Data Partitioning for Incremental Data Mining

Nittaya Kerdprasop and Kittisak Kerdprasop

School of Computer Engineering, Suranaree University of Technology
111 University Avenue, Muang District, Nakorn Ratchasima 30000, THAILAND
nittaya , kerdpras @ccs.sut.ac.th

ABSTRACT

Data repositories of interest in data mining applications
can be very large. Many of the existing learning algorithms
do not scale up to extremely large data set. One approach to
deal with this problem is to apply the concept of
incremental learning. However, incremental data mining is
not the same as incremental machine learning. The former
handles one subset of data at a time, whereas the latter
handles a single data instance at a time. The size of data
subset determines both the performance and speed of the
mining process. We thus focus the study on the partitioning
of a data into a proper subset and propose an algorithm to
return a data subset for both classification and association
mining tasks'. We also perform a set of experiments to
observe the behavior of classification and association data
mining on various data partitioning. The experimental
results confirm our criteria on data partitioning.

Keywords: data mining, incremental, data partitioning

1 INTRODUCTION

Data mining is the process of extracting useful
information such as previously unknown patterns or
association hidden in a large data set [4]. Recent advances
in digital information storage and data acquisition
technologies have made it possible to acquire and store
large volumes of data. Therefore, data repositories of
interest in data mining applications are normally very large.
Many of the existing mining algorithms do not scale up to
extremely large data sets. One approach to deal with this
problem is to partition the huge data set into several subsets
of manageable size, then learn (probably in parallel) from
each subset and finally combine the learning results [3].

Another approach is to employ the incremental machine
learning paradigm. Incremental machine learning is the
technique to avoid retaining all training data in main
memory. Instead, the learning algorithm learns from one
data instance at a time and tune the result accordingly [2].
However, incremental data mining is not the same as

" The work reported in the paper was supported by the grant
from the National Electronics and Computer Technology
Center (NECTEC).

incremental machine learning. Incremental data mining
handles subsets of data one set at a time, not just a single
data instance as in the incremental machine learning [16].
Thus, partitioning the data set to a proper subset (or sample)
size is certainly beneficial the incremental mining to reach
its high accuracy in an acceptable period of time.

We propose an algorithm to partition the original large
data set into a manageable and yet learning-effective data
subset. We also perform experiments on learning
performance of different data partitions on the two common
data mining tasks: classification and association. On data
classification, we investigate learning curves of classifiers
on various data partitions. For the derivation of association
rules, we compare the set of rules obtained from each data
partitions against the rules derived from the whole complete
data set.

This paper is organized as follows. Section 2 gives an
overview of incremental data mining. Section 3 describes
the data-partitioning algorithm. Section 4 explains the
experimental setup. Section 5 presents the results and a
discussion. Section 6 concludes our work.

2 INCREMENTAL DATA MINING

Machine learning techniques can be broadly categorized
as either batch or incremental [5]. Batch learning examines
a whole collection of data set and induces a learning result.
In incremental learning, data subsets D; , D, , ... , D, are
assumed to become available to the learner at discrete time
intervals, and the learner is also assumed being unable to
store collectively all the data fragments. Thus, it can only
maintain and update its learning result as new data fragment
becomes available.

Sutton and Whitehead [11] have distinguished two
kinds of incremental learning: weakly and strictly
incremental method. A learning method is weakly
incremental if it requires additional memory and
computation in order to process one additional data
instance. Examples of weakly incremental learners are IDS5
[12,13,14] (an incremental version of ID3 [8]) and nearest
neighbor algorithms. A learning method is strictly
incremental if its memory and computation (per data
instance) requirements do not increase with the number of
instances. The learners in this category are STAGGER[10]
and most connectionist learning methods.

Recent research on learning ensembles of classifiers [3]
is relevant to incremental data mining. Learning ensembles
of classifiers, such as bagging [1] and boosting, generates
multiple versions of classifiers by running the learning
algorithm many times on a set of re-sampled data. The
classification results are combined using a majority vote.
Each version of the classifier is generated from a sample of
the original data set, and each data instance can be used in
many samples. To adopt the ensemble method to the setting
of incremental mining, -- for instance, Learn++ algorithm
[7] -- each data instance in the original data set is
partitioned into only one subset and used only once in the
learning process. As mentioned in the first section that
incremental data mining learns a subset — not just a single
data instance, we are however still of limited knowledge
about what proper size data partitioning should be.
Therefore, we design an algorithm to generate a proper data
subsets and test the algorithm on different data sizes to
observe the efficiency of incremental data mining.

3 DATA PARTITIONING ALGORITHM

This section describes the algorithm to partition the
large data set into a manageable and proper size. The
algorithm returns the data partition for both the
classification task and association task.

