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In this chapter we introduce the notion of measure of a set and discuss some of it properties. 
Measuring the size of a set is not really a new concept: we already have studied this idea in the 
case of Euclidean spaces lF". In one dimension, it is the length of an interval, in two dimensions it 
is the area of a bounded set while in three dimensions, it is the volume of a bounded set. Recall that 
not every bounded subset of the plane can be assigned an area: its boundary has to be sufficiently 
"nice". Thus when generalizing the concept of area or volume to arbitrary spaces, we first must 
introduce the class of sets to which we will assign such a measure; this leads to the concept of a 
CT-algebra. 

Preliminaries 

Let us first review and clarify some concepts and notations used throughout. 
Given an arbitrary set K, we denote the collection of all subsets of 92 by ,-0 (fl) or 2n  and call 

it the power set of 92. 
Any collection d of sets can be indexed as d = fA;L 12, CA. Thus, we may denote the intersec-

tion of all set in d by 

flA. 
2eA 

for convenience, and we can treat the union of all sets in d in a similar way. 
A set E is called countable if there exists a surjection f : N —+ E. Thus, countable sets may be 

both, finite or infinite. In the latter case we will call E countably infinite or denumerable. 

A topology on 91 is a collection r c Y (Q) satisfying 
1. OEt and cEV, 
2. for every collection {Ua }aeA c r we have UaEA Ua E ', 

3. for every finite collection {U}L1  c r we have fl Ua E . 
The elements in V are called closed sets, and F c 92 is called a closed set if F' is open. 
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Chapter 1. Measure Spaces 

Algebras and Sigma-Algebras 
Definition 1. 111 Let 92 be an arbitrary set, and 	a non-empty collection of subsets of 9 (i.e. 

C 9 (9)). Then 
1. F is called an algebra of subsets of n (or an algebra on 2) provided the following hold: 

(Al) Whenever A E , then AC  E , 
N 

(A2) Whenever A1,A2,... ,AN  E 9, then U A E . 
n
-

1 
" is closed under formation of complements and finite unions" 

2. 9 is called a a-algebra of subsets of 9 (or a c-algebra on f) provided the following 
hold: 

(Al) WheneverA E , then AC E 9, 

(A2a) Whenever A1,A2,...,A,... EY,then UAE. 
n=1 

"9 is closed under formation of complements and countable unions" 

Clearly, every c-algebra 9 on a is also an algebra on f. Conversely, Example 1.1 shows 
that not every algebra is also a c-algebra. 

From the above definitions, the following additional properties of algebras and c-algebras 
follow immediately: 

1. Let 	be an algebra on 9. Then 
N 

(A3) Whenever A1 ,A2, . . . ,Ajj E , then fl A E 9. 
n=1 

"9 is closed under finite intersections" 
Proof. This follows from the fact that 

N N C 

n1

A, 	Acn 
 n=1 

together with properties (Al) and (A2). 
(A4) Whenever A,B E , thenA\B E 

" is closed under formation of differences" 
Proof. This follows from the fact that 

A\B =AflB', 

together with properties (Al) and (A3). 	 U 
(A5) OC9 0C9 	and 92 e g.  

Proof. By (Al) and (A2) above we have Q = A UAC E . It follows immediately 
that O=E3. 	 U 

2. Let 9 be a a-algebra on 91. Then 

(Ma) Whenever Ai,A2,...,A,... E,then fl An  E. 
n=1 

", is closed under countable intersections" 
Proof. This follows from the fact that 

C 

flA= Acn  
n=1 	n=1 

together with properties (Al) and (A2c). 	 0 

 

 

 

 

 

 

 

 



1 .1 Algebras and Sigma-Algebras 	 3 

• Example 1.1 Let fl be any set, and y Y () its power set. 

	

1. 	= {O, 921 is a a-algebra. In fact, it is the smallest a-algebra (and also the smallest algebra) 
ric. 

	

2. 	= (Q) is a a-algebra. In fact, it is the largest a-algebra (and also the largest algebra) 
on 92. 

3. Fix any E c L2. Then 7E = {,E,Ec,K} is a a-algebra. In fact, it is the smallest a-algebra 
(and also the smallest algebra) on KI containing E. 

4. Suppose that Q is infinite. Then 

, := {ECQ:Eis finite) 

is not an algebra as (Al) does not hold. However, 

{E c f): E is finite, or E' is finite} 

is an algebra, as one easily verifies. Clearly, 92 is the smallest algebra on f) containg all 
finite subsets of f). 
On the other hand, 92 is not a a-algebra. In fact, let {x , , X3,. . . } be a countable subset of 

f). Set E = U {X21} = {x2,x4,x6,... }. Now each singleton {XU } is in 2.  while E and EC 
k=1 

are both infinite sets, an hence, E V 92. Thus, (A2a) does not hold. 
5. On the other hand, 

{F c 12: F is countable, or FC  is countable} 

is a a-algebra for any f), as one easily checks. Clearly, 	is the smallest algebra on f) 
containg all countable subsets of f). 

6. Let f) be infinite, and {E} 1  be a countable family of pairwise disjoint subsets of f) whose 
union is f). Set 

J94 : {E Cf):E isthe union of some ofthe sets E}= 	E, :SCN 
Ij1ES 	I.  

It is left as an exercise to verify that 94 is a a-algebra on f). . 
The next two exercises may be taken as alternative definitions of algebras and a-algebras. 

Exercise 1.1 Let f) be a set, and let 9 be a non-empty collection of subsets of f) satisfying 
I. Whenever A C ,, then AC  E ,9, 

2. Whenever A,B E 9, thenAflB c 9. 
Show that 9 is an algebra on f). 

Exercise 1.2 Let f) be a set, and let 	be a non-empty collection of subsets off). Suppose, 
satisfies: 

1. Whenever A E Jr, then AC E 9, 

2. Whenever {A} 1  c ,, then fl A, 
n= I 

Show that is a a-algebra on f). 

 

 

 

 

 

 

 

 





1 1 Algebras and Sigma-Algebras 	 5 

Proof We need to show that properties (Al) and (A2c) hold for 	flA 	• 
1. Let A E fl 	. Then  E 9X for all A. Since each 92, is a c-algebra, then ACE ., for 

2EA 
all A, and hence 

ACE fl 	- 
)LEA 

2 Let {A,} 1  ci fl 	Then {A} 1  ci 	for all A. Since each 	is a c-algebra, then 
2EA 

U An  E ., for all A, and hence 
,z=1 

U AE fl gi.  
,a=1 	AEA 

We have shown that (Al) and (A2c) both hold for 9 which hence is a c-algebra. 	 U 

Definition 1.1.2 Given a collection X of subsets of 0 (i.e. X c 9(9) ), let {.}A  denote 

the collection of all c-algebras on 91 containing X. That is, 
1. Each 	is a c-algebra on 

2. XC 	for all A.EA, 

3. If 9 is a c-algebra on Q with X ci 9, then EU E A with 9 = 
Note that the collection {}EA  is not empty, as X ci 	and () is itself a c-algebra. 

We set 

g. :=  ng).- 
2 

Then X c 9, so that by Proposition 1.1.2, . is itself a c-algebra containing X. Furthermore, 
if 9 is any c-algebra containing X, then = .9 for some A E A, so that JO, ci 

Thus 9,, is the smallest c-algebra containing .', called the cr-algebra generated by X, 
and denoted by c('). 

. Example 1.2 	1. Let 92 be any set. If E ç  92, then 

c ({E}) = { ,E,Ec, } 

(which is the c-algebra E  of Example 1.1). 
2. Let 92 be any (possibly uncountable) set, and d = { {x} x E 911, the collection of all 

one-element subsets of 9 ("singletons"). Then 

d ci IF ci 92 : F is countable or F' is countable} ci c(d) 

Since the set in the middle is nothing else but the c-algebra 93 of Example 1. 1, it follows 
that 

c(d) = 	= IF C 92: F is countable or F' is countable}. 

3. Let 92 be an infinite set, and X = {E} 1  be a countable family of pairwise disjoint subsets 
of Q whose union is 9. Then c () is the c-algebra 	of Example 1.1 (The proof is left 
as an easy exercise). 
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Chapter 1. Measure Spaces 

(j) Let d c (9) with d c . Then d c . c cr(.). Since a(d) is the smallest 
_a-algebra containing d, it follows that cr(d) c cr(.). 

E.g. Let 92 be any set, and let 

d={x}:xEc} 	and 	={Ec9): Eis finite }. 

Since d c . c 	(the cr-algebra of Example 1. 1), it follows from Example 1.2 that 

and hence g;3  = cr(.%) as well. 

1.2 Borel Sigma-Algebras 
Definition 1.2.1 Let 92 be a metric space (or more generally, a topological space), and let 

U is open } 

denote the collection of open sets. Then cr(r), the cr-algebra generated by the open sets, is 
called the Borel cr-algebra on 9, and is denoted by (0). The elements of (0) are called 
Borel sets. 

It is in general not possible to describe all Borel sets. However, the following subsets of 91 
are always Borel sets: 

1. If U is an open subset of Q, then by definition, U E cr(r). 
2. If F is a closed subset of n, then FC  is open, and hence by (Al), F = (F E 

3. A set of the form M = fl G, with G1  open for all i, is called a G5 set. Note that a G5 

set need not be open. By (A3 a), every G3 subset of Q is a Bore! set. 

4. Similarly, a set of the form M = U Fj, with F1 closed for all i, is called an Fe,. set. Note 
j=1 

that an Fa  set need not be closed. By (A2cr), every F subset of !Q is a Bore! set. 
5. If in addition, il is a T1 space (this is always true for metric spaces), then singletons 

{x} are closed, and thus they are Borel sets. It follows from (Ma) that all countable 
subsets of C are Borel sets. 

Next we want to study generating sets for the Borel cr-algebra .(I) on the real line. The main 
tool will be Lindelöff's Theorem. 

Let Ao be the collection of all non-empty open intervals with rational endpoints, 

r<s,r,5EQ}. 

The map 

Jr,, E Jb (r, S) G  x Q 

clearly is injective. Since Q x  Q is a countable set, it follows that 	must be countable as 
well: There exist only countably many distinct open intervals with rational endpoints. 

 

 

 

 

 

 

 

 



1.2 Borel Sigma-Algebras 
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Lemma 1.2.1 (Lindelöff's Theorem for the real line) 
Every non-empty open set U c JR is the countable union of bounded, open intervals with rational 
endpoints. That is, 

N 

U=U(rn,sn) 	NENU{oo}, r,sEQ. 

Proof. Let U ç R be open, U 0. Thus, for each x E U, there exists £ = £ > 0 such that 

(x—,x+c) cu. 

Now by density of the rational numbers in JR, there exist r = TX, s = s,, E Q so that 

x—E <r<x< S <x+E. 

Then 

J := (r, s) C (x—E,x+E) c U. 

That is, each J is a bounded, open interval with rational endpoints (i.e. JX  E do),  and x E JX U. 
Now 

U = U {x} c UJX C U 
xEU 	xEU 

shows that 

U= UJx 	 (1.2) 
x€U 

However, by the previous Remark only countably many of the intervals .JX  are distinct, and we can 
list the distinct interval as {J} 1, with N E N or  = oo. Thus, the union in (1.2) is really a union 
of the intervals {J} 1, 

U=Jn, 1   

	

which proves the lemma. 	 U 

Next we show that the Borel a-algebra on R is generated by the collection of open intervals 
with rational endpoints. 

Theorem 1.2.2 .%(R) = a(.), where 

- 	Jo:={Jr,s =(r,$) r<s, r,sEQ}. 

Proof. Let 

r:={UCIR Uisopen}. 

Clearly, -0'0 c T, and hence a(flj) 9 a(r) = 

 

 

 

 

 

 

 

 



8 	 Chapter 1. Measure Spaces 

To prove the reverse inclusion, let U E r be arbitrary. By Lindelöff's Theorem, we can write 

N 
nENLJ{oo}, JEf0. 

n=1 

Since J, e _Oo C a(flb) for all n, it now follows from (A2) or (A2a) that U e a(fo). As U E t 
was arbitrary, we conclude that 

ca(fo) 

Now .(R) is the smallest a-algebra containing t; hence 

(R) c a(fo). 

Thus the theorem is proved 
	 . 

Exercise 1.3 (Additional generators of (R).) 
1. Show that (R) contains all intervals (i.e. open / closed / half open - both bounded and 

unbounded - intervals). 
2. Let 

J'l:={Ja,b=(a,b) : a<b,a,bER}, 

denote the collection of all bounded, open intervals. Show that .(R) = 
3. Let 

_02:= {Jr,s = [r,s] : r< s, r,s E Q} 
={J,.,=(r,s] : r<s,r,sEQ} 

r<s,r,sEQ}. 

Show that .(R) = a(J) = c() = 
4. Let 

:= {.Ta,b = [a, b] : a < b, a,b E R} 

56:={Ja,b=(a,b] :a<b,a,bER} 

a<b,a,bERI. 

Show that ,(R) = a(9) = a(f) = 

1.3 The Extended Real Numbers 

In measure theory and the theory of integration, it is very convenient to treat the symbols oo  and 
- as if they were numbers: 

Definition 1.3.1 The set 

R* := RU {oo, —oo} 	(also written 

is called the set of extended real numbers. 

 

 

 

 

 

 

 

 



1 3 The Extended Real Numbers 

1, We extend addition from IR to lR' as follows: For all a E R, 

00 + a = a +00 = 00 

—°°+a = a+(—oo) 

00 +0000  

—00+(—oo)= —00 

Naturally, we define oo - := 00+ (—a), etc. Observe that 00-00  is undefined! Similarly, 
we define multiplication by 

100  ifa>0 	 1_00 ifa>0 

oo .a=c .00 = 0 	ifa=0 and (-0o) .a=a . (—oo)= 0 	ifa=0 

ifa<0 	 oo 	ifa<0 

for a E R. Observe here that 0.00 = 0 is defined! Division is defined as usual, and 

00 	 if ifa>0 

al_-oo 	ifa<0, 

while =0 and is undefined. 
2. Next we extend the order to R' by setting 

—oo<a<oo VaER. 

By this definition, every set E c R is bounded above and bounded below. Furthermore, 
supE and infE always exist in R*:  

(a) case 00 E: Then sup  = 0ø 

(b) case oo 0 E, and E n  is not bounded above in IR: Then sup  = 00 

(c) case oo E, and E n IR 4  0 is bounded above in R: Then sup  in R coincides with 
the usual supremum of E as a subset of R. 

(d) case E = 0 or  = {—oo}: Then sup  = —00•  

3. Limits of sequences (x) in lR may now include ±oo. 
(a) Finite limits: If L e R, then 

limx0 =LVe>0NEN, IxnLI<E Vn>N. 

(b) Infinite limits: 

hmx=oo<=> VM>0 IN EN, x>M Vn>N. 
fl —+oo 

hmx=_oo4zVM>0NEN, x<—M Vn>N. 
n-4—  

Every increasing sequence (x) T in R*  converges to its supremum: 

urn x, = sup{x,1  : n e N}. 

Similarly, every decreasing sequence (x0) . in JR*  converges to its infimum. 

 

 

 

 

 

 

 

 



Chapter 1. Measure Spaces 

4. Limit superior and limit inferior are defined as usual. If (x) is any sequence in R*,  then 

lim sup x =1imx := inf sup xk. 
n 	n 	' k>n 

Since the sequence (yn), y, := supxk, is decreasing, it converges to its infimum, and hence 
k>n 

limx= 1imy 	lim sUpXk. 	 (1.3) 
fl 	 fl_3OO 	flOO k>n 

Similarly, 

lim infxn  = iirix := sup infxk, 
n 	n 	n k>n 

and setting Z := inf Xk then 
k>n 

lix 	liM Zn = urn infxk. 	 (1.4) 
fl-300 	 n—*°o k>n 

Since z 	for all n, then by (1.3) and (1.4), 

liM Xn <limx,. 
n 

Furthermore, the sequence (x) converges to a limit L E 1' if and only if 

lim Xn  = limx = L. 
n 

The details are left as an exercise. 
5. Next consider an infinite series 

L ak, akEW. 
k=1 

As usual, we say that this series converges in IR*,  if the sequence of its partial sums converges, 
i.e. if 

S=uim L ak 

exists in R*,  and we call S the sum of the series. 

Recall: If Lak is a series in R, 0 < ak < on for all k, then we can freely rearrange the series: 
If a : N F- N is any bijection, then 

= a), 
k=1 	k=1 

even in case of divergence to oo•  The same is true for series of non-negative terms in JR: If 
ak E [0,00] for all k, then 

(a) The series Lk ak always converges in R*, as its sequence of partial sums is increasing, 
(b) for every bijection a: N H-* N (=rearrangement), 

Y. a/= E 2a(k). 	 (1.5) 
k=1 	k=1 

 

 

 

 

 

 

 

 



1 A Measures 

The details are left as an exercise. 
It thus makes sense to introduce unordered sums: let I be a countable set, and for each i E I, 
let 0 < a, <00. We define the unordered sum 	j  ai by 

Y.ai := Y.aa(k) 
iEI 	k=1 

where a: N —+ I is any bijection. By (1.5) this sum is inoepenciem or me cnoice or u. 

1.4 Measures 

We are now ready to formally introduce the concept of a measure. 

Definition 1.4.1 Let 92 be a set and 9 a a-algebra on n. 
The pair (92, ) is called a measurable space, and elements E of F are called measurable 

sets. 
1. A measure on (Q,) is a function u : 9 —* [O,00] satisfying: 

(Ml) j1(0)=0, 
(M2) Whenever {E } 	c F is a countable collection of pairwise disjoint sets, then 

	

t (Un) = 	 ("a-additivity") 

The triple (,,ji) is called a measure space. 
2. Ifi() <oo, then j.i is called afinite measure, and (9,,4) afinite measure space. 
3. If there exists a countable collection {E} 1  c 	satisfying 

(a) 0 = U En, and 
n=1 

(b) i(E0 ) < oo  Vn, 
then i is called a a-finite measure, and (n, 9, jt) is called a a-finite measure space 
(Note that the sets E need not be disjoint). 

(j) Since unions of sets are unordered, the sum on the right-hand side of (M2) is really an 
unordered sum, 

= 
(nEN / nEN 

CR Let {En  }.i  c 9 be afinite collection of pairwise disjoint sets. Set E+i = E+2 ... =0. 
Then {E' 1  is a countable collection of pairwise disjoint sets in , and applying (Ml) and 
(M2) we obtain 

(M2') 	L(UE ) = 	) (U 	i(E) 	i(E)+ E A  (0) 
nl 	 nl 	nl 	 nN+1 

=P 0= 
n=1 	n=N+I 	n=1 

This property is called (finite) additivity. 
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Chapter 1. Measure Spaces 

• Example 1.3 The following measures can be defined on any measurable space (f, ): 
1. A trivial measure is given by 

	

(E)=O 	VEE. 

2. Another trivial measure is given by 

(E) 

	

lo 	ifE=ø 
jt = ( oo EE,E74ø. 

Note that 

v(E)
{o ifE=0 

— 1 EE,E=/zø 

is not a measure (unless 9 = {ø, 9}). In fact, pick E e 9, E 74 0, E 74 91. Then 

v(E)+v(Ec)=l+1=27~v(EuEc)=v(c)= l, 

which shows that V is not even additive. 
3. The counting measure is defined by 

/.t(E) = J
' card(E) 	if E E 9 is finite 
00 	 if E E 	is infinite. 

Then 
(a) yc is finite 	91 is a finite set. 
(b) yc is cr-finite 	Q is a countable set. 

Note: The counting measure is the natural measure when 92 is a countable set. It is not a 
"good" measure when 91 is an uncountable set. because it is not cr-finite in this case. 

To illustrate the non-suitability of the counting measure in case of an uncountable set, consider 
the case where 92 = R with 	() and i, the counting measure. Set 

Ei={:kEN} 	and 	E2=[0,11. 

Then /i(Ei) 	= oo, which contradicts our intuition that the two sets have very 
different "sizes". 

4. Fix a point a E 92 and set 

ifaE 

	

(1 	ifaEE 

for all E E 9. Then 5a is a finite measure on (9, ) called the Dirac one-point measure. 
U 

Exercise 1.4 Prove the assertions in 3. and 4. of Example 1.3 above. 	 Is 
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• Example 1.4 (The Lebesgue measure on the real line) Consider the measurable space (R, %(R)). 
In Chapter 4 we will study the following: 

1. There exists a unique measure A on .(JR) with the property 

X(I) = b -a 

for any bounded interval I with endpoints a < b. This measure A is called the Lebesgue 
measure. 

2. Since 

R=UEn, 	E,=[—n,n] 

and 

.X(E) =n—(—n) = 2n < co, 

it follows that A is c'-finite. 
3. The Lebesgue measure A is compatible with the topology of JR in the following way: 

(a) 2, (K) <oo VK c JR compact, 
(b) A(E)=inf{A(U):EcUUcRis open } VEE.(JR). 

("outer regularity") 
(c) 2, (E) = sup{ A(K) : K c E, K c JR is compact } VE E (R). 

("inner regularity") 
(Because these three properties hold, A is called a regular Borel measure.) 

• 

Exercise 1.5 Given A C JR and x E R, set 

x+A :={x+y:yEA} 

—A :={—y:yEA} 

xA :={xy:y EA}. 

Show: 
I. 91 := {x±A : A E (R)} is a cr-algebra on R. 

2. .i  contains all open intervals. 
3. 91 ='(JR). 

Thus .(R) is invariant under translations. Similarly show that 
1. .2:={—A :AE.(lR)} =(lR). 
2. Ifx>O, then 3:={xA :AE(R)} =.(R). 

In fact, in a later exercise in Chapter 4 you will show that VA E .(JR), 

A(x+A) =X (A) 	the Lebesgue measure A is 'translation invariant' 

A(—A) = A(A) 	 the Lebesgue measure A is 'inversion invariant' 

A(xA)=xA(A) 	(x>O) 

.,.-.-- 
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Chapter 1. Measure Spaces 

Theorem 1.4.1 (Properties of Measures). Let (92, , ji) be a measure space. 
1. Whenever A,BE and ACBthen 

(M3) 	/1(A) 5 j..t(B). 	("monotonicity") 

2. Whenever A,B E with  c B and /1(B) < 00  then 

/i(B\A) =/1(B)—/1(A). 

3. Whenever {E0 } 1  ç 9 is a countable collection of measurable sets (not necessarily 
disjoint), then 

	

/1 U E,, < 	/1(E0 ) 	 ("c-subadditivity") 
\n=1 / n1 

4. Whenever {E} 1  C 9 is a finite collection of measurable sets (not necessarily disjoint), 
then 

/N \ N 

	

( U E0  ) < 	u(E,) 	 ("subadditivity") 
\n=1 / n=1 

Proof 	1. Decompose B as 

B = (B\A) LJA, 

a disjoint union. Since 0 < u (B\A) and p is additive, then 

/1(A) <u(B\A)+/1(A) = /1(B). 	 (1.6) 

2. If u (B) < 00, then by monotonicity, t (A) < 00  as well. We may thus subtract /1(A) from all 
sides of (1.6), and obtain 

/1(B)—/1(A) =1(B\A). 

3. Let {E0 } 	C F be given. By Theorem 1 .1 .1, there exists a collection {B0 } 1  ç . of 
pairwise disjoint sets satisfying 

(a) B0 CE0  for all n, 

(b) U'=1 B0  = U=1 En. 
Thus, 

/1 (U) = (u) 	 (1.7) 

4. Additivity follows from (1.7) by setting EN+I = EN+2  
U 

Inspection of the proof shows that condition t (B) < 00  in part 2. can be weakend to /1  (A) < 00. 

It cannot be removed completely, however. For example, Let fI = N, = 	and 11 be 
the counting measure. Set 

A={2k kENJ, 	B=N. 

Then B\A = {2k - 1 k e N}, the set of odd, positive integers. We have 

=00-00 

which is undefined, while also i(B\A) = oc. 
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Exercise 1.6 For each n E N, let ji, be a measure on (f, ). Choose a sequence (a0), 
0< an  <ooVn. 

1. Define i 	—* [0,00] by /2 = al P1 + a2u2 . That is, 

/2(E) = a1/2i(E)+a2/i2(E) 	VE E 9. 

Show: 
(a) /2isa measure on(,). 
(b) If Al and /12 are finite measures, then u is a finite measure. 
(c) If Ui and /2  are a-finite measures, then /1 is a a-finite measure. 

(Note By induction the above statements extend to finite sums U = 
2. Next define 4u : 9 —> [0,00] by /2 = That is, 

/2(E) = 	a/2,1 (E) 	VE E 9. 
,= I 

Show: 
(a) /1 is a measure on 
(b) If there exists M < oø so that g,(92) <M for all n, and if 	a0  <oo, then /.L is a 

finite measure. 
(c) Show by example: Even when the yn  are all finite measures and'- a0  <00, then 

/2 need not be a-finite. 

Definition 1.4.2 A countable collection {A0 } 1  of sets is called 
• increasing, if An  c A0 1 for all n. We write {A} . 
• decreasing, if A0  A0 1 for all n. We write {A0 } . 

Theorem 1.4.2 Let (n,,/L) be a measure space, and JA, } 1  c 9. 

1. If {A0 } T,  then (U A0) = lim/2A0 ). 

2. If {A0 } , and /2(A 0 ) <00 for some n0  e N, then (nAn) = lim/2(A0). 

Proof. 	1. Suppose that {A0 } t. By Theorem 1.1.1, there exists a collection {B} 1  ç 9 of 
pairwise disjoint sets satisfying 

(a) B0  clA0  for all n, 

(b) U'=1 B0  = U=1 A0 for allN E NU{oo}. 
Thus, 

/2(UAn) /2(UBn) 	E /2(B0) =lim E/ 2 (Bn) 
n=I 	 n=i 	n=i 	 n=1 

iimj.t 
(

U
n=1B) 
	lim/L (JAn) {Al A'IL0 /L(AN) 

which was to be shown. 
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2. Suppose that {A0 } .. and ji(A,) < 00. For each n E N, set 

:=A 0 \A 

Then {E} T, so that by the first part, 

(U  E,,) 	 lim (A 0\A) 
 

[p.(A)i(A)] 	u(A 0 )—limji(A). 

On the other hand, as 

E 	(A0  \A0) = 	0 0  flA) = A00  fl (UA) 
= A00 n (n An) =  An0\(nAn) 

n=1 

it follows that 

(D En) = 	 Afl))mm4.1  A) 	(FAn). 	(1.9) 

Comparing (1.8) and (1.9) gives 

(A 0 ) - ( ñAfl) 	(A 0 ) - lim A (Ar ). 

Since ji (An.) < 00, we conclude that 

(n) =lim(A). 

Thus, the theorem is proved. 

In part 2. above, the condition u (A 0 ) < 00  can not be removed. 
For example, Let 92 = N, 9 = £3() and j.t be the counting measure. For each n E N, set 

A0 ={n,n+1,n-f-2,...}. 

Then {A} .1.  and t(A0 ) = oo for all n. The fact that fl A = 0 gives 

() 
=)=Olim(A)=limoo=00. 
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Corollary 1.4.3 (Borel-Cantelli Lemma). Let (9, 9, t) be a measure space, and {A,1 	c 
a countable family of measurable sets. If 

Lt(A)<oo 	 (1.10) 
n=1 

then 

(ñUA) =0. 
n=1 i=n 

Proof. For each n, set En 	U A. Then 
i=n 

1. {E} and 

2. A (E) 	(u A1) 	Li(Ai) < 	< oo for all by assumption. 
j= 	Ibm 1.4.1 	 1=1 

We can thus apply part 2. of Theorem 1.4.2 to the sets {E } to obtain 

A(nUAi)=A(nEn) thmIA.2 n-+- 
=limi(E,1 ) 

n=li=n 	 n=1 

= urn 11 ( Aj) < lim Y A (Ai) =0 
fl+0° 	 Ihm 1.4.1 n--+-

1=0 	 I —fl 

by assumption (1.10). 	 I 

One easily checks that 

(0 E 	A1 <r 	w E A1 for infinitely many i. 
n=1 i=n 

So Borel-Cantelli's theorem says that if i u (A0 ) < 00  then 
n=1 

{ (0 E Q : (0 E An  for infinitely many n} 

has measure zero. 

Exercise 1.7 Recall that (, , t) is called or-finite, if there exists a collection {E0 } C 	with 

(i) I1(En)<ooVn, 

(ii)=U=1E0. 
Show: 

1. the sets E0  above may be assumed to be disjoint. 
2. the sequence of sets {E0 } may be assumed to be increasing. 
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Null Sets 

Definition 1.4.3 Let (, 9, t) be a measure space. A set E e F is called a null set (or a /1-null 
set or a set of measure zero) if ji (E) = 0. 

• Example 1.5 Let (Q, ) be any measurable space. 
1. Fix a E 92 and consider the one-point Dirac measure 5a  Then 

EEisa null set 	6a (E)=0 	aE. 

2. Let A, denote the counting measure. Then 

E E is a null set 	 =0 	card (E) = 0 	E =0. 

3. Let  be any measure on 
(a) If E E 9 is a null set, and A E 9 with A c E, then by monotonicity, 

O<ji(A)<ji(E)=O, 

so that /1(A) = 0 also. ("Measurable subsets of null sets are null sets") 
(b) If {E}' 1  c , N N U J—} is a countable collection of null sets, then by subadditiv-

ity, respectively o-subadditivity, by 

fN \ N 	N 
O</i( UE) </i(E)0=0 

\n=1 J n=1 	n=1 

which shows that U=i E,, is a null set. ("Countable unions of null sets are null sets") 
U 

• Example 1.6 (Some)L-null sets in .(JR)) 
1. Let E = {x}, x ER be a singleton. Since E = fl 1 I, I = (x—,x+), then by 

Theorem 1.4.2, part 2, 

X(E)=limA(I)=lim=0. 

Thus, all singletons are /1-null sets. 
2. Let E = {x} 1  c JR be countable, where N  NU{oo}. We can write E as a countable 

union of singletons, E = UN= i{xn}. It follows from Example 1.5, part 3, that E is a null set. 
Thus, all countable subsets of JR are 2-null sets. 

3. Recall the Cantor set Sk' which is of the form n En , 

where each E, is the disjoint union of 2"  intervals of length 1w  each, 

E1 = [0,.]u[,1] 3 

	6 7 	8 
E2— [o,] U [. 	U 	U [,i] 

1 	23 	67 	89 
E3= j3 	T3 3 	j3 j3 	T3 3 

1819 	2021 	2425 	26 

	

U [-,] U 	U 	U 
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Since {E,} 4. and 2L(E) = 2u1. = ()" for all n, then by Theorem 1.4.2, part 2, 

(3) 

2
1imA(E)=lim 	0. 
n—+— n-4—  

The Cantor set is an example of a A.-null subset of R which is uncountable. 
5 

1.5 Measurable Functions 

In the realm of topological spaces, one is naturally interested in mappings which are compatible with 
the topologies. These are the continuous maps. Recall that a map f: 9 —+ H between topological 

spaces (92, ,r) and (11, ,c) is said to be continuous, if f'(U) E 't VU E 1C. That is, pre-images of 
open sets are open. 

In the realm of maps between measurable spaces, we impose a similar requirement: 

Definition 1.5.1 Let (9, ') and (H, ) be measurable spaces. A mapping f: n —4 Ii is said 

to be (, ) -measurable, if 

f'(E)E 9 	VEER.  

(That is, pre-images of measurable sets are measurable sets.) 
When H is a topological space and cf' = (H) is the Borel a-algebra on H, then we simply 

call f an 9-measurable mapping. 
When 92 and IT are both topological spaces, and 9 and 9 are their Borel a-algebras, then 

we call f a Borel mapping. 

We are mainly interested in mappings f: C1 	Jl (or more generally, I2 -4 Rit), that is, 
' in functions. By the above definition, such a function f is 9-measurable, provided that 

f 1  (E) E F for all Borel subsets E of R. 

The next theorem says that in (1 .1 1) it suffices to only consider the generators of the a-algebra 
9. 

Theorem 1.5.1 Let (1, ) and (U, ) be measurable spaces and f: 9 —+ fl Suppose that 

= a(X) (i.e. e is the a-algebra generated by a collection X of subsets of H). Then 

f is  (, ff )-measurable 	f-1(E)C9 VE E f' 

Proof. =: Obvious by (1.11). 

Suppose that 

f'(E)E 9 	VEX. 	 (1.12) 

Let us set 

={E c  : f-1  (E) e}. 

Clearly, X c &0  by assumption (1.12), and also &0  C . 

Claim: 	is a a-algebra. 
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(Al) Let E e 	so that f 1  (E) E . Since 9 is a a-algebra, we have 

f(Ec) = 

which shows that EC e 61, as well. 
(A2a) Let {E} 1  c 60, so that f (En) E 9 for all n. Since Y is a a-algebra, we have 

f 1  (U E) 	(En) 
(A2)  

which shows that U'= E E as well. 
Thus the claim is proved: 9, is a a-algebra containing X. 

Now as a(') is the smallest a-algebra containing LX', it follows from the claim that a(') ç 911, 
and hence that 

I

This shows that 6, = 9, so that (1.11) holds. That is, f is an (, )-measurable function. 	U 

Corollary 1.52 Let (Q, 'r) and (II, ic) be topological spaces (for example, metric spaces). Then 
every continuous function f: 9 —+ H is a Borel function. 

Proof. Recall that the Bore] a-algebras are generated by the open sets: JF := 
and S := (ll) = a( ic), where 'r and ic denote the collections of open sets ("topologies") on 
respectively H. 

Now let E E ic. Since E is open and f is continuous, it follows that f (E) is also open, that is, 
f 1 (E) E r C (9). We have shown that 

f(E)E 	/EEc, 

hence by Theorem 1.5.1, f is (,)-measurable. 	 U 

Theorem 1.5.1 allows us to give a simple characterization of real valued, 9-measurable 
functions: 

Corollary 1.5.3 Let (i), ) be a measurable space and f: n —+ R. Then 

	

f is -measurable <z 	f ' ((a,00)) E 	Va E R. 	 (1.13) 

Proof. Let us set 

':= {(a,00) : aERI. 

Choosing 61  = (R), by Theorem 1.5.1 we only need to prove the following claim: 
Claim: (R) = 

In fact, clearly X c (R), so that a(X) c (]R). To prove the reverse inclusion, recall 
that by Theorem 1.2.2, 

%(R)=a(), where Jo={(r,$)ClR:r<s,r,seQ}. 
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We first show that A0 ç o(X). To this end, let an arbitrary interval (r, s) E fib be given. 
We can write 

00 

(r,$) = (— oo,$) n (r,00) = fl ( s— 	n (r,00) 

n=1 

Now since (r, 00) E X and (s— 1,°°) E X for all n, it follows from properties (Al), (A3) 
and (A3 a) of cs-algebras that (r, s) E 	X'). This shows that fib c 
It follows immediately that 

= cr(fo) c o'), 

which proves the claim and the corollary. 

