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CHAPTER I 

INTRODUCTION  

1.1 Background and rationale 

 Tensile strength of rock dictates the stability of the immediate roof in stratified 

rock mass.  The tensile strength can be obtained from the laboratory by various 

methods, including direct tension test, Brazilian tension test, ring tension test, flexural 

test and three- and four-point bending test (Phueakphum et al., 2013; Wisetsaen et al., 

2014).  The bending test is however more preferable than the others for analysis and 

design of the tunnel roof.  This is because the test specimen is subjected to the stress 

configurations similar to those induced in the roof.  For stratified and brittle rocks, such 

as sandstone, the design considerations for opening roofs should also be placed on the 

tensile strengths and deflection of the materials. 

1.2 Research objectives 

 The objective of this study is to determine the effect of thinly-stratified 

sandstone on the roof stability of tunnels.  Three-point bending tests are performed on 

prismatic specimens (5050200 mm) prepared from the Phu Phan sandstone.  The 

loading rates are varied to obtain the induced tensile stresses at the crack initiation point 

from 0.001 to 1.0 MPa per minute.  The sandstone beds are artificially made in the 

specimens by saw-cut surfaces and tension-induced fractures to obtain 2 to 5 rock 

layers arranged normal to the loading directions.  The findings can be used to design 
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the minimum length of rock bolt needed to maintain the stability of the tunnel roof in 

the stratified sandstone. 

1.3 Scope and Limitations 

 The scope and limitations of the research include as follows: 

1) All specimens are prepared from the Phu Phan sandstone. 

2)  The nominal dimensions of prismatic blocks are 5050200 mm. The 

sandstone are cut into thin slabs to obtain predefined thickness (e.g. 10, 

12.5, 17 and 25 mm) depending on the required joint frequencies. 

3) The applied loading rates for the three-point bending testing vary from 

0.001 to 1 MPa/min. 

4) The testing procedures follow the relevant ASTM standard practices. 

5) The research findings are published in conference paper or journal. 

6) UDEC is used to determine the maximum tensile stresses in the thinly-

stratified roof. 

1.4 Research methodology 

 The research methodology shown in Figure 1.1 comprises 7 steps; including 

literature review, sample preparation, laboratory testing, analysis and assessment, 

applications, discussions and conclusions and thesis writing 

 1.4.1 Literature review 

  Literature review is carried out to study researches about tensile 

strength, loading rate and four-point bending tests. The sources of information are from  
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Figure 1.1 Research Methodology. 

journals, technical reports and conference papers.  A summary of the literature review 

is given in the thesis. 

 1.4.2 Sample preparation 

  The rock specimens used in this study are Phu Phan sandstone which is 

exposed in the northeast of Thailand.  This study makes artificial joints out of saw-cut 

surfaces using a universal masonry saw (Husqvarna TS 400 F).  This saw has a 400-

mm diameter blade with a constant rotational speed of 2800 rpm.  Water is used as 

cutting fluid.  The saw base has two mutually perpendicular guide rails to provide a 

precise cutting angle and intervals.  Large blocks width (w) is 50 mm., thickness (t) is 

50 mm. and length (L) is 200 mm. of the rock specimens are cut into thin slabs to obtain 

a predefined thickness (t) (e.g. 10, 12.5, 17 and 25 mm).  The t/L ratios obtained here 

Literature review 

Sample preparation 

Laboratory Testing 

Potential applications 

Discussions and conclusions 

Analysis of test results 

Thesis writing 
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include 0.05, 0.06, 0.08, 0.13 and 0.25.  Strain gages are installed in horizontal at the 

crack initial point.  The joint frequencies are 0 (intact rock), 41, 61, 81 and 101 (joint/m) 

 1.4.3 Laboratory testing 

  1.4.3.1 Direct shear test  

   The direct shear tests are performed with the normal stresses of 

1, 2, 3 and 4 MPa for the smooth surface and smooth-slip surface.  The test method and 

calculation follow as much as practical the ASTM (D5607-08) standard practice.  Each 

specimen is sheared only once under the predefined constant normal stress using a 

direct shear machine (EL-77-1030).    

  1.4.3.2 Three point bending test 

   The test configurations follow the ASTM (C293-02) standard 

practice.  Figure 8 shows the positions of the loading for the upper and lower bearing 

plates.  A data logger (TC-32K) connected with the switching box (Type B-2760) is 

used to monitor the induced tensile strains.  The loads are applied with constant rates 

from 0.009 N/s to 9 N/s, which are equivalent to the induced tensile stress rates at the 

center of the specimen from 210-5 to 210-2 MPa/s.  The specimen deflection are 

monitored using dial gage with high precision (±0.01 mm) which placed at the center 

of specimen.  The load is applied until failure occurs.  Specimens containing tension-

induce fracture are also prepared and tested to assess the effect of fracture 

roughness. 

1.4.4 Analysis of test results 

 The results are presented in forms of the tensile strengths, elastic moduli 

and strain energy density under various loading rates are presented to describe the 

mechanical behavior of rock layers.  The results are used to develop a set of empirical 
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equations as a function of loading rate, joint shear stiffness and t/L ratios by SPSS 

statistical software. 

1.4.5 Potential applications 

 The results can be compared with the strain energy strength criterion 

developed the criterion can be used to assume the actual stratified roof stability.   

1.4.6 Discussions and conclusions  

Discussions are made on the reliability and adequacies of the approaches 

used here.  Future research needs are identified.  All research activities, methods, and 

results are documented and complied in the thesis.  The research or findings are 

published in the conference proceedings or journals. 

 1.4.7  Thesis writing 

 All study activities, methods, and results are documented and complied 

in the thesis. 

1.5 Thesis content 

This research thesis is divided into seven chapters.  The first chapter includes 

background and rationale, research objectives, scope and limitations and research 

methodology.  The second chapter presents results of the literature review about Three-

point bending tests, Four-point bending tests, biaxial flexure tensile strength test, stress 

gradient effect, research on bending test and roof strata stability analysis.  The chapter 

three describes sample preparation. The laboratory testing and test results are described 

in chapter four.  Chapter five presents the results of the test in forms of the tensile 

strength and elastic moduli under various loading rates and describes the mechanical 

behavior of rock layers.  Chapter six presents the application about tunnel roof in 
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sandstone to determine maximum supported and chapter seven presents discussions, 

conclusions and recommendation for future studies. 

 



CHAPTER II 

LITERATURE REVIEW 

2.1 Introduction 

The topic reviewed here include three point bending tests, four-point bending 

test, biaxial flexure tensile strength test, stress gradient effect, research on bending test 

and roof strata stability analysis. 

2.2 Three-point bending test 

 The American Society for Testing and Materials (ASTM (C293–02)) specified 

the methods and sample preparation for the three-point bending test.  All forces should 

be applied perpendicular to the face of the specimen continuously without eccentricity.  

A diagram of an apparatus that accomplishes this purpose is shown in Figure 2.1.  The 

load shall be applied at a constant rate to the breaking point.  The maximum stress on 

the tension face increases under loading rate between 0.9 and 1.2 MPa/min (125 and 

175 psi/min).  The loading rate is calculated using the following equation: 

 
L3

Sbd2 2

r   (2.1) 

where r is loading rate, N/min (lb/min), S is rate of increase in the maximum stress on 

the tension face, MPa/min (psi/min), b is average width of the specimen as oriented for 

testing, mm (in), d is average depth of the specimen as oriented for testing, mm (in.) 

and L is span length, mm (in). 
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Figure 2.1  Schematic of a suitable apparatus for flexure test by center-point loading 

method (ASTM (C293–02)). 

The modulus of rupture is calculated as follows: 

 2bd2

PL3R   (2.2) 

where R is modulus of rupture, MPa (psi), P is maximum applied load indicated by the 

testing machine, N (lbf), L is span length, mm (in.), b is average width of specimen, at 

the fracture, mm (in.) and d is average depth of specimen, at the fracture, mm (in.).  A 

bar of rectangular cross section rests on two supports and is loaded at two points or two 

loading noses.  The distance between the loading noses (the load span) is either one 

third or one half of the support span. 

2.3 Four-point bending test 

 Specifications for standard test method for four-point bending test are given by 

American Society for Testing and Materials ASTM (D6272-10).  The test method is a 
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bar of rectangular cross section rests on two supports and is loaded at two points or two 

loading noses, each an equal distance from the adjacent support point.  The distance 

between the loading noses (the load span) is either one third or one half of the support 

span shown in Figure 2.2.  When a beam is loaded in flexure at two central points and 

supported at two outer points, the maximum stress in the outer fibers occurs between 

the two central loading points that define the load span.  This stress may be calculated 

for any point on the load deflection curve for relatively small deflections by the 

following equation for a load span of one third of the support span: 

 S = PL / bd2 (2.3) 

For a load span of one half of the support span: 

 S = 3PL / 4bd2 (2.4) 

where s is stress in the outer fiber throughout the load span, P is load at a given point 

on the load-deflection curve, L is support span, b is width of beam and d is depth of 

beam. 

 The tangent modulus of elasticity is the ratio, within the elastic limit, of stress 

to corresponding strain and shall be expressed in MPa.  It is calculated by drawing a 

tangent to the steepest initial straight-line portion of the load-deflection curve and using 

Equation 5 for a load span of one third the support span and Equation 6 for a load span 

of one half of the support span, as follows: 

 EB = 0.21L3m / bd3  (2.5) 
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Figure 2.2 Loading diagram (ASTM (D6272–10)). 

 EB = 0.17L3m / bd3 (2.6) 

where EB is modulus of elasticity in bending, L is support span, B is width of beam 

tested, D is depth of beam tested and m is slope of the tangent to the initial straight-line. 

