set, it is a A-null set, so that

/Qfd}l —0.

2. Now let f € ;. Then by Exercise 2.7, parts 2 and 3.,

/Rfdxl:/R\Qfd)LjL/éfa’A:k/IR\Qfd/leO:/R\QfdA.

That is,

/R\Qfdx =/Rfd,1.
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. Exercise 2.8 ( This exercise will show that J4 fdu is not really a new concept, but is the integral
. in some measure space (A, %, Ua).)
Let (Q,.7, 1) be a given measure space and A € .#. Set

= {EcZ :ECA}.

1. Show:
(a) Fa={ENA:E e F}.
(b) %4 is a c-algebra on A. (Hint: To avoid confusion, denote by A\ E the complement
of E in A. Don’t use the notation E€.)
We let 14 denote the restriction of i to A:

HA(E) := U(E) VE € Fy.

Clearly, 4 is a measure on (A,.%4), so that (A, %4, lU4) is a measure space.
2. Let f: Q — K be #-measurable. The restriction of f to A is the function fj4 : A =+ K
defined by

fa(w) = f(o) Vo € A.

Show: f4 is #4-measurable.
3. Conversely, let f : A — K be .#4-measurable. We extend f to a function f: Q — K by
setting

PO I i () if oecA
"o ifodA.

Show: f is .%-measurable.
(It is clear that (f)IA = fforall f: A — K.
4. Let f: Q — K be .#-measurable. Show:

@ If f € LH(Q,F, 1), then /'fMduA = //;fdu.

b) /flAduA s defined & /fdu i5 dhned.
A

In this case, both integrals coincide.
(c) fisintegrable overA < fi4 € YA, Fa, i)

2.6 Almost Everywhere

Let us briefly recall the following properties of null sets, which will be used repeatedly:
I. Let N €.Z be anull set. If A € .Z is a subset N, then by monotonicity, 0 < u(A) < u(N) =
so that A is also a null set.
2. Let Ny,Np,Na, -+ € .% be a countable family of nulls sets. Then by o-subadditivity,

so that [ J;_; N is also a null set.
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That is, measurable subsets of null sets are again null sets, and countable unions of null sets are
null sets.

Definition 2.6.1 Let E € %, and let (S) be a statement about the elements of E. We write:
Statement (S) holds [-a.e. (”almost everywhere”) on E, if there exists N € .# satisfying

1. u(N)=0,

2. {® € E : statement (S) does not hold } C N.

When E = Q, we simply write: Statement (S) holds [L-a.e.

B(s) := {®w € E : statement (S) does not hold }

need not be a measurable set (i.e. Bg) Z.F) !
Thus, the statement

”(S) holds p-a.e. on E”

means the following:
1. Statement (S) holds for all @ € E outside of some null set N.

2. For w € ENN, the statement (S) may or may not hold.
» Example 2.5 1. Let f,g: Q — R, and E € .%. The statement
flo)=g(w) p-a.e.onE”
means: There exists a null set N € .% with
By :={wecE: f(w)#g@)}CN.

Now if in additition, both f and g are .7 -measurable, then by Theorem 1.5.5, B(s) € %, and
hence B(S) is itself a null set. Thus,

"fo)=g(®) p-aeconE’ & U{wel: f(o)#g(w)})=0.
2. Let (Q,Z,1) = (R,B(R),1). We have
Ig=0 A-ae.
To see this, note that
Bisy={weQ:"1g(®) =0"does nothold } = {® € Q: 1g(w) #0} =Q,

which is a A-null set.
Now if we change the measure to the counting measure L., then 1. (Q) = o, and B(g) will no
longer be a null set. That is, the statement

1g=0 u-ae.

is not true.
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3. Let (Q,.%#, 1) be any measure space and f;, f : Q — K. The statement
fn— f U-ae. (or simply  f,—> f)
means: There exists a null set N € .% so that
fr(@) = flw) YoeNE°.

Note: When ® € N, the sequence (f,(®)) may or may not converge to f(®). Furthermore,
f need not be .#-measurable even if each f;, is #-measurable; see Example 2.6 below.
However, changing the value of f on a null-set, we may assume that f is % -measurable:

Theorem 2.6.1 Let (Q,.%, ) be a measure space and f,, f : Q — K. Suppose that
1. each f, is % -measurable, and
2, fa—sf. -

Then there exists an .% -measurable function f : Q — K so that

o and f=Ffae.

Proof. By assumption 2., there exists a null set N € .% so that
fnlw) = f(w) Yo eN°.

Set

fu = fnlN“ and f:: lezn

Then
l. fu=frae. and f=fae.
2. fuis .Z-measurable, for all n,
3. fu(®) = fl@) YoeQ,
Thus £ is also .%-measurable. Since for all ® € N¢,

fo(@) = fu(@) = f(@),
then f, —= f. [ ]

“p . Replacing f with the function f of the above proof if necessary, we may always assume that
/ is also & -measurable.

@ Example 2.6 Let Q =R and
# ={E CR: is countable or E€ is countable}.

Let i = &, the Dirac one-point measure at zero. Let f, = 1g and f = 1i0,1. Then

1. each f, is % -measurable,

2. fo—> f. (Because N := R\ {0} is a null set, and f,(®) =1 — f(®) = 1 Vo € N° = {0}.)
Note, however, that f is not % -measurable ! Nevertheless, if we set f = flye = 10} = 140y, then
f is Z-measurable and f, - f. .
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Definition 2.6.2 A measure space (Q,.%, 1) is said to be complete, if it has the following
property: Whenever N € .% is a null set, and A C N, then A € # as well. ("subsets of null sets
are measurable sets”.) Then by monotonicity, A itself is a null set.

Theorem 2.6.2 Let (Q,.%, 1) be a complete measure space, and let f,g : Q — K satisfy
1. fis .#-measurable,

L 2. f=gae.
' Then g is also % -measurable.

Proof. By assumption 2., there exists a null set N € .# so that
flow)=glw) Vw € N¢.
1)) Assume first that f,g: Q — R*. Then Va € R,
{weQlg(w)>a}={weN|g(®)>a} U{weN|g(w)>a}
={weN|g(w)>a} U{weN|f(w)>a}

={0eN|go)>a}u [{ocQ|f(@) >a}n N |7,
eF

€. by completeness eF as fis F-meas.
by properties (A2) and (A3) of a c-algebra. This shows that g is .#-measurable.
2) Now let f,g: Q — C. Since f = g on N°, then Re f = Reg and Im f = Img on N¢. That is,
Ref=Regae. andImf=1Imga.e. Since Re f and Im f are .# -measurable, then by part 1),
Reg, Img: Q — R

are .% -measurable. It follows that g is .% -measurable. |

R Completeness can not be removed here. For let (Q,.%, i) be as in Example 2.6. Set f=1
and g =1y ;). Then fis & 7 -measureable and f = g a.e. However g is not .%-measurable !

Corollary 2.6.3 Let (Q,.7, 1L) be a complete measure space and f,, f : Q — K. Suppose that
. 1. each f, is .% -measurable, and

| 2 557

| Then fis also Z-measurable.

Proof. Let N, f, and f be as in the proof of Theorem 2.6.2. Since f = fae. and fis .Z-
measurable, it follows from Theorem 2.6.2 that f is .#-measurable. |

Exercise 2.9 (Every measure space can be made complete.)
. Let (Q, %, ) be a measure space. Set

= {EUA|E€ %, ACN forsomenull setN € # }.

1. Show: .Z is a o-algebra on Q.
2. Set fi(E):=u(E) VE=EUAEF. Show:
(a) [t is well defined. (That is, if E =E UA| = E; UA, for some E|,E, € % and
subsets Aq,A; of null sets, then u(E;) = n(Es).)
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(b) f(E)= u(E) VE€Z.

(c) [iis a measure on (Q, %

(d) The measure space (€, :’?v, fl) is complete.
(e) If (Q,F, ) is complete, then F=7.

We call (Q, .7, [i) the completeion of (Q, F,1L). "

s Example 2.7 1. The completion of the measure space (R, Z(RR),A) is denoted by (R,.#,1).
A is called the o-algebra of Lebesgue measurable sets. One can show that Z(R) C .4 C
Z(R).

2. Let (Q,.%) be any measurable space, and f, the counting measure. Since the empty set is
the only .-null set, it follows that (Q,. %, l1.) is already complete.

3. Let (,.%) be any measurable space. Fix a € Q with {a} € .# and let &, denote the one-point
Dirac measure on (Q,.%#). Then (Q, #(Q),d,) is the completetion of (Q,.#,§,), as can be
easily checked.

Theorem 2.6.4 Let f,g: Q — Kbe % -measurable functions, with f(®) = g(w) a.e. If [ fdu
is defined, then [gdu is also defined, and

[ rau= [gan.

Proof. Set

N:={0ecQ|f(w)+#gw)}.

Then by Theorem 1.5.5, N € %, and then by assumption, (t(N) = 0.
Casel: f,g e Z". Then [ f, [g areboth defined, and

/f :xer:2.7 /f +/ fexur:),7 /g + / f exer:2.7/g.
&, ity SRR

=0 by thm 2.5.1 =0bythm251  f=g onN®

Case 2: f,g:Q — R*, and suppose that [ f is defined. Since f(®w) = g(w) for all ® € N¢, then

ffo)=g"(0) and [ (w)=g (o) for all @ € N¢,

Then by case 1,

fr=]s wm [r=]s

which shows that
1. [g isdefined, and
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Case3: f,g:Q — C,, and suppose that [ f is defined. (in the complex-valued case, this means
”f is integrable”). Then again,

Ref=Reg a.e., Imf=Img ae., and |f|=lgl ae.,

namely at all ® € N°. Now by case 1,

/lgIZL/lfKoo%

which shows that g is integrable, and by case 2. that

/g:/Reg—i—i/Img = /Ref+i/lmf - /f.

Thus the proof is complete. B

Corollary 2.6.5 Let f,g: Q — K be .# -measurable functions. If
1. g s integrable, and
2. 1fl< gl as ; (’f is dominated by g”)

then [|f| < [|gl|. In particluar, f is also integrable.

Proof. Set
N:= {a) €EQ: [f(w)| > |g(w)|}.

.By Theorem 1.5.5, N is .% -measurable, and by assumption 2., (N) = 0. Set f = flye. Then
(a) f is.Z-measurable,

) |f]=|f]ae.,
© |f(w)| < |g(w)| forall w € Q.
It follows from monotonicity of the integral in .Z"" that

o< [ir2 [if <[ ig<=

which proves the assertion. |

Theorem 2.6.6 Let f: Q — K be #-measurable. Then

/|f|d,u:0 & f(w)=0ae. 5

Proof. <: If f=0a.e., then|f| =0 a.e., so that by Theorem 2.6.4,

[1s1= [o=0.

=: Supopose that [|f|=0. Let

N={weQ: f(0)#0} = {weQ: [f(w)|>0}ec.Z.
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We can write

N = UA,, where A, := {wGQ : |f(w)|>%}€<9?.

n=1

Now for each n, since %lAn < | f|, we have by monotonicty of the integral that

. 1 .
OSH(An):/IA,.:n/ElA,;Sn/|f|:07

so that (t(A,) = 0. Thus, u(N) = 0 as well, which shows that f(®) =0 a.e. [ |

Theorem 2.6.7 Let f: Q — R* be integrable. Then f is finite valued almost everywhere. (That
s, [f(0)] < o a.e.).

Proof. Since f is integrable, then M := [ |f| < co. Set

N:={weQ:|f(o]=c} :ﬁ{weﬂ:\f(wbn}eﬁ.

n=1

Then for eachn € N,

IIIN < \fl*

and hence by monotonicity of the integral in £,

OSn,Ll(N)=”/1N=/n1N§/\f| = M.
It follows that

0 < u(N) <

M
— VneN,
n

from which we conclude that pt(N) = 0. This proves the theorem. |

o Given an integrable function f : Q — R*, let N be as in the above proof. Set f:= flyc. Then

I f=1 ae. 5
2. f:Q—R. (ie. fis finite-valued.)
3. fis Z-measurable.

4. By Theorem 2.6.4,/f = /f. In particular, £ is integrable.

We have shown: Given f € .., there exists fe .Zué so that

flo) = f(w) ae. and /f:/f

For this reason, some authors consider the space fﬂé only.
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Exercise 2.10 Let f,g € £ . Show: i
| 1 1f f(0) < g(0) ace., then /fdu < /gdu.

2. Suppose that (Q,.%, 1) satisfies the following property: For each E € .7, W(E) = e,
there exists A € F with A C E and 0 < 1(A) < oo, (For example, o-finite measure spaces
have this property) Show:

If /‘fd,u < /gd,u VA€ F thenf(w) <g(w)ae. .
A JA

2.7 Convergence Theorems
In this section, we give answers to the following question:
Let /(@) — f(w) a.e. If each f, is integrable,
(i) will f be integrable ?
(1) If yes, will / fdu = 31_130 / . fudt ? That is, can we exchange the limit and the integral ?
In general, the answer to both questions is negative.
u Example 2.8 Let (Q,.7,u) = (R, B(R),A).
1 f0<w<n

1. Consider the functions fy,(®) = 1jy,(@) =
[ 0 else.
Then

(a) fn(w) i>f((l)) = 1‘105”)" while

(b) /fn = /1{0,;4 = 1 oo\ /f~
Note that f is not integrable ! Thus, (ii) holds, but (i) does not hold.

if0<w<
2. Consider the functions f,(@) =nlq 1;(@) = N\ -
" 0 else.
Then
@) fulo)™ f(w) =0, while
: . 1 : :

Here (i) holds, but (ii) does not hold. Observe that the sequence (f,) is unbounded.
3. Even when f, =3 f the answer may be negative. For example, consider the functions

fn =1 1[2))*1‘271}. Then

T on

(@) fu(w)= f(w) =0, and

) 1 1 n n—1y __
(b) /f;l = ;(/1[2"41,?:] = ;;(2 -2 ) =

n—1

— oo, while
n

/f = /0 = 0. That is, f is integrable, but

[fp |1

Again, (i) holds but (ii) does not hold.
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Let (f,) T be an increasing sequence in .#"". Then
/(hmf,,) dy = lim/f,,du.
n—oo n—yoo

Proof. First an observation: Since (f,)1, then f(®) := lim, e f,(®) exists in [0, 0] for all @ € Q.
Note that by Theorem 1.5.7, f is also .% -measurable. Furthermore, by monotonicity of the integral,
(f fu) 1, so that limy, e [ f, exists in R*.

Now by the Structure Theorem, for each f;, there exists a sequence (@, )y, Tin .#" so that

fu(w) =lim@x(®) VYoeQ.
k—yoo

We now construct a new sequence ()1 in ..

o1 < o2 < 03 < 0y < Qs < — fi
Al

Py £ P5 = ooReeee —
Al

f3
_/\|
fa
Al

fs

Al

IA

P < @0 < 0n

2
IA
7§
IN
g
IN
IA
g
IA
l

P34

E
VAN
A
IA
IA
3
IA

D42 ®43 D44

$
IN
(VAN
(AN
IA
s
[N

?52 P53 P54

For each k € N, set

Yy = max{(Pl,m P2y ovvs (Pk,k}-
Then
(a) each y is simple, as range(y;) C |- range(@,«), which is a finite set.
(b) each y; is #-measurable, by Theorem 1.5.6. Thus, y; € T
(c) the sequence () is increasing. In fact, for each k we have as @, x < @4+ that

D1k
©2 k

D1 k+1
(Pz,k+|

IA A

Ok < Qrgrt
0 < Qe+

Taking the max, first over the right-hand column, and then over the left-hand column, we
obtain

Vi = maX{rpl,k, P2keye s q)k,k}
< maX{‘Pl,ku, Pohi15+ -y Pkt (Pk+1,k+1} = Yit1-
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(d) yr ™ f. In fact, for each pair (n,k) of indices we have as (@, x)r_;T that

Onk < fu < f. (2.21)
Hence for all r < k, as (f,) T,

(221

k< max @, < max f,= fy < f. (2.22)
Prp < TOAX Oy IS”g{fn fesf
N ——’
=Wk

Letting kK — oo, then
fr=1lim @ < lim y; < f
k—yoo k—voo
for all r € N. Next we let r — oo to obtain
f=1lim f, < lim y < f
r—yo0 k—so00
from which we conclude that
f = lim .

We are now ready to compute [ f. In fact, by (2.22) and monotonicity of the integral in £~ we
have for all k that

Jw< [n<]r

Thus,
Thm . =
— < <
/f 221 I}l—glo/wk - klg?o/fk > /f’

which shows that

[ fau = lim [ fidp
k—yo0
and completes the proof. |

There are some generalizations of this Theorem. The first says that everywhere convergence
may be replaced by a.e. convergence.

Corollary 2.7.2 Let (f,) be a sequence in £, and f € £T. Suppose that
' 1. (f,,(a)))Ta.e.
2. fu(@) = f(®) ae.

Then
/fdp, = 1im/f,1d,u.
n—oo

The next Corollary removes the condition that f, > 0 for all n. Instead, the sequence (f,) needs
to be bounded below by an integrable function.
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| Corollary 2.7.3 Let f,, f : Q — R* be .%-measurable. Suppose that
1. fi Egﬂé*

2. (fu(w))tae.

3. fulw) = f(w) ae.

§ Then [ f, and [ f are defined, and

.

§ [ rau =lim [ fuan.

We may also apply the MCT to the sequence of partial sums of a series:

Corollary 2.7.4 Let (f,) be a sequence in £ . Then
/ |:an} d/-L = Z/fnd“'
n=| n=1

The last two Corollaries are an application of the MCT to integrals over sets.

Corollary 2.7.5 Let f € £, and {A,};"_, 1 be an increasing sequence of sets in #. Then

/ Fdp =Tm | fdu.
U A

n—oo Ap

Corollary 2.7.6 Let f € £, and {A,};"_, be a collection of mutually disjoint sets in .%. Then

fand®=E [

n=1

% Exercise 2.11 Prove the above five corollaries. "

s Example 2.9 Let f, € £ Vn, and f, ~= f. If we remove the assumption that (f,) T, then

lim [ f,du

n—soo

need no Jonger exists. Note, however, that
lim / fr and  lim / I
n . n

always exists.
For example, let f, = [2+(—1)"]1}, ,.1)- Then f, % £ = 0. On the other hand,

- {1 if n is odd
/fndm:

3 if n is even,

which shows that the sequence of integrals ([ f,) diverges. Observe that

li_m/fnzl and m/f,,:&
R n
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so that
limﬁ,:/0:0<lzli_m/f,,.
n—roo n o .
In general we have: o
Theorem 2.7.7 [Fatou’s Lemma]  Let (fx) be a sequence in Z*. Then ;
/(li_mfn> a < lim [ fudp |
n n g
Proof. As we want to apply the MCT, we set
&n = inf{fm Jr1s Jut 2y 095 } = zgﬁfk
tor each n € N. Then
(a) g, € £ by Theorem 1.5.7.
() ()71
(c) limg, = lim inf f; = lim f,.
f1—o0 n—ro0 kZ" n
We can thus apply the MCT to the sequence (g,) and obtain
/ (lim gn> dy = lim /gndu.
n—o0 n—oo
That 1s,
an Sf'l H
/ (ﬁ_m‘"n> du = lim [ g,du = Em/gndu "< lim / fndit,
n n=ree ) n no-
where the last inequality follows from monotonicity of the integral. |

R We usually don’t have equality in Fatou’s lemma as Example 2.9 above shows.

Theorem 2.7.8 [Dominated Convergence Theorem, DCT]

Let (f,) be a sequence of .% -measurable functions, f, : Q — K. Suppose that

1. there exists an .% -measurable function f : Q — K so that

(@) — f(o) ae.

2. there exists an integrable function g : Q — [0,e0] (i.e. g € £ N.¥T) so that

Ifu(0)] < g(0) ae.

Then
(a) fnand f are all integrable, and

® [ fau = lim [ fud.
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Proof. Case 1: We begin the proof under some stronger assumptions, namely that f, : Q — R,
g — [0,00), and that assumptions 1. and 2. hold at every @ € Q.
We first note that since
H(@) <glo) VoeQ,
then also
[f(@)] = lim |f,(0)] < g(0) <o Vo EQ.
That is, all f, and f are dominated by g. It follows from Corollary 2.6.5 that all f,, and f are

integrable. In addition, all functions involved are finite valued.
First consider the sequence of functions

(g+fn):=1

By the above note, g+ f, € £ N4 for all n. We can thus apply Fatou’s Lemma and

obtain
/g+/f /g+f / [g+1imfn}

hm g+fn /llm g+fn

Fatou n

= fs+im /s

Since [ g is finite, we can subtract it from both sides to obtain

< lim [[g+5] = liTm{/ng/fn}

/f < l_lm/f (2.23)

In a similar way, we consider the sequence of functions

(g_f'l):::l = (g+ (_fn)):zl

Again, by the above note, g — f, € £ N.%, for all n, and applying Fatou’s Lemma we
obtain as above (since — f,, — —f) that

[ < tim [(-5).

Recall that for any sequence (x,) in R* we have
(i) lim(—x,) = — limx,.
n n

(1) lim x, exists < limx, = limux,, in which case
n—roo n n

lim x, = limx, = hmxn
n—yoo =
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Hence,

Jr=Jens Tl

Multiply by —1,

[ f < [f 224)

Combining (2.23) and (2.24) we obtain

Jr<im[n<Tm[f< [r

from which we conclude that lim,,_,. [ f;, exists, and

/f = lim [ f,.

n—oo

Case 2: Next we consider the general case of f, : Q — R*, removing the additional restrictions.
By assumption 1.,

{oeQ: fi(w) A f(0)} C K

for some null set Ky. Furthermore, by assumption 2., the sets
Kv={0€Q: [f,(0)|>g(®)} (eN)

are all null sets. Finally, since g is integrable, then the set
={weQ: =oo}

is also a null set, by Theorem 2.6.7. It follows that the set

00

U,

n=0

N i= Ul

is a null set.
We now modify all functions involved on N, buy setting

Jo = fulne, fi=flye and  g:=glye,

These functions all satisfy the assumptions of Case 1, so that
(a) f,and f are all integrable

® [ Fau = lim [ fudp.
Now as

fo=fa ae. and f=f ae.,

it follows from Theorem 2.6.4 that f,, and f are integrable, and

/ F s / f=lim [ fo = lim / fn-
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Case 3: It is left to consider the case f, : Q — C. We simply split all functions into their real and
imaginary parts:
(i) Since f, — f a.e. then
Re(fn) — Re(f) a.e. and Im(f,) — Im(f) ae.
(i) Since |Re(z)|, |Im(z)| < |z| for z € C, then by assumption 2.,

[Re(fi)|[ <|fI<gae  and  |Im(fy)|<|f[<g ae.