Observe that condition (1.13) can be restated as: 

f: 91 —* JR is9-measurable 	{ w E 92 : f(o) > a } E 	Va E JR. 

Since we will work with extended real-valued functions, we can make use of this characteriza-
tion to extend the concept of measurability to functions f: Q —+ R: 

Definition 1.5.2 A function f: 	R is said to be 9-measurable if 

f 1 ((a,o])={wE9 :f(w)>a}E 9 	VaER. 

Theorem 1.5.4 Let (, 	) be a measurable space and f: n — JR* 

T.F.A.E. ("The following are equivalent") 
1.  { o e C1 : f(o) > a } E Va ER. (i.e. f is 	-measurable.) 

2.  {wE:f(w)>a}E F VaE]R. 
3.  {oEf2:f(w)<a}E 9 VaER. 
4.{wE1:f(w)<a}E 9 VaER. 
5. {wE:f(w)>a}E F VaEQ. 
6.{wE:f(a)>a}E 3F VaEQ. 
7.{wEn :f(w)<a}E 9 VaEQ. 
8. {oEQ:f((o)<a}E VaEQ. 

Proof. We will make use of properties (Al), (A2) and (A3) of o-algebras. 
First we show the implications 1, = 2. = 3. => 4. = 1. 

I. = 2.: Suppose that 1. holds. Then for every a E JR. 

wC92 	= fl{wen :f(w>a—}E, 

Eby 1. 

which shows that 2. holds. 
2. = 3.: Suppose that 2. holds. Then for every a E R, 

{wE:f(w)<a} = 

€ by 2. 

which shows that 3. holds. 
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3. = 4.: Suppose that 3. holds, Then for every a E R, 

	

n=1 	
Eby3. 

which shows that 4. holds. 
4. = 1.: Suppose that 4. holds. Then for every a fi ll, 

{E:f(o))>a} = [{w:f(w)<a}jCE, 

E.by4. 

which shows that 1. holds. 
The implications 5. =. 6. 	7. => 8. = 5. are proved in exactly the same way. 

It is left to show that 1. '= 5. 
1. => 5.: This is trivial. 
5. => 1.: Suppose, 5. holds. Let a E R be arbitrary. By density of Q in R, we can pick a sequence 

(q,) in Q so that 
(i) a <q for all n, and 

(ii) q —* a. 
So if f(w) > a then f(w) > qn > a for sufficiently large n, and hence 

	

n=1 	
E,by5 

which shows that 1. holds. 
This completes the proof. 	 . 
• Example 1.7 Let (9, .') be any measurable space. 

1. Given a subset A of 9, we define a function 1A : n —+ R by 

1A (0)) 	
Ii 	ifoiEA 

	

O 	ifoA. 

It is called the characteristic function or indicator function of the set A. 
Claim: 1A  is an '-measurable function 4=> A E 9. 

To see this, for each a c R, set 

E,,:= {o E 9.: 1A ((0) > a}. 

Then 

1l 	ifa>l 

Ea  A ifO<a<1 

ifa<O. 

Since 0, 92 E 9' always, we see that 

Ea E VaER AE 

which, by Definition 1.5.2 of an '-measurable function, proves the claim. 
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2. Every constant function f(c)) = c is p-measurable. 
To see this, note that for every a E R, 

ifa>c 
Ea :={WEE12:f(CO)>a}= 	. — 

ifa<c 

Since Ø,.Q e 9, the assertion follows by Definition 1.5.2 of an -measurable function. 

Exercise 1.8 Show: 
1. For all A,B c 92 we have 1AnB = 1A 1B• 
2. For aIlA,B c 9 we have 1AUB = lA+1B1A1B. 

3. For all AC9) we have lAc= i — iA. 

4. For all A,...,A,CQwehave lflnjAk =JTk=llAk. 
5. For all A, . .. ,A ç 92 which are pairwise disjoint (i.e 

-U'=IAk = 	1A• 
6. The last two assertion also hold for n = oo. 

Ak flAy = 0 if 	j) we have 

to 

Exercise 1.9 Show that every monotone increasing function f: R —+ R is a Borel function. 
(Increasing means: Xl <x2 = f(xi) f(x2)). 

Exercise 1.10 Let 92 = Rand = {E c R : E is countable orEc  is countable}. Show: 
1. The function IQ is .-measurable. 
2. The function f(x) = x is not s-measurable. 
3. If h : R —* R is continuous, then h is s-measurable 	h is constant. 

Theorem 1.5.5 Let 	be a measurable space, and f,g : L2 —+ R be -5F-measurable func- 
tions. Then 

1. {co e K2: f(w) <g(w)} e 

2. { co E 92 : f(w) g(w) } E , 
3. a) G K2 f(w)=g(w)}E9. 

Proof. 	1. We make the following observation: Suppose that f(w) <g(co) at some co e 9. Then 
by density of Q in R, there exists q E Q so that 

f(co)<q<g(c)). 

Hence, 

{we : f(co)<g(w)} = U{we : f(w)<q and q<g(w)} 
qEQ 

= U (we 92 : f(w)<q}fl{(oeI2: q<g(co)}) e 
qEQ 	

E-9 by Thm 1.5.4. 	E9 by def. of meas. fn. 

by properties (A2) and (A3) of a ci-algebra. 

23 

ff 

 

 

 

 

 

 

 

 



24 
	

Chapter 1. Measure Spaces 

2. By property (Al) of cr-algebras, 

{ 0) E El : f(a)) g(w) } = { co E 92 : g(o)) !!~ f() 
}C 

E9 by Part 1. 
(Al) 

3. By property (A3) of cr-algebras, 

0)E92: f(co)=g(w)} 

= {coEc : f(w)!~g(co)}n{(oec : g(w):5f(co)} E r• 

EbyPart2. 	 Eby Part 2. 
(A3) 

U 

Let f,g : n -# R and a E R. As usual, algebraic operations on these extended real valued 
functions are defined pointwise. Thus, we define functions 

of by (af)(co)=af(co) 	V0J EQ 

f+g by (f+g)(w)=f(w)+g(co) 	Vcocgl  

(this requires that f(w)+g(co) 	 v(0) 

fg by (fg)(w)=f(co)g((0) 	VQ  

g 
by (t)(CO)= f('0) VWE n  

g 	g(w) 

(this requires that g(w) 	0 and 	 Vco) 

max(f,g) by max(f,g)(w) =max(f(co),g(w)) 	Vco E9 

min(f,g) by rnin(f,g)(co) =min (f(w),g(o))) 	Vo)EQ 

We then set 

= max(f,0) 	"positive part off" 

f = - min(f, 0) 	"negative part off' 

If I = f +f 	"absolute value off' 

Some observations: 
1. For all wEQ, 

f(co) 	max(f,0)(w) = max(f(w),0) 
= {0))

O 

Similarly, 

0 
f(co) 	—min(f,0)(w) = —min(f(w 	

1 
),0) 

= 

if f(co)>0 

if f(co) <0. 

iff(co)>0 

if f(w) <0. 
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2. For all w E 92, f(w)f(o) = 0, that is, ff = 0. 
3. For all o.)EK, 

f((0)+f(w) 
= { 

f(w)+0=f(() 	iff(w)>0 
0—f(w)=—f(w) 	if f(w)<0 = 

and hence, 

fw) 
def

. (f+r)() = f+(f() = 

so that If I is the usual pointwise defined absolute value function. 
4. Similarly, for all w E £, 

+ 	— w  — f f(w)-0=f(w) 	if f(w > ) 
0 P- 	— f () - 	

0—[—f((0)] =f(w) 	if f((0) <0 J — 

and thus, 

Theorem 1.5.6 Let (1, ) be a measurable space, f, g : 92 —* R be 9-measurable functions, 
and a e R. Then the following functions are all '-measurable (provided that they are defined 
on): 

af, f+g, fg, , max(f,g), min(f,g), f, f, Ifl.  

Proof. af: Let a be any real number. Then for every a E R, 

	

I{wE : f(w)>} 	ifa>0 

J {wE Q : f(w)<} 
Ea : {w: af(w)>a} = 

	

I0 	ifa=0 and a>0 

I ifa=0 and 

which, by Theorem 1.5.4, shows that Ea  E F. It follows by Definition 1.5.2 that af is 
,F-measurable. (Note that this argument works even when f(w) = ±oo for some (0.) 

f-+-g: First we claim: for each a ER and (o E Q, 

f(c))+g(w)>a 	qEQ, f(w)>q and g(w)>a—q. 	 (1.14) 

In fact the "=" part is obvious (even when f(o) = oo and/or g((0) = oo). 

To prove the "=" part, we assume that the left-hand side of (1.14) holds. Then in particular, 
f(w) 74—oo and g(w)—oo,and 

f(w)>a—g(w). 	 (1.15) 

Now by (1.15) and density of Q in R, we may pick q E Q so that 

f(w) > q > a—g(c)). 
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from which the two inequalities on the right-hand side of (1.14) follow. (Note that the above 
argument works even in the case where f(a) = oo and/or g(co) = oo.) Thus, the claim is 
proved. 
Now for every a E R, we have by the claim and properties (A2c) and (A3) of a c-algebra 
that 

{o)En : f(co)+g(w)>a} 

= U {oc : f(c))>q and g(o))>a—q} 
qEQ 

= U ({ E : f(w) > q} n { e fl : g(w) >a — q}) E 

qEQ 	E9 by del. of meas. In. 	EJIF by def. of meas. fn. 

which, by definition, shows that f+g is s-measurable. 
max (f,g): For every a ER, 

{oEc : max [f(co),g(w)] >a} 

= {OEc2 : f(0)>a or g(w)>a} 

{wE9 : f(w)>.a}u{o)E9 : g(w)>a} E, 

c.F by def. of meas. In. 	E9 by del. of meas. fn. 

by property (A2) of c-algebras. This shows that max(f, g) is p-measurable. 
min (f,g): For every a ER, 

{wE0 : min [f(c)),g(o,)] >a} 

= {wEc : f(co)>a and g(w)>a} 

= {0) G n f(0)) > ajnf 
S  o) E 92 : g(CO) > a I E- 

E9 by def. of meas. In. 	c9 by del. of meas. In. 

by property (A3) of c-algebras. This shows that min(f, g) is 9-measurable. 

f, f, f: Measurability of these three functions follows from the fact that 

f+  =max(f,O),  f = —min(f,O), f f + f, 

that constant functions are s-measurable, and from what has already been proved above. 
fg: 	1. First suppose that f,g : 9 —* [O,00]. We claim: for each 0 < a <oo and WE 92, 

f(o))g(o)) > a 	q E Q, f(0 ) > q and g(o)) > . 	(1.16) 

In fact the "=" part is obvious (even when f(w) = oo and/or g(w) = oo) 

To prove the "=" part, we assume that the left-hand side of (1.16) holds. Then in 
particular, f(o) > 0 and g(w) > 0, and 

a 
(1.17) 

Now by (1.17) and density of Q in R, we may pick q E Q so that 

 

 

 

 

 

 

 

 



1 5 Measurable Functions 
	

27 

From here the two inequalities on the right-hand side of (1.16) follow. (Note that 
the above argument works even in the case where f(w) =00 and/or g(w) = 00, since 

= 0.) Thus, the claim is proved. 

Thus, for every 0 <a <00, we have by the claim and properties (A2c) and (A3) of a 
sigma-algebra that 

Ea  : = {w E 9 f(o)g(w) >a I  

= U {el : f(c))>q and g(w)>} 
qEQ 

= U ({E_:f(w)>q}fl{oE n : g(w)>}) E. 
qEQ+ 	

E by def. of meas. 10. 	E9 by del. of meas. fn. 

On the other hand, when -00 < a < 0 then obviously, Ea  = 92 E . This shows that 

Ea  E 9 for all a E IR, that is, fg is9-measurable. 
2. Now let f,g : 9 	R be arbitrary. Then for all w E 92, 

f(co)g(w) = (f(o) _f(w)) (g(o)) —g(o))) 

= 

Note that for a given co, at most one single term on the right-hand side is nonzero (why 
so we don't encounter oo—oo  and all expressions are defined. It follows from what 

has been already shown above that fg is p-measurable. 
This is Exercise 1.11 below. 

Exercise 1.11 	1. Complete the proof of the theorem by showing that 
(a) l/g is -measurable (provided that g(w) 0 for all co), 
b) f/g is 9-measurable (provided that f/g is defined for all co E K). 

2. Suppose, f,g C —* JR are9-measurable. (i.e. both functions are finite valued.) Then 
measurability of fg can be proved in an easier way: 

(a) Use the definition of a measurable function to show that f2  is9-measurable. 
(b) Use the fact that 

fg = [(f+g)2  — (f)2] 

and the results for f + g and af to show that fg is 9-measurable. 

It follows from the Theorem that the set of all real valued p-measurable functions is a real 
vector space. However, the set of extended real valued f -measurable functions is obviously 
not a vector space. 
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Sequences of Measurable Functions 

Consider a sequence (f) 1  (also written {f,j1) of extended real valued functions, 

f :f—*11. 

As usual, we define new functions supf, inff, limf, llmf, : 9 	lR pointwise by 
n 	n 	n 	n 

[suPfn ] (w) := sup [f(w)]  

[inffn](w) :=inf [fn  (o))]  

[llf(o) :=lluii[f(a))] 	 (1.20) 

[limfn ] (a) :=lim[f(())], 	 (1.21) 

for each Co E fl. (These functions are defined for all w E f2, since sup a, infa, urn a, urn an  
n 	n 	n 	n 

exist for all sequences (an ) in ll.) 

We also define lim f, 9 —* R as a pointwise limit by 
fl-400 

L0] 
(c)) :=limf() 

provided that the right-hand side limit exists for all Co E 9. 

( 	Here are some remarks to put these definitions into perspective. 

1. For all co E 91 we have by the definition of lima that 
n 

[flif](co) 	ffl[f,(co)] 	infsup[fk(a))] 

(18) 
inf ( supfk (co) 

(19) 
inf sup fk] (co), ' \k>n 	J 

that is, 

= infsupfk. 	 (1.22) 

In a similar way, 

llrnf,1 = sup inffk. 	 (1.23) 
n 	, k>n 

2. If f = lirn f, exists, then we say that f,, converges pointwise to f and write 
fl-40o 

or fn  )f or f- f. 
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Now recall: if a,a E I*, then a = urn a, #> a = urn a = km a,. Thus, 
fl — 	 n 

f?:f 

f((0)=f(co) Vwcc 

f(co) = 	 = 1 rn{f(Co)] 	VwEQ  
n 	 77 

f((0) = [f]((D) =[lim](w) 	Vwc 

f=iiiif=iirnf. 
fl 	 n 

3. Suppose that (f) t. By this we mean that (f,) is an increasing sequence: 

which in turn means that 

Vcoe.Q. 

Since every increasing sequence (a,) T in R* converges, then the sequence (f (CO)) 
converges for every Co E Q That is, 1irnf exists. 

4. We recall here the concept of uniform convergence. Let j, f : Kl —~ R be real valued 
functions. Then by definition, 

(fe ) converges uniformly to f 

Ve>O 3NEN so that lf(w)—f(w)<e VwE,Vn>N. 

(The important point here is that the same N = N(E) can be chosen for all (o.) We write 

f,1 =i f to denote uniform convergence. It is known and easy to show that 

	

f=f 	km sup f(w)—f(w)=O. 
WEO 

Theorem 1.5.7 Let (92,F) be a measurable space, and (f) a sequence of 9-measurable 
functions, f : 92 —* R*. 

1. The functions supf, inff, limf, and limf, are all 9-measurable. 
n 	 n 

2. If the sequence (f) converges pointwise, say f, -*f, then f: 	R* is also F-  
measurable. 

Proof. sup f, : For every a E R and Co E n, 

	

sup f(w) >a 	a is not an upper bound of {f(w) :nEN} 

aMEN, f(c))>a 

WE 
n=1 

Hence for all a E R, 

CO E 9: [sup f](w) > a} = 	E : SUP [f(w)] > a} 

= 

n=1 
UF as f Is .-meas. 
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by property (A2a) of a-algebras. This shows that supf is -measurable. 
inff, : In a similar way, for every a E R, 

E : [inff](w) <a} =w E : inf[f(w)] <a} 

= U{E:fn(W)<}E 
fll as f, is .-meas. 

by property (A2T) of cr-algebras. This shows that inff, is -measurable. 
limf, limf : By the above, for each n E N, the functions 

n 

g := supf 	and 	h := inff 
k>n 	 k>n 

are all 9-measurable. Applying the above again, it follows that 

limf = inf sup fk = inf gn 	and 	iirnf = sup inffk = sup h 
n 	 n 	, k>n 

are both -measurable. 
limf : Suppose, fn  - >f. Since by Remark 1.5 

f=limf, 

it follows from the above that f is -measurable. . 
Exercise 1.12 Let (, ) be a measurable space, {E} c 9 and fn = lEn  for each n. Show: 

1. If{E fl}tandE=U l En, then {f fl }t and 1E=limfn. 

2. If {E} 4. and E= fl E, then {f} 4. and 1E = iif. 

1.6 Simple, Measurable Functions 

In this section, we prove a theorem about measurable functions which will of fundamental impor-
tance when discussing the Lebesgue integral. It says that every measurable functions is the limit of 
a sequence of measurable functions with finite range. 

Throughout this section, (K, ) will denote a measurable space. 

l Definition 1.6.1 A function 9: K —+ R whose range is a finite set is called a simple function. 

Here are some properties which will be used throughout. 
1. Let g: 	be simple, say range(p) = {al,. . .a,}. Set 

Ak := 	 = {0)E9:q((o)=ak}, 	k=1,...,n 	(1.24) 

Then clearly 
(a) AkflAJ=ø for kj 

(b) JAk=c. 1  
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We can thus write 
I? 

4, = 	ak1A. 	 (1.25) 
k=1 

This is called the canonical representation (or canonical form) of . 
2. If ak = 0 for some k, say ak, = 0, then ak, 1A, (w) = 0 for all w E n. We may thus 

remove this term from the canonical representation (1.25), and write 

4) 
= 

	 (1.26) 

kk0 

	

Note, however, that U A 	2. 
kk0 

3. If Ak E 9 for all k, then by Example 1.7, each function 'Ak is 9-measurable, so that 
by Theorem 1.5.6, q is 9-measurab1e. 
Conversely, suppose 4, is -measurable. Since each singleton {ak} is a Borel set, then 
by (1.24), Ak E 9 for all k. 
We have shown: 

4, is 9-measurable s Ak E 	Vk. 

when p has the canonical representation. 
4. Consider a function of the form 

4) = 	ck1C 	(Ck ER, ckcD). 	 (1.27) 

Since range((p) C f Y_kn., ac : ak E {0, l} }, which is a finite set, then ( is simple. 
However (1.27) is not its canonical representation unless the sets Ck are disjoint and the 
numbers cf are distinct. 
When Ck E 9 for all k, then clearly, q is s-measurable. However, when 4' is F-  
measurable, we cannot conclude in general that Ck E .! 

• Example 1.8 Consider 	= (R, —4(R)). 
1. A function of the form 

4, 
=

ajlj 	(1k an interval) 

is called a step function. Since 'k E .(R) Vk (intervals are Borel sets), then every step 
function is a simple, Borel-measurable function. 

2. A function of the form 

4,=a1Q+fi1 	(a,fieu1, a7~13) 

is a simple, Borel-measurable function which is not a step function. 
. 

Notation: Let us set 

2(n, ) := {f: 	f is -measurable} 

= 	 :={fe2f>0}. 

Note that these are not vector spaces. However, for all f, g E .9+ and real numbers a. /3 > 0 we 

have that af+ fig E 
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Next we consider the sets of simple functions, 

{q : K —* R 19 is simple and -measurable} 

Then 
1. 9"c9' and 9'C9' 
2. Let q E 9' with canonical representation q = LaklAk. Then 

af,>O Vk. 

3. 9" is a vector space. In fact, let p, y E 9' and a, 0 E R. If 

n 	 in 

cp=LaklAk, and vJ=Lbj1BJ 
k=I 	 j=1 

are the canonical representations, then the linear combination 

n in 

ap+Thy= L L(aak+13b1)lAknBJ 
k=1 j=1 

is a simple and 9-measurable function, since Ak,Bj E 9 for all k, j. 
4. In a similar way, whenever q, Vf E 9', then py E Y. This can be seen from 

( n 	 n m 	 n 

pi,i= ( Lak1Ak 
J (j- 	J = Lakbj1AklBJ =

\k=1 	/ 	l 	/ 	k=1 j=1 	 k=1 j=1 

Theorem 1.6.1 (Structure Theorem for non-negative, measurable functions.) 
1. Let  E 9'. Then there exists a sequence (qn) tin 9' with pn 
2. If f E 91+ is finite valued and bounded in R (i.e. 0 <f < N, EIN E N), then the sequence 

((o) T can be chosen so that p,, 	f. 

Proof 	I. Let f E .2" be given. The idea is to split range(f) into small intervals and define the 
functions tp,, using these intervals, as follows: 
Let n E N be given. For each k, 1 <k < n2', we set 

A(0) := { co E : 	~ f(w) < 	} 2 

and we also set 

A(o) := { (0Ec:f(w) >n 1. 

Note that A(,k) c 9 for all k since the function f is -measurable, so that 

(Pn := E
k—I 

IA(0) + fllA(Ø) E 
k=1 

2n 

and this is the canonical form of ç. We perform the following steps. 
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(a) By definition of ço, for all w E Q we have 

( L--1
= 	

if 1<f(w)<r, 1<k<n2' 
(1.28) 

n 	if f((0)>n. 

In particular, 

O<ç(w)<n Vw. 

(b) Let us compare the values of 9, (w) and q, +i(w) for w E 92. As in (1.28), 

( k—i 
= 

	if I <f(c)) < 	1 <k< (n+1)2' 

n+i iff(w)>n+1. 

Consider three cases: 
Case 1: 0 <f(c)) <n. In this case, 3k, 1 <k < n2 n so that 

	

f() E [k—i 
k \ 	 and 	

k  
thus 	q(w) =—. 

2 

Now going from n to n + 1, this interval is split into the two subintervals 

Ik—i j'\ - 2k-2 2k 
2 ) 

- 	
[ 

and 	[ •j k ' 	 2k \ - 2k—i
2 	- 

2k-2 2k—i Now if f(w)E [-'-) then 

2k-2 k — i 
(Pn+i(U)) = = 	= 

	

2fl+1 	2 

2k—i 2k 

	

while if f(w) E [T-' 	-) then 

2k—i 2k-2 k — i 
2n+1 > 2l+i 

Combining both possibilities, we see that 

(Pn(0)) (Pn+i()). 

Case 2: n<f())<n-f-i. Then 

pn(W)=n while 

where k is the unique integer so that 	f(w) ~ 	No te that 

n2 n+1 
=n<f(w) n~l

so that n2'' <k - 1. It follows that 

n2 n+1 
	k_i 

=n±1(). 2fl+i 	2n+1 

 

 

 

 

 

 

 

 



Having discussed measure spaces and measurable functions, we are now ready to introduce the 
Lebesgue integral on such spaces, and study its properties. Of particular interest is the behaviour of 
the integral with regards to limits of sequences of functions, and over sets of measure zero. 

Throughout this chapter, (K, 9, i) will denote an arbitrary measure space. 

2.1 The Integral of Simple, Nonnegative Measurable Functions 

Definition 2.1.1 Let çø E 	be given, expressed in canonical form 

 

Y.= 	 where 	Ak = {co E 2: p(w) = ak} E . 

We define 

(p d,4:= Lak!1(Ak). 
	 (2.1) 

Th A couple of remarks: 
4) 

1. Smceak >O for all k, then O<fqdu<oo for qEY. 
2. When ak = 0 then akp(Ak) = 0. 	= 0, even in case where it(Ak) = oo! We may 

thus remove this term, 

f cod/.2 = 	ak/.L(Ak). 
	 (2.2) 

aO 
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• Example 2.1 Let (1,,u) = (Jl,(R),.X). 
1. If p = 2 - 1[o,1] + 1(1,2) +3 1{2} + 	1[3,5] is a step function, then using (2.2), 

= 2.({0,1])+1.((1,2))+3.(12})+.A([3,51) 

=2-1+1-1+3-0+  .2 = 4. 

2. If 1y=1QE9', then 

J Wd = J [1 •10+O•1JdA = I .(Q)+O.(Qc) = 1•0+0 = 0. 

3. Iff=c=const>0,thenfE9'+ and 

fd 	/c.1d=c.00={°° 	
if c>0 f  

U 

	

Exercise 2.1 Let 	= (,(R),2). Find f çod2u if 

ILxJ 	ifO<x<l0 

	

q(x)=< 	 - - 
else. 

2 	(x)_fLxi 	ifO<x<3 

'I0 	else. 

3. p(x) 
I[1+sinx] if0<x<2jr 

=< 
0 	 else. 

(Recall here that Lxi = max{n e Z : n <x} is the greatest integer function. 

Definition 2.1.2 A finite or countably infinite collection {B1}7_1  of subsets of n (m E N or 
m = {oo}) is called a (finite resp. countable) partition of Q, if 
(P1) the sets in {Bj}7_1  are mutually disjoint: Bk flB = 0 fork 

(P2) U B1  = 92. 
j=1 

If in addition, B3  E 9 for all j, then {B1}7 1  is called a partition of 92 by s-measurable sets or 
a measurable partition. 

For example, the collection of intervals { Ik = [k, k + 1) }kcZ  is a countable partition of R by 
Bore) sets. 

If {A} 1  and {B1} 1  are partitions of by9-measurable sets, then 

{AkflBJ:k=1 .... n,j=1 .... m} 

is also a partition of 92 by measurable sets. In fact by (A3), Ak fl  B1 E 9 for all k, j. 
Now if cv E (AkflBj)fl(Ai  flB7), then wEAk flA1 and cv E B3  flB, so that by (P1), k = k 
and j = J. This shows that the sets Ak fl  B1, k = I .... n, j =I ....  m, are mutually disjoint. 
On the other hand, 

U Li (Ak nB1) = j
L 

B1]) 	(A nf') = 	A 

	

k=1]=1 	k=1 	=1 	 k=1 	 k=1 
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Lemma 2.1.1 Let qE9, and let 

in 

co= L bJ1BJ 
	 (2.3) 

be any representation of p, where {Bi. ... B,7 } is a finite partition of 92 by measurable sets. Then 

f çodu = 

in 

 bj.t(B1). 

Proof. Let 

= 

be the canonical representation of p. We make the following important observation: 
Observation. Let k, j be given, 1 <k < n, 1 <j < m. Suppose first that Ak fl B, 	. Then we can 

pick co E Ak fl B, and by (P1), 

ak = p(o) = b1. 

It follows that 

ak/.z (Ak flBJ) =bJ 4u (Ak flBf). 	 (2.4) 

On the other hand, when Ak fl Bj = 0, then t (A fl B) = 0, so that (2.4) holds trivially. Thus, 
(2.4) holds for all choices of k and j. 

Now 

n 

def 

	

çodp = 	akli(Ak) 
k=1 

n 

Lakbt (Ak fl[U
In 

BJ]) Lakt(U[AknBi]) 
k 

	

k=1 	 =1  

	

n 	in 

	

ji(A flB3 ) 	{Ak flBj}7 1 are disjoint 
k=1 j=I 

In n 

	

= 	akaEL (Ak flBJ) 
j=I k=1 
in n 

	

b1ji(AflB) 	{AkflBJ}L I are disjoint 
j=1 k=1 

	

bji 
( k~i

j[Ak flBi] = bji [u Ak] flB
j=I 	 j=1 	k=I

b1 a 	= 	bu(B), 
( in ')  

	

j=1 	 j=1 

which proves the lemma. 
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Theorem 2.1.2 (Properties of the integral). Let , 1/I E 	and c > 0. 

1. 
J cço d/i = cfco dji. 	("the integral is positive homogeneous") 

2. 
/ (( + ui) 

dji = / 
9 dt + f u/I dt. 	("the integral is additive") 

3. If p < uy then 
/ 

çü di ç fl/Id/I. 	("the integral is monotone") 

Proof. Clearly, cço e Y1  and q3 + 1I G 9+• Furthermore, let 

 Y. p=a1A and u/1=bi1n 

denote the canonical representations. 
1. Note that 

CçD = cL aklAk =(cai)l4. 

(This is not the canonical representation when c = 0 !) Applying Lemma 2. 1.1 we obtain that 

f
c 	

lem 
	

def 
= 	(cak)/I(Ak) = cak1(Ak) 	cfcd/I. 

k=1 	 k=1 

2. Note that for each k, 

m 

Ak =Akfl U B = U(AknBj), 
1=' 	j=1 

a disjoint union. Thus,, 

exer 
(p = 	a/.l4, 	ak 	1AkflBJ = 	aklA,nBj. 

	

k=1 	k=1 	j=1 	k-1 j=1 

In a similar way, 

	

M 	 m 	n 	 n m 
= 	bl 1 	b 	lAkflBJ = 	L bjlAknBj. 

	

j=I 	j=l k=1 	k=lj=1 

It follows by the distributive law that 

n m P+Vf

= EL(ak+bJ)lAknBJ. 
k=lj=1 

Thus by Remark 2.1 and Lemma 2.1.1, 

f (+uy) d/I 	(ak+bj)/I(AkflBj) 
Ic=I j=1 

= 	E a/I(Aj,flBJ) + E E b,ji(A,flB) 

	

k=Ij=1 	 k=1j=1 

em I 
	J 

= j çodu + 1/fd/LL. 
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3. Suppose, q' < V. We begin with an observation which is similar to that in the proof Lemma 
2.1.1: If Ak flB 	, then we can pick w C Ak flB, and by (P1), 

ak =ço(w)< ji(o)=b. 

It follows that 

aku(AkflBJ) bj/1(AkflBJ). 	 (2.5) 

On the other hand, when Ak fl Bj = 0, then ,u (Ak fl B) = 0, so that (2.5) holds as well. This 
shows that (2.5) holds for all choices of k and j. Then by Lemma 2.1.1, 

f (p di Y. E O/1(A flB) 	L b1i (AkflBj) jV dp.  
k=1 j=1 	 k=Ij=1 

Thus, the theorem is proved. 	 I 

Corollary 2.1.3 Let (p C 	have an arbitrary representation 

q=Ck1ck , 	(Ck~!O,CkE). 

Then 

(p dy = ECk/1(Ck). 

Proof. Applying the above Theorem and Lemma 2.1.1, we obtain 

/dL = j[ck1ck] d/1E
f ck1ckdfL 

Y. = 	[fck .1ck +o .1[ck]c]d 

[ck .u(ck)+0.,2([CkJ')] = Lcku(Ck). 
k=1 	 k=1 

. 

We have a preliminary result relating limits of functions and the Lebesgue integral, and will be 
generalized later. 
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Lemma 2.1 .4 (Monotone Convergence Theorem for 9+)  Let (pfl be an increasing sequence 
1nV, and qE9. If 

ço-p 

then 

f n d 

(That is, urn f p dp 	
/ 

urn 	dy.) 
n-4- 

Proof. By assumption, 

9193 < ...... 

Hence by monotonicity of the integral (Theorem 2.1.2), 

f (pidy <  f 92dg 5 f (p3dy <  ... <  f (pn dy <  f (Pn+1 dy <  ... <  f (pdp. 

Since every increasing sequence in R* converges to its supremum, 

lirnf(Pfl d/1 exists, and 	1imI n d/i<fcod/i. 

It is thus left to show the reverse inequality, namely that 

f çodji limfcDn dt. 	 (2.6) 

Claim: For every e, 0< e < 1, there exists a sequence (lVn ) in 92+  (which depends one) satisfying 
(i) i/In  < (Pn Vn, 

(ii) limflP z d(l_E)f43dIL 

To prove the claim, write qo in canonical form, 

(Recall that a, > 0 Vk, and that {A1, .. . ,A 1 } is a partition of K2 by -measurable sets.) Now 
let ebe given, 0<e <1. For each n ENand 1 <k< m,weset 

Ak, := {wEAk: (1—E)ak< 40,(0)) 1, 

and we then set 

(1 E)ak 1Ak . 

Some observations: 
(1) Clearly, 'ji 	0 for all n. 
(2) As con  is9-measurable, and Ak,n  =Akfl{ o E n: (p() > (1 —e)ak}, it follows that 

Ak,n  e 9 for all k, n. Hence, each iy is9-measurable. Together with (1) we conclude 
that i/i E 92± for all n. 
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(3) Vi, < p, for all n. In fact, let U) E 92 and n be fixed. Then q(w) = ak for some k, and 
hence U) EAk-
If U) E Ak,, then 

ly(w)=(1—e)ak<ak=çofl(w). 

On the other hand, if U) E Ak\Ak, then 

= 0 —< (P,(w). 

(4) For each k, the sequence of sets {Ak,} 1  is increasing. In fact, since ço 	,--I, then 

Ak, fl ={coEAk:(l—c)akçofl(w)} 

c {w EAk: (1 —E)ak 	+l (CO) 	Ak,n+I. 

(5) For each k, Ak = U=lAk,n. 

In fact, since by definition, Ak, ç A,., then U=1 Ak, c  Ak, for all k. 
To show the reverse inclusion, let w E Ak be arbitrary. Since 

çon (co)—ço(w)=ak 	and 	con <(o, 

N=N(w,E) so that 

	

(1 - e)ak = (1— p(c)) q,1(w) ç (P (a)) 	Vn > N. 

It follows that 0 E Ak, for all n > N. This shows that Ak ç u=1 Ak,. 

Using these observations, we obtain 

Em f V1 d1 = lmf [(1_)ak1Akfl ] d 

cor 

2.1.3 	
, 	

(1 - e)aku(Ak, fl) 

ak lirnL(A,fl )  

14) 

 '-4   akL(UAkn) 

(1 —e)akL(Ak) 
def  =(l_)fqdL. 

k=1 

Thus, the claim is proved. 
Now for each E, 0 < s < 1, let (Wn)  be as in the claim. Then by (i) and monotonicity of the integral, 

fWndLf (Pnd/.L 

Letting n —* 0 we obtain 

	

(l_e)fdmlim f fldlim fpd!1 	V0<e<i. 

