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Forest fire is one of the serious problems effecting on ecosystem and human 

health. The Upper Northern region of Thailand is the most affected areas by forest 

fires. The specific objectives of the study are (1) to identify an optimal top three 

spectral indices for burned area evaluation; and (2) to identify the algorithms for 

burned area and fire detection using MODIS and Landsat data. Main components of 

research methodology consisted of (1) optimum top three MODIS spectral indices for 

burned area detection evaluation, (2) optimum burned area detection algorithm 

identification and (3) optimum algorithms for fire detection identification. 

For an optimal top three spectral indices for burned area detection 

identification, MODIS Level 1B data were firstly used to calculate spectral indices, 

(NDVI, MSAVI, BAI, BAIM, NBR, GEMI, MIRBI, NDSWIR, NDWI, NMDI, SMI, 

and CSI) and their values were then compared with the extracted burned area and its 

severity from Landsat data using deviance value of the ordinal logistics regression. As 

results, it was found that optimum top three MODIS spectral indices for burned area 
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CHAPTER I 

INTRODUCTION 

 

1.1 Background and significance of the study 

Forest fire is one of the serious problems effecting on ecosystem and human 

health. In Thailand, forest fires occur annually during the dry season from November 

to April with its peak in March. Fires, which are mostly classified as surface fire, 

mainly take place in dry dipterocarps forest, mixed deciduous forest, and forest 

plantations. Almost all forest fires in Thailand are man-made, primarily started by 

rural settlers who live in or adjacent to the forests. The main activities that cause 

forest fires include the gathering of non-timber products, spreading of agricultural 

debris burning, hunting, and carelessness (Akaakara, 2000). The Upper Northern 

region of Thailand is the most affected areas by forest fires, both in terms of 

occurrence statistics and the impact of fire and smoke. In addition, most of the burned 

areas are a mountainous land and situate nearby neighboring countries, namely 

Myanmar and Laos. Moreover, it is difficult to assess by ground survey. The statistics 

of forest fire occurrences between 2012 and 2014 in Thailand and the Upper Northern 

region are summarized as shown in Tables 1.1 and 1.2, respectively (Department of 

National Park Wildlife and Plant Conservation: DNP, 2015). 
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 Remote sensing is high-efficient tool for detecting and monitoring forest fires. 

A large number of studies have demonstrated the value of remote sensing to quantify 

fire occurrences and the areas affected by fire. Remote sensing provides two principal 

options to infer on fires including spectral and thermal information. MODIS hotspot 

has great potential for monitoring fire dynamics because the data freely deliver and 

nearly real time information from a maximum of four satellite overpasses each day 

and with a data record that spans more than a decade (Kaufman et al., 1998; Justice et 

al., 2002; Giglio, Descloitres, Justice, and Kaufman, 2003; Justice et al., 2006; Giglio, 

2010) However, hotspots have some caveats such as the textural component of the 

detection algorithm causes problems with false detections in areas where the canopy 

cover exhibits strong differences in surface temperatures. Cloud cover obstructs fire 

detection and may lead to high errors of omission (undetected fires). The size of a 

particular fire cannot be calculated from hotspot data and no distinction can be made 

between large fires and small fires. The hotspots do not allow distinguishing, if one or 

more fires are actively flaming within a pixel on the same day and burned areas 

cannot be derived from the hotspots (Giglio et al., 2003; Giglio, Csiszar, and Justice, 

2006; Miettinen, Langner, and Siegert, 2007; Schroeder et al., 2008; Giglio, 2010; 

Aragao and Shimabukuro, 2010). 

Currently, the use of spectral indices to detect burned area and fire is a well-

known method. This method includes the following indices: 

(1) Vegetation indices: NDVI (Tucker, 1979), SAVI (Huete, 1988), GEMI 

(Pinty and Verstraete, 1992), VI3 (Kaufman and Remer, 1994), MSAVI (Qi, 

Chehbounidi, Huete, Kerr, and Sorooshian, 1994), and EVI2 (Jiang, Huete, Didan, 

and Miura, 2008);   
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(2) Thermal spectral indices: NBRT, VI6T (Holden, Smith, Morgan, Rollins, 

and Gessler, 2005), CSIT, NDVIT, SAVIT (Smith et al., 2007), and NSEv1, NSEv2,  

NSTv1, and NSTv2 (Veraverbeke, Harris, and Hook, 2011); and 

(3) Specific indices for burned area: NDWI (Gao, 1996), MIRBI (Trigg and 

Flasse, 2001), BAI (Chuvieco, Martín, and Palacios, 2002), NDSWIR (Gerard et al., 

2003), NBR (Key and Benson, 2005), BAIM (Martin, Gómez, and Chuvieco, 2005), 

CSI (Holden et al., 2005), GEMI (Barbosa et al., 2006), NMDI (Wang, Qu, and Hao, 

2008), and SMI Index (Veraverbeke et al., 2011). 

However, the results of accuracy assessment are significant difference depend 

on the variation of the study area. In addition, an optimal method is not identified to 

detect burned area and fire in practice. Therefore, this study aims to evaluate the 

effectiveness of different spectral indices with assessing burn severity and identify 

burned area and fire detection using MODIS and Landsat data with a case study of the 

Upper Northern region of Thailand. The result of the study can enhance the efficiency 

and compatibility of burned area and fire detection methods. Moreover, it’s lead to 

support the forest fire management in Thailand. 

 

Table 1.1 The statistics of forest fire occurrences in Thailand, year 2012-2014. 

Region 

2012 2013 2014 

Number 

of fires 

Damaged 

areas (Rai) 

Number 

of fires 

Damaged 

areas (Rai) 
Number 

of fires 

Damaged 

areas (Rai) 

1) Northern 2,686 21,397 3,274 31,641 2,793 25,661 

2) North-East 844 9,828 1,574 19,622 772 10,984 

3) Center and East 311 3,927 355 4,078 438 5,206 

4) Southern 154 12,747 54 3,177 204 8,872 

Total 3,995 47,899 5,257 58,516.9 4,207 50,723 

 

Note 1 Rai equals 1,600 sq. m. 

Source: DNP (2015). 
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Table 1.2  The statistics of forest fire occurrences in the Upper Northern region of 

Thailand, year 2012-2014. 

Region 

2012 2013 2014 

Number 

of fires 

Damaged 

areas (Rai) 

Number 

of fires 

Damaged 

areas (Rai) 

Number 

of fires 

Damaged 

areas (Rai) 

1) Chiang Mai 865 6,264 1,361 14,541 937 9,044 

2) Mae Hong Son 413 2,499 508 2,955 429 2,919 

3) Lamphun 219 1,557 166 1,449 238 1,959 

4) Chiang Rai 181 922 98 690 91 905 

5) Lampang 242 1,463 310 1,994 375 1,746 

6) Phayao 76 317 38 194 36 327 

7) Phrae 158 1,470 147 1,011 111 927 

8) Uttaradit 48 336 53 316 41 303 

9) Nan 29 311 123 1,260 88 972 

Total 2,231 15,139 2,804 24,410 2,346 19,102 

 

Note 1 Rai equals 1,600 sq. m. 

Source: DNP (2015). 

 

1.2 Research objectives 

The ultimate goal of the study is to identify optimal burned area and fire 

detection algorithms using MODIS and Landsat data. The specific objectives of the 

study are: 

(1)  to identify an optimal top three spectral indices for burned area 

evaluation; and 

(2)  to identify the algorithms for burned area and fire detection using 

MODIS and Landsat data. 
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1.3 Scope of the study 

Scope of this study can be summarized as follow: 

(1) For an optimal top three spectral indices for burned area evaluation, 

MODIS Level 1B data (2010-2014) are firstly used to calculate index values (NDVI, 

MSAVI, BAI, BAIM, NBR, CSI, GEMI, MIRBI, NDSWIR, NDWI, NMDI, and 

SMI). After that, the calculated spectral index values are then compared with an 

extracted burned area with their severity from Landsat data in the same date using 

ordinal logistics regression for deviance values calculation. Finally, minimal deviance 

values from 12 selected spectral indices are ranked to identify top three spectral 

indices as optimal spectral indices for burned area detection. 

(2) For an optimal burned area detection algorithm identification, MODIS 

Level 1B data in 2014 are firstly used to extract burned area based on the optimal top 

three spectral indices using thresholding technique and decision tree classification. All 

products are used to assess accuracy with the burned areas from Landsat data 

extraction, RFD fire report, and field survey. The algorithm which provides the best 

overall accuracy and Kappa coefficient values with pair-wise Z-test is selected as an 

optimal burned area detection algorithm. 

(3) For an optimal fire detection algorithm identification, MODIS hotspot 

data in 2014 (MOD14/MYD14 algorithm) and the MODIS hotspot data with decision 

tree are firstly extracted and then overall accuracy are performed based on Landsat 

data, RFD fire report, and field survey. Herein, ancillary data of 13 biophysical 

factors include elevation, slope, NDVI, distance from stream, distance from water 

body, distance from road, distance from village, distance from fire ground survey, 

distance from agricultural area, distance from shifting cultivation, distance from 
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evergreen forest, distance from deciduous forest, and distance from degraded forest 

are used to construct decision tree structure. 

 

1.4 Limitation of the study 

Limitation of the study is listed below. 

(1) There are many spectral indices for burned area detection. Therefore, the 

study carefully selected only 12 spectral indices based on the reviewing of the past 

and present research works. 

(2) For MODIS data acquisition, free available data from Level 1 and 

Atmosphere Archive and Distribution System (LAADS) and Fire Information for 

Resources Management System (FIRMS) are compiled during fire season between 

2010-2014 for burned area and fire detection algorithm identification. At the same 

time, Landsat data from USGS are downloaded (www.glovis.usgs.gov) at least one 

dataset per month for burned area and its severity extraction. 

(3) For this research, burned area and fire detection are focused on the fire 

phenomena during the fire season (February to April). 

 

1.5 Definition of technical terms 

Definition of technical terms in the study is listed below. 

(1) Hotspot or called MODIS hotspot or active fire. It represents locations of 

fire pixel in 1 km
2
, which is flagged by the MOD14/MYD14 fire and thermal 

anomalies algorithm, in this study the hotspots collected from NASA/LANCE-

FIRMS. 
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(2) Burned area. In the study, burned areas which are disturbed by fire are 

extracted using two data sources: MODIS and Landsat data. For MODIS data, 

selected spectral indices are used to calculate and identify burned using two selected 

techniques (thresholding technique and decision tree). While, Landsat data are used to 

extract and identify burned area using Burned Area Mapping Software (BAMS). 

(3) Burn severity and its classification. Burn severity is here defined as 

percentage of the identified burned area by Landsat over MODIS grid (1 km). The 

classifications of burn severity are as follows: 

Percentage of burned area within 1 km MODIS grid Severity classes 

 0% None 

 1-25% Low 

 25-50% Moderate 

 50-75% High 

 75-100% Very high 

(4) An optimal top three burned area spectral indices. The optimal burned 

area spectral indices are identified based on the ranking of the deviance values using 

ordinal logistics regression analysis. Herein, the top three ranking indices with 

minimal deviance values are selected and used as an optimal top three burned area 

spectral indices. 

(5) An optimal burned area and fire detection algorithm. The optimal 

algorithms are justified based on accuracy assessment and Z statistics pair-wise 

comparison. For an optimal burned area detection algorithm, the selected spectral 

indices and their modification are used for these justifications. Meanwhile, MODIS 
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hotspot and modified MODIS hotspot with decision tree are used to identify an 

optimal fire detection algorithm. 

(6) Fire season. In this study, fire season is here considered between 

February and April in each year. 

 

1.6 Study area 

The study area covers 9 provinces in the Upper Northern region of Thailand, 

defined by the National Geographical Committee in 1978 with six-region 

classification system. There are Mae Hong Son, Chiang Rai, Chiang Mai, Phayao, 

Lam Pang, Lamphun, Phrae, Nan, and Uttaradit provinces. It is located between 

latitudes 17° 09' 18″ N and 20° 28' 23″ N and between longitudes 97° 20' 36″ E and 

101° 02' 26″ E. The elevation ranges from 40 to 2,565 m above mean sea level 

(Figure 1.1). It covers area of 96,293.05 km
2
. In 2014, population is about 6,169,843 

(Table 1.3).  

Upper Northern region of Thailand is geographically characterized by several 

mountain ranges, which continue from the Shan Hills in bordering Myanmar and 

Laos, and the river valleys which cut through them. In the western part, it is bounded 

by the Salween River and the Mekong in the eastern part. The study site consists of 

four major basins, namely Ping, Wang, Yom, and Nan, which tributary of the Chao 

Phraya River, in the central part run from north to south. The basins cut across the 

mountains of two great ranges, the Thanon Thong Chai Range in the western part and 

the Phi Pan Nam in the eastern part (Wikipedia, 2014). 

The climate is divided into three distinct seasons; summer is from February to 

April, the rainy season is from May to October, and winter is from November to 
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January, with cooler winters than the other regions. The statistics of climate data in 

2014 show that mean annual temperature is about 26.37 °C, mean relative humidity is 

about 74.33%, mean pressure is approximately 1,009.43 mbar, annual rainfall is about 

1,105.96 mm, and number of rainy days is 122 days (Table 1.4). 

A large part of Upper Northern region of Thailand is covered by mountains 

and hills with forests. Minority ethnic hill tribe villages dotted many parts of the hills. 

The land use and land cover type in 2011 of Land Development Department (LDD) 

shows 62.79% covered by forest land, and 21.83% is agricultural land. The majority 

of forest type is deciduous forest (60.59%) and evergreen forest (34.99%). 

 

 

Figure 1.1 Map of the study area. 
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Table 1.3 Area and population in each province of Upper Northern region, Thailand.  

Province Area (km
2
) 

Population  

(31 December 2014) 

Population  

(31 December 2013) 

(1) Chiang Mai 22,110.49 1,678,284 1,666,888 

(2) Chiang Rai 11,560.21 1,207,699 1,204,660 

(3) Lampang 12,524.62 753,013 754,862 

(4) Phayao 6,154.05 484,454 486,744 

(5) Nan 12,254.60 478,264 477,912 

(6) Uttaradit 7,922.38 460,400 460,995 

(7) Phrae 6,467.54 454,083 456,074 

(8) Lamphun 4,490.51 405,468 405,268 

(9) Mae Hong Son 12,808.65 248,178 246,549 

Total 96,293.05 6,169,843 6,159,952 

 

Source: Department of Provincial Administration (2014). 

 

Table 1.4 Climate data in 2014 of Upper Northern region of Thailand. 

Province 

Mean of 

temperature 

(celsius) 

Mean of  

relative humidity 

(%) 

Mean of 

pressure 

(mbar) 

Mean of 

rainfall  

(mm) 

Number of 

rainy days 

(day) 

(1) Chiang Mai 26.7 70.0 1,010.0 1,064.4 112.0 

(2) Chiang Rai 25.0 76.0 1,009.2 1,470.0 128.0 

(3) Lampang 26.7 74.0 1,010.1 1,145.8 110.0 

(4) Phayao 25.5 76.0 1,009.2 1,141.5 97.0 

(5) Nan 26.5 76.0 1,009.4 1,048.0 114.0 

(6) Uttaradit 27.8 72.0 1,009.2 1,224.9 110.0 

(7) Phrae 26.6 77.0 1,009.4 1,046.1 112.0 

(8) Lamphun 26.5 72.0 1,009.1 788.0 101.0 

(9) Mae Hong Son 26.0 76.0 1,009.3 1,024.9 124.0 

Average 26.37 74.33 1,009.43 1,105.96 112 

 

Source: National Statistical Office (2014). 
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1.7 Benefit of the study 

The main benefits of the study can be summarized in the following lists. 

(1) To understand in detail of spectral indices for burned areas detection, 

especially an optimal of spectral indices for burned area detection in Upper Northern 

region of Thailand. 

(2) To obtain optimal algorithms for burned area and fire detection using 

MODIS and Landsat data in Upper Northern region of Thailand. 
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CHAPTER II 

RELATED CONCEPTS AND LITERATURE REVIEWS 

 

Related theories and concepts include (1) Plank‟s law, (2) Wien‟s 

displacement law, (3) fire spectral signature, (4) MODIS characteristic, algorithm, 

hotspot and caveat, (5) spectral indices for burned area detection and its algorithm, 

and (6) literature reviews are described in this chapter. 

 

2.1 Planck’s law 

Planck‟s radiation law defines the behavior of the energy emitted by a surface 

as a function of wavelength and temperature. For any external surface of a body, if its 

temperature is higher than 0 K or -273.14 C, it emits electromagnetic radiation in 

relation to the body temperature and the physical-chemical-geometric characteristics 

of its surface, while it reflects, absorbs or transmits the electromagnetic radiation 

coming from an external source. The two main sources of electromagnetic energy are 

the sun and the earth. 

Electromagnetic radiation is defined by wavelength (λ) and radiation 

frequency (ν), they have a inversely proportional relelationship as: 

    
 

 
, (2.1) 

where c is light speed in a vacuum (m.s
-1

), λ is wavelength (m), and ν is radiation 

frequency (s
-1

). 
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The propagation of the light, or electromagnetic radiation can be considered at 

constant speed in the vacuum space about 300,000 km s
−1

. The general law of 

electromagnetic emission was enunciated by Planck in December 1900 as: 

    𝜈, (2.2) 

where   is quantum of energy of the radiation (J), h is Plank‟s constant (6.626  10
-34

 

J s), and ν is radiation frequency (Gomarasca, 2004). 

 

2.2 Wien’s displacement law 

According to the Wien‟s displacement law, the hotter a surface is the peak of 

its temperature curve shifts to the shorter wavelengths, and the colder a surface is, its 

peak temperature shifts to the longer wavelengths. Wien‟s displacement law can be 

expressed as: 

      
     

 
, (2.3) 

where      is the wavelength at which the radiation is maximum, and it is expressed 

in μm, T is the absolute temperature in Kelvin, and 2,898 is the Wien‟s displacement 

constant.  