We thus can apply Case 2, to obtain that
(@) Re(fn), Im(fn), Re(f), Im(f) are all integrable, and

(b) /Re(f) = li_}m/Re(fn) and /Im(f) = }i_r)n/lm(f,,).
n—yoo F 0
It follows that f, and f are integrable, and

[ 72 [Retn)+i [ = [t [Re(] + 4 i ()]
= lim {/Re(f,,)—ki/lm(fn)} = lim [ f,.

n—o0 def n—yoo

This completes the proof. a

I Corollary 2.7.9 Let f € #L.
1. If {A,};7_, 1 is an increasing sequence of sets in & then

/ Fdp = lim / zm
U::lAn n=iee An

2. If {A,};7_, is a collection of mutually disjoint sets in .7, then

du = / dLL.
/U::M"f w=Y [ fon

§ Exercise 2.12 Prove Corollary 2.7.9. .

m Example 2.10 Let (Q,.# 1) = (R, #(R),A ), and consider the sequence of Borel functions
fu(x) = sin" (x) 1o 22 (%)
1. Ifx € [0,27], x # £, 3Z, then [sin(x)| < 1. so that r}i_r}r;sin"(x) = 0. It follows that
fa(x) = f(x) =0 ae.
2. For all n € N we have that
fa ()| < (%) := 1o 00 (x) € LT NL.

It follows from the DCT that
(a) Each f, is integrable, and



2.7 Convergence Theorems 75

® lim [ sin"(x) dk—hm/f,,d?t /j i = /de 0.
n—e J[0,27]
|

We have already applied the MCT to series of non-negative, measurable functions by applying
the MCT in Corollary 2.7.4. In a similar way, the DCT can be applied to series of arbitrary
measurable functions:

Theorem 2.7.10 [Beppo Levi]  Let (f,) be a sequence of functions in %}, and suppose that

Y. [ 15l du <o

n=1

Then the series Z fn converges a.e. tosome f € fﬁé and

n=l

/fdu = ;/f,,du. (i.e./ "ilf,, i ’;/fn> (2.25)

i

]

Proof. 1. Proof of convergence. We want to make use of the fact that every absolutely convergent
series in R or C converges. Let us first set

g::ni]./‘[f,,éf* and M. ;= /Z/\f,,]<oo

n=1

By Corollary 2.7.4 and the assumption we have

[eau= [ [g lfni} dp = 21 [1nlan = m <o (2.26)

so that by Theorem 2.6.7, g is finite-valued for all @ outside of some null set K. In particular, the
functions f,(w) are finite valued for @ ¢ K, so that the partial sums

N
= 2:.ﬂdﬂﬂ
n=1

are defined for all @ & K. Since every absolutely convergent series in R or in C is convergent, then
Y i fu(®) converges outside of K. That is, there exists f : & — K so that

= ¥ fu(®) = lim Sy(®) ae.

N—oc

Finally, by Theorem 2.6.1 we may assume that f is .7 -measurable.
2. Proof that f is integrable and (2.25) holds. For all N € N we have

N o0
Sn(@)] < Y If(o)] <Y ()] = gw) ae. .
n=1 n=1

Since by (2.26), g is integrable, we may apply the DCT to the sequence (Sy) and obtain that
(a) fisintegrable,

o [ gm fsv=fim [ ¥ = fim ¥ [ 5= [

This proves the theorem. |
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s Example 2.11 Let (Q,.#,u) = (R, 4(R),A), and consider the series

(71)nxn‘

NG

fn(x) =

We now have

,,Z]/[o,l? 5= X 0] V-

N
HMS [|Mg

et “T

1
_/

c

by the p-series test.!
Thus by the Beppo Levi Theorem,

1)
(),;\f

@ (_ l)n
(b) f= = ) ——
0.1 ,1; (e ,,; (n+1)yn
Note: The above series is really a power series. If we apply the ratio test, we see that this series
converges for x| < 1, but diverges for [x| > 1. Thus, the standard arguments for the integral of

power series cannot be applied at the endpoint x = 1. .

[0, 1] to an integrable function f, and

xercise 2.13 Fixhe€ ¥. Foreach E € .Z, set

v(E) ::/Ehdu.

1. vis ameasure on (Q,.%).

2. If u(E) =0then v(E) =0.

3. visa finite measure < hisintegrable.
4. For each f € £, we have

/fdv - ,/.fh du 2.27)

5. Let f: Q — R* be .%-measurable. Then

/lfdv is defined <« /fh du is defined.

If these integrals are defined, then (2.27) holds.
6. Let f: Q — K be .%-measurable. Then

feELHQ,ZF,V) & [fhe L (Q,F,0).

In this case, (2.27) holds.

1(¢#): We will see later that for continuous integrands, the Lebesgue integral coincides with the Riemann integral.
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2.8 The Connection Between the Riemann and the Lebesgue Integral
We let

b
R - / flx)dx
a
denote the Riemann integral over the interval [a,b], and set
Rla,b] = {f:|a,b] —» R: f is Riemann integrable}.

One can prove the following theorem:

 Theorem 2.8.1 Let f : [a,5] — R. Then
1. f€Z|a,b] < fiscontinuous a.e.
2. If f € Z|a,b], then f is Lebesgue integrable, and

R~/abf(x)dx=

FdA.
[a,b]

For this reason, the Lebesgue integral over the interval [a,b] is often also written as ]ab Sf(x)dx.

We now discuss the connection between the improper Riemann integral and the Lebesgue
integral. It turns out that things are diefferent for nonnegative and arbitary integrands.

Thus, let 7 be any interval (bounded or unbounded).

1. If f:1— [0,0) is improperly Riemann integrable on I, then f is also Lebesgue integrable
over I, and both integrals coincide.
The above statement is a consequence of the various convergence theorems. For example,
suppose f : [a,b] — [0,0) is continuous on (a,b|, but lim,_,,+ f(x) does not exist in R. Let
(cx) be any decreasing sequence in (a,b] with ¢, — a™*. Then by definition of the improper
integral,

b -b A
Rf/ fOdx=1mR— [ f)dx = lim [ fdm

n—eo Jey thm2.8.1 n—ea e, bl

= / Famis fdm.
cor2.7.5 (a’b" thm 2.5.1 ‘Hb}

An example of this situation would be the integral of f(x) = ﬁ over [0, 1]. This function is
not defined at 0, so we give it any value there. Then

c—0* c—0F =0T

1] L |
R—'/O de: lim /c de: lim [2v/&]. = lim 2(\5—\/5) =1
Similarly

F 1
= lim —dm

1
—d
/[0,1] NG = n—e J{L 1] VX

I 1
= limR-— —dleimZ(l—\/’:>:2.
thm 2.8.1 n—o0 1 VX n—ro0 n
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2. If f:1— (—o0,00) is improperly Riemann integrable on I, then f need not be Lebesgue
integrable over I.
An example of this situation would be the integral of the function.

flx)= Z (—1)’11[:1—1)")
n=1

n

over [0,e0). Note that for a given x > 0,

where n is the unique positive integer with x € [n— 1,n).
(a) First consider the improper Riemann integral R — [~ f(x) dx. Given b > 0, there exists
aunique N € Nsothat N < b <N+ 1. Then

b N b
R— | fx)dx=R- / fdr + BE [ fx)dx
0 0 N

N N+1
—1)" —1)¥+
:Z(‘ A ) [b—N].
n=1 B N+1
N ——
=Sy =Ry, ‘RN‘SﬁT

Now if b — oo, then b — 1 < N — = as well. Since limy_,..Sy exists (alternating
harmonic series), and limy_... Ry = 0, it follows that

00 b
i. R— / f(x)dx= [lim R— / f(x) dx converges, and
Jo oo J0

§i. R—/()mf(x)d.x:/\llirrLSN: 5 ST

h=] 3
(b) Next consider the Lebesgue integral.

| dm = lim / | Fl = i
S fldm = Jim [ 1fldm = fim

(the harmonic series.) This shows that f is not Lebesgue integrable on [0, o).

| Exercise 2.14 Consider the ”sinc”-function

[= oz
f(x)—{o B

§ Show: The improper Riemann integral

R—/wa(x)dx

converges, but f is not Lebesgue integrable on [0, ). "



3.1

Throughout this chapter, (,.%, i) will be a measure space. We also let K =R, R* or C.
When K = R or K = C then by Theorem 2.3.1, respectively 2.4.7,

L= % ={f:Q— K| fis F-measurable and integrable }

is a vector space over K. In addition, it is easy to see that

£ = [ 1f1n

defines a seminorm on this linear space which in general is not a norm. Indeed, Theorem 2.6.6
implies that

Iflh=0 <& f(w)=0ae.

In this chapter we will modify the space .#! to obtain a normed linear space, by using the quotient
space construction. It turns out that a larger classes of spaces are actually of interest here, and we
begin by introducing these first.

The L’-spaces
Definition 3.1.1 Given a number p, 1 < p < oo, a measurable function f:Q — K is called
p-integrable, if

[isran <.
We set

LP =L = LRQ,F,u) = {f: Q= K: fis F-measurable and p-integrable } .
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For each f € Z7, we also set

- 1/p
HfH,, = U |f|"du} ” p-seminorm”.

‘@ The case p=1 has already been covered above. Here,
Z = {f:Q—K: fis F-measurable and integrable }

is the space of integrable functions. Note that this is not a vector space when K = R*.
Nevertheless,

I#1, = [ 114

is always defined.
The case p =2 is also of particular interest. Here,

.fffé = {f:Q—>K:f is #-measurable and / |f|2du <o}

is called the space of square-integrable functions. Then

7=/ [ P

We are also interested in the space of bounded functions. However, we will employ a modified
concept of bounded functions, which allows us to disregard the function values on null sets.

g Definition 3.1.2 An .%-measurable function f: Q — K is called essentially bounded, if there
exists M > 0 so that

Ey={weQ:|f(0)>M}

is a null set. Such a number M is called an essential bound of f.

» Example 3.1 Let (Q,.7, 1) = (R, %(R), A ), and consider
sin(7x) ifxeR\Q
flx)= o _
p ifx=~2€Q, (p.g)=1,4>0.

As |sin(mx)| < 1 for all x, and Q is a A-null set, it follows that every M > 1 is an essential
bound of f.

Next we show that any 0 < M < 1 cannot be an essential bound. In fact, pick x, € [0, %) with
sin(7x,) = M. Then

Ew = {x €R:[f()| > M} > {x€ [0,4): f(x) > M} 3 (1, ) NQ*

which shows that Ej; is not a null set.
It follows that M = 1 is the smallest essential bound of f. We write

[ fllew :=1.
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Definition 3.1.3 We set

L7 = B = LT )
i= { f:Q —K: fis .%-measurable and essentially bounded }

For each f € £, we also set

| f]l.. = ess-supf := inf{ M |M is an essential bound of f }. 3.1

call this set S ¢

(R) Letf€ .2 begiven.
o 1. IfM is an essential bound of f and L > M, then L is also an essential bound of f. In
fact, whenever L > M, then

E={weQ:|f(w)|>L} CEy={0cQ:|f(w)]>M}.

So if Epy is a null set, then E; will also be a null set.

2. || flle is itself an essential bound of f. To see this, let € > 0 be arbitrary. Then by
(3.1), || f]| + € is not a lower bound of S, hence there exists M € Sy (i.e. an essential
bound M of f) so that

[fllee < M < [|f]loo + &
1t follows by part 1. that || /|| + € is an essential bound for f, that is
{oeQ:|f(0) > |flle+e}
is a null set. Now choosing & = ,1—1 we obtain that
B = {0 € @i f@)[> |1} = Ufo co: @) > 17+
-

is a countable union of null sets, and thus is itself a null set. This shows that || f ||« is an
essential bound for f.

Thus by (3.1), ||f || is the smallest essential bound for f.

(R) Let f:Q—K be F-measurable, and 1 < p < eo.
o 1. Since |f|? >0, then

/Ifl”du

is always defined (possibly = o). Thus,

o= f1re] "

is always defined (possibly = ). Hence
re2r « [ifr<e o Iflp<e
Also,

1715 = [ = 17 - 62)



82 Chapter 3. Spaces of Integrable Functions

2. Similarly, || f|l- is always defined (possibly e when Sy = 0). Hence,
feL™ & S#0 & |fle<e

3. For 1 < p < o we have

Ifl,=0 & /mp:o (@) =0ae < f(@)=0ae.

26.6
Similarly,

£l =0

0 is an essential bound of f

{weQ:|f(w)|#0} is anull set

&
& {weQ:|f(w)|>0}isanull set
&
& f(w)=0ae.

Definition 3.1.4 Given 1 < p < oo, set

P (33)

= T

Then 1 < g < o as well.
When p =1 we set g = o, and when p = oo we set ¢ = 1. The number ¢ is called the
| conjugate of p.

‘» The following properties will be used throughout.

1. When 1 < p < oo, then
1 1 1 —1
R s L
p q p q

2. Agreeing that 3: = 0, this identity remains valid for p = 1 or p = co:

o1
—4-=1 (1< p<oo).
P 9

3. When p = 2, then g = 2 as well. (p =2 is self-conjugate.)
4. By (3.3) we have for 1 < p < oo that

g(p—1)=p.

Thus for any .#-measurable function f: Q — K,

[ise = [l
This shows that

@ feL’ o [fIrlexs
® sl = 1A (3.4)
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| Lemma3.1.1 Let 1 < p <o be fixed, and £+ 1 = 1. Then

ab§—+b— Va,b>0.
P q

(3:5)

Proof. We note that when a = 0 or b = 0 then the above inequality holds trivially. We thus may

assume that a,b > 0 in (3.5).

Let us derive an equivalent statement. Setting # = a” and v = b9, then (3.5) is equivalent to

u/Pylle < E+K Yu,v>0.
P 9

Dividing by v # 0, this is equivalent to

up 1
= 1+l Yuv>o.
o =i el b [ i

uil/p ul/p 1 [
- —

Setting t = ¥, this is equivalent to

tl/pgi-i-l Vi > 0.
P 4

To prove this statement, consider the function
Then

Since
f(t)<0on(0,1) and  f()>0on (I,e0)
it follows that
fle) > f(1)=0 Vi€ (0,e).

This shows that (3.6) holds, and proves the lemma.

Theorem 3.1.2 [Holder’s Inequality; p = 2: Cauchy-Schwarz Inequality]
Letl <p<eo If fe.£Pand g € £, then
L 1. fge#! and

2. / Feldu < [If1,llg],

Proof. Note that it suffices to prove assertion 2.; then 1. will follow immediately. We distinguish

three cases.
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Casel: 1< p <oo,
(i) Suppose | f||, =0. Then f(®w) =0 a.e.

= |f(w)g(w)|=0ae.
= [|fe| =0,

so that assertion 2. holds trivially.
(ii) Similarly, if ||g|l, =0, then assertion 2. holds trivially.
(iii) We may thus assume that ||f|[, >0 and |/g|, > 0. Applying Lemma 3.1.1 with

), lse)
=M ™ P,

we obtain

F@)] @) _ 1 If@)F 1 |g(@)
7o Tele =7 172 T2 14l

Now we integrate. By linearity and monotonicity of the integral,

1 ) 1
T S e < 5 wnﬁ” mm/ﬂ’ !

foH" fHQH

Finally, multiplying by || £||5|/g]/4, we arrive at assertion 2.
Case 2: p = 1. Then g = . Now since ||g|| is an essential bound for g, we have

f(@)] lg(w)] < [f(w)][gll- ae.
By Corollary 2.6.5 and linearity of the integral,

Jigsl < [1£1 18l = lglla f 111 =

which proves assertion 2.
Case 3: p =co. Then g = 1, and assertion 2. follows from Case 2, by symmetry.

Theorem 3.1.3 LetK=RorK=C,and 1 < p <eo.
1. ZP= fﬂg(Q, F, L) is a vector space over K,
|| -1|p is a seminorm on £P. That is, for all f,g € £” and ¢ € K we have

(N1): 1, =0
(N3): llefllp = lel 11.£1lp
(N4 f +elp <IFllp+lgll,  ("Minkowski’s Inequality™)

Proof. Since the set of all K-valued functions,
Vk :={f: Q= K}

is a vector space, in order to prove 1. we only need to show that .#” is a subspace of V. That is,
we need to show that cf € . £7 and f+g € ZP forall f,g € £ and ¢ € K. Clearly by definition,
| fllp > 0 forall f e £P.
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Case 1: p = 1. We already know from Theorems 2.3.1 and 2.4.6 that Z is a vector space. Now
let f,g € % and ¢ € K. Then by linearity of the integral,

lefle = [lest = [ells = lel [1f1 = lelifih,

which shows that (N3) holds. Furthermore, as
(f+e)(@)| <|flo)|+|g(w)] VoeQ,

then by monotonicity and linearity of the integral,

5+l = [ir+al< [Os1+1el) = [is1+ [ lel = £+ el

which shows that (N4) holds.
Case2: 1 <p<oo Letf,ge Z”andcec K.
(a) Since the integral in .#" is homogeneous, then

lefly = [lest = [1ePlse = Iel? [ 17 = lePlsly <o

It follows that
(i) cf € ZP, and
G lcfllp=lelllflp-

(b) Furthermore, for all ® € Q we have

f(@)+g(@) < [I7(@)+l@)]"
< [2max( 1@ Js(@)]) |”
= 2¢[max(|f(@)].ls(@!) |"
= 27max(|f()P, jg(0]” ) <2* [If(@) +g(@ .

Hence by monotonicity and additivity of the integral in .2,

/|f+g\" < /2"[11'!”+lg|”]

2| [15r+ [ g <=

because f,g € .ZP. This shows that f+ g € £ also. Furthermore,

Il

Ir+8ls = [ir+alr = [1f+sl-If+g”
< [s1+1sl]- 17 +8P

= /Ifl-lf+gl""‘Jr/lg\-Ierg!”‘l

N —rt S———

€L vy (3.4) €.%1 by (3>4)
< Al 11+l o+ gl 115 +17 g

= [£llp £+l + lglly 17+ 815"
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When | f +g|, 0 we can divide by | f + g[|5'? to obtain

p—
IF+elp * < [IFllp+lgllp-

]
I +8llp < 11715+ lello-

When || f+g||, = 0, this last inequality certainly holds as well.
Case 3: p=oo. Let f,g € £ and ¢ € K. Then

Ny ={0ecQ:|f(®) > |-}
Ng:={0eQ:[g(@)| = g}

are both null sets.
(a) Forall o ¢ Ny we have

[ef)(@)| = le]|f(@)] < lc|] £

which shows that ¢ f is essentially bounded, and

Since p — ’5’ =p [1 — ] = p-[l; = 1, it follows that

lleflleo < fe] [ fleo- G
Now if ¢ # 0 we use the same argument to show that

1 ' 1

_ <

lzen|_ < gllesl
From the above two inequalities we obtain that

£l = |2ep||_ < mliefle s cllflle = 1F]e

¢ o | én el

so that

leflleo = lel1f ]l

On the other hand, when ¢ = 0, then clearly

[eflle = [0l = 0 =" Je|[| f]leo-
(b) Furthermore, for all ® ¢ Ny UN, we have

|f(@)+g(o)| < |f(@)|+|g(@)] < [|flle+g]leo-

This shows that
(i) f+ g is essentially bounded, that is, f + g € .£*, and

(i) [f+8lleo = ess-sup (f +8) < || ][0+ [[8]]eo-
The proof of the theorem is thus complete. ]

(R, Clearly, Z§. is not a vector space, as f + g need not be defined when f and g are extended
“" real-valued. However, the above proof shows that (N3) always holds, and (N4) holds whenever
[+ g is defined.

We can now modify the spaces £ in order to make each || - ||, a norm. For this, we will use
the quotient space construction, as laid out in the next Exercise:
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| Exercise 3.1 Let X be a (real or complex) vector space and N a linear subspace. Define a
| relation ~ on X by

x~y & x—y€EN [y € X).

1. Show: ~ is an equivalence relation.
2. We denote the equivalence class of x € X by [x] and also by &. Set

X:={jz]:x€X]},

the set of equivalence classes.
(a) Show that the following operations on X are well defined for all [x],[y] € X and
scalars a:

W+Dl =k ] = (o]

(b) Show that X is a vector space with these operations,
(c) Show that the quotient map q : X — X given by g(x) = [x] is linear and surjective.
3. Nextlet X carry a seminorm || - [|;. We set

N={zeXr|xl|:=0F

(a) Show that N is a linear subspace of X.
(b) Show that || [x] || := ||x|| well defines a map X — R.
(c) Show that || - || is a norm on X.

Now let X = Zf(Q,.Z, 1) for some fixed I < p < eo, where K =R or K = C. Thus we let
N={feZ?:|fl,=0}
Since ||f|[, =0 & f(w) =0 a.e. we thus have
N={fe#’: f(w)=0ae.}
and
f~g & f—-geN & f(o)—gw)=0ae < f(o)=g(w) ae.

We denote the normed linear space space X by Lk (Q, %, it) or simply by LP(Q,.%, i), and keep
using the symbol | - ||, for its norm.

(R Strictly speaking, the elements of LP(Q, #, ) are equivalence classes of functions. However,

“* ag any two elements in the same equivalence class are equal a.e., and the integral does not
distinguish these functions, we *confuse’ the equivalence class [f] of f with f itself. That is,
we treat every element of LP(Q, %, 1) as a function, which is uniquely defined up to a null
set only.