2.4 Biaxial flexure tensile strength test 

 The American Society for Testing and Materials (ASTM (C1550-10)), specifies 

method for this test.  The load is applied to the plate through a ring.  Because the support 

of the specimen is also an annular ring, the stress field is axisymmetric.  Mechanical 

analysis shows that, within the area enclosed by the loading ring, the stress state caused 
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by the applied load is uniform on every horizontal plane.  Consequently, it is easy to 

consider the statistical randomness of local material strength. 

 The test has been performed on the circular disks with 100-mm in diameter and 

10-mm thick specimens by using ring supported/ring loaded.  The biaxial flexural 

tensile strength test determines the biaxial tensile strengths where σ1 = 0 and σ2 = σ3 < 

0.  The circular disk is simply-supported by ring around its outer circumference.  The 

line load (Pc) is applied concentrically to the circular disk through a tube of diameter as 

shown in Figure 2.3. 

 

Figure 2.3 Biaxial flexural tensile strength tests arrangement (Phueakphum et al., 

2013). 
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 The analytical solution used to determine the biaxial tensile strength of a 

symmetric isotropic thin circular disk is expressed below (Morrell, 1998; Ugural, 1999) 

where the tangential and radial tensile strengths (σr and σt ) are equal. 

 r = t = 3Pc4t2 [(1-)(1-c2a2) + 2(1+)ln(ac)] (2.7) 

where Pc is maximum load as failure, t is the thickness of circular rock sample,  is 

Poisson’s ratio, and a, c are the outside and inside diameters.  

2.5 Stress gradient effect 

 Claesson and Bohloli (2002) state that the tensile strength of rock is among the 

most important parameters influencing rock deformability, rock crushing and blasting 

results.  To calculate the tensile strength from the indirect tensile (Brazilian) test, one 

must know the principal tensile stress, in particular at the rock disc center, where a crack 

initiates.  This stress can be assessed by an analytical solution.  A study of this solution 

for anisotropic (transversely isotropic) rock is presented.  

 Liao et al. (1997) study the tensile behavior of a transversely isotropic rock by 

a series of direct tensile tests on cylindrical argillite specimens.  To study the 

deformability of argillite under tension, two components of an electrically resistant type 

of strain gage with a parallel arrangement, or a semiconductor strain gage, are adopted 

for measuring the small transverse strain observed on specimens during testing.  The 

curves of axial stress and axial strain and average volumetric strain are presented for 

argillite specimens with differently inclined angles of foliation.  Experimental results 

indicate that the stress-strain behavior depends on the foliation inclination of specimens 

with respect to the loading direction.  The five elastic constants of argillite are 
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calculated by measuring two cylindrical specimens.  Based on theoretical analysis 

results, the range of the foliation inclination of the specimens tested is investigated for 

feasibility obtaining the five elastic moduli.  A dipping angle of the foliations (φ) of 30-

60° with respect to the plane normal to the loading direction is recommended.  The final 

failure modes of the specimens are investigated in detail.  A saw toothed failure plane 

occurs for the specimens with a high inclination of foliation with respect to the plane 

perpendicular to the loading direction.  On the other hand, a smooth plane occurs along 

the foliation for specimens with low inclination of foliation with respect to the plane 

normal to the loading direction.  A conceptual failure criterion of tensile strength is 

proposed for specimens with a high inclination of foliation. 

 Klanphumeesri and Fuenkajorn (2010) study the direct tensile strength and 

deformability from dog-bone shaped specimens of intact sandstone, limestone and 

marble using a compression-to-tension load converter.  The device allows a 

measurement of the rock elastic modulus and Poisson’s ratio under uniaxial tensile and 

compressive stresses on the same specimen.  A series of finite difference analyses is 

performed to obtain a suitable specimen configuration that provides unidirectional 

tensile stresses at the mid-section.  Results indicate that the direct tensile strengths are 

clearly lower than the Brazilian and ring tensile strengths.  The elastic moduli and 

Poisson’s ratios under uniaxial tension are lower than those under uniaxial 

compression.  The discrepancy probably relates to the amount and distribution of the 

pore spaces and micro-fissures, and the bond strength of cementing materials.  The 

porous and relatively poor-bonding sandstone shows a greater difference between the 

tensile and compressive elastic moduli and Poisson’s ratios compared to those of the 

dense and well bonding marble and limestone. 
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 Fuenkajorn and Daemen (1986) conduct the ring tension tests on 229 mm (9 in) 

diameter disks of Grande basaltic andesite and Pomona basalt with various center hole 

sizes in order to study the relationship between ring tensile strength and relative hole 

radius (hole radius/disk radius).  The tensile strength (σR), decreases as the relative hole 

radius increases.  A power equation represents the coefficients of strength and shape, 

respectively adequately represents the ring tensile strength as a function of relative hole 

radius over the range investigated.  The equation can be used to distinguish the effect 

of the hole size from the strength results, to predict the tensile strength of a ring sample 

containing arbitrary hole sizes, and to approximate the critical relative hole radius of 

the material tested. 

 Phueakphum et al. (2013) determine the effects of intermediate principal 

stresses on the tensile strength of rocks.  The results are used to assess the predictive 

capability of the Coulomb criterion when one or more principal stresses are in tension.  

Four rock types have been tested.  The laboratory testing involves four-point bending 

test, Brazilian tension tests with axial compression, and biaxial flexural tensile strength 

tests.  Uniaxial, biaxial and triaxial compressive strengths are also determined to 

correlate their results with those of the tensile testing.  Results indicate that the four-

point bending and Brazilian tensile strengths with axial compression provide a linear 

transition with the triaxial extension test results.  This is because they are all under the 

condition where σ1 = σ2 > σ3.  Based on the Coulomb criterion, the biaxial flexural 

tensile strength correlates well with the conventional uniaxial and triaxial compressive 

strengths of the rocks.  The compressive and tensile strengths and cohesion obtained 

from the triaxial extension tests (σ1 = σ2) are greater than those from the triaxial 

compression tests (σ2 = σ3).  Both stress conditions give similar internal friction angle.  
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More important the results indicate that the Brazilian tensile strength can not correlate 

with the two stress conditions.  It is recommended that an extension of the Coulomb 

criterion into the tensile region should be correlated with the tensile strengths obtained 

from the biaxial flexural tensile strength test rather than the Brazilian tension test. 

2.6 Research on bending test 

 Zhang and Wong (2014) discuss the loading mechanisms associated with 

different loading rates in the bonded-particle model (BPM) and examine the 

numerical outputs under these different rates for use in which calibration against the 

results from Brazilian tensile tests.  The specimens in the numerical analysis of the 

Brazilian tensile tests are subjected to vertical loading applied at six different loading 

rates: 0.005, 0.01, 0.02, 0.08, 0.2 and 0.6 m/s.  The induced tensile stress (σt) is 

calculated as follows:  

 
Rt

F
t


  (2.8) 

where F is the compressive force acting on the platens, R and t are the radius and 

thickness of the Brazilian disk, respectively.  The peak value of the induced tensile 

stress is the Brazilian tensile strength of the test specimen.  The results from the 

Brazilian tensile tests indicate that the Brazilian tensile strength increases as the 

loading rate increases.  

 Agioutantis et al. (2015) study the potential of acoustic emissions from three 

point bending (TPB) tests as rock failure precursors.  A simply supported prismatic 

beam of rectangular cross section with span length (ls), width (b) and thickness (h), is 
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subjected to a concentrated and centrally applied force (P).  Assuming that the material 

behaves linearly elastic, this geometry and loading ensures a linear stress state in the 

center plane of the specimen.  According to this distribution, the expected failure mode 

is the splitting of the specimen in two halves across the plane of loading.  For elastic 

materials, the maximum tensile stress (max) is a measure of the tensile strength as 

follows: 

 
2

s

bh2

PI3
max   (2.9) 

 Assuming that the material fails in brittle mode after elastic loading, the 

maximum tensile stress at failure is a material property called bending tensile strength 

(t) following this equation: 

 
2

sf

bh2

IP3
t   (2.10) 

where Pf   is the fracture load. 

 Yokoyama (1988) derives a useful formulation for the stress-strain relation in a 

four-point bending test.  The analysis utilizes the experimental measurements of the 

axial load (P), the strains at the top and bottom of the beam and the geometry of the 

device and the beam.  This derivations lead to the following values of t and c, the 

maximum tensile stress and the maximum compressive stress along the beam (fiber 

stresses) 

   

t
2

ctct
t

dbh

ddM2dM




   

   

c
2

ctct
c

dbh

ddM2dM




  (2.11) 
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where M = 0.5P (Lt - Lc) is the beanding moment of the beam, Lt and Lc are the spacing 

of pairs of the loading point for the tensile side and for the compressive side, 

respesctively, t and c are the tensile and compressive strains measured at the top and 

bottom of the deformed beam,  respesctively (fiber strains), b is the beam width, h is 

the beam hight, dM, dt and dc are the increments of the moment and the strain during 

the experiment (the differentials between two consecutive steps in the experiment).  

 Obert and Duvall (1967) propose the solution for the maximum stress (max) 

values at the abutments for compression (bottom of beam) or tension (top of beam).  