Algorithm Data Partition
Input: (1) A relational database R.
(2) Predictive level /, the default predictive level
can be raise to a ‘high’ level.
(3) Maximum number of instances, m, that data
mining tool can handle.

Output: D¢ = a data subset for classification, and
D, = a data subset for association

Steps:
L.t defauts= 0.1, g1 = 0.3
/* Set parameter for the classification data subset
*/
2. Y defautr= 0.2, Y pign=0.5
/* Set parameter for the association data subset
*/
3. Sampling size classification = min{ m ,
(# defiuae* number of instances in R) }
/* Sampling size for classification task at the
default predictive level
*/
4. Sampling size association =min{ m ,
(Yaefuwte ™ number of instances in R) }
/* Sampling size for association task at the default
predictive level
*/

5. If I="high’ then
5.1 Sampling_size_classification = min{ m ,
(4 pign * number of instances in R) }
5.2 Sampling_size_association = min{ m ,
(Yhign * number of instances in R) }
6. return
Dc={r;|r,=SamplingR) ,i=1,2, ...,
Sampling size_classification }
Dy={r;|r;=Sampling(R) ,i=1,2, ...,
Sampling size_association }
/* Sampling(R) is the random sampling without
replacement from the database R
*/

4 EXPERIMENTS

We design the experiments to study the effect of
varying the data partitioning on the efficiency of data
mining. The two kinds of data mining task being explored
are classification and association. On classification, the
algorithms J48 and naive Bays are selected as a benchmark
to test the quality of each data partition. J48 is a re-
implement [15] of C4.5 [9], which is the most well-known
decision tree-based classification algorithm. The advantage
of tree-based classifier is its simple and comprehensible
representation format. Naive Bayes is a statistical classifier
that can learn the concept rapidly. This high learning rate
property makes naive Bayes a candidate algorithm for
incremental data mining. Therefore, we decide to test the
classification accuracy on these two classification
algorithms.

The accuracy is estimated on the basis of number of test
instances correctly classified by the induced classifier. The
estimation method that we use is the holdout method in
which 66% of the data instances is used for the training
purpose and the remaining 34% is used as the test set.

For the task of association rule derivation, we employ
the APRIORI algorithm [15]. The criteria to test the rule-
deriving efficiency on each data partition is the number of
association rules that match the rules derived from the
whole data set. The two data sets -- mushroom and connect-
4-game — used in our experiments are taken from the UCI
repository [6].

5 RESULTS AND DISCUSSION

Table 1 and 2 show the learning results on classification
and association rule derivation, respectively. The learning
curves of J48 and naive Bayes on each data set are
illustrated in Figure 1. Figure 2 graphically compares the
quality of association rule derivation on various data
partitions.

The classification results reveal the fast-learning
characteristic of naive Bayes algorithm. It requires only 5-
10 % of the data set to reach its highest learning accuracy.
This fast-learning property is the major ingredient on
incremental data mining. When taking association into
consideration together with the classification, we may infer
from the experimental results that the appropriate

partitioning (or windowing) should be at the 10% of the
whole data set. These results agree with our heuristic of
setting the threshold parameter in the range 0.1-0.5 for the
expected proper size of sample. In the distributed setting in
which the exact size of the data set could not be guessed in
advance, the fixed amount of 800-1,000 instances should
give the satisfiable learning result.

Table 1: The classification accuracy on different data partitioning

Data Accuracy tested on mushroom data Accuracy tested on connect-4-game data
partitioning naive Bayes J48 naive Bayes J48
(% correct (% correct (% correct (% correct
classification) classification) classification) classification)
1 % 53.5714 % 57.1429 % 60.8696 % 56.9565 %
5% 61.1511 % 61.5705 % 68.1462 % 68.6684 %
10 % 60.6498 % 64.2599 % 71.0057 % 74.1837 %
20 % 61.1212 % 70.5244 % 71.3975 % 75.8163 %
30 % 61.3993 % 68.2750 % 70.9041 % 76.9700 %
40 % 62.6244 % 69.1403 % 72.7471 % 78.8202 %
50 % 61.7221 % 64.7612 % 71.5107 % 79.1990 %
60 % 63.0277 % 66.5862 % 72.2392 % 79.6691 %
70 % 63.8056 % 67.9938 % 72.1500 % 81.6966 %
80 % 63.0317 % 68.0090 % 72.2627 % 82.1724 %
90 % 62.3492 % 66.0901 % 72.1956 % 83.6405 %
100 % 63.9884 % 60.0796 % 72.1332 % 79.0814 %
Table 2: The quality of association-rule derivation on different partitioning
o mushroom dataset ' connect-4-game dataset >
Data partitioning
number of instances number of rules number of instances number of rules
matched * matched *
1% 81 27 675 53
5% 406 27 3,377 90
10 % 812 62 6,755 88
20 % 1,624 62 13,511 92
30 % 2,437 62 20,267 95
40 % 3,249 65 27,022 97
50 % 4,062 66 33,778 98
60 % 4,874 100 40,534 98
70 % 5,686 79 47,289 99
80 % 6,499 100 54,045 99
90 % 7,311 100 60,801 99

' The complete mushroom data set contains 8,124 instances.
* The complete connect-4-game contains 67,557 instances.