Now letting E —* 0 it follows that 

fcadu<iirnfcon dii 

	

which proves (2.6) and the lemma. 	 U 
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2.2 The Integral of Nonnegative, Measurable Functions 

Let us recall that 

= {f: 9 -* [O,00] I f is -measurable}. 

Definition 2.2.1 For f 	we define 

:R) 

 dt 	supE 	where 	E 
= { f 

dp : E 92k, <f }• 
	(2.7) 

Note that OcEc[O,00],so that O<ffdp<oo. 

j, Suppose f E 9t Then we have two definitions of ffdji : Definition (2.1) for the class 
and the newer definition (2.7) for the class 	We must show that both definitions are 

the same. In the following, all integrals will be according to definition (2.1). 
Let a E E. Then a = f p d1i for some E 	with q <f. Now by monotonicity of the 
integral in 	(Theorem 2.1.2), then 

du <ffdL. 

As a e E was arbitrary, it follows that 

supE <ffdL. 	 (2.8) 

On the other hand, as f E 9', then ffdp. E E itself. It follows that 

I f dy <supE. 	 (2.9) 

Combine (2.8) and (2.9), 

f f dy = supE. 

But the right-hand supremun is just ffdi according to definition (2.7). This shows that 
both definitions coincide. 

In general, it is difficult to work with the definition of the integral ffdu given by (2.7). Instead, 
we prefer to work with limits of sequences. Recall that by the Structure Theorem for Measurable 
Functions, every f E . 	is the pointwise limit of a sequence (q')t in 9. 

Theorem 2.2.1 Let f e92 be given. If (con ) is any increasing sequence in 9' with 

co  -*f, then 

I f  d/1 = iimf ço dii. 

Proof. By definition of the integral, 

I f  dii = supE, 	where 	E = { fco dii : co E 9, co < f}. 	(2.10) 

Now let a sequence ((p)t be given, con  E 92 Vn, with co,2 --*f. By (2.10) we must show that 

supE = iimf ço dii. 	 (2.11) 
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First Observations: (i) As çpn < CPn+i for all n, then by monotonicity of the integral in 9, 

th 

f (p
xfl 2.1.2 

d/2 	f 9)n+ j dA 

for all n, that is, {f con di } T. Therefore, urn f ço dji exists in [0, oc]. 

(ii) Furthermore, as ço <f, then J' p, dji E E for all n, and hence, 

f qdu < supE 

Letting n —+ oo, we obtain 

limfcon d/1 < supE. 

It is left to prove the reverse inequality, namely that 

supE ~ limfq,n d/1. 	 (2.12) 

Claim: For each a E E, there exists a sequence (i/In ) t in 92+ with 

(a) i/In < Qn Vn, 
(b) f1yd/i-+a. 

To prove the claim, let a E E be given. Then a = 'I' V di for some 1/I E 9 with V < f. Now for 

each n E N, we set 

:= min (1y,p)q. 

Observations: 
(i) Clearly, iy, <con for all n. 

(ii) Each ip is -measurable by Theorem 1.5.6. 
(iii) Since range(lyn ) ci range(ly) urange(), it follows that each iji is simple, and /n > 0. 

Thus, 1/In E 92+ for all n. 
(iv) Since ir <f and con f, then I/In <f for all Ti. 

(v) Since (T,) T, then (i) t. 

(vi) 'y -* iy. To see this, let w E Q be given. 
(a) Case 1: y/ (o)) <f(w). As q 0 (w) —+f(w), E nEN such that 

W(°) <(Pn(()) < f(w) 	Vn > N, 

and hence 

del 	- 

= mln(1y(w),(pn(w)) = V(w) 	Vn>N, 

so that trivially, Vn (w) — iy((o). 
(b) Case 2: i(w) = f(w). Then as (p, (0.)) < f(w) we have 

def 
í,(w) = mln(I/'((),(p,1(w)) = con(w) 	Vn, 

and hence, ip(w) = p,, (w) —+f(w) = 1/1((0). 
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By (v) and (vi) we can apply the Monotone Convergence Theorem for 9'1, and obtain 

a= jVdp 
MCT 
= Jim / iydi. 

n—*— j 

Thus, the claim is proved. 

Now given a E E, let (1) t be as in the claim. Since iy, < ço,z, then by monotonicity of the 
integral in ,99± 

and letting n —* 00, 

a 
claim 

 urn 
j 

if dt < urn [(pa  dii. n-#oo fl—*oo J 

As a E E was arbitrary, then (2.12). and hence (2.11) follow. Thus. the theorem is nroved 

The properties of the integral discussed for nonnegative simple functions in Theorem 2.1.2 
naturally carry over to the integral of arbitrary measurable functions: 

Theorem 2.2.2 (Properties of the integral). Let f,g E .2' and c > 0. 

1, 	/ cf dbl = c 	dt. 	("the integral is positive homogeneous") 

2. f(f+g) dt = ff dp + f g d. 	("the integral is additive") 

3. If f < g then ff du < fg dii. 	("the integral is monotone") 

Exercise 2.2 Prove Theorem 2.2.2. (Hint: use Theorems 2.1.2 and 2.2.1.) 
	

Li 

Exercise 2.3 Consider the measure space (R, 	Set Set 

f(x) = X1[0 ,1], 	g(x) 
= 

Use Theorem 2.2.1 to find 

/fd 	I g d 	and 

if0<x1 h(x)=17r 
else 

if 0<x< 1 

else 

 

f h 
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Exercise 2.4 Consider the measure space (R,(R),2), and let f: R -# [0,00) be continuous. 
Show: If ffd2i. = 0 then f = 0. 
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2.3 The Integral of Extended Real-Valued, Measurable Functions 

We are now ready to define the integral of an arbitrary extended real-valued measurable function. 
Recall that 

I is-measurab1e}. 

Now if f E .2', then clearly, f, f E .2', so that 

f f --  dg 	and 	f f-  dA 

are both defined. Since f = f+ f, then the following definition is very natural. 

Definition 2.3.1 Let f E .2' be given. Then 

I f d := j f +dp  - 
ff

-d 	 (2.13) 

provided that the right-hand side is not of the form 00 - oe! 

Ok For f E 2' we now have two definitions of ffdt : Definition (2.7) for the class .2', and 
the newer definition (2.13) for the class Y. It is easy to see that both definitions coincide. 
This is because f+ = f while  f = 0. Thus (the integrals below are according to definition 
(2.7)), 

ff +d,u-ff -d.0 =ffd_f Odji =ffdt. 

Since the left-hand difference is the integral according to definition (2.13), while the right- 
hand side is the integral according to (2.7), it follows that both integrals coincide. 

Definition 2.3.2 Let f E .2' be given. Since Ifj = f+  + f, then 

thm 2.2.2 I If I d = ff+dg + f  f -  dp E [0,00]. 

We say that f is integrable, if 

f If 

. Example 2.2 Let (2, 9, ),.) = (IR, .(R), A.). Consider the step function 

p=21[Q 1]-3.1(12]+0.5•1[4) E9'. 

Then 

= 2 1[0,1] +0.5 1{4,) 	and 	= 3 .lj 

so that 

f çodA. =2.A([0,l])+0.5.A.([4,00)) =00, 	f T - dX = 3.A.((1,2]) =3. 
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It follows that 

f 	= fd ), — j (p dX 	3 = 00 

Thus, f p dA. exists while p is not integrable. 	 . 

The above example shows that the two concepts "ffdu exists" and "f is integrable" are not 
the same! 

1. By Definition 2.3.1 

1  dt exists <=> d,4 <00 or f f di <oo• 

2. On the other hand, by Definition 2.3.2. 

f is integrable 	 + f fdJL <00 

f f+ d p < 	and /fd,i<oo. 

( 	Suppose, f  exists. By the triangle inequality and additivity of the integral in .2', 

fff-fr 
< V f+ Hf f-~ 

 

= 	
thm2.2 f 	+ f-I = ff If+ + ff - 	H 

That is, 

~ V 
fdp~ :5 fIfld,4. 

( 	Let f, g E 2' with If 	Ig ("f is dominated by IgI"). If g is integrable, then by monotonicity 
of the integral in .&, 

Of
thin 2.2.2 

If 	fig<oo. 

Thus, f is also integrable. 

Let us set 

= 	
= 	 := {f E...2 Ifis integrable }. 

Thus, 

= { f: f 	R f is .-measurable and integrable }. 
We also set 

= 	 := {f:9—*lI fis -measurableandintegrable}. 

The next theorem implies that YR1 is a real vector space, and that the map 

fffdz 

is a monotone linear functional on YR- 
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Theorem 2.3.1 (Properties of the integral). Let f,g E 2. and c fi R. Then 

1. cf E 2', and J cf dy = c 	dii. ("the integral is homogeneous") 

2. If f + g is defined, then f + g E 2, and 

J(f +g)  d = ff dA + jg dt. ("the integral is additive") 

3. If f < g then 	
j 

f di 	
f 

 g du. ("the integral is monotone") 

Proof. By assumption on f and g, 

11f I < —, ff< ff -<—,  

J 
IgI <oo, fg+<oo, 

J g - 
< 00. 

1. There are three possibilities. 
(a) Case 1: c = 0. Then cf = 0 	so that clearly 

j 
Cf 

= f 
0 = = o.ff = cff. 

(b) Case 2: c> 0. Then (cf) = cf and (cf) = cf, and hence, 

J(cf)  = f Cf + thrn 2 2 I f+ 

J (Cf) - = cf-thm2.2Cff_ <00 

by assumption (2.14). As both of these integrals are finite, it follows that cf is integrable 
and that 

cf J(Cf)+ - f(cf) = cf f+ -cff 

= c[ff+_ff] cf f . 

(c) Case 3: c <0. Then (cf) = (—cf) = cf and (cf)- (—cf) 	and 
hence, 

f(Cf)+ = 	 < o  

f(Cf)- = j  C jf+ i2.2Hff+ 

by assumption (2.14). As both of these integrals are finite, it follows that cf is integrable 
and that 

I Cf dd  f (Cf)+ _ j(Cf)_ = cff_ ICI 
 ff 

= - [f -f -1 

cff. 

47 

(2.14) 

 

 

 

 

 

 

 

 



Chapter 2. The Lebesgue Integra' 

2. Suppose that f(0) +g(w) is defined for all Co E 92. As 

If(+g(a 

(even when f((o)=±— or g(w) = ±co !), then by monotonicity and additivity of the integral 
in Y+, 

thin 2.2.2 2.2.2 thm 
jIf+gI 	J(Ifl+lgl) 	ffJ+fg<°°. 

This shows that f + g is also integrable, and in particular, 

I(f +g)+ < 	and 	f(f+g)_<oo. 

We now decompose 

f+g=(f+g)-(f+g) 

while also 

Equating both, 

(f+g)(Co)-(f+g)(w)=f(w)-f(Co)+g(w)-g(Co) VwEn. 

We can add (f+g)(Co), f(Co) and g(Co) to both sides, provided they are finite valued, to 
obtain 

= (f+g)(w)+f(w)+g(Co). 

Note that this identity is true even when (f + g) (t)), f (to) or g (to) take the value oo, as 
can be seen by comparing both sides of the equation! By additivity of the integral for '+ 

(Theorem 2.2.2), 

I (f +9)+ + I 
f- 

+ I g =f(f+g)+ff+Jg 

Since all of these integrals are finite, we may subtract freely, 

P +g)-~- - I (f +g)- =fr  - fr+f - J 
that is, 

I (f +g) = If +jg- 

3. Iffgthen 

= max(f,O) <max(gO) = g 
= -min(g,O) -min(f,O) =f. 

By monotonicity of the integral in 	(Theorem 2.2.2), 

I f
+ < I g 	and I gff. 

As all integrals are finite, we can subtract, 

I f = ff - ~- -Jf- <fg -fg = fg. 

This completes the proof. 
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2.4 The Integral of Vector-Valued and Complex-Valued Functions 

In this section, we will extend the concept of measurable functions to complex-valued functions. 
Since the set of complex numbers can be identified topologically with the real plane R2 , it makes 
sense to consider complex-valued functions as vector-valued functions, and thus first discuss 
measurable functions of such type. 

Vector-Valued, Measurable Functions 

Let us briefly recall the basic concepts of the topology in lR''. The Euclidean norm of a vector 

x= (xl ,x2,... ,xd) E Rd  is 

Given x E Rd and s > 0, the set 

B(x) {y E R': Jy—x <e} 

is called the open ball with center x and radius E. If U c R", then 

U is open 4 Vx E U 3e = gx > O such that B(x) c U. 

It is well known and easy to verify that if U1, U2,. . . , U,j are open subsets of R, then 

U=UlXU2X .. . XUd 

is an open subset of Rd.  

First we give a version of LindeRff's Theorem for Rd.  By an open, bounded d-interval we 
mean a subset 

I(ab)(ab)x(ab)xx(ab) 

of lR", where ai <be , aj, bi ER, I = 1.. .d. We say that! has rational endpoints if aj, bi E Q for 
all i. Let use set 

( 	d 
= I = fl(r,s1) r, <si, 	E Q, i = 1.. .d 

1. 	i=' 	 ) 

the collection of all open d-intervals with rational endpoints. We observe that .90d is a countable 
set, as the mapping 

d 

fl(r,$) EJ' H(r1,s2,r2,s2,...,  rd, sd) EQ2"  
1=1 

is one-to-one. 
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Lemma 2.4.1 (Lindelöff's Theorem for R') 
Every non-empty open set U c R" is the countable union of bounded, open d-intervals with 
rational endpoints. That is, 

N 

	

UUJ 	NENU{o},J11Efí'. 

Proof. Let U c R be open, U$ 0. Thus, for each x = (Xl,... ,xd) E U, there exists £ = Ex  > 0 
such that 

BE (x)CU, 	BE(x):={y=(yl,...,yd)e Rd:  y_x<e}. 

Set 5 = S,, = e//. Now by density of Q in R, for each i = 1,...,d, there exist r, si E Q 
(depending on x), so that 

x-5 < r1 < Xi < Si <x+S. 

In particular, 

	

jXj <5 	VYi C (rj,$). 	 (2.15) 

Set 

d 
ix := fl(r,sj) c 

i=1 

Note that if y = (y',. . ,y') E i is arbitrary, then by (2.15), 

d 	 d 	d 
=e2  /d= e2, 

which shows that 

J C B(x) c U. 

It follows that 

U = U {x} c U J c U 
xEU 	xEU 

which gives 

	

u=UJ. 	 (2.16) 
xEU 

Now as .9 is a countable set, only countably many of the intervals J can be distinct, and we can 
list the distinct interval as {J} 1, with N EN or  = 0 Thus, the union in (2.16) is really a union 
of the intervals {J} 1 , 

N 
u= 

n=1 

which proves the lemma. 

Next we show that the Borel o-algebra on W1  is generated by the collection of open d-intervals 
with rational endpoints: 
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Corollary 2.4.2 	(Rd) 

Proof. Let 

Uis open }. 

Since open d-intervals are open sets, then .9' c 'r, and hence a(f') c 	= 
To prove the reverse inclusion, let U C r be arbitrary. By Lindelöff's Theorem, we can write 

N 

U=uJn, nENU{oo}, JeJ'. 
fl= I 

Since J e Aod c cY(J') for all n, it now follows from properties (A2) or (A2cr) of a o-algebra 
that U E a(J). As U e t was arbitrary, we conclude that 

Now .(Rd)  is the smallest a-algebra containing r; hence 

(Td) = 
	) ç  

Thus the corollary is proved 

Let f: f 	Rd be a vector-valued function. We write f in component form, 

f = (fl, f2,..., fd) 	where 	.t; c —* R, i = 1,._d. 

	

Theorem 2.4.3 Let f: 	R". Then 

f is -measurabIe <=> each ft is -measurable, 	i = 1.... d. 

Proof. Observe that 

fis -measurable del 
 <=> f'(E)E 9 VEE.(R") 

thmL5.1 
f'(E)e 9 VEef1f. 

+or 24.2 

=: Suppose, f is 9-measurable. Then for each i = 1,... ,d and a 

={we:fi(w) >a} 

=f'(Rx..•xRx(a,00)xRx ... xR)E, 
I copies 	 d — copies 

as j1 1 x (a, oo) x Rd_i  is an open subset of Re'.  This shows that ft is -F-measurable. 

: Suppose, each ft is 5-measurable. Let 

d 
E = fl(rt,st) e Ad 
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be given. Then 

f'(E)={wE:f(o))EE} 

= {w e 	: (fi((0),f2(0)),. ..,fd(c))) E (ri,si) x (r2,s2) x 	x (rd, S,) 

={we f1 (c))(E(r1,$), i=1,...,d) 
d 

= fl{w E Q : f1 (c)) E (rj,sj)} e 
ii 	

a JPs fcs -meas. 

This shows that f is 9-measurable. 

Given f,g : 9 —* Rd and a E R. the functions f+g and af are defined pointwise as usual by 

(f+g)(c)) = f(o) +g(w), 	(af)(w) = af (o)) 

for all Co E n. We also define a function 11f 1 1 : Q —+ [O,00) by 

Theorem 2.4.4 Let f,g n -+ Rd be9-measurable, and a E R. Then 	 - 

1. {we:f(w)=g((0)}e. 

2. f + g and af are9-measurable. 
3. (jf j is f-measurable. 	 -- - 

Exercise 2,5 Prove Theorem 2.4.4. (This is simply an application of Theorem 2.4.3, Theorem 
1.5.5, Theorem 1.5.6 and Corollary 1.5.3.) 

Recall: If(xn)isa sequence inRdandxE Rd, say xn= (xjt') ,X2
t ) ,...,Xd

(fl) 
)andx — (xl,x2,...,xd), 

then 

clef 
xn —>x<=> 	IxnxH>0 

From 

(i=1,...,d) 	(2.17) 
j=1 	(j~- I 	j=1 

where y= (y1,y2,...,yd) E R", we obtain, setting y=x —x, that 

def 

x,, - x 	xn - X11 - 0 

—>0 	Vi= l,...,d 	 (2.18) 

Vi=l,...,d. 

That is, the sequence (x) converges to x if and only each component sequence (x) converges to 
Xi. 
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Definition 2.4.1 Now let (f,) be a sequence of functions, f, fl —> R', and f: n —+ R". We 

say that (fe) converges pointwise to f, if 

f(o)—f(w) VwE, 

in which case we write f, --* f. That is, 

.W. 	ci 
f, —

p
f f(w)—f(w)--~O VwE. 

R. Write the above functions in component form, 

and also 	f=(.fl,f2,...,fd), 

where J7,fj : 92 —+R Then by (2.18), 

f
(fl)f 	Vi=1,...,d. 

Now suppose that each f, is -measurable, and f,, 	By Theorem 2.4.3, each 
is 9-measurable, so that by Theorem 1.5.7, each component fi of the limit function is 
9-measurable. Applying Theorem 2.4.3 again, it follows that f is9-measurable. 

Definition 2.4.2 Let f: 9 	R" be -measurable. We say that f is integrable, if each 

component function f,: Q —* R is integrable. In this case we define the integral of f as the 

vector 

ffdt:= Vfj dM, 
J, 
f2dp, 

We set 

= -Jd(Q,,I) 	{f: ( 	R' f is9-measurable and integrable}. 

Theorem 24.5 Let f: 92 —* Rd be9-measurable. Then 

f is integrable 4z> If 11 is integrable._*_________________________ 

Proof. From (2.17) we obtain that for each 1 <i < d and (0 E 9, 

Xf
d 

Ifi(w)I < (°)2 < L 
j=1 

that is, 
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=: Suppose, f is integrable, that is, f f j  I <00 for all i = 1,. . . d. Then by additivity and mono-
tonicity of the integral, 

I  
If 11  < 	Ifil ] 	Ifil  < 

which shows that I If 11 is integrable. 

=: If If 11 is integrable, then for each i = I,.. . ,d, by monotonicity of the integral, 

I 	<00 

which shows that f is integrable. 	 U 

The next theorem says that Y.1, is a vector space, and that the mapping f F-+ f  d/1 is a linear 
map of YRId  into Rd. 

Theorem 2.4.6 (Properties of the integral). Let f,g E..4  and a E R. Then 

1. afe, and J afdii=affdii. 

2. f+gE2, and J*(f+g)dtt= 
I 

 f dp + gdy. 

Exercise 2.6 Prove Theorem 2.4.6. (This is simply an application of Theorem 2.4.3, Theorem 
1.5.5, Theorem 1.5.6 and Theorem 2.3.1.) 

Complex-Valued, Measurable Functions 

Recall that C can be identified with R2  topologically and as areal vector space, using the bijection 

IF: z=x+iyEC -+ (x,y)ER. 

The difference between C and R2  lies in their algebraic structure: vectors (x,y) E R" can only be 
multiplied by real numbers a, while complex numbers z = x + iy E C can be multiplied by other 
complex numbers c = a + i/i 

Given z = x + iy E C, we write 

x = Re(z) 	 "real part of z" 

Y = Im(z) 	 "imaginary part of z". 

The Euclidean norm I I(x,y)I of (x, y) c R2  now corresponds to the absolute value (or modulus) 1zl 
ofz=x+iy E C, so that 

= x2+y2= (x,y). 

The complex conjugate of z E C is 

=x—iy=Re(z) —ilm(z). 

Then 

Re (z)=-, 	Im(z)=---, 	Iz=v'. 	 (2.19) 
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If (z,) is a sequence in  and  E C, say Zn =Xn+lYn V  and  =x+iy, then by (2.18), 

Zn 	Z <=> x, -+ x 	and 	y, - y. 

Next let f: —~ C be a complex-valued function. As usual, we define functions Re f,Im f, f, If: 
9 -+ R pointwise by 

(Ref)() = Re(f(co)) 	 "real part of f" 
(Imf)(o) = Im(f(w)) 	 "imaginary part off" 

J(w) = f(w) 	 "complex conjugate off" 

fI(°) = 	 "absolute value off" 

for w E 9. 
Using (2.19) one quickly verifies that 

Ref=LL, Imf =çf , f= Ref +ilmf 

f= Ref —iImf. 

Continuing to identify C with ]R2, we can consider complex-valued functions as vector-valued 
functions: Given  = Ref+ ilmf: 92 — C we identify f with the function = (fl ,f2) :92 —> 

by setting 1' = Ref and f2 = Imf. 
1. Applying Theorem 2.4.3, we obtain: 

f is9-measurable <r> Ref and Imf are both .-measurab1e. 

2. Remark 2.4 implies: Let fn,f: f —~ C. Then 

f-*f 	Ref--*Ref 	and 	Imfn - Imf. 

Furthermore, if each f, is 9-measurable and fn -3 f, then f is -F-measurable. 
3. Definition 2.4.2 becomes: If  is 9-measurab1e, then 

f is integrable 	Ref and Imf are both integrable. 

In this case, 

f f dy  
dd 

= I [Ref + i1mf] dy f Ref dy + if Imf dtt- 

4. Theorem 2.4.5 becomes: If  is 9-measurable, then 

f is integrable 	4=> Ifl is integrable. 

5. Let usset 

2 =(n,,JL) := {f: — C I f is -measurable and integrable }. 

Then YCI can be identified with 22 using the map 

f= Ref +ilmf 4 f= (Ref, Imf ). 
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As we already expect, the next theorem shows that Ycl  is a complex vector space, and that the 
map 

fffd 

is a linear functional on 

Theorem 2.4.7 (Properties of the integral). Let f,g E 23 and c E C. Then 

1. cf E 	and 	f cf dt = cf f d. 

("the integral is homogeneous") 

2. f+gE 	and 	J(,f+g)dp = ffdg+fgdg. 
("the integral is additive") 

ff d = jfd. 

ff d <ffd. 

Proof Since f is integrable, then so are the functions Ref and Imf. We also note that by Theorem 
2.4.6, properties 1. and 2. already hold, at least for real scalars c. 

1. Thus, letc=a+ibEC. Then 

cf = (a+ ib) (Ref + ilmf) = (aRef - blmf) + i(almf+bRef). 

Now by Theorem 2.3.1 

Re(cf) = aRef— blmf 	and 	lm(cf) = almf+bRef 

are both integrable. Thus, cf is integrable, and 

f cf = fRe(cf)+iflm(cf) 

=f(aRef_blmf)+if(almf+bRef) 

th3.1 fRef bJ Imf l-i (aJIm f +  bfRef) a.

=(a+ib)(f Ref +ifImf) =cff. 

2. This is Theorem 2.4.6, part 2. 
3. Clearly, the conjugate f = Ref +i(—Imf) is9-measurable and integrable, because Ref 

and Imf are. Now 

ff=f (Ref +i(_Imf)) =f Ref +if(_Imf) 

hm3.1fRf if Imf = Y Ref + if Imf) = 
./ 
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4, Using the polar representation z = re 0 of z C C, we can write 

f f = re'O 	for some r>O,O<O<22r. 

Solve this identity for r, 

r = e f f Pa" 
i. 

Je 9 f = JRe(e'Of) +i Jim (e i°f). 

Since r on the left is a real number, then last integral on the right must be zero, 

f 1m(e ° f) =0. 

Thus, 

f f = 	= ri = V Re (e—ie f) 

f ~ Re (e—'ef) ~ < f I Cief ~ 
= j if 1 

where we have used the fact that I Re z < z  for z C C, together with monotonicity of the 
integral. 

U 

2.5 The Integral over a Set 

In the following, we will deal with both extended real-valued functions and with complex valued 
functions, although our discussion can easily be adapted to vector-valued functions. We thus let 

or K = C. 

Definition 2.5.1 Let f: Q - K be 9-measurable. Given A C 9, we set 

JA f dp 	
I f 

1A dy 	 (2.20) 

provided that the right-hand integral is defined. We say that f is integrable over A, if f 1 is 
integrable. That is, 

12.211 
f is integrable over A 	fIfIlAdA <—<=> 	fIfid.Lt <00. 

. Example 2.3 Let (9,,ji) = (R, 9(R),)1,). If f(x) =x, then 

!xd2 = f 
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Exercise 2.7 Let A,B E 9 and g: K2 -* K be YX -measurable. 
1. Suppose, BcIA. Show: 

(a) IfgE2, then 	gdi < [ gdi. 
fBJA 

(b) If fAgdu is defined, then fBgdu is defined. 

(c) If g is integrable over A, then g is integrable over B. 
2. Let A,B be arbitrary. Show: 

(a) If JAUB gdu is defined, then 
/ 

gdu is defined. 
 A 

(b) Even when fAgdi.t and fBgdii are both defined, then fAUB 
gd4u need not be 

defined. 
(c) If g is integrable over AU B, then g is integrable over A. 
(d) If g is integrable over A and integrable over B, then g is integrable over A U B. 

3. Suppose that AflB=@. Show: 

AUB =fgd/1+fgd/2 

whenever the left-hand integral is defined. 

Note: by induction, we obtain: 
Let A1, . . . ,A, C 	be mutually disjoint, and A = U7=1 A. If either fA  gdu is defined or 

g is integrable over each A, then 

JA
gdA 	Jgd/i. 

D 

Theorem 2.5.1 (The integral over a null set) Let N E be a null set. Then every7?-measurable 
function f: 9 -+ K is integrable over N, and 

fNf JL 

Proof. Let N be a given null set. 
1. First let f = p e 	say q = aklA. Then 

= [EakiAk
I 

IN =Lak1Ak1N = 1 ak1AknN E 

so that 

fdfq1NdL 
= f [Eak1AnN] dji 

=ak!L(AknN)=Lak .o=o 

as measurable subsets of null sets are again null sets. 
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2. Next, let f E 2'. By the Structure Theorem, there exists a sequence ((pn) 1 in 9 with 
(,j -*f. By the first part, conlN e Y1 for all n, and clearly, (q'nlN)t and (PnIN *f1N. 
Hence, 

thm2.2.1 
fdji fflNdI1 = urn q)0 lNd/2 	lim 0 = 0. 

IN flf 

3. Now let f: 92 -* R* be -rneasurable. Clearly, 

[fiN] ± = f+ 1N 	and 	[fiN] - =f-IN- 

By  the second part, 

f [f1]d 	ff+1d20 <00 	and 

f [f1J - d 
= f f iN d 

p2. 
0<00. 

It follows that fiN is integrable, and 

IN f d A ~—e-' f fIN dy ~--e' j Vlv] dL — f [f 1N] di = 0-0 0. 

4. Finally, let f; 9 -p C be -measurable. As 1N is real-valued, then clearly, 

Re(flN) = Re(f)1N 	and 	Im(flN) = IM(f)1N- 

By part 3. these functions are integrable, and hence 

fN fdp jf1NdjRe(f1N)d/1 + ijIm(flN) dji 

= f (Ref)1NdL + if(imf)1Ndz3 = 0+ iO = 0. 

I 

• Example 2.4 Let (L,,/1) = (R,.%(R),A. 
1. Let f R -* uFl] be any Borel function. Since Q is a countable set, it is a 2.-null set, so that 

JQ f d2, = 0. 

2. Now let f E YKI . Then by Exercise 2.7, parts 2 and 3., 

fRfdt=f
R\Q  

fdt+f
Q 	R

fdt=f
\Q 

fd2+0=f 
 

That is, 

fR\Q 
fd.t=f

R
fdA.. 
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Exercise 2.8 (This exercise will show that fAf  d/i is not really anew concept, but is the integral 
in some measure space (A,AjtA).) 

Let (Q,jz) be a given measure space and  E 9. Set 

:= {EE:ECAl. 

1. Show: 
(a) 9A={EflA:EE}. 
(b) 9A is a a-algebra on A. (Hint: To avoid confusion, denote by A\E the complement 

of E in A. Don't use the notation Ec.) 

We let AA denote the restriction of i to A: 

/1A(E):=u(E) VEEA. 

Clearly, /1A  is a measure on (A, A), so that (A,A,/1A) is a measure space. 
2. Let f: a -+ K be -measurable. The restriction off to A is the function fIA : A -+ K 

defined by 

fA((0)f(0)) 	VWEA. 

Show: fjA  is9A-measurable. 
3. Conversely, let f : A -+ K be 9A-measurable. We extend f to a function f: 0 -+ K by 

setting 

ifwEA 

(O 	ifwVA. 

Show: f is 9-measurable. 
(It is clear that (.) JA = f for all f : A -+ K.) 

4. Let f: 9 —* K be9-measurable. Show: 

(a) If  E(,,),then J'flA  djtA = J'fd 

(b) J' flA dAA is defined #> JA f di is defined. 

In this case, both integrals coincide. 
(c) f is integrable over A . 	fjA E2'(A,A,!1A). 

I 

2.6 Almost Everywhere 

Let us briefly recall the following properties of null sets, which will be used repeatedly: 
1. Let  E 9 be a null set. If  E 9 is a subset N, then by monotonicity, 0< /I (A) <j1(N)=0, 

so that A is also a null set. 
2. Let N1 ,N2N3,... E 9 be a countable family of nulls sets. Then by a-subadditivity, 

(
Q 
k=1  ) k=1 

so that U°=1 Nk is also a null set. 
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That is, measurable subsets of null sets are again null sets, and countable unions of null sets are 
null sets. 

Definition 2.6.1 Let E G 9, and let (S) be a statement about the elements of E. We write: 

Statement (S) holds 1u-a.e. ("almost everywhere") on E, if there exists N E F satisfying 

1. ji(N)=O, 
2. {o) E E: statement (S) does not hold } ç N. 
When E = 9, we simply write: Statement (S) holds i-a.e. 

1 1 R Observe that in general. the set 

B(s) := {co E E : statement (5) does not hold } 

need not be a measurable set (i.e. B(s) 

Thus, the statement 

"(S) holds i-a.e. on E" 

means the following: 
1. Statement (S) holds for all Co E E outside of some null set N. 
2. For co E En N, the statement (S) may or may not hold. 

Example 2.5 	1. Let f, g: 91 —+ W, and E E . The statement 

"f(c)) = g(co) i-a.e. on E" 

means: There exists a null set N E with 

B(5):={wEE:f(w)74 g(co)}cN. 

Now if in additition, both f and g are 9-measurable, then by Theorem 1.5.5, B(s) E 9, and 
hence B(s)  is itself a null set. Thus, 

	

"f(w) g(c)) 	t-a.e. on E" 	u ({ co E E : f(c)) g(C0)j)=0- 

2. Let (ji) = (lR,%(R))). We have 

IQ =0 A-a.e. 

To see this, note that 

B(s) = { co E 92: "IQ (w) = 0" does not hold} = { co e 9: 10(w) o} = 

which is a 2.-null set. 
Now if we change the measure to the counting measure M, then t.(Q) = o, and B(s) will no 
longer be a null set. That is, the statement 

1q = 0 /1 -a.e. 

is not true. 
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3. Let 	be any measure space and f,f: Q —+ K. The statement 

f —* f ji-a.e. 	(or simply f - f) 

means: There exists a null set N E 	so that 

f(o))—f(o.) VwEN'. 

Note: When 0 EN, the sequence (f, (co)) may or may not converge to f(w). Furthermore, 

f need not be 9-measurable even if each f, is 9-measurable; see Example 2.6 below. 
However, changing the value off on a null-set, we may assume that f is9-measurable: . 

Theorem 2.6.1 Let 	be a measure space and f, f: 92 K. Suppose that 
1. each f, is .-measurable, and 
2.  

Then there exists an -measurable function J: K —* K so that 

f, -f 	and 	f=Ja.e. 

Proof. By assumption 2., there exists a null set N E 9 so that 

f(w)—*f(w) VWENC. 

Set 

fnlN 	and 	f:= flwc. 

Then 
1. f=Ja.e. and f=fa.e. 

2. in  is -measurable, for all n, 
3.f(a)—J(o) 

Thus f is also 9-measurable. Since for all w E NC, 

f(w)=j(w)—*j(w), 

then f -'-"4'  1. 	 I 

Replacing f with the function / of the above proof if necessary, we may always assume that 
f is also 9-measurable. 

. Example 2.6 Let Q = R and 

= {E C R: is countable or E' 2  is countable}. 

Let u = &, the Dirac one-point measure at zero. Let f, = 1Q and f = 1[0,1]. Then 
I. each f, is 9-measurable, 

2. f, --f. (Because N:= R\{ O} is a null set, and f(w) = 1 —* f(w) = 1 Vw E NC = {O}.) 
Note, however, that f is not s-measurable ! Nevertheless, if we set i = fiNe = fi{o}  = 1{Q}, then 

I is 9-measurable and f, _f. 
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Definition 2.6.2 A measure space (, 5, i) is said to be complete, if it has the following 
property: Whenever N E S is a null set, and A c N, then A e S as well. ("subsets of null sets 
are measurable sets".) Then by monotonicity, A itself is a null set. 

Theorem 2.6.2 Let (1, 5, u) be a complete measure space, and let f, g: 92 —+ K satisfy 

1. f is 5-measurable, 

2. f=ga.e. 
Then g is also 5-measurable. 