The maximum beam defection () can be easily calculated using closed form beam 

equations as follows:  

 
T2

S2

max


   (2.12) 

 
2

4

ET32

S
  (2.13) 

where E is the Young's modulus of the rock,  is the specific weight, S is joint spacing 

and T is the thickness.  The maximum stress at the mid-span is one half of the maximum 

stress at the abutments.  Therefore, for such a beam with fixed ends and distributed 

loading, yield is assumed when the maximum tensile stress in the upper part of the beam 

at the abutments exceeds the tensile strength of the rock.  Vertical tensile fractures form 

at the abutments and the beam becomes simply supported (assuming no slip at the 

abutments) as shown in Figure 2.4(b) with a maximum tensile stress at the mid span 

given by 
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T3

S2 2

max


  (2.14) 

 This stress is higher than the previous abutment stress, and therefore higher than 

the rock tensile strength.  This leads to subsequent fracturing centered about the mid 

span as shown by Stimpson and Ahmed (1992).  Snyder (1983) considers a laminated 

rock beam an excavation with a horizontal span by the normal thickness of the single 

layer under analysis.  An elastic beam with no joints and with constant cross section, 

the compression distribution and tension symmetrical about the horizontal centreline of 

the beam is found across all plane sections within the beam.  as shown in Figure 2.4. 

 Bucky and Taborelli (1938) study the physical models of the creation and 

extension of wide roof spans.  They found that a vertical tension fracture induced at the 

center of the lower beam.  Increasing of the mined span produced a new central fracture, 

and closed the earlier fracture.  This suggested that the central fracture is the dominant 

transverse discontinuity in the roof bed. 

 Evans (1941) investigates the roof deformation mechanics at the Royal School 

of Mines.  This work established the notion of a ‘Voussoir beam’ spanning an 

excavation, using the analogy with the Voussoir arch considered in masonry structures.  

This study developed an analytical procedure for assessing roof beam stability, however 

an error in statics and failure to handle the basic indeterminacy of the problem limited 

its practical application. 
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Figure 2.4 Elastic beam with (a) fixed ends and (b) simple (pin) supports (Snyder, 

1983). 

 Sterling (1980) studies the deformation and failure modes of roof rock.  A rock 

beam of typical dimensions 660 mm × 75 mm × 75 mm was constrained between steel 

end plates linked by strain-gauged tie rods.  The beam was loaded transversely by a 

servo controlled testing machine and a load spreading system.  The experiment design 

provided data on applied transverse load, induced beam deflection, induced lateral 

thrust, and eccentricity of the lateral thrust.  

 Lorig and Brady (1983) describe application of a linked boundary element–

distinct element (b.e.–d.e.) computational scheme to analysis of roof deformation 

mechanics.  The key results of the analysis are indicated.  Slip is observed over the 

abutments of the excavation, the immediate roof bed detaches from the overlying strata, 

and tension cracks open in the center of the roof span.  The distributions of normal 

stress and shear stress in the roof bed were generally consistent with the Voussoir beam 

model proposed. 

 Exadaktylos et al. (2001) study elastic theory and Voussoir beam analogy.  The 

strain distribution in each section is assumed to be triangular (Figure 2.5(a)), with a  
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Figure 2.5 Variation of the stresses along the height of a beam (Exadaktylos et al., 

2001). 

symmetrical distribution of compression and tensile stresses about the horizontal 

midline.  But there are studies that refute the hypothesis of a symmetrical distribution 

of compression and tensile stresses.  In this case, the distribution of stresses adopts a 

form similar to that depicted in Figure 2.5(b), where the tensile strength of the rock is 

approximately 10% of its compressive strength.  In this work, a non-linear failure 

criterion for rock mass is proposed, based on the double theory of elasticity, and from 

it the determination of the maximum span that can support the tensile stresses through 

the roof.  Besides, the behavior of the roof when the tensile stresses increase the tensile 

strength is analyzed.  The method is applied on two real examples: Kampanzar Quarry 

situated in the municipality of Arrasate in Gipuzkoa (Spain) and Calzada Quarry 

situated in Villamartı´n de Vadeorras in Orense (Spain).  The numerical results have 

been compared with those ones obtained from the Stephansson formulation, and the 

behavior after failure is compared with the compression arch assumed by the Voussoir 

beam analogy 
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2.7 Roof strata stability analysis 

 Shabanimshcool and Li (2015) present two analytical approaches for studying 

the stability of Voussoir beams by taking into account the horizontal loading condition 

of the beams: with and without horizontal in-situ stresses.  For beams without being 

subjected to horizontal stresses, a bilinear truss represents the compression arch formed 

in the Voussoir beam.  The stability of the compression arch is analyzed by the energy 

method.  An iteration algorithm was proposed for the solution.  The results of the 

approach are verified with UDEC simulations as well as experimental results.  For beam 

is subjected to horizontal in-situ stresses, the classic beam theory was employed to 

study their behavior.   

 The assumptions for the analytical approaches are verified by numerical 

simulations.  The study shows that increasing of the Young's modulus improves the 

stability of the beams against buckling.  However, it elevates the stresses in the 

horizontal direction within the compression arch, which may result in crushing failure 

in the beam abutments and the mid-span.  Low horizontal in-situ stress reduces the risk 

of beam buckling but increases the risk of sliding at the abutments.  However, high 

horizontal in-situ stress may cause either beam buckling or crushing failure in the 

abutments.  The developed analytical approaches would be applicable for roof stability 

analysis in stratified rocks. 

 Yan et al. (2016) suggest that bedding separation in roof strata (BSRS) 

overlying roadways within thick coal seams (RTCS) is an important factor leading to 

surrounding instability in underground coal mines, and especially to roof failures such 

as convergence, and even caving-in.  In this research, the theoretical analysis is 

combined with the test results to predict the locations which BSRS occurred.  Based on 
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standard monitoring methods widely used in exploring roof behavior in underground 

coal roadways, a typical roadway excavated within 12.87 m, in an average thickness 

coal seam, in Jinggonger coal mine, Pingshuo Coalfield, Shanxi province, China, that 

was chosen to explore the mechanism underpinning BSRS, and a set of monitoring 

designs, mainly including five groups of stations and 16 instruments, is determined and 

applied to this research.  Results showed that the predicted locations of BSRS overlying 

RTCS were in accordance with field monitoring results.  This proved the validity of the 

theoretical model.  Besides, the working face played an important role in BSRS and 

75% of the BSRS events were generated within the 50 m between the monitoring station 

and the working face.  When the distance was decreased to 5 m, the BSRS was up to 

90.9 mm and 86 mm at depths of 6.8 m and 3.8 m, respectively.  Meanwhile, three 

stages were considered, step-by-step, as opposed to mining activity dependent upon the 

extent of its influence on BSRS: a pink value (indicative of an alarm status) prevailed 

during the third stage. 

 Hatzor and Benary (1998) found that the normal stress increases with increasing 

beam span and decreases with increasing beam thickness.  The calculated results, 

however, are only valid for a beam consisting of a single layer.  Their cases are shown 

in the heavy line in Figure 2.6 for a beam span of 7 m.  The value of n obtained for an 

individual layer thickness of 0.25 m, is 2.45 MPa.  For a single layer beam with 

thickness of 2.5 m, n is 0.244 MPa.  The average of bed thickness is 0.5 m.  Assuming 

that each bed transmits axial thrust independently from the neighboring layers above 

and below, n within a single layer should be 1.22 MPa.  These values are significantly 

lower than the unconfined compressive strength of the rock which is about 7 MPa.  The 

beam should be considered safe against failure by local crushing at hinge zones. 
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Figure 2.6 The relationship between maximum horizontal compressive stress in 

beam and beam thickness for various roof span values (B).  The case of 

they are (B =7 m) shown using bold line (Hatzor and Benary, 1998). 

 Yeung and Goodman (1995) study the effect of friction angle on various rock 

bolting schemes in rock mass.  A block fracturing algorithm is implemented in 

discontinuous deformation analysis (DDA) using a three parameter Mohr-Coulomb 

criterion (cohesion, friction and tensile strength) where fracturing can be either in shear 

or in tension.  Furthermore, a sub-blocking capability was which allows better analysis 

of stress and strain distributions within otherwise simply deformable DDA blocks.  

Validation of DDA using real case studies, however, has rarely been attempted.  The 

study indicates that can be qualitatively rationalized as follows: with increasing joint 

spacing the moment arm length in individual blocks increases and the arching 

mechanism by which axial thrust is transmitted through the blocks to the abutments is 

enhanced.  However, above a limiting value of block length, found here to be 

represented by a layer consisting of four blocks, the weight of the overlying blocks 
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becomes more dominant, and the stabilizing effect of greater axial thrust is weakened 

by the destabilizing effect of dead load transfer from the weight of overlying blocks.  

Finally, when a single layer consists of a single block which is not clamped at the ends 

arching deformation is unlikely, due to the relatively high stiff-ness of individual layers. 

 Yang et al. (2013) use the finite difference method to model tunnel excavation 

construction in stratified rock mass.  To demonstrate the sensitivity of stratified rock 

mass structure on numerical modeling results, the influence of the side-pressure 

coefficient K on stratified rock mass stability is explored in there research.  Moreover, 

displacement distribution and stress are studied as well. 

 Agapito and Gilbride (2002) present case histories illustrating the practical 

usage of roof stress determination for help assess stability, not only in case of high 

horizontal stresses but also of low stresses.  They are concludes with a comparative 

evaluation on the effect of various stress fields on ground support requirements. 

 Maleki and Owens (1998) study the mechanics of strata deformation as 

influenced by geologic conditions, pillar extraction methods, and MRS load-bearing 

capabilities.  To provide a better understanding of the mechanics of strata deformation, 

the authors have collected and reviewed measurements of convergence and stress in 

one western U.S. mine and have completed pseudo-three-dimensional, boundary-

element modeling for two typical pillar-pulling plans.  Stress distribution in the mine 

roof above pairs of MRS’s was calculated to demonstrate how MRS’s contributed to 

the control of roof block movements. 