3 Number of rules that matched with the association rules derived from the complete data set.

mushroom dataset

~
)]

~
(@]
|

(0]
&)
|

—— N\B

D
o
|

-- - 48

% Accuracy

(o)
&)
|

a
o

1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% data partitioning

connect -4-game data

100

90

.-m
80 m--m---m ™ ‘m

% Accuracy

60

50

1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% data partitioning

Figure 1: Learning curves on classifying the incremental mushroom data set and connect -4-game data set

120
100 -
kel
2 80 -
L
£
3 60
& 40
R 7 —&— Mushroom
20 —l— Connect-4-game
0

1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% data partitioning

Figure 2: The comparison on quality of association rules derived from each data partitioning

6 CONCLUSION

Recent advances in data storage and acquisition
techniques have made it possible to produce increasingly
large data repositories. Many of the existing mining
algorithms do not scale up to extremely large data sets. One
approach to this problem is to partition the data set into
several subsets of manageable size, then learn in parallel or
incrementally from each subset. The partitioning of data set
into appropriate size is the main focus of our study. We
propose an algorithm to use the heuristic to do the sampling
for the proper size of data subsets. We perform experiments
on the two data mining tasks -- classification and
association -- using mushroom and connect-4-game data
sets. We can conclude from the results that partitioning the
data set at the threshold level 0.1-0.5 yields an acceptable
classification accuracy, and moderate to high quality
association rules.

REFERENCES

[1] L. Breiman, “Arcing classifiers”, Annals of Statistics,
26, 1998.

[2] S.H. Clearwater, T.P. Cheng, H. Hirsh, and B.G.
Buchanan, “Incremental batch learning”, Proceedings
of the Sixth International Workshop on Machine
Learning, Morgan Kaufmann, 1989.

[3] T.G. Dietterich, “Machine learning research: Four
current directions”, Al Magazine, 18(4), 1997, 97-
136.

[4] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R.
Uthurusamy, editors, Advances in Knowledge
Discovery and Data mining, AAAI/MIT Press,
Cambridge, MA, 1996.

[5] M. Harries, C. Sammut, and K. Horn, “Extracting
hidden context”, Machine Learning, 36(2), 1998, 101-

126.
[6] CJ. Merz and P.M. Murphy, Uci Repository of
machine learning databases, 1996.

[http://www.ics.uci.edu/ ~mlearn/MLRepository.html]

[71 R. Polikar, L. Udpa, S. Udpa, and V. Honavar,
“Learn++: An incremental learning algorithm for
multilayer percentron networks”, Proceedings of the
IEEE Conference on Acoustic, Speech, and Signal
Processing (ICASSP), 2000.

[8] J.R. Quinlan, “Induction of decision trees”, Machine
Learning, 1, 1986, 81-106.

[9] J.R. Quinlan, C4.5: Programs for Machine Learning,
Morgan Kaufmann, San Mateo, CA, 1993.

[10] J.C. Schlimmer and R.H. Granger, “Incremental
learning from noisy data”, Machine Learning, 1, 1986,
317-354.

[11] R.S. Sutton and S.D. Whitehead, “Online learning
with random representations”, Proceedings of the
Tenth International Conference on Machine Learning,
Morgan Kaufmann, 1993, 314-321.

[12] P. Utgoff, “ID5: An incremental ID3”, Proceedings
of the Fifth International Conference on Machine
Learning, Morgan Kaufmann, 1988, 107-120.

[13] P. Utgoff, “Incremental induction of decision trees”,
Machine Learning, 4, 1989, 161-186.

[14] P. Utgoff, “An improved algorithm for incremental
induction of decision trees”, Proceedings of the
Eleventh International Conference on Machine
Learning, Morgan Kaufmann, 1994, 318-325.

[15] L.H. Witten and E. Frank, Data Mining: Practical
Machine Learning Tools and Techniques with java
Implementations, Morgan Kaufmann, San Francisco,
2000. [software accessible via the URL
http://www.cs.waikato. ac.nz/ml/weka]

[16] X. Wu and W. Lo, “Multi-layer incremental
induction”, Proceedings of the Fifth Pacific Rim
International Conference on Artificial Intelligence,
Springer-Verlag, 1998.