With the help of Wien‟s displacement formula, it is possible to know the 

wavelength at which the radiation peaks if the temperature of the blackbody is known 

(Gomarasca, 2004). For example when the temperature is 750 K (fire condition) then 

the maximum temperature on applying Wien‟s displacement law would be at band 3.9 

μm. But, if the temperature is 300 K (normal non fire condition) the maximum 

temperature would be at band 9.7 μm. Therefore, the spectral range 3.9 and 9.7 μm 

are often used for fires detection. 
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2.3 Fire spectral signature 

Wildfire generates various types of remotely sensed signal as a result of the 

biomass combustion process. Some fire effects, such as heat and smoke last for 

relatively short periods of time. Others, like the char residue left on the surface, and 

especially the altered vegetation structure are more persistent (Pereira, 1999).  

(1) Heat 

Temperatures of 1,000 K and 600 K can be assumed as representative of 

typical flaming and smouldering combustion phases of vegetation fires, respectively 

(Lobert and Warnatz, 1993). According to Wien„s displacement law, the peak 

emission of radiance for flames and smouldering surfaces would be located in the 

middle infrared (MIR), between 3-5 µm. For an ambient temperature of 290 K  

(17 °C), the peak of radiance emission is located at approximately 10 µm. Fire 

detection from remote sensing exploits this behavior, and typically relies on some 

combination of brightness temperature measured in the 3-5 µm and 10-12 µm regions.  

 (2) Smoke 

Biomass burning in wildfires is not fully efficient, due to high fuel moisture, 

insufficient oxygenation of the reaction zone, inefficient heat transfer, etc. The more 

efficient phase of flaming combustion yields products such as char (partially oxidized 

wood) coexists with less efficient smouldering combustion, the phase that takes place 

behind the active flame front and yields substantial amounts of smoke. Since the 

objective is to detect and map fire effects at the land surface, smoke is seen as an 

atmospheric disturbance that interferes with this objective. (Jacob, 1999). 

The perturbation caused by smoke aerosol to observation of the land surface 

from satellite can be quantified calculating the aerosol transmittance, which increases 
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strongly with wavelength. Smoke aerosol transmittance is very low in the visible 

spectral domain, which becomes inadequate to monitor the land surface when biomass 

burning emissions are present in the atmosphere in significant amounts. Under such 

circumstances burned area mapping is better accomplished using near infrared (NIR 

0.7-1.2 µm) and shortwave infrared (SWIR 1.4-2.5 µm) spectral data (Justice et al., 

2006; Pereira, Mota, Calado, Oliva, and González-Alonso, 2011). 

 (3) Charcoal 

The magnitude and direction of spectral changes caused by the surface 

charring depends on the condition of the vegetation prior to burning. In ecosystems 

dominated by herbaceous vegetation (e.g., savannas, steppe, and grasslands), there is 

a marked annual phenological cycle, and the aboveground plant parts typically are 

dead and dry at the time fires occur. The major spectral change is a sharp decrease in 

surface reflectance over the entire 0.4-3.0 µm region, i.e. from bright dry grass to 

charred soil surface. In contrast, in most forests and shrub lands, the aboveground 

vegetation is alive and green during the fire season. In this case, the drop in NIR 

reflectance tends to be smaller than in savannas, steppes, and grasslands. Spectral 

reflectance changes in the SWIR are more complex, because tall, dense vegetation is 

dark and replacing this kind of land cover by a charcoal layer may not darken the 

surface much further. When a bright soil background is exposed as a result of the fire-

induced erosion, SWIR surface reflectance may display a small increase (Pereira et 

al., 2011). Spectral signatures of charcoal, green vegetation, and dry vegetation is 

shown in Figure 2.1. 
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Source: Pereira et al. (2011). 

Figure 2.1  Typical spectral reflectance signatures of pure charcoal, green vegetation 

  and dry vegetation. 

 

 (4) Burned area 

Fire alters the vegetation structure by consuming leaves, twigs and fine 

branches. The resulting spectral changes last longer than those caused by the 

deposition of ash and charcoal. Persistence of the burned area signal is a function of 

vegetation type, net primary productivity and plant succession dynamics, and may 

range from a few weeks in tropical grasslands to decades in boreal forests. 

Modifications of the three dimensional structure of vegetation affects its shading 

pattern, while consumption of photosynthetically active plant parts eliminates the 

greenness signal. The soil background exposed by vegetation removal will also 

contribute to the overall spectral signal of the fire burned area (Pereira et al., 2011).  
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In the visible area of spectrum (0.4-0.7 μm) a multispectral behavior of burned 

areas can be seen depending on the type of the affected vegetation, severity of burning, 

and others. A strong decrease in reflectance of burned surfaces is observed in near 

infrared (0.78-0.90 μm). The destruction of the leaf cell structure, which reflects large 

quantities of the incident solar radiation, is responsible for the reduction of the 

spectral signal of burned surfaces. In contrast, an increase in reflectance of burned 

surfaces is observed in middle infrared because of the water content (Koutsias, 

Pleniou, Nioti, and Mallinis, 2010). The spectral signatures of the burned and 

unburned areas as recorded from the difference sensor are shown in Figure 2.2. 

 

  
(a) (b) 

  

(c) (d) 

Source: Koutsias et al. (2010). 

Figure 2.2 Spectral signatures of the burned/unburned areas as recorded from the  

(a) IKONOS (b) ASTER (c) LANDSAT TM and (d) MODIS. 
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2.4 MODIS characteristic, algorithm, hotspot and caveat 

There are a number of satellite instruments that have been used to detect fires 

from space. Among these are the visible and low light sensors of the Defense 

Meteorological Satellite Program (DMSP), the Advanced Very High Resolution 

Radiometer (AVHRR) onboard the National Oceanic and Atmospheric Association‟s 

(NOAA) satellites, the visible and infrared spin-scan radiometer on board the 

Geostationary Operational Environmental Satellite (GOES), the thematic mapper on 

board the Landsat satellites, and more recently the Moderate Resolution Imaging 

Spectroradiometer (MODIS) sensor onboard the NASA‟s Earth Observation Satellites 

(EOS). In this study characteristic of MODIS and its application in fire detection is 

here emphasized. 

 2.4.1 MODIS characteristics 

The MODIS instruments on board AQUA and TERRA provide global 

coverage of the Earth‟s surface in high radiometric sensitivity (12 bits). Data collected 

from the MODIS instruments span over 36 spectral bands, ranging from the visible 

(0.4 μm) to the long wave infrared (14.4 µm). The MODIS design combines high 

resolution data from the visible and near infrared channels (250-500 m) with the 

moderate resolution of its infrared channels (1 km). MODIS is the first sensor that 

included fire monitoring capabilities in its design. Up to date MODIS is one of the 

most important data sources for global mapping of both fire locations and burned 

areas. MODIS sensors are mounted aboard two satellites, the Terra spacecraft 

launched in December 1999 and the Aqua spacecraft launched in May 2002.  
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The orbit of the Terra satellite goes from north to south across over 

Thailand and study area around 10.00-11.00 AM and 10.00-11.00 PM for nighttime, 

and Aqua passes south to north over Thailand around 01.00-02.00 PM day time and 

01.00-02.00 AM night time. (NASA FIRMS, 2015). The specification and spectral 

characteristic of MODIS are shown in Tables 2.1 and Table. 2.2 (NASA, 2012). 

 

Table 2.1 The specification of MODIS sensor. 

Structure Specification 

Orbit: 705 km, Terra and Aqua, 

Sun-synchronous, near-polar, and circular 

Scan rate: 20.3 rpm, cross track 

Swath dimensions: 2,330 km (cross track) by 10 km (along track at nadir) 

Telescope: 17.78 cm diam. off-axis  

A focal (collimated), with intermediate field stop 

Size: 1.0 x 1.6 x 1.0 m 

Weight: 228.7 kg 

Power: 162.5 W (single orbit average) 

Data rate: 10.6 Mbps (peak daytime) 

6.1 Mbps (orbital average) 

Quantization: 12 bits 

Spatial resolution: 250 m (bands 1-2) 

500 m (bands 3-7) 

1,000 m (bands 8-36) 

Design life: 6 years 

 

Source: NASA (2012). 
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Table 2.2 MODIS spectral characteristics. 

Primary Use Band Bandwidth 
Spectral Radiance 

(W/m
2
 -µm-sr) 

Land/cloud/aerosols boundaries 1 620 - 670 nm 21.8 

2 841 - 876 nm 24.7 

Land/cloud/aerosols properties 3 459 - 479 nm 35.3 

4 545 - 565 nm 29.0 

5 1,230 - 1,250 nm 5.4 

6 1,628 - 1,652 nm 7.3 

7 2,105 - 2,155 nm 1.0 

Ocean color/phytoplankton/ 

biogeochemistry 

8 405 - 420 nm 44.9 

9 438 - 448 nm 41.9 

10 483 - 493 nm 32.1 

11 526 - 536 nm 27.9 

12 546 - 556 nm 21.0 

13 662 - 672 nm 9.5 

14 673 - 683 nm 8.7 

15 743 - 753 nm 10.2 

16 862 - 877 nm 6.2 

Atmospheric water vapor 17 890 - 920 nm 10.0 

18 931 - 941 nm 3.6 

19 915 - 965 nm 15.0 

Surface/cloud temperature 20 3.660 - 3.840 µm 0.45 (300K) 

21 3.929 - 3.989 µm 2.38 (335K) 

22 3.929 - 3.989 µm 0.67 (300K) 

23 4.020 - 4.080 µm 0.79 (300K) 

Atmospheric temperature 24 4.433 - 4.498 µm 0.17 (250K) 

25 4.482 - 4.549 µm 0.59 (275K) 

Cirrus clouds/water vapor 26 1.360 - 1.390 µm 6.00 

27 6.535 - 6.895 µm 1.16 (240K) 

28 7.175 - 7.475 µm 2.18 (250K) 

Cloud properties 29 8.400 - 8.700 µm 9.58 (300K) 

Ozone 30 9.580 - 9.880 µm 3.69 (250K) 

Surface clound temperature 31 10.780 - 11.280 µm 9.55 (300K) 

32 11.770 - 12.270 µm 8.94 (300K) 

Cloud top altitude 33 13.185 - 13.485 µm 4.52 (260K) 

34 13.485 - 13.785 µm 3.76 (250K) 

35 13.785 - 14.085 µm 3.11 (240K) 

36 14.085 - 14.385 µm 2.08 (220K) 

 

Source: NASA (2012). 
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MODIS used to generate a range of products that capture the location 

of a fire, its emitted energy, the flaming and smouldering ratio, and an estimate of the 

area burned (Giglio et al., 2003; Justice et al., 2006; Davies, Ilavajhala, Wong, and 

Justice, 2009). In addition, it is especially suitable for fire monitoring because it 

provides a high temporal revisiting rate with four daily satellite overpasses resulting 

in up to four hotspots observations per day. The MODIS fire products allow 

producing dense and historical time series of fire occurrences that can be used to 

assess the multi-temporal characteristics of fire occurrences and the seasonality of 

fire. Furthermore, the real time data may allow characterizing the effectiveness and 

efficiency because of the long data record with daily observations, the MODIS fires 

may also permit calculating the seasonality, timing, and inter-annual variation of fires 

(Giglio, Werf, Randerson, Collatz, and Kasibhatla, 2006).  

 2.4.2 MODIS fire detection algorithm 

The fire detection of MODIS is based on heritage algorithms 

developed for the AVHRR and TRMM VIRS (Tropical Rainfall Measuring Mission 

with Visible and Infrared Scanner). (Kaufman et al., 1998; Justice et al., 2002; Giglio 

et al., 2003; Justice et al., 2006). The MODIS fire detection and characterization 

techniques are fully automated for the production of daily, global fire information. In 

order to detect the presence of fire in a non-interactive fashion, a set of detection 

criteria different for the day and night fire observations are prescribed. These 

multispectral criteria are based on the apparent temperature of the fire pixel and the 

difference between the fire pixel and its background temperature (Justice et al., 2006).  

Based on a review of fire properties by Lobert and Warnatz (1993) 

flaming temperature can be anywhere between 800 K and 1,200 K and as hot as  
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1,800 K. Smoldering should be under 850 K and above 450 K. The actual range is 

probably smaller. Therefore, on the assumption that the flaming temperature is  

1,000 K ± 200 K and the smoldering temperature is 600 K ± 100 K. 

In addition, in a given fire pixel, it may have areas that are not burned, 

areas that are smoldering and areas that are in flames. Justice et al. (2006) stated that 

the 4 µm channel is sensitive to both flaming and smoldering. Figure 2.3 shows the 

effect of fire size and temperature on the apparent temperature of the pixel at 4 µm. 

This channel is sensitive to fires as small as 10
-4

 of the fire pixel. 

 

 

Source: Justice et al. (2006). 

Figure 2.3  The apparent temperature of the pixel at 3.96 μm, as observed by 

MODIS, for a single fire as a function of the fraction of the pixel covered 

by the fire and its temperature. 
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Fire detection algorithm is performed using a contextual algorithm that 

exploits the strong emission of mid infrared radiation from fires. The algorithm 

examines each pixel of the MODIS swath, and ultimately assigns to each one of the 

following classes: missing data, cloud, water, non-fire, fire, or unknown. The 

algorithm uses brightness temperatures derived from the MODIS 4 µm and 11 µm 

channels, denoted by T4 and T11, respectively. The MODIS instrument has two 4 µm 

channels, numbered 21 and 22, both of which are used by the detection algorithm. 

Channel 21 saturates at nearly 500 K; channel 22 saturates at 331 K. Since the low-

saturation channel (22) is less noisy and has a smaller quantization error, T4 is 

derived from this channel whenever possible. However, when channel 22 saturates or 

has missing data, it is replaced with the high saturation channel (21) to derive T4. T11 

is computed from the 11 µm channel (channel 31), which saturates at approximately 

400 K for the Terra MODIS and 340 K for the Aqua MODIS. The 12 µm channel 

(channel 32) is used for cloud masking and brightness temperatures for this channel 

are denoted by T12 (Justice et al., 2002; Giglio et al., 2003; Justice et al., 2006). The 

250 m resolution red and near infrared channels, aggregated to 1 km, are used to 

reject false alarms and mask clouds. These reflectance are denoted by 0.65 and 

0.86, respectively. The 500 m resolution of 2.1 µm band, also aggregated to 1 km, is 

used to reject water-induced false alarms; the reflectance in this channel is denoted by 

2.1 (Justice et al., 2002; Giglio et al., 2003; Justice et al., 2006). A summary of all 

MODIS bands used in fire detection algorithm is shown in Table 2.3. 
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Table 2.3 MODIS channels used in fire detection algorithm. 

Channel Wavelength (µm) Purpose 

1 0.65 Sun glint and coastal false alarm rejection; cloud masking. 

2 0.86 Bright surface, sun glint, and coastal false alarm rejection; 

cloud masking. 

7 2.1 Sun glint and coastal false alarm rejection. 

21 4.0 High-range channel for fire detection. 

22 4.0 Low-range channel for fire detection. 

31 11.0 Fire detection, cloud masking. 

32 12.0 Cloud masking. 

 

Source: Giglio et al. (2003). 

 

To avoid false detection under MODIS fire detection algorithm, Justice 

et al. (2006) stated that all pixels for which T4 < 315 K (305 K at night) or ∆T = T4 -

T11 < 10 K (3 K at night) or 0.86 > 0.3 (daytime only) should be immediately 

eliminated as possible fires (potential fire pixels). For absolute fire detection, the 

algorithm requires that at least one of two conditions is satisfied. These are 

(1) T4 > 360 K (330 K at night), and 

(2) T4 > 330 K (315 K at night) and ∆T > 25 K (10 K at night). 

If either of these absolute criteria is not met, the algorithm pursues a 

relative fire detection in which the fire is distinguished from the mean background 

values by three standard deviations in T4 and ∆T as 

T4 > mean (T4) + 3stddev (T4), and 

∆T > median (∆T) + 3stddev (∆T). 

The mean, median, and standard deviations (denoted by “mean”, 

“median”, and “stddev” above) are computed for pixels within an expanding grid 

centered on the candidate fire pixel until a sufficient number of cloud, water, and fire-
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free pixels are identified. A “sufficient number” is defined as 25% of all background 

pixels, with a minimum of six. Water pixels are identified with an external water 

mask, and cloud pixels are identified with the MODIS cloud mask product (MOD35). 

Fire-free background pixels are identified as those pixels for which T4 < 325 K (315 

K at night) and ∆T < 20 K (10 K at night). If either standard deviation is below 2 K, a 

value of 2 K is used instead. 

The background window is allowed to grow up to 21X21 pixels in size. 

If this limit is reached and the previous criteria regarding the minimum number of 

valid background pixels are not met, the relative detection tests cannot be used. If the 

absolute tests do not indicate that an active fire is present in this situation, the 

algorithm flags the detection result as unknown.  

Combining all tests into a single expression, a pixel is classified as a 

fire pixel in daytime if the following conditions are satisfied: 

{T4 > mean (T4) + 3stddev (T4) or T4 > 330 K}, and  

{∆T > median (∆T) + 3stddev(∆T) or ∆T > 25 K}, or 

T4 > 360 K. 

For the nighttime algorithm they become as: 

{T4 > mean(T4) + 3stddev(T4) or T4 > 315 K}, and  

{∆T > median (∆T) + 3stddev(∆T) or ∆T > 10 K}, or 

T4 > 330 K. 

Finally, for daytime observations when sun glint may cause false 

detections, a fire pixel is rejected if the MODIS 250 m red and near infrared channels 

have a reflectance above 30% and it lies within 40° of the specular reflection position. 
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Although the original MODIS fire detection algorithm of Kaufman et 

al. (1998) and Justice et al. (2002) are functioning reasonably well, they have two 

significant problems limiting the overall quality of the product. Firstly, persistent false 

detections occurred in some deserts and sparsely vegetated land surfaces, particularly 

in northern Ethiopia, the Middle East, and Central India. Not unexpectedly, most of 

these were caused by the algorithm‟s absolute threshold tests. Secondly, relatively 

small (yet generally obvious) fires were frequently not detected. In response to these 

problems, Giglio et al. (2003) have developed a replacement version of contextual 

algorithm that offers superior sensitivity to smaller, cooler fires and have yielded 

fewer blatant false alarms and now that available on version 5 (Giglio et al., 2003; 

Giglio, 2010). 