Proof. By assumption 2., there exists a null set N E S so that 

f(w)=g(w) VwEN'. 

1)) Assume first that f,g : 92 —* IR*. Then V  E R, 

{oEci.g(w)>a}={wENg(())>a} U {wENg(co)>a} 

={wENg((o)>a}U{wENf(w)>a} 

={wENg(w)>a}U [{ (o E 11 ~ f ((0) > a InNc ES, 

e9 by completeness 	eg as fis.-meas. 

by properties (A2) and (A3) of a a-algebra. This shows that g is 9-measurable. 

2) Now let f,g : 9 —4 C. Since f = g on NC, then Ref = Reg and Imf = 1mg on NC. That is, 
Ref = Reg a.e. and Imf = 1mg a.e. Since Ref and Imf are 9-measurable, then by part 1), 

Reg, 1mg : 92 — R 

are 9-measurable. It follows that g is S-measurable. 

Completeness can not be removed here. For let (, 5, t) be as in Example 2.6. Set f = 

and g = 1[0l]. Then f is 5-measureable and f = g a.e. However g is not 5-measurable! 

Corollary 2.6.3 Let (0,9,jt) be a complete measure space and f0,f: n —+ K. Suppose that 
1. each f, is 5-measurable, and 

2. f -- f. 
Then f is also 9-measurable. 

Proof. Let N, j, and 7 be as in the proof of Theorem 2.6.2. Since f = f a.e. and f is 5-
measurable, it follows from Theorem 2.6.2 that f is S-measurable. 

Exercise 2.9 (Every measure space can be made complete.) 
Let (, 5, ji) be a measure space. Set 

:= {EUAEE5, AcNforsomenullsetNES}. 

1. Show: t is a a-algebra on 9. 
2. Set ft(E):=u(E) VE=EUAEF. Show: 

(a) ft is well defined. (That is, if E = E1 U A 1 = E2 UA2 for some El, E2 E S and 
subsets A1,A2 of null sets, then ji(E1) = 
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(b) ti(E)=J2(E) VEE. 
(c) j2 is a measure on 

(d) The measure space (, , i) is complete. 
(e) If(1,5,ji) is complete, then 	= g. 

We call (Q, , f) the completeion of (9, 9, ji). 

Example 2.7 	1. The completion of the measure space (R,%(R),2) is denoted by (JR,..%',2.). 
.11 is called the c-algebra of Lebesgue measurable sets. One can show that .(R) C 4' 

2. Let (, ) be any measurable space, and y, the counting measure. Since the empty set is 
the only 4,-null set, it follows that (1), 6F, p4 is already complete. 

3. Let (92,,F ) be any measurable space. Fix a E 92 with {a} E 9 and let öa denote the one-point 
Dirac measure on (, .). Then (9, 	öa) is the completetion of (9, 9, 6a), as can be 
easily checked. 

Theorem 2.6.4 Let f, g : 92 -4 K be 9-measurable functions, with f(w) = g(a) a.e. If f fdi 
is defined, then fgdi is also defined, and 

f fdt = fgdt. 

Proof. Set 

N.:={wEnf((o)g((0)}. 

Then by Theorem 1.5.5, N E , and then by assumption, /2(N) = 0. 
Case 1: f,g c .t Then ff, fg are both defined, and 

ff ex .7 

I
eT

f + JNf 
ex27 

IN
er 

g + fN'f 
ex

- 
1

.7 

fg 

0 by Ibm 2.5.1 	 =0 by Ibm 2.5.1 	f=g on N 

Case 2: f,g : Q —~ R*, and suppose that f  is defined. Since f(o) = g(w) for all co E NC, then 

f(co)=g(co) 	and 	f(w)=g(w) 	for all wENc, 

that is, 

g 	/.I-a.e. 	and 	f = g 	/1-a.e. 

Then by case 1, 

J f+ = 
j 9 
	and jf- 

= 
I g- 

which  shows that 
1. f  is defined, and 

 

 

 

 

 

 

 

 



2.6 Almost Everywhere 
	 65 

Case 3: f,g : 9 —+ C, , and suppose that [f is defined. (in the complex-valued case, this means 

"f is integrable"). Then again, 

Ref = Reg a.e., 	Imf =lmg a.e. , 	and jfj=jgI a.e. 

namely at all U) E NC. Now by case 1, 

f IgI =ffI< 0o,  

which shows that g is integrable, and by case 2. that 

fg=fReg+iflmg = /Ref +iflmf = ff. 

Thus the proof is complete. 

Corollary 2.6.5 Let f, g : 9 —+ K be 9-measurable functions. If 
1. g is integrable, and 
2, If I< IgI a.e. , 	("f is dominated by g") 

then f If 1 <f Jg I . In particluar, f is also integrable. 

Proof. Set 

N 	{w E 92  : If(> g(CO) }. 

By Theorem 1.5.5, N is 9-measurable, and by assumption 2., u(N) 0. Set J = fiNe. Then 

(a) f is 9-measurable, 

(b)  

(c) If() I < l g(o)) I for all wEQ. 

It follows from monotonicity of the integral in 2' that 

0 <f If 1 
2 

fill 	f gj < 

which proves the assertion. 	 I 

Ihoorom 2.6.6 Let f: Q —+ K be 9-measurable. Then 

J fId=0 

Proof 	=: If  = 0 a.e., then If 1 0 a.e., so that by Theorem 2.6.4, 

flfl = 
f 
0 0.  

=: Supopose that f If I = 0. Let 

N:= {w En : f(o) O} = {w 	: f(w) > 01 G9. 
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We can write 

N = UA 	where A,, := 	E 91 : If(w)I> 	E . 

Now for each n, since I  lAn < If I we have by monotonicty of the integral that 

(A) 	J1A = fl/_1A 	n/  If I = 

so that /i(A,,) = 0. Thus, /i(N) = 0 as well, which shows that f(w) = 0 a.e. 

Theorem 2.6.7 Let f: 11 —4 R* be integrable. Then f is finite valued almost everywhere. (That 
is, if(co) I <oo a.e.). 

Proof. Since f is integrable, then M f If I <oo. Set 

N := {o en : If (°J =.I=  ñ { E : If(wI > n} E. 
n=1 

Then for each n E N, 

ON If 

and hence by monotonicity of the integral in 

0<nL(N)=n11N=fn1N f If I = M- 

It follows that 

VnEN, 

from which we conclude that i(N) = 0. This proves the theorem. 

Given an integrable function f: 92 —* R*, let N be as in the above proof. Set f := fiNc. Then 

LJ=fa.e, 
2. f: t —* R. (i.e. f is finite-valued.) 
3. f is .-measurable. 

4. By Theorem 2.6.4, j f = ff. In particular, J is integrable. 

We have shown: Given f E .2k, there exists f E .2 so that 

J(w)=f(w)a.e. 	and 	/J=ff. 

For this reason, some authors consider the space Y.,  only. 
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Exercise 2.10 Let f,g E 	Show: 

1. If f(w) g(w) a.e., then J f d,4<fgdi. 

2. Suppose that (Q, 9, ji) satisfies the following property: For each E E F, u (E) 

there exists A c 9 with A c E and 0 < i (A) <00. (For example, cr-finite measure spaces 
have this property) Show: 

If J' fdp<.Jgdp VA c-9 thenf(w) <g(w) a.e.. 

[I 

2.7 Convergence Theorems 

In this section, we give answers to the following question: 

Let f, (w) -~ f( 0 ) a.e. If each f, is integrable, 
(i) will f be integrable? 

(ii) If yes, will If du = lim jfd/i ? That is, can we exchange the limit and the integral? 
J 	n__OO 

In general, the answer to both questions is negative. 

• Example 2.8 Let (f,u) = (R,(R),A). 

Ii 	ifO<(<n 
I. Consider the functions f0 (w) = 1[0,n) ( 0)) = 	 - - 

else. 
Then 

(a) fn (w) --9.f(W) = 1[0,) while 

(b) I 
JI, 	j 1 10,,j = fl 	00 	ff. 

Note that f is not integrable Thus, (ii) holds, but (i) does not hold. 

1 1 
2. Consider the functions f,1 (w) = nl(0 1(w 	

n 	if0< w < 
) = 

else. 
Then 

(a) f(w) -*f((0) = 0, while 

(b) J, 
fl, = nJl(O,!] = fl.i = 1 74 

i 	J,
0 = 0. 

Here (i) holds, but (ii) does not hold. Observe that the sequence (f0) is unbounded. 

3. Even when f 	f the answer may be negative. For example, consider the functions 

A = 	 Then 
(a) f0(w)3f(w)=O, and 

(b) j fn = f1[2n-1,2n1 = 1. (211- 2 n-1) = 	—+ oo, while 

I f = 1  = 0. That is, f is integrable, but 

j fn -/-~ f f - 

Again, (i) holds but (ii) does not hold. 
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Theorem 2.7.1 [Monotone Convergence Theorem for 92+, MCT] 

Let (f) T be an increasing sequence in 92+• Then 

f(limf n)dii = 1imffnd. 

Proof First an observation: Since (f,) t, then f(w) :=1im,10f,(()) exists in [O,00] for all CO E fl. 

Note that by Theorem 1.5.7, f is also s-measurable. Furthermore, by monotonicity of the integral, 

(f f,) , so that Iim 	f f exists in R*. 

Now by the Structure Theorem, for each f, there exists a sequence ((Pn,k)1 T in 9+ so that 

f(w) urn Pn,k() 	Vw E n-  
k—oo 

We now construct a new sequence (Wk)t in 92+ 

911 	912 	9I3q'I4S' 915~ 
Al 

f2 
Al 

(P31 :5 T'12 	933 ................ 
Al 

Al 

Al 

f 

For each k E N, set 

yk:= max {p1,k, P2,k, •.., (Pk,k}. 

Then 
(a) each Vk is simple, as range(lyk) c U=1 range(q,k), which is a finite set. 

(b) each 4'k is .-measurable, by Theorem 1.5.6. Thus, jt E 92. 

(c) the sequence ('k) is increasing. In fact, for each k we have as p, K 	I that 

1,k+1 

P2.k 	2,k+1 

(Pk,k±i 
0 	'Pk+i,k+i 

Taking the max, first over the right-hand column, and then over the left-hand column, we 
obtain 

= max {pt,k, 'P2,k, . -, (pk,k} 

max{1,k+1, 	 q'k,k--1, qk+1,k+1}='k±I. 
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(d) yk?f. In fact, for each pair (n,k) of indices we have as (4,k).t that 

Pnkfnf. 	 (2.21) 

Hence for all r < k, as (f) t, 

(2.21) 

'Pr,k < maxq n k 	max fnfkf. 	 (2.22) 
1<n<k 	1<n<k 

=v 

Letting k —p 00, then 

Jr = urn r,k lim iyj, f 
k—>— k.—oo 

for all r E N. Next we let r - 00 to obtain 

f = urn Jr  lim i <f 
r—*oo 	k-*'° 

from which we conclude that 

J= 1im, 
k—*— 

We are now ready to compute f f. In fact, by (2.22) and monotonicity of the integral in 2' we 
have for all k that 

f Wk <— f A <  j f. 

Thus, 

IJ 	urn f Vk < limfk 	fJ
2.2.) k—oo 

which shows that 

J fd/i ==uimffkd/1 

and completes the proof. 	 . 
There are some generalizations of this Theorem. The first says that everywhere convergence 

may be replaced by a.e. convergence. 

Corollary 2.7.2 Let (J,) be a sequence in 	and f E... Suppose that 
1. (J(w))ia.e. 
2. f, (o)) —*f(w) a.e. 

Then 

fJdu =?fJnd/i. 

The next Corollary removes the condition that J,1 > 0 for all n. Instead, the sequence (J,1) needs 
to be bounded below by an integrable function. 
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Corollary 2.7.3 Let f,f: 9 	R be 9-measurable. Suppose that 

1. f E2 

2. (fn(w))ta.e. 
3. f, (w) - f(w) a.e. 

Then ff and  f  are defined, and 

J fdy = limjfn dfL 

We may also apply the MCT to the sequence of partial sums of a series: 

Corollary 2.7.4 Let (f,) be a sequence in 2. Then 

f [ l 	n=1 
dkL i I f  

The last two Corollaries are an application of the MCT to integrals over sets. 

Corollary 2.7.5 Let f E .., and {A} 1  t be an increasing sequence of sets in . Then 

f fdL=limffdL. 
U=1A 

Corollary 2.7.6 Let f C 2', and {A} 1  be a collection of mutually disjoint sets in 9. Then 

/
fdJ=J

A
fdt. 

A. 	n=1  

Exercise 2.11 Prove the above five corollaries. 	 El 

Example 2.9 Let f, E .2' Vn, and f,, --*f. If we remove the assumption that (f,) T, then 

limffn d/1 

need no longer exists. Note, however, that 

!llflffn 	and 	ijf n  

always exists. 
For example, let f, = [2+(—l)'}1[, +1]. Then f,, ---f o. on the other hand, 

if n is odd 
ifndm= { 
	ifnis even, 

which shows that the sequence of integrals (f f) diverges. Observe that 

lifliffn 1 	and 	limffn=3. 
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so that 

f limfn =fO=O<1=limffn . 

In general we have: 

Theorem 2.7.7 [Fatou's Lemma] Let (fr)  be a sequence in Y1. Then 

f(lirnfn)dt <limffn d/i. 

Proof. As we want to apply the MCT, we set 

gn  := inf{f, f+i, fn+2, ... } = flf 1k 

for each n E N. Then 
(a) g E 	by Theorem 1.5.7. 
(b) (g,,) T. 
(c) limgn = lim inf fk 	limf. 

fl-4°° k>n 
We can thus apply the MCT to the sequence (gn)  and obtain 

f (iirngn) du = limfgn d.u. 

That is, 

f(imin) d1u = iimfgn d/.L = iinifgn du 	1imffi d/1 

where the last inequality follows from monotonicity of the integral. 

We usually don't have equality in Fatou's lemma as Example 2.9 above shows. 

Theorem 2.7.8 [Dominated Convergence Theorem, DCT] 
Let (f,) be a sequence of -measurable functions, f, : f. —+ K. Suppose that 

1. there exists an9-measurable function f: 92 —+ K so that 

f(w) -4f(w) a.e. 

2. there exists an integrable function g: 9 —* [O,00] (i.e. g E 271  n27+) so that 

c g(w) a.e. 

Then 

(a) f, and  f are all integrable, and 

(b) ffdi.t = lim ffd,i. 

I 
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Proof. Case 1: We begin the proof under some stronger assumptions, namely that f, : 9 —* TI, 
K —* [O,00), and that assumptions 1. and 2. hold at every 00 E 92. 

We first note that since 

fn(0)) g(W) 	VwE, 

then also 

f(w)J=f(o)g(w)<oo VWEn. 

That is, all f, and  f are dominated by g. It follows from Corollary 2.6.5 that all f, and  f are 
integrable. In addition, all functions involved are finite valued. 
First consider the sequence of functions 

(g+f) 1. 

By the above note, g + f E .. fl Y.1  for all n. We can thus apply Fatou's Lemma and 
obtain 

J g +j f = j [g + f] = j [g + lim f" 

= 11iM[9+A1 flim[g+fnl 

< iimf g+i = iim[fg+ Iin] 
Fatoi 	n 	 n 
= f+iirn Jin. 

Since f  is finite, we can subtract it from both sides to obtain 

J  f  < lirnffn. 	 (2.23) 

In a similar way, we consider the sequence of functions 

(9 — fn) 1  = (9-i- ( —fn)) 1 . 

Again, by the above note, g fn  c 2 fl YR1  for all n, and applying Fatou's Lemma we 
obtain as above (since —f, —* —f) that 

Recall that for any sequence (x) in ]R we have 
(i) lim(—x) 	— limx. 

n 

(ii) lim x, exists <--> limxn  = limx,, in which case 
fl —*co 	 n 

lim Xn = hMXn = limx. n—>— fl 
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Hence, 

0) 

 _ffiff. 

Multiply by 1, 

lliiJfn < I f - 	 (2.24) 

Combining (2.23) and (2.24) we obtain 

I f_<limffnlimffnff, 

from which we conclude that lim 	ff, exists, and 

ff=limffn. 

Case 2: Next we consider the general case of f, : 12 —* IR*, removing the additional restrictions. 
By assumption 1., 

{w E  92: f(co)-/-*f(co)}CKo 

for some null set K0. Furthermore, by assumption 2., the sets 

Kn :{oe9:fn(w))'g(c))} (nEN) 

are all null sets. Finally, since g is integrable, then the set 

K,,:_—{coE9:g(a)=oo} 

is also a null set, by Theorem 2.6.7. It follows that the set 

N:= UKn UK00 . 
n=0 

is a null set. 
We now modify all functions involved on N, buy setting 

j:=ffl 1Nc, 	f:=flNc 	and 	9:= 91N, 

These functions all satisfy the assumptions of Case 1, so that 

(a) j and  J are all integrable 

(b) fJd/2  = limfid. 
Now as 

f, =In a.e. 	and 	f = I a.e. 

it follows from Theorem 2.6.4 that f, and  f are integrable, and 

f f = f J =z limf] = limffn . 
Thm 2.6.4 	 fl-300 	 Thm 2.6.4 fl-*00 
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Case 3: It is left to consider the case f : 92 —. C. We simply split all functions into their real and 
imaginary parts: 

(i) Since f, —* f a.e. then 

Re(f) —* Re(f) a.e. 	and 	Im(f) —* Im(f) a.e. 

(ii) Since I Re(z)l, lIm(z)l 	Izi for  E C, then by assumption 2., 

lRe(fn )l <fl  g a.e. 	and 	lTm(fn)l 	If  < g a.e. 

We thus can apply Case 2, to obtain that 
(a) Re(f), Im(f), Re(f), Im(f) are all integrable, and 

	

(b)fRe(f) = limfRe(fn ) 	and 	fIM(f) = limflm(fn). 

It follows that f, and  f are integrable, and 

J f - JRe (f)+iflm(f)= [ limfRe(fn) +i[li
def 	

mIm(fn)] 

= lim V Re(fn)+ifIm(fn)]urn
fl —+Q  del fl_).00J 

This completes the proof. 

Corollary 2.7.9 Let f e 
1. If {A} 1  1 is an increasing sequence of sets in 9 then 

	

fU'-_ fd 
= urn fi A, 	 A 

2. If {A,j 1  is a collection of mutually disjoint sets in 9, then 

/
fdL= Lf fd.  

	

U=1A, 	n=1 A,, 

Exercise 2.12 Prove Corollary 2.7.9. 

. Example 2.10 Let (, j.t) = (R, .(lR), AS), and consider the sequence of Borel functions 

f, (x) = sin n  (x) 1[0,22r] (x). 

1. If  E [0, 27r], x , , then sin(x)l < 1. so that lirnsin'2  (x) = 0. It follows that 

f(x)-+f(x)=0 a.e. 

2. For all n E N we have that 

f(x)l g(x):=1[o2,(x) EflL'. 

It follows from the DCT that 
(a) Each f, is integrable, and 

U 

El 
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(b) iimf sin(x)dA limffn di =ff dA =fodL. =0. 
'°° [O,2r] . 

We have already applied the MCT to series of non-negative, measurable functions by applying 
the MCT in Corollary 2.7.4. In a similar way, the DCT can be applied to series of arbitrary 
measurable functions: 

Theorem 2.7. 10 [Beppo Levi] Let (f) be a sequence of functions in ., and suppose that 

EffndL<oo. 

Then the series 	f, converges a.e. to some f E YK,  I and 
fl= I 

f fdi = 	ffndL 	(i.e.J ,1fn = 	JL) 
	

(2.25) 

Proof. 	1. Proof of convergence. We want to make use of the fact that every absolutely convergent 
series in R or C converges. Let us first set 

g := if fij c Y- 	and M:=fLffn<oo 

By Corollary 2.7.4 and the assumption we have 

fgd=f [IfI] d 
cor7.4 

LffnI 	= 	 (2.26) 

so that by Theorem 2.6.7, g is finite-valued for all w outside of some null set K. In particular, the 
functions f(w) are finite valued for w K, so that the partial sums 

N 
SN(w)= Lf(c)) 

72=1 

are defined for all (o V K. Since every absolutely convergent series in R or in C is convergent, then 
f, (o)) converges outside of K. That is, there exists f: E —* K so that 

f( 0 ) = Lffl(w) =limSN(w) a.e. 

Finally, by Theorem 2.6.1 we may assume that f is f-measurable. 
2. Proof that! is integrable and (2.25) holds. For all N E N we have 

1f72 	f72 (o 	= g(w) a.e.. 

Since by (2.26), g is integrable, we may apply the DCT to the sequence (SN) and obtain that 

(a) f is integrable, 

(b) f f=hmfSN=hmfEffl=lLrnfffl=fffl. 

This proves the theorem. 
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Example 2.11 Let 	= (R,.%(R),A, and consider the series 

f(x) 
V fn- 

We now have 

f ij Ifn = &l1]\ 	n [;4]:1 
X17n (n + 1) 	n 

by the p-series test.1  
Thus by the Beppo Levi Theorem, 

00 (1'fl 

(a) '__/ x" converges a.e. on [0, 1] to an integrable function f, and 
n=1 jn 

(b) flo,1]f/01]fnL (n±1) 
Note: The above series is really a power series. If we apply the ratio test, we see that this series 
converges for x( < 1, but diverges for Ix > 1. Thus, the standard arguments for the integral of 
power series cannot be applied at the endpoint x = 1. 	 • 

Exercise 2.13 Fix h E 2t For each E E 9, set 

V(E) 
:= JE 

hdy. 

Show: 
1. v is a measure on 
2. Ifji(E) =Othen v(E) =0. 
3. V is a finite measure 	h is integrable. 
4. For each f E 	we have 

I f  dv = J fh dji 	 (2.27) 

5. Let f: 91 —* IR* be s-measurable. Then 

dv is defined <=> 	d,i is defined. .1  
If these integrals are defined, then (2.27) holds. 

6. Let f: Q —+ K be 9-measurable. Then 

fE2(c,,v) 	fhe(c,,u). 

In this case, (2.27) holds. 

I (*): We will see later that for continuous integrands, the Lebesgue integral coincides with the Riemann integral. 
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2.8 The Connection Between the Riemann and the Lebesgue Integral 

We let 

R_f ' f (x) dx 

denote the Riemann integral over the interval [a, b], and set 

1[a, b] = {f: [a, b] —* R : f  is Riemann integrable}. 

One can prove the following theorem: 

Theorem 2.8.1 Let f: [a, b] --~ R. Then 

1. f EP2[a,b] <=> f is continuous a.e. 
2. If  E .?[a,b], then  is Lebesgue integrable, and 

R_Lb 
f (x)dx= L b] f dl. 	 ___ 

For this reason, the Lebesgue integral over the interval [a, b] is often also written as j' f(x) dx. 

We now discuss the connection between the improper Riemann integral and the Lebesgue 
integral. It turns out that things are diefferent for nonnegative and arbitary integrands. 

Thus, let 1 be any interval (bounded or unbounded). 

1. 1ff : I — [0, oo) is improperly Riemann integrable on I, then f is also Lebesgue integrable 
over 1, and both integrals coincide. 
The above statement is a consequence of the various convergence theorems. For example, 
suppose f: [a, b] —* [0, oo) is continuous on (a, b], but limx>a+ f(x) does not exist in R. Let 

(ca) be any decreasing sequence in (a, b] with c, —+ a. Then by definition of the improper 

integral, 

R— 
fb 

 
a 

lim R— 
fb 

c, 
fdm 

18 	28 1 fl+  m. 	
lim 

4"'bl 

= 
	4'bl 

fdm = I f din. 
cor2.7.5  Ibm 25.1 J[a,bl 

An example of this situation would be the integral of f(x) = over [0, l]. This function is 

not defined at 0, so we give it any value there. Then 

R- -- dx = lim J --- dx = lim [2/' = lim 2 (Vl — 	=2. 
0 ,8/d: 	c—*0 c 	 c+0+ 	C 

Similarly 

I —dm = lim / —din 
\/ 	cor2.7.5 lI—*00J{1,l] V' 

= limR—[ 1dx= lim 2 l— 	=2. 
thm2.8.1 fl—Oo 	J7X= 	n—*oo 
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2. 1ff:  1 —+ (_oo,00) is improperly Riemann integrable on 1, then f need not be Lebesgue 
integrable over 1. 
An example of this situation would be the integral of the function. 

AX) = : 1[n _1,n ) 
n=I n  

over {O,00). Note that for a given x > 0, 

(—l) 

n 

where n is the unique positive integer with x E In — 1, n). 
(a) First consider the improper Riemann integral R — j° f(x) dx. Given b > 0, there exists 

auniqueN EN sothatN < b N+ 1. Then 

R fbf(X)dX 

 = R 

	

LT+1 l)N± 	

dx 

	

n 	N+1 

:=RN, RNC -r 

Now if b —+ oo, then b - 1 <N —f 00 as well. Since limNSN exists (alternating 
harmonic series), and limNRN 0, it follows that 

i. R — / f(x) dx = lim R- / f(x) dx converges, and 
JO 	 b—oo 	./0 

100 	 °° (flfl 

ii. R 
- J 

f(x)dx = lim SN = 
0 	N—oo 

n=1
Y.  n 

(b) Next consider the Lebesgue integral. 

N1 	00 1 
I 	fdm = urn I 	fdm = lim  

cor2.75 N-_*ooJ{(O,N) N_oo??_l 	n=1 

(the harmonic series.) This shows that f is not Lebesgue integrable on [0,00). 

Exercise 2.14 Consider the "sinc"-function 

1 sinx 	x -O 
f(x)= 	 7- 

x=0. 

Show: The improper Riemann integral 

R— ff(x)dx 

converges, but  is not Lebesgue integrable on 
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Throughout this chapter, (n,,JL) will be a measure space. We also let K = R, R or C. 
When 1K = R or K = C then by Theorem 2.3.1, respectively 2.4.7, 

= YK1 = {f: Q -4 1K I f is 63--measurable and integrable} 

is a vector space over K. In addition, it is easy to see that 

IIfi = f If I d 

defines a seminorm on this linear space which in general is not a norm. Indeed, Theorem 2.6.6 
implies that 

If Iii =0 	f(w) =0 a.e. 

In this chapter we will modify the space 211 to obtain a normed linear space, by using the quotient 
space construction. It turns out that a larger classes of spaces are actually of interest here, and we 
begin by introducing these first. 

3.1 The L'-spaces 
Definition 3.1 .1 Given a number p. 1 <p <00, a measurable function f: 9 -+ K is called 
p-integrable, if 

f Ifdt <00, 

We set 

2" = 	= 2(Q11ji) := {f:c-~K:fis-measurable and p-integrab1e}. 
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For each f E 2'P, we also set 

"P:= [f IfPdL] 	"p-seminorm". 

The case p = 1 has already been covered above. Here, 

= {f: n —* K: f is 9-measurable and integrable } 

is the space of integrable functions. Note that this is not a vector space when K = R*. 
Nevertheless, 

fill =fIfdi 

is always defined. 
The case p =2 is also of particular interest. Here, 

= {f: n — K : f is 9-measurable and J I fI2
du <Co } 

is called the space of square-integrable functions. Then 

= fIfI 2d. 

We are also interested in the space of bounded functions. However, we will employ a modified 
concept of bounded functions, which allows us to disregard the function values on null sets. 

Definition 3.1.2 An 9-measurable function f: 9 —+ K is called essentially bounded, if there 
exists M> 0 so that 

EM {WEIf(W)I >M} 

is a null set. Such a number M is called an essential bound off. 

. Example 3.1 Let (,,ji) = (R,.%(R),A), and consider 

1sin(2) 	if x E ll\Q 

p 	ifx=EQ, (p,q)=l,q>0. 

As I sin (Jvx) I < 1 for all x, and Q is a i-null set, it follows that every M > 1 is an essential 
bound of f. 

Next we show that any 0 < M < 1 cannot be an essential bound. In fact, pick x1, E [0, ) with 
sin(lrx0) = M. Then 

EM = {x E ll: If(x) I > M} D {x e [0, ) f(x) > M} D (x0, ) fl 
QC 

which shows that EM is not a null set. 
It follows that M = 1 is the smallest essential bound off. We write 

f:=1. 
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Definition 3.1.3 We set 

= = 
= {f: 9 —+ K: f is9-measurable and essentially bounded }. 

For each f E 2'°°, we also set 

ess-supf := inf{MMisan essential bound off}. 	 (3.1) 

call this sea Sf 

R Let f E .2200  be given. 
1. If M is an essential bound off and L > M, then L is also an essential bound off. In 

fact, whenever L > M, then 

EL = {w E 	f(w) I > L} 9 EM = f co E 	f( 	M}. 

So if EM is a null set, then EL will also be a null set. 
2. Ilf 1100 is itself an essential bound off. To see this, let e > 0 be arbitrary. Then by 

(3. 1), If 1100 + C is not a lower bound of Sf, hence there exists M E Sf (i.e. an essential 
bound M off) so that 

If 00 M< If 11- 

It follows by part 1. that I I f I I + E is an essential bound for f, that is 

{wEf: If(w)I > I If II+e} 

is a null set. Now choosing e = , we obtain that 

E[1f1 :=Co E : If(w)I> hf M00} =U{w E: lf(> If 100 +} 

is a countable union of null sets, and thus is itself a null set. This shows that If 1100 is an 
essential bound for f. 

Thus by (3.1), If 11— is the smallest essential boundfor f. 

Let f:Q —+K be 9-measurable, and 1 <p < 00. 

I. Since If IP > 0, then 

I If IPdA 

is always defined (possibly = oo). Thus, 

IIf= [jIfIP] 
1/p 

 

is always defined (possibly = oo). Hence 

f E 	 f If <°° 	IIf < 

Also, 

If IIPP = f if P  = 11 If 	. 	 (3.2) 
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2. Similarly, 11f II is always defined (possibly oo  when Sf = 0). Hence, 

f E 	Sf zA 0 	 <0•  

3. For l<p<oowehave 

fJ- Ø 	jIfIPzo 	If(co)I'=O a.e. 	f(o)=O 

Similarly, 

IIfIk=O 	Ois an essential boundoff 

s {WEQ:If(w)I>O}isanullset 

{oE:If(ü)I 4 O}isanullset 
f(a)) =0 a.e. 

Definition 3.1.4 Given 1 <p < oo, set 

q:= -p--. 	 (3.3) 
p — i 

Then 1 <q < o as well. 
When p = 1 we set q = 00 and when p = 00 we set q = I. The number q is called the 

conjugate of p. 

The following properties will be used throughout. 
1. When l<p< co, then 

1 1 1 p—i 
- + - = - + 	=1. 
p q  p q 

2. Agreeing that I = 0, this identity remains valid for p = 1 or p = 

(l<—p<°°). 
p  

3. When p = 2, then q = 2 as well. (p = 2 is self-conjugate.) 
4. By (3.3) we have for 1 <p < 00 that 

q(p—l)=p. 

Thus for any s-measurable function f: 0 —* K, 

J lfip = J[1f1P-1]'- 

This shows that 

(a) f E !t 	fJPl e yq 

(b) IIfII 	= 
1 1 1f1p—,11 q 	

(3.4) 
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Lemma 3. 1.1 Let 1 <p <co be fixed, and I + 1  = 1. Then 

a 
ab< —+ 

b
— 	Va,b>0. 	 (3.5) 

p q 

Proof. We note that when a = 0 or b = 0 then the above inequality holds trivially. We thus may 
assume that a,b > 0 in (3.5). 

Let us derive an equivalent statement. Setting u = aP and v = b'1, then (3.5) is equivalent to 

1' 1 iP' 1 < 	 Vu,v>0. 
p q 

Dividing by v 0, this is equivalent to 

rui 1 /ui 	 1 rui 	1 
I—I 	= 	< —1-1+— 	Vu,v>0. 
LvJ 	 - P LvJ q 

Setting t = , this is equivalent to 

< 	 Vt>0. 	 (3.6) 
p q 

To prove this statement, consider the function 

f(t)=+ —t, 	tE(0,00). 
p q 

Then 

f(t)=i_i' t(1/P)_1 =._ I—! 
P p 	p tq 

Since 

f'(t) <0 on (0,1) 	and 	f'(t) >0 on (l,00) 

it follows that 

f(t) >f(1) =0 	Vt E (0,00). 

This shows that (3.6) holds, and proves the lemma. 

Theorem 3.1.2 [Holder's Inequality; p = 2: Cauchy-Schwarz Inequality] 

Let  <p<oo. Iff2P and g2,then 
1. fgE2',and 

2. f lfgld 	fjpMgq. 

Proof. Note that it suffices to prove assertion 2,; then 1. will follow immediately. We distinguish 
three cases. 
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Case 1: l<p<co. 
(i) Suppose f = 0. Then f(w) = 0 a.e. 

f(c))g(o =Oa.e. 

ffg=0, 

so that assertion 2. holds trivially. 
(ii) Similarly, if 1191I q = 0, then assertion 2. holds trivially. 

(iii) We may thus assume that If > 0 and 19 1I q > 0. Applying Lemma 3.1.1 with 

a= 	 and 	b= 
Ig(o))I 

fIp 

we obtain 

f(w) lg((0)l < 1 f(w)  

fJp 	119 II q - i' 	Jf p7 	q Hg 

Now we integrate. By linearity and monotonicity of the integral, 

1 	

' 	

< 	I jIf I p + l  1 
q f gJ --- 

flpMgIq 	° If IT 	q g  ., 	 q 
_iI lip 

	

-HIfHp 	 =IIglI 

Finally, multiplying by IfIIg, we arrive at assertion 2. 
Case 2: p = 1. Then q = 00 Now since 	is an essential bound for g, we have 

f(o) g(o){ < f(co) 	a.e. 

By Corollary 2.6.5 and linearity of the integral, 

	

f i f9i < f ~ f I Ile— = 	
= fH 

which proves assertion 2. 
Case 3: p = oo. Then q = 1, and assertion 2. follows from Case 2, by symmetry. 

