Knowledge Discovery for Trigger Conflict Resolution

Kittisak Kerdprasop and Nittaya Kerdprasop

School of Computer Engineering, Suranaree University of Technology
111 University Avenue, Muang District, Nakorn Ratchasima 30000, THAILAND
kerdpras, nittaya@ccs.sut.ac.th

ABSTRACT

Active behavior of the active database systems is
obtained through the set of trigger rules, also known as the
event-condition-action rules. The event, such as the
modification of a database state, can activate the triggers. If
the trigger’s condition is satisfied, then the corresponding
actions are performed. The problem may arise if several
trigger rules are eligible for execution. To solve the
problem of trigger rule conflict, the database management
system must provide a conflict resolution policy to select a
trigger rule for execution. We propose a conflict resolution
scheme that incorporates derived knowledge, which is
induced from the database content, as a major part of the
trigger rule prioritization ' . By means of the trigger
scheduling, deterministic behavior of the trigger processing
can be guaranteed.

Keywords: knowledge discovery, triggers, conflict
resolution, active databases

1 INTRODUCTION

Active database systems extend the traditional database
systems with the mechanisms that enable them to respond
automatically to some specific events. The events may take
place either inside or outside the database system. Active
behavior of the database system is commonly supported
through event-condition-action (ECA) rules, also known as
triggers. ECA rule, or trigger, mainly consists of three parts
to describe the event, condition and action, respectively.
Upon the occurrence of the specified event, the rule
condition is evaluated. If the condition is satisfied then
some actions are performed. Active database systems can
automatically react to events such as database modification,
time events, and external signals (from the application).
This is in contrast to traditional database systems that
execute queries and transaction only when explicitly
requested to do so.

The importance of integrating reactive behavior into the
database systems has been recognized since the 1970s [10].

' The work reported in the paper was supported by the grant
from the National Electronics and Computer Technology
Center (NECTEC).

However, it was not until the late 1980s to early 1990s that
the area of active databases has catched high interest among
researchers [6, 8, 11, 15, 17]. At present most commercial
database systems, such as Oracle, IBM DB,, Informix,
Sybase, support the simple forms of triggers and
incorporation of triggers for commercial object-oriented
databases is underway [5, 14]. TheSQL3 standard [9, 12]
has extensive coverage of triggers.

Although trigger is a powerful mechanism of the active
database systems, designing and writing correct trigger
rules are not an easy and straightforward task. The
difficulty is due to the complex and sometime unpredictable
behavior of the triggers. Poorly designed triggers can
activate each other indefinitely, which leads to the non-
terminate execution. Several methods have been proposed
[1, 4, 13, 16] to analyze trigger behavior at compile time
and at runtime [3]. Another problem regarding trigger
behavior is the deterministic property of the triggers.
Deterministic trigger processing guarantees the same order
of execution when several trigger rules are activated
simultaneously. We propose a mechanism to utilize
domain-knowledge in choosing among triggered rules.

The outline of this paper is as follow. Section 2 briefly
describes the components of the trigger rules and their
potential applications. Section 3 discusses the problem of
non-deterministic processing due to the trigger conflict.
Section 4 presents the algorithm to derive the knowledge
for resolving the conflict problem. Section 5 concludes the
paper and indicates the future work.

2 TRIGGERS AND THEIR
APPLICATIONS

In SQL3 [9, 12], triggers are expressed by means of
event-condition-action rules, as presented in Figure 1. Each
trigger is identified by a name. It is possible to specify
whether a trigger must be executed BEFORE or AFTER its
triggering event. SQL3 triggers allow only the INSERT,
DELETE, and UPDATE as triggering event, and limit to a
single event be monitored per single trigger rule.
REFERENCING clause allows trigger to access to the old
and the new attribute values affected by the triggering
event. Affected data item can be seen individually (OLD
and NEW) or jointly as a temporary extent (OLD TABLE
and NEW_TABLE). The SQL3 triggers provide a notion of
granularity to define how many times the trigger is

executed for the particular event. FOR EACH ROW refers
to a row-level trigger, which is executed on each tuple
modification of the triggering event. FOR EACH
STATEMENT is a statement-level trigger, which is
executed once for an event regardless of the number of
tuples affected.

<SQL3-trigger> ::=

CREATE TRIGGER <name>

{ BEFORE | AFTER } <event>

ON <table-name>

[REFERENCING { OLD [AS] <old-value-tuple-name>
| NEW [AS] <new-value-tuple-name>
| OLD_TABLE [AS] <old-value-table-name>
| NEW_TABLE [AS] <new-value-table-name> }]

[FOR EACH { ROW | STATEMENT}]

[WHEN <condition>]

<action>

<event> ::= INSERT| DELETE| UPDATE [OF <column-names>]

Figure 1: Definition of SQL3 triggers

The WHEN clause specifies an additional condition to
be checked once the trigger rule is fired and before the
action is executed. Conditions are predicates over the
database state. If the WHEN clause is missing, the
condition is supposed to be true and the trigger action is
executed as soon as the trigger event occurs. The action is
executed when the rule is triggered and its condition is true.
SQL3 allows multiple action statements in triggers, each of
which is executed according to the order they are written.
Actions are stored procedures and may include SQL
statements, control constructs, and calls to user-defined
functions.