Giglio et al. (2003) had improved some aspect of the MODIS original 

algorithm. Their algorithm is starting from cloud and water remark. Daytime pixels 

are considered to be cloud-obscured if the following condition is satisfied: 

(0.65 + 0.89 > 0.9) or (T12 < 265 K), or 

(0.65 + 0.89 > 0.7) or (T12 < 285 K). 

Nighttime pixels are flagged as cloud if the single condition T12 < 265 

K is satisfied.  

Subsequently, the process is identifying the potential fire pixel. It is 

like the original algorithm, but is changed so that a daytime pixel is identified as a 

potential fire pixel if T4 > 310 K, ∆T > 10 K, and 0.86 < 0.3. For nighttime pixels, 

the reflective test is omitted and the T4 threshold reduced to 305 K. Pixels failing 

these preliminary tests are immediately classified as non-fire pixels. There are two 

logical paths through which fire pixels can be identified. The first consists of a simple 
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absolute threshold test. This threshold must be set sufficiently high so that it is 

triggered only by very unambiguous fire pixels, i.e. those with very little chance of 

being a false alarm. The second path consists of a series of contextual tests designed 

to identify the majority of fire pixels that are less obvious (Giglio et al., 2003). 

In this algorithm, the absolute threshold criterion remains identical to 

one employed in the original algorithm of Kaufman et al. (1998) as: 

T4 > 360 K (320 K at night). (2.4) 

In the next phase of the algorithm to background characterization, 

which is performed regardless of the outcome of the absolute threshold test, an 

attempt is made to use the neighboring pixels to estimate the radiometric signal of the 

potential fire pixel in the absence of fire. Valid neighboring pixels in a window 

centered on the potential fire pixel are identified and are used to estimate a 

background value. Within this window, valid pixels are defined as those that (1) 

contain usable observations, (2) are located on land, (3) are not cloud-contaminated, 

and (4) are not background fire pixels. Background fire pixels are in turn defined as 

those having T4 > 325 K and ∆T > 20 K for daytime observations, or T4 > 310 K and 

∆T > 10 K for nighttime observations (Giglio et al., 2003). 

If the background characterization was successful, a series of 

contextual threshold tests are used to perform relative fire detection. These look for 

the characteristic signature of an active fire in which both the 4 µm brightness 

temperature (T4) and the 4 - 11 µm brightness temperature difference (∆T) depart 

substantially from that of the non-fire background. Relative thresholds are adjusted 

based on the natural variability of the background. The tests are as following: 
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∆T > ∆ ̅ + 3.5 δ∆T, (2.5) 

∆T > ∆ ̅ + 6K, (2.6) 

T4 >  ̅4+ 3δ4, (2.7) 

T11 >  ̅11 + δ11 – 4 K, and (2.8) 

δʹ4 > 5K. (2.9) 

where  ̅4 and δ4 are the respective mean and mean absolute deviation of T4 for the 

valid neighboring pixels ( ̅11 and δ11), the respective mean and mean absolute 

deviation of T11 for the valid neighboring pixels (∆ ̅ and δ∆T), the respective mean 

and mean absolute deviation of ∆T for the valid neighboring pixels. The 4 µm 

brightness temperature mean and mean absolute deviation of those neighboring pixels 

that were rejected as background fires are also computed and are denoted by  ̅ʹ4 and 

δʹ4, respectively. 

Of these conditions, the first three isolate fire pixels from the non-fire 

background. The factor of 3.5 appearing in test Eq. 2.5 is larger than the 

corresponding factor of 3 in test Eq. 2.7 to help adjust for partial correlation between 

the ∆T observations. Condition (Eq. 2.8), which is restricted to daytime pixels, is 

primarily used to reject small convective cloud pixels that can appear warm at 4 µm 

(due to reflected sunlight) yet cool in the 11 µm thermal channel. It can also help 

reduce coastal false alarms that sometimes occur when cooler water pixels are 

unknowingly included in the background window. Any test based on δ11, however 

risks rejecting very large fires since these will increase the 11 µm background 

variability substantially. For example, over a typical land surface δ11 ≈ 1 K, whereas 

for land pixels spanning a large forest fire, δ11 will routinely exceed 20 K. For this 

reason, test Eq. 2.9 will be employed to disable test Eq. 2.8 when the background 
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window appears to contain large fires. This situation is recognized by an elevated 

value of δ4ʹ; the presence of background fire pixels increases this statistic 

considerably (Giglio et al., 2003). 

In the position to tentatively identify pixels containing active fires, for 

nighttime fires, in fact this will be an unambiguous, final identification. For daytime 

pixels, three additional steps are used to help eliminate false alarms caused by sun 

glint, hot desert surfaces, and coasts or shorelines as followings.  

A daytime pixel is tentatively classified as a fire pixel if 

{test Eq. 2.4 is true}, or 

{test Eq. 2.5 - Eq. 2.7 are true and test Eq. 2.8 or test Eq. 2.9 is 

true}; 

otherwise it is classified as non-fire. 

A nighttime candidate fire pixel is definitively classified as fire if 

{test Eq. 2.4 is true}, or 

{test Eq. 2.5 - Eq. 2.7 are true}; 

otherwise it is classified as non-fire. 

For those daytime and nighttime pixels for which the background 

characterization failed, i.e. an insufficient number of valid neighboring pixels were 

identified; only test Eq. 2.4 is applied in this step. If not satisfied, the pixel is 

classified as unknown, indicating that the algorithm was not able to unambiguously 

render a decision considerably (Giglio et al., 2003; Justice et al., 2006). 

 2.4.3  Hotspot 

The MODIS Rapid Response System was developed to provide near 

real time imagery from the MODIS instrument for a broad range of users. The Rapid 
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Response Team produces the MODIS fire location data that identify and characterize 

actively burning fires (e.g. wildfires and agricultural fires, etc.), and other thermal 

anomalies (e.g. volcanoes, etc.) at the time of satellite overpass. Fires that do not emit 

sufficient heat under relatively cloud-free conditions at overpass time are unlikely to 

go detected. The fire detection algorithms are fully automated and produce daily fire 

information for the entire globe. The detection criteria are based on the temperature of 

an each potential fire pixel and the difference between the temperature brightness of 

the fire pixel and its background temperature (Justice et al., 2006). 

The detection algorithm identifies pixels with one or more actively 

burning fires that are commonly referred to as “hotspot.” Each detected fire represents 

the centre of an (approximately) 1 km pixel that contains one or more hotspots. The 

actual pixel size varies depending on the location of an observation in the swath. 

Pixels further away from nadir (exactly vertical from the satellite) will grow larger. 

The coordinates of the fire in the attribute table does not represent the exact location 

of the fire, but the centre point of the pixel (Giglio, 2010). 

The size of the fire can be much smaller than the pixel size (Figure 

2.4). The detection probability of hotspot depends on a number of factors, among 

others on fire temperature and satellite viewing angle. Hotspot can detect flaming 

fires (~1000 K) as small as 100 m
2
 under ideal conditions with a 50% detection 

probability, or a 1000-2000 m
2
 smouldering fire (~600 K). Detection rates will be 

higher when the daily peak fire activity will coincide with the time of satellite 

overpass (Kaufman et al., 1998; Giglio et al., 2003; Hawbaker, Radeloff, Syphard, 

Zhu, and Stewart, 2008). Also, fires in degraded forests are easier to detect than fires 

in primary forests, because degraded forests burn hotter due to more dry fuel and the 
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open canopy. Primary forests are often dominated by ground fires with little heat 

production (Langner and Siegert, 2009). Ultimately, the algorithm assigns to each 

pixel one of the following classes: missing data, water, cloud, fire, non-fire or 

unknown (Giglio et al., 2003; Justice et al., 2006). 

 

 

Source: NASA (2013). 

Figure 2.4 Fire pixels detection using MODIS. 

 

The hotspots are derived from multiple MODIS channels to detect the 

thermal anomalies on a per-pixel basis. They produce very sophisticated fire 

information, which is also based on the algorithms developed by Kaufmann et al. 

(1998), Justice et al. (2002), and Giglio et al. (2003). hotspots are calculated by the 

MODIS Rapid Response system and reported by FIRMS with multiple reported fields. 

These fields include latitude and longitude (center point location), brightness 

temperature in Kelvin (BT) of either channel 21 or 22, scan and track (actual spatial 
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resolution of the scanned pixel), acquisition date and time of the overpass of the 

satellite, satellite name (Terra or Aqua), percentage of fire confidence, version of 

algorithm, and brightness temperature of channel 31. Sometimes that can be called 

MOD14 then hotspot detected by Terra and MYD14 then detected by Aqua (Justice et 

al., 2006; Giglio, 2010).  

 2.4.4 Caveats of the hotspot 

Several issues obstruct the use of the MODIS fire products to indicate 

the location of active small scale fires. For one, the textural component of the 

detection algorithm causes problems with false detections in areas where the canopy 

cover exhibits strong differences in surface temperatures. This may be the case where 

gaps in the forest canopy cover are present that can be due to recent clearings. 

Another fraction of false detections may be related to recent burning activities where 

homogenous areas of dark char cause errors of commission, such as in the Amazon 

(Schroeder et al., 2008).  

Cloud cover obstructs fire detection and may lead to high errors of 

omission (undetected fires). Fire counts are thus likely underestimated, particularly in 

tropical regions (Giglio et al., 2006b; Schroeder et al., 2008). Clouds are yet also 

indicative of rain when fire probability is low, which possibly reduces this bias 

(Aragao and Shimabukuro, 2010). 

The size of a particular fire cannot be calculated from the fire hotspot 

data and no distinction can be made between large fires and small fires. While there is 

possibly a direct relation between the number of fires detected in a specific area, the 

size of the area affected, the smoke emitted, and the biomass burnt, the degree of 

these linkages is unclear from the hotspot. (Aragao and Shimabukuro, 2010). 
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The hotspot does not allow distinguishing, if one or more fires were 

actively flaming within a pixel on the same day. Yet, it is often quite likely that more 

than one fire occurs within a pixel during the burning season, because of the coarse 

spatial resolution (1 km2) of the fire records (Giglio et al., 2003; Giglio, 2010).  

Finally, burned areas cannot be derived from the hotspots, because the 

actual size and area affected of the fire is unknown. The hotspots data can still be 

useful to approximate fire affected areas in the absence of high resolution burned area 

maps (Giglio et al., 2003; Miettinen et al., 2007). 

 

2.5 Spectral indices for burned area detection and its algorithm 

 2.5.1 Spectral indices for burned area detection 

 There are many spectral indices that can use for burned area detection. 

The characteristics of selected spectral indices applied in this study are summarized as 

shown Table 2.4. It covers index, abbreviation, formula, concept or application, and 

reference. 
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Table 2.4 The characteristics of selected spectral indices for burned area detection. 

Index  Abbreviation Formula Concept or Application Reference 

Normalized 

Difference 

Vegetation Index 

NDVI NDVI = (NIR -

red)/(NIR + red) 

The NDVI is an equation that takes into account the amount of infrared reflected by 

plants. Live green plants absorb solar radiation, which they use as a source of energy 

in the process of photosynthesis. The reason NDVI is related to vegetation is that 

healthy vegetation reflects very well in the near-infrared part of the electromagnetic 

spectrum. The NDVI value is varies between -1.0 and +1.0. The negative values of 

NDVI correspond to deep water. Values close to zero (-0.1 to 0.1) generally 

correspond to barren areas of rock, sand, or snow. Low, positive values represent 

shrub and grassland (approximately 0.2 to 0.4), while high values indicate temperate 

and tropical rainforests. The typical range is between about 0.1 to 0.6 (for a very green 

area). Then, the NDVI is strongly related to above-ground biomass and as a result the 

index has shown to discriminate reasonably well between burned and unburned areas. 

Tucker 

(1979); 

Huete et al. 

(2002) 

 

Global 

Environment 

Monitoring  

Index  

GEMI GEMI = γ(1 -0.25 γ) 

-((Red -0.125)/(1 -

Red)) 

with γ = (2(NIR2 -

Red2) + 1.5NIR + 

0.5Red)/(NIR + 

Red+ 0.5) 

The Global Environmental Monitoring Index (GEMI ), claimed to be less affected by 

soil and atmospheric variations than NDVI (Pinty and Verstraete,1992). It has also 

proved to be more sensitive to burned area discrimination than NDVI (Pereira 1999). 

in addition the study of Chuvieco et al. (2002) that to compare of grey displays of 

NDVI, SAVI, and GEMI showed similar patterns for burned area, although a higher 

contrast with unburned areas is observe d in GEMI. 

Pinty and 

Verstraete 

(1992); 

Pereira 

(1999); 

Chuvieco et 

al. (2002) 
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Table 2.4 (Continued) The characteristics of selected spectral indices for burned area detection. 

Index Abbreviation Formula Concept or Application Reference 

Modified Soil 

Adjusted 

Vegetation 

Index 

MSAVI MSAVI = (2NIR + 1 

-((/2NIR+ 1)
2
 -

8(NIR -red))
1/2

)/2 

Qi et al. (1994) developed the MSAVI to more reliably and simply calculate a soil 

brightness correction factor. The output of MSAVI is a new image layer 

representing vegetation greenness with values ranging from -1 to +1. Furthermore, 

MSAVI have been successfully applied in burned land. 

Qi et al. (1994) 

 

Normalized 

Difference 

Water Index 

NDWI NDWI = (NIR - 

sSWIR)/(NIR + 

sSWIR) 

(Band 6) 

The NDWI is defined as the ratio of a near infrared (NIR) channel centered at 0.86 

µm and a short wave infrared (SWIR) channel centered at 1.64 µm. NDWI is 

influenced by both desiccation and wilting in the vegetation canopy, and thus it 

may be a sensitive indicator for drought monitoring. 

Gao, (1996); 

Wang et al.  

(2008) 

Burned Area 

Index  

BAI BAI = 1/ ((NIR-

0.06)
2
+(red-0.1)

2
) 

The BAI defined by Martin (1998) specifically to discriminate fire affect areas. 

This index is computed from the spectral distance from each pixel to a reference 

spectral point, where recently burned areas tend to converge. The BAI emphasizes 

the charcoal signal in red near infrared (R-NIR) bi-spectral space. Furthermore, the 

research of Chuvieco et al. (2002) compared the grey displays of NDVI, SAVI and 

GEMI showed similar patterns for burned areas, although a higher contrast with 

unburned areas is observed in GEMI. Unlike the other indices, BAI shows the 

highest values for burned areas, clearly separating before/after situations. 

Martin (1998); 

Chuvieco et al. 

(2002) 
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Table 2.4 (Continued) The characteristics of selected spectral indices for burned area detection. 

Index Abbreviation Formula Concept or Application Reference 

Mid InfraRed 

Burn Index  

MIRBI MIRBI = 10 lSWIR -

9.8 sSWIR + 2 

The MIRBI make use of the characteristic post-fire reflectance increase in the short wave 

infrared (SWIR) spectral domain (1.3 to 2.5 µm) in combination with the near infrared 

(NIR) reflectance drop associated with the vegetation removal. 

Trigg and 

Flasse 

(2001) 

Burned Area 

Index 

Modified 

BAIM BAIM = 1/ ((NIR-

0.05)
2
+(lSWIR-0.2)

2
) 

The BAIM is based on the Burned Area Index (BAI), previously proposed by Martin 

(1998) to map burned areas using NOAA-AVHRR. The utility of the BAIM index has 

been assessed against other spectral indices (MIRBI, NDVI, NBR) to map burned areas, 

The research of Martin et al. (2005) using 10-day multi-temporal composites of MODIS 

data acquired over the Iberian Peninsula in August 2001 and 2003. The BAIM provided 

the highest discrimination ability among the indices tested, and offered a high accuracy 

for medium to large fires.  

Martin et al. 

(2005) 

Normalized 

Burn Ratio  

NBR NBR = (NIR -

lSWIR)/(NIR + 

lSWIR) 

The NBR combining information on the NIR channel centered at approximately 0.8 µm 

and a SWIR channel centered at approximately 2.1 µm has been widely used to map 

burned areas and burn severity. Since the NIR and SWIR spectral bands have the greatest 

change among reflective spectral bands, with NIR decreasing and SWIR increasing 

through the fire, the NBR would be most discriminating for burn effects. In addition, the 

NBR has become accepted as the standard spectral index to assess the burn severity.  

Key and 

Benson 

(2005) 
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Table 2.4 (Continued) The characteristics of selected spectral indices for burned area detection. 

Index Abbreviation Formula Concept or Application Reference 

Normalized 

Difference 

Shortwave 

Infrared 

NDSWIR NDSWIR = (NIR -

sSWIR)/(NIR + sSWIR) 

George, Rowland, Gerard, and Balzter (2006) used NDSWIR of MODIS imagery 

to map burnt areas of boreal forest in Central Siberia. They found that this index 

was sensitive to canopy moisture and structure. Therefore, immediately after a 

fire, the SWIR reflectance decreases due to absorption by combustion. 

George et al. 

(2006) 

Normalized 

Multi-band 

Drought Index 

NMDI NMDI = (NIR -(sSWIR 

-lSWIR))/(NIR + 

(sSWIR -lSWIR)) 

The NMDI has strong signals corresponding to fires. The research of Wang et al. 

(2008) showed NMDI reveals the highest overall performance and discrimination 

power compared to NDWI and NBR. 

Wang et al. 