U 

Theorem 3.1.3 Let K=RorK=C, and l <p<oo. 
1. Yp = 	 is a vector space over K, 

2. 11 Il p is a seminorm on 1'. That is, for all f,g E YP and c E K we have 

(NI): 	If II >— 0 

(N3): IIcf lip = cl If l i p  

(N4): If +gi I :!~ IIf, + IIgp 	("Minkowski's Inequality") 

Proof. Since the set of all K-valued functions, 

VK := {f: 92 - K} 

is a vector space, in order to prove 1. we only need to show that .22" is a subspace of V. That is, 
we need to show that cf E YP and f + g E .22P for all f, g E .2213 and c E K. Clearly by definition, 
lIf lip >O for all fE2". 
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Case 1: p = 1. We already know from Theorems 2.3.1 and 2.4.6 that YKI is a vector space. Now 
let f, g E Y.1 and c E K. Then by linearity of the integral, 

cfjli = fcfI 	ICI if = ICI ffI = cIIfIIi, 

which shows that (N3) holds. Furthermore, as 

(f+g)(w) I :~ If(w)I+Ig(co) I 	Va)E, 

then by monotonicity and linearity of the integral, 

f+gMi 	f l f+gl :5 f( i t+v) =11f~ +11gi = fIk+MgHi , 

which shows that (N4) holds. 
Case 2: I <p<oo. Let f,gE2" and ceK. 

(a) Since the integral in 2+ is homogeneous, then 

jcf" = f l cfI = f lCip if ip = ci P f if Ip = cIIf lip <oo. 
def 

It follows that 
(i) cf E 2", and 
(ü) Icf = Ic 

(b) Furthermore, for all Co E n we have 

If(0))+g(0))l p —< [if(0))I+lg(o))]' 

<[2max(If(o))I,Ig(o))I)]" 

= 2P [ max ( f(w),jg(0) )]P 

= 2 max( jf(w)IP, g(WIP) <2 { If(Co) + 

Hence by monotonicity and additivity of the integral in 2, 

f f+gIP < f2P[IfIP+ IgIP] 

2P[jIf IP +fIgIP] <, 

because f, g E 2". This shows that f + g E YP also. Furthermore, 

f if +glp= 
f If +91 i f +91P-1 

f[If+II].If+I 
= f fI . +gIP 1 + f g I. f+g IP1 

2q by (3.4) 	 E.2'q by (3.4) 

IfIlp II f+gI"'Mq+ liglip II jf+g "_' , 
Holder 

ifiip II! +gJ 	+ IIL If+gI 

 

 

 

 

 

 

 

 



M. 
	

Chapter 3. Spaces of Integrable Functions 

When Jf+glp Owe can divide by 
If+gJm to obtain 

p —I! 
IIfiIp+ jIgI,,. 

Sincep=p[l_]=p=1,itfollowsthat 

If+gp 	I1f+ lgM• 

When if+gI = 0, this last inequality certainly holds as well. 
Case 3: p=oo. Let f,gE.2°° and ceK. Then 

N1 := {o E 9: If(w) 1 > IfII00} 

Ng := {a e 9: g(w) 	gII001 
are both null sets. 

(a) For all w V Nf we have 

(cf)(w) 	id If()I 	id if IIo, 

which shows that cf is essentially bounded, and 

iIcf 	!~ IcI(ifi. 	 (3.7) 

Now if c 0 we use the same argument to show that 

From the above two inequalities we obtain that 

If 11.
'1 	 1 

= H — (cf) H <— cf 	— id if 100 = 11f1100, II C 	1100 	Id 	 (3.7) 

so that 

IIcf00 = ci if Iloo. 

On the other hand, when c = 0, then clearly 

icf00 = iIO 	= 0 = icif00. 

(b) Furthermore, for all (0 N1 U Ng we have 

if(c))+g(w)i 	f(o)i+ig(c))I 	11f1100+IIgiI00. 

This shows that 
(i) f+g is essentially bounded, that is, f+g E .2)00, and 

(ii) 1 1f+g00 = ess-sup (f+g) 	If 1100 + ugh00. 
The proof of the theorem is thus complete. 	 I 

( 	Clearly, Y.. is not a vector space, as f + g need not be defined when f and g are extended 
real-valued. However, the above proof shows that (N3) always holds, and (N4) holds whenever 
f+g is defined. 

We can now modify the spaces .2)" in order to make each 	a norm. For this, we will use 
the quotient space construction, as laid out in the next Exercise: 

 

 

 

 

 

 

 

 



3.1 The LP-spaces 

Exercise 3.1 Let X be a (real or complex) vector space and N a linear subspace. Define a 
relation - on X by 

xy x—yEN (x,yEX). 

I. Show: - is an equivalence relation. 

2. We denote the equivalence class of x E X by [x] and also by 9. Set 

the set of equivalence classes. 
(a) Show that the following operations on 2 are well defined for all [x], [y] c.9 and 

scalars a: 

	

[x] + [y] :r= [x + y] 	a[x] := [ax] 

(b) Show that I is a vector space with these operations, 

(c) Show that the quotient map q : X -+1 given by q(x) = [x] is linear and surjective. 

	

3. Next let X carry a seminorm 	. We set 

N={xEX: 

(a) Show that N is a linear subspace of X. 
(b) Show that 	:= 	well defines a map I -+ R. 
(c) Show that 	is a norm on I. 

	

Now let X = 	,5,ji) for some fixed 1 <p < 00, where K = R or K = C. Thus we let 

N = If c YP: If I p  = O}. 

Since I If I I p  = 0 #> f(c)) = 0 a.e. we thus have 

	

N={fE 	: f(w)=Oa.e.} 

and 

fg 	f—gEN <=> f(oi)—g(w)=0 a.e. 4z  f(co)=g(w) a.e. 

We denote the normed linear space space I by q (I, 5, u) or simply by L (1), 5, u), and keep 

	

using the symbol 	for its norm. 

(j 	Strictly speaking, the elements of If (f, 5, t) are equivalence classes of functions. However, 
as any two elements in the same equivalence class are equal a.e., and the integral does not 
distinguish these functions, we 'confuse' the equivalence class [f] off with f itself. That is, 
we treat every element of LP (92, 5, z) as a function, which is uniquely defined up to a null 
set only. 
Thus, when we say 

"let f E L'3" 

we really mean 

"let f e .2" be any representative of [f] C 

Clearly, Holder's and Minkowski's inequalities hold for the spaces I! as well. 
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Even though 	(, 9, i) is not a vector space, we can still introduce an equivalence 
relation by 

fg 	f(co)=g((0) a.e. 

and obtain a set of equivalence classes L. (fI, 9, ii). However, since every element f of 
YR' , (, 9,  ) is finite valued a.e., then its equivalence class [f] E Y.. will contain functions 
which are finite valued everywhere, that is, elements of 	(fl,,u). It follows that the 
collections of equivalence classes 	 and L(c,ji) are identical In this 
manner, Lf. becomes a real normed linear space which is identical with Lf. 

For this reason, we will treat all functions as finite valued from now on. In fact, when 
9 -* W is9-measurable and finite valued a.e., then we will implicitly modify the values 

of f on a null set so that f becomes finite valued everywhere. 

Exercise 3.2 Consider the measure space (N, 9(N),.u) where u denotes the counting mea-
sure. Since 9 = 9 (N), every function f: N -+ K is s-measurable. In addition, every function 
f: N -+ K can be identified with a sequence (xk)' 1  = (xl ,X2,. . . ,xk,...) in K, by setting 

Xkf(k) 	(kEN). 

The map f '-* (xk) thus constitutes a linear isomorphism between the set of K-valued functions 
on N onto the vector space of all sequences in K. 

1. Let f: N -+ [O,00) be non-negative, simple. Show: 

J
fd,i = 	f(k). 	 (3.8) 

2. Let f: N -4 [O,00). Show that (3.8) holds. 

3. Let f:N—+K. Show: 

f is integrable 	If(k) I <co•  

k=l 

In addition, if f is integrable, then (3.8) holds. 
4. Let f,g : N -+ K. Show: f = g a.e. 	f =g. 

5. We set £" :=.2'P(N,(N),ji) =L(N,(N),i). Show: 
(a) If 1 <p < oo, then 

00 	 00 

f E £ 	If(k)I <oo, 	and 	(f 11 

P 

	

k=1 	 k=1 

(b) Ifp=oo, then 

fEr 	sup If(k)  I <o°,  and If M00=  sup f(k)I. 
kEN 	 knN 

6. Show that £ c4but4 74 £q  for 1 <p < q oo• 
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Exercise 3.3 Let (, 9, ji) be afinite measure space, and 1 <p < q 	. Show: 
1. L(g).,,/i) C LP(fl,,ji) 

2. 3k=k(p,q) so that IfpkIfIq 	VfEL(,,U). 

Compare this to Exercise 3.2!! 

Exercise 3.4 Let 92 = (O,00), 	.(O,00), i = 	Set 

g(x)= 
(1+1nx' 

1. Show: g EL2  (O,00), but 	L(0,o0)  for pL q, 1 <q < oo, 
2. Use the above to show: If 1 <p < q < 00, then Lf'(O,00) L(0,o0). 

3. What if A is the Dirac one-point measure? 
Compare with Exercises 3.2 and 3.3 !! 

Exercise 3.5 Let f,f E 	, ). Show: If f Jf, then 
1. f, (w) —*f(cO) a.e. 
2. 3g E 	 so that f,(w) <g((o) a.e. 

Exercise 3.6 Let K2 = R, 9 = Y (R) and u = 3, the one-point Dirac measure at x = a. 

I. Given f>O,find 
j 

f  dJl. 

2. Describe the elements and the norm in the spaces 	and U', 1 < p < 00, 

3. Describe the elements and the norm in the spaces 2°° and L°°. 

3.2 Completeness of the LP-spaces 

	

In the previous section, we have defined the spaces 	 and shown that they are normed 
linear spaces. In this section we will show that they are complete, that is, Banach spaces. 

Let us first discuss convergence of sequences in L" (9, , ji). So far, we are familiar with two 
types of convergence. Given f,,,f E L"(Q,jt), 

1. the sequence (f) converges (pointwise) a.e. to f, written  f,, -*f, if there exists a null set 
N E 9 so that 

f(w)—f(w) Voec\N. 

Note that it does not make sense to talk about everywhere convergence in U', because 
elements of U', when considered as measurable functions, are uniquely defined up to a 
null set only. To be precise, the notion of a.e.-convergence should be defined as follows: 
Let f,, , f E L. Pick arbitrary representatives g,, , g E .$1" of each equivalence class, that is, 

= [gn] and [f] = g. Then 

def 
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This definition makes sense as changing the values of gn  and g on null sets does not change 
the property of a.e. convergence. 

2. the sequence (f) converges to f in the p-th mean, written f --* f, if 

lim IIf - flip = 0. 

In general the two types of convergence are different: 

• Example 3.2 	1. Let 92 = [0,1], 	([o, 1]) and u A, the Lebesgue measure. 
Set fn  = fl21(i 	, n = 1,2,3.....Since ([0, 1],.([0, i]),A) is a finite measure space, and 

n+1 'n 

each f, is simple, then clearly f E I)' Vn, Vi < p < oo. It is also easy to see that 

f(w)—*0 	VWE[0,l] 

(as functions), that is, f --*f = 0 as elements of L. 
Claim: f4f=0in the p-th mean, V1<p<oo. 

Case 1: 1 <p<oo. Then for all nEN, 

fn  —f lip = nii j  - P J n2Pl(ll]dA 

2 	
2p-1 

2 IL 	-1 \ =nk'l______I=flr 	= 	> 

	

n n+lJ 	n(n+1) n+1 2 

which shows that (f,) cannot converge to f = 0 in the p-th mean. 

Case 2: p = 00 Since lIf, - flI = ess-supf(ü) - 01 = n2 > 1 for all n, then (f,) cannot 
wE[O,1] 

converge to f = 0 in the essential supremum norm. 
This proves the claim. 
(We observe that Corollary 3.2.4 below implies that if (f) converges in the p-th mean to 
some function f, then  f = 0 as an element of II. Thus, (f,) cannot converge in the p-th 
mean at all.) 

2. Let n = R, SP = (R) and /1 = m, the Lebesgue measure. 
Fix r> 1 and set f 	1[O nr], n 1,2,3.....Then clearly f, E L Vn, VI <p <00, 

Since lf(co) —01 = 1f0(w) I < 1  for all w ER, it follows that 

ff= 0. 

(that is, f,, -* 0 uniformly.) In particular, f,, ae+f = 0 as elements of L. 

Claim: 
Case 1: l<p<oo. Then 

If0 —f lip = 	1[O,nr] - 0 = f 	1[00r]dA = 	fl'
nP 

	

Ioo 	p<r 

	

1 	ifp=r 	asn—oo. 

	

Lo 	ifp>r 

Case 2: p = 00• Clearly, 

A _f _l[Q,r] - 0 h = 	0 	as n 
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Both cases show that I Ifi, —f I P --~0 precisely when p> rand thus prove the claim. 
. 

'he above examples show that if f --*f, then (fr ) may or may not converge to f in the pth 

mean. Conversely, Example 5.2 in Section 5.1 below will show that in general, f, --'f does not 
imply that f - f when 1 <p < oo• However, Corollary 3.2.3 will show that there exists at least a 
subsequence (fflk) with fflk --*f. On the other hand, when p oo we have: 

Exercise 3.7 Let f,,f c L°°(9,,t). Show: If f JLf then 
1. f(co)--*f(w), 
2. There exists g EL°(9,,t) with I f, (w) 	g(w) a.e. 

In case p = 1, let f,f E L1(,,i) and suppose thatf0 ---f. Then 

f fd A - 
f 

f d 	 dit 	O 	asn, 

so that 

J
fn dp /f d. 

There is a variation of the Dominated Convergence Theorem: 

Theorem 32.1 (Dominated Convergence Theorem (DCT) for the LP-spaces) 
Let 1 < p < oo, and let f,,f be 9-measurable functions. Suppose that 

(1) f0(co)--*f(w), 
(2) there exists g E LP(,,u) with f(co) I <g(w) a.e. 

Then 
(a) f,f EL'(1,,/.L), and 

(b) fJ!Pf 

Proof. Let us first show that f,,f E L. (To be precise, we show that f,,f e 'P.) In fact, 
assumptions (1) and (2) together imply that 

f(w) g(w) a.e. 	 (3.9) 

as well. It follows from assumptions (1) and (2), from (3.9) and monotonicity of the integral that 

I fP<fgP <oo 	and 	fA lp 
<_fgP<00, 

which shows that f,,f E L. 
1.1 Next we prove that J -*f. By assumption (1), 

f(w)-f(0)-40 a.e. 

On the other hand, 

f(w) f(w)P [If(w) + 	
[g(w)+g(w)]P = 2g(w) 	a.e. 
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for all n. Since g E L" by assumption, then the function 2PgP is integrable. We can thus apply the 
usual DCI (Theorem 2.7.8) to the sequence of integrable functions { I fn (w) - f(o)) I P } and obtain 

limf fP 
- iimf Jf, _fP=fiirn f 

_fP = fo = 

which shows that fn -- f as n -+ oo. Thus the Theorem is proved. 

This theorem does not apply when p = oo. For example, let (0,9, g) = ([0, 1],([0, 
letf = 1(11] and  = g = 1(0,11. Then 

(1) f(a)) —~ f(w) Vw E [0,1], 
(2) f(c))J<&)) VWE[0,1]. 

However, 

	

1111- 	asnoo. 

Theorem 3.2.2 (Completeness of L (I, , u) for p 74 oo) 

Let I <p <00, and let (f,)°° 1 be a Cauchy sequence in LP(9,,/1). Then there exist a 

subsequence (fnk)1 and f,g E LP(9,,/t) satisfying 

(1) 
I f n'

~g(co) a.e. Vk, 

(2) fnk(0)---*f(c0) ask —+oo, 

(3) f, 1114 f asn—oo. 
In particular, L(1,',js) is complete. 

Proof. The proof proceeds in four major steps. 

	

Step 1: Extract a subsequence (fflk) satisfying fflkll — fnk 	< 	Vk. 

Step 2: Show that Lk [fnk+1 —f,,j converges a.e.; conclude that f(co) = limfflk (o) exists a.e. 

Step 3: Show that f E L. 

Step 4: Show that f, -1-
11
4f. 

The extraction of the subsequence (fflk) is a standard process for Cauchy sequences, and is 
done by induction. Since (f,) is Cauchy, then for E = 1 there exists ni E N so that 

Vn>n1. 

Similarly, for £ = there exists fl2 C N so that 

I 
Vn>n2. 

Increasing fl2 if necessary we may assume that fli <n2. In general, suppose we have already chosen 

ni <n2 < 	<nk1 as desired. Since (f,) is Cauchy, for E =
-
1 there exists nk C N so that 

1 
Lf,z — fnkp< 	Vfl>flk. 
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Increasing nk if necessary we may assume that flk i <nk. Continuing this way, we thus obtain a 
subsequence (fnk)  of (f) satisfying 

Yk Vk. 	 (3.10) 

This completes step 1. 

To show a.e.-convergence of this subsequence, let us set 

k 
gk:= Ifni +ffl,,l—fflJ, 	k=1,2 	 (3.11) 

i=1 

Then (i) gj E 2 Vk, and (ii) (g,) T. Hence g := urn g, exists (as an extended real-valued 
k—oo 

function), and g E 9+• 

Claim: g E L. In fact, as (gfl t then 

fgP I [irn] 
MCT 	

fg 

= 	
: 

 fni 

Mwsk [f1l+1f1+1 fnip] 

<[fn!p+] = 	 <, 

which proves the claim. 
By the claim, g is finite valued a.e., that is, 

g(w) = If., () 1 + 	f1 (w) f(w) I <co a.e. 	 (3.12) 

Since every absolutely convergent series in K converges, there exists an9-measurable function f 
so that 

f(w) =Jim [In1 ((0)+ 	[ffl1+1  (w)_f fli(w)]] 

telescoping stint 

=f 1 (w)+lim [fflk+l (w) — ffll (w)1 

= limfflk+[ (w) 	limfflk (co) a.e. 
k-4- k—*oo 

This proves assertion (2) and completes step 2. 

Note that by the triangle inequality, 

k 	 I 

fnk+J = 	+[f±l fnJ 	+f() -f,(w =g, 
i=1 	 i=1 
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for all k, which shows that assertion (1) holds. Furthermore, going to limits, 

f(co) = limfflk (w) 	g(w) a.e., 
k-oo 

and as g E If it follows that f E Ii' as well. This completes step 3. 

Finally by step 3, 

fnk(w) — f(w) — O a.e 

while also 

fnk(W)—f(0)) I ~: If,,(w)+f(O 	2g(w) a.e. 

Since g E If, we may apply the DCT for the L spaces to the sequence { f - f }° and obtain 
that 

f.,—f= Hfnk—fI-011p -+0, H 

that is. 

fnkf askoo. 

Then by a standard property of Cauchy sequences, 

fPf asnoe. 

This completes step 4 and the proof of the theorem. 	 U 

Corollary 3.2.3 Let I <p < 00 and let (f,) 	be a convergent sequence in LP (92, , ji), say 

f-*h. Then 
I. there exists a subsequence (fnk)Z l with fflk (w)-- h(o), 
2. there exists g E LP(1,,u) with fflk(a <g(o) a.e. 

Proof. Since (f) converges, it is Cauchy. We let fk' f and g be as in Theorem 3.2.2. Now since 

as n —+ 00, then also fnk  -- h as k--~ 00 On the other hand, fnk 14  ask —* ooby Theorem 
3.2.2. It now follows from uniqueness of limits that h = f in If, that is, h f a.e., and the proof is 
complete. 

We note that the case p = 00 has already been covered in Exercise 3.7. 

Corollary 3.2.4 (Uniqueness of Limits) Let 1 <p < oo and let {f,} 	be a sequence in 
L"(n,,u). Suppose that 

1. f,±).f for some fELP(9,,1), and 
2. f0(c)) -+h(w) for some 9-measurable function h. 

Then f(o) = h(w) a.e. 

Proof. By Corollary 3.2.3 (respectively Exercise 3.7 in case p = oo), there exists a subsequence 

(fnk) so that fflk(w 	--* ) —f  (a). Since by assumption, fflk(w) -_4h(w), it now follows from unique-
ness of limits in K that f(o) = h(w) a.e. 
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Theorem 3.2.5 L°°(I, 9, ji) is a Banach space 

Proof. Let (f,) be a given Cauchy sequence in U. We first find a limit function f. For each m > n, 

set 

Am,n := {c) E n : frn(c)) — f,(( > Mfm—fL} 

and set 

A:=U 	A,. 
n=1 in=n±1 

Then A is a null set. Furthermore, for all co E AC and all in > n we have 

<fmfJ 
	

(3.13) 

Since (f,) is Cauchy, it follows from this inequality that the sequence (f (a))) is Cauchy in K 

for all Co E AC, and thus converges by completeness of K. That is, there exists an -measurable 
function f such that f, (w) — f(w) Vw E AC. 

Next we must show that f e L°° and f  -- f. Let e > 0 be given. Since (f,) is Cauchy in L. 

by (3.13) there exists N E N so that 

 ~fm — fI < 	Vw EAC, Vm > n > N, 

and thus letting m —* , 

f(w)—f(w) < 	Vco E AC, Vn >N. 

Since A is a null set, it follows that 

<<e Vn>N. 
2 

In particular, f — fN E L°°, so that f = (f — fN) + fN E L°°. Furthermore, as E was arbitrary, we 

conclude that that f, 
11.1

1-+ f. Thus the proof is complete. 

Recall that a simple function is a function whose range is finite. Let us set here 

= YK = 	 := { p : 92 —+ K 19 is -measurab1e and simple} 

which is a vector space over K. When p E Y has range {al,. . . an}, then as usual we consider its 
canonical representation 

tp=LaklAk 	where Ak={wE:c(w)=ak}E. 

Now let 1 <p < oo• Since the sets Ak are disjoint, then clearly, 

I ( I = 	IakI1Ak. 
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Hence, 

j I go IP f 	= 

which shows that go e LP <> U(Ak) <00 Vk with a, =A  0. On the other hand, clearly (p E 

L°°(,,i). 
The Structure Theorem for Measurable Functions has an analogue for the space of p-integrable 

functions: 

Theorem 3.2.6 (Density of Simple Functions in LP) Let 1 < p -. For each f E LP(, , t) 

there exists a sequence ((pa)  in LP (9 ,,ji)fl9(n,,i) so that 
(1) 1 (p. (0)) i If(w)I 
(2) (p 	f.,, 

Proof 
Case 1: fE.2'. 

First suppose that 1 <p < 00• By the Structure Theorem (Theorem 1.6.1) there exists a 
sequence ((p,j) in Y1  so that 

—+ f(co) 	a.e. 	 (3.14) 

(We have only a.e. convergence as f is uniquely defined up to null sets only) In particular, 

0 < (p, (w) < f(w) a.e. 	 (3.15) 

so that (1) holds. Now since f cz LP, by (3.14) and (3.15) we may apply the DCT for the L 

spaces, and obtain that p  E LP for all n, and tpn  

Now suppose that p = 00•  Set  = {co E : f(w)> IIfI}• Thenf1A is bounded, so by 
the Structure Theorem there exists a sequence {('n}  in 9+  so that 

T, ( 0)) 	f(w)lAc on f. 	 (3.16) 

In particular, 

0 < 9, (w) f(co) a.e. w, 	 (3.17) 

and again, (1) holds. Now by uniform convergence, 

f—go000 =I IflA—(pn,, SUP (f1A)(w)—gofl (w) -+0 asn—+oo, 
WE92  

which shows that p 
Case 2: f C 9P  is arbitrary. (The following computations are for K C; they naturally simplify 

when K = R.) We may decompose f as 

f=Re(f)+ilm(f)= [fl —f2] +i[f3 —f4] 	 (3.18) 

where f = Re(f), f2 = Re(f), f 3  = Im(f) and f4  = Im(f). Since 

0fi,f2<fi+f2=Re(f)JIfEL" 
0 <f3,f4<f3+f4=tlm(f)t<IfIEIf, 

it follows thatf1  e LP for all j = 1,... ,4. Now by Case I, there exist sequences (go') 	in 

LP fl 9+, J= 1,—, ,4 so that 
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1. 	~pj 	a.e. Vn,j=1,...,4, 

2.j(P_fj - 0 asn—*oo,j=1,...,4. 
Set 

[(n) _ cofl)J +j 
[(n) 	co] 

Then q E I! fl 9 for all n, and 

Re (q,) - H'P1 
I 	(n) (n) 

-'P2 
<(p(n) + 	~ fi +f2 = Re(f)I 	a.e. 

- 

IM(9)n) —q 
 (n) I 

	

3(n) 
+'p 	f3+f4= lm(f) I 	a.e. 

so that 

c'n= 
[Re(

(p
n)2+IIm((,n)2] 1/2 	

[Re(f)2+(Im(f)J2] 
1/2 
 =f I a.e. 

Finally, by Minkowski's inequality, 

( [ 
(n) 	+ [(p(n) 	

(n)]\ 
IIf — fl=([f1 —f21+4f3 —f4]) — 'P1 	'2 	3 	'P4 j) 

~ f 	+—f2 	
(n) 	 fl) f4 

3 — (p3 
p 	 p 	 p 	 p 

—+0 asn—*oo. 

Thus the proof of the theorem is complete. 	 I 

In the case of the Lebesgue measure on the real line one can show: 
Let I be any interval, and consider LP(I, .(1), ).) for 1 < p <cc. 

1. For each f E L" (I, P(I), 2) there exists a sequence { p,'} of step functions such that 
(a) 1 4pn(w) 	If(co)I a.e. o El, 

(b)  
2. For each f G If (I, £(1), )) there exists a sequence {g } in C (I) such that 

(a) I gn(c))I :!~ If(°)I a.e. 0 El, 

(b)  
(We recall here that 

Cc  = If :I —+ Kgis continuous, 2[a,b] ç í, f(o) =OVw E 

is the set of continuous functions with compact support on I.) 

 

 

 

 

 

 

 

 



In this chapter, we will proceed with the construction of finite and a-finite Borel measures, that 

is, measures on the measurable space (ii, (R)). We will see how these measures relate with 

distributions and density functions which the reader may already be familiar with from a basic 
probability course. 

4.1 Distribution Functions 

R Let us briefly recall the concepts of one-sided limits and one-sided continuity at points on the 
real line usually taught in an undergraduate analysis course. For this, let x0  E R, Ian open 
interval containing x0, and f: I -* R. 

1. (right-hand limit at x0) The following are equivalent: 

(a) '"_j- f(x) = L. That is, for all E > 0 there exists 5 > 0 so that I f(x) - LI <C 

whenever  E Ifl(x0,x0  + 8). 
(b) if (x) is any sequence in I with x > x0  for all n and x,, - x0, then f(x,) -4 L. 
(c) if (x,2) 4.  is any decreasing sequence in! with X - x0, then f(x) -+ L. 

2. A similar statement holds for the left-hand limit lim_ f(x), if it exists. 
3. f is right-continuous at x, if and only iflim±f(x) =f(x0). 
4. Similarly, f is left-continuous at x0  if and only if 1im_ f(x) = f(x0). 
5. f is continuous at x0  if and only if f is both, left- and right continuous at x0. 

6. f is right-continuous / left-continuous I continuous on I if and only if f is right-
continuous / left-continuous / continuous at every x0  E I. 

We also need to review some properties of monotone functions. Recall here that f: I -t R is 
called (monotone) increasing on I, if for all Xi ,X2 E I with xi <X2 we have f(xi) f(x2). 
Such a function has the following properties: 

1. f(4) = 1_j- f(x) and f(x) = lim_ f(x) both exist at all x0  El. That is, every 
discontinuity off is a jump discontinuity. 

2. It follows that f has only countably many discontinuities. 
3. Hence, f is Borel-measurable. 
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Given a finite Borel measure /1 on the real line, we define a function F : R —+ [0, oo)  by 

F(x) =F,(x) :=p((—oo,x]). 	 (4.1) 

This function has the following properties: 
(Dl) Fis increasing: In fact, let x1,x2 ER with x1 <x2. Then (—oo,xl] c (—oo,x2], and hence by 

monotonicity of the measure, 

F(xi) = u ((—oo,x]) <ii ((—oo,xJ) F(x2). 

(132) F is right-continuous: For let x0  E R, and (xv) .. be a sequence in JR with x, —+ x0. Then 

1. { (--,x] }i  is a decreasing sequence of sets, while also 

2. fl (--,x] = (--,x0]. 
n=1 

It follows from Theorem 1.4.2 that 

= lim((—oo,xnfl= limF(x), 
(n=1 	)  

mm 142 n_+_ 	 fl-400  

that is, lim-  F(x) = F(x0). 
(D3) lirnF(x) = 0. To see this, let (xc) . be a sequence in JR with x, —+ —oo.  Then 

1. is a decreasing sequence of sets, while also 

2. fl (--,x] =';& 
P1=1 

It follows from Theorem 1.4.2 that 

0 = (®) = ( n(_00x) mm L42 
limp ( (— oo, n ]) = 1imF(x). 

(D4) limF(x) = t(JR). To see this, let (x) T be a sequence in JR with x, -4 oo. Then 

1. { (—oo,xj} °  is an increasing sequence of sets, while also 

2. U (--,x] = R. 
n=1 

It follows from Theorem 1.4.2 that 

(R) = p ( U(_ooxnJ) —'M .4.2 
lim((—oo,xj) =1imF(x). 

(D5) If (a, b] is any half-open interval, then 

u((a,b]) =jt((—oo,b]\(—oo,a]) 
mm1.4.2 	°°' 	—i((—oo,aJ) =F(b)—F(a). 

F is called the (cumulative) distribution function of the Borel measure ji. 

Note that F need not be left-continuous at x0. For example, let 3. denote the Dirac one-point 
measure with mass at x0. Then 

F(xo ) = 6x0 ((oo,xo]) = 1 

while whenever x <x0  then 

F(x)=ö,((—oo,x]) =0 

so that 

limF(x) =0F(x0). 

 

 

 

 

 

 

 

 



4.2 Outer Measures 
	

ii 

Exorcise 4.1 An alternative definition of the distribution function would be 

F(x):=/1((—oo,x)). 

Show that (Dl) and (D3)-(D5) still hold, but this function is now left-continuous. 

When the Borel measure i is no longer finite, but still finite on bounded sets, one can define a 
(cumulative) distribution function F : IR —* (_oo, co) of u by fixing c E R (usually c = 0) and setting 

F(x)=FC(x):=' 	
if x>c, 	

(4.2) 
ifx<c 

The reader my easily verify that properties (Dl), (D2) and (D5) still hold. Furthermore, when ji is 
a finite measure, then 

F(x)=F(x) — Fp(c) 

where F denotes the distribution function as defined in (4.1). 
We therefore define: 

Definition 4.1 .1 A function F : R —p R satisfying 
(Dl) F is increasing, and 
(D2) F is right-continuous 
is called a distribution function. 

4.2 Outer Measures 

Considering the previous discussion, the question arises: Given a distribution function F, does 

there exist a Bore! measure L on (R,.%(R)) so that 

/.t((a,b]) =F(b)—F(a) 	Va<b ? 

Our goal is to give an affirmative answer to this question. In this section, we will construct what is 
called an outer measure from a distribution function. The next section will show how the outer 
measure becomes a measure, when restricted to an appropriate collection of subsets. 

Thus, let F : R —* JR be a distribution function. 

Step 1: Given a bounded, half-open interval (a, b] with a < b, we set 

LF(a,b] :=F(b)—F(a). 	 (4.3) 

Because of the following properties, we may consider LF as specifying a generalized length of the 
half-open intervals (a, b]. 

1. In the special case where F(x) = x then LF(a,  b] = b — a, which is the length of the interval 
(a, b]. 

2. Ifa<c<b,then 

LF(a,b] = F(b) —F(a) = [F(b)_F(c)] + [F(c)—F(a)] =Lp(a,cJ+LF(c,b]. (4.4) 
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3. If Ii = (a, b], 12 = (c, d] and 12 C Ii, then a < c < d < b, so that since F is increasing, 

LF(12) = F(d) - F(c) <F(b) - F(a) = LF(11). 	("monotonicity") 

4. Let a —* a and b —* bt Then by right-continuity of F, 

LF(a,b] =F(b)—F(a) =limF(b) - limF(a) 

= urn [F (N) - F(a)] = limLF(a,b]. 	("right continuity") 

Step 2: For any A C R we now set 

(A):=infSA 	where 	SA=ELF(Ifl) : 1=(a,b],Ac 	I ,, 
n=1 ) 

(Loosely speaking, if f I, J'nL  I  is a countable cover of A by half-open intervals, then the sum of the 
(generalized) lengths of these intervals will be an element of SA.)  Clearly, SA 	and SA C [0,00]. 

Hence, 

0<(A)<oo. 

We discuss the properties of p in the following four propositions: 

Proposition A 	If A = (a, b] is a bounded, half-open interval, then L.(a,b] = LF(a,b]. 

Proof. We first show that f.L(a,b] <LF(a,b]. In fact, choose 11 = (a, b] and I, = (a, a) = 0 for all 

n > 2. Then clearly, A = (a, b] C U=1 so that Lp(1j) = L=i LF(Ifl ) E SA, and hence 

A* (A) = iflfSA LF(a,b]. 

Next we show that 

Lp(a,b] <t(a,b]. 	 (4.6) 

In fact, we will show that for every e > 0, 

Lp(a,b] <(a,b] +. 	 (4.7) 

Letting E — 0, then (4.6) will follow. 
Thus, let £ > 0 be given. Then p.(a,b] + e is not a lower bound of the set SA;  hence there 

exists s E SA with 

a,b] 	s <(a,b] + . 	 (4.8) 

Now since s E SA, there exist intervals I, = (an , b] with 

(a, b] ç Uj 	and 	s= LLp(1). 	 (4.9) 

n=l 	 n=1 

Next we modify (a, b] to a closed interval and each I, to an open interval, so that we can use a 
compactness argument. By right-continuity of F, there exists a, a <a < b with 

Lp(a,b] <Lp(a,b]+ . 
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Similarly, by right continuity of F, for each bn there exists b > b, so that 

LF(a fl,b fl] <LF(a,bfl]+ 
S 
-4. 

Now set .1,, = (an , b,) so that In C J,, for all n. It thus follows from (4.9) that {J} 1 is an open 
cover of the closed subinterval [d, b] of (a, b]. By compactness, there exists a finite subcover 
{J 1 , . .. ,JnN} for [ã,b]. 

Now if flk 
c J, 1 for some pair of indices, we may remove the interval J1k from this subcover, 

and still have a cover of [a, b]; thus we may assume that the sets Jn, are not contained in another. 

We claim that LF(ã,b] <ELF(a,k,bflk]. In fact, let us first relabel all the intervals Jn so that 

nk = k fork = 1,.. .N, that is, we can write Jk = (ak,bk) instead of Jn, = (aflk ,bflk ). Furthermore, 
since no interval is contained in another, we can do this relabeling so that 

a1<a2<a3 ... <ak. 