The following example shows a trigger rule to impose a
constraint on the database that the salary of any employee
may never decrease.

Example 1: Trigger rule to guarantee no decrease on
employees’ salaries.

CREATE TRIGGER emp-salary-no-decrease
BEFORE UPDATE OF Employee
FOR EACH ROW
WHEN (new.Salary < old.Salary)
begin

log the event;
signal error condition;
end
0

The potential applications of triggers are significant [7]:
signal integrity constraint violation and force rollbacks of
the violating transactions, maintain consistency across
system catalogs or other metadata, notify users in the form
of messages (alerters), implement business rules or
workflow management, and many more.

3 TRIGGER CONFLICT ISSUE

The behavior of triggers is defined as the “execution
model.” It specifies how trigger rules are evaluated and
treated at runtime. Figure 2 illustrates the steps in
processing triggers [15].

. signal Event Signaling
Event A > Occurrence phase

l trigger

Triggered Rules

Triggering
phase

evaluate
rules’ condition

Evaluated Rules Evaluation
phase
schedule
Selected Scheduling
Rules phase
execute

............ Rule processing

Figure 2: Steps in trigger rule execution

The signaling phase detects and signals the occurrence
of an event. The event activates the corresponding trigger
rules in the triggering phase, and the condition parts of the
triggered rules are evaluated in the evaluation phase. The
trigger conflict problem occurs when the conditions of
more than one trigger rules are evaluated to be true. The
scheduling phase indicates the order to process conflict

triggers. The execution phase processes the scheduled
trigger rules. On processing rule’s action, the change in a
database state may trigger another or even the same set of
rules.

After the evaluation phase, more than one rule may be
eligible for execution. This problem is known as trigger
rule conflict [3,15]. To solve the problem, the database
management system must provide a conflict resolution
policy to select a trigger rule for execution. The common
conflict resolution policy adopted by most systems is
assigning rule priority [14, 17]. The rule prioritization is
based on either the recency of update or the complexity of
the rule’s condition. The former approach assigns a high
priority to the rule that is most recently fired. The latter
approach considers the priority on the specificity of the
rule. The two approaches are dynamic, which means they
are less practical in the system with large and complex
trigger rule set. When deterministic behavior is highly
desirable, the scheme to associate rules with priority
statically is more appropriate.

Static priority mechanism determines order of trigger
rules either by the system (e.g., based on rule creation time)
or by the user (e.g., explicitly associate each rule with a
numeric value). We propose a conflict resolution
mechanism to incorporate derived knowledge (i.e., the
knowledge obtained from the database content) into the rule
prioritization scheme.

4 ALGORITHM TO HANDLE TRIGGER
CONFLICT

In this section, we define an algorithm to handle trigger
conflict by reorganizing the trigger rules into different
layers, or strata. Then, associate each stratum with a
numeric priority. The major mechanism leading to priority
assigning is the induced knowledge regarding the database
state modification. Prior to the algorithm description, some
definitions of terms are explained.

Definition 4.1 A stratum is an ordered set of trigger rules
that locally converge. A stratum locally converges if after
any transaction invoking trigger rules, rule processing
terminates in a final state in which the set of triggered rules
is empty.
0
Definition 4.2 Stratum set is an unordered set of strata in
which each stratum is independent from other strata so that
the trigger rule execution in one stratum does not affect
rules in other strata.
0
The concept of stratum [2] is applied to guarantee that
trigger rule execution eventually terminates. The example
of non-terminate trigger execution due to the cycle in
action-triggering events is shown in Figure 3. Breaking the

cycle into different layers, as shown in Figure 4, and the
local convergence within each stratum are two sufficient
conditions for termination on trigger execution.

eventE ——— ‘."
'\\.\
.\-\.
‘- o

Figure 3: The cycle among trigger rules

Figure 4: Organizing cyclic rules into strata

The next step is to set priorities among strata when
several strata are activated by the occurrence of an event.
We propose the trigger conflict resolution algorithm to
solve the problem of multiple stratum activation on an
event E. The key concept is to apply knowledge induced
from the database modification and the metadata (i.e., the
set of integrity constraints) to guide the priority assigning
scheme. The function to compute priority for each stratum
is defined as in the following definition.