 Shen and Zhang (2016) suggest that the tunnel and stratum deformation are big 

when the thickness of the weathered sandstone above tunnel is thin, and surrounding 

rock before tunnel face has produced a certain deformation after tunnel excavation.  The 
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position of the maximum horizontal displacement is related to the interface position 

above the tunnel.  When the interface is close to the tunnel vault, the position occurs in 

the interface location rather than the arch waist, and the surface settlement trough is 

deeper.  At the same time, the actual deformation of the vault settlement can be 

calculated by the monitoring data and the numerical calculation results.  In order to 

ensure the safety of the tunnel construction, series of auxiliary measures are adopted in 

this project.  These research result can provide reference to the similar engineering. 

 



CHAPTER III 

SAMPLE PREPARATION 

3.1 Introduction 

 This chapter describes the procedure and methods for rock specimen 

preparation in the laboratory.  The rock specimens used in this study are Phu Phan 

sandstone which exposed in the northeast of Thailand.  A total of 36 specimens has 

been prepared for fractures made by saw-cut surface.  A total of 4 specimens are 

prepared for tension-induced fractures. 

3.2 Sample preparation 

 3.2.1 Direct shear test 

 The Phu Phan sandstone are prepared to obtain rectangular block 

specimens with nominal dimensions of 100×90×150 mm3.  The fractures are artificially 

made in the laboratory by saw-cut methods with nominal area of 100×90 mm2 (Figure 

3.1).  A total of 2 specimens are made. 

 3.2.2 Three-point bending test 

3.2.2.1 Saw-cut surface 

  The specimens used for the three-point bending tests are prepared as 

rectangular blocks with nominal dimensions of 50 mm thickness (t), 50 width (w) and 

200 mm length (L).  This study makes artificial joints out of saw-cut surfaces using a 

universal masonry saw (Husqvarna TS 400 F).  This saw has a 400-mm diameter blade 

with a constant rotational speed of 2800 rpm.  Water is used as cutting fluid.
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Figure 3.1 Examples of smooth surface prepared in Phu Phan sandstone. 

The saw base has two mutually perpendicular guide rails to provide a precise cutting 

angle and intervals.  Large blocks of the rock specimens are cut into thin slabs to obtain 

a predefined thickness (Figure 3.2).  The t/L ratios obtained here are 0.25, 0.13, 0.08, 

0.06 and 0.05 (mm/mm).  The joint frequencies are 0 (intact rock), 41, 61, 81 and 101 

(joint/m) (Table 3.1).  Total of 36 rock samples are prepared here.  

 

Figure 3.2 Sample specimens for three point bending test. 
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Table 3.1 Rock sample dimensions with various t/L ratios. 

Samples 
Thickness (t) 

mm 

Length (L) 

mm 

t/L 

ratios 

Joint 

frequencies 

(joints/m) 

Intact rock 

 

50.0 

200 

0.25 0 

2 layers 

 

25.0 0.13 41 

3 layers 

 

17.0 0.08 61 

4 layers 

 

12.5 0.06 81 

5 layers 

 

10.0 0.05 101 

3.2.2.2 Roughness surface 

The fractures are artificially made in the laboratory by tension inducing 

method for 5050200 mm prismatic blocks by line-loading to induce tensile fracture 

in the mid-length of the block.  Their roughness is observed and classified by 

comparing with a reference profiles given by Barton (joint roughness coefficient-JRC, 

Barton, 1973).  Figure 3.3 shows the joint roughness of the rock samples. 

3.2.3 Strain gage installation 

A strain gage (TML, PFL-20-11-1L, 20 mm) is installed to measure 

tensile strains at the center of the specimen in horizontal and the main axis of the 
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specimen which is parallel to the bedding planes (Figure 3.4). Gage length used here is 

20 mm. Gage factor is 2.13±1%. 

 

 

Figure 3.3 Joint roughness of rock samples (JRC = 10). 

 

Figure 3.4 Examples of prismatic specimens with strain gage position. 



CHAPTER IV 

LABORATORY TESTING AND RESULTS 

4.1 Introduction 

 The objective of this chapter is to describe the test methods and results of the 

direct shear and bending tensile strength tests.  The results have been used to determine 

the effects of thickness and loading rates on the tensile strengths of the Phu Phan 

sandstone specimens.  All proposed testing procedures and equipment are also 

described. 

4.2 Direct shear tests 

 The direct shear tests are performed to determine the maximum shear stress of 

Phu Phan sandstone.  Laboratory arrangement for the direct shear test equipment is 

shown in Figure 4.1.  The constant normal stresses used are 1, 2, 3 and 4 MPa for the 

smooth surfaces and the smooth-slip surfaces.  Vaseline is used to make smooth-slip 

surfaces to assess the effect of friction on the results.  The rates of shear displacement 

are maintained constant at 0.01-0.02 mm/s.  The maximum shear displacement is 5 mm.  

The test method and calculation follow as much as practical the ASTM (D5607-08) 

standard practice.  The failure modes are recorded.  The test results are presented in the 

forms of the shear strength as a function of normal stress 
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Figure 4.1 The direct shear machine model EL-77-1030 for direct shear tests. 

4.3  Three-point bending test 

The test configurations for the three-point bending test follow the ASTM (C293-

02) standard practice.  Figure 4.2 shows the loading positions for the upper and lower 

bearing plates.  A data logger (TC-32K) connected with the switching box (Type B-

2760) is used to monitor the induced tensile strains from the strain gage installed across 

the incipient crack (Figure 4.3).  The loads are applied with constant rates from 0.009 

N/s to 9 N/s, which are equivalent to the induced tensile stress rates at the center of the 

specimen from 210-5 to 210-2 MPa/s.  The specimen deflections are monitored by 

dial gage with high precision (±0.01 mm) which placed in vertical at the center of 

specimen.  The load is applied until failure occurs.  The induced tensile stress can be 

calculated by: 

 t =3PL /2bd2 (4.1) 
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where t is tensile stresses, P is applied load, L is support span (150 mm), b is specimen 

width (50 mm), and d is specimen thickness (50 mm).  The tensile stress is defined here 

as positive values for a convenience of presentation. 

 

Figure 4.2  Schematic of a three-point beam bending test method (ASTM (C293–02)). 

 

Figure 4.3 Three-point bending test arrangement. 
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4.4 Test results 

4.4.1 Direct shear test results 

 The shear stresses are calculated and presented as a function of shear 

displacement for each constant normal stress.  Figure 4.4 shows shear stress-

displacement curves under 1 MPa (minimum) to 4 MPa (maximum) normal stresses.  

The joint shear stiffness (Ks) is calculated from the linear slope of the shear stress-

displacement curves (Figure 4.4).  The joint shear stiffness (Ks) of the smooth and 

smooth-slip surface is 1,300 MPa/m and 100 MPa/m, respectively.  The direct shear 

test results are presented in the form of the Coulomb’s criterion.  The line tangent to 

each of these circles defines the Coulomb’s criterion and can be expressed by: 

    =   c + ntan (4.2) 

 

Figure 4.4  Shear stresses of Phu Phan sandstone as a function of shear displacement 

for smooth surface and smooth-slip surface. 
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where  and n are the shear stress and normal stress,  is the friction angle and c is 

cohesion.  Figure 4.5 shows the peak shear stresses of the Phu Phan sandstones as a 

function of normal stress. The friction angle of the smooth and smooth-slip surface () 

are 25 and 24 and the cohesions are 0.13 and 0.09 MPa, respectively. The cohesion, 

friction angle and Ks of all specimens are summarized in Table 4.1. Note that 

application of vaseline on the smooth saw-cut surface slightly reduces the frictional 

resistance of the surface. 

 

Figure 4.5 Peak shear stresses as a function of normal stress. 
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Table 4.1 Summary of test results of smooth surface and smooth-slip surface.  

n 

(MPa) 

Smooth surface Smooth-slip surface 

peak  

(MPa) 

 

(Degree) 

c 

(MPa) 

Ks 

(MPa/m) 

peak 

(MPa) 

    

(Degree) 

c 

(MPa) 

Ks 

(MPa/m) 

1 0.46 

25 0.13 1,300 

0.51 

24 0.09 100 
2 0.95 0.98 

3 1.47 1.41 

4 1.82 1.82 

 

 4.4.2  Three point bending test results 

 Table 4.2 shows some post-test specimens from the three-point bending 

test under the t/L ratios of 0.25, 0.13, 0.08, 0.06 and 0.05 (mm/mm) with loading rates 

of 0.001, 0.01, 0.1 and 1 MPa/m.  The results show that the fractures occur at the center 

of specimen for all testing this is because this point is under maximum tensile stresses.  

From observation during testing it is found that the fracture sudden failure from lowest 

slab to the upper ones.  There is no shear stress observed between the rough surfaces of 

slab.  This probably because there is not movement between the rough surfaces of slab. 

The tensile stress-strains curves for various rates of 0.001 to 1 MPa/m can be 

plotted from the test results, as shown in Figures 4.6 through 4.9.  The stress-strain and 

stress-deflection relations are nonlinear, particularly under the low loading rates.  

Higher loading rates applied result in higher stresses and lower strains at failure.  It is 

obvious that the specimens with high t/L ratio (0.25) show higher tensile strengths at 

failure than those with lower t/L ratio (0.05) due to the effect of the joint spacing of the 

specimens.  Under the same t/L ratio the smooth surfaces show higher tensile strengths 

and lower tensile strains at failure than those with smooth-slip surfaces because effect 
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the properties for joint spacing.  This holds true for all loading rates.  Higher loading 

rates yield higher tensile strengths.  