Observe that by the very same property, aj 	bi for k 1,.. . N 1. In addition, a  <a while 

b < bN. 
Then since F is increasing, 

Lp(à,bJF(b)—F(ã) <F(i)—F(ai) 

N-i 	 N 	 N 
[F(!k)—F(ak+l)] —F(al) = 	[F(bj) —F(ak)] = 

k=1 	 k=1 	 k=1 

and the claim is proved. 
It now follows by (4.8) that 

EN 	 1 	 1 

LF(a, b] <Lp (a, b] + 	LF (aflk ) bflk] + < 	L (a,,, bn j + 
clam [k=1 	 ] 	[i=i 	 j 

	

51 
£ ~ jLF (ak,bkl] 
	5 	5 

	

~ 	LF(ak,bkI+ 	+= 	++S+
1 	 j 	i=i  

<(a,b]++ =ji(a,b]+, 

which proves the proposition. 	 U 

Proposition B ji) = 0. 

Proof Simply choose b = a in the previous proposition. 

Proposition C (monotonicity) If A C B then p. (A) 

Proof. Too see this, we first note that SB C SA. For if s E SB, then there exists intervals {i}, 

In = 	 s.t. 

BCUIn and s=LLF(Ifl). 
n=1 	 n=1 

But as A C B, then also A C J I, and hence s E SA as well. 
n=1 
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It now follows that 

/1.(A) = jflfSA < inf SB  
SB 

U 

Proposition D (-subadditivity) Let {A} 1  be a countable collection of subsets of R. Then 

ktF(u   J <Lp(A). 	 (4.10) 
\n=1 	n=1 

Proof. Set A = U=1 A. We will first show that for every e> 0, 

AF 	L(A) +e. 	 (4.11) 
n=1 

Letting £ —* 0, then (4.10) will follow. 

Thus, let c > 0 be given. By definition of p, for each n there exists a collection {i, }° of 
half-open intervals so that 

A c U  I(n) 	and 

We now have that 

k' 
(it)) <;(A) + 

A = A c U U 
j(n)  

n=1 	n=1 k=1 

a countable union of half-open intervals, so that by definition of ji., 

I(A)< 	LLF (it) < 	[(A)+] = [ ji(An)l +C. 

	

n=1k=1 	 n=1 	 [=i 	j 

That is, (4.11) holds. Thus the assertion follows. 	 I 

R \ Observe that in the above proof we don't have strict inequalities in general. For example, the 
statement 

	

(A)< 	(A) +e 
n=1 

is incorrect when 	(A) = oo. 

Unfortunately, p is not yet a measure because it is not cr-additive. We will, however, see that 
its restriction to an appropriate (7-subalgebra of (R) is indeed cr-additive. But first a definition. 
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Definition 4.2.1 Let 92 be any set. A function 

—* [0,00] 

satisfying 
OM1) *()0 
0M2) 	is monotone: if A C B then u* (A) < u*(B), 

0M3) 	is o-subadditive: jt (U=1A) <' 4u(A), 

is called an outer measure on Q. 

( 	Properties (OM 1) and (0M3) imply, using standard arguments, that every outer measure is 
' 	 also subadditive: 

/N \ N 
(0M3') 	.U* ( U4n) ~ 	i(A) 

\n=1 J n=1 

for all  EN and A1 ,. .. ,A C 92- 

Given a distribution function F : R —* I, then ji defined as in (4.5) is an outer measure on 
R, by Propositions B—D. 

Above we have constructed an outer measure on 92 = R by using "generalized lengths" of 
intervals. It turns out that a similar construction can be used for arbitrary spaces 9: 

Exercise 4.2 Let 92 be a non-empty set, e ci .(f) with 0 E e and n E e. Given a function 

p : 9 —* [0,00] satisfying p(®) = 0, define u' : .9(9) - [0,00] by 

*(A):=jflfLp(Ifl):Ifl EACUI4 	(Ace). 
n=1 ) 

Show that i' is an outer measure. Why do we require fl E e ? 
(Hint: Verify that the proofs of propositions C and D still hold.) 

4.3 From Outer Measure to Measure 

Let an outer measure t on a set 92 be given. We will consider subsets E of El with the following 
special property: 

Property (PM) 

,1*(A),i*(AflE)+*(AflEC) 	VAcc 

Note that by subadditivity, we always have 

*(A)*([AflEJu[AnEc])<.L1*(AnE)+f(AnEc) 	VA,Eçc. 

Therefore, Property (PM) is equivalent to: 
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Property (PM 1) 

1 *(A)>*(AnE)+,2*(AnEC) VAcc 

Let us set 

= {E ci 9 : E satisfies condition (PM)}, 

called the set of j.t*_measurable  subsets of Q. 

Theorem 4.3 .1 (Caratheodory) ,9 is a a-algebra and f is a measure on (K2, 

Proof. Clearly, 0 E .9 and 92 e 	By (OMI) we thus only need to show: 

(Si): IfEE 	then  EcE .  

(S2): If El, E2,•• 

(M2): 	is cy-additive on 

Proof of (SI): Let E E .i? be given. That is, 

/J*(A)(AflE)+/1*(AflEc) 	VACn. 

Since (E = E, this identity becomes 

= * (An (EC)C)+,f(AflEC) 	VA C 

which shows that (PM) holds for EC  as well, that is, EC  E 

Proof of (S2) and (M2): We proceed in stages. 

Step]: Let El , E2 E 9.. We show that E1 LiE2 E 94 . 

In fact, let A c n be arbitrary. Then 

= /*([AflE]U[AflEcflE])+!j*(AflEcflEc) 

	

ii ( 	)t ([]]) 	([i) 	 (4.12) 

= *(AnE)+/f(AnEC) = 
(PM) holds for E2 	 (PM) holdo forE1 

This shows that (PM) holds forE1 Li E2, and hence E1 LiE2 E 

Step 2: It now follows by induction that if El, E2,..., E E 9., then U=1 E E 	. Further- 
more by step 1, fl 1 E = [U=iE]c E .- as well. 

Step 3: Let E1, E2 E 9 be disjoint, that is, E1 fl E2 = 0. Then EflE2 = E2, so that (4.12) 
yields 

lf(A)=I1* (AflEi)+It*(AflE2)i!L*(Afl [El UE2]c) 	VACn. 	 (4A3) 
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Step 4: Let El, E'2,... E 	bepairwise disjoint. Generalizing (4.13), we show using induction: 
For each N E N, 

N 	 / N 
C\ 

j1*(A)/1*(AflE)+/f(Afl UEn ) 
	VAc. n=1 	 \. 	n=1 	I 

In fact, this assertion is trivial when N = 1. Next suppose that we have shown that (4.14) holds for 
some N. Since U=1 E and EN+1 are disjoint, then applying (4.13) we obtain for all  ç El that 

*(A)(

/ N \ 	 / N 
An  UEn )+/1*(AflEN+l)+(Afl  UEnN±1 
\ 	n=1 	I 	 \ 	n=1 1C) - 

Now replacing A in (4.14) with A fl [u1 Ek], the first term on the right-hand side above changes 
to a sum, 

N
(An N 
	 / 	N 	N C 

(A)L,f 	UEk nE)+U*(Afl  UEk n UEn 
n=1 	k=1 	I 	\ 	k=1 	n=1 

FC+(AnEN+l)+*(AnUEfl] ) 

That is, 

N 	
/ FA)(AflEn)+*()+I1*(AflEN+l)+L*AflU1n

n=1 =i 

which shows that (4.14) holds for N + 1 as well. By induction, (4.14) holds for all N. 

Step 5: Let El, E2.... E 	bepairwise disjoint. We show: 

(i) E := U E E 	and 	(ii) 	*(E) = 	(E) (i.e. (M2) holds). 
n=1 	 n=1 

To see this, let A ç 92 be arbitrary. Then by step 4, for each N E N, 

N/ 	N ]')
A)jf(AnE)+if(An UEn. (4.15) 

n=1 	 \ 	n=i 

Now since 

	

00 	 N 

Ec= UEn c UEn 

	

n=1 	n=1 

then from (4.15) we obtain by by monotonicity of f, 

L*(AnE)+*(AnEC)<*(A) 

for all N. As the terms in the sum are all non-negative, we may let N —+ co  to obtain 

(4.14) 

L*(AnEn)+*(AnEc)< It* (A) 	 (416) 
n=1 
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Thus, by a-subadditivity of if, 

*(AflE)+*(AflEC) 	

(n~l
0 [AnE] +*(AnEc) 

 I 

L*(AflE)+*(AflEC) <*(A) 
fl=I 

That is, (PM 1) holds for E, so that E E 
In addition, choosing A z=E in (4.16) we obtain as 	= 0 that 

*(E) <*(E) 

which shows that f is a-additive on 

Step 6: It is left to prove (S2) for arbitrary, not necessarily disjoint sets E1,E2,... E 	that is, 
we must show that 

E:= D E, G 9p . 
n=1 

In fact, by Theorem 1.1.1 there exist disjoint subsets B of fl so that 

E=UEn=UBn, 	 (4.17) 
n=I 	n=I 

and furthermore, by the construction in its proof, 

n—I 	 n—i 

B I =E1 , 	Bfl=Efl\U Ek=Eflfl UEk 	(n>2). 
k=i 	 k=1 

It follows by step 2 that B 	for all n. Now as the sets Bn are mutually disjoint, then by (4.17) 
and step 6, E E 	as well. 

Thus the proof is complete. 

For ease of notation, let us set 4u (E) 	jf (E) for each E E 9p . It follows from the Theorem 
that (,,ji) is a measure space. 

Let E C 9 be such that /L*(E) =0. Then by monotonicity of jt, for each A ç K2 we have 

that is, (PM1) holds for E, so that E E gy. Thus, every p* -null subset of 92 is measurable. 
In particular, if F E 	is a null set, and E ci F, then by monotonicity of 

that is, E is also a 	null set, and hence E E 

This shows that the measure space (el, 	ji) obtained from the outer measure /1* is com- 
plete. 
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4.4 Lebesgue-Stieltjes Measures 

Let F: —* R be a distribution function, ji = 	the outer measure on Il'. determined by F (as 
in (4.3) and (4.5)), and 	the a-algebra of au*measurab1e subsets of ll, so that by the previous 
theorem, 	is a measure space, where /2 denotes the restriction of C = 	to ,9. 

rlheorem4.4.1 .(R) C 
.................... 

Proof. Since .(R) is generated by the collection Y6 of half-open intervals (see Exercise 1 .3), it 
suffices to show that every finite, half-open interval E = (a, b] is an element of 

Indeed, we will show that for each A c 92 and each c > 0, 

/2*(AnE)+/f(AnEC) < /.t*(A)+8 	 (4.18) 

Letting E —+ 01  then (PM 1) will follow, so that E E 

Thus, let A C 12 and e > 0 be given. By definition of u, there exist half-open intervals 

= 	so that 

A C U I, 	and 	E L (I) </2*  (A) + E. 
n=I 

For each n E N, set 

In  =i,fl(—oo,a], 	(2) =Ifl(ab] 	=In(b,00), 

the parts of I,, lying to the left of E, inside E, respectively to the right of E. Note that each of these 
intervals is again half-open, possibly empty, and 

1n (an,bn] = i,yui,ç2 ui,ç 3 , 	 (4.19) 

a disjoint union. 
Observe that 

AflE=Afl(a, b] C UInfl(a,b]=UI 2  

while also 

ACEC =Afl [(—oo,a]U(b,00)] c [ui] fl[(_oo,a]U(b,)] 	[ui'] u 

Thus by definition of u = 

	

/f(AnE) ç 	LF(1, 2 ) 

(A flEe) ; ELF(I ' ) + ELF(i,) 
n=1 	n=1 

Because the union in (4.19) is a disjoint union of adjacent intervals, then by property (4.4) of LF, 

/2*(AflE)+p*(AnEc)<E[LF(J 1) )+LF(I 2) )+LF(I 3))1=ELF(I!l )</2*(A)+E 
n=l 	 n=1 

so that (4.18) holds. Thus, the theorem is proved. 
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The measure ii = I-1F discussed above is called the Lebesgue-Stieltjes measure determined by 
the distribution function F. The theorem states that t is a Borel measure. 

Proposition 4.4.2 (Properties of the Lebesgue-Stieltjes measure) 
1. If {a} is a singleton, then 

F ({a}) = 0 	F is continuous at a. 

2. /1F  is a a-finite measure. 
3. ILIF is a finite measure 'z 	F is bounded. 

Proof. 	1. Since F is right continuous by definition, we only need to consider left-continuity of 
F at a. Thus, let (xv) t be a sequence in JR with x,, -+ a. Since bounded intervals have finite 
measure, then by Theorem 1.4.2, 

F({a}) = jiF ((xna]) 
ThmL42 

hmF((xfl,a]) 

Prop  
lim[F(a)—F(x)] =F(a)—F(a). 

It follows that 

IIF({al) = 0 r 	F(a) = F(a) 	zr F is continuous at a. 

2. Since JR = U=i( —n,n] and 0 < /IF((-fl,n]) =F(n) —F(—n) <oo  for each n, it follows 
that /1F  is a-finite. 

3. Now since F is increasing, then limF(x) and lim,_00F(x) both exist in R*,  and 

F is bounded above in JR < 	limF(x) is finite < 	limF(n) is finite. 

Similarly, 

F is bounded below in JR <zr 	urn F(x) is finite 	urn F(—n) is finite. 
fl-400 

Now 

F(R)F((,0])+F((0,)) =AF (U(_noJ) +F (U(O,n)) 

= lim/IF((—n,0])+lim/IF((0,n)) 
Thm 1.4.2 fl—oo 	 fl-400 

> hm.UF(( —n,0]) +lirfl/IF((0,fl— 1]) 

= Jim [F(0) - F(—n) ] + urn [F(n - 1) - F(0)] = Jim F(n) - lim F(—n) 
fl-300 	 fl —*oo 	 fl-9oo 	 fl-400 

which shows that 

/LF(JR) <co 	 limF(n) and limF(—n) are both finite 	F is bounded. 

U 

I R; Observe that by the proof of the last part, 

Pp(R) = limF(x) —IirnF(x). 	 (4.20) 

 

 

 

 

 

 

 

 



4.4 Lebesgue-Stieltjes Measures 

• Example 4.1 Let F (x) = x. The outer measuredetermined by this distribution function is 
called the Lebesgue outer measure and denoted by /1*.  The corresponding measure I.LF is called 

the Lebesgue measure and denoted by A., while the a-algebra 	is denoted by 4' and called 

the a-algebra of Lebesgue measurable sets. Furthermore, 4'-measurable functions are called 
Lebesgue-measurable functions. 

Since F(x) = x is continuous, then singletons have zero measure, hence by a-additivity, 
countable subsets of R are null sets. Furthermore, 

A.((a,b) =uF((a,bJ) =LF(a,b] = F(b) — F(a) = b — a. 

For arbitrary bounded intervals with endpoints a <b we have 

A.([a,bJ) =A.({a})+A.([a,b]) =0+A.({a,b]) =b — a, 
= A.([a,b]) —A.({b}) = A.([a,b]) -o = b — a, 

A.([a,b)) =A.({a})+2L((a,bJ) =0+A.((a,b]) =b—a. 

Thus, the Lebesgue measure of any bounded interval coincides with its length. 	 . 
Exercise 4.3 Observe that for all bounded open intervals I = (a, b), 

A(y+I)=A.((y+a,y+b)) =(y+b)_(y+a)=b—a=A((a,b)) =A.(I) (yER), 

A. (—I) = A. ( (—b, —a)) (—a) - (—b) = b - a = A. (I), 
A.(aI)=A.((aa,ab))_—(ab—aa)_—a(b--a)=aA(I) (a>0). 

1. Let ECR. Show: 

a) EE4' 	y+EE4' 
b) EE4' 	—EE4' 
C) EE%' 	aEE4' (a>0) 

2. Show that for all E E 4', 

A, (y + E) = A. (E) (y E R) 	 ()L is translation invariant) 

= A.  (E) 	 (), is reflection invariant) 

A.(aE) = aA.(E) (a > 0) 	(A, is positive homogeneous). 
(In fact these properties hold for the Lebesgue outer measure A.' and all E ç R.) 

3. Given f: R —* R, let us define functions fy, f, a f by 

fy(x) =f(x—y) 
	

(y E R fixed) 

f* (x) = f(—x) 

af(x) =f (ax) 
	

(a >0 fixed). 

Show: 

a) f is Lebesgue measurable iiff is Lebesgue measurable. 

b) f is Lebesgue measurable if f* is Lebesgue measurable. 

c) f is Lebesgue measurable iff af  is Lebesgue measurable. 
Furthermore, 

a) ffdA. is defined if ffdA. is defined, in which case ffdA. = ffdA.. 
b) jfdA. is defined iffff*dA.  is defined, in which case JfdA. = ff*dA. 
c) ffdA. is defined if fafdA.  is defined, in which case ffdA. = afafdA.. 
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Example 4.2 Fix a < b, and let 

	

0, 	x < a 

F(x) = 	
J 

1a,i dA = 	 a x b 

(—oo,x] 	 1, 	x>b. 

Clearly, F (x) is a distribution function, called the uniform distribution. Furthermore, the 
corresponding measure /1F  is a probability measure (i.e. i(R) = 1) by (4.20). 

Example 4.3 Fix a strictly increasing sequence of points in R, al <a2 < a3 < ... , and fix a 
sequence {pn}i  of non-negative numbers with 	p = 1. Now set 

F(x) =LPn1[a,00I. 

Note that 

	

0, 	x<al 

F(x) = 	Pn, 	am  X < am 1 1   

	

1, 	x > 1imm_am  (if this limit is finite). 

It is easy to see that F is a distribution function. Furthermore, as 

lim F(x) = urn Y, p 	1, 
m—oo 

n=1 

then by (4.20), the corresponding measure I-'r  is a probability measure. 

	

In the special case where p, = 	for some )L > 0, then F is called the Poisson distribution 
function. 

The map F - I-'r is not one-to-one. For if F is a distribution function and c is a constant, then 
F := F + c clearly is also a distribution function. Furthermore, as for all half-open intervals 
(a, b], 

Lp(a,b] =P(b)—P(a) = [F(b)+c]—{F(a)+c] =F(b)—F(a) =LF(a,b], 

then by definition of the outer measure, 

= 

so that 

= LF 	and 	.UP = 

However this is the only possibility to obtain the same measure as /IF.  To see this, let F and 
F be two distribution functions whose measures PF  and pp coincide on the Bore! sets. Then 
for all x> 0, 

F(x)—(0) =pp((O,x]) =.up((O,xJ) =F(x)—F(0), 	 (4.21) 

while for  <0, 

P(x)—P(0)= —pp ((x,0]) =—/i((x,O])=F(x)—F(0). 	 (4.22) 

It follows that 

P=F+c, 	where c_—P(0)—F(0). 

For this reason, one can normalize F: 
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1. When F is bounded, i.e. /1F  is a finite measure, one can choose c so that 

i0,,F(x) = 0. 

This type of normalization is chosen in probability theory. Then for all x E I, 

F(x)=F(x)-0=F(x)_limF(_n)= lint [F(x)—F(_n)] 

=hmpF((—n,X]) 
Th4.2 

AF (U—nx) =pp((—,x]). 

2. In the general case, one can choose c so that F(0) = 0. Then as shown on the right 
sides of (4.21) and (4.22), 

F(x) =f PF((0,X]), 	x>O 
x<0. 

Another question still remains: If p and /2 are two measures on (Ta, .(R)) having the same 
distribution function, will then necessarily p = /2 7 The answer is affirmative, as a consequence of 
the following Theorem. 

Theorem 4.4.3 Let p be a measure on (R, —4(R)) which is finite on bounded sets. Furthermore, 
let F be the distribution function determined by p as in (4.2). Then p(E) = iLp(E) for all 
EE(R). 

Proof. First some observations: 
1. Let {1k}i  be finite collection of half-open intervals, 'k = (ak,bk]. Since the union of overlapping 
half-open intervals is again a half-open interval of the same type, we may assume that the intervals 

'k are mutually disjoint. Now as p and I-IF  are Borel measures, then 

	

P 
() 

EP('k) 
(D5) 	

LF(1k) 	P(1k) 	1F (10 PP 
(U

I). 

2. Thus if {I} 	is any countably infinite collection of half-open intervals, I = (a, ba ], then 

(U ') = A (U U 1k) mm 
L42 	(U 1k) = 
	

(U 1k) 
n=1 	n=1 k=1 	 k=1 	 k=1 	

(423) 

PF 6 Ik mm 1.4 	
) = PF (no=l 

ia).  

3. Now let E E .(R) be given. Then for every cover {i} 	of E by half-open intervals, 

In = (an , ba ], we have by monotonicity and -subadditivity of I, 

p(E)p <L(') (D5) 
E{F(bn) — F(an)]= LLp(1n). 

	

\n=1 / n=1 	n=1 	 n==1 

It thus follows from the definition of p(E) = p(E) that 

p(E) < PF(E) 	VE E (R). 	 (4.24) 
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Now to prove the reverse inequality, first suppose that E E (R) is such that 1LF(E) <00, By 
definition of LF (E) = p. (E), for each e > 0 there exists a collection of half-open intervals {J}', 
I,, = (a,,,b,,], covering E with 

LLF(Ifl) </1F(E)+E. 

Let us set  = U=i I,. Then as E ç A and /1F = t. is a measure on M(R), we have by subadditivity, 

F(A\E)F(A)LF(E) LF(1n)_IF(E)= LLF(1fl) — F(E)<. 
n=1 	 n=1 

Hence, 

AF (E) < AF (A) 	y(A) = jt(E)+ji(A\E) < t(E)+(A\E) <ji(E)+. 

As e > 0 was arbitrary, it follows that 

.LF(E) <ji(E). 

Together with (4.24) we obtain that 

AF (E) = p(E) 	VE E 

Now if E E .(JR) is arbitrary, set E = Efl(n,n+ 1] for each nEZ. Since {E}0 z is a 
collection of disjoint Borel sets of finite measure, then by the above and o-additivity, 

F(E)=F(UEn) = ELF (En) = E(En) =(U E) =t(E). 
nEZ 	nEZ 	nEZ 	 n7Z 

Thus, the theorem is proved. 	 I 

It follows immediately that 
1. there is a one-to-one correspondence between finite Borel measures on JR and bounded 

distribution functions F satisfying lim_+_0. F(x) = 0, and 
2. there is a one-to-one correspondence between Borel measures on JR which are finite on 

bounded sets and distribution functions F satisfying F(0) = 0. 
We note that Borel measures on JR" can be constructed by following the general procedure 
outlined above. 

4.5 Regularity 

Recall that the Borel a-algebra on Rd  is generated by the open sets, and hence also by the closed 
sets. While in general it is not possible to describe all the Borel sets, we nevertheless are interested 
in measures where this is not an obstacle, the regular Bore! measures. Loosely speaking, these 
measures allow one to arbitrarily approximate any Borel set by an open set, respectively a closed 
set in terms of measure. 

Furthermore, any sensible Borel measure on Rd should be finite on bounded sets. Since every 
bounded set is contained in a compact set, this property can also be expressed as compact sets 
having finite measure. There are Borel measures which do not possess this property, for example 
the counting measure. In fact, the counting measure is not a natural measure on JR as both, the unit 
interval I = [0,1] as well as the set of rationals in this interval, in Q, have the same infinite measure, 
whereas the two sets have different cardinalities: I is uncountable, while Ifl Q is countable. 

The above concepts can be made precise as follows: 
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Definition 4.5.1 Let ji be a measure on (Rd) where 9 is a a-algebra on W' containing all 
Borel sets. Then u is called regular if its satisfies: 
(R 1) Ii(K) <00 for all compact subsets K of Rd, 

(R2) for each Borel set A, 

= inf{ t (V) A c V, V is open } 	"outer regularity", 

(R3) for each Borel set A, 

sup{/i(K) I K CA, K is compact} 	"inner regularity" 

One can define the concept of regularity for general measurable spaces of the form (, ), 
where 92 is a topological space and 9 a a-algebra containing the Borel subsets of f. In this 
case, one often requires inner regularity in (R3) to apply to open sets A only. 

• Example 4.4 As already stated, the counting measure p, on R does not satisfy (RI). It is not 
outer regular either: Any nonempty open set V is uncountable and thus has infinite measure, so that 

for every Borel set A 0, 

inf{.LL(V)A CU, Vis open } 

It follows that outer regularity does not apply to finite sets A. On the other hand, y, is inner regular 
as the reader may easily verify. 	 . 

First a lemma which will be needed later. 

Lemma 4.5.1 Let ji be a finite measure on (w', ,(Rd)) Then each A E %(Rd) has the 
following property: 
Property (P): For every s > 0 there exist a closed set F and an open set U so that 
1. FcAcU,and 
2. u(U\F) <s. 

Proof. Let us first set 

= 	 .(W') A satisfies property (P) }. 
Step 1: We claim that 9 is a a-algebra. 

In fact, clearly 0 E 9 and R" E 	as these are both open and closed, so that in particular, 
=~ 0. 
Next let A e 9 be arbitrary. Given E > 0, we choose F and U as in property (P). Then taking 

complements, 

uc ç AC C FC 

with U' closed and FC open. Now note that 

= F' fl {UC]C = U fl FC = U\F 

and hence, 

(F'\U') =p(U\F) <e. 
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Since E > 0 was arbitrary and .Q(Rd)  is a cr-algebra, it follows that A' E JF also. 
Now let {A} 1  c 9. Then by property (P), given E > 0, for each n E N there exist a closed 

set F and an open set U with 

FCAcU 	and 

We set 

A U A E(R' ),  U=LJU and P=UFn. 

Then clearly, ,P C A C U and also 

u\P= \P=Uu\PcUu\F, 
n=1 	 n=1 	n=1 

so that by c-subadditivity, 

While the set U is clearly open, the set P need not be closed. Note however that the sequence of 
sets {u\ U=l F} 1  is decreasing, hence by Theorem 1.4.2, 

(u\P) = limp (
U\  F 

n). 

Hence choosing N sufficiently large and setting F = U'=1 F, a closed set, we still have 

/i(U\F) <e 

with F C P C A C U. This shows that A E q,  and proves the claim. 

Step 2: We show that contains all nonempty open, bounded d-intervals of the form 

d 

A = fJ(aj,bj). 

In fact, note that 

ci 
A = U In, 	where 	in = fl Iai+ 	- 	isclosedand {I}t. 

n=1 	n 	nj 

Now by Theorem 1.4.2 again, 

p(A) = limu(I). 

That is, choosing n sufficiently large we have 

—E <bL(I). 

We therefore may set F = I. and U = A so that F c A c U while also 

/i(U\F) = /i(A\I) = u(A) - u(I) <; 

hence it follows that A E 9. This shows that 9 contains all the open, bounded d-intervals. 

Finally, since (R") is generated by these open d-intervals (see Corollary 2.4.2) we conclude 
that-4(Rd) C 9, and the assertion of the lemma follows. 
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The next theorem applies in particular to the Lebesgue measure: 

Theorem 45.2 Let t be measure on (R, P,(W')) which is finite on compact sets. Then /1 is 

regular. 

Proof By assumption, (RI) holds already. 
As we want to apply the previous lemma to prove inner and outer regularity, we need to modify 

it to a finite measure. Thus for each n E N, we set 

p(E)=/i(Enin ) 	VEe(R'1), 

where 

I 	 = (—n, n) x (—n, n) x ... x (—n,n) 

is an open, bounded d-interval. Clearly, pn  is a finite Borel measure on W'. 

Now let A E .(RtI) be given. For each n, we set 

A =An in, 

so that {A} t and  = U=1  A. 
Next let E > 0 be given. Applying the previous lemma, for each n there exist a closed set F 

and an open set U, so that 

FcAcU, 	and 	
E 	 (4.25) 

Replacing U with U, nI,, then (4.25) still holds, and in addition, U c i,. Note also that the sets 

F are bounded, and hence compact. Let us set 

FUFn and U=UJU. 

	

n=1 	 n=1 

Then U is open and by (4.25), F c A ci U while also 

u\F [UUn]\UUn\UUn\Fn 

so that by c-subadditivity and since U, C I,, 

	

(U\F) 	i(U\F) E1(U\F) 	
= 

It follows that 

(4.26) 

and also 

(4.27) 
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(Note that on the right-hand sides we don't have strict inequality as the sets A and F may have 
infinite measure.) 

From (4.26) we obtain that 

inf{t(V)AcV, Vis open } 	i(A)+e. 

But as e > 0 was arbitrary, then 

inf{1i(V)A C V V is open} 

Since the reverse inequality is obvious and A E 	was arbitrary, then outer regularity of u 
follows. 

Now as the set F may not be compact, we modify inequality (4.27) similar to what was done in 
the proof of the previous lemma: For each n, set 

Kfl=U Fk.  

Then each K,, is compact, K,, C A,,, {K,,} t and F = U=1 K,,, so that 

(a (K,,)) t 	and 	/1(K,,)—+ 1LL(F) asn —+oo. 	 (4.28) 

Assume first that ji(A) is finite, so that i(F) is finite as well. Thus, when n is sufficiently large, 

/i(F) <u(K,,)--e 

and hence by (4.27), 

ji(A) <u(K,,)+2e. 

It follows that 

iL(A) < sup{ u(K) J K C A, K is compact } + 2e. 

As E > 0 was arbitrary, then 

i(A)< sup {ji(K)KcA, Kis compact }. 

Again, since the reverse inequality is obvious, then 

A (A) = sup {.u(K)KcA, Kis compact}. 	 (4.29) 

On the other hand, when i (A) = oo then by (4.27), i (F) = cc as well. Furthermore, by (4.28), 

sup{i(K)KcA, Kis compact }>sup{u(K,,)nEN}=lim/2(K)=/1(F)=co, 

from which (4.29) follows. Since A E (R") was arbitrary, we have proved inner regularity of ji, 
and the proof of the theorem is complete. 	 U 
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Corollary 4.5.3 Let l-1F  be the Borel measure on JR determined by a distribution function 
F JR —* R, Then AF  is regular. 

R Theorem 4.5.2 generalizes to locally compact spaces 92 which have a countable base, with 
essentially the same proof. 

In the above, we have considered the regularity properties for elements of the Borel a-algebra 
only. However, many measures are defined and regular on larger a-algebras: 

Exercise 4.4 Recall from the discussion of Section 4.4 that every distribution function F : JR 
JR gives rise to a Bore! measure y = LF on JR which is finite on bounded sets. However, the 
a-algebra ,il of 4-measurable sets may be larger than the Borel a-algebra. Our goal is to show 
that  is regular on 	without using Lemma 4.5.1. 

1. Show that for all AcR, 

(A) := inf 

2. Show that for all A c IR, 

J=(a,b),Ac uJ 
n= 5 

/1(A):r=inf{/1(U) Uis open, AcU}. 

3. Show that for all bounded sets A e 9A I 

/IF(A) := sup {y(K) K is compact, K C Al. 

4. Show that for all sets A E 	, 

/LF(A) := sup {/.L(K) I K is compact, K ç Al. 

5. Show that every A E IF, is of the form A = VflN where V is a G3 set, and N a /1-null 

set in 
6. Show that every A e 9p  is of the form A = KUN where K is a Fa  set, and N a /1-null 

set in 
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Definition 5.1.1 Let f,, f: 9 —+ K be 9-measurable functions. We say that {fn} converges to 
f in measure and write 

meas 
fnf 

if for each  >0, 

Jim tL({wEc f(w)—f(w) 1 >E}) =0 fl—*oo 

That is, 

Tel 
eas —*f 	V>0 u(En,)—*0 asn — oo, 

where En,, = {co E Q: If (w) —f(o) I > e}. 

Exercise 5.1 Show: 
1. In the above definition, we may replace "If(w) —f(w)I > " with "If(c)) —f(w)I ~! i". 

meas 2. Let f, > f and let g: 9 —* K be 9-measurable with f(w) = g(w) a.e. Show that 
meas f 	g as well. 

3. The limit in measure is essentially unique: 1ff, g are —F-measurable and 

meas 	 meas 
fn —+f and A  

then f(co) = g(co) a.e. 
4. Let fn, f,g,g : n —* Kbe 	measurable, and a, J3 real numbers. If 

meas 	 meas 
f,, —+f and gn -4g 

then 

afn + Pgn 
meas 
—* af+/3g. 

0 

• Example 5.1 Consider the measure space (R, (R), A). We consider various sequences (fr) of 
.%(R)-measurable functions. 

1. Let f,, = 

(a) (Uniform convergence) Since for all x ER, If(x) — 0 1 < —+ 0 then f, 0 on R. 
(b) (Convergence in the p-th mean) Obviously, f,, E LP(R) for all 1 <p <00. Now for all 

m> n, 

	

frnfnJk f 	— 

= f — 
1(o,n] dA +' j 1(n,m) dA 

n—rn 1 	rn—n rn—n 	n
2-2 = 	n+—(m—n)= 	+ 

nm 	rn 	m 	m 	rn 

which shows that 

>_ 1 
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whenever m > 2n. Hence, (f,) is not Cauchy and thus does not converge in L' (R). 
On the other hand, when p> 1 then 

—1(Q, )d2 = 	f 1(0,,)dA = - . = 	—* 0
nP 

as n cc•  This shows that fn 	0 in LP()  for all 1 <p < oc 

(c) (Convergence in measure) For fixed e > 0, set 

En,e {xER:fn(x)-0>E}. 

Let us choose N such that 1 <E. Then for all n > N and x E R we have 

n  

that is, En,e  = 0. Hence 

lim2(E fl,E ) = 1imA(0)=lim0=0. 

meas 0.  
which shows that f, 

2. Now let f, = 1(n,n+1). 
(a) (Uniform  convergence) For m n we have 

sup I f.  (x) - fn (x) I = 1 
xER 

which shows that {f,, } is not uniformly Cauchy, hence does not converge uniformly. 
(b) (Pointwise convergence) On the other hand, for each x E R, we can pick N E N with 

x <N. Then x (n,n+ 1) for all n > N, that is, f, (x) = 0. This shows that f, (x) —*0 
pointwise on R (and hence trivially, f(x) —* 0 a.e on R). 

(c) (Convergence in the p-th mean) Obviously, f E LP(R) for all 1 <p <cc. Now for all 
m z,4 n, 

I/p 

= [I 1(m,m+1) _l( fl,fl+ l) P dA] 

I/p 
= [I [1(m,m+1) + 1(n,n+i )] dA] 	21/P> 1. 