Definition 4.3 A Degree of Constraint Function for the
induced knowledge K comparing to the given set of
integrity constraints IC is defined as:

#matched rules A
#total rules +T0

Degree_of Constraint(K , 1C) =

where # matched _rule is the number of induced knowledge,
represented in the format of rule, completely
matching with the integrity constraint rule (i.e.,
NOT (k) AND c yields the contradiction when k €
Kandc € IC),

total rules is the total number of induced knowledge
when represented as rules, and

A is the average accuracy of the induced knowledge rules.

0

Note that the number “10” is proposed as a divider of

the average accuracy (i.e., the part (A/10) in the

computation of Degree of Constraint) in order to prevent

the domination of the accuracy over the proportion of
matched_rules and total rules.

Algorithm 4.4 Trigger conflict resolution algorithm.

Given an unordered stratum set S, a relational active
database R and its metadata, the algorithm returns an
ordered stratum set O in which the priority of each
stratum has been assigned.

Steps:
1. Active Tuple Set; & Activate(S;, E)
/* Activate every stratum S;, S; € S, such that
the occurrence of an event E can invoke its
trigger rule(s), and record all affected tuples in
the corresponding Active Tuple Set. */

2. K; € Induce(Active_Tuple Set;)
/* The knowledge induction method (such as
association-rule learning, decision-tree
induction) is applied to induce knowledge from
the content of each Active Tuple Set. The
induced knowledge is stored in K. */

3. qi = Degree _of Constraint (K;, metadata)
/¥ Calculate the value ¢, or the
Degree _of Constraint, of each set of induced
knowledge K comparing to the integrity
constraints given as a metadata. */

4. sort(i, q)
/* Apply any sorting algorithm on the g-value
associated with each stratum S;. */

5. return an ordered stratum set O = { S; | S has been
sorted by its index i }
g

Running Example

To explain the algorithm4.4, we assume the following
database instances, the integrity constraints, and trigger
rules are given.

Employee Database R:
Name Position Working Salary =~ Working Project
hours years manager

Jack Senior_ 18 72,000 10 Yes
programmer

Joe Programmer 10 20,000 5 No

Jim Programmer 12 40,000 8 No

Gupta Programmer 15 40,000 7 No

Lee Programmer 16 50,000 6 No

Carl Computer 18 68,000 12 No
engineer

Integrity Constraints /C:
IC1: TF Position = “Computer_engineer”
THEN Salary >= 50,000
IC2: TF Position = “Senior_programmer”
THEN Project manager = “Yes”
IC3: TF Position = “Supervisor”
THEN Project manager = “Yes”

Trigger rules T:
T1: CREATE TRIGGER promote position
AFTER UPDATE OF Salary ON Employee
FOR EACH ROW
WHEN (Employee.Salary > 65000)
Set Employee.Position = ‘Supervisor’

72: CREATE TRIGGER promote_manager
AFTER UPDATE OF Position ON Employee
FOR EACH ROW
WHEN (Employee.Working_hours > 12)

AND (Employee.Salary > 65000)
Set Employee.Project_manager = ‘Yes’

Triggers T/ and T2 work on the same set of database
instances but they do not activate each other on a cyclic
manner. Therefore, they can be grouped into the same
stratum.

Srafum S

updatefBalary) | TT | update(Positio)
F -

™

Ewvent

Step 1: Active_Tuple Set; < Activate(S;, E)
On occurrence of the event E, the
Active_Tuple Set contains the following two
instances:
Name Position Working Salary Working Project
_hours _years manager

Jack Supervisor 18 72,000 10 Yes
Carl Supervisor 18 68,000 12 No

Step 2: K; € Induce(Active_Tuple Set;)
Supply the above instances to the induction
algorithm (e.g., the associative-rule learning). The
induced knowledge rules are as follows:

1. Position=supervisor
==> Working_hours=18

acc:(1)
2. Working _hours=18
==> Position=supervisor
acc:(1)
3. Position=supervisor
==> Project_manager=yes
acc:(1)
4. Position=supervisor Working hours=18
Project_manager=yes
==> Working years=10
acc:(1)
5. Position=supervisor Working years=10
Project_manager=yes
==> Working hours=18
acc:(1)

6. Working hours=18 Salary=72000 Working years=10
Project_manager=yes
==> Position=supervisor
acc:(1)
7. Position=supervisor Salary=68000
Project_manager=no
==> Working_hours=18 Working years=12

acc:(1)
8. Position=supervisor Working years=12
Project manager=no
==> Working hours=18 Salary=68000
acc:(1)

9. Working _hours=18 Salary=68000 Working years=12
==> Position=supervisor Project_manager=no

acc:(1)
10. Working hours=18 Salary=68000
Project_manager=no
==> Position=supervisor Working years=12
acc:(1)

Step 3: ¢; = Degree_of Constraint (K;, metadata)
From the total of ten induced rules, only rule
number 3 matches the /C3.
Compute the Degree of Constraint
= (# matched rules | # total rules)+ (A/10)
=(1/10)+(1/10)
=02

Step 4: sort(i, q)
To keep the running trace understandable, we
provide only two trigger rules that form
themselves as a single stratum. Therefore, there is

no need for sorting on the Degree of Constraint.
In a more practical situation that triggers are
grouped into several strata, each stratum will be
sorted according to the Degree of Constraint
values.