Thus, when we say
“let f € LP”
we really mean
“let f € P be any representative of [f] € LP”.

Clearly, Holder’s and Minkowski’s inequalities hold for the spaces L? as well.
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p: Even though LE(Q,.Z, 1) is not a vector space, we can still introduce an equivalence
“ relation by

f~g & flo)=glo) ae.

and obtain a set of equivalence classes L%, (Q,.%, 1t). However, since every element f of
ZLP.(Q,.Z, 1) is finite valued a.e., then its equivalence class [f] € .Z5. will contain functions
which are finite valued everywhere, that is, elements of fﬁg (Q,Z,u). It follows that the
collections of equivalence classes L5, (Q,.%, 1) and LE(Q,.%, ) are identical ! In this
manner, Lﬁ’{ becomes a real normed linear space which is identical with Lﬁ.

For this reason, we will treat all functions as finite valued from now on. In fact, when
f:Q — R* is % -measurable and finite valued a.e., then we will implicitly modify the values
of f on anull set so that f becomes finite valued everywhere.

§ Exercise 3.2 Consider the measure space (N, Z(N), 1) where i, denotes the counting mea-
sure. Since # = Z(N), every function f: N — K is .#-measurable. In addition, every function
f:N — K can be identified with a sequence (xk):;] U125, 05 X« )} 111 K By sELHNG

e

X = fik) (ke N).

The map f — (xk) thus constitutes a linear isomorphism between the set of K-valued functions
on N onto the vector space of all sequences in K.
1. Let f: N — [0,¢0) be non-negative, simple. Show:

[rau=Y 5. 3.8)
« k=1

2. Let f: N— [0,0). Show that (3.8) holds.
3. Let f: N — K. Show:

fis integrable < Y [f(k)| < eo.
k=1

In addition, if f is integrable, then (3.8) holds.
4. Let f,g:N—= K. Show: f=gae. & f=g
5. Weset £P:=%P(N,2(N),u.)=LP(N,#(N), ). Show:
(a) If 1 < p < oo, then

o . 1/p
fell &Y |fl)) <o, and |fl,= {): If(k)\”} -
k=1 k=1

(b) If p = oo, then

feL” & sup|f(k)| <eo, and ||f]l.=sup|f(k)|-
keN keN

6. Show that £, C £, but £, # £, for 1 < p < g <eo.
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Exercise 3.3 Let (Q,.%#, ) be a finite measure space, and 1 < p < g < eo. Show:
L LUQ, Z,u) CLP(Q, 7, 1)
2. Jk=k(p,q)sothat |fll, <kllfll, VfeLi(Q.Z u).

Compare this to Exercise 3.2 !!

o

Exercise 3.4 Let Q = (0,), # = %(0,), Lt = A. Set

1
Va(1+|Inx])

1. Show: g € L?(0,00), but g ¢ L9(0,0) for p # g, 1 < g < .

2. Use the above to show: If 1 < p < g < oo, then LP(0,00) # L(0,0).

3. What if u is the Dirac one-point measure ?

| Compare with Exercises 3.2 and 3.3 !! .

g(x) =

Exercise 3.5 Let fy, f € L*(Q,.%, ). Show: If £, 13 7, then

1. fulw) = f(w) ae.
2. 3g e L=(Q, #,u) so that | f,(w)| < g(w) a.e.

| Exercise 3.6 Let Q =R, . = P (R) and it = §,, the one-point Dirac measure at x = a.
| 1. G #0, nd /fd;L

2. Describe the elements and the norm in the spaces . and LP, 1 < p < oo,

3. Describe the elements and the norm in the spaces .2 and L*.

3.2 Completeness of the L”-spaces

In the previous section, we have defined the spaces LP(Q,.%, 1), and shown that they are normed
linear spaces. In this section we will show that they are complete, that is, Banach spaces.

Let us first discuss convergence of sequences in L”(Q, %, 1t). So far, we are familiar with two
types of convergence. Given f,, f € LP(Q,.%, 1),
1. the sequence (f,) converges (pointwise) a.e. to f, written f, &, f, if there exists a null set
N € . so that

fulw) = flw)  VoeQ\N.

Note that it does not make sense to talk about everywhere convergence in L?, because
elements of L”, when considered as measurable functions, are uniquely defined up to a
null set only. To be precise, the notion of a.e.-convergence should be defined as follows:
Let f,,, f € LP. Pick arbitrary representatives g,,g € -Z* of each equivalence class, that is,

fn=[gn) and [f] = g. Then

f=of e ga(0) = g(w).
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This definition makes sense as changing the values of g, and g on null sets does not change

the property of a.e. convergence.

2. the sequence (f,) converges to f in the p-th mean, written f, Ml f,if

lim an _fHIJ =0.
n—oo

In general the two types of convergence are different:
mExample 3.2 1. Let Q= (0,1}, % = 2([0,1]) and pu = A, the Lebesgue measure.
Set f =n* l( Apn=1,2,3,.... Since ([0,1],48([0,1]),4) is a finite measure space, and
each f, is 31mple then clearly fn e L? Vn, V1< p<oo. Itisalso easy to see that

MHw)—=0  Yoel0,1]

(as functions), that is, f, —3 f = 0 as elements of L?.
Claim: f, /4 f =0 in the p-th mean, V1 < p < o,
Case 1: 1 < p < oo, Then forall n € N,

o= £ =711 gy = O[l7 = [ #2711, yyan

u+1 n

2p—1
- l_ ! S —_ ] :np Zl
n n+l nin+1) n+1 — 2
which shows that (f,,) cannot converge to f = 0 in the p-th mean.
Case 2: p =-co. Since ||f, — f|lw = ess-sup| fu(@) = 0| = n? > 1 for all n, then (f,) cannot
0e0,1]

converge to f = 0 in the essential supremum norm.
This proves the claim.
(We observe that Corollary 3.2.4 below implies that if (f,) converges in the p-th mean to
some function f, then f = 0 as an element of L”. Thus, (f,) cannot converge in the p-th
mean at all.)

2. LetQ =R, F =HBR )and u = m, the Lebesgue measure.

Fix r > 1 and set f, = OnrJ n=1,2,3,... . Thenclearly f, €L Vn, V1< p<oo,
Since |f,(w) —0| = |f,,( )| < & forall w € R, it follows that
fnjfzo-
R

(that is, f, — O uniformly .) In particular, f, — f = 0 as elements of L”.
Claim: f, / f = 0inthe p-th mean, for all 1 < p <r, while f, LH")f =0forall r < p <oo.
Case 1: 1 < p <oo. Then
. 1 P 1
1= 115 = 210~ 0| = [ 5 tomar = o
oo ifl<p<r
=n"P (1 ifp=r as n — oo,

0 ifp>r

Case 2: p = oo. Clearly,

an f”m H 0,27] 0“ :—%O as n — oo,
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Both cases show that || f, — f Hp —» 0 precisely when p > r and thus prove the claim.
|}

'he above examples show that if f, — £, then (f,,) may or may not converge to f in the p-th

lI-ilp,

mean. Conversely, Example 5.2 in Section 5.1 below will show that in general, f, — f does not
imply that £, *“3 f when 1 < p < eo. However, Corollary 3.2.3 will show that there exists at least a
subsequence (fy,, ) with f,, 4 £. On the other hand, when p = o we have:

| Exercise 3.7 Let f,, f € L*(Q,.7, 1t). Show: If f, - £ then
I L fulo)— f(o),
2. There exists g € L™(Q,.%,u) with |f,(0)]| < g(w) a.e.

‘R) Incasep=1letfy,f€ L'(Q,.7,u) and suppose that f,, LIy #. Then

= [rau < [1f-Aldu=l=11 50 asnoses
so that

/fndua(/fdu.

There is a variation of the Dominated Convergence Theorem:

Theorem 3.2.1 (Dominated Convergence Theorem (DCT) for the LP-spaces)
Let I < p < oo, and let f,, f be .#-measurable functions. Suppose that

(D) ful@) = f(@),
- (2) thereexists g € LP(Q,.F,u) with |f(0)] < g(w) a.e.
Then
- (a) fu,f ELP(Q,%,1), and

18 A

Proof. Let us first show that f,,, f € L?. (To be precise, we show that f,, f € Z".) In fact,
assumptions (1) and (2) together imply that

f(w)| <glw) ae. (3.9)

as well. It follows from assumptions (1) and (2), from (3.9) and monotonicity of the integral that

[inir< [er<e and [inlr< [or<e,

which shows that f,,, f € L.

”'H[?

Next we prove that f,, — f. By assumption (1),

|fu(@) = f(@)]" =0 ae.
On the other hand,

(@)~ f(@)] < [Ifa(@)]+f(@)]]" < [g(@) +5(0)]" =2g@) ae.
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for all n. Since g € L? by assumption, then the function 27g” is integrable. We can thus apply the
usual DCT (Theorem 2.7.8) to the sequence of integrable functions {[ (@) — flw)P } and obtain

tim| o= £ = lim [ 15— = [ lim [~ 117 = [0=0,

n—oo

which shows that f;, Mf as n — oo. Thus the Theorem is proved. |

/p This theorem does not apply when p = 0. For example, let (Q,.%, 1) = ([0, 1]1%’([0’ 1])71),
let fo = 1(1 1] and f =g = l(onu. Then

1) fulw) = fl@) Yo e[0,1],
Q) |fa(w)<g(w) Voelol]

However,

an*fHWZHl(O’}_JHmzl74>0 as n — oo,

Theorem 3.2.2 (Completeness of LP(Q, 7, Iu) for p # )
Let 1 < p < oo, and let ( fn):’:1 be a Cauchy sequence in LP(Q, %, 1t). Then there exist a
subsequence (f,,,()::1 and f,g € LP(Q, 7, 1) satisfying
(1) ‘fnk(w)l <glw) ae. Vk,
(2) fo (@)= f(@) ask— oo,
3) fi!sf asn—s e,
- In particular, LP(Q, %, 1) is complete.

Proof. The proof proceeds in four major steps.
Step 1: Extract a subsequence (fnk) satisfying anm ~fnka < zik Vk.
Step 2: Show that ¥ [ f,., — fn.| converges a.e.; conclude that f(®) = gggof"k () exists a.e.
Step 3: Show that f € L.
Step 4: Show that f; Mf

The extraction of the subsequence (fy,) is a standard process for Cauchy sequences, and is
done by induction. Since (f,) is Cauchy, then for € = % there exists n; € N so that

Vn>n.

1
an_fanp < 5

Similarly, for € = —2% there exists n, € N so that

1
1fn = Fal, < 3z Yn>m.

Increasing n; if necessary we may assume that n; < ny. In general, suppose we have already chosen
ny <np < --- < as desired. Since (f,) is Cauchy, for € = 51; there exists n; € N so that

1
an_fnka K ? Vl’t>l’lk.
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Increasing ny if necessary we may assume that ny_; < n;. Continuing this way, we thus obtain a
subsequence (f,, ) of (f,) satisfying

i
s = Fucll, < 55V (3.10)

This completes step 1.

To show a.e.-convergence of this subsequence, let us set

3 k=1,2,.... (3.11)

k
8k = ’fnl ) +Z|fni+l — fuy
i=1

Then (i) gy € £ Vk, and (ii) (gx) 1. Hence g := I}im gk exists (as an extended real-valued
—00
function),and g € £ .
Claim: g € LP. In fact, as (g} )1, then

P P IR P
[e = [ |ime] = jim [

- k r
fim 1+ R =5l

Minkowski k—0

)y

. k1 1° P
s pm |l 3] = B ) <=

k
< lim {Hﬁlll|p+;‘|.fni+1_.f’li’

(3.10) k—>o0

which proves the claim.
By the claim, g is finite valued a.e., that is,

g(w) = |fu (@)] + i[f,,,.+l(w) — fu()] <o ae. (3.12)
i=1

Since every absolutely convergent series in K converges, there exists an % -measurable function f
so that

k
f(@) = lim | fu (@) + Y. [fous (@) = fi(@)]
i=1

-

~~
telescoping sum

= fm ((D) +kh_{130 [fnk+1 ((D) _fnl ((D)]

= lim f,,,,(®) = lim f, (©) ae.
k—so0 k—so00

This proves assertion (2) and completes step 2.

Note that by the triangle inequality,

\fnkﬂ I =

k o0
flll +Z[fﬂi+| _fngl S |fﬂ1(w)’ +Z‘fni+\(m) _fn,(w)‘ =4,
i=1 | i=1



Q4 Chapter 3. Spaces of Integrable Functions

for all k, which shows that assertion (1) holds. Furthermore, going to limits,
|f(@)] = lim £, ()] < g() ae.,
and as g € L7 it follows that f € L? as well. This completes step 3.
Finally by step 3,
(@)= f(@)| =0 ae
while also
‘fnk(w) —f(w)J < |fnk(ﬂ))+f(a))‘ <2g(w) ae.

Since g € L”, we may apply the DCT for the L spaces to the sequence {| S =[] }Z;l and obtain
that

=11, = [ o= £1-0], > 0,
that s,
T g, f ask—oo.
Then by a standard property of Cauchy sequences,

Iy
f,,%f as n — oo,

This completes step 4 and the proof of the theorem. |

Corollary 3.2.3 Let 1 < p <ecoand let (f,);_, be a convergent sequence in LP(, %, 1), say

£ % . Then
1. there exists a subsequence (fy,),_, with f,, (©) == h(®),
2. there exists g € LP(Q, #, 1) with |f, (0)] < g(®) a.e.

Proof. Since (f,) converges, it is Cauchy. We let f,,, f and g be as in Theorem 3.2.2. Now since

lI-Nlp lI-llp, l-llp

fo—rhasn—> oo, then also f, —h as k —oo. On the other hand, f,, — f as k — co by Theorem
3.2.2. It now follows from uniqueness of limits that # = f in L¥, that is, h = f a.e., and the proof is
complete. |

We note that the case p = oo has already been covered in Exercise 3.7.

Corollary 3.2.4 (Uniqueness of Limits) Let 1 < p <o and let {f,};_, be a sequence in
P(Q,.Z, ). Suppose that

1. an)f for some f € L?(Q,.%, 1), and

2. ful®) = h(w) for some .Z-measurable function .
Then f(®) = h(w) a.e.

Proof. By Corollary 3.2.3 (respectively Exercise 3.7 in case p = o), there exists a subsequence
(fne) so that f, (@) == f(@). Since by assumption, f,, (®)—=h(®), it now follows from unique-
ness of limits in K that f(®) = h(w) a.e. u
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Theorem 3.2.5 L=(Q,.%, 1) is a Banach space. |

Proof. Let (f,) be a given Cauchy sequence in L. We first find a limit function f. For each m > n,
set

Am.n = {CO € Q |fm(w) - f,,((l))‘ > Hf;"_anoc}’

and set

oo

A::U U Asisie
=1

n=1m=n+1

Then A is a null set. Furthermore, for all @ € A“ and all m > n we have

[fin(@) = fu(@)] <[] fon = Full.o - (3.13)

Since (f,) is Cauchy, it follows from this inequality that the sequence (f,(®)) is Cauchy in K
for all @ € A¢, and thus converges by completeness of K. That is, there exists an .%-measurable
function f such that f,(®w) = f(w) Vo € A“.

Next we must show that f € L™ and f,, —» f. Let € > 0 be given. Since (f;) is Cauchy in L~,
by (3.13) there exists N € N so that

(@) = fu(@)] < Hfm—f,,Hw<§ B ¢ 4s, Vm>n>N,

and thus letting m — oo,

|f(o) = fu(w)| < Yo e A, Vn>N.

TR

Since A is a null set, it follows that

1= fall.. = ess-sup|f@) ~ fu(@)| < 5 <& Vn 2N,
we

N m

In particular, f — fy € L=, so that f = (f — fy) + fv € L. Furthermore, as € was arbitrary, we
conclude that that f; Ltz f. Thus the proof is complete. |

Recall that a simple function is a function whose range is finite. Let us set here
S =S =k(Q,F,u) ={¢:Q— K| is F-measurable and simple }

which is a vector space over K. When ¢ € .% has range {aj,...a,}, then as usual we consider its
canonical representation

(p:ZaklAk where Ar={0ecQ:p(w)=a}ec Z.
k=1

Now let 1 < p < oo. Since the sets Ay are disjoint, then clearly,

7

lp|P = Z |ak|PLa,.

k=1



96

Chapter 3. Spaces of Integrable Functions

Hence,

[lor= ¥ larta, = ¥ lasuian),
’ vok=1 k=1

which shows that ¢ € L7 < u(Ag) <o Vk with g # 0. On the other hand, clearly ¢ €
L=(Q,7,u).

The Structure Theorem for Measurable Functions has an analogue for the space of p-integrable
functions:

- Theorem 3.2.6 (Density of Simple Functions in LP) Let 1 < p < eo. For each f € LP(Q, %, u)
 there exists a sequence (¢,) in L”(Q, 7, 1) NS (Q,F, 1) so that

(M) [eu(0) < |f(@)] ae.

@) =5 F.

Illp

Proof.
Case 1:

Case 2:

fe g,
First suppose that 1 < p < e. By the Structure Theorem (Theorem 1.6.1) there exists a
sequence (¢,) T1in . so that

on(0) = f(o) ae. (3.14)
(We have only a.e. convergence as f is uniquely defined up to null sets only) In particular,
0< (o) < flw) ae. (3.15)

so that (1) holds. Now since f € L?, by (3.14) and (3.15) we may apply the DCT for the L?

spaces, and obtain that ¢, € L for all n, and @, iy I
Now suppose that p =co. Set A = {@ € Q: f(®) > | f|l»}. Thenfl4e is bounded, so by
the Structure Theorem there exists a sequence {@,} T in . so that

Pn(0) = f(@)14 on Q. (3.16)
In particular,

0< (o) < f(w) ae. o, (3.17)
and again, (1) holds. Now by uniform convergence,

I1f = Onllow = [ f1ae — @ull oo < Zgg|(flm)(w) —u(@)] =0 asn— oo,

which shows that @, — f.
f € £P is arbitrary. (The following computations are for K = C; they naturally simplify
when K = R.) We may decompose f as

f=Re(f)+ilm(f) = [fi - fo] +ilfs — fi] (3.18)
where fi =Re(f)", o =Re(f)", f=Im(f)" and f4 = Im(f)~. Since

0< fi,h< fi+fa=|Re(f)| <|fl€LP

0< f3,fa < fat+fa=|Im(f)| < |f| € L?,
it follows that f; € L? forall j = 1,...,4. Now by Case 1, there exist sequences ((pj(-")):’:=1 in
IP N7, f= yens 4 50 thist
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1.0< q)(")(a)) Sfj(a)) ae Vn,j=1,...,4,

H(p(”)—fij—>0 asn—oo, j=1,...,4.
Set

ou:= 0" — 0" | +i[0l” - o}"]

Then ¢, € LV N.% for all n, and

"ol <o + 0" < fi+fr=IRe(f)| ae.

<o 4ol < fi+ fa=Im(f)| ae.

Re(@.)| = o]
ol"

‘Im (Pn )= ‘(P3

so that

oul = [IRe(@) 2+ im(9) 2] < [Re() P+ m(NE] = 1] ae.

Finally, by Minkowski’s inequality,

o))~ "))

+ol? -
p p

1=l =|| (1= Rl +il5s— £2) - ([0 — 0] +

SHfl_(P1(”) +H¢2">—f2H +Hf3—§0§n)
P P

—0 asn— oo,

P

Thus the proof of the theorem is complete.

s“ﬁ" In the case of the Lebesgue measure on the real line one can show:
Let I be any interval, and consider LP (1, %(I),A) for 1 < p < o,
1. Foreach f € L (I,%(I), 1) there exists a sequence {@, } of step functions such that
@ |@u(0)| < |f(0)] ac. w €L

I Hﬂ
®) o—f.
2. For each feLP(I,9(1),1) there exists a sequence {g, } in C.(I) such that

@) lgn(@) < |f(0) ae. wel,
(b) gu5 f.
(We recall here that
Ce(l) = {f:l—>K|gis continuous, 3[a,b] C I, f(w)=0Vw € 1\[a,b]}

is the set of continuous functions with compact support on 1.)



In this chapter, we will proceed with the construction of finite and o-finite Borel measures, that
is, measures on the measurable space (R,%(R)). We will see how these measures relate with
distributions and density functions which the reader may already be familiar with from a basic
probability course.

4.1 Distribution Functions

(R Letus briefly recall the concepts of one-sided limits and one-sided continuity at points on the
“" real line usually taught in an undergraduate analysis course. For this, let x, € R, [ an open
interval containing x,, and f : I — R.

1. (right-hand limit at x,) The following are equivalent:
(a) lim,_, + f(x) = L. Thatis, for all £ > 0 there exists 6 >0sothat |[f(x)—L| <€
whenever x € 1N (x,,Xx, +0).
(b) if (x,) is any sequence in I with x, > x, for all n and x, — X,, then f(x,) — L.
(c) if (x,) | is any decreasing sequence in [ with x,, — x,, then f(x,) — L.
A similar statement holds for the left-hand limit lim, _, — f(x), if it exists.
[ is right-continuous at x, if and only if lim,_, + Flx) =7 bal
Similarly, f is left-continuous at x, if and only if lim,_, - f(x) = f (xo)-
f is continuous at x, if and only if f is both, left- and right continuous at x,.
f is right-continuous / left-continuous / continuous on I if and only if f is right-
continuous / left-continuous / continuous at every x, € /.

aNitn s W9

We also need to review some properties of monotone functions. Recall here that f: [ — R is
called (monotone) increasing on I, if for all x;,x, € I with x; < x» we have f(x1) < f(x2).
Such a function has the following properties:
L. f(xy)=1lim_,+ f(x) and f(x,) =lim_, - f(x) both exist at all x,, € /. That is, every
discontinuity of f is a jump discontinuity.
2. It follows that f has only countably many discontinuities.
3. Hence, f is Borel-measurable.
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Given a finite Borel measure [ on the real line, we define a function F : R — [0,0) by

F(@) = Fu(x) i= p((—oo,]). “.1)

This function has the following properties:
(D1) F is increasing: In fact, let x;,x, € R with x; < xp. Then (—eo,x;| C (—e0,x;], and hence by
monotonicity of the measure,

F(x) = p((=o0x1]) < (=00 x]) = F (x2).