(2008) 

SWIR-MIR 

Index 

SMI (sSWIR -MIR)/(sSWIR 

+ MIR) 

SWIR-MIR index (SMI) based on single date short-wave infrared (SWIR) and 

mid infrared (MIR) reflectance. In contrast with the (d)NBR, SMI index is robust 

against scattering caused by smoke plumes over fires. In addition, Veraverbeke, 

Hook, and Hulley, 2012), generated the SMI using MODIS/ASTER showed the 

SMI is more sensitive to char fractional cover than the NBR. The SMI results in 

values close to zero for char, whereas all terrain features not affected by fire result 

in higher SMI values. As the SMI only inputs longer wavelengths that remain 

unaffected by smoke of the fire, it can be used over large fires. 

Veraverbeke  

et al. (2012) 

Char Soil Index CSI CSI = NIR/ lSWIR CSI is defined as the simple ratio between the NIR and lSWIR reflectance. The 

study of Schepers et al. (2014) to used airborne imaging spectroscopy data from 

the Airborne Prism Experiment (APEX) sensor to: (1) investigate which spectral 

regions and spectral indices perform best in discriminating burned from unburned 

areas; and (2) assess the burn severity of fire in the Kalmthoutse Heide, found that 

CSI was the best index in dry heath vegetation to assess burn severity.  

Schepers et al. 

(2014) 
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  2.5.2 MODIS burned area product and its algorithm 

The MODIS burned area algorithm maps the approximate day of burning 

using multitemporal land surface reflectance data based on a method described by Roy, 

Jin, Lewis, and Justice (2005). The algorithm is applied independently to geolocated 

pixels over a long time-series of reflectance observations. A bi-directional reflectance 

(BRF) model is inverted against multitemporal reflectance observations to provide 

predicted reflectances and uncertainties for subsequent observations. A statistical 

measure of the difference between the observed surface BRF and the predicted BRF at 

the viewing and illuminating angles of the observation is used to quantify change from a 

previously observed state. Large discrepancies between predicted and measured values 

are attributed to change. A temporal constraint is used to differentiate between temporary 

changes, such as shadows, that are spectrally similar to more persistent fire induced 

changes. The identification of the date of burning is constrained by the frequency and 

occurrence of missing observations and to reflect this product, the algorithm is run to 

report the burn date with an 8 day precision. The burned area product is identified as 

MCD45A1 and spatial resolution of product equal 500 meter (Roy et al., 2005; Justice et 

al., 2006). 

 2.5.3 LANDSAT burned area extraction and its algorithm 

  Bastarrika et al. (2014); Bastarrika (2014) developed a new supervised 

burned area mapping software based on Landsat data named BAMS (Burned Area 

Mapping Software). The tool is built from standard ArcGIS libraries. It computes several 

of the spectral indexes most commonly use in burned area detection and implements a 

two-phase supervised strategy to map areas burned between two Landsat multitemporal 

images. The only input requires from the user is the visual delimitation of a few burned 
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areas, from which burned perimeters are extracted. After the discrimination of burned 

patches, the user can visually assess the results, and iteratively select additional sampling 

burned areas to improve the extent of the burned patches. The final result of the BAMS 

program is a polygon vector layer containing three categories: (a) burned perimeters, (b) 

unburned areas, and (c) non-observed areas.  

  The detail of BAMS workflow (Figure 2.5), which includes (1) generation 

of reflectances, (2) computation of burned area spectral indexes, (3) temporal composites, 

(4) burned area mapping supervised methodology, and (5) batch process are summarized 

based on Bastarrika et al. (2014) as followings. 

 

 

Source: Bastarrika et al. (2014). 

Figure 2.5 Burned Area Mapping Software (BAMS). 
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Figure 2.5 (Continued) Burned Area Mapping Software (BAMS). 

 

  (1) Generation of reflectances. 

  Under this step, the program can readily access two data input sources: the 

USGS Landsat Terrain Correction (Level 1T) GeoTiff format and the USGS Landsat 

Surface Reflectance Climate Data Record (SRCDR) HDF format. In the case of the 

former, BAMS converts Raw Digital Numbers (DN) into at-sensor radiance and then into 

exoatmospheric Top of Atmosphere (TOA) reflectance using the simplified reflectance 

equation. For Landsat TM and ETM+, the following equation is used: 

                            , (2.10) 

   = Grescale  Qcal + Brescale           (2.11) 

Where: 

   = Exoatmospheric Top of Atmosphere reflectance (TOA)  

  = Spectral radiance at the sensors aperture  
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  = Earth-Sun distance  

      = Mean exoatmospheric solar irradiance  

   = Solar zenith angle  

Grescale = Band-specific rescaling gain factor from the metadata  

Qcal = Quantized calibrated pixel value (DN)  

Brescale = Band-specific rescaling bias factor from the metadata  

Reflectance for OLI data is as follows: 

                          , (2.12) 

where: 

   = TOA planetary reflectance, without correction for solar angle.  

   = Band-specific multiplicative rescaling factor from the metadata  

     = Quantized and calibrated standard product pixel values (DN)  

   = Band-specific additive rescaling factor from the metadata  

   = Solar zenith angle 

  (2) Computation of burned areas spectral indexes 

  Burned areas are characterized by deposits of char and ash, removal of 

vegetation cover, and fuel, as well as exposure of the underlying soil. However, the 

magnitude and direction of spectral changes caused by charcoal and ash deposition 

depend on the type and condition of the vegetation prior to burning and the degree of 

combustion. BAMS computes the most common spectral indexes previously suggested in 

burned area studies. They include:  

   1. Normalized Difference Vegetation Index (NDVI)  

   2. Burned Area Index Modified (BAIM)  
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   3. Global Environmental Monitoring Index (GEMI) 

   4. Normalized Burned Ratio (NBR) 

   5. Mid-Infrared Burned Index (MIRBI) 

  These spectral indexes represent the most important bi-spectral spaces for 

burned area mapping, NIR/SWIR (BAIM and NBR), Long SWIR/Short SWIR (MIRBI), 

and Red/NIR (GEMI and NDVI). In order to avoid floating variables, the variables NBR, 

MIRBI, GEMI, and NDVI are saved in 16-bit bands applying a scaling factor of 10,000 

while the BAIM is truncated directly to an integer number. 

  (3) Temporal composites 

  BAMS makes it possible to produce temporal composites for users who 

require burned area information for more than two periods (to reconstruct fire history 

with multiple Landsat scenes, for example). Two temporal composites are created in the 

process: one minimizes the NBR index, which aims to identify the most affected burned 

areas observed at each time frame of the series. This criterion will create the post-fire 

image of the time series. The second criterion maximizes the NDVI index, and aims to 

identify the time framework when each pixel is less affected by fire. The final composite 

will be considered as the pre-fire image of the time series. 

  (4) Burned area mapping supervised methodology 

  BAMS follows a two-phase burned area strategy, which has produced 

good results for mapping of burned areas with low and medium spatial resolution. This 

strategy aims at keeping a balance between commission and omission errors: In the first 

phase the goal is to reduce the commission errors by using strict criteria, so that only the 

more clearly burned pixels are retained (seed pixels), even at the cost of omitting some 

burned pixels within each burned patch. The second phase analyzes the vicinity of the 
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seed pixels, applies a more flexible criterion, and accepts as burned those neighboring 

pixels with spectral characteristics similar to the seeds. This phase progressively 

increases the burned area until the whole burned patch is covered and aims at reducing 

the omission errors.  

  The two-phase strategy implemented by this tool is simple (see Figure 

2.6). To start with, two Boolean rasters are generated, one for the seeds (Figure 2.6a, in 

red) and another for those pixels that fulfill the second-stage criteria (Figure 2.6b, in 

orange). From the second-stage criteria raster, groups are created from pixels connected 

by any of the eight neighboring sides (right, left, above, below, and diagonals). Therefore 

only those groups that intersected with the seeds are retained (Figure 2.6c, 2.6d). A 

multi-index approach is taken for the first and second phase. It has shown to be effective 

in Landsat automatic methodologies. BAMS code makes use of 10 spectral variables (the 

post-fire BAIM, NBR, MIRBI, GEMI, and NDVI indexes, plus the temporal differences 

of those five indexes). For the spectral indexes NDVI, GEMI, and NBR, the fire 

decreases the pre-fire value, so the tool sets a maximum value (the lower the value, the 

higher the probability of being burned). For BAIM and MIRBI, where the fire increases 

their pre-fire value, a minimum value is set (a higher value indicates higher probability of 

being burned). Two independent sets of criteria are defined, one for the seed phase (strict 

criteria) and another for the second phase (more relaxed). To avoid the impact of isolated 

pixels, seeds with less than two pixels in the immediate eight neighborhoods are removed. 

The final burned area is obtained by keeping only burned patches generated by the 

second-phase raster-intersecting seeds selected in the first phase. Once this raster layer is 

obtained, it is transformed to an ArcGIS shape vector format. 
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Source: Bastarrika et al. (2014). 

Figure 2.6  Flow chart for the burned area mapping section (a) seeds, (b) second stage 

result, (c) seeds and second stage result superimposed, (d) result. Note that 

some of the burned areas fulfilling only the second stage criteria are not 

kept as they do not contain a burned seed. 

 

  The crucial point of the algorithm is the selection of threshold values for 

each of the input spectral indices. These values are extracted from the training polygons 

identified visually by the user from the post- and/or pre-fire color composites. In 

opposition to traditional supervised classification methodologies, where both burned and 

unburned training areas are required, BAMS only needs burned training areas, which 

makes the training process easier and faster than previous approaches, because the 

unburned category is always more heterogeneous due to the higher spectral diversity of 

unburned land covers. Two different burned training polygons have to be sampled to set 
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the threshold values, one for the seeds and the other for the second phase. For each, the 

minimum of all the samples are retained for MIRBI and BAIM variables, whereas the 

maximum values are extracted for the rest (NDVI, GEMI, and NBR). It is very important 

to avoid false positives in this phase, since the burned area thresholds will be set with 

these values and the results will then be less accurate. The thresholds extracted from the 

two user-defined training polygons are applied with the logical operation “AND”. The 

result should be assessed before deciding whether more training areas are needed to 

complete the burned cartography, by extracting new thresholds from different iterations. 

  (5) Batch process 

  If the user needs to process a large number of images, the program could 

also be run in a batch mode. This option makes it possible to run the process 

automatically, using a set of thresholds previously defined in the supervised mode with 

different images. 

 

2.6 Literature reviews 

Relevant literature reviews are here categorized into two aspects include fire and 

burned area detection algorithm development and its application, and validation of 

MODIS hotspot data. 

 2.6.1 Fire and burned area detection algorithm development and its 

applications 

Wang et al. (2008) selected satellite-derived indices, NMDI, NDWI, and 

NBR, for detecting forest fires burning in southern Georgia, USA and southern Greece in 

2007. Index performance is evaluated using hotspot data. Satellite images generated from 

each index are compared with the hotspot map. Performance measures extracted from the 
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statistical analyses using the confusion matrices are used to verify the capacity of the 

indices for fire detection. For each test case, NMDI has strong signals corresponding to 

fire accurately. Both, performance evaluations by image comparison and statistical 

analyses, indicate that fire detection using NMDI is quite accurate. NMDI reveals the 

highest overall performance and discrimination power compared to NDWI and NBR. 

The successful application of NMDI for detecting fires in different areas proves that 

NMDI is not site-specific and is expected to be applicable to different areas for fire 

detection. Such a capacity can help monitor large-scale fire hazards and is therefore 

useful to carry out regional and global studies.  

Maeda, Formaggio, Shimabukuro, Arcoverde, and Hansen (2009) applied 

remote sensing and GIS technique to areas with high occurrence of forest fires in the 

Brazilian Amazon. The aim was to recognize land use changes that could identify areas 

with high risk of being burnt and to improve current fire scars mapping methods by 

enabling the discrimination of fires in primary forests and fires in previously burnt areas. 

The Change Vector Analysis method was applied to the Red and NIR bands of two 

MODIS/Terra images from key dates prior to the 2005 forest fire season, resulting in one 

change vector image with two components: direction and magnitude of changes. A 

decision tree was designed and evaluated through the C 4.5 algorithm to classify 2,400 

sample pixels extracted from four selected classes inside the change vector images: (A) 

forest; (B) agricultural areas; (C) fire risk in primary forest; and (D) fire risk in already 

degraded areas. The decision tree achieved a global accuracy of 90.21%. Samples from 

classes B and D were the main contributors to the decision tree confusion, with omission 

errors of 9.5% and 24.5%, respectively. The method was tested in 14 municipalities for 
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the year of 2005, 2006, and 2007 and compared with MODIS hotspots, resulting in a 

correlation coefficient of 0.84. 

Qian, Yan, Duan, and Kong (2009) simulated HJ-1B satellite imagery, 

including Red, NIR, MIR, and TIR channels to detect fire. Based on the MODIS version 

4 contextual algorithm and the characteristics of HJ-1B sensor, a contextual fire detection 

algorithm was proposed and tested using simulated HJ-1B data. It was evaluated by the 

probability of fire detection and false alarm as functions of fire temperature and fire area. 

Results indicate that when the simulated fire area is larger than 45 m
2 

and the simulated 

fire temperature is larger than 800 K, the algorithm has a higher probability of detection. 

But if the simulated fire area is smaller than 10 m
2
, only when the simulated fire 

temperature is larger than 900 K may the fire be detected. For fire areas about 100 m
2
, 

the proposed algorithm has a higher detection probability than that of the MODIS 

product. Finally, the omission and commission error were evaluated which are important 

factors to affect the performance of this algorithm. It has been demonstrated that HJ-1B 

satellite data are much sensitive to smaller and cooler fires than MODIS or AVHRR data.  

Ruthamnong (2010) analyzed MODIS hotspots acquired in 2008 over 17 

provinces in the Northern region of Thailand and developed an algorithm for classifying 

the false hotspots. In the study, the hotspots were statistically analyzed using descriptive 

statistics. The spatial hotspot layer was assigned their attributes according by additional 3 

GIS layers: water body, wetland, and urban. The attribute was assigned into 2 types, true 

and false (hotspot was located inside 3 GIS layers). The T-test analysis was thus 

performed to find significant difference of hotspot properties (REF2: reflectance of 

channel 2, BT21, BT31, FRP, and FC) between true and false hotspots. The upper and 

lower bounds resulting from the T-Test analysis were then used as a threshold value in 
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the decision tree algorithms which used for false hotspot classification. The best of 

decision tree algorithm proposed in this study was selected from the highest accuracy 

assessment. The accuracy assessments were re-examined by applying the best algorithm 

on hotspots in 2007 and analyzing NDVI changes during before-on-after days of the 

acquired hotspots. The results showed that there were 11,783 hotspots in 2008 which 

occurred in Maehongson (14.33%), Tak (13.29%), Nan (11.81%), and Chiang Mai 

(11.08%), respectively. Hotspots of 79.54% were detected by Aqua, 82.36%of hotspots 

occurred in daytime, and 88.37% occurred in fire seasons. Most hotspots were temporally 

occurred in March (60.57%), April (15.79%), and February (12.01%). The EQ.5-BT31-

REF2-FC-EQ.2 algorithm was the best algorithm with accuracy of 86.98%. The best of 

decision tree algorithm includes 5 parameters: EQ.5 [(BT21 - BT31) X (BT21 / 127) X 

(FRP / 400)], BT31, REF2, FC, and EQ.2 [(BT21 - BT31) X (BT21 / 127)] could identify 

96.85% of false hotspot and 87.17% of true hotspot in 2007. Also, NDVI changing 

studies found that 96.58% has NDVI decreased from the day before hotspot. 

Harris, Veraverbeke, and Hook (2011) used high spatial and high spectral 

resolution MODIS/ASTER (MASTER) airborne simulator data acquired over three 2007 

southern California burns to evaluate the effectiveness of 19 different spectral indices, 

including the widely used NBR, for assessing fire severity in southern California 

chaparral. The ordinal logistic regression was used to assess the goodness of fit between 

the spectral index values and ordinal field data of severity. The NBR and three indices 

used surface temperature and emissivity band. They are found NSTv1, NSEv1, and 

NSEv2 revealed the best performance. The findings support the operational use of the 

NBR in chaparral ecosystems by Burned Area Emergency Rehabilitation (BAER) 
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projects, and demonstrate the potential of combining optical and thermal data for 

assessing fire severity. 

Veraverbeke et al. (2011) used high spatial and spectral resolution 

MASTER airborne simulator data acquired over three 2007 southern California burns to 

evaluate the sensitivity of different spectral indices for discriminating burned land shortly 

after a fire. The performance of the indices, which included both traditional and new 

band combinations, was assessed by means of a separability index that provides an 

assessment of the effectiveness of a given index for discriminating between burned and 

unburned land. In the context of burned land applications results demonstrated: (1) the 

highest sensitivity of the longer SWIR spectral region (1.9 to 2.5 μm) was found at the 

band interval from 2.31 to 2.36 μm, (2) the high discriminatory power of the mid infrared 

spectral domain (3 to 5.5 μm), and (3) the high potential of emissivity data. As a 

consequence, a newly proposed index which combined NIR, longer SWIR and emissivity 

outperformed all other indices when results were averaged over the three fires. In 

addition, the separability index values higher than one, these indices are the NSEv2, 

NSEv1, NSTv1, NBR, SAVI, VI3, NDVI and the best performance was obtained by the 

NSEv2. 

Veraverbeke et al. (2012) developed an alternative index based on single 

date SWIR and MIR reflectance, namely the SWIR-MIR index (SMI), that is robust 

against scattering caused by smoke plumes over the fires allowing fire severity 

assessments to be generated when the area is still obscured by smoke. The SMI was 

generated using MASTER airborne simulator data acquired over 2011 Wallow fire in 

Arizona, USA. The simulation experiments showed SMI is more sensitive to char 

fractional cover than the NBR. Then performed a regression analysis in which 92 Geo 
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Composite Burn Index (GeoCBI) field plots of severity were randomly assigned to two 

equal. Currently although no spaceborne sensors with pixel sizes smaller than 100 m 

offer the possibility of a SWIR-MIR band combination, the airborne results illustrate the 

potential of this band combination for the remote sensing of post-fire effects. 