Hence, {f,, } is not Cauchy and thus does not converge in U (R). 
(d) (Convergence in measure) We claim that the sequence {f} does not converge in 

measure. 
For suppose to the contrary, that there exists an -measurable function f so that 

f, 	Let us first show that then f(x) = 0 a.e. In fact, for each E > 0 we have by 
assumption that 2(E,) —* 0 as n —* cc, where 

Then in particular, by monotonicity of the measure, for each positive integer k, 

A((_oo,k)flEn,)_+0 asn —*co. 	 (5.1) 
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Since f, (x) = 0 on (—oo,k) whenever n > k, then 

(—oo,k)flEfl,E  = {x E (—oo,k): If (x) I > ej 	whenever  > k. 

Thus by (5. 1), 

{x E (—oo,k) : If (x) I > } 

is a null set, and hence 

{xER: If (x) >}= U{xE (—oo,k) : Jf(x)I >E} 

is a null set as well. Now as e > 0 was arbitrary it follows from a standard argument 
that f=0 a.e. 
Choose £ = . Then 	= {x ER: f(x) > 	= (n,n+ 1) up to a null set, and thus 

lim2(E,)=lim2((n,n+l)) = liml=1, 

meas contradicting the fact that f, +f = 0. 

The second example above shows that in general, almost-everywhere convergence does not 
imply convergence in measure. However, for finite measure spaces this implication is true: 

Theorem 5.1 .1 Suppose that u (1) <00, and let f,,, f: t—* K be 9-measurable functions with 

f - f. Then also fn 4 f. 

Proof. Let E > 0 be arbitrary, but fixed. For ease of notation, we set 

E0  = 	:= {w E : f0 (0)) — f I > el. 

We need to show that u(E) -4 0 as n —* co. 

To do so, for each k E N we let 

Ak:=UEfl 	(={w:fn()—f(w)I>e for some n>k). 

n=k 

Observe that {Ak} 4. and 

we 	Ak 4=7> (o is contained in infinitely many E 
k=1 	Rem. 1.4 

f(w) —f(a > £ for infinitely many n 

=: f(w)7'4f(o). 

Thus, 

nAk C_ {w :f((0) 74  f((0)}. 
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By assumption, the right-hand set is contained in some null set, hence 

(n A,) =0. 

Now as i(9) <oo we have by Theorem 1.4.2 that 

limL(Ak)=(flAk) =0. 

Since Ek c Ak.  then 0 < p (Ek) <u (Ak) for all k, and we can apply the Sandwich theorem to obtain 
that 

urn L(Ek) = 0 
k —boo 

as well. Thus, the theorem is proved. 	 El 

The next example shows that the converse statement of this theorem is wrong. In fact, it shows 
that if f 	f then  (f) need not converge a.e. Thus, at least in the class of finite measure spaces, 
convergence in measure is a weaker notion than almost-everywhere convergence. 

• Example 5.2 We consider the measure space ([0, 1], _4[0, i],X). Recall that each n E N, can be 
expressed uniquely as 

n=2 k + m 

with k = k(n) E No and m = m(n) E N, where 0 < m < 2'. For each n E N, we set 

fn:lr,, +i 
2T -2r L 

For example, 

fi = 1[0,1), f2 = 1[0,), f3 = 1[11), f4 = 1[0), f5 = 1[), f6 = 1[), 

17 = 1[ ,1) f8 = 1{o), f = 	1w =  1[),  fu =  1[), 

Noting that k = k(n) - co as n -+ oo,  we now consider various modes of convergence for the 
sequence (f). 

meas  

	

1. (Convergence in measure) We claim that fn 	0. 

In fact, for each 6,0< 6< 1, we have 

E fl,e:= {x ER : f fl(x)_0I >6 } = [ , ml ) 

Hence, 

fm m--1\ 	1 

	

2k )) =—+0 	asn*oo, 

which  proves the claim. 
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2. (Convergence in the p-th mean) Clearly, fn E LP [0, 11 for all 1 <p < oo• We claim that 
0. 

In fact, 

Ifn-0jjP=f If, jpd,~ =f
in+l 	1 

m+i' ({ 	2k i) =o asn, 

which proves the claim. 
3. (Almost-everywhere convergence) We claim that (f,) does not converge a.e. 

Suppose to the contrary, that there exists a Borehmeasurable function f so that f,, 
Clearly, f must be finite valued a.e. Applying Theorem 5.1.1 and part 1., it immediately 
follows that f = 0 a.e. 
Next let x E 10, 1) be arbitrary. Since for each k, 

10 1 2 3 	2' 
2' 2k' 2k' 2k' •• ' Tk 

is a partition of [0, 1] into subintervals of equal length, then for each k there exists a unique 
integer Mk, O<mk < 2k sothatxE 	Set 

nk :=2k+mk 	(k=l,2,3,...). 

Then 

fnk(x) =1[)(x) = 1 

for all k. We have shown that for each x E [0, 1), there exists a subsequence (f,,, (x)) of 

(f,, (x)) (which of course depends on x) with 

lim fnk(x) = lim 1, 
k—+oo 	k—oo 

contradicting fact that f, (x) —* 0 a.e. and thus proving the claim. 
U 

Observe that in the above example, one can construct a great variety of subsequences of {fnk } 
' which all converge to f = 0 a.e. 

For example, choosing nj, = 2k we have fflk = 1 r 	and clearly, fflk(x) —+ 1{ } as k 
L°'r) 

that is, fnk --+0. 
In fact, we have in general: 

Theorem 5.1.2 Let f, f: n —* K be f-measurable functions, with f 	Then there 
exists a subsequence (fnk)1 such that fflk --+f. 

Proof By assumption, for each E> 0 we have 

1imt(E,) = 0 	where 	:= {w E n: f(w) —f(w) I > £}. 
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That is, given 8 > 0 there exists N = N(, 3) such that 

({wE: f(w) —f(w) I >e}) <6 	Vn>N. 	 (5.2) 

Now we extract a subsequence of (f) inductively. By (5.2), choosing £ = 1 and 8 = , there 
exists fli  E N such that 

< 	Vn>n1. 

Next choosing e = 1  and 3 = , there exists fl2 > n  such that 

< 	Vn>n2. 

Suppose we have picked a positive integer flk  such that 

< 	Vn > 	 (5.3) 

Then by (5.2), choosing E 	and 6 = 	there exists nk+1 > nk such that 

({wc fl : f(w)—f(w > 	}) < 	 Vn>nk+l. 

By induction, we thus obtain a subsequence (fflk)  of (f,) satisfying 

Vk. 
k - 

call this set Ak 

Set 

A:=flU Ak.  
j=1 k=j 

Since 

then /L(A) = 0 by the Borel-Cantefli Theorem. 

Now let w E AC  be arbitrary. Then w U Aj for some j, and hence ü V Aj for all k> j. 
k=j 

Equivalently, 

fnk (w) — f(c0)I < 	Vk>j. 

It follows that 

f1k(c0)—*f(c0) 	ask — oo. 

Since A is a null set, the assertion has been proved. 	 . 
The next theorem states that every p-integrable function is bounded outside some set of 

arbitrarily small measure. 

 

 

 

 

 

 

 

 



128 	 Chapter 5. Advanced Properties 

Theorem 5.1.3 (Chebychev Inequality) Let 1 <p <00 and suppose f e LP(,jt). Then for 
all M>O, 

({E: If(w)  >M}) <MPf. 

Proof. Given M> 0, set 

EM := {wE9f(co)>MI. 

Then by monotonicity of the integral, 

fI =j lfl P dA>j  fd f Md =M(EM), 
M 	 EM 

from which the assertion follows immediately. 

Corollary 5.1.4 Let 1 < p < 00 and suppose f,f E L',,js) for all n. 

meas f.  JffPf then 

Proof. Let e > 0 be arbitrary. Then by Chebychev's inequality, 

e1: f()—f(w) I > e}) =({w C n : I (ff)(w)I > c}) 

asn -4 00  

meas 
by assumption. This shows that f, —f. 

For the converse statement we have: 

Theorem 5.1.5 (DCT for Convergence in Measure) Let (, , s) be a measure space, let 
f,f: n —+ K be 9-measurable, and 1 <p <00. Suppose that 

meas 
1. f0—f, 
2. there exists gELP(,,u) with fn  (w) <g(w) a.e. 

Then 

(i) f,f E LP(9,,t) for all n, and 

(ii) f 1 f. 

Proof. (i): Note first that condition 2. guarantees that fn  e LP(1,,jt) for all n. Furthermore, 
meas 	 . 	 a.e, 

since f, —*f, by Theorem 5.1.2 there exists a subsequence {fflk}k1  such that fflk  —+f, and 
hence by 2., 

f(w) I <g(w) a.e. 

as well, which shows that  e LP(,,ji). 
(ii): Suppose to the contrary that If, - f li p 74 0 as n —+ co.  Then there exist e > 0 and a 

subsequence fnk  so that 

. 

U 

Mf5—f>E 	Vk. 	 (5,4) 
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Now as f 
meas 
 f then clearly, by definition of convergence in measure, f, 	f as well. Applying 

Theorem 5.1.2 once more, there now exists a subsequence (fnk1 ) = 
of (fflk) = such that 

fn -+f 	as 

Applying the DCT for LP-spaces (Theorem 3.2.1), it follows that 

	

fnkf/° 	
asloo, 

which is impossible by (5.4). 	 U 

Exercise 5.2 Let f0,f: n —* K be -measurable, 1 <p < oo, and suppose that f 	f on ~2. 

Show: 
meas 

1. f — f 

2. If 	<00 and f E 	 for all n, then f E 	 and fn JIPf 

3. If ji() = oo then {f,} need not converge in 	p. 

It is obvious that f,, - 4 f does not imply that f, f. There is, however, a result which says 
that we have uniform convergence outside of sets of small measure. Let us first make this concept 
precise. 

Definition 5.1.2 Let f0,f: n —+ K be 9-measurable. We say that {f0} converges to f almost 

uniformly, if for every s > 0 there exists a set B = Be E 9 with 
(i) /.L(B)<E, 

(ii) ffl 	1. 

Example 5.3 Consider as usual the measure space (R, -4(R) , A). Let 

f0(x)=I 	
ifx> 	f(x)=I 	

ifx0 

10 	ifx< 	 10 	ifx=0 

Now for every e > 0, f,, =3 f which shows f0 —+ f almost uniformly. On the other hand, 

convergence cannot be uniform because f is unbounded while each f0 is bounded. 

Exercise 5.3 Show: If 
faf. 

f, then f0 -* f and f, 	f. 

Theorem 5.1 .6(Egorofj) Let (92,337 , /1)beafinite measure space, and f,, f:f —+ K be - 

ac 	 a. umf. 
measurable. 1ff

. 
0 —+ f then f —+ f. 

Proof 1. Suppose first that f(w) —* f(w) for all w E 92, and let E > 0 be given. 
For each n E N, we set 

gn =supf— f, 	 (5.5) 
j>n 

which is well defined as all functions are finite valued. Then 
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(a) Each g, is 9-measurable by Theorem 1.5.7, 
(b) The sequence (gn)  is monotone decreasing, 
(c) g(oi)—O for each wE. 

We need to find a set B E 9, 11 (B) <, so that gn 	0. 

Now since i(9) <ca, then also g 	0 by Theorem 5.1.1. That is, for every k > 0 we have 

limp (Efl,k)=O 	where Efl ,k:={wE:f0 (c))>}. 

In particular, for every 	there exists n = k such that 

({oEgflk (co)>}) <.  Tk- 

call this set Bk 

(5.6) 

Set 

B=UBk E. 

Then by cr-subadditivity, 

We now claim that g 	0. For this, given ö > 0 we pick k E N with 1  <. Now if a e 

then to 0 Bk, and hence 

0<gfl (w)< 

Since {g0} .J,, it follows that 

0g(co)<8 	VEn\B,fl>flk, 

which proves the claim. Now since 

fnfJgn Vn, 

the assertion of the theorem follows for this particular case. 

2. Next suppose that f(w) ---*f(w). Then there exits a null set N with 

f0 ((0)-f(w) VcoEN'. 

Now let e > 0 be given. By the first part, there exists B E 9, B c NC, so that ji(B) <e and f, 	f. 
N\B 

We set =BUN. Then 
1. u() = /L(B) +p (N) = i(B) <e, 
2. while also 1\J = NC\B, so that f, 	f. 

Thus, the proof is complete. 	 U 
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(ii) The various limits of (f,) are independent of the mode of convergence. For example, if 

meas. 	 a.e. 
f,— f and f —*g 

then by Theorem 5.1.2, there exists a subsequence fflk  with fflk - f . Hence, f = g a.e. 

Suppose, f,f: 9 	lR' are -measurable and finite-valued a.e. The notions of convergence 
in measure and almost uniform convergence can be extended these functions in a natural way: 
If we let 

N:={WEf(CO)<oo,fn (CO)<0oVn}, 

which is a null set, then we can define 

meas. 	 meas. 
fn--4f 	ffllE+flE' 

and 

a. unif. 	 a. unif. .
+ f 4zt  fn1E' 	+ flEc 

It is easy to see that the above theorems still apply. 

Exercise 5.4 Let (,,ji) = (11k, B(R)A) and f, = 	Discuss all types of conver- 

gence of this sequence of function. 

5.2 The Radon-Nikodym Theorem 

Since measures are actually a class of functions, there is a natural way to compare two measures /1 

and V on a measurable space (9, ): 

v<u 	v(E)<ji(E) VEE. 

As we will see in this section, a much weaker way of comparing two measures is also meaning-
ful, which only compares the null sets: 

Definition 5.2.1 Let i and v be two measures on a measurable space 	If 

	

= 0 implies v(E)=O 	V  E 

then we write "V -( ji" and say that V is absolutely continuous with respect to 4u. 

Careful: v -< /r does not mean that v(E) <pE) for all E E . It merely means that every 
ti-null is also a v-null set 

• Example 5.4 Let us consider the following measures on (R, .(R)): 

a) the Lebesgue measure 

b) the counting measure ji., 

c) the Dirac one-point measure 5a  for some fixed a E R, 

d) the sum of two distinct Dirac one-point measures, 3 = + ö, with a b, 
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and compare any two of these measures. 

1. If v is any measure on (R, 4(11)), then V - p.. To see this, note that y, (E) = 0 implies 
that E = 0 so that v(E) = 0 also. (Clearly, this property holds for an arbitrary measurable 
space 	as well.) 

2. p. < A. To see this, let E = {a} be a singleton. Then 2(E) = 0 while 11, (E) = 1 0. 
3. p.c i< a. To see this, pick  ER, b7~a and set E ={b}. Then 3,, (E) = 0 while p.(E) = 1 0. 
4. a. To see this, set E = (a,a+ 1). Then 5a (E) = 0 while A(E) = 1 0. 
5. 6 	A. To see this, set E = {a}. Then X(E) = 0 while 3,, (E) = 1 74 0. 
6. Since 3,, < 6, then clearly, ö,, -< S. 
7. 6 6, In fact, let E = {b}. Then 3, (E) 0 while 6(E) = 3b (E) = 1 0. 

U 

• Example 5.5 Let (~, , p.) be a measure space. Exercise 2.13 shows how one can construct 
new measures which are absolutely continuous with respect to p.: Fix h E .2. Then 

v(E):=fhdp. 	(Ee) 

defines a measure on (1, ) with the following properties: 
(a) V -< /1 

(b) 1ff: 1 —* R* is 3-measurable, then 

j f dv is defined <= J fh dy is defined. 

Furthermore, if any of these integrals is defined, then 

f f dv = f fh dy. 	 (5.7) 

. 

The goal of this section is to show that every measure v on (1, ) which is absolutely 
continuous with respect to p. arises in this way. But first some more introductory remarks and 
intermediate results. 

Exercise 5.5 Let (9), ) be a measurable space. Show: 
1. If u, vi, v2 are measures on (Q,) with v1 -< p. and V2 -<< p., then for all a,/3 > 0, 

av1 +f3v2 -< A- 

2. The relation "-41" has the following properties: 
(i) y -c(< p. (Reflexivity). 
(ii) If v -< p. and p. -41 a then V -41 a (transitivity). 

Here, p., v, a are arbitrary measures on (9, ). Show by example that antisymmetry: 

Ifv -<p. and also p. -41 v then p. = v 

need not hold in general. (The two properties [(i)] and [(ii)] show that "-<" is a preorder 

	

on the collection of measures on 	However, it is not a partial order by lack of 
antisymmetry.) 

U 

Motivated by the second part of this exercise, we define: 

 

 

 

 

 

 

 

 



52 The Radon-Nikodym Theorem 	 133 

Definition 5.2.2 Two measures /1 and v on (f', ) are said to be equivalent, written u v, if 

a -<<v 	and 	v-<</i. 

R By applying part 2. of Exercise 5.5 one easily verifies that "" is an equivalence relation on 
the collection of measures on (l, ). 

Exercise 5.6 (Continuation of Exercise 2.13) Let V denote the measure on 	defined 

as in Exercise 2.13. Show: 

v/1 4 h>0 a.e. 

Proposition 5.2.1 Let  and V be two measures on a measurable space 	with v(c) <00. 

Then 

V << u 	Ye >0 13>0 so that A(E)<3 implies v(E) <e, YE E . (5.8) 

Proof. = Suppose to the contrary, that v -< ji, but there exists an e> 0 so that no matter what 
5 > 0, one can find a set E E 	with /1(E) <5 but v(E) > E. Then in particular, for each S = 21 

one can find sets E 	with 

but v(E)>e. 

Observe that 

Thus by the Borel-Cantelli Lemma, 

/1(A)_-0, 	where A=flA0, Afl=U Ek. 

Hence by assumption of absolute continuity, v(A) = 0. On the other hand, as V is a finite measure, 
then by Theorem 1.4.2, 

v(A)=v(~Anfl = limv(A)> e, 	since v(A)> v(E0)> for all n, 
fl=1 	,/ 

Thrn 1.4.2 fl—°° 

which is a contradiction. 
4z Suppose, the right-hand statement in (5.8) holds. Let E E 9 be a /1-null set, that is, 

= 0. Then by assumption, 0 < v(E) <e for any C > 0. However, this is only possible when 
v(E)=0, 	 U 

( 	Loosely speaking, the above proposition states that a finite measure V is absolutely continuous 
" 	with respect to a measure u if and only if "/1-small sets" are also "v-small sets". This property 

gave rise to the notion "absolutely continuous". 
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Corollary 5.2.2 Let 	be a measure space, and g E L(92,,4). Then 

V E > 0 33 > 0 so that y(E) <6 implies 
JE 

g dt < e, VE E . 

(That is, "integrals over small sets are small".) 

Exercise 5.7 Prove Corollary 5.2.2. (Hint. Use the above proposition and Exercise 2.13.) 

Corollary 5.2.3 Let g E L1  (R,,&, A) be given, and set 

G(t)= 1 dA. 

Then G is uniformly continuous on R. 

Proof. Given E > 0, pick 6 as in Corollary 5.2.2 for t = A. Now let s,t E R be arbitrary with 
It - sl <6. Without loss of generality we may assume that s < t. Then 

A ([s,tJ) = t — s < 6, 

and hence, 

= 	 = f 
which was to be shown. 

When discussing the Riemann integral, one usually introduces the notation of a partition of an 
interval [a, b] and refinement of such a partition. This concept generalizes to measurable spaces: 

Definition 5.2.3 Let (9, ) be a measurable space and . = {A} 1  c 9 a finite measurable 
partition of f. That is, 

1. the sets A1  are mutually disjoint, 
2. 92=Ui1Ai. 

(see Definition 2.1.2.) 
A (measurable) partition .' = 	is called a refinement of the partition {A} 1 , if 

for each j(1 < j < N) there exists a i (1 <i<M)so that B1 cAi. 

Below, by "partition" we will always mean a finite, measurable partition. 

Let ? and ' be as above. Since the sets B1  are pairwise disjoint, then each Ai  is the union 
of the sets B1  contained in it: 

A= U B3. 
{J:BjA} 

(. Let i = {A}i1 and 	= 	be two partitions of fl. Then 

i Ai2 :={A1flB1 i=l ... M,j=l ... N} 

clearly is a refinement of both, .91  and Y2 
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The following proposition leads us half way to the desired result. 

Proposition 5.2.4 Let (n, 9, u) be afinite measure space, and v a measure on (9, ) with V < /1. 

Then there exists an 9-measurable function h : 9 —+ [0, 1] satisfying 

v(E)=fhd/1 VEe. 	 (5.9) 

Proof. Let us first construct the function h in steps. 

Step 1: Given a partition 94  = {A} 1  of 12, let us set 

	

M ( v(A1) 	I A 	0 
hp = CjlA, 	where 	c = jIT 	1 /1 

ifji(A)=0. 

Clearly, hp is -measurabIe and simple, and since v <ii, then 0 < hp < 1. In particular, hp E 

L'(f,ji). 
We make the following observation: Let A E 9 be the union of some of the partition sets, say 

A=UAj, 	Ic{1,...,MI. 	 (5.10) 
iE! 

Then 

rM 	-1 	 rM 	1 

I 	= f hp1AdL 
= f 	1Ad = f 	Cj1A1 flA dji 

[i=i 	j 	[i=i 	j 

f Eci1 d = EcjL(Aj) = Lv(Aj) = 
iEI  LEI 	 iEJ 

Here we have used the fact that v(A) = cjj.t (A1) , even when /L(A) = 0, since v < M. That is, 

v(A) 
=fAhP 

 dp 
	

(5.11) 

for all sets of form (5.10). 

Step 2: Next let ' = {B) 1  be any refinement of a partition 9 as in Step 1, and let hp, be the 

function constructed for this refinement as in Step 1. That is, 

V(B) = 
fB 

hp, dy 
	

(5.12) 

for all sets B which are unions of some of the sets B. Since each set A1 E Y is such a union, then 

fhd/2 	V(Aj) 
(512) 

 f hidL. 	 (5.13) 

In addition, since hp (o)) = c1  on the set A, then 

I hPhpd/i = f c1hpdL = ci f hp, d1 	cjfi = J*  hphp dy, 

that is, 

JAhphp,d!i = 	 (5.14) 
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It follows that 

  
2[hp - hp]2  di =J 	+ p 	-  	iJ 	]  d/i.

5.14 

Thus, if A is a union of some of the sets Ai as in (5.10), then 

0  <f [hp —hp]2  dii =f [hp —hp]2  dli =f [h21 h dli f [h2  —h2 ] dli,  (5.15) 
 eiAi 	 A 

and hence, 

L dii 	d/i, 	 (5.16) 

for any refinement .9' of .9. 

Step 3: We now construct a sequence {,, } of partitions so that the corresponding sequence {hR } 
converges a.e. 

For this, let us set K:= ji(9) <Co. Now if 9 is any partition of Q, then as 0 < hp 1 we have 

fhK 

and hence, 

C:= sup {JhdiL : .9 is a partition of 	<K. 

By a characterization of the supremum, for each c = -L there exists a partition .9, of 92 with 

C — 	<fhdiiC. 	 (5.17) 

Now if we modify these partitions inductively by setting 

:== 91, 	2 	i A Y2, 	... 	:= Rn-1 A .9,, 

for n > 2, then 	will be a sequence of partitions so that each .9 refines both, .?n 1 as well as 
9g. Hence by (5.16) and (5.17), 

C— 	<fhdii < jh,2dit < Jh_,1 dlt <C 	 (5.18) 

for all n. We are now ready to show that lim 	hR (c)) exists a.e. 
In fact, for all n E N, we have 

f [h 1  —hR] 2  dii 	J [h—h] dii 	 (5.19) 

Now since II 1 	I 	(see Exercise 3.3), we have 

f 	- hR dii = hR 1  - hR 	hR 1  - hR 2 	
1 	__ 1 

	

(5.19) 	/2' 2n' 

and hence, 

hRdlL <- =1. 
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Thus, by the Beppo-Levi Theorem, the telescoping series 

n=1 

converges a.e, to an integrable function f, and 

f fdt =Lf [hR, — hR] 

Set 
N—i 

h = hR1  + f = hR1  + urn Y [hRi - hR] = urn hR,,, 
N—oo 	 N—oo 

n=i 

in the sense of a.e. convergence. 

Step 4: Finally, we verify that h has the desired properties. We first note that as 0 < hR 	1 for all 
n, then 

0 < h < 1 a.e. 

Modifying h on a null set, we may thus assume that 

0< h <1. 

To verify (5.9), let A E 9 be given. First set 

Yo = {A,Ac},  

a partition of K, and for each n E N, set 

_qn  

Then 9 is a refinement of YO  as well as Rn, and hence by (5.18), 

1 f C— 	<h du < f h 2& du <C. 
(5.16) 

Arguing as in (5.19), then for each n, 

f [¼ - h& ]2  dji = [[h - h] d/i < 

	

(5.15) J 	 (5.18) 4.K 

so that 

	

f h - hR di = h 	hR 1k II hs - hR 12 	< 0 as n 	. 	(5.20) 

Therefore, 

v(A)=fhs dbL_—f[hs _hRn]dI1+fhRn d/.t. 

Now by (5.20), the first integral on the right-hand side goes to zero as n —+ oc.  As for the second 
integral, since hR —* h a.e. and lhR  I <1 E L1  (9, 9, t), the Dominated Convergence Theorem 
implies that the second integral tends to f hdji as n —+ . Thus 

v(A) = JA hdp, 

which completes the proof. 	 U 

The assumption that p(n) <00 may be weakened to u is cr-finite: 

 

 

 

 

 

 

 

 



138 
	

Chapter 5. Advanced Properties 

Corollary 5.2.5 Let (,jt) be a cr-finite measure space, and V a measure on (91, 	with 
v < A. Then there exists an f-measurable function h : fl —* [0, 1] satisfying 

v(E)=fhd/1 	VEE. 

Proof. By cr-finiteness, there exists a sequence {A} C 9 of measurable sets satisfying 
1. /i(A) <oo for all n, and 
2. c=U1A. 

Applying Theorem 1.1.1, we may assume further that these sets are mutually disjoint. 
Now we can apply the above Theorem to each measure space (An, , p, where 

EE} 

(see Exercise 2.8) to obtain 	-measurable functions 

h :A—*[O,1] 

satisfying 

	

V (En) 
= JE~ h du 	VEn E . 

Since the collection {A} forms a partition of 9, we can "glue" the functions h together and define 
h: 	[0, 1] by 

h(co)=h(co) where weA,. 

Then 
1. obviously, 0 < h < 1, 
2. h is 9-measurable. In fact, for each a c R we have since each h is 	-measurable, 

n=1 

3. Given E E , set E 	E flAp E 	. Since 

EEflUAn = UAn) UE, 

	

n=1 	n=1 	 n=1 

a disjoint union, and h = h, on A, then by Corollary 2.7.6, 

v(E)= (
,?
DE) =Ev(En) 	 = 	

1-2.7.6 fEhd. 
En 	

'n 

Thus the assertion holds. 	 U 

We are now ready to prove the main result of this section. 
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Theorem 52.6 (Radon-Nikodyin Theorem). Let t and V be o-finite measures on a measurable 

space 	with V -</1. Then there exists an 9-measurable function h > 0 such that 

v(E)=fhdt 	VEE. 

Furthermore, h is essentially unique. That is, if h is another -measurable function with the 
property that v(E) = fE id/1 VE E 9, then h = h /1-a.e. 

Proof. 1. Existence. Set (p = /1 + V. Then clearly, 

(i) 0<u,v<q3, 
(ii) q is a a-finite measure on (Q,) (see Exercise 1.6). 

By the previous Corollary, there exist —F-measurable functions h h : f —+ [0, 1] with 

L(E)rzrfh i dco and v(E)=fhvdc VEE. 

Set 

F={wEch(co)>o}Eg 	so that 	Fc={WEh(W)=0}E. 

Then 

1(Fc) =f hd(p = 0 

and hence, as V -< /1, then v(Fc) = 0 as well. Now set 

h((o) = TIT-7 
(hv(W) 
I7 	 1 CUE 

if C)EFC. 
	 (5.21) 

Then 
(i) clearly, h > 0, 

(ii) since h = 	
h 
	'F then h is -measurable, 
h+IF'  

(iii) for each E E 9, since v(Fc) = p(F') = 0, we have 

V (E)V(EflF)+V(EflFC)=V(EflF)+0=
JEnF 	E

hvdQ=fflF hhd 
 

=1 hdi+0=JEnF  hdi+J hdbt=J
E

hdbL. 
(5.7) EnF 	EflFC  

2. Essential Uniqueness. Suppose that /i: K2 —* [0, oo]  is another 9-measurable function with 

v(E)=fidL VEE. 

Set 

N={(o E nh(CU)>h(w)} e 9. 

We claim: i(N) = 0. For suppose to the contrary that ji(N) > 0. Then by Theorem 2.6.6, 

f [h_1] dp >0. 	 (5.22) 
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Note that the difference of the two functions is defined on N, as 1 is finite valued on N. 

For each n E N, set 

N := f (0 ENh(w) <n}, 

so that 

{N}t and N=UNn. 
n=1 

Next we modify these sets so they have finite measure. In fact, since ji is o-finite, there exists 
{A} 1  tc ., with 

L(A)<oo Vn 	and 	91=U An. 

We set 

Bn  = N flAp E 9, 	so that 	{B} 	and also 	N = U B. 
n=1 

We now have 

0<1[h_1] d/.L=limJ[h_i]d!z 

from which we conclude that 

f [h — i] di >0 

for sufficiently large n, and consequently 

v(Bfl)=Lhd 1 =J[h_i1d 1+L i;d L > 0+v (B fl) =v ( Bfl),  

since u(B) <co,  which is impossible. Thus, the claim follows. 
Now by symmetry, 

E 

is also a null set. Hence, h = h a.e. 

(j) The c-finiteness condition in this Theorem cannot be dropped. For example, consider the 
measurable space (IR, .(R)) with the Lebesgue measure 2 and the counting measure Pc 
which is not c-finite. By Example 5.4, ) -< p. Now suppose, there exists h as in the 
Theorem. Let {x} be any singleton. We obtain 

0=2({x})=f
x} 

 hdPC =fh1{}dP=h(x)/1(fx}) =h(x) 
{ 

so that h(x) = 0 for all x E R. But then for all E E .(Tl), 

= JE h dp = fE 0 dji = 0, 

	

which contradicts the fact that 2 	0. 
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The function h is called the Radon-Nikodym derivative of u with respect to v, and denoted by 

h = 
dv 

Exercise 5.8 Let v -< i and u -( p be three measures on 
1. Prove the chain rule: 

dcpdço d,i 

dvdji dv 

in the sense of equality a.e 
2. Show: If v ji 	0 < LA <oo a.e. 

dv 

5.3 From Premeasure to Measure 

Since algebras of sets need not be closed under countable unions, the concept of measure does 
not apply to them. In this section we will introduce the corresponding concept for algebras, the 
premeasures, and show how the results on the outer measures of Section 4.3 can be applied to 
extend a premeasure on an algebra d to a measure on the a-algebra generated by d. While these 
results will be needed for the construction of product measures in the Section 5.4 below, they are 

interesting in their own right. 
We begin with a construction of algebras. 

Definition 5.3.1 Let Q be an arbitrary set, and f a nonempty collection of subsets of 9. Then 
is called an elementary family on K2 provided the following hold: 

(El) WheneverA,B C ,9, then AflB e S. 
(E2) For all A E cc, the complement A' is the finite disjoint union of elements of cc. 

. Example 5.6 Let 

cc={(a,b]nR I - 	a<b<}={(a,b] I - 	a<b<}U{(a, 	—<a<}. 

Then cc is an elementary family on R. 

. Example 5.7 Given measurable spaces (X, cf') and (Y, ), we set 

c={AxBAEcc, BE} c (xxY) 

61, is called the set of measurable rectangles on X >< Y. 

We observe that 6, is an elementary family. In fact, if A, >< B ,A2 x B2 E c, then 

(A1 x B1)fl (A2 x B2) = (A1 flA2) fl (B1 flB2) E 19, 

since cc and 9 are a-algebras. Furthermore, for each A x B E cf we have 

(A X B)C = (AC X Y)U(X X BC) = (Ac X B)U(AC X BC)U(A X BC) 

and the right-hand side is a finite disjoint union of members of 6, Thus, (El) and (E2) hold. 	. 
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Proposition 53.1 Given an elementary family on 91, let 

d= {E=Ak n EN, Ak E , AJflAk=(fk)} 

denote the collection of all finite disjoint unions of members of 61. Then .1 is an algebra on 91. 

Proof. 1. First let A,B E d, say A = U=1 Ak and B = UT B, where the families {A k} c 
and {B3} 

i= 
I  ç are each disjoint. Then 

n 	m 	 n m 

AflB= UAk n UB =UUAknBJ 
k=1 	j=1 	k=lj=1 

is, by (El), a finite disjoint union of elements in e, and hence A  B E d. It now follows by 
induction that d is closed under finite intersections. 

2. Note also that 

m 	 m 

A 	Ak =flA. u
k=1 

Now by assumption (E2), each Ac is a member of d. It follows from part 1. that AC  E d. 

Finally, applying Exercise 1.1 we conclude that d is an algebra. 	 U 

We are now ready to introduce the concept of premeasure on an algebra d. 

Definition 5.3.2 Let 92 be a set and q/ an algebra on 92. A set function 

satisfying 
"Ml) p(0)=O, 
'M2) Whenever {A }'C d is a countable collection of pairwise disjoints sets such that 

U=1A E d, then 

(U
A,) = 	p(A), 	 ("c-additivity") 

is called apremeasure on d. 

Clearly, this definition coincides with that of a measure when d is a c-algebra. Applying 
exactly the same arguments as used for measures in Section 1.4, it is easy to see that a premeasure is 
(finitely) additive and hence monotone. Furthermore, the notions of finite and c-finite premeasures 
are defined in exactly the same way as they are for measures. 

	

Note that by Exercise 4.2, every premeasure p on d defines an outer measure 	on 92 by 

*(E) :=infLp(An) : A Ed, E C U  An (E C ). 	 (5.23) 
L,n=1 	 n=1 ) 

The next theorem tells us that 	is an extension of p to a measure on 
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Theorem 5.3.2 Let d, p and i be as above, and let 	denote the cr-algebra of /1* measurable  

sets as in Carathdodory's Theorem. Then 
1. /1*(E)=p(E)  for all Efid.  

2. o(d)c. 
3. If V is another extension of p to a measure on o(d), then v 	on 
4. If p is cr-finite, then 	is the unique extension of p to a measure on o(d). 