(D2) Fis right-continuous For let x, € R, and (x,) | be a sequence in R with x, — x,. Then
1. { —00, Xp, } is a decreasing sequence of sets, while also

=]

2, ﬂ ( &) -xn] = (_°° xa]
It follows from Theorem 1.4.2 that

F(x,) = u((—oo,xo]) =H (ﬁ(‘waxn]> = lim U(("“”Xrl]) = lim F (x,),

1 Thm 1.4.2 n—oo n—oo
n=
that is, lim,_, .+ F(x) = F(x,).
(D3) lim F(x)=0. To see this, let (x,) | be a sequence in R with x,, — —oo. Then
X——o0
L { (—o0,xy] }:_1 is a decreasing sequence of sets, while also
2. ﬂ (—o0,x,] =0.

It fol]ows from Theorem 1.4.2 that

1 Thm 142 n—oe n—oo
n=

0=pu@) =y < ﬁ (;oo,x,l]) = lim p((—o0,x,]) = lim F(x,).

(D4) hm n F(x x) = K(R). To see this, let (x,) T be a sequence in R with x,, — oo. Then
{ —00, Xp] }: , 1s an increasing sequence of sets, while also
2. U (—o0,xn] =R.
It follows from Theorem 1.4.2 that

UR)=p <O(_oo,x,,]> = lim p( (—o0,x,) ) = lim F (x,).

ne1 Thm 1.4.2 n—yo0 n—oo
(DS) If (a,b] is any half-open interval, then
u((a,b]) = p((=eo,b]\(=0,a]) = p((=,b]] = p((=,a]) =F(b)—F(a).

Thm 1.4.2

F is called the (cumulative) distribution function of the Borel measure L.

p - Note that F need not be left-continuous at x,. For example, let ,, denote the Dirac one-point
measure with mass at x,,. Then

F(x,) = Sxo((—oo,xo]) =l
while whenever x < x, then

F(x) =8, ((—o,x]) =0
so that

lim F(x) = 0 # F(x,).

X=Xy



4.2

4.2 Outer Measures 101

| Exercise 4.1 An alternative definition of the distribution function would be
F(x) = u((~o0,2)).

Show that (D1) and (D3)-(D5) still hold, but this function is now left-continuous.

E

‘When the Borel measure (i is no longer finite, but still finite on bounded sets, one can define a
(cumulative) distribution function F : R — (—oo,0) of i by fixing ¢ € R (usually ¢ = 0) and setting

_ _Ju((ex]) if x> ¢,
F(X)MFC(X)‘_{w((x»c]) ifx<c (4.2)

The reader my easily verify that properties (D1), (D2) and (D5) still hold. Furthermore, when ( is
a finite measure, then

Fe(x) = Fy(x) — Fy(c)

where Fy; denotes the distribution function as defined in (4.1).
We therefore define:

| Definition 4.1.1 A function F : R — R satisfying

. (D1) F is increasing, and

(D2) F is right-continuous

| is called a distribution function.

Outer Measures
Considering the previous discussion, the question arises: Given a distribution function F', does
there exist a Borel measure i on (R, %(R)) so that

p((a,b))=F(b)—F(a). Ya<b?

Our goal is to give an affirmative answer to this question. In this section, we will construct what is
called an outer measure from a distribution function. The next section will show how the outer
measure becomes a measure, when restricted to an appropriate collection of subsets.

Thus, let F : R — R be a distribution function.

Step 1: Given a bounded, half-open interval (a,b] with a < b, we set
Lr(a,b):=F(b)—F(a). (4.3)

Because of the following properties, we may consider Ly as specifying a generalized length of the
half-open intervals (a,b].
1. In the special case where F(x) = x then Lg(a,b] = b — a, which is the length of the interval
(a,b].
2. Ifa<c¢<b,then

Lr(a,b) = F(b)—F(a) = [F(b) —F(c)] + [F(c)— F(a)] =Lr(a,c]+Lr(c,b]. (4.4)
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3. If Iy = (a,b], b = (¢,d] and I, C I, then a < ¢ < d < b, so that since F is increasing,
Lr(h)=F(d)—F(c) < F(b)—F(a) =Lp(L}). ("monotonicity”)
4. Leta, — a” and b, — b ™. Then by right-continuity of F,

Lr(a,b] = F(b) — F(a) = lim F(b,) — lim F(ay,)

n—yoo n—oo

= lim [F(b,l) — F(a,,)] = 1iﬁr>n Lr(an,by). ("right continuity”)
n—oo

n—oo

Step 2: For any A C R we now set

Uyp(A):=infS4  where &:{me%hz@wﬁAQUQ} (4.5)
n=1

n=1

(Loosely speaking, if {,};>_, is a countable cover of A by half-open intervals, then the sum of the
(generalized) lengths of these intervals will be an element of Sy.) Clearly, S4 # @ and S4 C [0, 00|.
Hence,

0< Up(A) <eo.
We discuss the properties of (tf: in the following four propositions:
Proposition A If A = (a,b] is a bounded, half-open interval, then py(a,b] = Lr(a,b).

Proof. We first show that p:(a,b] < Lr(a,b]. In fact, choose I; = (a,b] and 1, = (a,a] = 0 for all
n > 2. Then clearly, A = (a,b] C | J;>_; I, so that Lg(If) =X v Lr(I,) € Sa, and hence

Ur(A) =infSs < Lr(a,b).
Next we show that
Lp(a,b] < pj(a,b). (4.6)
In fact, we will show that for every € > 0,
Lr(a,b] < ugp(a,b)+¢. 4.7

Letting € — 07, then (4.6) will follow.
Thus, let € > 0 be given. Then u;:(a,b] + € is not a lower bound of the set S4; hence there
exists s € Sy with

uHmHSS<MHmH+§- (4.8)

Now since s € Sy, there exist intervals I, = (ay,, b,| with

o0

(a,b)C | JI, and s:iumy (4.9)
n=1

n=1

Next we modify (a,b| to a closed interval and each I, to an open interval, so that we can use a
compactness argument. By right-continuity of F, there exists @, a < @ < b with

t
Lp(a,b} < LF(ﬁ,b] + ik
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Similarly, by right continuity of F, for each b, there exists by, > by, so that

Lr(an, bu] < L (an, ba] + %
Now set J,, = (ay,by) so that I, C J,, for all n. It thus follows from (4.9) that {J,}*_, is an open
cover of the closed subinterval [@,b] of (a,b]. By compactness, there exists a finite subcover
{Juys---,Jny} for [a,b].
Now if J,, C J,, for some pair of indices, we may remove the interval J,, from this subcover,
and still have a cover of [d,b]; thus we may assume that the sets J,, are not contained in another.
N

We claim that Ly (a,b] < Z Lr (a,,k,f)nk]. In fact, let us first relabel all the intervals J,, so that
k=1
ng =k for k=1,...N, that is, we can write Jy = (ax,by) instead of J,, = (ap,, by, ). Furthermore,
since no interval is contained in another, we can do this relabeling so that

ar<ay<az-:<da.
Observe that by the very same property, a1 < by for k= 1,...N — 1. In addition, a; < @ while
b < by.
Then since F is increasing,

LF(d,b] =F(b F( (BN)— ‘(al)
N— N N )
+1<Z3 F(ar1)] — F(a1) :/\Z [F(br) — F (ax)] :kZ,ILF(ak»bk]a
= =1 -

and the claim is proved.
It now follows by (4.8) that

€ e - ~ €
(Cl bJ <LF(a b P {ZLF(anka nk Z S {ZLF(ankabnk] +Z
claim k:I
€ — g €
{ZLF(ak,bk 2k+2 +4 — l:,;l,p(ak,bk] 4+Z:S+§
* £ € *
< pp(a, b+ 2 + 2 o uF(avb] t§&,
which proves the proposition. |
Proposition B u;:(0) = 0.

Proof. Simply choose b = a in the previous proposition. |

Proposition C (monotonicity) 1If A C B then uj(A) < uz(B).

Proof. Too see this, we first note that Sz C S4. For if s € Sp, then there exists intervals {/,},
Ly = (i, Br]s 81

U and s = i Ly (1)
n=1 n=1

| ﬂ

But as A C B, then also A C |J [,, and hence s € S4 as well.

n=1
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It now follows that

Hi(A) = infS4 < infSp = ug(B).

Proposition D (o-subadditivity) Let {A, }:°_, be a countable collection of subsets of R. Then

7 (UA,,) <Y up(An). (4.10)
n=1

n=1

Proof. Set A =J,_;A,. We will first show that for every € > 0,

up(A) < [ElﬁﬁiAn)-+8~ (@.11)
n=1

Letting € — 07, then (4.10) will follow.
Thus, let € > 0 be given. By definition of i, for each n there exists a collection {I,E")}:zl of
half-open intervals so that
A, C

" and in (I,E")) < pp(An)das.
1 k=1

s

k

I

We now have that

Ui

1k=1

s

ae e
n=1

n

a countable union of half-open intervals, so that by definition of -,

* - - - * 8 . *
wWSZZM@%gZMMWW#{ZMW>H-
n=1k=1 n=1 n=1
That is, (4.11) holds. Thus the assertion follows. |

‘® Observe that in the above proof we don’t have strict inequalities in general. For example, the
statement

HE(A) < | ) p(An)| +e
n=1

is incorrect when i (A) = oo.

Unfortunately, (7 is not yet a measure because it is not o-additive. We will, however, see that
its restriction to an appropriate o-subalgebra of &(R) is indeed o-additive. But first a definition.
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i Definition 4.2.1 Let Q be any set. A function
w: 2(Q) —[0,0]

| satisfying

{OM1) u*(0)=0,

§OM2) u* is monotone: if A C Bthen u*(A) < u*(B),
{OM3) p*is o-subadditive: u* (Uy_1An) < Yo L (An),
U is called an outer measure on Q.

Rs Properties (OM1) and (OM3) imply, using standard arguments, that every outer measure is
) also subadditive:

N N
(OM3) u <UAn> < Z I«L*(An)
n=1 n=1
forall N e NandAy,..., Ay C Q.

fR‘ Given a distribution function F : R — R, then i defined as in (4.5) is an outer measure on
R, by Propositions B-D.

Above we have constructed an outer measure on Q = R by using “generalized lengths” of
intervals. It turns out that a similar construction can be used for arbitrary spaces Q:

Exercise 4.2 Let Q be a non-empty set, & € Z(Q) with @ € & and Q € &. Given a function
| 026 — [0,00] satisfying p(0) = 0, define 4 2(Q) = [0,<] by

u(A) :zinf{ip(ln) cL,e&, AC Dl,,} ACQ).
n=:l

=1

Show that pt* is an outer measure. Why do we require Q € & ?
| (Hint: Verify that the proofs of propositions C and D still hold.) B

4.3 From Outer Measure to Measure

Let an outer measure [ on a set Q be given. We will consider subsets E of © with the following
special property:

Property (PM)

pr(A) = uANE)+u*(ANES) VYACQ

(R Note that by subadditivity, we always have

wA)=p " (JANEJUIANE]) < U (ANE)+ 1 (ANES) VAECQ.

Therefore, Property (PM) is equivalent to:
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B

Property (PM1)

P(A)Z U (ANE)+u"(ANET)  VACQ

Let us set
Fu={E CQ : E satisfies condition (PM) },

called the set of u*-measurable subsets of Q.

Theorem 4.3.1 ( Carathéodory) #, is a c-algebra, and p* is a measure on (Q,.%),).

Proof. Clearly, 0 € %, and Q € %,. By (OM1) we thus only need to show:

(S1): If E € #, then E€ € .
(S2): If Ey,Ey,--- € Fy then U, Ey € F.
(M2): u*is o-additive on .%,.

Proof of (S1): Let E € %, be given. That is,
U(A)=u"(ANE)+u*(ANES) VACQ.
Since (E€) = E, this identity becomes
WEA) = 1T (AN(E)) +4* (ANES) YACO,

which shows that (PM) holds for E€ as well, that is, E“ € Z,.
Proof of (S2) and (M2): We proceed in stages.

Step 1: Let E1,Ep € #;,. We show that E| UE, € .%),.
In fact, let A C Q be arbitrary. Then

w(A) < W (AN[EIUE)) +p*(AN[E UE)
1*([ANE|U[ANE{ NE,]) + p* (ANES NES)
< P(ANE)) +p (JANE{]NEy]) +p* ([AN Ef] NE3) 12

(OM3")

=  UYANE))+U*(ANE]) = u*(A).

(PM) holds for £, (PM) holds for E;

This shows that (PM) holds for E; U E5, and hence E1 UE, € ?,1.

Step 2: 1t now follows by induction that if £y, E, ..., Ey € %, then UN_E, € . Further-
more by step 1, \_, E, = [ ¥ E,ﬂc € Fy as well.

Step 3: Let Ey,Ep € # be disjoint, that is, Ey N E; = 0. Then Ef NE; = Ej, so that (4.12)
yields

W(A) =" (ANE) + U (ANE) + 1" (AN[EIUE]") VACQ. (4.13)
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Step 4: Let E\,E,,. .. € F, be pairwise disjoint. Generalizing (4.13), we show using induction:
Foreach N € N,

N

UE.

=] n=1

N
ur(A) =Y u*ANE,)+u’ (Aﬂ

) YA C Q. (4.14)

In fact, this assertion is trivial when N = 1. Next suppose that we have shown that (4.14) holds for
some N. Since U 1 E, and Ey are disjoint, then applying (4.13) we obtain for all A C Q that

N N ¢
].l*(A):,LL* (AﬂlUEn UEnUEN-‘-l} )
n=1

n=1
Now replacing A in (4.14) with AN [UY_; Ex], the first term on the right-hand side above changes

) + U (ANEyi1) +u° <Aﬁ

to a sum,
N N N N €
:Zu*<Aﬁ U Ex ﬁE,7>+u* (Aﬁ U Ex ﬁ{UE,i)
n=1 k=1 k=1 n=1
N+1 ¢
+ U (ANENar) + 1 <AP {U E"j| )
n=1
That is

N N+1 €
prA) =Y p(ANE,)+u*(0)+u* (ANEy.1) +p* (Aﬂ UE} )

n=1 Ln=1
which shows that (4.14) holds for N + 1 as well. By induction, (4.14) holds for all N.
Step 5: Let E1,Ey, ... € F) be pairwise disjoint. We show:

() E:=|JE.€# and (i) /.t*(E):iu*(En) (i.e. (M2) holds).
=1

n=1

To see this, let A C Q be arbitrary. Then by step 4, for each N € N,

N N C
prA) =Y p(ANE,)+u* (Am U E > (4.15)
n=1 n=1
Now since
. c N (e
Ef= U E, C {U E,| ,
n=1

n=1

then from (4.15) we obtain by by monotonicity of ©*,
N
Z (ANE,) +u" (ANES) < u*(A)
for all N. As the terms in the sum are all non-negative, we may let N — oo to obtain

Y wHANE)+u* (ANE) < p*(A). (4.16)
n=1
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Thus, by o-subadditivity of ©*,

L(ANE)+ U (ANES) = ( [ANE,] ) “(ANE°)
n=1

i “(ANE,)+u* (ANES) < u*(A).

That is, (PM1) holds for E, so that E € .%,.
In addition, choosing A = E in (4.16) we obtain as u*(@) = 0 that

<Y w(E) < 1(E),
n=1

which shows that pt* is o-additive on .%,.

Step 6: It is left to prove (S2) for arbitrary, not necessarily disjoint sets Ey, Ep, ...

we must show that
E:=|JE, e Z,.
n=1

In fact, by Theorem 1.1.1 there exist disjoint subsets B, of Q so that

and furthermore, by the construction in its proof,

[n—1

U

h=1

Bi=Ei, Bi=E\||B=E
k=1

(n>2).

€ Fy, that is,

4.17)

It follows by step 2 that B, € %, for all n. Now as the sets B, are mutually disjoint, then by (4.17)

and step 6, E € %, as well.
Thus the proof is complete.

For ease of notation, let us set i (E) := p*(E) for each E € .#,. It follows from the Theorem

that (Q,.%, It) is a measure space.

p Let E C Qbe such that u*(E) = 0. Then by monotonicity of u*, for each A C Q we have

L (ANE)+u*(ANES) < u*(E)+p*(A) = 0+ (A) = u*(A),

that is, (PM1) holds for E, so that E € .#,,. Thus, every p*-null subset of Q is measurable.

In particular, if F € %, is a null set, and E C F, then by monotonicity of u*,

0<p™(E) <p*(F)=pu(F)=0,

that is, E is also a pt* null set, and hence E € .%,.

This shows that the measure space (Q,.%, 1t) obtained from the outer measure [* is com-

plete.
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Lebesgue-Stieltjes Measures

Let F : R — R be a distribution function, yt* = u the outer measure on R determined by F (as
in (4.3) and (4.5)), and %, the o-algebra of p*-measurable subsets of IR, so that by the previous
theorem, (R,.%#,, L) is a measure space where u denotes the restriction of {* = Uy to .%#,.

Theorem44 T e E— . ?

Proof. Since #(RR) is generated by the collection .% of half-open intervals (see Exercise 1.3), it
suffices to show that every finite, half-open interval E = (a, b| is an element of .% ;.
Indeed, we will show that for each A C Q and each € > 0,

U(ANE)+ U (ANES) < u™(A)+¢ (4.18)

Letting € — 0" then (PM1) will follow, so that E € .%,.

Thus, let A C Q and € > 0 be given. By definition of u*, there exist half-open intervals
I, = (an,by) so that

- UI,, and ZLF(I,,) <u*(A)+e
n=1

n=1

For each n € N, set
W =hLn(-=a), I=nn@b), I =5Ln0bw)

the parts of I, lying to the left of E, inside E, respectively to the right of E. Note that each of these
intervals is again half-open, possibly empty, and

L = (an,ba) = IV UIP LI, (4.19)

a disjoint union.
Observe that

ANE =An(a,b] C UI,,mab Wi

n=1

while also

ANES=AN[(—o0,a]U(b,)] C [O 1,,J N [(—e0,a] U (b,e)] = {O 1,§”} U {O 1,‘,3’} .

n=1 n=1 n=1

Thus by definition of u* = up,

w(AnE) < Y Ly (1)
n=1

L (ANES) < ZLF +ZLF )

n=
Because the union in (4.19) is a disjoint union of adjacent intervals, then by property (4.4) of L,
W(ANE)+ " (ANES) < ), [LF(I,S”)HF(I" ) +Le (i ] ZLr W) <WT(A)+
n=1 =1
so that (4.18) holds. Thus, the theorem is proved. |
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R The measure y = pur discussed above is called the Lebesgue-Stieltjes measure determined by
the distribution function F. The theorem states that y is a Borel measure.

Proposition 4.4.2 (Properties of the Lebesgue-Stieltjes measure)
1. If {a} is a singleton, then

tr({a}) =0 <« F iscontinuous at a.

2. Ur is a o-finite measure.
3. upisafinite measure < F is bounded.

Proof. 1. Since F is right continuous by definition, we only need to consider left-continuity of
F ata. Thus, let (x,) T be a sequence in R with x, — a. Since bounded intervals have finite
measure, then by Theorem 1.4.2,

ur({a}) = pr (ﬁ (xn,a]> = lim e (Cen,al )

n=1

= lim[F(a)— F(x,) | = F(a)—F(a").

Prop A n—roo

It follows that
pr({a})=0 <& F(a)=F(a) < Fiscontinuous ata.

2. Since R = ;i (—n,n] and 0 < up((—n,n]) = F(n) — F(—n) < o for each n, it follows
that ur is o-finite.
3. Now since F is increasing, then lim, o, F'(x) and lim,_, .. F(x) both exist in R*, and

F is bounded above in R < lim F(x) is finite < lim F(n) is finite.
n—yoo

X—ro0

Similarly,

F is bounded below in R < Em F(x)is finite <& li_r}n F(—n) is finite.
X——00 H—300

Now

pr(R) = pip ((—o0,0]) + pr ( < U(n ) + U (D(O’”)>
=i

n=1
= }i_)n}oup((~n,()])+ lim pir((0,n)) -
Z’}Lngoup((—n,O])—i—hm wr((0,n—1))
= Iim [F(0) = F(—n)] + lim [F(n— 1) = F(0)] = lim F (n) — lim F (~n)

which shows that

Ur(R) <o <« lim F(n) and lim F(—n) are both finite < F is bounded.

n—yoo n—soo
|
R Observe that by the proof of the last part,
ur(R) = lim F(x) — lim F(x). (4.20)

X—poo X——o0
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s Example 4.1 Let F(x) = x. The outer measure y;> determined by this distribution function is
called the Lebesgue outer measure and denoted by A*. The corresponding measure (ir is called
the Lebesgue measure and denoted by A, while the o-algebra .%, is denoted by .# and called
the o-algebra of Lebesgue measurable sets. Furthermore, .#-measurable functions are called
Lebesgue-measurable functions.

Since F(x) = x is continuous, then singletons have zero measure, hence by c-additivity,
countable subsets of R are null sets. Furthermore,

A((a,b)) = ur((a,b]) = Lp(a,b) = F(b) — F(a) =b—a.
For arbitrary bounded intervals with endpoints a < b we have

A([a,b]) =2 ({a}) +A([a,b])) =0+A([a,b]) =b—a,
A((@5)) = A(la,6]) ~ A({6}) = A(la,b]) ~0=b—a.
A(la,b)) =A({a}) +A((a,b]) =0+A((a,b])=b—a.

Thus, the Lebesgue measure of any bounded interval coincides with its length. "

| Exercise 4.3 Observe that for all bounded open intervals I = (a,b),
Ap+D)=A((+ay+b))=(+b)—(y+a)=b—a=21((ab)) =AI) (YER),
A(-D) =A((~b,~a)) = (~a) = (-b) =b—a=A(1),
Alal) =2 ((aa,ab)) = (ab—aa) = a(b—a) = ai(l) (a>0).