Wang, Miao, and Peng (2012) developed algorithm to detect fire using 

HJ-infrared sensor (HJ-IRS) following the MODIS fire detection contextual algorithm. 

The improved algorithm was programmed in IDL7.1 and tested using HJ forest fire data 

from Heilongjiang Province in 2009. Results show that improving the forest fire 

detection contextual algorithm to adapt HJ-IRS is feasible and highly accurate. HJ data 

are much more sensitive to smaller and cooler fires than MODIS or the AVHRR data, 

and the improved capabilities offers a good potential for application in forest fire 

detection. The improved algorithm process is shown in Figure 2.7. 

 

 

Source: Wang et al. (2012). 

Figure 2.7 Fire detection process using HJ-IRS. 



51 

 

 

 

2.6.2 Validation of MODIS hotspot data 

Hawbaker et al. (2008) carried out an accuracy assessment with reference 

fires mapped from independent Landsat data to assess the validity of active fire data or 

MODIS hotspot (MOD14/MYD14) across the United States. MODIS active fire 

detections were compared to 361 reference fires (larger fires, between 18 ha and 48,000 

ha) that had been delineated using pre-fire and post-fire Landsat imagery. Reference fires 

were considered detected if at least oneMODIS active fire pixel occurred within 1 km of 

the edge of the fire. When active fire data from both Aqua and Terra were combined, 

82% of all reference fireswere found, but detection rates were less for Aqua and Terra 

individually (73% and 66% respectively). Hence, their analysis is not apt to assess the 

detection rates for small fires, but they assume that many may go undetected. They 

further conclude that detection rates increased when fire records from both Aqua and 

Terra are used and also that detection rates increased with fire size. 

 Schroeder et al. (2008) implemented a comprehensive analysis to validate 

the MODIS and GOES satellite active fire detection products (MOD14 and WFABBA, 

respectively) on the Brazilian part of Amazonia and characterize their major sources of 

omission and commission errors which have important implications for a large 

community of fire data users. The analyses were primarily based on the use of 30 m 

resolution ASTER and ETM+ imagery as the validation data. Here in, the study found 

that at the 50% true positive detection probability mark, WFABBA requires four times 

more active fire area than is necessary for MOD14 to achieve the same probability of 

detection, despite the 16× factor separating the nominal spatial resolutions of the two 

products. Approximately 75% and 95% of all fires sampled were omitted by the MOD14 

and WFABBA instantaneous products, respectively; whereas an omission error of 38% 
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was obtained for WFABBA when considering the 30-minute interval of the GOES data. 

Commission errors for MOD14 and WFABBAwere found to be similar and highly 

dependent on the vegetation conditions of the areas imaged, with the larger commission 

errors (approximately 35%) estimated over regions of active deforestation. 

 Tanpipat, Honda, and Nuchaiya (2009) validated the MODIS hotspot by 

using field survey data. A quantitative evaluation of hotspot products had been carried 

out during forest fire season in 2007, 2008, and 2009. The chosen hotspots were scattered 

throughout the country and within the protected areas of the National Parks and Wildlife 

Sanctuaries. Three areas were selected as test sites for validation guidelines. The results 

found high accuracy of 91.84%, 95.60% and 97.53% for the 2007, 2008, and 2009, 

respectively. In addition, fire seasons were increased confidence in the use of hotspots for 

forest fire control and management in Thailand. 
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CHAPTER III 

RESEARCH METHODOLOGY 

 

 Equipment and details of research methodology include (1) data collection and 

preparation, (2) evaluation of the optimal top three burned area spectral indices, and  

(3) identification of an optimal burned area and fire detection algorithms are here 

explained in this chapter. 

 

3.1 Equipment 

 Equipment includes hardware and software is summarized in Table 3.1. 

 

Table 3.1 List of hardware and software. 

Equipment Application Source 

Hardware Global Positioning 

System (GPS) 

Ground surveying Personnel 

Desktop computer Data analysis and documentation Personnel 

Notebook Data analysis and documentation Personnel 

Digital camera Ground surveying Personnel 

Laser printer Documentation Personnel 
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Table 3.1 (Continued) List of hardware and software. 

Equipment Application Source 

Software Burned Area 

Mapping Software 

(BAMS) 

Burned area extraction www.bastarrika.wordpress.com 

ERDAS Imagine Digital image processing Remote sensing laboratory, SUT 

ENVI Digital image processing Remote sensing laboratory, SUT 

ESRI ArcMap Geospatial analysis and mapping Remote sensing laboratory, SUT 

SPSS Statistic 

software 

Ordinal logistic regression 

analysis and decision tree 

construction 

Remote sensing laboratory, SUT 

Microsoft Excel Spectral indices calculation and 

reporting 

Remote sensing laboratory, SUT 

 

3.2 Research methodology 

 The framework of the research methodology, which aims to identify an 

optimal algorithm for burned area and fire detection using MODIS and Landsat data, 

is displayed in Figure 3.1. Under this framework, three main components include (1) 

data collection and preparation, (2) an optimal top three burned area spectral indices 

evaluation, and (3) an optimal burned and fire detection algorithm identification. 

Detail of each component is separately described below. 

 3.2.1 Data collection and preparation 

  The main collected input data for the study consists of remote sensing, 

GIS and field data about fires (both primary and secondary data) as shown in Table 

3.2. Meanwhile, details of important collection and preparation data are separately 

summarized as follows. 
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Figure 3.1 Workflow of research methodology framework. 

 

  

An optimal top three burned area spectral indices evaluation 

The optimal top three burned area detection spectral indices 

An optimal burned area and fire detection algorithm identification 

Burned Area Detection 

Test the thresholding technique 

and decision tree with top three 

optimal burned area spectral 

indices to detect burned area  

in 2014 

Fire Detection 

Test the hotspot and hotspot with 

decision tree algorithm to detect fire  

in 2014 

Accuracy assessment using 

overall accuracy and Kappa hat 

coefficient and Z statistic test for 

significant difference of Kappa 

hat coefficient 

An optimal 

burned area detection algorithm 

An optimal 

fire detection algorithm 

Data collection and preparation 

Evaluation of spectral indices value and burn severity using ordinal 

logistics regression with considered deviance values 

MODIS data: 2010-2014 

Accuracy assessment using 

overall accuracy and Kappa hat 

coefficient and Z statistic test for 

significant difference of Kappa 

hat coefficient 

GIS data Forest fire data/information Remote sensing data 
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Table 3.2 List of dataset used for the study. 

NO. Dataset Data type Source 
Scale/ 

Resolution 

1 Landsat data 2010-2014 Grid GISTDA, USGS 30 m 

2 MODIS Level 1B 2010-2014 Grid LAADS 1 km 

3 Hotspots data 2010-2014 Grid LANCE-FIRMS  1 km 

4 RFD fire record 2014 Point Generate from RFD 

report 

- 

5 Spot height Point RTSD 1:50,000 

6 Contour Line RTSD 1:50,000 

7 Water body Polygon DWR 1:50,000 

8 Stream/river Line DWR 1:50,000 

9 Road  Line RTSD 1:50,000 

10 Village Point RTSD 1:50,000 

11 Administrative boundary Polygon RTSD 1:50,000 

12 Legal forest boundary Polygon RFD, DNP 1:50,000 

13 Forest type Polygon RFD 1:50,000 

14 Land use  Polygon LDD 1:25,000 

15 Elevation Grid Generate from DEM 1 km 

16 Slope Grid Generate from DEM 1 km 

 

Note: 

LANCE  Land Atmosphere Near real-time Capability for EOS, 

FIRMS Fire Information for Resources Management System of NASA, 

LAADS Level 1 and Atmosphere Archive and Distribution System of NASA,  

USGS United States Geological Survey, 

GISTDA Geo-Informatics and Space Technology Development Agency,  

RFD Royal Forest Department, 

RTSD Royal Thai Survey Department,  

DWR Department of Water Resources,  

DNP Department of National Park Wildlife and Plant Conservation, 

LDD Land Development Department. 
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3.2.1.1 Landsat data 

 Landsat 5 TM data in 2010 and Landsat 8 OLI/TIRS data in 

2013 and 2014 are downloaded from USGS website for burned area extraction using 

BAMS. The derived burned areas are further applied to classify burn severity data. 

Basic information of 16 scenes Landsat 5 TM and Landsat 8 OLI/TIRS in 2010, 2013, 

and 2014, which are firstly prepared and used for burned area extraction using BAMS 

for optimum burned area detection algorithm identification, is summarized in Table 

3.3. It can be observed that during 2011 and 2012 there is unavailable Landsat data 

via USGS website. In addition, only one scene of Path 130 Row 47 and Path 131 Row 

47 is available and they are extracted burned area by BAMS. Example of false color 

composite of Landsat 5 TM: Band 7, 4, and 2 (RGB), LT51300472010045 and 

Landsat 8 OLI/TIRS: Band 7, 5, and 3 (RGB), LC81300472014088 for burned area 

extraction is shown in Figure 3.2. 

 

Table 3.3 List of used Landsat 5 TM and Landsat 8 OLI/TIRS data. 

No Path-Row Year Day Date Time Satellite Data Fire event for BAMS 

1 130047 2010 029 29 January 2010 10:33 L5 TM Pre-fire 

2 130047 2010 045 14 February 2010 10:33 L5 TM Post-fire 

3 131047 2010 036 5 February 2010 10:39 L5 TM Pre-fire 

4 131047 2010 052 21 February 2010 10:39 L5 TM Post-fire/Pre-fire 

5 131047 2010 084 25 March 2010 10:39 L5 TM Post-fire/Pre-fire 

6 131047 2010 116 26 April 2010 10:39 L5 TM Post-fire 

7 130047 2013 101 11 April 2013 10:46 LS8 OLI/TIRS Not applicable 

8 131047 2013 108 18 April 2013 10:50 LS8 OLI/TIRS Not applicable 

9 130047 2014 040 9 February 2014 10:43 LS8 OLI/TIRS Pre-fire 

10 130047 2014 056 25 February 2014 10:43 LS8 OLI/TIRS Post-fire/Pre-fire 

11 130047 2014 072 13 March 2014 10:43 LS8 OLI/TIRS Post-fire/Pre-fire 

12 130047 2014 088 29 March 2014 10:42 LS8 OLI/TIRS Post-fire 

13 131047 2014 047 16 February 2014 10:49 LS8 OLI/TIRS Pre-fire 

14 131047 2014 063 4 March 2014 10:49 LS8 OLI/TIRS Post-fire/Pre-fire 

15 131047 2014 079 20 March 2014 10:49 LS8 OLI/TIRS Post-fire/Pre-fire 

16 131047 2014 095 5 April 2014 10:49 LS8 OLI/TIRS Post-fire 
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Landsat-5: LT51300472010045 

Band 7, 4, and 2 (RGB) 

Landsat-8: LC81300472014088 

Band 7, 5, and 3 (RGB) 

Figure 3.2 Example of false color composite of Landsat 5 and 8. 

 

3.2.1.2 MODIS Level 1B 

  MODIS Terra/Aqua Level 1B calibrated radiances 1 km that 

covered the selected spectral band of spectral indices (MODIS/Terra called 

MOD021KM and MODIS/Aqua called MYD021KM) are obtained from LAADS, 

NASA. These data distributed through website http://www.ladsweb.nascom.nasa.gov/ 

data/search.html. Basic information of 12 Scenes of MODIS Level 1B data, which are 

used to extract spectral index for identify an optimum top three burned area spectral 

indices, is summarized in Table 3.4. Herein, acquisition date of MODIS Level 1B 

data are related with acquisition date of Landsat for burned areas extraction using one 

day offset (date of burned area +1 day). Example of false color composite of MODIS 

Level 1B data: band 7, 2, 1 (RGB) of scene number 2010046.0350.005 and 

2014089.0400.005 is shown in Figure 3.3. 
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Table 3.4 List of used MODIS Level 1B data. 

No MODIS Level 1B scene Date Time (Local Time) Source 

1 2010046.0350.005 15 February 2010 10.50 AM LAADS 

2 2010053.0400.005 22 February 2010 11.00 AM LAADS 

3 2010085.0350.005 26 March 2010 10.50 AM LAADS 

4 2010117.0400.005 27 April 2010 11.00 AM LAADS 

5 2013102.0350.005 12 April 2013 10.50 AM LAADS 

6 2013109.0400.005 19 April 2013 11.00 AM LAADS 

7 2014057.0350.005 26 February 2014 10.50 AM LAADS 

8 2014073.0350.005 14 March 2014 10.50 AM LAADS 

9 2014089.0400.005 30 March 2014 11.00 AM LAADS 

10 2014064.0400.005 5 March 2014 11.00 AM LAADS 

11 2014080.0400.005 21 March 2014 11.00 AM LAADS 

12 2014096.0400.005 6 April 2014 11.00 AM LAADS 

 

 

  

MODIS Level 1B: 2010046.0350.005 

Band 7, 2, 1 (RGB) 

MODIS Level 1B: 2014089.0400.005 

Band 7, 2, 1 (RGB) 

Figure 3.3 Example of false color composite of MODIS data. 
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3.2.1.3 MODIS hotspot 

MODIS hotspot calculated by the MODIS rapid response 

system and reported by LANCE-FIRMS with multiple reported fields are used in the 

study. The available fire data has distributed through website http://www.earth 

data.nasa.gov/data/near-real-time data/firms/active-fire-data (NASA FIRMS, 2015). 

The hotspots attribute fields include latitude and longitude at center point location, 

scan and track, acquisition date, time of the overpass of the satellite, satellite name, 

version of algorithm, brightness temperature of either channel 21 or 22 (BT21 or 

BT22), fire confidence percentage (FC), brightness temperature of channel 31 

(BT31), and fire radiative power (FRP). In practice, after the downloaded hotspot data 

are imported to ArcGIS software, they are generated to be points and re-projected to 

be WGS 1984 coordinate system, UTM Zone 47 North. Available MODIS hotspot 

and its attribute data during fire season between 2010 and 2014 are pre-processing 

under ERSI ArcGIS software for an optimum algorithm for fire detection 

identification. Example of MODIS hotspot over study area, date 29 March 2014 is 

shown in Figure 3.4. 

3.2.1.4 RFD fire record 

  Ground fire records in 2014 are obtained from RFD, the 

important field easting and northing coordinates are used to generate fire location as 

point of ArcGIS shape format. The important data include, date, time, place, burned 

area, and cause are attached as attribute data. The RFD fire records are applied as 

ancillary data for burn severity classification from Landsat data. Ground fire records 

of RFD in 2014 were extracted from daily fire report for accuracy assessment as 

shown Figure 3.5. 
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Figure 3.4  Example of MODIS hotspot distribution over study area: Date 29 March 

2014. 

 

 

Figure 3.5 Distribution ground fire record by RFD during fire season in 2014. 
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3.2.1.5 GIS Data 

  The used GIS data in shape format includes the RFD fire record 

in 2014, spot height, contour, water body, stream/river, road, village, administrative 

boundary, legal forest boundary, forest type, land use and land cover, elevation, and 

slope, are used to construct hotspot detection algorithm by decision tree classification 

from MODIS hotspot data. These GIS dataset are collected and prepared in advanced 

for data analysis.  

 3.2.2 Evaluation of the optimal top three burned area spectral indices  

  Under this component, the extracted spectral indices values deriving 

from MODIS Level 1B and burn severity classes deriving from Landsat data using 

BAMS are used to calculate deviance under ordinal logistic regression analysis for an 

optimal top three burned spectral indices detection evaluation (Figure 3.6).  

For burned area extraction, Landsat data of pre-and post-fire events are 

used as input data for burned area classification using BAMS. In practice, BAMS is 

firstly extract decision tree structure for burned area from pre- and post- fire images 

with “AND” logical operation based on spectral indices (NDVI, GEMI, NBR, BAIM, 

and MIRBI) from training area. Herein, the reflectance values are multiplied with a 

scale factor of 10,000, truncating the result into 16 bit integer data type. The derived 

decision trees are then combined to map burned area using two-phase burned area 

strategy for reducing commission and omission errors. (See detail in Section 2.5.3). 

Then burned areas are overlaid with 1x1 km grid that conforms to MODIS Level 1B 

pixel to calculate the percentage of burned area and reclassify burn severity into 5 

classes (none, low, moderate, high, and very high). In addition, the extracted burned 

areas in 2014 is validated with ground fire survey data of RFD. 
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Figure 3.6  Schematic workflow of an optimal top three burned area spectral indices 

evaluation component. 

 

For spectral indices values extractions, MODIS Level 1B are used to 

calculate the selected 12 spectral indices values (see formulae in Table 3.5). After 

that, ordinal logistic regression analysis is performed to compare spectral index values 

with burn severity by consideration of deviance values. The top three spectral indices 

which provide minimal deviance values are identified as optimal top three burned area 

spectral indices. 

In practice, all deviance values of each spectral index from 12 different 

dates are then scoring and ranking from the best to worst fit for an optimal top three 
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burned area spectral indices identification. The derived optimum top three spectral 

indices are further used to extract burned area in the next component. 

For ordinal logistic regression analysis, dependent variable is an 

ordinal burn severity classes while spectral index values are independent variables. 

Hosmer and Lemeshow (2000) stated that the ordinal logistic regression model for a 

single independent variable can be written in equation form as: 

   [
     

       
]        , (3.1) 

where       represents the probability of occurrence of the ordinal class i given the 

independent variable x. Separate intercept αi and slope βi coefficients are calculated 

for each ordinal class i. An ordinal logistic regression model uses the maximum 

likelihood approach to estimate regression coefficients. 

The goodness of fit of the ordinal logistic regression model can be 

estimated using the deviance (D) (Hosmer and Lemeshow, 2000) as: 

      ∑ ∑ [       (
 ̂   

    
)              (

   ̂   

      
)] 

 
 
 , (3.2) 

where yi,j denotes a dichotomous outcome variable for class i, 

  ̂    is the maximum likelihood estimate of πi(xj),  

 m is the number of ordinal classes, and 

 n is the sample size.  