Figure 4.10 shows the failure which most occurs in the lowest slab for the three-

point bending test due to it is under maximum tensile stresses.  The crack always 

appears bottom slab.  Figures 4.11 through 4.14 show the tensile stress-deflections for 

various rates of 0.001 to 1 MPa/m.  The higher deflection occurs for lower rate.  It is 

found that the specimens with lower t/L ratio (0.05) and lower rate (0.001 MPa/m) show 

higher deflections at failure than those with high t/L ratio (0.25).  Tables 4.2 and 4.3 

summarize the tensile strengths, strains and deflections of three-point bending test on 

the intact rock, tension-induced fractures, smooth and smooth-slip surface, 

respectively.   
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Table 4.2 Some post-test specimens from three point bending testing. 

t/L 

ratios 

 Surface  

conditions 

Loading rate (MPa/min) 

1 0.1 0.01 0.001 

0.25 
Intact 

rock     

0.13 

Roughness     

Smooth 
    

Smooth-

Slip     

0.08 

Smooth 
    

Smooth-

Slip     

0.06 

Smooth 
    

Smooth-

Slip     

0.05 

Smooth 
    

Smooth-

Slip     
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Figure 4.6 Tensile stress-strain curves for loading rate of 1 MPa/min. 

 

Figure 4.7 Tensile stress-strain curves for loading rate of 0.1 MPa/min. 
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Figure 4.8 Tensile stress-strain curves for loading rate of 0.01 MPa/min. 

 

Figure 4.9 Tensile stress-strain curves for loading rate of 0.001 MPa/min. 
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Figure 4.10 Failure most occur in the lowest slab on three-point bending test. 

 

 

Figure 4.11 Tensile stress-deflection curves for loading rate of 1 MPa/min. 
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Figure 4.12 Tensile stress-deflection curves for loading rate of 0.1 MPa/min. 

 

Figure 4.13 Tensile stress-deflection curves for loading rate of 0.01 MPa/min. 
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Figure 4.14 Tensile stress-deflection curves for loading rate of 0.001 MPa/min. 

Table 4.3 Test results of three-point bending test on intact rock (t/L=0.25) and 

tension-induced fractures (t/L=0.13). 

Loading rate 

(MPa/min) 

t/L 

ratios 

t 

(MPa) 



(milli-strains)

Deflections 

(mm) 

1 

0.25 

19.36 0.29 0.22 

0.1 17.05 0.39 0.32 

0.01 14.37 0.59 0.41 

0.001 11.03 0.87 0.45 

1 

0.13 

14.90 0.33 0.29 

0.1 14.20 0.44 0.39 

0.01 12.74 0.62 0.51 

0.001 11.82 0.94 0.61 
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Table 4.4 Test results of three-point bending test on smooth and smooth-slip surface. 

Loading 

rate 

(MPa/min) 

t/L 

ratios 

Smooth surface Smooth-slip surface 

t 

(MPa) 

 

(10-3) 

Deflections 

(mm) 
t 

(MPa) 

 

(10-3) 

Deflections 

(mm) 

1 

0.13 8.90 0.38 0.56 6.31 0.87 0.70 

0.08 7.51 0.58 0.74 4.07 0.98 0.90 

0.06 4.64 0.70 0.94 3.14 1.30 1.12 

0.05 2.08 1.00 1.31 1.78 1.49 1.47 

0.1 

0.13 8.08 0.58 0.68 5.05 1.12 0.98 

0.08 5.77 0.75 0.84 3.82 1.25 1.25 

0.06 3.34 0.89 1.10 2.97 1.58 1.47 

0.05 1.93 1.21 1.39 1.59 1.87 1.79 

0.01 

0.13 7.23 0.75 0.72 3.99 1.30 1.12 

0.08 4.29 0.98 0.92 3.22 1.65 1.45 

0.06 2.46 1.12 1.24 2.29 1.98 1.84 

0.05 1.65 1.44 1.46 1.35 2.46 2.35 

0.001 

0.13 5.36 1.04 0.81 3.55 1.60 1.51 

0.08 2.78 1.25 0.98 2.54 2.28 1.87 

0.06 1.83 1.46 1.31 2.03 2.89 2.45 

0.05 1.35 1.66 1.51 1.47 3.31 2.98 

 



CHAPTER V 

ANALYSIS OF TEST RESULTS 

5.1 Introduction 

The purpose of this chapter is to determine the effect of loading rates and t/L 

ratios on the tensile elastic and strength parameters of the specimens. This is to gain an 

understanding of the behavior of the roof strata immediately above the openings.  The 

strain energy density criterion is also applied here to describe both rock strength and 

deformation.  The results obtained from the smooth surface, smooth-slip surface and 

roughness surface specimens are compared. 

5.2 Tensile strength criterion 

 The tensile strengths (t,f) are plotted as a function of t/L ratios in Figure 5.1. 

The tensile strengths under different  t/L ratios for both smooth and smooth slip surfaces 

can be represented by a power equation (Figure 5.1): 

 t,f = (t/L)  (5.1) 

where and are empirical constants.  Their numerical values are given in Figure 5.1. 

Regressions analysis by using SPSS software is performed to determine the above 

empirical constants from the test data.  Figure 5.1 compares the test data with the 

predictions from Eq. (5.1).  Good correlations are obtained (R2 > 0.9).  Note that the 

exponent for the smooth and smooth-slip surfaces tend to be independent of stress rate. 
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Figure 5.1 Tensile strengths (t, f) as a function of various t/L ratios under various of 

loading rates for smooth surface (a) and smooth-slip surface (b). 
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The multiplier  decreases with the stress rate (R), which can be described by 

a logarithmic equation (Figure 5.2): 

 =  ln(R) +  (5.2) 

where and are empirical constants.  Substituting Eq. (5.2) into (5.1) the tensile 

strength under different stress rates and t/L ratios can be represented by: 

 t,f = [ln(R) + ](t/L) (5.3) 

The constant is equals to 6 MPa for the smooth surfaces, and 10 MPa for the smooth-

slip surfaces.  The constants and are 117 and1.3MPa, respectively. 

 

Figure 5.2 Constant as a function of stress rate (R). 
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 The tensile strengths are plotted as a function of joint frequencies (J.F joints/m), 

as shown in Figure 5.3.  They can be represented by an exponential equation (Figure 

5.3): 

 t,f = e(J.F) (5.4) 

where and are empirical constants.  Regressions analysis is performed to 

determine these constants from the test data.  Figure 5.3 shows the predicted tensile 

strengths under various loading rates. Good correlations are obtained (R2 > 0.9).  The 

constant for smooth and smooth-slip surfaces tends to be independent of the stress 

rates, which equals to 0.022 MPa. 

The constant  represents the tensile strengths at failure when the constant  is 

zero.  It can be described by a logarithmic equation (Figure 5.4): 

=  ln(R) +  (5.5) 

where and are empirical constants. Substituting Eqs. (5.5) into (5.4) the tensile 

strength under different stress rates (R) and joint frequencies (joints/m) can be 

obtained, as follows: 

 t,f = (ln(R) + )(e(J.F)) (5.6) 

The and  equal to 1.04 and 21.13 MPa for the smooth surfaces, and 1.23 and 18.1 

MPa for smooth-slip surfaces.  
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Figure 5.3 Tensile strengths (t, f) as a function for joint frequencies under various of 

loading rates for smooth surface (a) and smooth-slip surface (b). 
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5.3 Tensile elastic modulus 

 The tensile elastic moduli of the specimens are determined from the tangent of 

the stress-strain curves at about 50% of the failure stress.  In this study, assuming that 

the sandstone specimen is isotropic, and that the point where the crack is induced is 

under uniaxial stress condition, the elastic modulus (E) can be calculated from the slope 

of linear relation of the curves.  The calculated elastic modulus tends to be dependent 

of the t/L ratios and loading rates, as shown in Figure 5.5.  The results indicate that the 

elastic moduli increase with increasing t/L ratios and loading rate.  This is true for both 

surface conditions.  The results obtained from tension-induced fractures show the 

higher elastic modulus than those of the smooth and smooth-slip surfaces.  This is 

probably due to the difference of the friction at the interfaces.  The intact rock specimen 

shows the highest elastic moduli.  The increase of the elastic modulus with the loading 

rates (̇) can be represented by: 

 Et = Aln(̇) + B (5.7) 

where A and B are empirical constants which can be obtained from the regression 

analysis, as shown as Table 5.1. 
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Figure 5.4 Constant as a funtion of stress rate (R). 

 Figure 5.5 shows that the elastic moduli are sensitive to the loading rates, 

particularly where t/L ratios are greater than 0.05.  This agrees with the test results 

obtained from Shabanimshcool and Li (2015) who find that the Young’s modulus of 

rock beam increases with the beam thickness.  The loading rates have smaller effect on 

the elastic modulus when t/L ratio sare less than 0.08.  This maybe because there are 

more free surfaces, and hence the specimens can deform more easily. 

The constants A and B with different t/L ratios can be described by a logarithmic 

equation: 

 A= ln(t/L) +   (5.8) 

 B = ln(t/L) +   (5.9) 
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Figure 5.5 Elastic modulus as a function of loading rate (̇) and t/L ratios. 

Table 5.1 Empirical constants A and B. 

Et = Aln(̇) + B 

t/L ratios surface conditions A B R2 

0.25 Intact rock 1.69 24.13 0.99 

0.13 tension-induced fractures 1.83 21.85 0.98 

0.13 
smooth 2.03 19.06 1 

smooth-slip 0.72 6.72 0.93 

0.08 
smooth 1.53 12.09 0.96 

smooth-slip 0.45 4.11 1 

0.06 
smooth 0.77 6.11 0.94 

smooth-slip 0.26 2.42 0.99 

0.05 
smooth 0.18 2.04 0.99 

smooth-slip 0.11 1.14 0.95 
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where  and  are empirical constants for the smooth surfaces.  They equals to 

1.89, 6.04, 17.69 and 55.70 MPa, and for the smooth-slip surfaces equal to 0.63, 2.02, 

5.78 and 18.59 MPa.  Good correlations are obtained (R2>0.9) 

Substituting Eqs. (5.8) and (5.9) into Eq. (5.7) the elastic moduli (Et) as a 

function of t/L ratios for the smooth and smooth-slip surfaces can be obtained, as shown 

in Figure 5.6.  