1. Let E C R. Show:

a) Eed & y+EcH

b) Eck# & —-EcH

c) Ee# & aEes (a>0)
2. Show that forall E € .#,

Ay+E)=A(E) (yeR) (A is translation invariant)
A(—E)=A(E) (A is reflection invariant)
A(aE)=aA(E) (o> 0) (A is positive homogeneous).

(In fact these properties hold for the Lebesgue outer measure A* and all E C R.)
3. Given f : R — R, let us define functions f,, f*, o f by

fix) = flx—y) (v € R fixed)
fr(x) = f(—x)
af(x) = f(ox) (0> 0 fixed).

Show:
a) fis Lebesgue measurable iff f; is Lebesgue measurable.
b) f is Lebesgue measurable iff f* is Lebesgue measurable.
c) fis Lebesgue measurable iff o f is Lebesgue measurable.
Furthermore,
a) [ fdA is defined iff [ f, dA is defined, in which case [ fdA = [ f,dA.
b) [ fdA is defined iff [ f*dA is defined, in which case [ fdA = [ f*dA.
c) [ fdA is defined iff [ of dA is defined, in which case [ fdA =« [ ofdA.
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= Example 4.2 Fix a < b, and let

0, x<a
1 - _
F(x)zb_a / L dA = Z_Z, a<x<bh
(o] 1, x> b.

Clearly, F(x) is a distribution function, called the uniform distribution. Furthermore, the
corresponding measure U is a probability measure (i.e. i(R) = 1) by (4.20). u

= Example 4.3 Fix a strictly increasing sequence of points in R, a1 < a» < a3 < ..., and fix a

o0

sequence {p, }7_; of non-negative numbers with Y'>" | p, = 1. Now set
F(x) = anl[amoo]-
n=1
Note that
0, X < 4y
m
F(x) = Z DPn; A < X < Ay
n=1
1, x > limy,_yeo ay, (if this limit is finite).

It is easy to see that F is a distribution function. Furthermore, as
m
lim F(x) = lim Y p, =1,
X—00 171—)00’1:1

then by (4.20), the corresponding measure U is a probability measure.
In the special case where p, = %e”l for some A > 0, then F' is called the Poisson distribution
Junction. .

‘n: Themap F — ur is not one-to-one. For if F is a distribution function and c is a constant, then
- F:=F +c clearly is also a distribution function. Furthermore, as for all half-open intervals
(a,b],

Ly (a,b] = F(b) — F(a) = [F(b)+c]| —[F(a) +¢]| = F(b) —F(a) = Lp(a,b],
then by definition of the outer measure,

Wy = HF
so that

Fup = Fyp and Uy = UF.

However this is the only possibility to obtain the same measure as r. To see this, let F and
F be two distribution functions whose measures pr and i coincide on the Borel sets. Then

forall x > 0,

F(x) = F(0) = pz((0,x]) = ur ((0,x]) = F(x) — F(0), (4.21)
while for x < 0,

F(x) = F(0) = —pp((x,0]) = —ttr ((x,0]) = F(x) — F(0). (4.22)

It follows that
F=F+c, where ¢ = F(0) — F(0).

For this reason, one can normalize F':
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1. When F is bounded, i.e. iy is a finite measure, one can choose ¢ so that

lim F(x) =0.

X—%» o0
This type of normalization is chosen in probability theory. Then for all x € R,

F(x) =F(x)—0=F(x)— lim F(—n) :”lir}olg[F(x)—F(—n)}

n-—yoo

—limpr((-nxl) = pr (Den,x]) = pr (=),

n—oe Thm 1.4.2
n=1

2. In the general case, one can choose ¢ so that F(0) = 0. Then as shown on the right
sides of (4.21) and (4.22),

) wr((0,4]), x>0
F(x) = {_IJF((an])v x <0.

Another question still remains: If ¢t and fi are two measures on (R,ﬂ(R)) having the same
distribution function, will then necessarily tt = fi ? The answer is affirmative, as a consequence of
the following Theorem.

2 i

Theorem 4.4.3 Let u be a measure on (R, %(R)) which is finite on bounded sets. Furthermore, |
let F be the distribution function determined by p as in (4.2). Then pu(E) = ur(E) for all
E € B(R).

Proof. First some observations:

1. Let {I; }}_, be finite collection of half-open intervals, [ = (ax, bi]. Since the union of overlapping
half-open intervals is again a half-open interval of the same type, we may assume that the intervals
Iy are mutually disjoint. Now as u and py are Borel measures, then

u <U a) = Youl) = Y L) = Y ) = ¥ e ) = pr (U Ik) .
k=1 k=1 k=1 k=1 k=1 k=1

2. Thus if {I,};7_, is any countably infinite collection of half-open intervals, I, = (a,,b,], then

o0 e n n n
u(Uu)=u<ULﬂQﬂ;zhpu<Ua>=gmw<U&>
n=1 n=1 k=1 miaz e \um S k=1

ran HF <U U Ik> = Hr <U11n> :

n=1k=1

(4.23)

3. Now let E € #(R) be given. Then for every cover {I,}>_, of E by half-open intervals,
I, = (an,by|, we have by monotonicity and o-subadditivity of u,

w(E) < p (O 1,,> <Y uih) 5
n=1 n= )

It thus follows from the definition of i (E) = u;(E) that

Y F(bn) ~ Flan)) = ¥ Lr ().

n

1(E) < ur(E)  VE € B(R). (4.24)
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Now to prove the reverse inequality, first suppose that E € Z(R) is such that pp(E) < . By
definition of r(E) = uz(E), for each € > 0 there exists a collection of half-open intervals {/,}_;.
I, = (an,by], covering E with

Y Lr(h) < ur (E) + .
n=1

Letus setA = J,_1 ;. Thenas E C A and ur = pj; is a measure on %(RR), we have by subadditivity,

oo

1r(A\E) = urp(A) — pp(E) < Y pip(ly) — pr(E) =

n=1 n

 ngki

Lp(I,) — ur(E) <e&.
1

Hence,

Hr(E) < up(A) = p(A)=p(E)+p(A\E) < u(E) + pp(A\E) < u(E) +€.

(4.23)

As € > 0 was arbitrary, it follows that

1r(E) < U(E).
Together with (4.24) we obtain that

pr(E)=p(E)  VE € B(R).

Now if E € #(R) is arbitrary, set E, = E N (n,n+ 1] for each n € Z. Since {E,}ez is a
collection of disjoint Borel sets of finite measure, then by the above and c-additivity,

ur(E) = (U B) = ¥ we(En) = X lEn) = (U Bx) = ().

ne nez nez nez

Thus, the theorem is proved. |

Ry It follows immediately that

1. there is a one-to-one correspondence between finite Borel measures on R and bounded
distribution functions F satisfying lim, , . F(x) = 0, and

2. there is a one-to-one correspondence between Borel measures on R which are finite on
bounded sets and distribution functions F' satisfying F(0) = 0.

We note that Borel measures on R” can be constructed by following the general procedure
outlined above.

Regularity

Recall that the Borel o-algebra on R? is generated by the open sets, and hence also by the closed
sets. While in general it is not possible to describe all the Borel sets, we nevertheless are interested
in measures where this is not an obstacle, the regular Borel measures. Loosely speaking, these
measures allow one to arbitrarily approximate any Borel set by an open set, respectively a closed
set in terms of measure.

Furthermore, any sensible Borel measure on R should be finite on bounded sets. Since every
bounded set is contained in a compact set, this property can also be expressed as compact sets
having finite measure. There are Borel measures which do not possess this property, for example
the counting measure. In fact, the counting measure is not a natural measure on R as both, the unit
interval I = [0, 1] as well as the set of rationals in this interval, /N Q, have the same infinite measure,
whereas the two sets have different cardinalities: 7 is uncountable, while / N Q is countable.

The above concepts can be made precise as follows:
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Definition 4.5.1 Let u be a measure on (R?,.%), where .% is a o-algebra on R? containing all
Borel sets. Then u is called regular if its satisfies:

(R1) wu(K) < oo for all compact subsets K of RY,

(R2) for each Borel set A,

p(A) =inf{ p(V) ACV, Vis open} “outer regularity”,
(R3) for each Borel set A,

1(A) =sup{ u(K)| K C A, K is compact } “inner regularity”

(R One can define the concept of regularity for general measurable spaces of the form (Q, %),
" where Q is a topological space and .% a o-algebra containing the Borel subsets of Q. In this
case, one often requires inner regularity in (R3) to apply to open sets A only.

s Example 4.4 As already stated, the counting measure [ on R does not satisfy (R1). It is not
outer regular either: Any nonempty open set V is uncountable and thus has infinite measure, so that
for every Borel set A # 0,

inf{ (V) ‘A CU, Visopen} =co.

It follows that outer regularity does not apply to finite sets A. On the other hand, g is inner regular
as the reader may easily verify. "

First a lemma which will be needed later.

Lemma 4.5.1 Let y be a finite measure on (R?,Z(R?)) Then each A € #(R?) has the
following property:
Property (P): For every € > 0 there exist a closed set F and an open set U so that

1. FCACU,and

2. u(U\F) < e.

Proof. Let us first set
F = {A € B(RY) | A satisfies property (P) }

Step 1: We claim that .% is a c-algebra.

In fact, clearly @ € .% and RY € .% as these are both open and closed, so that in particular,
F #0.

Next let A € .% be arbitrary. Given € > 0, we choose F and U as in property (P). Then taking
complements,

U CA°CF°
with U* closed and F¢ open. Now note that
FN\U =F°N[U) =UNF°*=U\F
and hence,

H(FO\U®) = w(U\F) < e.
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Since & > 0 was arbitrary and %(R?) is a c-algebra, it follows that A° € . also.
Now let {A,}_; C .#. Then by property (P), given € > 0, for each n € N there exist a closed
set [, and an open set U, with

€
F,CA,CU, and w(U\F,) < T
We set

A=JAa,e2®RY), U=U, ad F=|JF.

n=1 n=1 n=1

Then clearly, F C A C U and also

D =

so that by o-subadditivity,
o oo 8
p(U\F) < ): U\F,,)<le—n:£
n=1 =

While the set U is clearly open, the set F need not be closed. Note however that the sequence of
sets {U \UY, F,,};=1 is decreasing, hence by Theorem 1.4.2,

N
R(U\F) = lim p (U\nUan> ;
Hence choosing N sufficiently large and setting F' = Ui,\':l F,, a closed set, we still have
L(U\F) <e
with F C F C A C U. This shows that A € .% and proves the claim.

Step 2: We show that .% contains all nonempty open, bounded d-intervals of the form

jam [N

A= (ai,b,-).

1

T

In fact, note that
- 1 1] .

A= Q Lo where 1, = g [a,-—k Z’bi - ﬂ is closed and {I,} 1.
Now by Theorem 1.4.2 again,

H(A) = lim pi ().
That 1s, choosing » sufficiently large we have

H("U —€< .u(ln)
We therefore may set F = I, and U = A so that F C A C U while also

R(UNF) = p(A\L,) = u(A) —u(l,) < &

hence it follows that A € .%#. This shows that .%# contains all the open, bounded d-intervals.

Finally, since %(R%) is generated by these open d-intervals (see Corollary 2.4.2) we conclude
that Z8(RY) C .Z, and the assertion of the lemma follows. |
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The next theorem applies in particular to the Lebesgue measure:

%
Theorem 4.5.2 Let u be measure on (R,%(Rd)) which is finite on compact sets. Then gt is
regular.

Proof. By assumption, (R1) holds already.
As we want to apply the previous lemma to prove inner and outer regularity, we need to modify
u to a finite measure. Thus for each n € N, we set

u(E)=wENL) VE € BRY),

where

I, = ﬁ(—n,n) = (—n,n) X (—n,n) X -+- x (—n,n)

i=1

is an open, bounded d-interval. Clearly, i, is a finite Borel measure on R4,
Now let A € Z(R%) be given. For each n, we set

Ap=ANIy,
so that {A,} Tand A = |, As.

Next let € > 0 be given. Applying the previous lemma, for each n there exist a closed set F,
and an open set U, so that

&€
Fn g An g Ul’la and ,LLn(Un\F;z) =, 2_71 (425)

Replacing U, with U, N1,, then (4.25) still holds, and in addition, U, C I,. Note also that the sets
F,, are bounded, and hence compact. Let us set

F=JF, and U=JU,.
Then U is open and by (4.25), F C A C U while also

Uu

n=1

U\F =

\F = JUNF € | U\F,
n=1 =1
so that by o-subadditivity and since U, C I,

M(U\F> < i.u(Un\Fn) = il.un(Un\Fn) < 228—” =E.

n=1

It follows that
1(U) < u(A)+p(U\A) < p(A)+p(UNF) < p(A)+e (4.26)
and also

K(A) < p(F)+ p(A\F) < u(F)+u(U\F) < u(F) +e. (4.27)



118 Chapter 4. Borel Measures on the Real Line

(Note that on the right-hand sides we don’t have strict inequality as the sets A and F may have
infinite measure.)

From (4.26) we obtain that
inf{ u(V)|ACV, Visopen} < u(A)+e.
But as € > 0 was arbitrary, then
inf{ u(V)|ACV, Visopen} < pu(A).

Since the reverse inequality is obvious and A € %(R?) was arbitrary, then outer regularity of i
follows.

Now as the set F may not be compact, we modify inequality (4.27) similar to what was done in
the proof of the previous lemma: For each n, set

m:O@
k=1
Then each K, is compact, K, C Ay, {K,} T, and F = [J;,_, K, so that
((Kn)) 1 and  p(K,) — u(F) asn— co. (4.28)
Assume first that i (A) is finite, so that @ (F) is finite as well. Thus, when 7 is sufficiently large,
W(F) < u(Ky)+e€
and hence by (4.27),
H(A) < pu(K,)+2e.
It follows that
1(A) < sup{ iL(K)|K C A, K is compact } -+ 2€.
As € > 0 was arbitrary, then
1L(A) < sup{ 1L(K)|K C A, K is compact }.
Again, since the reverse inequality is obvious, then
1 (A) =sup{ u(K)|K C A, K is compact }. (4.29)
On the other hand, when (1(A) = oo then by (4.27), u(F) = o as well. Furthermore, by (4.28),

sup{ 1(K) ‘K C A, K is compact } > sup{ u(K,) ‘n EN} = '}i_IBO‘LL(Kn) = U(F) = oo,

from which (4.29) follows. Since A € Z(R¥) was arbitrary, we have proved inner regularity of u,
and the proof of the theorem is complete. |
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Corollary 4.5.3 Let up be the Borel measure on R determined by a distribution function
F :R — R, Then u is regular.

{ R Theorem 4.5.2 generalizes to locally compact spaces Q which have a countable base, with
“ essentially the same proof.

In the above, we have considered the regularity properties for elements of the Borel o-algebra
only. However, many measures are defined and regular on larger c-algebras:

Exercise 4.4 Recall from the discussion of Section 4.4 that every distribution function £ : R —
i R gives rise to a Borel measure 1t = i on R which is finite on bounded sets. However, the
| o-algebra .Z, of u-measurable sets may be larger than the Borel o-algebra. Our goal is to show
| that u is regular on %, without using Lemma 4.5.1.

‘ 1. Show that for all A C R,

Ur(A) : mf{Z/,L ) | Ja =fdiabu), A C UJ”}.

n=1

2. Show that forall A C R,
p(A) :=inf {u(U) | Uis open, AC U} .
3. Show that for all bounded sets A € .7,
pr(A) := sup {u(K) ’ K is compact, K CA}.
4. Show that for all sets A € .7,
1r(A) := sup {u(K) | K is compact, K C A} .
5. Show that every A € .Z, is of the form A = VN where V is a G set, and N a p-null
setin 7.

6. Show that every A € . is of the form A = K|JN where K is a F5 set, and N a p-null
setin F.




5.1

Modes of Convergence

Let (fn) be a sequence of integrable functions. We have already seen two types of convergence
determined by the measure: Almost everywhere convergence and convergence in the p-th mean. In
this section we will introduce an even weaker notion, that of convergence in measure, and discuss
the relationship between the various modes of convergence.

As usual, we fix a measure space (Q,.%7, ). Furthermore, we let (f,) be a sequence of .7 -
measurable functions, f, : Q@ — Kand f: Q — K, where K =R or K= C. We are already familiar
with the following modes of convergence:

1. pointwise convergence:

fa—rf & ,}ilfiﬁ'(w) = flo) YoeQ.

In this case, f is also .# measurable by Theorem 1.5.7
2. ae. convergence:

fu— fae. & INeF, u(N)=0 s.t. liznfn(w):_f(w) VYw € N€.

In this case, f is equal a.e. to a measurable function (so we may assume f to be measurable)
by Remark 1.5.
3. uniform convergence:

Hh=f e lim sup |fy(0) - f(@) =0.

n—oo weQ

Obviously, 3. = 1. = 2.
4. convergence in the p-th mean: Suppose, f, f € LP(Q,.F,1), 1 < p <eo. Then

L8 F e tim fa- £l =0.

Clearly, when p = oo, then 3. — 4.
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Definition §.1.1 Let f,, f: Q — K be . -measurable functions. We say that { f, } converges to
[ in measure and write

meas

—f

f for each € > 0,

Ja

o

lim 1 ({0 € Q: |fu(@) — f(®)] > e}) =

That is,

meas (

fom>f © Ve>0 U(E,e) >0 asn-— oo,

where E, ¢ = {0 € Q: [fy(0) — f(0)] > €}.

Exercise 5.1 Show:

1. In the above definition, we may replace | f,(@) — f(®@)| > €” with | f, (@) — f(®)| > €”.

2. Let £, ™3 f and let g : Q — K be Z-measurable with f(®) = g(®) a.e. Show that
In @;g as well.

3. The limit in measure is essentially unique: If f, g are .%-measurable and

HTSF and  f,7Sg
then f(w) = g(w) a.e.
4. Let fu, f,8n,8 : Q — K be % -measurable, and ¢, 8 real numbers. If

meas

Ja ﬂf and &n—8
then

meas

af,+Bg. — af+Pg.

m Example 5.1 Consider the measure space (R, Z(R),A). We consider various sequences (fy,) of
Z(R)-measurable functions.
L. Let fu=114,.
(a) (Umform convergence) Since for all x € R, |f,(x) — 0] < % — Othen f, =0 onR.
(b) (Convergence in the p-th mean) Obviously, f, € LP(R) for all 1 < p < . Now for all

m>n,
1
= falli= [ | Vo — 21050 |2
1
:/ ;———11(0,,,}61/14“/ —l(n’m)d/l
J m
_ n—m )n n) ln*n+m_n:2_2£

m m

which shows that

”fm‘fn”l Z 1
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whenever m > 2n. Hence, (f,,) is not Cauchy and thus does not converge in L!(R).
On the other hand, when p > 1 then

1
| £2—0[[7 :/|;1<0,n>

p 1 1 1
dA = ﬁ / I(O.II)dZ’ = n—p = np—1

[Nl

as n — oo, This shows that f, — 0 in L#(R) forall 1 < p < eo.
(c) (Convergence in measure) For fixed € > 0, set

E,e={xeR:|fu(x)—0| > €}
Let us choose N such that % < €. Then for all n > N and x € R we have
1
N

thatis, E, ¢ = 0. Hence

<

fa(x)] <

<e,

lim A(E,¢) = lim A(0) = lim 0 =0.
n—oo

n—yoo n—eo

meas

which shows that f,, — 0.
2. Now let fu =14 ,41)-
(a) (Uniform convergence) For m % n we have

Sup | fin(x) — fu(x)| =1
x€R
which shows that { f,, } is not uniformly Cauchy, hence does not converge uniformly.
(b) (Pointwise convergence) On the other hand, for each x € R, we can pick N € N with
x<N.Thenx¢ (n,n+1) forall n > N, that is, f,(x) = 0. This shows that f,(x) =0
pointwise on R (and hence trivially, f,(x) — 0 a.e on R).
(c) (Convergence in the p-th mean) Obviously, f, € L’ (R) for all 1 < p < . Now for all

m+#n,

» I/p
Hfm_anp: |‘/’1(m,m+1)_l(n,n+l)‘ d)(}

1/p
- U [l(m,m+1) +1(M+‘)} dg} —2l/p >1.

Hence, {f,} is not Cauchy and thus does not converge in L” (R).
(d) (Convergence in measure) We claim that the sequence {f,} does not converge in
measure.
For suppose to the contrary, that there exists an .#-measurable function f so that
meas

fa— f. Let us first show that then f(x) =0 a.e. In fact, for each € > 0 we have by
assumption that A (E, ¢) — 0 as n — oo, where

Eyp ={x€eR: |fulx) - f| > &}
Then in particular, by monotonicity of the measure, for each positive integer &,

A((—o0,k)NEye) >0 asn—oo. (5.1)



124 Chapter 5. Advanced Properties

Since f,(x) =0 on (—eo,k) whenever n > k, then

(—o0,k) NEpe = {x € (—oo,k) : | f(x)| > &} whenever n > k.
Thus by (5.1),

{x € (=oo,k) : [f(x)| > £}

is a null set, and hence
{xeR:|f(x)|>¢e}= U{xe —o0,k) 1 | f(x)| > €}

is a null set as well. Now as € > 0 was arbitrary it follows from a standard argument
that f =0 a.e.
Choose € = 5. Then E, ¢ = {x € R: [f,(x)| > 3} = (n,n+ 1) up to a null set, and thus

lim A (E,¢) :3&1(@,%1)) =lim1=1,

n—seo n—oo

meas

contradicting the fact that f, — f = 0.
| |

The second example above shows that in general, almost-everywhere convergence does not
imply convergence in measure. However, for finite measure spaces this implication is true:

Theorem 5.1.1 Suppose that (£(Q) < e, and let f;,, f: Q— K be .%-measurable functions with

meas

fn 2% f. Then also f, — f.

Proof. Let € > 0 be arbitrary, but fixed. For ease of notation, we set
En=Ene:={0weQ:|fu(w)—f|>¢€}.
We need to show that (L(E,) — 0 as n — oo.
To do so, for each k € N we let
Av:=JEx (={o:|fi(®) - f(w)| > & for some n > k).