In a similar way, deviance can be thought as the residual sum of 

squares in ordinary linear regression models. A lower D values thus represent a better 

goodness of fit. In this study D is used to compare the performance of the different 

spectral indices as predictor of burn severity. 
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Table 3.5 List of 12 selected spectral indices for ordinal logistic regression analysis. 

Spectral Index Abbreviation Formula 

Normalized Burn Ratio  NBR NBR = (NIR - lSWIR)/(NIR + lSWIR) 

Burned Area Index  BAI BAI = 1/((NIR - 0.06)
2 
+ (red - 0.1)

2
) 

Burned Area Index 

Modified 

BAIM BAIM = 1/((NIR - 0.05)
2
 + (lSWIR - 0.2)

2
) 

Char Soil Index CSI CSI = NIR/lSWIR 

Normalized Difference 

Shortwave Infrared 

NDSWIR NDSWIR = (NIR - sSWIR)/(NIR + sSWIR) 

Normalized Difference 

Vegetation Index 

NDVI NDVI = (NIR - red)/(NIR + red) 

Modified Soil Adjusted 

Vegetation Index 

MSAVI MSAVI = (2NIR + 1 - ((2NIR + 1)
2 
- 8(NIR - red))

1/2
)/2 

Global Environment 

Monitoring Index 

GEMI GEMI = γ(1 - 0.25 γ) - ((Red - 0.125)/(1 - Red)) 

with γ = (2(NIR
2
 - Red

2
) + 1.5NIR + 0.5Red)/(NIR + 

Red + 0.5) 

Mid InfraRed Burn Index MIRBI MIRBI = 10lSWIR - 9.8sSWIR + 2 

Normalized Difference 

Water Index 

NDWI NDWI = (NIR - sSWIR)/(NIR + sSWIR) 

Normalized Multi-band 

Drought Index 

NMDI NMDI = (NIR - (sSWIR - lSWIR))/(NIR + (sSWIR -

lSWIR)) 

SWIR-MIR Index SMI SMI = (sSWIR - MIR)/(sSWIR + MIR) 

 

Remark: The corresponding wavebands of MODIS were 0.620-0.670 μm (red), 

0.841-0.876 μm (NIR), 1.628-1.652 μm (sSWIR), 2.105-2.155 μm (lSWIR), and 

3.929-3.989 μm (MIR), that respectively in bands 1, 2, 6, 7, and 21. 
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3.2.3 An optimal burned area and fire detection algorithm identification 

In this component, there are two main tasks include (1) the 

identification of an optimal burned area detection algorithm based on thresholding 

technique and decision tree method and (2) identification of an optimal fire detection 

algorithm based on MODIS hotspot and MODIS hotspot with Decision Tree (Figure 

3.7). 

 

 

Figure 3.7 Schematic workflow of identification algorithm for burned area and fire 

detection using MODIS data component. 
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3.2.3.1 Identification of an optimal burned area detection  

  algorithm 

In this study, two approaches are applied to identify optimum 

burned area detection. The first approach, the derived spectral index data from 

MODIS Level 1B dataset in 2014 based on top three optimum spectral indices from 

the previous component are directly applied to classify burned and unburned data by 

Thresholding techniques (Yang, Skidmore, Melick, Zhou, and Xu, 2006). In the 

study, the whole range of the derived spectral indices (minimum and maximum 

values) are here examined for thresholding value setting. The minimum value as 

initial value is constantly added by an appropriate constant value for the sequential 

threshold values until they reach the maximum value. 

In practice, an extracted burned and unburned areas are 

considered based on the percentage of burned area from Landsat 8 data that acquired 

in peak fire season in 2014 over 1 sq. km grid of MODIS data. If percent of burned 

area in grid equal or more than 25%, it will classifies as burned grid. Meanwhile, the 

derived top three spectral indices are also further analyzed under SPSS software to 

classify burned and unburned area using CRT algorithm in the second approach. 

Herein, dependent variable is burned and unburned areas derived from Landsat 8 and 

independent variables are top three spectral data and its combination. 

After that the derived output from both approaches are then 

compared with Landsat data, RFD fire reports and field survey for accuracy 

assessment. An overall accuracy and Kappa hat coefficient are here calculated with 

references data according to confusion matrix (see Table 3.6). 
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Table 3.6 Confusion matrices for burned area/fire detection and its calculation. 

Reference data 
Burned area/Fire detection data 

Burned/Fire Unburned/Non-fire 

Burned/Fire a b 

Unburned/Non-fire c d 

 

In practice, the overall accuracy of the burned area or fire 

detection rate, are evaluated as the proportion of the total number of correct hits as: 

Overall accuracy = (a + d) / (a + b + c + d). (3.3)  

The burned area/fire detection rate is defined as the ratio of 

burned/fire cases that are detected correctly by test method to the total number of the 

events as: 

Burned area/Fire detection rate = a / (a + b). (3.4) 

The false alarm rate (commission error) is the proportion of 

unburned/non-fire cases that are incorrectly classified as: 

False alarm rate = c / (c + d). (3.5) 

In addition, calculating the value of      as follows: 

     
 ∑    

 
    ∑          

 
   

   ∑          
 
   

, (3.6) 

Where    is the number of column/row of the error matrix, 

   is the total number of observations, 

     is the number of coincident observations (diagonal elements in the matrix)

     and     are the marginal totals for row   and column   respectively. 

     value represents the proportion of agreement between two categorical 

maps after chance agreement is removed. A value of       , represent the level of 

agreement expected for two random maps, and       1, represent perfect agreement. 
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Furthermore, significant different of accuracy based on Kappa 

hat coefficients among top three spectral indices under the first approach and between 

the first and second approaches are tested using standard normal distribution or Z 

statistics as suggestion by Congalton and Green (2008) as: 

  
|  ̂   ̂|

√   ̂    ̂    ̂    ̂

, (3.7) 

where Z is normalized and standard normal distribution, 

   ̂ is      for dataset I, 

   ̂ is      for dataset II, 

    ̂    ̂ is variance of      for dataset I, and 

    ̂    ̂ is variance of      for dataset II. 

 At the same time, variance of      is calculated by 

    ̂   ̂  
 

 
{
        

       
 

                 

       
 

      
        

  

       
}  (3.8) 

where    
 

 
∑    
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∑ ∑     

 
           

  
   . 

Herewith, given the null hypothesis H0: (  ̂    ̂) = 0, and the 

alternative H1: (  ̂ -  ̂) ≠ 0, H0 is rejected if Z ≥ Z/2, where /2 is the confidence 

level of the two-tailed Z test and the degrees of freedom are assumed to be ∞ 

(infinity).  
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Finally, an optimal burned area detection algorithm is then 

identified according to overall accuracy, Kappa hat coefficient with pair-wise Z-test. 

Herein, Z-test statistics that only use in case of the compared method has overall 

accuracy are very similar. 

3.2.3.2 Identification of an optimal fire detection algorithm 

   MODIS hotspot data with MOD14/MYD14 algorithm and 

MODIS hotspot data with Decision Tree algorithm are here used to identify an 

optimal fire detection algorithm. In practice, MODIS hotspot dataset 

(MOD14/MYD14 algorithm) in 2014 are directly assessed thematic accuracy using 

overall accuracy and Kappa hat coefficient. Meanwhile the MODIS hotspot with 

Decision Tree classifications are examined based on the combination of the selected 

13 biophysical factors including elevation, slope, NDVI, distance from stream, 

distance from water body, distance from road, distance from village, distance from 

fire ground survey, distance from agricultural area, distance from shifting cultivation, 

distance from evergreen forest, distance from deciduous forest, and distance from 

degraded forest. Finally, an optimal fire detection algorithm is then identified 

according to overall accuracy. 

For decision tree construction, hotspots from 2014 are firstly 

imported to ArcGIS software and then separated hotspot into two groups: “false” and 

“true” with new attribute of 1 and 2, respectively. In this study, all hotspots are 

compared with Landsat data and RFD fire information for false and true 

identification. At the same time, the biophysical factors for all identified hotspots are 

extracted. After that attribute data of false and true hotspots as dependent variable and 

biophysical data as independent variables are exported as spreadsheet format to SPSS 
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software for decision tree construction. Herein, decision tree structure is created based 

on the relationship between attribute values of dependent (false and true hotspots) and 

independent variables (biophysical attributes) with CRT algorithm. The extracted 

decision tree structure is then used to classify hotspots in 2014. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

 The main results for identification of an optimal burned area and fire detection 

algorithm using MODIS and Landsat data which included (1) optimum top three 

burned area spectral indices evaluation (2) optimum burned area detection algorithm 

identification and (3) optimum algorithms for fire detection identification were here 

separately explained and discussions. 

 

4.1 Optimal top three burned area spectral indices evaluation 

 Results and findings under this section were separately explained and 

discussed according to major tasks of the optimal top three burned area spectral 

indices evaluation in the following sections. 

 4.1.1 Burned area extraction 

  Figure 4.1 shows the appearance of burned area and major land cover in 

various locations for visual interpretation of training area identification using BAMS. 

Herewith, Landsat 8 OLI/TIRS with color combination of band 7, 5, and 3 (RGB), 

active fire appears as orange to red, vegetation is green, cloud is white, and bare land 

is light pink and orange. In addition, heavily burned area appears as dark magenta 

while partially burned area appears as light magenta. 
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  The development of fire can be sequentially identified in three stages: 

pre-fire, active fire and post-fire based on the continuity of Landsat acquisition date as 

shown in Figure 4.2. In addition, MODIS hotspot data as ancillary data for visual 

interpretation had overlaid on Landsat data to verify burned area as shown in Figure 

4.3. 

 

 

Figure 4.1  Appearance of burned area with major land cover in various locations on 

color composite image of Landsat-8: Band 7, 5, and 3 (RGB). 
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(a)  (b)  (c)  

Figure 4.2  Development of fire: (a) pre-fire: (25 February 2014), (b) active fire: (13 

March 2014), and post-fire: (29 March 2014). 

 

 

Figure 4.3  MODIS hotspot data as ancillary data overlaid on Landsat data (13 

March 2014) for visual interpretation. 
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  The result of burned area extraction for a pair of Landsat scene using 

BAMS based on threshold values, which were derived from training areas from multi-

temporal difference (pre- and-post fire scenes) of spectral indices, that reflectance 

values are multiplied with a scale factor of 10,000, is summarized as raster map 

algebra in Table 4.1. Two raster maps algebra of first and second phases were here 

used two-phase burned area strategy to generate burned area map. Figure 4.4 shows 

an example of small and large patch of burned area extraction using BAMS and multi-

temporal change of burned area is displayed in Figure 4.5. 

  Meanwhile, the result of burned area extraction for no pair of Landsat 

scene (pre- and-post fire scenes) in 2013 (Scene 130047 and 131047) which were 

extracted using Expert System under ERDAS Imagine is summarized in Table 4.2. 

Herein, BAMS was firstly applied to create TOA reflectance and spectral indices 

(NDVI, BAIM, GEMI, NBR, and MIRBI) and then identified minimum and 

maximum value of burned training areas for burned area mapping under Expert 

System. 

  Area and percentage of burned area for 12 Landsat scenes is summarized 

in Table 4.3 and distribution of burned area of each Landsat scene in 2010, 2013 and 

2014 is displayed in Figure 4.6. 

As results, it can be observed that the highest burned area during fire 

season (February to April) in 2014 occurs in March, and it covers area about 1,187.62 

sq. km or 1.87%. (See detail in Table 4.3). 
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Table 4.1 Threshold values extraction using supervised training area of two-phase 

algorithm. 

Scene First phase Second phase Remark 

1300472010 BAIM ≥ 62 and 

Diff_BAIM ≥ -139 and 

NBR ≤ 537 and 

Diff_NBR ≤ 1,121 and 

NDVI ≤ 2,753 and 

Diff_NDVI ≤ 576 and 

GEMI ≤ 4,647 and 

Diff_GEMI ≤ 593 and 

MIRBI ≥ 13,548 and 

Diff_MIRBI ≥ -1,831 

BAIM ≥ 53 and 

Diff_BAIM ≥ -1 and 

NBR ≤ 1,924 and 

Diff_NBR ≤ -64 and 

NDVI ≤ 2,027 and 

Diff_NDVI ≤ -818 and 

GEMI ≤ 4,352 and 

Diff_GEMI ≤ -408 and 

MIRBI ≥ 15,796 and 

Diff_MIRBI ≥ 1,832 

Pre-fire image:  

29 January 2010 

Post-fire image:  

14 February 2010 

Apply for burned area date: 

14 February 2010 

1310472010 BAIM ≥ 48 and 

Diff_BAIM ≥ -123 and 

NBR ≤ 1,047 and 

Diff_NBR ≤ 1,186 and 

NDVI ≤ 2,331 and 

Diff_NDVI ≤ 139 and 

GEMI ≤ 4,861 and 

Diff_GEMI ≤ 854 and 

MIRBI ≥ 13,749 and 

Diff_MIRBI ≥ -2,172 

BAIM ≥ 37 and 

Diff_BAIM ≥ -16 and 

NBR ≤ 2,182 and 

Diff_NBR ≤ -1,736 and 

NDVI ≤ 2,354 and 

Diff_NDVI ≤ -1,424 and 

GEMI ≤ 4,455 and 

Diff_GEMI ≤ -398 and 

MIRBI ≥ 16,478 and 

Diff_MIRBI ≥ 1,084 

Pre-fire image:  

21 February 2010 

Post-fire image:  

25 March 2010 

Apply for burned area date: 

21 February 2010 

25 March 2010 

26 April 2010 

1300472014 BAIM ≥ 42 and 

Diff_BAIM ≥ -32 and 

NBR ≤ 2,736 and 

Diff_NBR ≤ 722 and 

NDVI ≤ 3,347 and 

Diff_NDVI ≤ 699 and 

GEMI ≤ 729 and 

Diff_GEMI ≤ 161 and 

MIRBI ≥ 15,321 and 

Diff_MIRBI ≥ -1,725 

BAIM ≥ 47 and 

Diff_BAIM ≥ -17 and 

NBR ≤ 2,463 and 

Diff_NBR ≤ 708 and 

NDVI ≤ 2,779 and 

Diff_NDVI ≤ 595 and 

GEMI ≤ 687 and 

Diff_GEMI ≤ 644 and 

MIRBI ≥ 15,717 and 

Diff_MIRBI ≥ -1,672 

Pre-fire image:  

13 March 2014 

Post-fire image:  

29 March 2014 

Apply for burned area date: 

25 February 2014 

13 March 2014 

29 March 2014 

1310472014 BAIM ≥ 35 and 

Diff_BAIM ≥ -45 and 

NBR ≤ 3,102 and 

Diff_NBR ≤ 1,198 and 

NDVI ≤ 3,714 and 

Diff_NDVI ≤ 1,655 and 

GEMI ≤ 533 and 

Diff_GEMI ≤ 49 and 

MIRBI ≥ 14,342 and 

Diff_MIRBI ≥ -3,534  

BAIM ≥ 42 and 

Diff_BAIM ≥ -37 and 

NBR ≤ 2,839 and 

Diff_NBR ≤ 1,394 and 

NDVI ≤ 3,387 and 

Diff_NDVI ≤ 1,655 and 

GEMI ≤ 554 and 

Diff_GEMI ≤ 768 and 

MIRBI ≥ 15,537 and 

Diff_MIRBI ≥ -3,739 

Pre-fire image:  

20 March 2014 

Post-fire image:  

5 April 2014 

Apply for burned area date: 

4 March 2014 

20 March 2014 

5 April 2014 
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(a) 

 

(b) 

Figure 4.4 Example of burned area extraction using BAMS: (a) small patch and  

(b) large patch. 

 

 
13 March 2014 29 March 2014 

 

Figure 4.5 Multi-temporal burned area comparison between 13 March 2014 and  

29 March 2014. 
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Table 4.2 Decision tree structure for burned area extraction of no-pair Landsat data. 

Scene Second iteration Remark 

1300472013 Min_BAIM > 40 and  

Max_BAIM ≤ 74 and  

Min_GEMI > 1 and  

Max_GEMI ≤ 203 and 

Min_MIRBI > 11,723 and  

Max_MIRBI ≤ 19,638 and  

Min_NBR > 2 and  

Max_NBR ≤ 1,796 and  

Min_NDVI > 799 and  

Max_NDVI ≤ 2,893 

Apply for burned area date: 

11 April 2013 

 

1310472013 Min_BAIM > 62 and  

Max_BAIM ≤ 251 and  

Min_GEMI > 123 and  

Max_GEMI ≤ 627and 

Min_MIRBI > 16,563 and  

Max_MIRBI ≤ 21,199 and  

Min_NDVI > 1,589 and  

Max_NDVI ≤ 2,873 

Apply for burned area date: 

18 April 2013 

 

 

Table 4.3 Area and percentage of burned area for 12 Landsat scenes. 