 Et = [ (t/L) + ln(R) + [ln(t/L) + ]  (5.10) 

where and are empirical constants.  For the smooth surface they equals to 

1.89, 6.04, 17.69 and 55.70 MPa, and for the smooth-slip surfaces, equal to 0.63, 2.02, 

5.78 and 18.59 MPa.  Good correlations are obtained (R2>0.90).  Table 5.2 summarizes 

the elastic moduli, loading rate, and t/L ratios for different tested surfaces.   

5.4 Strain energy density criterion 

The strain energy density principle is applied here to describe the rock strength 

and deformability under different t/L ratios and loading rates.  The strain energy at 

failure (W) can be calculated from the tensile strength and elastic modulus for each rock 

specimen using the following equation (Jaeger, et al., 2007): 

 W = 1/2( t,ft,f)   (5.11) 

where  t,f  is the maximum tensile strain, and t,f is the tensile strength. 
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Figure 5.6 Constant  andas a function of the t/L ratios. 
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Table 5.2 Elastic moduli, loading rate and t/L ratios for different friction conditions. 

t/L ratios Conditions (̇) (MPa/min) Et (GPa) 

0.25 Intact rock 

1 24.30 

0.1 20.13 

0.01 16.16 

0.001 12.67 

0.13 Roughness surface 

1 14.96 
0.1 14.20 

0.01 12.74 

0.001 11.82 

0.13 

Smooth surface 

1 19.30 

0.1 14.01 

0.01 9.71 

0.001 5.14 

Smooth-slip surface 

1 7.22 

0.1 4.51 

0.01 3.08 

0.001 2.22 

0.08 

Smooth surface 

1 12.89 

0.1 7.70 

0.01 4.36 

0.001 2.23 

Smooth-slip surface 

1 4.16 

0.1 3.07 

0.01 1.96 

0.001 1.12 

0.06 

Smooth surface 

1 6.63 

0.1 3.74 

0.01 2.19 

0.001 1.26 

Smooth-slip surface 

1 2.42 

0.1 1.88 

0.01 1.16 

0.001 0.70 

0.05 

Smooth surface 

1 2.07 

0.1 1.60 

0.01 1.15 

0.001 0.81 

Smooth-slip surface 

1 1.20 

0.1 0.85 

0.01 0.55 

0.001 0.44 
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   Table 5.3 summarizes the tensile strengths, maximum strains and total strain 

energy density for all specimens.   From Figure 5.7, it can be concluded that the 

maximum strain energy density at which the tensile failure occurs tends to be constant 

regardless the t/L ratios, loading rates and surface conditions.   

Table 5.3 Tensile strengths, maximum strains and total strain energy density for all 

specimens. 

t/L  

ratios 
Conditions 

Loading rate 

(MPa/min) 
t,f

(MPa)

t,f

(milli-strains)

W 

(kPa) 

0.25 Intact rock 

1 19.4 0.3 2.32 

0.1 17.1 0.4 2.42 

0.01 14.4 0.6 2.39 

0.001 11.0 0.9 2.33 

Average ± SD 2.37 ± 0.05 

0.13 
Roughness 

surface 

1 14.90 0.33 2.41 

0.1 14.20 0.44 2.38 

0.01 12.74 0.62 2.38 

0.001 11.82 0.94 2.3 

Average ± SD 2.37 ± 0.05 

0.13 

Smooth 

surface 

1 8.90 0.38 2.38 

0.1 8.08 0.58 2.37 

0.01 7.23 0.75 2.36 

0.001 5.36 1.04 2.35 

Smooth-slip 

surface 

1 6.31 0.87 2.36 

0.1 5.05 1.12 2.36 

0.01 3.99 1.30 2.35 

0.001 3.55 1.60 2.35 

Average ± SD 2.36 ± 0.06 
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Table 5.3 Tensile strengths and maximum strains, total strain energy density for all 

specimens (cont.). 

t/L  

ratios 
Conditions 

Loading rate 

(MPa/min) 
t,f

(MPa)

t,f

(milli-strains)

W  

(kPa) 

0.08 

Smooth surface 

1 7.51 0.58 2.41 

0.1 5.77 0.75 2.39 

0.01 4.29 0.98 2.30 

0.001 2.78 1.25 2.24 

Smooth-slip 

surface 

1 4.07 0.98 2.28 

0.1 3.82 1.25 2.28 

0.01 3.22 1.65 2.27 

0.001 2.54 2.28 2.28 

Average ± SD 2.31 ± 0.06 

0.06 

Smooth surface 

1 4.64 0.70 2.40 

0.1 3.34 0.89 2.38 

0.01 2.46 1.12 2.30 

0.001 1.83 1.46 2.24 

Smooth-slip 

surface 

1 3.14 1.30 2.35 

0.1 2.97 1.58 2.29 

0.01 2.29 1.98 2.26 

0.001 2.03 2.89 2.25 

Average ± SD 2.31 ±0.06 

0.05 

Smooth surface 

1 2.08 1.00 2.40 

0.1 1.93 1.21 2.38 

0.01 1.65 1.44 2.29 

0.001 1.35 1.66 2.24 

Smooth-slip 

surface 

1 1.78 1.49 2.34 

0.1 1.59 1.87 2.28 

0.01 1.35 2.46 2.25 

0.001 1.47 3.31 2.25 

Average ± SD 2.30 ± 0.06 
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Figure 5.7 Strain energy density as a function of loading rate for different surfaces. 

5.5  Numerical analysis  

5.5.1 Rock properties for computer modeling 

 Before performing the computer analysis, physical and mechanical 

properties of rock samples are specified in the calculation.  The major and significant 

constants in the models are friction angle, cohesion, normal stiffness and shear stiffness 

of the discontinuities.  They are obtained from the direct shear test (in Chapter IV).  The 

discrete element models are constructed to represent various samples and joint spacing 

as used in the laboratory testing.  They are obtained from the shear testing.  All 

computer simulations assume plane stress condition.  The corner rounding and the 

minimum edge length are taken here as 0.001% and 0.002% because the tested Phu 
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Phan sandstone blocks is rectangular blocks with sharp corners and flat surfaces.  Table 

5.4 gives summary of the parameters used in numerical simulation. 

5.5.2  Numerical Analysis of t/L ratios effects under different surface 

conditions 

The mesh model are shown in Figure 5.8. The model widths is 20 cm.  

The overall thickness is 5 cm.  The applying load (P) of 1 N.  UDEC is used in the 

stratified rock specimens to determine the tensile stresses (Figure 5.9), tensile strains 

(Figure 5.10) and deflections (Figure 5.11) for t/L ratios from 0.25, 0.13, 0.08, 0.06, 

and 0.05 at the crack initiation point.  Figures 5.12 to 5.14 shown the numerical results 

indicate that the surface condition have however slightly effect on tensile strengths 

(t,1N), tensile strains (t,1N.) and deflections () where t/L ratios less than 0.13. 

Table 5.4 Summary of the basic joint properties. 

Basic the joint 

properties 

Smooth 

surface 

Smooth-slip 

surface 

Tension-

induced 

fractures 

Source 

Friction angle 

(Degrees) 
25 24 45 

This study, 

Chokchai (2013) 

Cohesion (MPa) 0.13 0.09 0.17 
This study, 

Chokchai (2013) 

Joint Normal 

stiffness (GPa/m) 
10 10 6.94 

Suanprom 

(2009) 

Joint shear 

stiffness (MPa/m) 
1,300 100 9.45 

This study, 

Suanprom 

(2009) 

Density (g/cc) 2,270 2,270 2,270 This study 

Elastic modulus 

(Et) (GPa) 
6.73 6.73 6.73 

Klanphumeesri 

(2010) 

Poisson’s ratio () 0.05 0.05 0.05 
Klanphumeesri 

(2010) 
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Figure 5.8 Mesh model. 
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Figure 5.9 Stresses in the model simulation. 
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Figure 5.10 Strains in the model simulation. 
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Figure 5.11 Deflections in the model simulation. 
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Figure 5.12 Effect tensile stresses under smooth and smooth-slip surface. 

 

Figure 5.13 Effect tensile strains under smooth and smooth-slip surface. 
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Figure 5.14 Effect deflections under smooth and smooth-slip surface. 

5.5.3 Modelling results 

The rock block model uses a density of 2,270 kg/m3.  The normal joint 

stiffness values (Kn) is 10 GPa/m.  Figure 5.15 shows the tensile stresses as a function 

of cohesion, the applying load 1 N (Figure 5.15(a)) and 10,000 N (Figure 5.15(b)).  The 

results indicate that under same t/L ratios the specimen tensile stresses are independent 

of the cohesion and Figure 5.16(a) and Figure 5.16(b) the tensile stresses are 

independent of the friction angle.  