Observe that {A;} | and

(RS ﬂ A R<:>4 @ is contained in infinitely many E),
em
k=1

< |fu(®w)— f(w)| >¢ forinfinitely many n
= ful@) A f(o).

Thus,

o0

ﬂ k S{o: fu(0) £ flo)}.
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By assumption, the right-hand set is contained in some null set, hence
u (ﬂ Ak) =0,
k=1
Now as [1(Q) < = we have by Theorem 1.4.2 that

lim p(A¢) = (ﬂAk)_o

Since E; C Ay, then 0 < u(E;) < u(Ag) for all k, and we can apply the Sandwich theorem to obtain
that

lim (E) =0
as well. Thus, the theorem is proved. |

The next example shows that the converse statement of this theorem is wrong. In fact, it shows
that if f, — f then (f,) need not converge a.e. Thus, at least in the class of finite measure spaces,

convergence in measure is a weaker notion than almost-everywhere convergence.
» Example 5.2 We consider the measure space ([0, 1],2[0,1],1 ). Recall that each n € N, can be
expressed uniquely as

n=2%4+m

with k = k(n) € Ny and m = m(n) € N, where 0 < m < 2. For each n € N, we set

In 1=1[m ma1)

2Kk

For example,

fi=Tpy, fa=1gy, Azly, fa=11, fs=1

fi=13,, s=1g1), fo= 1%,%), fu=133), fu= 1 3.4y
Noting that k = k(n) — o as n — e, we now consider various modes of convergence for the

sequence (fy,).
1. (Convergence in measure) We claim that f, =o.

In fact, foreach €, 0 < € < 1, we have

m m+1
)

E,e:={xeR:|f,(x) -0 >€}= [?,—2,(—

Hence,

+1 1
ME) =2 (5 50)) = 20 asn—e,

which proves the claim.
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2. (Convergence in the p-th mean) Clearly, f, € LP[0,1] for all 1 < p < e. We claim that

fllzg,

In fact,

R B _ m m+1,\ 1 -
an OHP—/‘fnlpdl*/1[2%1,%}1)011—2,([?,7] —F%O asn —» oo,
which proves the claim.
3. (Almost-everywhere convergence) We claim that (f,) does not converge a.e.

Suppose to the contrary, that there exists a Borel-measurable function f so that f, — f.
Clearly, f must be finite valued a.e. Applying Theorem 5.1.1 and part 1., it immediately
follows that f =0 a.e.

Next let x € [0,1) be arbitrary. Since for each k,

0 1 2 3 2k

2k 2k7 k7 2k T ok
is a partition of [0, 1] into subintervals of equal length, then for each k there exists a unique
integer my, 0 < my < 2% so that x € [3f, '”427—“) Set

=2 rm (k=1,2,3,...)!
Then

fﬂk(x) = 1["’/« "'k+1)(x) =1
T
for all k. We have shown that for each x € [0, 1), there exists a subsequence (fy, (x)) of
(fn(x)) (which of course depends on x) with

lim f,, (x) = lim 1,
k—soo k—3o0

contradicting fact that f,,(x) — 0 a.e. and thus proving the claim.

‘R Observe that in the above example, one can construct a great variety of subsequences of {fu}
= which all converge to f =0 a.e.

For example, choosing n, = 2 we have S, = 1[ ), and clearly, f,, (x) = 1(g) as k —» oo,

0.5
that is, f,, —=0.

In fact, we have in general:

meas

Theorem 5.1.2 Let f,, f:Q — K be #-measurable functions, with f, — f. Then there
 exists a subsequence (fy,),_, such that f;, 2o,

Proof. By assumption, for each £ > 0 we have

}i_]}f}o[J(Emg) =0  where E,r:={0ecQ:|fi(0)—f(o) >e}
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That is, given § > 0 there exists N = N(g,0) such that

u({oeQ:if(0) - flw) > e} ) <8 Vi > N.

5.2)

Now we extract a subsequence of (f;) inductively. By (5.2), choosing € = 1 and 6 = %, there
exists 71 € N such that

y({cer:|f,,(w)—f(w)\ > 1}) <

Vn > ny.

M| —

Next choosing € = % and 0 = }—P there exists np > np such that

p({ocQ: fl@ - f@)>1}) <1

4 Vn 2 no-

Suppose we have picked a positive integer ny such that

u({wEQilfn((D)—f(w” > %}) <%

Then by (5.2), choosing € =

Vn > ng. (5.3)
1
k1

w1 and 0= 5,(1—[, there exists n;.; > ng such that

p(foeQ:(hi) - flo)> =) < 5

k1 W VnanH.

By induction, we thus obtain a subsequence (fy,) of (f) satisfying

u(foca:lf(@) -f@)> 1)<

~/

call this set Ay

Set

then @ (A) = 0 by the Borel-Cantelli Theorem.

Now let @ € A be arbitrary. Then @ ¢ |J Ay for some j, and hence @ ¢ Ay for all k >
k=j
Equivalently,

1 .
Ifnk(w)”f(w)‘fz Vk > j.
It follows that

(@) = f(o) as k — oo,

Since A is a null set, the assertion has been proved.

The next theorem states that every p-integrable function is bounded outside some set of
arbitrarily small measure.
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Theorem 5.1.3 (Chebychev Inequality) Let 1 < p < oo and suppose f € LP(Q,.%#, ). Then for
allM > 0,

p({we:|f(@)| = M}) <M1,

Proof. Given M > 0, set
Ey:={weQ:|f(w)| >M}.
Then by monotonicity of the integral,
1£1I5 = / flPdp > / \fIPdu > / MPdy = MPu(Ey),
Eym Eu

from which the assertion follows immediately.

[ |
Corollary 5.1.4 Let 1 < p < oo and suppose fy, f € LP(Q,. %, 1) for all n.
1 £, 8 5 then £, Ty,
Proof. Let € > 0 be arbitrary. Then by Chebychev’s inequality,
u({oeo:fi) - @) >e}) =n({ocQ:|(fi- @) >e})
<eP|fa=flp >0 asn—eo
by assumption. This shows that f, —s f. ||

For the converse statement we have:

Theorem 5.1.5 (DCT for Convergence in Measure) Let (Q,%,11) be a measure space, let
s f 1 — K be % -measurable, and 1 < p < 0. Suppose that

L fs™ 1o

2. there exists g € LP(Q,.%, u) with ]fn(a))] < g(w) a.e.
Then

(i) fo,f € LP(Q,.Z,u) for all n, and

ALY

Proof. (i): Note first that condition 2. guarantees that f, € LP(Q,.%, ) for all n. Furthermore,
since f, — f, by Theorem 5.1.2 there exists a subsequence {f,, };., such that f,, 2% f, and
hence by 2.,

!f(w)‘ <glw) ae.

as well, which shows that f € LP(Q, %, ).
(ii): Suppose to the contrary that || f, — f||, #> 0 as n — co. Then there exist € > 0 and a
subsequence f, so that

\fo—fllp =€  Vk (5.4)
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Now as f, =3 f then clearly, by definition of convergence in measure, f;, T8 £ as well. Applying

Theorem 5.1.2 once more, there now exists a subsequence ( S );”:1 of ( fnk);;l such that

o, 25 f as [ — oo,
Applying the DCT for LP-spaces (Theorem 3.2.1), it follows that
| fo, = fllp =0 asi—es,

which is impossible by (5.4). |

Exercise 5.2 Let f;, f : Q — K be #-measurable, 1 < p < oo, and suppose that f, = f on Q.
Show:

meas
L T |
2. Ifp(Q) < and f, € LP(Q,F, ) for all n, then f € LP(Q, F, 1) and f, L3 f.
3. If u(Q) = e then { f,,} need not converge in || - || .

&

It is obvious that f, — f does not imply that f, = f. There is, however, a result which says
that we have uniform convergence outside of sets of small measure. Let us first make this concept
precise.

Definition 5.1.2 Let f,, f : Q — K be .#-measurable. We say that { f,} converges to f almost
uniformly, if for every € > 0 there exists a set B = B € .7 with
(i) u(B) <e,
(i) fu = f.
Q\B

» Example 5.3 Consider as usual the measure space (R,gﬁ (R),A). Let

f(x)—{;lf if x| > 1 f(x)_{;‘f ifx#0
n = 0 5 = "

iflx| <4 0 ifx=0

Now forevery € >0, f, = f which shows f,; — f almost uniformly. On the other hand,
R\(—¢€,¢)
convergence cannot be uniform because f is unbounded while each f, is bounded. "

l Exercise 5.3 Show: If f,“ %" f, then f, 2% f and f, ™% f. )

Theorem 5.1.6 (Egoroff) Let (Q,.7, 1) be a finite measure space, and f,, f 1 Q — K be ﬂ-s
measurable. If £, == f then f, aﬂ>f'f . |

Proof. 1. Suppose first that f,(@) — f(®) forall w € Q, and let € > 0 be given.
For each n € N, we set

gn =sup|f;— fl, (5.5)

jzn

which is well defined as all functions are finite valued. Then
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(a) Each g, is .#-measurable by Theorem 1.5.7,
(b) The sequence (g,) is monotone decreasing,
(c) gn(@)— 0 foreach ® € Q.
We need to find a set B € .7, i(B) < €, so that g, = 0.
Q\B
Now since (1(Q) < o, then also g, % 0 by Theorem 5.1.1. That is, for every & > 0 we have
lim p(E,z) =0 where E,z:={we€Q:|f,(w) > E&}.

n—oo
In particular, for every & = % there exists n = ny such that

E

= (5.6)

p({o et e @) > 1)) <

call this set By,

Set
B = U B e Z.
k=1
Then by o-subadditivity,
oo o0 8
1(B) < I;H(Bk) < 1;1 7 =&

We now claim that g, = 0. For this, given § > 0 we pick k € N with } < §. Now if @ € Q\B,
Q\B
then o & By, and hence

1
Oggnk((o)g E<6

Since {gn} |, it follows that
0<gy(w)<é Ve Q\B, n>n,
which proves the claim. Now since

lanf‘Sg’l vnv

the assertion of the theorem follows for this particular case.
2. Next suppose that f,(@) =% f(®). Then there exits a null set N with

(@) = f(w) Vo eN°.

Now let € > 0 be given. By the first part, there exists B € %, B C N¢, so that u(B) < € and f, =2 f.
N\B
We set B=BUN. Then
1. u(B) = u(B)+u(N) = pu(B) <k,
2. while also Q\B = N°\B, so that f, = f.
Q\B
Thus, the proof is complete. u
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(R The various limits of ( fn) are independent of the mode of convergence. For example, if
LS ad fitSg

then by Theorem 5.1.2, there exists a subsequence fy,, with f,, 2% f. Hence, f = g a.e.

Suppose, fp, f : Q@ — R* are #-measurable and finite-valued a.e. The notions of convergence

in measure and almost uniform convergence can be extended these functions in a natural way:
If we let

L

N:={weQ||fl(®) <o, |fu(@)| <= Vn},

which is a null sct, then we can define

meas. meas.

f;l——>f (=4 fnlEc —)flEr

and

a. unif. a. unif.

f—"f & falge — flge.

It is easy to see that the above theorems still apply.

Exercise 5.4 Let (Q,.7,u) = (R, B(R),A) and f, = nly, . 1. Discuss all types of conver-

gence of this sequence of function. u

5.2 The Radon-Nikodym Theorem

Since measures are actually a class of functions, there is a natural way to compare two measures [l
and v on a measurable space (Q,.%):

v<u & Vv(E)<u(E) VEEeZ#£.

As we will see in this section, a much weaker way of comparing two measures is also meaning-
ful, which only compares the null sets:

Definition 5.2.1 Let i and v be two measures on a measurable space (Q,.%). If
w(E)=0 implies Vv(E)=0 VE € &,

then we write ”v < u” and say that v is absolutely continuous with respect to |L.

(R Careful: v < u does not mean that v(E) < u(E) for all E € Z. It merely means that every
~= p-null is also a v-null set !

» Example 5.4 Let us consider the following measures on (R, Z(R)):
a) the Lebesgue measure A,
b) the counting measure U,
c¢) the Dirac one-point measure §,, for some fixed a € R,
d) the sum of two distinct Dirac one-point measures, 8 = &, + 0p, With a # b,
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and compare any two of these measures.

1. If v is any measure on (R, Z(R)), then v < t.. To see this, note that i.(E) = 0 implies
that E = ( so that v(E) = 0 also. (Clearly, this property holds for an arbitrary measurable
space (Q,.7) as well.)

Ue & A. To see this, let E = {a} be a singleton. Then A(E) = 0 while u.(E) =1 #0.

He & O,. To see this, pick b € R, b# aand set E = {b}. Then 6,(E) = 0 while y.(E) =1#0.
A « &,. To see this, set E = (a,a+1). Then §,(E) = 0 while A(E) =1 #0.

0, Z A. To see this, set E = {a}. Then A(E) = 0 while §,(E) =1 #0.

Since §, < 8, then clearly, &, < 6.

0 « 8. In fact, let E = {b}. Then §,(E) = 0 while §(E) = §,(E) = 1 #0.

G W L9 R

= Example 5.5 Let (Q,.%, 1) be a measure space. Exercise 2.13 shows how one can construct
new measures which are absolutely continuous with respect to iu: Fix h € #*. Then

V(E) ::/Ehdu (E ¢ F)

defines a measure on (Q,.%) with the following properties:
(a) vu
(b) If f: Q — R* is % -measurable, then

/'fdv isdefined < /fh dy is den el

Furthermore, if any of these integrals is defined, then

/fdv - /fh dy. 5.7)

The goal of this section is to show that every measure v on (,.#) which is absolutely
continuous with respect to i arises in this way. But first some more introductory remarks and
intermediate results.

Exercise 5.5 Let (Q,.%#) be a measurable space. Show:
1. If u,vi, v, are measures on (Q,.#) with v < 1 and v; < L, then for all o, 8 > 0,

ovi+Bva < U.

2. The relation <" has the following properties:
(1) U< u (Reflexivity).
(i) If v < pu and gt < o then v <X o (transitivity).
Here, i, v, o are arbitrary measures on (Q,.%). Show by example that antisymmetry:

Ifv<pandalsou < vthenpu=v

need not hold in general. (The two properties [(i)] and [(ii)] show that "< is a preorder
on the collection of measures on (,.%#). However, it is not a partial order by lack of
antisymmetry.)

Motivated by the second part of this exercise, we define:
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Definition 5.2.2 Two measures i and v on (Q,.%) are said to be equivalent, written u ~ v, if

u<v and V<UL

{ R By applying part 2. of Exercise 5.5 one easily verifies that ”~” is an equivalence relation on
“~ the collection of measures on (Q,.%).

Exercise 5.6 (Continuation of Exercise 2.13) Let v denote the measure on (Q,.%, i) defined
as in Exercise 2.13. Show:

veu < h>0 ae.

B

Proposition 5.2.1 Let u and v be two measures on a measurable space (Q, %), with v(Q) < co.
Then

v<U & Ve>0d6>0 sothat u(E)<d implies V(E)<e, VEe€.Z. (5.8)

Proof. = Suppose to the contrary, that v < L, but there exists an € > 0 so that no matter what
8 >0, one can find a set E € .% with u(E) < 8 but v(E) > €. Then in particular, for each 6 = —2%
one can find sets E, € & with

1
y(En)<2—n but  V(E,) > €.

Observe that

oo

— 1
ZH(E,,)<ZZ—”<1
n=1

n=1

Thus by the Borel-Cantelli Lemma,

u(A)y =0, where A = ﬂAn, A= UE,'(.

n=1 k=n

Hence by assumption of absolute continuity, v(A) = 0. On the other hand, as v is a finite measure,
then by Theorem 1.4.2,

Thm 1.42 n—oo

v(A)=v <ﬂAn> = limv(A,) > &, since V(A,) > V(E,) > & for all n,
n=1

which is a contradiction.

< Suppose, the right-hand statement in (5.8) holds. Let E € .% be a p-null set, that is,
W(E) = 0. Then by assumption, 0 < v(E) < & for any € > 0. However, this is only possible when
v(E) =0. |

ii? Loosely speaking, the above proposition states that a finite measure Vv is absolutely continuous
with respect to a measure p if and only if ”p-small sets” are also ”v-small sets”. This property
gave rise to the notion “absolutely continuous”.
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Corollary 5.2.2 Let (Q,.#, 1) be a measure space, and g € L} (Q, %, 1t). Then

/ gdu
E

<e, VE eZF.

Ve>0 36 >0 sothat u(E)<d implies

. (That is, "integrals over small sets are small”.)

ZE Exercise 5.7 Prove Corollary 5.2.2. (Hint. Use the above proposition and Exercise 2.13.) =

Corollary 5.2.3 Let g € L' (R,.#,A) be given, and set

Y = / gk,
(_°°>t]

Then G is uniformly continuous on R.

Proof. Given € > 0, pick & as in Corollary 5.2.2 for t = A. Now let 5,7 € R be arbitrary with
it —s| < 8. Without loss of generality we may assume that s < ¢. Then

A([s,]) =t—s <8,

and hence,
lG(t)—G(s)[:’/ gd/l—/ gdl‘Z‘/ ga’k’<8,
(_‘x"t] . (7{’0’5‘} [Sat}
which was to be shown. [ |

When discussing the Riemann integral, one usually introduces the notation of a partition of an
interval [a,b] and refinement of such a partition. This concept generalizes to measurable spaces:

| Definition 5.2.3 Let (Q,.%) be a measurable space and &2 = {A,}ﬁ | € & a finite measurable
partition of Q. That is,
1. the sets A; are mutually disjoint,
2. Q=" A
(see Definition 2.1.2.)
A (measurable) partition &' = {B.,'};V:l is called a refinement of the partition {A;}}_,, if
foreach j (1 < j< N)thereexistsai (1 <i<M)sothatB; CA;.

Below, by "partition” we will always mean a finite, measurable partition.

R Let & and &' be as above. Since the sets B; are pairwise disjoint, then each 4; is the union
~ of the sets B; contained in it:

Ai= |J B

{J:BjCA;}

By Let 2 = {A,—}?i] and P, = {Bj}]},:l be two partitions of Q. Then

PANPy:={A;NBj|i=1..M, j=1...N}

clearly is a refinement of both, &7 and &,.
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The following proposition leads us half way to the desired result.

Proposition 5.2.4 Let (Q,.%, 1) be a finite measure space, and v a measure on (Q,.#) with v < u.
Then there exists an .% -measurable function & : Q — [0, 1] satisfying

v(E) :/Ehdu VE e 7. (5.9)

Proof. Let us first construct the function /4 in steps.

Step 1: Given a partition & = {A;}) of , let us set

hp = ZCilAi, where ;= { BA) 1 W(A;) #
- 0 if w(A:)=0.

Clearly, hp is .%-measurable and simple, and since v < pt, then 0 < hp < 1. In particular, hp €
LY(Q,Z.,u).
We make the following observation: Let A € .% be the union of some of the partition sets, say

A=A, I1C{1,....M}. (5.10)

iel

Then

M M
/Ahpdu:/hplAd[.L :/ [Ecilf‘,} 1adu :/ lz{c,'lAmA} du
== / {ZC,’IAI:I d[i — ZC[[J(A,‘) = ZV(A,) = V(A)

el i€l iel

Here we have used the fact that v(A;) = ¢;[t(A;), even when ((A;) =0, since v < p. That is,

V(A) = /hpd/,t (5.11)
Ja
for all sets of form (5.10).
Step 2: Next let &' = {Bj)N:] be any refinement of a partition &2 as in Step 1, and let /ip be the

, z =l - :
function constructed for this refinement as in Step 1. That is,

V(B) = /h,,,du (5.12)
B
for all sets B which are unions of some of the sets B;. Since each set A; € & is such a union, then

hpdp = v(A) = [ hpdu. (5.13)

A (5.11) (5.12) A;

In addition, since hp(®@) = c¢; on the set A;, then

/hphp/dLL:/ C,'hp/du,:C,'/ hp/du = C,'/ hpd[.l,:/ hp/’lpd‘u,
Aj Aj A; &13) A; Aj

that is,

/hphp,du:/ hhdu. (5.14)
A; A;
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It follows that

/A[hp,_hp]zdu:/A I — 2hphp -+ B3] dp = /A 13— h3] dp.

5.14)

Thus, if A is a union of some of the sets A; as in (5.10), then
o</[hpr hp)* du = Z/ [hp — hp)* dp = ):/ [h3 —h3) du = /[h,%,—h%,} du, (5.15)
iel iel

and hence,

/h}%du < / K dy, (5.16)
JA JA

for any refinement &’ of 2.

Step 3: We now construct a sequence {Z, } of partitions so that the corresponding sequence {hg, }
converges a.e.
For this, let us set K := p1(Q) < eo. Now if & is any partition of Q, then as 0 < hp < 1 we have

/%SK

and hence,
Ci= sup{ / h3dy : 2 is a partition of Q} <K

By a characterization of the supremum, for each € = there exists a partition &2, of Q with

4"K

4n1< < [ an<c (5.17)

Now if we modify these partitions inductively by setting
R = A, :%222%1/\@2, %n::%n_l/\e@n,

for n > 2, then {Z, } will be a sequence of partitions so that each %, refines both, %, as well as
2,. Hence by (5.16) and (5.17),

/hpndu o /hR au < /hR dpn<C (5.18)

(5.16) 5.16)

4"K

for all n. We are now ready to show that lim,_,.. hg, (@) exists a.e.
In fact, for all n € N, we have

. 2 3 2 2 1
— — — < : 5.19
./ l:hRn«?—] hRn} dl'l' (5.15) '/ [hRn+] hRn} dﬂ (578) 4nK ( )
Now since |- ||} < || - |2v/K (see Exercise 3.3), we have
1 1
/‘hkﬂ+1 x H o wt MRy || VK 19 47/24/K vE n’

and hence,

Z /‘hRn+1 - n




5.2 The Radon-Nikodym Theorem 137

Thus, by the Beppo-Levi Theorem, the telescoping series

oo

Z [thHl — hg, }

n=1

converges a.e. to an integrable function f, and

/fd/.t :;/ (hR,., —h&, | diL.
t

Se
N—1
h = th +f = th +[\llli‘)rlc Z [hRn-H _hanl = Al,l_r};hRn’

n=1
in the sense of a.e. convergence.