No. Scene ID Date 
Total area 

(sq.km) 

Burned area 

(sq.km) 

Burned area 

(%) 

1 LT51300472010045 14 February 2010 31,729.62 276.17 0.87 

2 LT51310472010052 21 February 2010 31,718.22 148.11 0.47 

3 LT51310472010084 25 March 2010 31,718.22 382.98 1.21 

4 LT51310472010116 26 April 2010 31,718.22 104.33 0.33 

5 LC81300472013101 11 April 2013 31,729.62 73.68 0.23 

6 LC81310472013108 18 April 2013 31,718.22 92.24 0.29 

7 LC81300472014056 25 February 2014 31,729.62 175.83 0.55 

8 LC81300472014072 13 March 2014 31,729.62 626.11 1.97 

9 LC81300472014088 29 March 2014 31,729.62 234.66 0.74 

10 LC81310472014063 4 March 2014 31,718.22 504.91 1.59 

11 LC81310472014079 20 March 2014 31,718.22 561.52 1.77 

12 LC81310472014095 5 April 2014 31,718.22 389.51 1.23 
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LT51300472010045; 14 February 2010 

 

LT51310472010052; 21 February 2010 

Figure 4.6 Distribution of burned area for 12 Landsat scenes. 
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LT51310472010084; 25 March 2010 

 

LT51310472010116; 26 April 2010 

Figure 4.6 (Continued) Distribution of burned area for 12 Landsat scenes. 
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LC81300472013101; 11 April 2013 

 

LC81310472013108; 18 April 2013 

Figure 4.6 (Continued) Distribution of burned area for 12 Landsat scenes. 
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LC81300472014056; 25 February 2014 

 

LC81300472014072; 13 March 2014 

Figure 4.6 (Continued) Distribution of burned area for 12 Landsat scenes. 
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LC81300472014088; 29 March 2014 

 

LC81310472014063; 4 March 2014 

Figure 4.6 (Continued) Distribution of burned area for 12 Landsat scenes. 
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LC81310472014079; 20 March 2014 

 

LC81310472014095; 5 April 2014 

Figure 4.6 (Continued) Distribution of burned area for 12 Landsat scenes. 
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  For validation of burned area extraction in 2014 by BAMS according 

RFD ground fire records during fire season between February and April 2014 it was 

found that corrected points of all scenes varied between 79.58% and 94.06%. As 

result, it can be concluded that accuracy of burned areas extraction using BAMS is 

acceptable. Detail of accuracy assessment of each Landsat scene is summarized in 

Table 4.4. 

 

Table 4.4 Accuracy assessment of burned area extraction in 2014 by BAMS. 

Landsat 
Date 

of 

data 

Number 

of 

RFD’s 

point 

Number of point Percent 

Path/Row Date Correct Incorrect Correct Incorrect 

130047 25 February 

2014 

10-25 

February 

2014 

101 96 5 94.06 5.94 

130047 13 March 

2014 

26 February 

to 13 March 

2014 

251 234 17 93.23 6.77 

130047 29 March 

2014 

14-29 March 

2014 

123 100 23 82.11 17.89 

131047 4 March 2014 17 February 

to 4 March 

2014 

68 63 5 92.65 7.35 

131047 20 March 

2014 

5-20 March 

2014 

194 176 18 90.72 9.28 

131047 5 April 2014 21 March to 5 

April 2014 

142 113 29 79.58 20.42 

 

 4.1.2 Burn severity classification 

 For burn severity classification, the derived burned area from Landsat 

image is firstly overlaid over 1 sq. km grid of MODIS data for percentage calculation 

and then classified burn severity classes into 5 classes: none, low, moderate, high, and 

very high as defining in Section 1.5. The example burned area extraction and burn 

severity class with 1 sq. km grid size is shown in Figure 4.7. Area and percentage of 
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burn severity classes is summarized in Table 4.5 and distribution of burn severity 

classification of 12 Landsat scenes is displayed in Figure 4.8. Theses burned severity 

classes of 12 scenes as dependent variable is further used in ordinal logistic regression 

analysis with 12 spectral indices as independent variables for optimal top three burned 

area spectral indices identification. 

 

 

Figure 4.7 Burned area extraction and burn severity with 1 sq.km grid size. 
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Table 4.5 Area and percentage of burn severity classification. 

Landsat scene Date 
Area of burn severity classification (sq. km) Percentage of burn severity 

None Low Moderate High Very high None Low Moderate High Very high 

LT51300472010045 14 February 2010 27,438 3,676 186 15 2 87.61 11.74 0.59 0.05 0.01 

LT51310472010052 21 February 2010 29,047 2,155 86 12 6 92.78 6.88 0.28 0.04 0.02 

LT51310472010084 25 March 2010 26,270 4,715 272 44 3 83.92 15.06 0.87 0.14 0.01 

LT51310472010116 26 April 2010 28,989 2,287 29 3 - 92.59 7.31 0.09 0.01 - 

LC81300472013101 11 April 2013 29,669 1,614 32 2 - 94.74 5.15 0.10 0.01 - 

LC81310472013108 18 April 2013 28,246 3,044 15 - - 90.23 9.72 0.05 - - 

LC81300472014056 25 February 2014 27,951 3,295 72 3 - 89.24 10.52 0.23 0.01 - 

LC81300472014072 13 March 2014 21,556 9,294 416 47 5 68.82 29.68 1.33 0.15 0.02 

LC81300472014088 29 March 2014 27,516 3,670 118 13 - 87.86 11.72 0.38 0.04 - 

LC81310472014063 4 March 2014 26,298 4,415 519 72 3 84.00 14.10 1.66 0.23 0.01 

LC81310472014079 20 March 2014 23,413 7,492 353 44 5 74.79 23.93 1.13 0.14 0.02 

LC81310472014095 5 April 2014 22,623 8,484 179 16 4 72.26 27.10 0.58 0.05 0.01 
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LT51300472010045 LT51310472010052 

  

LT51310472010084 LT51310472010116 

  

LC81300472013101 LC81310472013108 

Figure 4.8 Distribution of burn severity for 12 Landsat scenes. 
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LC81300472014056 LC81300472014072 

  

LC81300472014088 LC81310472014063 

  

LC81310472014079 LC81310472014095 

Figure 4.8 (Continued) Distribution of burn severity for 12 Landsat scenes. 
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 4.1.3 Spectral indices calculation 

  Under this stage spectral indices data of the 12 selected spectral 

indices: NDVI, MSAVI, BAI, BAIM, NBR, GEMI, MIRBI, NDSWIR, NDWI, 

NMDI, SMI and CSI were constructed from selected MODIS data as summary in 

Table 4.6. Figure 4.9 and 4.10 comparatively displayed the normalized calculated 

spectral indices data of MODIS scene: 2014057.0350.005 and 2014064.0400.005 

respectively. Table 4.7 summarized original basic descriptive statistical data of 12 

spectral indices from 12 MODIS scenes while Table 4.8 summarized normalize data 

of 12 spectral indices.  

 

Table 4.6 Selected MODIS data according to Landsat data used for burn severity 

classification. 

MODIS data Landsat data 

MODIS scene Date Landsat scene Date 

2010046.0350.005 15 February 2010 LT51300472010045 14 February 2010 

2010053.0400.005 22 February 2010 LT51310472010052 21 February 2010 

2010085.0350.005 26 March 2010 LT51310472010084 25 March 2010 

2010117.0400.005 27 April 2010 LT51310472010116 26 April 2010 

2013102.0350.005 12 April 2013 LC81300472013101 11 April 2013 

2013109.0400.005 19 April 2013 LC81310472013108 18 April 2013 

2014057.0350.005 26 February 2014 LC81300472014056 25 February 2014 

2014073.0350.005 14 March 2014 LC81300472014072 13 March 2014 

2014089.0400.005 30 March 2014 LC81300472014088 29 March 2014 

2014064.0400.005 5 March 2014 LC81310472014063 4 March 2014 

2014080.0400.005 21 March 2014 LC81310472014079 20 March 2014 

2014096.0400.005 6 April 2014 LC81310472014095 5 April 2014 
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Normalized NDVI Normalized BAI 

 

 

Normalized NBR Normalized CSI 

 
 

Normalized MSAVI Normalized NDSWIR 

Figure 4.9 Spectral indices from MODIS scene 2014057.0350.005: 26 February 

2014. 
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Normalized GEMI Normalized BAIM 

  

Normalized MIRBI Normalized NDWI 

 

 

Normalized NMDI Normalized SMI 

Figure 4.9 (Continued) Spectral indices from MODIS scene 2014057.0350.005:  

26 February 2014. 
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Normalized NDVI Normalized BAI 

  
Normalized NBR Normalized CSI 

  
Normalized MSAVI Normalized NDSWIR 

Figure 4.10 Spectral indices from MODIS scene 2014064.0400.005: 5 March 2014.  
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Normalized GEMI Normalized BAIM 

  
Normalized MIRBI Normalized NDWI 

  
Normalized NMDI Normalized SMI 

Figure 4.10 (Continued) Spectral indices from MODIS scene 2014064.0400.005:  

5 March 2014. 
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Table 4.7 Basic descriptive statistical data of original spectral indices data of  

12 MODIS scenes. 

Spectral index 
Descriptive Statistics 

Avg. Minimum Avg. Maximum Avg. Mean Avg. S.D. 

NDVI - 0.0590 0.6876 0.3707 0.1126 

MSAVI - 0.0598 0.4532 0.1929 0.0425 

BAI 10.0022 436.9930 45.1309 17.7744 

BAIM 8.7443 94.1042 31.6245 9.5527 

NBR - 0.0217 0.7787 0.3816 0.1617 

GEMI - 0.1962 0.7114 0.5113 0.0404 

MIRBI 0.6297 1.7496 1.1257 0.1282 

NDSWIR - 0.2035 0.1779 - 0.0664 0.1013 

NDWI - 0.1695 0.4387 0.0841 0.1613 

NMDI 0.2873 0.6685 0.4224 0.0805 

SMI - 0.7387 - 0.1928 - 0.5115 0.4233 

CSI 1.4456 12.7275 3.8383 5.2917 

 

Table 4.8  Basic descriptive statistical data of normalized spectral indices of  

12 MODIS scenes. 

Spectral index 
Descriptive Statistics 

Avg. Minimum Avg. Maximum Avg. Mean Avg. S.D. 

NDVI  0.0000 1.0000 0.5583 0.0889 

MSAVI  0.0000 1.0000 0.4702 0.0725 

BAI  0.0000 1.0000 0.1457 0.1711 

BAIM  0.0000 1.0000 0.2910 0.0657 

NBR  0.0000 1.0000 0.5094 0.0476 

GEMI  0.0000 1.0000 0.6866 0.1822 

MIRBI  0.0000 1.0000 0.4684 0.1302 

NDSWIR  0.0000 1.0000 0.3698 0.1037 

NDWI  0.0000 1.0000 0.4207 0.0556 

NMDI  0.0000 1.0000 0.3618 0.0593 

SMI  0.0000 1.0000 0.4963 0.2057 

CSI  0.0000 1.0000 0.2121 0.0384 

 

 4.1.4 Ordinal logistic regression analysis 

  For ordinal logistic regression analysis, the 1 km grid of burn severity 

classes from each Landsat scene is firstly prepared and simultaneously linked with 12 

extracted spectral indices using MS-Excel spreadsheet and then is exported to SPSS 

statistical software for deviance calculation.  
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  The calculated deviance value of 12 Landsat scenes with its ranking is 

summarized in Table 4.9. Theoretically, the lower deviance value represents a better 

goodness of fit as the residual sum of squares in ordinary linear regression models 

(Hosmer and Lemeshow, 2000). As results, CSI and BAI provides the lowest 

deviance value in 4 of 12 scenes, NDSWIR provides the lowest deviance value in2 

scenes, while SMI and GEMI can provide the lowest deviance value in one scene. On 

the other hand, BAIM, NMDI, and MIRBI provide high deviance value. In addition, it 

can be observed that deviance values are highly related with burn severity class, 

therefore, assignment of burned severity classes is very important because it directly 

effect on deviance value calculation. 
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Table 4.9 Deviance values of each spectral index and its rank. 

Scene name/Date Statistics/Value 
Spectral indices 

NDVI MSAVI BAI BAIM NBR GEMI MIRBI NDSWIR NDWI NMDI SMI CSI 

LT51300472010045 Deviance 110.22 110.89 104.39 163.71 128.05 121.09 141.68 93.44 103.86 121.36 154.33 65.37 

 Rank 5 6 4 12 9 7 10 2 3 8 11 1 

LT51310472010052 Deviance 70.23 55.50 10.63 100.38 74.92 121.09 80.21 52.64 75.54 121.25 45.29 55.35 

 Rank 6 5 1 10 7 11 9 3 8 12 2 4 

LT51310472010084 Deviance 195.96 213.71 182.42 282.71 200.51 59.70 215.34 173.77 177.99 173.05 96.62 143.85 

 Rank 8 10 7 12 9 1 11 5 6 4 2 3 

LT51310472010116 Deviance 75.45 61.29 63.21 85.77 85.95 62.72 64.69 57.14 71.12 67.37 63.16 51.08 

 Rank 10 3 6 11 12 4 7 2 9 8 5 1 

LC81300472013101 Deviance 70.23 55.50 10.63 100.38 74.92 121.09 80.21 92.64 75.54 121.25 45.29 55.35 

 Rank 5 4 1 10 6 11 8 9 7 12 2 3 

LC81310472013108 Deviance 37.39 54.813 33.792 33.376 34.504 50.352 36.54 34.726 52.115 35.26 30.435 31.139 

 Rank 9 12 4 3 5 10 8 6 11 7 1 2 

LC81300472014056 Deviance 77.28 92.86 55.43 91.55 73.73 69.41 138.57 52.59 64.32 127.81 146.53 31.72 

 Rank 7 9 3 8 6 5 11 2 4 10 12 1 

LC81300472014072 Deviance 171.43 159.12 17.26 233.79 210.28 181.04 276.52 85.57 198.54 707.70 334.02 120.73 

 Rank 5 4 1 9 8 6 10 2 7 12 11 3 

LC81300472014088 Deviance 88.70 106.24 42.66 164.30 135.19 113.09 241.06 72.96 112.11 413.59 177.32 86.14 

 Rank 4 5 1 9 8 7 11 2 6 12 10 3 

LC81310472014063 Deviance 289.42 291.97 157.95 194.07 258.77 236.59 624.96 139.35 235.36 427.78 229.23 170.30 

 Rank 9 10 2 4 8 7 12 1 6 11 5 3 

LC81310472014079 Deviance 222.76 154.32 144.71 203.88 181.02 160.76 226.74 134.71 135.08 320.05 165.09 93.35 

 Rank 10 5 4 9 8 6 11 2 3 12 7 1 

LC81310472014095 Deviance 204.31 205.25 165.71 233.05 201.24 183.02 223.49 123.98 179.81 203.20 308.79 136.29 

 Rank 8 9 3 11 6 5 10 1 4 7 12 2 
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 4.1.5 Optimal top three burned area spectral indices identification 

  According to deviance values from 12 Landsat scenes and its rank 

(Table 4.9), total score was derived by addition of score (rank) and ranked it again for 

optimal top three burned area spectral indices identification as shown in Table 4.10. 

As result, it was found that an optimal top three spectral indices were CSI, BAI, and 

NDSWIR. These indices provide a better goodness of fit with burn severity classes 

and they were further applied for burned area detection using threshold technique and 

decision tree classification. 

 

Table 4.10 Total score value and ranking of spectral indices for optimal top three 

burned area spectral indices identification. 

No. Spectral index 
12 Scenes of Landsat 

Total score Rank 

1 CSI 27 1 

2 BAI  37 2 

3 NDSWIR 37 2 

4 NDWI 74 4 

5 GEMI 80 5 

6 SMI 80 5 

7 MSAVI 82 7 

8 NDVI 86 8 

9 NBR 92 9 

10 BAIM 108 10 

11 NMDI 115 11 

12 MIRBI 118 12 
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  This finding was agreed with the previous study of Schepers et al. 

(2014) who examined 9 spectral indices (NDVI, GEMI, EVI, SAVI, MSAVI, BAI, 

NBR, CSI, and MIRBI) to assess the burn severity of fire in the Kalmthoutse Heide, 

Belgium using Airborne Imaging Spectroscopy (APEX). They found that CSI was the 

best index to assess burn severity in dry heath vegetation and the NBR performed 

rather poorly. On contrary, Harris et al. (2011) who evaluated 19 spectral indices to 

assess the burn severity in Chaparral Ecosystems (Southern California) using 

MODIS/ASTER (MASTER). They found that NBR was the best non thermal index to 

assess burn severity with best goodness-of-fit of the ordinal logistic regression model. 

However, the second best index of their study was CSI. 

 

4.2 An optimum burned area detection algorithm identification 

The main results of two approached are applied to identify optimum burned 

area detection using the derived spectral indices: (1) thresholding technique and  

(2) decision tree classification with CRT growing method. 

4.2.1  Burned area detection algorithm testing using thresholding 

technique 

An extracted burned and unburned areas are here considered based on 

the percentage of burned area from Landsat 8 data, scene number LC8131047 

2014063, date 4 March 2014 in peak fire season in 2014 over 1 sq. km
 
grid of MODIS 

data. If percent of burned area in grid equal or more than 25%, it classified burned 

grid. The results showed that 30,747 grids were unburned areas and 560 grids were 

burned areas. This result was also used as a reference data for accuracy assessment of 

burned area detection from top three spectral indices from MODIS Level 1B data 
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(Scene 2014064), date 5 March 2014. For calculated 560 burned grids, it was found 

that mean and standard deviation of CSI, BAI and NDSWIR were 1.2439 and 0.2228, 

103.7142 and 18.7191, and -0.1513 and 0.0213, respectively (Table 4.11). 

 

Table 4.11 Descriptive statistics of top three spectral indices over 560 burned grids. 

Spectral index Minimum Maximum Mean S.D. 

CSI 0.8624 2.4669 1.2439 0.2228 

BAI 54.7674 165.0381 103.7142 18.7191 

NDSWIR -0.2032 -0.0894 -0.1513 0.0213 

 

By using thresholding technique, it was found that BAI with threshold 

value between 104.7674 and 124.7674 (If 104.7674 ≤BAI value ≤124.7674, then, it is 

burned area), provided overall accuracy between 97.8855% and 98.1059%, false 

alarm rate between 0.6667% and 0.3740%, burned area detection rate between 

18.3929% and 14.6429%, and Kappa hat coefficient between 22.7512% and 

20.9283% (Table 4.12 and Figure 4.11. At the same time, CSI with threshold value 

between 0.9624 and 1.0624 provided overall accuracy at 97.3712%, false alarm rate at 

1.1286%, burned area detection rate at 15.0000%, and Kappa hat coefficient at 

15.6400% (Table 4.13 and Figure 4.12). Similarly, NDSWIR with threshold value 

between -0.1832 and -0.1782 provided overall accuracy at 97.5660%, false alarm rate 

at 0.7773%, burned area detection rate at 6.6071%, and Kappa hat coefficient at 

7.7623% (Table 4.14 and Figure 4.13). 