Step 5: return an ordered stratum set O = { S; | S has been
sorted by its index i }
The stratum S/ has been returned with the priority
0.2 associated with it.

S CONCLUSION AND FUTURE WORK

The trigger rule conflict occurs when an event activates
several trigger rules simultaneously. To maintain the
deterministic property of the active database processing, the
database management system has to provide a conflict
resolution policy. The common policy adopted by most
systems is to assign rule priority. The rule prioritization is
based on either the recency of update or the complexity of
the rule’s condition. We propose a different scheme of
prioritization by taking into account the knowledge
regarding the database state. Moreover, we consider priority
at the level of stratum, which may contain several related
triggers. The concept of stratification preserves the
termination property of trigger rule processing.

The design of the trigger-conflict-resolution algorithm is
the preliminary work toward the design and implementation
of a tool to help database designer on designing and
analyzing a complex set of triggers. A further investigation
on a more practical active database with a larger trigger set
is necessary.

REFERENCES

[1T A.Aiken, J.M.Hellerstein, and J.Widom. Static
analysis techniques for predicting the behavior of
active database rules. ACM Transactions on Database
Systems, vol.20, no.1, pp.3-41, March 1995.

[2] E.Baralis, S.Ceri, and S,Paraboschi. Modularization
techniques for active rule design. ACM Transactions
on Database Systems, vol.21, no.l, pp.1-29, March
1996.

[3] E.Baralis, S.Ceri, and S,Paraboschi. Compile-time and
runtime analysis of active behaviors. [EEE
Transactions on Knowledge and Data Engineering,
vol.10, no.3, pp.353-370, May/June 1998.

[4] E.Baralis and J.Widom. An algebraic approach to rule
analysis in expert database system. In Proceedings of
the 20" International Conference on Very Large Data
Bases, pp.475-486, Santiago, Chile, September 1994.

[5] E.Bertino, G.Guerrini, and [.Merlo. Triggers in Java-
based databases. L ‘object, vol.6, no.3, 2000.

[6] A.Buchmann. Current trends in active databases: Are
we solving the right problems. In Information Systems
Design and Multimedia, Proceedings of the Basque
International Workshop on IT, pp.121-133, 1994,

[7] S.Ceri, R.J.Cochrane, and J.Widom. Practical
applications of triggers and constraints: Successes and
lingering issues. In Proceedings of the 26"
International Conference on Very Large Data Bases,
pp.254-262, Cairo, Egypt, 2000.

[8] S.Chakravarthy. Rule management and evaluation: An
active DBMS perspective. ACM SIGMOD Records,
vol.18, no. 3, pp.20-28, 1989.

[9] A.Eisenberg and J.Melton. SQL:1999, formerly
known as SQL3. ACM SIGMOD Records, vol.28,
no.1, pp.131-138, 2000.

[10] K.P.Eswaran. Specifications, implementations and
interactions of a trigger subsystem in an integrated
database system. IBM Research Report RJ1820, IBM
San Jose Research Laboratory, San Jose, California,
August 1976.

[11] E.N.Hanson and Jwidom. An overview of
production rules in database systems. Knowledge
Engineering Review, vol.8, no.2, pp.121-143, 1993.

[12] ISO/IEC 9075-2: 1999 Information technology —
Database language — SQL — Part 2: Foundation
(SQL/Foundation), 1999.

[13] A.P.Karadimce and S.D.Urban. Conditional term
rewriting as a formal basis for analysis of active
database rules. In Proceedings of the Fourth
International Workshop on Research issues in Data
Engineering, RIDE-Ads ’94, pp.156-162, Houston,
February 1994.

[14] N.Paton. Active Rules in Database Systems.
Springer-Verlag, 1999.

[15] N.W.Paton and O.Diaz. Active database systems.
ACM Computing Surveys, vol.31, no.l, pp.63-103,
March 1999.

[16] L.van der Voort and A.Siebes. Termination and
confluence of rule execution. In Proceedings of the
Second International Conference on Information and
Knowledge Management, Washington, D.C.,
November 1993.

[17] J.Widom and S.Ceri. Active Database Systems:
Triggers and Rules for Advanced Database
Processing. Morgan Kaufmann, San Francisco,
California, 1996.