Step 4: Finally, we verify that & has the desired properties. We first note that as 0 < hg, < 1 for all
n, then

0<h<Ia.e.

Modifying 4 on a null set, we may thus assume that
0<h< s

To verify (5.9), let A € % be given. First set

S =1{A,A},
a partition of Q, and for each n € N, set
G = S NR,.

Then ., is a refinement of .% as well as &%,, and hence by (5.18),

|
C—4nK</h§ndu < /hgndugc

(5.16)

Arguing as in (5.19), then for each n,

y 1
hs, — hg,|2 dp = / AL
/ hs, —hg,]” du o (s, — hz,] du G 4K

so that
1
/Ihsn —hg, | dp = ||hs, —hg, ||, < ||hs, — hg, |, VK < o B n-es (5.20)
Therefore,
V) = [ hs.du= [ Ihs,~ o)t [ e du.
(5.10) JA A A

Now by (5.20), the first integral on the right-hand side goes to zero as n — co. As for the second
integral, since hg, — h a.c. and |hg,| < 1 € L'(Q, %, 1), the Dominated Convergence Theorem
implies that the second integral tends to [hdu as n — eo. Thus

v(a)= [ ndp,
JA
which completes the proof. |

The assumption that u(Q) < e may be weakened to u is o-finite:
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Corollary 5.2.5 Let (Q,.#, 1) be a o-finite measure space, and v a measure on (Q,.#) with
v < . Then there exists an .% -measurable function 4 : Q — [0, 1] satisfying

v(E)=/ha’u VE € 7.
E

Proof. By o-finiteness, there exists a sequence {A,} C % of measurable sets satisfying
1. p(A,) < oo for all n, and
2. Q=7 14

Applying Theorem 1.1.1, we may assume further that these sets are mutually disjoint.
Now we can apply the above Theorem to each measure space (A, %,, lt), where

Fn={E€ F|ECA}={ENA,: E € ZF}
(see Exercise 2.8) to obtain .%,-measurable functions
hn : Ay — [0,1]
satisfying

v(E,,):/Ehndu VE, € F.

Since the collection {A,} forms a partition of Q, we can “glue” the functions 4, together and define
h:Q—1[0,1] by

h() = h,(®) where w€A,.

Then
1. obviously, 0 <h <1,
2. his % -measurable. In fact, for each a € R we have since each 4, is .%,-measurable,

{weQh(w) <a} = D{a)eA,,\hn(w)<a}e§.

n=1

EFnCTF

3. Given E € %, set E, = ENA, € %,. Since

o0 oo

E=En|{JA,=(ENAL) = |JEn,

n=1 n=1 n=1

a disjoint union, and & = h, on A, then by Corollary 2.7.6,

V(E)=vV (U E,,) = L V(E,) = ;/E hydp = ’; ‘/Enhd)u = ‘/Ehdy.

n=1

Thus the assertion holds. u

We are now ready to prove the main result of this section.
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Theorem 5.2.6 (Radon-Nikodym Theorem). Let pt and v be o-finite measures on a measurable
space (Q,.%) with v < u. Then there exists an . -measurable function & > 0 such that

v(E):/Ehd/,L VE e 7.

Furthermore, £ is essentially unique. That is, if / is another .%-measurable function with the
property that v(E) = [, hdu VE € F, then h=h y-a.e.

Proof. 1. Existence. Set @ = u+ v. Then clearly,
D 0<u,v<o,
(ii) @ is a o-finite measure on (Q,.%) (see Exercise 1.6).
By the previous Corollary, there exist .%-measurable functions /y, hy : Q — [0, 1] with

;,L(E):/hud(p and V(E) = /hvd(p VEec ZF.
E JE
Set
F={weQlh(w)>0}c.F so that Fé={wecQ|h(@)=0} e F.

Then
w(F) = [ hudp =0

and hence, as v < [, then v(F¢) = 0 as well. Now set
(@) iftpeF
h(w) = { (@ (5.21)
0 if w € F°.
Then
(i) clearly, h > 0,
(ii) since h = — Y1y, then h is .#-measurable,

hu + lF(:
(iii) foreach E € %, since V(F¢) = u(F°) =0, we have

V(E) = V(ENF)+V(ENF®) = (ENF) +0 = hvd(p:/ hhy d
ENF EnF

:/ hdu+0=/ hd +
EnF JENF

57y

hdu:/hdu.
E

EriFs

2. Essential Uniqueness. Suppose that i : Q — [0, 00] is another .% -measurable function with
v(E):/Eﬁdu VE € Z.
Set
N={weQ|h(w)>hw)}ecZ.

We claim: @(N) = 0. For suppose to the contrary that i (N) > 0. Then by Theorem 2.6.6,

/ [h—h] dy >0, (5.22)
JN -
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Note that the difference of the two functions is defined on N, as % is finite valued on N.
For each n € N, set

N, :={® € N |h(®) < n},

so that

MeZ, {N,Jt and N=|[JN.

Next we modify these sets so they have finite measure. In fact, since  is o-finite, there exists
{A )0 1C Z, with

1(Ap) <o Vn and Q= UA,,.

n=1

We set

B,=N,NA, €.%, so that {Ba} 1 and also N = U B,.

We now have
o</[/z—iz] du = lim [ [h—h]dpu,

Cor2.7.5 n—oo B,

from which we conclude that
[ [n=H] du>0
b Bn

for sufficiently large n, and consequently
:/ hdu :/ [h—h] du+/ hdu >0+ v(B,) = V(B,),
B, By By

since [L(B,) < oo, which is impossible. Thus, the claim follows.
Now by symmetry,

N={weQ|h(®)>ho)}
is also a null set. Hence, h = hae. |
R . The o-finiteness condition in this Theorem cannot be dropped. For example, consider the
measurable space (R, Z(R)) with the Lebesgue measure A and the counting measure i

which is not o-finite. By Example 5.4, A < t.. Now suppose, there exists 4 as in the
Theorem. Let {x} be any singleton. We obtain

= Al = [ ndpie= [ 1 dpe = nGpe({x)) =
so that i(x) = O for all x € R. But then for all £ € Z(R),

A(E):/hduC:/OduC:O,
E E

which contradicts the fact that A # 0.
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R The function 4 is called the Radon-Nikodym derivative of y with respect to v, and denoted by

dp
h=—.
dv

Exercise 5.8 Let v < u and i < ¢ be three measures on (Q, . %).
1. Prove the chain rule:

do _do du
dv  du dv

in the sense of equality a.e.
2. Show: If vaop & 0<% <wae.

From Premeasure to Measure

Since algebras of sets need not be closed under countable unions, the concept of measure does
not apply to them. In this section we will introduce the corresponding concept for algebras, the
premeasures, and show how the results on the outer measures of Section 4.3 can be applied to
extend a premeasure on an algebra 7 to a measure on the o-algebra generated by 7. While these
results will be needed for the construction of product measures in the Section 5.4 below, they are
interesting in their own right.

We begin with a construction of algebras.

Definition 5.3.1 Let Q be an arbitrary set, and & a nonempty collection of subsets of Q. Then
& is called an elementary family on Q provided the following hold:

(E1) Whenever A,Bc &,thenANB € &.

(E2) Forall A € &, the complement A€ is the finite disjoint union of elements of &.

s Example 5.6 Let
&={(@bNR| —o<a<b<oo}={(a,b]| —o<a<h<ew}U{(a,)] —w<a<oo}.

Then & is an elementary family on R. u

= Example 5.7 Given measurable spaces (X, &) and (Y,.%), we set
&={AxB|A€& Be F}C P(XxY).

&, 1s called the set of measurable rectangles on X x Y.
We observe that &, is an elementary family. In fact, if A} x Bj,A2 X By € &, then

(A xBy)N (Ay x Bp) = (A1 NA2)N (B1NBy) € &,
since & and .# are o-algebras. Furthermore, for each A x B € &), we have
(AxB) = (A°xY)U (X xB°) = (A° x B)U (A° x B°) U (A x B°)

and the right-hand side is a finite disjoint union of members of &;,. Thus, (E1) and (E2) hold. =
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Proposition 5.3.1 Given an elementary family & on Q, let

n
y{:{E:UAk|nEN,Ak€éE,Aijk:®(j7ék)}
k=1

denote the collection of all finite disjoint unions of members of &. Then .« is an algebra on Q.

Proof. 1. FirstletA,B € o/, say A = Uy Ay and B = U, B}, where the families {Ak}::1 ce&
and {Bj};f;[ C & are each disjoint. Then

n

A/{l [l
k=1

is, by (E1), a finite disjoint union of elements in &, and hence ANB € /. It now follows by
induction that 7 is closed under finite intersections.

n m

631} = U UlAnB;]
j=1

k=1j=1

ANB=

2. Note also that
m g m
A= [UAkJ =) 4;.
k=1 k=1

Now by assumption (E2), each Af is a member of o7 It follows from part 1. that A° € .

Finally, applying Exercise 1.1 we conclude that <7 is an algebra. n

We are now ready to introduce the concept of premeasure on an algebra 7.
Definition 5.3.2 Let Q be a set and <7 an algebra on Q. A set function

p sl — (0,0
satisfying
M1) p(0)=0,

(PM2) Whenever {A’n}::1 C o/ is a countable collection of pairwise disjoints sets such that
Un=i A, € &7, then

p <UA,,> = Y p(A,), (" o-additivity”)
n=1 n=1

s called a premeasure on &7 .

Clearly, this definition coincides with that of a measure when .27 is a c-algebra. Applying
exactly the same arguments as used for measures in Section 1.4, it is easy to see that a premeasure is
(finitely) additive and hence monotone. Furthermore, the notions of finite and o-finite premeasures
are defined in exactly the same way as they are for measures.

Note that by Exercise 4.2, every premeasure p on & defines an outer measure (t* on Q by

1C

1*(E) ::inf{ip(An) cAped EC An} (ECQ). (5.23)
n=1

The next theorem tells us that pt* is an extension of p to a measure on ¢ ().
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Theorem 5.3.2 Let o/, p and u* be as above, and let .%#;, denote the o-algebra of (*-measurable
sets as in Carathéodory’s Theorem. Then

1. uy*(E) =p(E) forallE € &.

2. o(&) C Zy.

3. If v is another extension of p to a measure on 6 (), then v < u* on o(<).

4. If p is o-finite, then W* is the unique extension of p to a measure on o ().

Proof. 1. Let E € & be given. Choosing A; = E and A,, = 0 for n > 2, then clearly,

EC|JA, and ) p(4,)=p(A)=p(E),

n=1

so that by definition of u*,

L (E) < p(E). (5.24)
Conversely, let {A,} be any collection in & with E C | J;;_; A,. Applying Theorem 1.1.1, there
exists a disjoint collection {B, } in .27 so that

B,CA, foralln  and UB,,_UA

n=1

Set B, = ENB, for all n. Then {B,} is a disjoint collection of elements of .« with union
=En lU An} =E
n=[
and since p is a premeasure on ./ then by monotonicity,
Z p(Bn) < ) p(4

Now as {A,} was an arbitrary countable covering of E by elements of .27, it follows from (5.23)
that

oc

U B QEHB” EO{OB,,

n=1 n=1

p(E) < u*(E).
Together with (5.24), equality follows.
2. Since ., is a o-algebra, it suffices to show that &7 C ;. To this end, given £ € &7, let A T Q
be arbitrary. By definition of ©*(A), given € > 0, there exists a countable collection {A,} C &/
with

=]

AC|JAr and Y p(A)) <wr(A)+e
n=1

n=1
Applying Theorem 1.1.1 and monotonicity of p, we may assume that the sets A, are disjoint. Since
p is a premeasure, then

v
ok
L]

L (A)+¢€ :ip<[A,m nﬂEC) i{ A,NE)+p(A,NE* ﬂ

=1 =
oo

=
Il

o0

+ip BT = “(U ,mE) (U )

n=1 def. of u*

gl

|
 ngk

Il
=i
*
¥ TD

&
I

n=1 n=1

DEC> W (ANE)+u*(ANE®).
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As € > 0 was arbitrary then
K (A) > u*(ANE)+u* (ANES),
and as A C Q was arbitrary, it follows that E € .%,. This shows that & C .%,.

3. Let v be another extension of p to a measure on o(«/). If E € o(«/) and if {A,};_; is a
covering of E by elements of .27, then by o-subadditivity of v,

<Yvian, =, Yo
n=1 n=1
so that by (5.23),

v(E) < p*(E). (5.25)
Thus, v < u*.

=po

For the last part of the proof, we will need:
Claim: Let E € o(&/) with u*(E) < eo. Than V(E) = u*(E).
In fact by definition of of u*, given € > 0 there exists a countable covering {A,} C & of E with

oo

Y p(An) < p*(E)+e. (5.26)

n=1

As in the proof of part 2. we may assume that the sets A, are mutually disjoint. Then (5.26) still
holds, so setting A = | J;,_; A, we have by c-additivity of pt* and v,

VA = L v(A) = X pln) = Y (an) = B < () e <o

Since E C A and V(A) = u*(A) < oo then

p(E )<u( ) =V(A) =V(E)+V(A\E) < V(E) + L*(A\E)
= V(E)+p7(A) —u*(E) < V(E) +&.

Since € was arbitrary, it follows that u*(E) < v(E). Together with the reverse inequality (5.25),
the claim follows.

4. Finally, suppose that p is o-finite. Then there exists a countable collection {A }w of elements
of &7 with u*(A,) = p(A,) < oo for all nand Q = {J;;_; A,. We may again assume that the sets A,
are disjoint. Then for all all E € o (<) it follows by o-additivity and the claim that

oo oo

u*(E) = p* (U [AnNE]) = Z“ E) = Z ﬂE):v(U[A,mE]) = V(E).

n=1 n=1

This shows that it = v and completes the proof. u

{p Observe that the main statement of this theorem is similar to Proposition A in Section 4.2.

" There the starting point was the collection % of half-open intervals which is not yet an
algebra, and the generalized length Lr of such intervals. Since the topological methods used
in the proof of Proposition A are not available in general, we had to work with premeasures
instead.
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Exercise 5.9 (The condition that p be o-finite can not be removed in the above Theorem.)
Let &7 be the collection of finite unions of sets of the form (a,b]NQ, where —co < g < b < oo,
1. Show that &7 is an algebra on Q.
2. Show that o(«/) = Z(Q).

0 ifA=0
3. Show that p(A) = ?fA 40 is a premeasure on 7.
i

4. Find pu* and find another extension v of p to &#2(Q) which is different from p*.

5.4 Product Measures

The product of two o-algebras

Recall the concept of product topology: Given two topological spaces X and Y, the product
topology is the weakest topology on the Cartesian product X x ¥ containing all “open rectangles”
A x B, where A and B are open subsets of X, respectively Y.

Given two measurable spaces (X, &) and (¥,.% ), we introduce a c-algebra onto the Cartesian
product X x Y in a similar way:

Definition 5.4.1 Let (X, &) and (Y,.%) be measurable spaces.
1. A set of the form A x B with A € & and B € .% is called a measurable rectangle on X X Y.
(see also Example 5.7.)
2. The o-algebra on X x Y generated by the collection of measurable rectangles is called
the product o-algebra, and denoted by & & .%. That is,

@9 F =0({AxB|Ac&, Bec F}).
(R Inasimilar way, if (X1, #1), (X2, %2), .-+ +(Xn, F,,) is a finite collection of measurable spaces,
“ " then the product c-algebra on X; x X --- x X, is defined by
Fi@Fr0 - ®Fpi=0( {AixAyx-xAy|Ai € Fpy i=1...n} ).
= Example 5.8 Consider the measurable spaces (R, Z(R)) and (R?, Z(R?)).

Claim: %(R?) = B(R) 2 B(R).
In fact, recall from Corollary 2.4.2 that

%(Rz) = O'({ (rl,Sz) X (rz,s2)|r,- < 8 ity 8 E Q, = 172}>

Now since such open squares (r1,s2) X (r2,s2) are simply measurable rectangles in Z(R) @ Z(R)
and the latter is a o-algebra, it follows that

B(R?) C B(R) ® B(R).

To show the reverse inclusion, first let

& ={AxR|A€ BR)}.
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It is easy to see that &, is a o-algebra on R x R, because #(R) itself is a -algebra. Furthermore,
the map

P:AcHBR)—AXREGE,

clearly is a bijection of o-algebras preserving unions, intersections and complements. That is, we
may identify Z(R) and &, as o-algebras through the mapping ®. Now since Z(R) is generated
by the open subsets U of R, then

é?’O:G({UxRiU gRisopen}>.
But the sets U x R are open subsets of R?, and hence
&, C G({V ’ V CR?is open}) = %(R2).
By a symmetric argument, if
F,:={RxB|Be B[R)}

then Z, C %(R?).
Now let A X B be a measurable rectangle, with A, B € B(R). Since A x R € &, C B(R?) and
R x B € %, C B(R?), it follows that

AxB=(AxR)N(R x B) € B(R?).
Therefore,
B(R) 0 B(R)=0({AxB|A,Bc BR)})C BR?)

which proves the reverse inclusion, and hence the assertion. L]

R‘ In a similar way one shows that
BR") = BR) & BR) 0 BR) - © BR)
and also
BR") = BR") 0 BR")

for all positive integers m and #.
However, if . (R") denotes the o-algebra of Lebesgue measurable subsets of R”, then

MR D MR) @ MR)R M (R)& - 0.4 (R).

(See the discussion in the second part of this section.)

By the definition of the product c-algebra & & .%, one can obtain & & . -measurable functions
h:X xY — R* as products of functions of a single variable:

s Example 5.9 Let (X, &) and (Y,.%) be measurable spaces, let f : X — R* be &-measurable and
g:Y — R* be .#-measurable.

Claim: The function #: X x Y — R* given by
h(x,y) = f(x)g(y)
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is & ® % -measurable.

To see this, we first extend f and g to functions f,8 : X x Y which are constant with respect to
the second variable by

fay)=rflx) and  g(xy) =280
Let us show that f is & ® .% -measurable. In fact, for each a € R we have
{(x,y) EXXY:f(x,y) <a} = {(x,y) eXxY: f(x) <a}
= {xeX: f(x) <a}xY,

€& by Thm. 1.5.4

a measurable rectangle in & ® .#. Applying Theorem 1.5.4 again, it follows that fis §QF-
measurable.
By a symmetric argument, ¢ is also & @ .#-measurable. Hence,

h(x,y) = f(x)g(y) = F(x,»)8(x,y)

is the product of two & ® % -measurable functions, and thus is also measurable. "

We now discuss some relationship between & & .% -measurable sets (respectively functions),
and &- and .% -measurable sets (respectively functions).

Definition 5.4.2 (Sections of sets) Let E C X x Y.
1. Given an element x € X we set

By = {y €Y :(x,y) € E} - | ("x-section”).
2. Similarly, giveny € Y we set

E':={xeX:(x,y)€E} CX ("y-section”).

Definition 5.4.3 (Sections of functions) Let f(x,y) be a function defined on X x Y.
1. Given an element x € X we define a function f; onY by

L) i=flxy) ¥YyeY ("x-section”).
2. Similarly, given an element y € Y we define a function 7 on X by
) :=flx,y) VxeX ("y-section”).

s Example 5.10 Given E € & ® %, let us set f = 1. Then for each fixed x € X
range(fy) C range(f) = {0, 1},

and forally €Y,
(1p):(y)=1 & 1gxy)=1 & (xy)€E & ycE & 1g(y)=1

which shows that (1z), = 1g,. In a similar way, (1g)” = 1gy foreachy € Y. =
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Proposition 5.4.1 Let (X,&’) and (Y,.% ) be measurable spaces.
1. LetE€ &®.%. Then foreachx € X andy € Y, we have E, € .% and E” € &.
2. Let f: X xY — R* be & ® F-measurable. Then for each x € X the function f; is Z-
measurable and for each y € Y the function f” is &-measurable.

Proof. 1. Given any x € X we set
% ={ECXxY|E.eZF}.

Claim: ¢, is a o-algebra on X x Y containing & & %.
In fact, observe that for each E C X x Y we have

YE(EY), & (®Y)EE® & (Y)EE & y¢E & ye(E).
That is,
(E9), = (Ex)°. (5.27)

Similarly, if {E,};>_, is a collection of subsets of X x Y, then

g =

UE,Z} & (x,y) € UEﬂ < dn, (x,y)€E, & In,y€(E,), & Y€ U(En)x,
n=1 X n=1

n=1

which shows that

U~

n=1

= (Bn);- (5.28)
n=1

X

Now since .Z is a o-algebra, it follows from (5.27) and (5.28) that (E€), € .% and [U;_ E,], € &
forall E, E, € %,, which shows that ¢, is indeed a c-algebra. Now clearly, all measurable rectangles
of the form E = A x B generating & ® .7 are elements of %, since either E, = B (if x € A) or
E, =0 (if x Z A). This shows that & ® F C ¥, and proves the claim. In particular E, € .% for all
Ec&RF.

By a symmetric argument, given any y € ¥ we have that Y € & for all E € & ® #, and thus 1.
follows.