Proof. 1. Let E c d be given. Choosing A1 = E and An  = 0 for n> 2, then clearly, 

EC UAn  and 
n=1 	 fl 

so that by definition of etC, 

p(E). 	 (5.24) 

Conversely, let {A } be any collection in d with E C U=1 A. Applying Theorem 1.1.1, there 
exists a disjoint collection {B} in d so that 

Bn  C A 	for all n 	and 	B, = 	A,. 
n=1 	n=1 

Set fl, = E flB for all n. Then {E,} is a disjoint collection of elements of d with union 

Un=UEnB]=En[UBfl] =En  [UAfl]=E, 

and since p is a premeasure on d then by monotonicity, 

p(E) 	p(E) < Lp(An). 
n=1 

Now as {A} was an arbitrary countable covering of E by elements of d, it follows from (5.23) 
that 

p(E) 

Together with (5.24), equality follows. 

2. Since 9. is a a-algebra, it suffices to show that d C gy. To this end, given E E d, let  C Q 
be arbitrary. By definition of y* (A), given E > 0, there exists a countable collection {A} C d 
with 

AcUAn and 
n=1 	 n=1 

Applying Theorem 1.1.1 and monotonicity of p, we may assume that the sets A are disjoint. Since 
p is a premeasure, then 

p* (A) 	>Lp(Afl)=Lp([AflnE]U[AflnEd]) 	[p (An  flE)+p (An  flEc) 

Lp (An nE)+Lp (An  nEc) > *(U[AflE])+*(D[AflEc]) 
n=1 	 n=1 	def. of 	n=1 	 n=1 

=p'  ([6&1 nE) 	
* ([ 1 

nEc) 
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As E > 0 was arbitrary then 

y* (A) >/1*(AnE)+jf(AnEC) ,  

and as A ç Q was arbitrary, it follows that E E 	. This shows that d c 
3. Let v be another extension of p to a measure on a(d). If E E a(d) and if {A} 1  is a 
covering of E by elements of d, then by -subadditivity of v, 

v(E) < v(A0) 
= F'P(A") 

so that by (5.23), 

V(E) < u*(E). 	 (5.25) 

Thus, V < W. 

For the last part of the proof, we will need: 
Claim: LetE E a(d) with u*(E) <00. Than v(E) = 

In fact by definition of of 	given E > 0 there exists a countable covering {A} c d of E with 

	

p(A) <t*(E)+E. 	 (5.26) 
n=1 

As in the proof of part 2. we may assume that the sets A0  are mutually disjoint. Then (5.26) still 
holds, so setting A = U=1 A we have by -additivity of /I* and v, 

V(A) = Y. v(A) = 	p(A) = 	(A) = *(A) <*(E)+E <00•  

n=1 	 n=1 	 n=1 

Since E c A and v(A) = p* (A) <00  then 

j *(E)  </i*(A) = v(A) = v(E)+v(A\E) < v(E)+jf(A\E) 
=v(E)+*(A)_L*(E)< v(E)+. 

Since e was arbitrary, it follows that ki(E) < v(E). Together with the reverse inequality (5.25), 
the claim follows. 

4. Finally, suppose that p is cr-finite. Then there exists a countable collection {A0 } 	of elements 
of d with /1*(A) = p(A0 ) <00 for all n and Q = U'=1 A0. We may again assume that the sets A0  
are disjoint. Then for all all E E a(d) it follows by cr-additivity and the claim that 

= *(U [An  nE]) =L1L*(AO nE)=LV(AO nE) = v(U[AnE]) = v(E). 

This shows that i = V and completes the proof. 	 U 

Observe that the main statement of this theorem is similar to Proposition A in Section 4.2. 
There the starting point was the collection J6  of half-open intervals which is not yet an 
algebra, and the generalized length LF of such intervals. Since the topological methods used 
in the proof of Proposition A are not available in general, we had to work with premeasures 
instead. 
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Exercise 5.9 (The condition that p be a-finite can not be removed in the above Theorem.) 
Let .& be the collection of finite unions of sets of the form (a, b] fl Q, where -0 <a < b <oo. 

1. Show that d is an algebra on Q. 
2. Show that a(d) = 

l = 
3. Show that p(A) = o 
	if 	ø 
 is a premeasure on 

	

oo 	ifAø 
4. Find /1*  and find another extension V of p to .(Q) which is different from 

5.4 Product Measures 

The product of two a-algebras 

Recall the concept of product topology: Given two topological spaces X and Y, the product 
topology is the weakest topology on the Cartesian product X x Y containing all "open rectangles" 

A >< B, where A and B are open subsets of X, respectively Y. 
Given two measurable spaces (X,6?)  and (Y,.), we introduce a a-algebra onto the Cartesian 

product X x Y in a similar way: 

Definition 5.4.1 Let (X,6) and (Y,) be measurable spaces. 
1. A set of the form A x B with A E 6 and B E is called a measurable rectangle on X x Y. 

(see also Example 5.7.) 
2. The a-algebra on X x Y generated by the collection of measurable rectangles is called 

the product a-algebra, and denoted by 6 ® . That is, 

®=a({AxBAE, BE}). 

Ina similar way, if (Xi, 	(X2, 2).....(X, 	is a finite collection of measurable spaces, 
then the product a-algebra on X1  x X2  ... < X is defined by 

• Example 5.8 Consider the measurable spaces (R, (R)) and (J 2, (R2)). 

Claim: .%(R2) = .(R) ® 

In fact, recall from Corollary 2.4.2 that 

(R2) =a({(ri,s2) x (r2,s2) rj < sj , rj , sj EQ,i=l,2}). 

Now since such open squares (ri , s2) x (r2, s2)  are simply measurable rectangles in (R) 0 (R) 
and the latter is a a-algebra, it follows that 

.(R2) c%()®.%(R) 

To show the reverse inclusion, first let 
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It is easy to see that 6, is a a-algebra on R x R, because .(R) itself is a a-algebra. Furthermore, 
the map 

:AE(R)F-AxRfi 

clearly is a bijection of a-algebras preserving unions, intersections and complements. That is, we 
may identify (R) and 61, as a-algebras through the mapping . Now since (R) is generated 
by the open subsets U of R, then 

01, = a({uxRucRisopen}). 

But the sets U x R are open subsets of R2, and hence 

c a ({v V CR  is open}) = 

By a symmetric argument, if 

0 :={RxBIBeP'(R)} 

then 9, c 
Now let  x B be a measurable rectangle, with A,B C (R). Since A x Re o, ç  .(R2) and 

IR < B E 9, c (R2), it follows that 

AXB=(AxR)fl(RxB) e(R2 ) 

Therefore, 

(R)®(R)=a({AxBA,Be(R)}) c.(R2) 

which proves the reverse inclusion, and hence the assertion. 	 . 
() In a similar way one shows that 

(lR') = 	® .(li) ® (R) ® ® (R) 

and also 

= 

for all positive integers m and n. 

However, if 4 (lR) denotes the a-algebra of Lebesgue measurable subsets of IRA, then 

(See the discussion in the second part of this section.) 

By the definition of the product a-algebra ® 9, one can obtain 09-measurable functions 
h: X x Y —* R* as products of functions of a single variable: 

• Example 5.9 Let (X, ) and (Y, ) be measurable spaces, let f : X —* R* be e-measurable and 
g: Y -+ R* be 9-measurable. 

Claim: The function h : X x Y —* R* given by 

h(x,y) =f(x)g(y) 
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is (6'0 9-measurable. 

To see this, we first extend f and g to functions 	: X x Y which are constant with respect to 
the second variable by 

J(x,y)=f(x) 	and 	(x,y)=g(y). 

Let us show that J is ® -measurable. In fact, for each a E R we have 

{(x,y) EXxY:f(x,y)<a} = {(x,y)EXXY:f(x)<a} 

= {xEX:f(x)<a}XY, 

E4byThm. 1.5.4 

a measurable rectangle in e ® . Applying Theorem 1.5.4 again, it follows that J is ff 0 F-

measurable. 
By a symmetric argument, g is also 0 -measurable. Hence, 

h(x,y) = f(x)g(y) = J(x,y)g(x,y) 

is the product of two & ® 9-measurable functions, and thus is also measurable. 

We now discuss some relationship between 9 0 9-measurable sets (respectively functions), 
and - and 9-measurable sets (respectively functions). 

Definition 5.4.2 (Sections of sets) Let E c X >< Y. 

1. Given an element x E X we set 

E := {y e Y: (x,y) E E} c Y 	("x-section"). 

2. Similarly, given y E Y we set 

E 	{XEX: (x,y) EE} C 	("y-section") 

Definition 5.4.3 (Sections of functions) Let f(x,y) be a function defined on X x Y. 

1. Given an element x E X we define a function fx  on Y by 

f(y) := f(x,y) Vy E Y 	("x-section") 

2. Similarly, given an element y E Y we define a function f)' on X by 

f"(x) 	f(x,y) Vx E X 	("y-section") 

Example 5.1O Given  Eg0, let us set f=1E. Then for each fixed x E X 

range(f) c range(f) = {O, l}, 

and for all ye Y, 

(1E)x(Y)= 1 	1E(X,y)1 	(x,y)EE 	yEE 	1E(Y)=i 

which shows that (lE)x  = 1E - In a similar way, (1E)y  = 1EY for each y E Y. 
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Proposition 5.4.1 Let (X, c) and (Y, ) be measurable spaces. 
1. Let E E S ® 9. Then for each x C X and  E Y, we have E E 9 and EY E . 

2. Let f : X x Y —* R* be SO 9-measurable. Then for each x C X the function fx is - 

measurable and for each y E Y the function fY is -measurab1e. 

Proof. 1. Given any x C X we set 

Claim: 01, is a oP-algebra on X x Y containing 610 9. 

In fact, observe that for each B c X x Y we have 

(x,y)eEc 	(x,y)E 	yE1 4 

That is, 

(EC )x = (E)'. 	 (5.27) 

Similarly, if {E} 1 is a collection of subsets of X x Y, then 

ye UEn 	(x,y)e U 	n, (x,y)EE 	n, y (-= (En )x <=> Y  U(En)x, 
n=l 	X 	 n=1 	 n=1 

which shows that 

Ej = ~ (Ej,,. 	 (5.28) 

Now since 9 is a o-algebra, it follows from (5.27) and (5.28) that (Ec) C 9 and [U=i E] C 
for all E, En E W, which shows that Olx is indeed a a-algebra. Now clearly, all measurable rectangles 

	

of the form E = A x B generating 	are elements of 9, since either E B (if x C A) or 
Ex = 0 (if x V A). This shows that & 0 9 c W, and proves the claim. In particular Ex C 5F for all 
ECO. 

By a symmetric argument, given any y E Y we have that EY C ff for all E C 0 9, and thus I. 
follows. 

2. Next let I C X be arbitrary, but fixed. Note that for all a C 

{yCYf(y)>a}={yeYf(2,y) >a} =EY 

where 

E = {(x,y) CXX Yf(x,y) > a} E  X 

since f is e ® 9 measurable. Then by part 1., E C 9 no matter what a, and it follows that fR is 
9-measurable. 

By a symmetric argument, f 5 is e-measurable for all 5 C Y. Thus, the proof is complete. I 

R Clearly, the results of Example 5.9 and Proposition 5.4.1 can be extended to complex-valued 
functions, by simply splitting functions into their real and imaginary parts. 
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• Example 5.11 Let f R2  R' be a Borel-measurable function. Since _q (R2) = (R) ® .(R), 
then by the above proposition, the functions 

fY:xERf(x,y) 	and 	f:yElRH+f(x,y) 

are Borel-measurable for all x and y in R. 	 . 
The Product of Two Measures 

We are now ready to introduce product measures. For this purpose, let (X, S, i) and (Y, , v) 
be two measure spaces. By Example 5.7, the collection of measurable rectangles 

= {E =A x B I A c,9, B e 91 

is an elementary family, so that the collection of finite disjoint unions of measurable rectangles, 

d= {E=Ek nEN, Ek E, EJflEk=ø(Jk)} 

is an algebra on X x Y. Clearly, o(d) = o(f) = 60  ® 

Given a measurable rectangle A x B E c, we set 

p(A<B)=/1(A)v(B)E[O,00] 

and hope to be able to extend p to a measure on e ® . 

Proposition 5.4.2 p  extends to a premeasure on d by 

P (E) =L.u(Ak)v(Bk) 	
(5.29) 

where E = U= (Aj., x Bk) E d, a disjoint union of measurable rectangles. 

Proof. We first must show that p in (5.29) is well defined. For this, let E e d be represented as 
two different disjoint unions of measurable rectangles, 

n 	 m 

E= U(AkxBk)= U(Ajxj). 
	 (5.30) 

k=1 	j=l 

We need to show that 

11 	 m 

ji(A,)v(B) = 
k=1 	 j=1 

Since 

E=EflE= LAkxBk1n  	
(AJxJ)] 

	

n m 	 n m 

= U U [(AkxBk)n(AJxJ)] = U U [(AknAJ)x(BknJ)] 

	

k=lj=1 	 k=lj=1 
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where all unions are disjoint, it suffices, by symmetry, to show that 

= L E 9(AknAJ)v(BknJ). 
k=1 	 k==lj=1 

Note that for each k, Ak x  Bk is the disjoint unions of measurable rectangles, 

Ak XBk = (Ak x Bk) flE 	[(AkflAj) x (BknJ), 

hence it suffices to show that 

(A)v(B) =i(A1)v( 1) 
	

(5.31) 

whenever A x B is a measurable rectangle expressed as a disjoint union of measurable rectangles, 

AxB=U(A1xEJ). 	 (5.32) 

Observe that 

1A X B(X,y) = 1A(X)1B(y) 

and since the union in (5.32) is disjoint, then 

	

M 	 m 
1A(X)1B(y) = 1AXB(X,y) = Y, 1A.x(-',Y) = Y, 1,.(X)1(y). 	 (5.33) 

	

j=1 	 j=1 

Integrating over x, then for all y e Y by linearity of the integral, 

m . 

u(A)1B(y) = ix 1A (X) 1B (y) d 	 J 1Aj  (x) 1p j  (y) dp (x) = 	/1(AJ)1E (y). (5.34) 

Integrating further over y, 

	

m 	,. 	 m 
(A)v(B) 

= f (A) 1B (y) dv (y) = 	(A) / 1(y)dv(y) = 	(A)v(B1), 	(5.35) 
Y 	 j=1 	 j=1 

which shows that (5.31) holds. Thus, p is well defined. 
Next we need to show that p is a premeasure. Clearly 

P(0) = p(O x 0) = p0)v(0) = 0. 

To prove -additivity, let E E d be expressed as a disjoint countable union of members of d, 

E=UEN, 	EN (E 
	

(5.36) 
N=1 

We recycle the arguments of the first part of this proof with further refinements. Since E E d then 
it is a disjoint union of the form 

E=U (Ak xBk), 	AkxBkE. 
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On the other hand, as each EN e 	is a finite disjoint union of measurable rectangles and the union 
in (5.36) disjoint, then E can be represented as a disjoint union of the form 

E = U U(Ajxj) 
N=1 jESN 

where {SN}_ 1  is a partition of N by finite subsets and 

EN = U (A1 >< j) 	for all N. 
JESN 

That is, 

E=U(AkxBk)=U (Ai  xj). 

The arguments of the first part of the proof carry over without modification, except that now m = 

while equations (5.34) and (5.35) require the application of Corollary 2.7.4. It thus follows that 

P (E) = 	A (Ak)V(Bk) = E(Aj)v(flj) = 	 = 	p(E), 
k=1 	 j=1 	 N=11ESN 	 N=1 

which completes the proof. 	 U 

We note that if u and v are y-finite, then p is also -finite. To see this let {Ak}° 1 	and 

{ B1} °  c besets of finite measure, with  = U =lAk and  = U7=1 B1. Then 

X x Y = U U(Ak xB1) 	with 	p(Ak x B1) = (Ak)v(BJ) <0 	for allk,j. 
k=1 j=1 

Applying Theorem 5.3.2 to the current setup we immediately obtain: 

Theorem 5.4.3 Let (X, 9, t) and (Y, 9, v) be measure spaces. There exists a measure on 
(X x Y, S ® ) denoted by 4u x V and satisfying: 

1. for all AEd,BE5, 

(ii x v)(A x B) = 	 (5.37) 

2. if 7r is another measure on (X x Y, e ® ) satisfying 

v(AxB)=j.L(A)v(B) 	for allAEcf,BE, 	 (5.38) 

then 7r < ti x v, 
3. If t and V are cr-finite, then ir u x V is the unique measure on (X x Y, d' (9 ) satisfying 

(5.38). 

We call the measure space (X x Y, e (9 9,4 x v) the product measure space of (X, 9,  u) 
and (Y, , v), and 4u x V the product measure. 
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The measure space (X x Y, ® , p x v) need not be complete, even when (X, e, p) and 
(Y, 9, v) are both complete. 

In fact, suppose that 	(X) and that 9 contains a non-empty v-null set B. Then we 
can pick A c  with A 0 iff , let E = A x B and N =X x B. Thus, E C N with (p x v) (N) = 
p (X)v (B) = 0, while by Proposition 5.4.1, E 	0,F. 

However, this is not a problem, since p x v is simply the restriction of the complete measure 
on 9,u  of Theorem 5.3.2 to f ® 

Observe that by Theorem 5.3.2 as well as the construction of d and p, the product measure is 
given by 

(pxv)(E)=infp(A)v(B) : 	 E C U  (An  xBn) 
ln=1 	 n=1 

for all E c f' ® 9. It turns out that, at least for -finite measure spaces, there is a simpler 
way of computing this measure by means of iterated integrals. First, however, some remarks on 
measurability. 

From here on, let (X, e, p) and (Y, 9, v) be r-finite measure spaces. Observe that if E = A x B 
is a measurable rectangle, then 

ifxA and Ey=I® ifyØB 

ifxflA 	 1A 	ifyflB, 

so that v(E) = v(B)1A(x) for all x fiX, and p(EY) = l.1(A)lB(y) for ally G Y. It follows that the 
function x e X F-+ v (Es ) is i-measurable and the function y e Y F-+y ( EY) is -measurable, and 

(p x v)(E) = p(A)v(B) 
= fX 

V(B)1A(x)dP(x) = 
fX 

v(Ex ) dp(x) 	 (5.39) 

while also 

(p x v)(E) =p(A)v(B) =jP(A)1B(y) dv(y) = fp(EY)dv(y). 	 (5.40) 

We thus expect the measure of an arbitrary set E E 9 0 9 to be of the form 

(p x v)(E) = fv(E) dp(x) = I p( EY)dv(y) ,  

which is what we will need to prove now. 
Observe that v (Es) and p (EY) are well-defined for all E e 6'0,  by Proposition 5.4.1. Thus, 

for the above two integrals to make sense, we first must make sure that the maps x F-* v(E) and 
y —+ p (EY) are both measurable for general E. This requires the introduction of yet another class of 
sets. 

Definition 5.4.4 Let n be a set. A collection W C 9(Q) is called a monotone family, provided 
that for any countable family {Ak} °  C W we have:  k—  I 

(MC 1) if {Ak} T then U °= lAk 

(MC2) if {Ak} 4. then  fl°1 A, E '. 

(That is, W is closed under countable increasing unions and countable decreasing intersections.) 
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Note that every c-algebra on 92 is a monotone class. In addition, if W is both an algebra and a 
monotone class, then V is also a c-algebra, since for every countable collection {A} 1 in ' we 

have 

UAn=U[UAk]E 	as 	
~

Ak
k=ln=1 	n=1 k=1  

Furthermore (similar to what has been shown for c-algebras), if X is a collection of subsets of 
, and { }EA is the collection of all monotone classes containing ,X', then 

é'= n cex 
2EA 

is the smallest monotone class containing CX', called the monotone class generated by X. 

Lemma 5.4.4 (Monotone Class Lemma) Let d be an algebra of sets on ~. Then the monotone 

class '' generated by d coincides with the c-algebra c(d) generated by W. 

Proof. Since every c-algebra is also a monotone class, then clearly, c c(al). To show that 

c(d) c ', it suffices to show that W is a c-algebra. 
For each A E W, we set 

A)={BeA\B,B\A,AnBE}. 	 (5.41) 

Claim: 	= '(A). For this end,we note that the collection (A) has the following properties: 

(i) Since 0 E d and d c C, then 0,A E C(A). 
(ii) By definition (5,41), clearly B E '(A) 	A E lf(B). 
(iii) (A) is a monotone class. In fact, let {Bk} i c ' f(A). Then 

A\[UBk] D1At [DBk]\A=UBk\A An [6&I = U(AnBk). 

and by assumption, A\Bk,Bk\A,A flBk E W for all k. So if {Bk} t' then {A\Bk} L {Bk\A} 
and {A flBk} t and as Wis a monotone class, then the three above sets are elements of W, 

and thus U'=1 Bk E (A) also. Similarly, 

A\ [ñBk] = UA\Bk, [ñBk] \A = flBk\A, An [Bk] = fl(A flBk). 

So if {Bk} , then {A\Bk} t, {Bk\A} .. and {AnBk} 4, and as lf is a monotone class, then 

the three above sets are elements of ', and thus nE, Bk E W (A) also. 
(iv) For each A E d, we have '(A) = W . In fact by definition, W(A) c K Conversely, note that 

if B Ed then also B e W(A) since A,B e d and d is an algebra. Thus, d c (A). Now 

as l' is the smallest monotone class containing d, it follows that ç (A). 
(v) It now follows from (iv) and (ii) that for every B C V and A C d we have A C (B), which 

shows that d C (B) for all B E W. Now again, as 'l' is the smallest monotone class 
containing d, it follows that W C (B), that is, W = '(B) for all B C If'. Thus the claim is 
proved. 

Now by the claim we have that A\B,AnB C f' for all A,B C W. Now since Q e  C W, (5.41) 

and Exercise 1.1 show that f' is an algebra on Q. On the other hand, f' is also a monotone class by 
(iii), and hence it is a c-algebra. Thus the proof is complete. 
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The monotone class property enables us to apply convergence theorems for integrals in the 
following two proofs. 

Proposition 5.4.5 Let (X, 9, u) and (Y, 9, v) be s-finite measure spaces. Then for each E E 

(1) the function f : x F-+ v(E) is s-measurable, and 
(2) the function g : y -+ u (EY) is 9-measurable. 

Proof. By symmetry, it suffices to proof assertion (1). We assume first that V is a finite measure. 
Recall that 

E — 6 Ek ~ n E N, Ek = Ak x Bk, Ak G 9, Bk G 9, Ekn Ej = 0 (k 7~ j) 

is an algebra on X x Y , and 	= c(d). Furthermore, the discussion preceding (5.39) shows 
that assertion (1) holds for measurable rectangles A x B. Now it is easy to see that every E E d 

can expressed as a union of measurable rectangles of the form 

E=U(AJxBJ) 	 (5.42) 

where the sets B3 are mutually disjoint (but the sets A1 need not be disjoint). In addition, since for 
each x E X, 

Ex=U(A1 xB1), 
	 (5,43) 

and (A1 x B1) is either empty or equals B1, then the union in (5.43) is disjoint, so that by additivity 
of the measure, 

v(E)=Lv((A1 xB1)). 

Thus, x —* v(E) is the finite sum of measurable functions, and hence is also measurable. This 
shows that assertion (1) also holds for the elements of d. So if we set 

={EEc® 9 1 (l)holds}, 

then dC. 

Claim: W is a monotone class. In fact, let {E} 1 c W be given. 
If {E} t, we set E = U=1 E. Then for each x E x, {(E)} t and also Ex = U=1(E) , so 

if we set 

f, (x) = v((E)) 	and 	f(x) = v(E), 	 (5.44) 

then by monotonicity of the measure, {f (x) } t and hence by Theorem 1.4.2, f, (x) — f(x) for all 
x E X. Now each f,, is s-measurable since (1) holds for E, and hence f is i-measurable as well 
by Theorem 1.5.7. 

On the other hand, if {E} , we set E = fl E. Now for each x E X, {(E)} 4. and also 
Ex = fl1 (E), so if we define f, and f as in (5.44), then {f(x)} 4. so that by monotonicity and 
finiteness of the measure, again f(x) -~ f(x) for all x  X. Since assertion (1) holds for each set 
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E then each f, is s-measurable, so that again, f is d-measurable as well. Thus, E C'e again and 
the claim is proved. 

Since a c V c 	= a(d), the Monotone Class Lemma yields that = S 0 , thus 

assertion (1) holds for all E E S 0 9. 

In the general a-finite case, there exists a collection {Y} 1 c 9 with Y = U=1 }f1 and 

v(Y) <oo for all n. Replacing each Y,, with U=1 Yk we may assume that {Y} T. For each n we 

now set 

v(B)=v(BflY) forBE3. 

Then v,, is a finite measure on 9 which coincides with v on measurable subsets of Y. Now given 

E E 	we set 

E=Efl(XxY) (nEN) 

so that {E} and also E = U=1 E. Since each v,, is a finite measure and (E) C Y,, we obtain 

by the above that 

X ~-4 v((E) = v((E)) 

is t-measurable for all n. Now since E = U=1 E, we may repeat the arguments of {E} t above 

(which are valid for arbitrary v) to conclude that f(x) = v(E) is 6'-measurable. 	 I 

Theorem 5.4.6 Let (X, , i) and (Y, 	v) be a-finite measure spaces. Then for all EE 0 

(it X v)(E) = f v(E)d(x) = f(EY)dv(y). 

Proof Again, by symmetry it suffices to show that 

(t x v)(E) 
= JX v(E)di(x). 
	 (5.45) 

Suppose first that u and v are finite measures. We let d be again the algebra generated by the 
measurable rectangles, but now set 

(5.45) holds }. 

By (5.39), ' contains all measurable rectangles E = A >< B. Thus if E E d is again expressed as in 
(5.42), 

E = UE1, 	with the sets (E) disjoint 

then by additivity of measures and integrals, 

M 
(txv)(E)=xv)(E1)= E V ((Ej)x)d(X) 

j=1 	 j=1  

f  [
m 	 fl 

Lv())] d(x)fv(U(Ei)x)d(x)fv(Ex)d(x) 
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which shows that d c W. 

Claim: 6' is a monotone class. In fact, let {E} 1  c W be given. 
If {E} , we set E = U'=1 E. Keeping the notation of (5.44) we may apply Theorem 1.4.2 

together with the Monotone Convergence Theorem to obtain 

(A x V) (E) = urn (Y x V) (En ) = urn f v((E)) d(x) 
°° X 	 (5.46) 

lim f fn  (x) di (x) 
= f f(x) d(x) 

= f v(E) dp(x) 

which shows that E E le. 
On the other hand, if {E0 } , we set E fl1 E,. We keep again the notation of (5.44). Since V 

is a finite measure, then ft (x) is a bounded function, and as u is also finite, then fi  (x) is integrable 
over X. Now since 0 < fn  <fi we can apply the Dominated Convergence Theorem to obtain 
identity (5.46). Thus, E E V again, and the claim follows. 

Now since d c le c 	= o'(d), the Monotone Class Lemma yields that W = e ® 9, 
thus the assertion of the theorem holds. 

Next let t and V be cr-finite. Then there exist collections {X} 1  c and {Y} 1  c JF 

which we may assume to be increasing, with X = U=1 X, Y = U==1 Y and u(X) < 00, v(Y) <oo 
for all n. For each n we now set 

= ji(AnX) (A E ), 	v(B) = v(BnY) (BC 9) 

and 

(jixv)(E)=(pxv)(En(XxY)) (EE(9fJ) 

These are all finite measures on the respective spaces and furthermore, by definition of the product 
measure, it is not difficult to see that 

(/1 >< V)n = An x v,. 

Now given E E ® 937, we set 

E=Efl(XxY) (nEN) 

so that E c x x Y,, {E} t and also E = U= E. By the case of finite measures we obtain that 
for all n, 

X V) (E,,) (An x V,,) (E,,) = Jvn ((En )x)d n (x) 

= f v((E) d 0  (x) = f v((E) d(x) 

where we have used the fact that En  c X, x Y,, so that in particular, (En )x  c Y, and (E,)x  = 0 for 
x X,. Applying the same arguments as in (5.46) then (5.45) follows. 	 U 

The next two theorems show that an integral over a product space can be expressed as an 
iterated integral, just as we are used to from elementary calculus. The first theorem deals with 
functions in the class 	and the second with functions in L'. 

 

 

 

 

 

 

 

 



5,4 Product Measures 
	

157 

Theorem 5.4.7 (Tonelli) Let (X, 61, j.i) and (Y, , v) be cs-finite measure spaces and let f C 

	

x 	Then the functions 

g(x) jyf(y)dv(y) = ff(x,Y)dv(Y) 

h(y) = fY(x)d(x) =J'  f (x, y) dA (x) 

are in 2+  (X), respectively 2+  (Y), and the double integral can be written as an iterated integral, 

fX xY  
f (x,y) d(,4 xv) 

= Ix ff(x,y)dv(y) d(x) 
= fyfxf(X)Y)dA(x)dv(y). (5.47) 

Y  

=g(x) 

Proof. By symmetry, it suffices to show that g is measurable, and that 

	

JX X 	 fX Y 
f(x,y)d(xv) = 	ff(x,y)dv(y)d(x). 	 (5.48) 

Clearly, g, h> 0. The remainder of the proof is straightforward; we simply move through the steps 
involved in the definition of the integral. 

First let f be an indicator function, f = 1E for some E C 60 9. Then by Example 5.10 and 

Proposition 5.4.5, 

g(x) 
= / (

1E) (y)dv(y) = jy 1E(y)dV(y) = v(E) 

is g-measurable, and then by Theorem 5.4.6, 

J 1(x,y)d( x v) = ( x v)(E) f xY 	 X 	 (549) 

= fX f1EJY)dV(Y)d(X) = fX f1E(x,y)dv(Y)d(x). 

Next let fCklE k  C 99± (X x Y, ® 9). Then f = 	Ck (lEk ). so that by linearity 

of the integral, 

 Y. g(x)=ffx (y)dv(y) =ckgk(x) where gk(x)=f(lEk )X (Y)dv(Y). 

Since each 9k(X)  is i-measurable, it follows from Theorem 1.5.6 that g is also s-measurable, and 
then again by linearity of all integrals together with (5.49), 

JX xY  
fd(t x v)= LckIx lEk  d(i x v)= 

ckJX
fy1EkdvdL 

k=1 	XY 	 k=1  

= / [   CklEkl 
dvdi = fX lyfdvd1 

that is, (5.48) holds. 
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Finally, let f E 	(X x 	(9 ) be arbitrary. By the Structure Theorem for Measurable 
Functions, there exists as sequence {q} T in 9+  so that con  —+ f pointwise. Then for each x E X, 
(q 	E 9', {((pn)x} t and ((o) —* fx  pointwise. By the Monotone Convergence Theorem, 

g(x) = I f(y)dv(y) = urn g, (x) where g, (x) f ((p)(y)dv(y). JY 	 fl-40o 	 y 

Since each gn  (x) is6-measurable, it follows from Theorem 1.5.7 that g is also s-measurable. 
Furthermore, since (5.48) holds for each ço,, since {f((p)dv} t and applying the Monotone 
convergence Theorem several times, then 

f fd(Lxv)=Timf cond(xv)=limf
Xfy condvdt xY 	 '°° XxY 	 '°° 

urn V Y
condv] dt= /f [uimco] dvdt= JXf fdvdiL

xJl —*oo 	 V 

so that (5.48) holds. 	 U 

We note that when  is integrable, then g(x) and h(y) must be finite valued a.e., that is, f 
and fY  will be integrable a.e. 

Theorem 5.4.8 (Fubini) Let (X, 9, t) and (Y, 9, v) be cr-finite measure spaces and let f 
L'(X x Y,(9,/i x v). Then 

fEL1 (Y, JP, v) a.e.x 	and 	fYeL'(X,,/i) a.e.y, 

so that the functions 

g(x) =ff(x,y)dv(y) 	and 	h(y) =ff(xY)dP(x) 

are are defined a.e. Furthermore, 

g(x) EL'(X,,,u) 	and 	h(y) EL1 (Y,,V), 

and 

J, 	f(x,y)d( 	x v) 
XxY = fx'4 f(x,y)dv(y) d(x) j J X 

f(x,y)d(x) dv(y). 	(5.50) 

=g(x) =h(y) 

Proof Again, by symmetry we only need to prove half of the assertions. 
First let f X x Y —+ R*.  Since  is integrable, then so are f and  f, and hence by the Remark 

following Tonelli's Theorem, the functions (f+) = (f) are integrable a.e. x, as are the functions 

(f) = (fr). This shows that f = (f) 	(f') E L1  (Y, 9, v) a.e. x. 
As usual, modifying g on a null set N (to be precise, we modify f on the null set N x Y) we 

may assume that the above holds everywhere, so that g(x) is defined everywhere. By definition of 
the integral, 

g(x) = jy f' (x,y) dv(y) 	and 	g(x) = j
y 

f -  (x, y) dv (y), 
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so that by linearity of the integral and Tonelli's Theorem, 

fX
Igld=J(g+g) dt=fJ(f ++f-) dvdt 

=ff Ifdvdt=f fId(xv)<co,  
XY 	 XxY 

since f is assumed to be integrable. This shows that g is integrable, and then we obtain by definition 
of the integral as well as Tonelli's Theorem that 

fXgdL =fg d_fg dt =ff f+ dvdt_fff dvdt 

1  f+d(vx)_f fd(vx)f fd(xv), 
XxY 	 XxY 	 X><Y 

so that the left-hand equality of (5.50) holds. 
Now when f is complex valued and integrable, we simply apply the above to its real and 

imaginary parts. The details are easy and left to the reader. 

Exercise 5.10 Complete the proof of Fubini's Theorem for complex valued functions. 

R- Given a ® .-measurable function f : X x Y -* K, one usually first applies Tonelli's theorem 
to Ifl in order to check whether f E L (X x Y). Then one can use Fubini's theorem to express 
the double integral off as an iterated integral as in (5.50). The next example illustrates this 
idea. 

• Example 5.12 Let (X,,ji) and (Y,,v) be a-finite measure spaces, f G L' (X) and  EL1 (Y). 
Set h(x,y) := f(x)g(y). Then by Example 5.9, h is e ® 9-measurable. 
Claim: h is integrable, and 

I xY 
h(x,y) d( x v) = [ff(x)d] [fg(y)dv]. 

In fact, we have 

h 	x p) J j h(x,y)ldvd 	(by Tonelli) 
XxY 	 X 

=ffIf(x)llg(Y)ldvdi=flf(x)l [jg(y)ldvd 

= L l f(x)I IgIlidtt = lgli f f(x)ld = lglk If III <. 

Hence, h E L1  (X x Y) and we can apply Fubini's theorem to repeat essentially the same computa-

tions, 

ix 
h(x,y)d(v x i) =ix JY 

h(x,y)dvd
xY  

= j
f 	

dvdju  

= f f(x) [f g(y) 	= [ff(x)d] [fg(y)dv]. 

This proves the claim. 
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