Figure 5.17(a) shows the tensile stresses as a function of joint shear 

stiffness. The joint shear stiffness (Ks) effects become insignificant when its values are 

below 100 MPa/m. When Ks exceeds 5,000 MPa/m, the stresses of the specimens 

approach that of the intact specimen regardless the number of layers.  The applying load 
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10,000 N.  The joint shear stiffness (Ks) effects become significant when stratified rock 

specimens as show as Figure 5.17(b).  The joint shear stiffness is however the main 

factor governing the stresses, strains and deflections of the specimens. This holds true 

for all specimens even with different numbers of rock layers in Table 5.5. 
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Figure 5.15 Tensile stresses as a function of cohesion. 
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Figure 5.16 Tensile stresses as a function of friction angle. 
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Figure 5.17 Tensile stresses as a function of joint shear stiffness. 
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Table 5.5 Summary of model results for joint shear stiffness conditions. 

t/L ratios 
Ks 

(MPa/m) 

t 

(MPa) 

t 

(10-2) 


(mm) 

0.05 

1 4.782 1.10 3.609 

10 4.683 1.08 3.52 

50 4.324 1.00 3.189 

100 4.026 0.93 2.92 

500 2.786 0.64 1.908 

1000 2.235 0.52 1.512 

5000 1.346 0.31 0.7794 

10000 1.17 0.27 0.5979 

0.06 

1 3.886 0.89 2.487 

10 3.8 0.87 2.43 

50 3.546 0.82 2.242 

100 3.287 0.76 2.055 

500 2.285 0.53 1.39 

1000 1.799 0.42 1.111 

5000 1.236 0.28 0.6423 

10000 1.126 0.26 0.516 

0.08 

1 2.867 0.66 1.494 

10 2.814 0.65 1.463 

50 2.626 0.60 1.363 

100 2.451 0.56 1.269 

500 1.783 0.41 0.9452 

1000 1.509 0.35 0.7893 

5000 1.131 0.26 0.5181 

10000 1.017 0.23 0.4427 
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Table 5.5 Summary of model results for joint shear stiffness conditions. (cont.) 

t/L ratios 
Ks 

(MPa/m) 

t 

(MPa) 

t 

(10-2) 


(mm) 

0.13 

1 1.838 0.42 0.7378 

10 1.814 0.42 0.7299 

50 1.728 0.40 0.702 

100 1.648 0.38 0.6764 

500 1.301 0.30 0.555 

1000 1.199 0.27 0.494 

5000 0.9748 0.23 0.38 

10000 0.9065 0.21 0.207 

0.25 

1 0.8493 0.20 0.2 

10 0.8493 0.20 0.2 

50 0.8493 0.20 0.2 

100 0.8493 0.20 0.2 

500 0.8493 0.20 0.2 

1000 0.8493 0.20 0.2 

5000 0.8493 0.20 0.2 

10000 0.8493 0.20 0.2 

 



CHAPTER VI 

POTENTIAL APPLICATIONS 

6.1 Introduction 

 The objective of this chapter is to describe potential applications of the test 

results and the strength criterion presented in the previous chapter. The approach 

involves the derivation of the relationship between the rock beam deflection and the 

induced tensile strain at the middle of the underground openings, as well as the 

comparison of the induced strain energy against the strain energy strength criterion.  It 

is desirable that the beam deflection can be correlated with the test results because it 

can be measured in the actual opening more easily than the tensile strain at the center 

of the roof. 

6.2  Deflection vs tensile strain 

The maximum deflections () at the middle of the specimens can be calculated 

for 3 different loading configurations based on Pytel and Kiusalaas (2010) as follows: 

3-Point Bending: 

max = FL3/48EI (6.1) 

4-Point Bending: 

max = FL3/28EI (6.2) 
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Uniform Load: 

max = WL4/8EI (6.3) 

where max is the maximum deflection at the middle of the room.  F is load (N), W=F/L 

(N/m) and E is the elastic modulus of the specimens.  The moment of inertia (m4) and 

E is the tensile elastic modulus (Pa).  The moment of inertia can be determined as: 

I = bt3/12 (6.4) 

where b and t are width and overall thickness of specimens (m).  A bending moment is 

applied to the intact rock. It can be calculated by: 

 M=FL/4     (6.5) 

where F is load (N), and L is length of the specimens (m).  From Equations (6.1) – (6.3) 

the maximum deflections per length of the specimens (/L = normalized deflections 

(L)) and the tensile strain () can be calculated from: 

 = /E  (6.6) 

 = Mc/I  (6.7) 

where I is moment of inertia, M is bending moment and c is half thickness (t/2).   
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The ratios of the stress-to-the normalized deflection can be determined for 

different loading configurations, as follows: 

3-Point Bending: 

 /L = 6(t/L) (6.8) 

4-Point Bending: 

 /L = 3.5(t/L) (6.9) 

Uniform Load: 

 /L = t/L (6.10) 

 From Equations (6.8) – (6.10), it can be concluded that the strains-to-normalized 

deflection ratio is independent of the beam properties.  The ratio depends only on the 

beam dimensions, as shown in Figure 6.1. 

 Figure 6.1 plots the /L ratio for the three loading configurations for t/L = 0.25.  

Figure 6.2 shows the results of the t/L ratio equal to 0.25.  Figure 6.2 compares the test 

results with the analytical solution derived above.  For intact rock beam the /L ratio 

agrees well with the analytical solution.  The /L ratios decrease as the t/L decreases.  

For the actual in-situ opening underneath the stratified roof the load over the roof 

applied by the overburden is likely to be uniform rather than three-point or four-point 

loading.  As a result in this application a uniform load is assumed on the roof rock.  

Figure 6.3 shows how the roof deflection can be determined in the field. 



74 

 

 

Figure 6.1 Tensile strains as a function normalized deflections (L)  

 

Figure 6.2 as a function L. The tensile strains are plotted as positive. 
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Figure 6.3 Schematic drawing showing how roof deflection can be obtained from 

actual underground opening. 

Figure 6.4 shows the tensile strains as a function of normalized deflection for 

uniform loading from the overburden.  Onec the deflection can be measured from the 

field the tensile strains can be determined from Figure 6.4.  The obtained strains and 

the applied stresses can be used to calculate the strains energy induced at the maximum 

deflection point.  The results can be compared with the strain energy strength criterion 

developed in the previous chapter. 
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Figure 6.4  Strains as a function normalized deflections (L) for uniform load.  Note 

that the tensile strains are plotted as positive in the figure. 

6.3  Distortional strain energy density vs mean strain energy 

The strain energy density principle is applied here to describe the tensile 

strength and deformability under different t/L ratios, loading rates and surface 

conditions. The distortional strain energy density at failure (Wd,f) can be calculated 

from the principal stress deviations and principal strain deviations for each specimen 

using the following relations (Jaeger et al., 2007): 

 Wd,f = (1/2)(s1e1+s2e2+s3w3)  (6.11) 

 s1  =  x-s,  s2 = y-s,  s3 = z-s (6.12)  
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 e1  =  z-e,  e2 = y-e,  e3 = z-e (6.13) 

where s1, s2, s3  and e1, e2, e3 are the principle stress deviations and principle strain 

deviations at fatigue strengths.  Table 6.1 Summary of the principal stress deviations 

and principal strain deviations.  The relation under uniaxial condition; x  0, y = 0, 

z.  The distortional strain energy density (Wd,f) can also be derived as a function of 

the mean strain energy at failure (Wm,f) as follows: 

 Wm,f = (t,f
2)/(2[E/3(1-2)])  (6.14) 

 s  = x/3  (6.15) 

 e  = (x + z)/3  (6.16) 

 z = -(x)  (6.17) 

where s is the mean normal stress at dilation at fatigue strengths, e is the mean normal 

strain, x is the strain and  is Poisson’s ratio under uniaxial tension condition.  The 

Poisson’s ratios obtained from direct tensile strength from dog-bone shaped specimens 

of intact sandstone as those performed by Klanphumeesri and Fuenkajorn (2010). 

Figure 6.5 shows as a linear trend of the test data in the Wd - Wm relation which 

can be best represented by:  

 Wd,f = 2.158Wm,f  (kPa) (6.18) 
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Table 6.1 Summary of the principal stress deviations and principal strain deviations. 

Surface Conditions t/L 
s1 

(MPa) 

s2 

(MPa) 

s3 

MPa) 

e1 

(MPa) 

e3 

(MPa) 

e2 

(MPa) 

Intact rock 0.25 

12.93 -6.47 -6.47 0.20 -0.11 -0.09 

11.40 -5.70 -5.70 0.27 -0.14 -0.12 

9.60 -4.80 -4.80 0.40 -0.22 -0.19 

7.33 -3.67 -3.67 0.59 -0.32 -0.28 

Rough 0.13 

9.93 -4.97 -4.97 0.23 -0.12 -0.10 

9.47 -4.73 -4.73 0.30 -0.16 -0.14 

8.49 -4.25 -4.25 0.42 -0.23 -0.20 

7.88 -3.94 -3.94 0.64 -0.34 -0.30 

Smooth 

0.13 

5.93 -2.97 -2.97 0.26 -0.14 -0.12 

5.39 -2.69 -2.69 0.40 -0.21 -0.18 

4.82 -2.41 -2.41 0.48 -0.26 -0.22 

3.57 -1.79 -1.79 0.69 -0.37 -0.32 

0.08 

5.01 -2.50 -2.50 0.39 -0.21 -0.18 

3.85 -1.92 -1.92 0.51 -0.28 -0.24 

2.86 -1.43 -1.43 0.61 -0.33 -0.28 

1.85 -0.93 -0.93 0.82 -0.44 -0.38 

0.06 

3.09 -1.55 -1.55 0.51 -0.27 -0.24 

2.23 -1.11 -1.11 0.67 -0.36 -0.31 

1.64 -0.82 -0.82 0.77 -0.41 -0.36 

1.22 -0.61 -0.61 0.98 -0.53 -0.46 

0.05 

1.39 -0.69 -0.69 0.71 -0.38 -0.33 

1.29 -0.64 -0.64 0.85 -0.46 -0.39 

1.10 -0.55 -0.55 0.99 -0.53 -0.46 

0.90 -0.45 -0.45 1.13 -0.61 -0.52 

Smooth-slip 

0.13 

4.21 -2.10 -2.10 0.60 -0.32 -0.28 

3.37 -1.68 -1.68 0.67 -0.36 -0.31 

2.66 -1.33 -1.33 0.89 -0.48 -0.41 

2.37 -1.18 -1.18 1.02 -0.55 -0.47 

0.08 

2.71 -1.36 -1.36 0.77 -0.41 -0.35 

2.55 -1.27 -1.27 0.85 -0.46 -0.39 

2.15 -1.07 -1.07 1.08 -0.58 -0.50 

1.69 -0.85 -0.85 1.28 -0.69 -0.59 

0.06 

2.09 -1.05 -1.05 0.89 -0.48 -0.41 

1.98 -0.99 -0.99 1.13 -0.60 -0.52 

1.53 -0.76 -0.76 1.35 -0.73 -0.63 

1.35 -0.68 -0.68 1.68 -0.90 -0.78 

0.05 

1.19 -0.59 -0.59 1.09 -0.59 -0.51 

1.06 -0.53 -0.53 1.56 -0.84 -0.72 

0.90 -0.45 -0.45 1.98 -1.06 -0.92 

0.98 -0.49 -0.49 2.27 -1.22 -1.05 
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 The Wd,f - Wm,f criterion explicitly considers both octahedral shear, elastic 

modulus, Poisson’s ratios and stresses at failure, and hence isolate the effect of t/L 

ratios, stress rates and surface conditions.   