2. Next let ¥ € X be arbitrary, but fixed. Note that for all a € R,

{yeY|fi®)>a}={yeY|f(®y)>a}=E;
where
E={(xy)eXxY|f(x,y)>a}e&xF

since f is & ®.% measurable. Then by part 1., E, € % no matter what a, and it follows that f is
F-measurable.
By a symmetric argument, f7 is &-measurable for all § € Y. Thus, the proof is complete. W

‘g Clearly, the results of Example 5.9 and Proposition 5.4.1 can be extended to complex-valued
functions, by simply splitting functions into their real and imaginary parts.
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s Example 5.11 Let f: R? - R* be a Borel-measurable function. Since Z(R?) = B(R) ® A(R),
then by the above proposition, the functions

fixeRo flxy) and iy €Ro f(xy)
are Borel-measurable for all x and y in R. "

The Product of Two Measures

We are now ready to introduce product measures. For this purpose, let (X,&, i) and (Y,#,v)
be two measure spaces. By Example 5.7, the collection of measurable rectangles

={E=AxB|Acé&,Bc.F}
is an elementary family, so that the collection of finite disjoint unions of measurable rectangles,
n
.xa/:{E: \JE« |nEN, Ec €6, EjﬂEk:(ZJ(jyék)}
k=1

is an algebra on X x Y. Clearly, 0(&/) = 0(&,) =& F
Given a measurable rectangle A x B € &, we set

p(A x B) = p(A)v(B) € [0,

and hope to be able to extend p to a measure on & & .7 .
Proposition 5.4.2 p extends to a premeasure on &7 by
n
p(E) =Y u(Ac)v(Bx) (5.29)
k=1

where E = |J}_, (Ax X By) € &/, a disjoint union of measurable rectangles.

Proof. We first must show that p in (5.29) is well defined. For this, let E € &/ be represented as
two different disjoint unions of measurable rectangles,

E=J@AxB)=|JA;xB)). (5.30)
j=1
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where all unions are disjoint, it suffices, by symmetry, to show that
n n m
Z v(By) :ZZ (AxNAj)V(BNB;).

Note that for each k, Ay X By is the disjoint unions of measurable rectangles,
m
AkXBk—(AkXBk U [AkﬂA BkﬂB )}

hence it suffices to show that
n(A)v(B) =) u(A;)v(B)) (5.31)
j=1

whenever A x B is a measurable rectangle expressed as a disjoint union of measurable rectangles,

AxB=|J(A;xB;). (5.32)
=1

Observe that

1axp(x,y) = 14(x)1p(y)

and since the union in (5.32) is disjoint, then
1()150) = Luxa(.) = Z Ly, ) = L 159)18,0) (533)
B
Integrating over x, then for all y € Y by linearity of the integral,
LA /1A Vp(y)dp(x Z/ > Jdu() = Y. (A5, 0). (534)
Integrating further over y,
B) = [ ma)1s0)av0) = Y- wiAp | 1yl i w@EVE),  (539)

which shows that (5.31) holds. Thus, p is well defined.
Next we need to show that p is a premeasure. Clearly

p(0) =p(0x0)=pu(@)v(0)=0.

To prove o-additivity, let E € o7 be expressed as a disjoint countable union of members of o7,
E=|JEy, Ened. (5.36)

We recycle the arguments of the first part of this proof with further refinements. Since E € 7 then
it is a disjoint union of the form

C:

B = (Ak X Bk) Ap X By € 8,.

k

1
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On the other hand, as each Ey € &, is a finite disjoint union of measurable rectangles and the union
in (5.36) disjoint, then E can be represented as a disjoint union of the form

N=1 jeSy

where {Sy}%_; is a partition of N by finite subsets and

Ev=|J(A;xB;)  foralN.

E= U(AkXBk): O(AJXBJ)
k=1 j=1

The arguments of the first part of the proof carry over without modification, except that now m = oo,
while equations (5.34) and (5.35) require the application of Corollary 2.7.4. It thus follows that

N=1jeSy N=1

pE)=Y pAvB) = Y wE)vB) =Y. ¥ w@)viB) =Y. p(En),
k=1 j=1 =

which completes the proof. u

We note that if & and v are o-finite, then p is also o-finite. To see this let {A},_; C & and
{Bj}i C Z be sets of finite measure, with X = [Ji_; Ax and Y = J7_ B;. Then
=1 J J

XxY=JJ@MxB))  with  p(AxB;)=u(A)Vv(B;) <o forallk,j.
k=1 j=1

Applying Theorem 5.3.2 to the current setup we immediately obtain:

Theorem 5.4.3 Let (X,&,u) and (Y,.#,Vv) be measure spaces. There exists a measure on
(X xY,& ® ) denoted by 1 x v and satisfying:
1. forallAe &, Be %,

(1 x V)(A x B) = u(A)v(B), (5.37)
2. if 7 is another measure on (X x Y, & ® %) satisfying
(A xB)=u(A)v(B) forallA € &, Be Z, (5.38)

thenw < 1 X v,
3. If u and v are o-finite, then T = W x Vv is the unique measure on (X x Y, & ® %) satisfying
(5.38).

‘R‘ We call the measure space (X X Y,& ® F,u x V) the product measure space of (X,&, lt)
' and (Y,.%,v), and i x v the product measure.
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R The measure space (X x Y, & ® %, 1 x v) need not be complete, even when (X, &, i) and
(Y, .#,v) are both complete.

In fact, suppose that & # Z2(X) and that & contains a non-empty v-null set B. Then we
canpick A C X withA ¢ &,let E=Ax Band N =X x B. Thus, E C N with (it x V)(N) =
U(X)v(B) =0, while by Proposition 5.4.1, E ¢ £ @ F.

However, this is not a problem, since @ x v is simply the restriction of the complete measure
w* on %, of Theorem 5.3.2t0 & ® .Z.

Observe that by Theorem 5.3.2 as well as the construction of & and p, the product measure is
given by

(L xVv)(E mf{Zu : Ay €8, B € Z, ECUA xBn)}

n=1

for all E € & ® Z. It turns out that, at least for o-finite measure spaces, there is a simpler
way of computing this measure by means of iterated integrals. First, however, some remarks on
measurability.

From here on, let (X, &, i) and (¥,.%,V) be o-finite measure spaces. Observe that if E =A x B
is a measurable rectangle, then

/] ifxZ A 0 ity B
E,= ?ng and B = ?y§Z
B ifxeA A ify e B,

so that V(E;) = v(B)14(x) for all x € X, and u(E”) = p(A)1(y) for all y € Y. It follows that the
function x € X — V(Ey) is &-measurable and the function y € Y — u(E?) is .%-measurable, and

(1 V)(E) = w(AWV(B) = [ v(B)La(a) dp(a) = /x v(E) dp(x) (5.39)
while also
(1 x V)(E) = / w(A)z0) av(y / W(EY)dv(y). (5.40)

We thus expect the measure of an arbitrary set E € & & % to be of the form

(1 xV)(E) = [ v(E) duo) = | nE)dv0),

which is what we will need to prove now.

Observe that v(E,) and u(E”) are well-defined for all E € & & .# by Proposition 5.4.1. Thus,
for the above two integrals to make sense, we first must make sure that the maps x — v(E;) and
y — W(E”) are both measurable for general E. This requires the introduction of yet another class of
sets.

| Definition 5.4.4 Let Q be a set. A collection @ C Z(Q) is called a monotone family, provided
. that for any countable family {Ak},_, C € we have:
C1) if {Ax} 1 then Uy Ax € E,
(MC2) if {Ax} | then N, Ax € F.
(That is, % is closed under countable increasing unions and countable decreasing intersections.)

q

%
&
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Note that every o-algebra on Q is a monotone class. In addition, if € is both an algebra and a
monotone class, then € is also a o-algebra, since for every countable collection {A, }; | in ¢ we
have

OA":O[OA/C}E% as {OAk}T.
n=1 n=1 k=1 k=1

Furthermore (similar to what has been shown for o-algebras), if 27" is a collection of subsets of
Q, and {Sﬁ } LA is the collection of all monotone classes containing ., then

¢= %
AEA

is the smallest monotone class containing %, called the monotone class generated by % .

Lemma 5.4.4 (Monotone Class Lemma) Let </ be an algebra of sets on €. Then the monotone
class € generated by & coincides with the o-algebra o (/) generated by /.

Proof. Since every c-algebra is also a monotone class, then clearly, € C o(«7). To show that
o(&/) C €, it suffices to show that € is a o-algebra.
For each A € €, we set

¢(A)={Bc% |A\B, B\A,ANBE%}. (5.41)

Claim: % = % (A). For this end,we note that the collection ¢’ (A) has the following properties:
(i) Since 0 € & and &/ C %, then 0,A € €' (A).
(ii) By definition (5.41), clearly B€ €(A) <> A€ % (B).
(iii) € (A) is a monotone class. In fact, let {Bx};; € €(A). Then

A\ {G Bk} = ﬁA\Bk, [O Bk} \A = DBk\A, AN
k=1 k=1 k=1

k=1

Us.
k=1

= D(APB/().
k=1

and by assumption, A\By, By\A,ANBy € % for all k. So if {Bi} T, then {A\Bi} |. {B:\A} *
and {ANB;} 1, and as % is a monotone class, then the three above sets are elements of ¢,
and thus | J;_, Bx € €(A) also. Similarly,

A\ F) Bk} = OA\Bk, [ﬁ By
k=1 k=1

k=1

o0

\A= ﬁBk\A, AN [F}Bk] = N (ANBy).
k=1 k=1

k=1

Soif {By} |, then {A\B} 1, {Bi\A} | and {AN By} |, and as € is a monotone class, then
the three above sets are elements of ¢, and thus (;_; Bx € €' (A) also.

(iv) For each A € &7, we have € (A) = €. In fact by definition, €’ (A) C €. Conversely, note that
if B € o then also B € €'(A) since A,B € & and . is an algebra. Thus, &7 C ¢'(A). Now
as ¢ is the smallest monotone class containing <, it follows that @ C ¢'(A).

(v) It now follows from (iv) and (ii) that for every B € ¢ and A € &7 we have A € €' (B), which
shows that &/ C €(B) for all B € ¥. Now again, as % is the smallest monotone class
containing &, it follows that ¢ C €'(B), that is, ¢’ = ¢ (B) for all B € €. Thus the claim is
proved.

Now by the claim we have that A\B,ANB € € forall A,B ¢ €. Now since Q € & C ¢, (5.41)
and Exercise 1.1 show that % is an algebra on . On the other hand, ¢’ is also a monotone class by
(iii), and hence it is a o-algebra. Thus the proof is complete. |
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The monotone class property enables us to apply convergence theorems for integrals in the
following two proofs.

Proposition 5.4.5 Let (X,&, ) and (Y, #,V) be o-finite measure spaces. Then for each E €
ERF,

(1) the function f:x— V(Ey) is &-measurable, and

(2) the function g:y+— w(E”) is % -measurable.

Proof. By symmetry, it suffices to proof assertion (1). We assume first that v is a finite measure.
Recall that

JZfZ{E: UE](‘I’LEN, E,=AyxXBy, A, €&, B €. F, EkﬂEJ:@(k;/:j)}
k=1

is an algebraon X x Y , and & ® F = o(«/). Furthermore, the discussion preceding (5.39) shows
that assertion (1) holds for measurable rectangles A x B. Now it is easy to see that every E € &/
can expressed as a union of measurable rectangles of the form

m
E=|J(4;xBy) (5.42)
j=1
where the sets B; are mutually disjoint (but the sets A ; need not be disjoint). In addition, since for
eachx € X,

Ee=| J(A;%B})x (5.43)
=i

and (A x Bj)y is either empty or equals Bj, then the union in (5.43) is disjoint, so that by additivity
of the measure,

V(Ey) = iv((Aj X Bj)).
2

Thus, x — V(E,) is the finite sum of measurable functions, and hence is also measurable. This
shows that assertion (1) also holds for the elements of .&7. So if we set

¢={E€é&®F | (1) holds},

then & C %.

Claim: % is a monotone class. In fact, let {E, };> | C % be given.
If {E,} 1, we set E = ;| E,. Then for each x € X, {(Ey,)x} 1 and also Ex = Ui, (En)x , S0
if we set

fa(x) = V((En)x) and  f(x) = v(Ey), (5.44)

then by monotonicity of the measure, {f,(x)} 1 and hence by Theorem 1.4.2, f,(x) — f(x) for all
x € X. Now each f, is &-measurable since (1) holds for E,, and hence f is &-measurable as well
by Theorem 1.5.7.

On the other hand, if {E,} |, we set E = (), E,. Now for each x € X, {(E,)x} | and also
Ey =1 (En)x » so if we define f, and f as in (5.44), then { f,(x)} | so that by monotonicity and
finiteness of the measure, again f,(x) — f(x) for all x € X. Since assertion (1) holds for each set
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E, then each f, is &-measurable, so that again, f is &-measurable as well. Thus, E € ¢ again and
the claim is proved.

Since o C ¢ C & ® F = o(«/), the Monotone Class Lemma yields that ¢ = & ® %, thus
assertion (1) holds forall E € & ® ..

In the general o-finite case, there exists a collection {Y,};_; € F with ¥ = ;. ¥, and

v(¥,) < oo for all n. Replacing each ¥, with | J}_, ¥, we may assume that {Y,} *. For each n we
now set

v,(B) =v(BNY,) forBe Z.

Then v, is a finite measure on .% which coincides with v on measurable subsets of ¥,,. Now given
E € &R .7, we set

E,=EN(XxY,) (neN)

so that {E,,} +and also E = (J;"_, E,.. Since each v, is a finite measure and (E, ), C ¥,, we obtain
by the above that

X = Vn((En)x) = V((E”)X>

is &-measurable for all n. Now since E = |J;;_, E,,, we may repeat the arguments of {E, } T above
(which are valid for arbitrary V) to conclude that f(x) = v(Ey) is &-measurable. |

Theorem 5.4.6 Let (X,&, ) and (Y,.#, V) be o-finite measure spaces. Then for all E € & ® #,

(1 xV)(E) = [ VE)due) = [ 4E)av()

Proof. Again, by symmetry it suffices to show that

(1 xV)(E) = [ v(E)du(x) (5.45)

Suppose first that ¢ and v are finite measures. We let ./ be again the algebra generated by the
measurable rectangles, but now set

¢ ={Ec&®F |(545)holds }.

By (5.39), € contains all measurable rectangles £ = A x B. Thus if E € & is again expressed as in
(5.42),

E=] | By with the sets (E;), disjoint

then by additivity of measures and integrals,

m

(X V)(E) = Y1 x V(E) = X [ V(o)

au() = [ v(UE)auto) = [ v(E) dut)
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which shows that o C €.

Claim: % is a monotone class. In fact, let {E, }r_, C & be given.
If {E,} 1, we set E = |J;7_, E,. Keeping the notation of (5.44) we may apply Theorem 1.4.2
together with the Monotone Convergence Theorem to obtain

(1 % V)(E) = lim (1t x v)(E,) = hm/ ((En)x) dpt(x)

(5.46)
= lim [ (0 du() = [ ) duto) = [ v(ED) du

n—oo

which shows that E € %

On the other hand, if {E, } |, we set E = (,,_; E,,. We keep again the notation of (5.44). Since v
is a finite measure, then fj(x) is a bounded function, and as u is also finite, then fj(x) is integrable
over X. Now since 0 < f, < f; we can apply the Dominated Convergence Theorem to obtain
identity (5.46). Thus, E € ¥ again, and the claim follows.

Now since & C ¢ C & @ F = 6(/), the Monotone Class Lemma yields that € = & ® &,
thus the assertion of the theorem holds.

Next let i and v be o-finite. Then there exist collections {X,}7 | C & and {¥,}; | C F
which we may assume to be increasing, with X = ;1 X,,, Y = U, ¥ and u(X,) < o0, v(¥,) < o0
for all n. For each n we now set

Ha(A) =p(ANXy) (A€E),  wu(B)=Vv(BNY,) (BEF)
and
UXVIW(E)=UXV)(ENXyxY,)) (E€&®F).

These are all finite measures on the respective spaces and furthermore, by definition of the product
measure, it 1s not difficult to see that

(1 X V)p = ity % Vys
Now given E € & ® F, we set
Ey =EN (X %) (n € N)

sothat E, C X, X Yy, {En} 1 and also E = |J;,_; E,. By the case of finite measures we obtain that
for all n,

(U X V)(En) = (Hn X V) (En) = /X Vn((En)x) din(x)
= [ V(B dn) = [ v(En)s) dn)

where we have used the fact that E,, C X,, x ¥, so that in particular, (E,), C Y, and (E,), = 0 for
x ¢ X,. Applying the same arguments as in (5.46) then (5.45) follows. |

The next two theorems show that an integral over a product space can be expressed as an
iterated integral, just as we are used to from elementary calculus. The first theorem deals with
functions in the class .Z*, and the second with functions in L!.
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Theorem 5.4.7 (Tonelli) Let (X,&, 1) and (Y,.%,V) be o-finite measure spaces and let f € i
ZLHX xY,&®F). Then the functions

/fx y)dv(y) /fxydv)
h(y) = /fy(xdu /fxy )di(x)

are in £ (X), respectively £ (Y), and the double integral can be written as an iterated integral,

/Xxyf( A\ ¥y //fxydv ) dp(x //f x,y)du(x) dv(y). (547)

fg(X)

i
i

Proof. By symmetry, it suffices to show that g is measurable, and that

/ fl,y)d(uxv) //fxydv Ydu(x). (5.48)
Clearly, g,h > 0. The remainder of the proof is straightforward; we simply move through the steps
involved in the definition of the integral.

First let f be an indicator function, f = 1g for some E € & © .%#. Then by Example 5.10 and
Proposition 5.4.5,

80 = [ (16),0)dv0) = [ 15,0)dv() = v(E)

is &-measurable, and then by Theorem 5.4.6,

/' 15(x,y)d(i x V) = (U x V)(E) = | V(E
'XXY X (549)

_//1,: ) dv(y) dit(x) //1Ex>dv<>du<>

Nextlet f=Y7_ clg € ST (X XY, E®.F). Then fi = Yi_, ¢k (1g,),, so that by linearity
of the integral,

9= [ £OVV0) =Y o) where gu(s) = [ (1), 0)4v0).

Since each g;(x) is &-measurable, it follows from Theorem 1.5.6 that g is also &-measurable, and
then again by linearity of all integrals together with (5.49),

fduxv)= Z / lEkd(uxv):chA/ylEkdvdu
k=1 XxY k=1

// {g klng dvdy = //fdvdu,

XxY

that is, (5.48) holds.
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Finally, let f € £ (X x Y,& ® ) be arbitrary. By the Structure Theorem for Measurable
Functions, there exists as sequence {¢,} 1 in . " so that ¢, — f pointwise. Then for each x € X,
(@n)x €77, {(@n)x} T and (@,)x — fx pointwise. By the Monotone Convergence Theorem,

X)Z/Y.fx(Y)dV(W:,}SELg"(") where g,,(x)z/y(‘l’n)x(Y)dV(Y)-

Since each g,(x) is &-measurable, it follows from Theorem 1.5.7 that g is also &-measurable.
Furthermore, since (5.48) holds for each ¢,, since { [y (@,)xdVv} 1 and applying the Monotone
convergence Theorem several times, then

/ fd(uxv)=lim 0, d uxv—hm//(pndvdu
XxY

n—o ¥y vy n—oo

= | tim [/(pndv] du:// [1im g, dvd,u://fdvdu,
X n—roe Y X JY ln—oe XJY

so that (5.48) holds. |

We note that when f is integrable, then g(x) and i(y) must be finite valued a.e., that is, f
and /¥ will be integrable a.e.

Theorem 5.4.8 (Fubzm ) Let (X,&,u) and (Y,.%,V) be o- ﬁmte measure spaces and let f €
LY(X xY,6£®.F,1u x V). Then

freLNY,Z,v) ae x and el (X, &u) ae.y,
so that the functions
0= [fenave)  and k)= [ fey)dne
_ are are defined a.e. Furthermore,
glx) e LY(X,&,1) and h(yye L'(Y,Z#,v),
and

[ tendwxv) = [ [ fe)ave)duw = [ [ fxn)due ave). 650
JXxY JXJY JY JX

=g(x) =h(y)

Proof. Again, by symmetry we only need to prove half of the assertions.

Firstlet f : X x Y — R*. Since f is integrable, then so are /™ and f~, and hence by the Remark
following Tonelli’s Theorem, the functions (f 1), = (f;)" are integrable a.e. x, as are the functions
(f7)x = (f)~. This shows that f, = (f)* — (f,)” € L'(¥,.#,v) ae. x.

As usual, modifying g on a null set N ( to be precise, we modify f on the null set N X Y) we
may assume that the above holds everywhere, so that g(x) is defined everywhere. By definition of
the integral,

= [Fenave)  ad g 6= [ £ xnave),
Y JY
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so that by linearity of the integral and Tonelli’s Theorem,
/|gldM=/ (g7+¢) du:/ / (ff+f7)dvdu
Jx Jx xJy

:L/y;f\dvdu:LXylfld(uXV)<

since f is assumed to be integrable. This shows that g is integrable, and then we obtain by definition
of the integral as well as Tonelli’s Theorem that

Agdu=Ag+du—/xg-duz/x/yﬁdvdu—/x/yf—dvdu

= [ rravxw- [ pmdvxp = [ fdsxv),

XxY

so that the left-hand equality of (5.50) holds.
Now when f is complex valued and integrable, we simply apply the above to its real and
imaginary parts. The details are easy and left to the reader. [

I Exercise 5.10 Complete the proof of Fubini’s Theorem for complex valued functions. w

(R Givena & ®.#-measurable function f : X x ¥ — K, onc usually first applics Tonelli’s theorem

" to |f| in order to check whether f € L}(X x ¥). Then one can use Fubini’s theorem to express
the double integral of f as an iterated integral as in (5.50). The next example illustrates this
idea.

 Example 5.12 Let (X, &, 1) and (Y,.%, V) be G-finite measure spaces, f € L'(X) and g € L' (Y).

Set h(x,y) := f(x)g(y). Then by Example 5.9, his & @ #-measurable.
Claim: A is integrable, and

[ nwyduxv)=| [ fedu][[ s)d
Jxxy Ly

In fact, we have
/ |h(x,y)|d(vxu) = / / lh(x,y)|dvdu (by Tonelli)
XxY JXJY
= [ [1rllew)lavan = [ e[ [ 1s0)lav]an
= [ 1r@llglhdn =gl [ 1761w = gl 171 <.
JX JX

Hence, h € L' (X x Y) and we can apply Fubini’s theorem to repeat essentially the same computa-
tions,

/ h(x,y)d(v x 1) = / / h(x,y)dvdy (by Fubini)
XxY

~ [ [ rrsoravan
= [ 10[ [ savlan =] [ rerdu] [ s0)av].

This proves the claim. =
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