 Table 6.2 Summary of the distortional strain energy density (Wd,f) and the mean 

strain energy at failure (Wm,f).  The criterion can be used to assume the actual stratified 

roof stability.  Rock bolts may be installed to increase the t/L rations, and hence increase 

the stability of the roof beams. 

 

 

Figure 6.5 Strain energy of distortion at failure (Wd,f) as function of mean strain 

energy at failure (Wm,f). 
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Table 6.2 Summary of the distortional and mean strain energy density at failure. 

Surface 

Conditions 
t/L 



(milli-strains) 

x 

(MPa) 

z 

(MPa) 

s 

(MPa) 

e 

(MPa) 

Wd,f 

(kPa) 

Wm,f 

(kPa) 

Intact rock 0.25 

0.29 19.40 0.01 6.47 0.09 1.92 0.89 

0.39 17.10 0.02 5.70 0.12 2.28 1.06 

0.59 14.40 0.03 4.80 0.19 2.90 1.35 

0.87 11.00 0.04 3.67 0.28 3.27 1.52 

Rough 0.13 

0.33 14.90 0.02 4.97 0.10 1.68 0.78 

0.44 14.20 0.02 4.73 0.14 2.13 0.99 

0.62 12.74 0.03 4.25 0.20 2.70 1.25 

0.94 11.82 0.05 3.94 0.30 3.80 1.76 

Smooth 

0.13 

0.38 8.90 0.02 2.97 0.12 1.17 0.54 

0.58 8.08 0.03 2.69 0.18 1.61 0.75 

0.70 7.23 0.04 2.41 0.22 1.73 0.80 

1.00 5.36 0.05 1.79 0.32 1.84 0.85 

0.08 

0.58 7.51 0.03 2.50 0.18 1.48 0.69 

0.75 5.77 0.04 1.92 0.24 1.48 0.69 

0.89 4.29 0.04 1.43 0.28 1.31 0.61 

1.21 2.78 0.06 0.93 0.38 1.14 0.53 

0.06 

0.75 4.64 0.04 1.55 0.24 1.18 0.55 

0.98 3.34 0.05 1.11 0.31 1.12 0.52 

1.12 2.46 0.06 0.82 0.36 0.94 0.44 

1.44 1.83 0.07 0.61 0.46 0.90 0.42 

0.05 

1.04 2.08 0.05 0.69 0.33 0.74 0.34 

1.25 1.93 0.06 0.64 0.39 0.82 0.38 

1.46 1.65 0.07 0.55 0.46 0.82 0.38 

1.66 1.35 0.08 0.45 0.52 0.76 0.35 

Smooth-

slip 

0.13 

0.87 6.31 0.04 2.10 0.28 1.88 0.87 

0.98 5.05 0.05 1.68 0.31 1.69 0.78 

1.30 3.99 0.06 1.33 0.41 1.77 0.82 

1.49 3.55 0.07 1.18 0.47 1.81 0.84 

0.08 

1.12 4.07 0.06 1.36 0.35 1.56 0.72 

1.25 3.82 0.06 1.27 0.39 1.62 0.75 

1.58 3.22 0.08 1.07 0.50 1.74 0.80 

1.87 2.54 0.09 0.85 0.59 1.63 0.75 

0.06 

1.30 3.14 0.06 1.05 0.41 1.39 0.64 

1.65 2.97 0.08 0.99 0.52 1.67 0.77 

1.98 2.29 0.10 0.76 0.63 1.55 0.72 

2.46 2.03 0.12 0.68 0.78 1.71 0.79 

0.05 

1.60 1.78 0.08 0.59 0.51 0.97 0.45 

2.28 1.59 0.11 0.53 0.72 1.24 0.57 

2.89 1.35 0.14 0.45 0.92 1.33 0.62 

3.31 1.47 0.17 0.49 1.05 1.66 0.77 

 



 

CHAPTER VII 

DISCUSSIONS AND CONCLUSIONS 

7.1 Discussions  

 This section discusses the key issues relevant to the reliability of the test schemes 

and the adequacies of the test results. Comparisons of the results and findings from this 

study with those obtained elsewhere under similar test conditions have also been made. 

 A total of 36 specimens have been applied perpendicular to the face of the 

specimen continuously without eccentricity.  The results are believed to be reliable as 

evidenced by the good correlation coefficients obtained from all proposed equations.  

 The post-test specimens obtained from the three-point bending test show 

that the fractures occur at the center of specimen for all testing. This is because this 

point is under maximum tensile stresses.  This agrees with the experimental results 

conducted by Obert and Duvall (1967) who propose the solution for the maximum 

stress (max) values indicating the compression (bottom of beam) or tension (top of 

beam).  This stress is higher than the previous abutment stress, and therefore higher 

than the rock tensile strength.  This leads to subsequent fracturing centered about the 

mid span as shown by Stimpson and Ahmed (1992). Snyder (1983) considers a 

laminated rock beam an excavation with a horizontal span by the normal thickness 

of the single layer under analysis.  An elastic beam with no joints and with constant 

cross section, the compression and tension distributions are symmetrical about the 

horizontal centre line of the beam.
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 For all Phu Phan sandstone specimens the tensile strength (t) and tensile 

elastic modulus (Et) is lower than the compressive tensile strength (c) and compressive 

elastic modulus (Ec).  The results indicate that the direct tensile strengths are clearly 

lower than the Brazilian, ring tensile strengths and 3-point bending.  This is suggested 

by the experimental results by Klanphumeesri and Fuenkajorn (2010) 

 The specimens size used in this study are relatively small.  Recognizing 

the size effects on the rock strengths (Jaeger et al., 2007), larger specimens should 

be used.  The strengths obtained here under all test schemes would overestimate the 

strength of the sandstone under in-situ condition due to the scale effect.  Nevertheless, 

the issue of the size effect would not change the main conclusions drawn here that the 

tensile strengths decrease when the t/L ratios decrease and tensile strength increases 

with loading rate. 

 The test results in terms of the tensile strength and loading rate agree 

reasonably well with the related test results on the ring tensile strength test obtained by 

Wisetsaen et al. (2015) that the tensile strengths of rock increase with the loading rate 

7.2 Conclusions 

 All objectives and requirements of this study have been met. The results of the 

laboratory testing and analyses can be concluded as follows: 

 The friction angle of the smooth and smooth-slip surface () are 25 and 24 

and the cohesions are 0.13 and 0.09 MPa, respectively. The cohesion, friction angle and 

Ks of all specimens are summarized in Table 4.1.  Note that application of vaseline on 

the smooth saw-cut surface slightly reduces the frictional resistance of the surface. 



83 
 

 The results show that the three-point bending tensile strengths decrease 

when the t/L ratios decrease, and tensile strength increases with increasing loading rate.  

The tensile strains decreases with increasing loading rate. The stresses-strains and 

stresses-deflections relations are nonlinear, particularly under the low loading rates.  

The specimens with high t/L ratio (0.25) show higher tensile strengths at failure than 

those with lower t/L ratio (0.05) due to the effect of the joint spacing and joint properties 

(rougness, Ks)  This holds true for all loading rates.   

 The elastic moduli increase with increasing t/L ratios and loading rate.  This 

is true for both surface conditions.  The results obtained from tension-induced fractures 

show the higher elastic modulus than those of the smooth and smooth-slip surfaces.  

This is probably due to the difference of the friction at the interfaces.  The intact rock 

specimen shows the highest elastic moduli.  

 The beam deflection can be correlated with the test results.  It can be 

measured in the actual opening more easily than the tensile strain at the center of the 

roof.  

 The strain energy criterion can be used to assess the actual stratified roof 

stability.  Rock bolts may be installed to increase the t/L, and hence increases the 

stability of the roof beams. 
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7.3 Recommendations for future studies 

 Recognizing that the numbers of the specimens and the test parameters used 

here are limited, more testing and measurements are recommended, as follows: 

(1) Larger specimen size should be used to enhance the representativeness of 

the test results. 

(2) Different rock specimens should be used in the test to assess the rate-

dependent strength of the rock applied to the in-situ conditions. 

(3) Verification of the accuracy of the proposed criterion should be made by 

comparing with the actual tunnel opening stability. 

(4)  Increasing the number of the specimens would statistically enhance the 

reliability of the test results and the predictability of the proposed strength criterion.  
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