Distribution of burned and unburned areas detection by top three 

spectral indices (BAI, CSI, and NDSWIR) using thresholding technique that was 

compared with reference burned area is displayed in Figure 4.14.  
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Table 4.12 Accuracy assessment of burned area detection using thresholding technique with BAI. 

ID 

Threshold Correct 

burned hit 

(pixel) 

Burn 

Missing 

(pixel) 

False 

Alarm 

(pixel) 

Correct 

unburned 

hit (pixel) 

Overall 

Accuracy 

(%) 

False 

alarm rate 

(%) 

Burn 

detection 

rate (%) 

Kappa hat 

(%) Minimum Maximum 

1 54.7674 64.7674 8 552 3,119 27,628 88.2742 10.1441 1.4286 -2.6815 

2 64.7674 74.7674 28 532 1,642 29,105 93.0559 5.3404 5.0000 -0.1725 

3 74.7674 84.7674 51 509 1,028 29,719 95.0906 3.3434 9.1071 3.9615 

4 84.7674 94.7674 101 459 683 30,064 96.3523 2.2214 18.0357 13.2188 

5 94.7674 104.7674 109 451 351 30,396 97.4383 1.1416 19.4643 20.0832 

6 104.7674 114.7674 103 457 205 30,542 97.8855 0.6667 18.3929 22.7521 

7 114.7674 124.7674 82 478 115 30,632 98.1059 0.3740 14.6429 20.9283 

8 124.7674 134.7674 48 512 36 30,711 98.2496 0.1171 8.5714 14.5079 

9 134.7674 144.7674 23 537 11 30,736 98.2496 0.0358 4.1071 7.5548 

10 144.7674 154.7674 6 554 7 30,740 98.2081 0.0228 1.0714 2.0147 

11 154.7674 164.7674 0 560 3 30,744 98.2017 0.0098 - -0.0191 

12 164.7674 165.0381 1 559 0 30,747 98.2145 - 0.1786 0.3502 
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Table 4.13 Accuracy assessment of burned area detection using thresholding technique with CSI. 

ID 

Threshold Correct 

burned hit  

(pixel) 

Burn 

Missing 

(pixel) 

False 

Alarm 

(pixel) 

Correct 

unburned hit  

(pixel) 

Overall 

Accuracy 

(%) 

False 

alarm rate 

(%) 

Burn 

detection 

rate (%) 

Kappa hat 

(%) Minimum Maximum 

1 0.8624 0.9624 39 521 131 30,616 97.9174 0.4261 6.9643 9.9346 

2 0.9624 1.0624 84 476 347 30,400 97.3712 1.1286 15.0000 15.6400 

3 1.0624 1.1624 94 466 573 30,174 96.6813 1.8636 16.7857 13.6425 

4 1.1624 1.2624 95 465 757 29,990 96.0967 2.4620 16.9643 11.5467 

5 1.2624 1.3624 102 458 985 29,762 95.3908 3.2036 18.2143 10.2675 

6 1.3624 1.4624 71 489 1,164 29,583 94.7200 3.7857 12.6786 5.5870 

7 1.4624 1.5624 31 529 1,308 29,439 94.1323 4.2541 5.5357 0.7616 

8 1.5624 1.6624 21 539 1,321 29,426 94.0588 4.2964 3.7500 -0.3242 

9 1.6624 1.7624 8 552 1,383 29,364 93.8193 4.4980 1.4286 -1.7758 

10 1.7624 1.8624 5 555 1,333 29,414 93.9694 4.3354 0.8929 -2.0467 

11 1.8624 1.9624 3 557 1,313 29,434 94.0269 4.2703 0.5357 -2.2461 

12 1.9624 2.0624 4 556 1,240 29,507 94.2633 4.0329 0.7143 -2.0747 

13 2.0624 2.1624 - 560 1,261 29,486 94.1834 4.1012 - -2.5402 

14 2.1624 2.2624 1 559 1,222 29,525 94.3112 3.9744 0.1786 -2.4006 

15 2.2624 2.3624 - 560 1,144 29,603 94.5571 3.7207 - -2.4609 

16 2.3624 2.4624 - 560 1,087 29,660 94.7392 3.5353 - -2.4182 

17 2.4624 2.4669 1 559 47 30,700 98.0643 0.1529 0.1786 0.0466 
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Table 4.14 Accuracy assessment of burned area detection using thresholding technique with NDSWIR. 

ID 

Threshold Correct 

burned hit  

(pixel) 

Burn 

Missing 

(pixel) 

False 

Alarm 

(pixel) 

Correct 

unburned hit  

(pixel) 

Overall 

Accuracy 

(%) 

False 

alarm rate 

(%) 

Burn 

detection 

rate (%) 

Kappa hat 

(%) Minimum Maximum 

1 -0.2032 -0.1982 3  557   20   30,727  98.1570  0.0650  0.5357  0.8893  

2 -0.1982 -0.1932 3  557   43   30,704  98.0835  0.1399  0.5357  0.7205  

3 -0.1932 -0.1882 7  553   93   30,654  97.9366  0.3025  1.2500  1.5878  

4 -0.1882 -0.1832 19  541  183   30,564  97.6874  0.5952  3.3929  4.0772  

5 -0.1832 -0.1782 37  523  239   30,508  97.5660  0.7773  6.6071  7.7623  

6 -0.1782 -0.1732 34  526  337   30,410  97.2434  1.0960  6.0714  5.9634  

7 -0.1732 -0.1682 30  530  328   30,419  97.2594  1.0668  5.3571  5.2135  

8 -0.1682 -0.1632 39  521  412   30,335  97.0198  1.3400  6.9643  6.2185  

9 -0.1632 -0.1582 43  517  500   30,247  96.7515  1.6262  7.6786  6.1440  

10 -0.1582 -0.1532 38  522  609   30,138  96.3874  1.9807  6.7857  4.4645  

11 -0.1532 -0.1482 55  505  730   30,017  96.0552  2.3742  9.8214  6.2203  

12 -0.1482 -0.1432 48  512  945   29,802  95.3461  3.0735  8.5714  3.9853  

13 -0.1432 -0.1382 56  504  1,078   29,669  94.9468  3.5060   10.0000  4.3202  

14 -0.1382 -0.1332 40  520  1,168   29,579  94.6082  3.7987  7.1429  2.1327  

15 -0.1332 -0.1282 24  536  1,226   29,521  94.3719  3.9874  4.2857  0.1859  

16 -0.1282 -0.1232 29  531  1,375   29,372  93.9119  4.4720  5.1786  0.4061  

17 -0.1232 -0.1182 21  539  1,372   29,375  93.8959  4.4622  3.7500  - 0.4116  

18 -0.1182 -0.1132 14  546  1,395   29,352  93.8001  4.5370  2.5000  - 1.1679  

19 -0.1132 -0.1082 6  554  1,349   29,398  93.9215  4.3874  1.0714  - 1.9542  

20 -0.1082 -0.1032 5  555  1,343   29,404  93.9375  4.3679  0.8929  - 2.0553  

21 -0.1032 -0.0982 4  556  1,259   29,488  94.2026  4.0947  0.7143  - 2.0915  

22 -0.0982 -0.0932 2  558  1,225   29,522  94.3048  3.9841  0.3571  - 2.2888  

23 -0.0932 -0.0894 2  558  903   29,844  95.3333  2.9369  0.3571  - 1.9807  
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Figure 4.11 Accuracy assessment and Kappa hat coefficient of burned area detection 

using thresholding technique with BAI. 

 

Figure 4.12 Accuracy assessment and Kappa hat coefficient of burned area detection  

using thresholding technique with CSI. 

 

Figure 4.13 Accuracy assessment and Kappa hat coefficient of burned area detection  

using thresholding technique with NDSWIR. 
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(a) (b) 

 

 

(c) (d) 

Figure 4.14 Distribution of burned and unburned area detection (a) reference burned 

area, (b) BAI, (c) CSI and (d) NDSWIR. 
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4.2.2  Burned area detection algorithm testing by decision tree 

classification 

The derived MODIS Level 1B spectral data of top three spectral 

indices as independent variables and burned and unburned area derived from Landsat 

8, scene number LC81310472014063, date 4 March, 2014 as dependent variable were 

here used to classify burned and unburned area using decision tree classification with 

CRT growing method under SPSS statistical software. The decision tree structure for 

burned and unburned area classification is displayed in Figure 4.15. The final criteria, 

which only include BAI and CSI of burned and unburned areas extraction, are as 

follows: 

IF BAI value > 124.1677 AND CSI value ≤ 1.4650 (Node 12),  

THEN, it is burned areas. 

OTHERWISE,  

IF BAI value > 96.1778 AND CSI value > 1.4650 (Node 6), OR  

IF BAI value ≤ 96.1778 (Node 7), OR  

IF BAI value > 71.6416 AND BAI value ≤ 96.1778 (Node 8), OR 

IF BAI value > 83.9237 AND BAI value ≤ 96.1778 AND CSI value ≤ 

1.4455 (Node 9), OR 

IF BAI value > 83.9237 AND BAI value ≤ 96.1778 AND CSI value > 

1.4455 (Node 10), OR 

IF BAI value > 96.1778 AND BAI value ≤ 124.1677 AND CSI value 

≤ 1.4650 (Node 11) 

THEN, they are unburned areas. 
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This method provided overall accuracy at 98.3390%, false alarm rate at 

0.1399%, burned area detection rate at 14.8214%, and Kappa hat coefficient at 

23.6969%.  

Distribution of burned and unburned areas detection by decision tree 

classification that was compared with reference burned area is displayed in Figure 

4.16.  

 

 

Figure 4.15 Decision tree structure for burned and unburned areas detection based on 

spectral indices. 
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(a) (b) 

Figure 4.16 Distribution of burned and unburned area detection (a) reference burned 

area and (b) decision tree classification. 

 

4.2.3  Optimal burned area detection algorithm identification 

Based on accuracy assessment (overall accuracy and Kappa hat 

coefficient) of two approaches for burned area detection algorithm testing in the 

previous sections (4.3.1 and 4.3.2), it revealed that decision tree classification using 

CRT growing method provide the overall accuracy with value of 98.3390% higher 

than thresholding technique with BAI spectral index with value of 97.7800%. 

However, thresholding technique with BAI spectral index provide Kappa hat 

coefficient with value of 33.6157 higher than decision tree classification using CRT 

growing method with value of 23.6969%. In addition, burn detection rate of 

thresholding technique with value of 33.0357% was also higher than decision tree 

classification using CRT growing method with value of 14.8214% while false alarm 

rate of decision tree classification using CRT growing method with value of 0.1399% 
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was lower than thresholding technique with value of 1.0408% (Table 4.15).  

In addition result of pairwise Z-test between thresholding technique with BAI spectral 

index and decision tree classification using CRT growing method as summary in 

Table 4.16, it was found that Kappa hat accuracies from both techniques for burned 

and unburned extraction was significantly different at 90, 95, and 100% of confidence 

level.  

 

Table 4.15 Accuracy comparison of two burned area detection algorithms. 

Accuracy Statistics Thresholding technique Decision tree classification 

Correct burn hit (pixel) 185 83 

Burn missing (pixel) 375 477 

False alarm (pixel) 320 43 

Correct unburn hit (pixel) 30,427 30,704 

Burn detection rate (%) 33.0357 14.8214 

False alarm rate (%) 1.0408 0.1399 

Overall accuracy (%) 97.7800 98.3390 

Kappa hat coefficient (%) 33.6157 23.6969 

 

Table 4.16 Pairwise Z test of Kappa hat coefficient value for burned area extraction 

between thresholding technique and decision tree classification. 

Pairwise Z test 
Kappa hat 

coefficient 
Variance 

Z-

Statistic 

Two-side confidential level 

of critical value 

90% 95% 100% 

Thresholding technique 33.6157 0.00035934 
3.3925 1.65 1.96 2.58 

Decision tree classification 23.6969 0.00049550 
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Furthermore, the derived threshold value of thresholding technique and 

criteria of decision tree classification for burned area detection as reported above in 

Section 4.31 and 4.3.2 were here reexamined with other MODIS Level 1B datasets 

(Scene 2014080) over 20 March 2014 (LC81310472014079) for algorithm validation. 

It was found that thresholding technique provided overall accuracy at 

97.2945%, burned area detection rate at 30.8458%, false alarm rate at 1.8411%, and 

Kappa hat coefficient at 21.3704%. At the same time, decision tree classification 

provided overall accuracy at 98.7479%, burned area detection rate at 11.9403%, false 

alarm rate at 0.1230%, and Kappa hat coefficient at 19.3069% (Table 4.17). In 

addition, distribution of burned and unburned areas detection by thresholding 

technique with BAI spectral index and decision tree classification that was compared 

with reference burned area is displayed in Figures 4.17 and 4.18, respectively. 

 

Table 4.17 Accuracy comparison of two burned area detection algorithms for 

algorithm validation. 

Accuracy Statistics Thresholding Technique Decision tree classification 

Correct burn hit (pixel) 124 48 

Burn missing (pixel) 278 354 

False alarm (pixel) 569 38 

Correct unburn hit (pixel) 30,336 30,867 

Burn detection rate (%) 30.8458 11.9403 

False alarm rate (%) 1.8411 0.1230 

Overall accuracy (%) 97.2945 98.7479 

Kappa hat coefficient (%) 21.3704 19.3069 
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Reference area Thresholding technique 

Figure 4.17 Distribution of burned and unburned area detection by thresholding 

technique with BAI spectral index. 

 

 
 

Reference area Decision tree classification 

Figure 4.18 Distribution of burned and unburned area detection by decision tree 

classification with BAI and CSI spectral indices. 

 

Furthermore, when detected burn areas from both approached based on 

two MODIS Level 1B scenes with 1 km spatial resolution were compared with 
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extracted burn areas using BAMS based on two Landsat 8 data with 30 m spatial 

resolution, it was found that thresholding technique detected burned area better than 

decision tree classification (Table 4.18). Detected burn area by decision tree 

classification was too low when it was compared with thresholding technique or 

BAMS. 

As results of accuracy assessment and validation mentioned above, it 

can be here concluded that thresholding technique with BAI spectral index was an 

optimum algorithm for burned area detection from MODIS Level 1B in this study. 

 

Table 4.18 Comparison of detected/extracted burn area based on MODIS Level 1B 

and Landsat-8 data with three different approaches. 

MODIS Level 1B 
Detected/extracted burn area in sq. km 

Thresholding technique Decision  tree classification BAMS 

Scene 2014064 505 126 504.91 

Scene 2014080 693 86 561.52 

 

4.3 An optimal algorithms for fire detection identification 

The main results of an optimal algorithms for fire detection identification for 

MODIS hotspot using MODIS hotspot algorithm and MODIS hotspot data with 

decision tree classification are here separately described and discussed.  

4.3.1  Fire detection based on MODIS hotspot algorithm 

 MODIS hotspot data with MOD14/MYD14 algorithm during fire 

season between 2010 and 2014 of Upper Northern of Thailand were directly retrieved 

and applied for accuracy assessment. The results revealed that totally 51,373 points 

were identified as hotspot and most of them were detected by Aqua satellite (83.04%). 
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Herewith, 13,755, 4,220, 12,220, 10,817, and 10,361 points were reported as hotspot 

in year 2010, 2011, 2012, 2013, and 2014, respectively. Most hotspots frequently 

occurred in March (57.00%) and followed by April (19.63%), February (17.92%), and 

January (2.60%). In addition, the most frequently time of fire occurrence was after 

12.00 midday to 4.00 PM (82.03%). The summary statistics of MODIS hotspot record 

of Upper Northern of Thailand between 2010 and 2014 is summarized in Tables 4.19 

and 4.21. Meanwhile distribution of MODIS hotspot is presented in Figure 4.19.  

 Furthermore, attribute data which were attached with MODIS hotspot 

included BT21/22, BT31, Difference of BT, FC, and FRP is summarized in Table 

4.22. It was found that average brightness temperature of band 21/22 was 326.62 K, 

average brightness temperature of band 31 was 303.28 K, average difference 

brightness temperature of BT was 23.34 K, average FC was 68.22%, and average 

FRP was 44.62 MW. Herewith, range of FC and FRP was very wide. This infers 

about the existing of false hotspot. The distribution of MODIS hotspot attribute data 

which were systematic classified is shown in Figures 4.20 to 4.24. 

 

Table 4.19  Basic statistical data of MODIS hotspot data by year between 2010 and 

2014 of Upper Northern of Thailand. 

Year Number of hotspot Percent 

2010 13,755 26.77 

2011 4,220 8.21 

2012 12,220 23.79 

2013 10,817 21.06 

2014 10,361 20.17 
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Table 4.20 Basic statistical data of MODIS hotspot data by month between 2010 

and 2014 of Upper Northern of Thailand. 

Month Number of hotspot Percent 

January 1,335 2.60 

February 9,208 17.92 

March 29,281 57.00 

April 10,084 19.63 

May 363 0.71 

June 34 0.07 

July 7 0.01 

August 5 0.01 

September 21 0.04 

October 24 0.05 

November 165 0.32 

December 846 1.65 

 

Table 4.21  Basic statistical data of MODIS hotspot data by period of time between 

2010 and 2014 of Upper Northern of Thailand. 

Time period Number of hotspot Percent 

10.00 AM - 12.00 Midday 6,829 13.29 

00.01 PM - 02.00 PM 31,986 62.26 

02.01 PM - 04.00 PM 10,155 19.77 

08.01 PM - 10.00 PM 12 0.02 

10.01 PM - 12.00 Midnight 1,872 3.64 

00.01 AM - 02.00 AM 519 1.02 

 

Table 4.22 Basic Statistic data of MODIS hotspot attribute data. 

MODIS hotspot data descriptive statistics 

MODIS hotspot Value Range Minimum Maximum Mean S.D. Skewness 

BT21 or BT 22 196.00 305.00 501.00 326.62 15.04 2.62 

BT31  131.40 268.70 400.10 303.28 5.34 - 0.34 

Difference of BT 156.00 10.00 166.00 23.34 13.81 2.63 

FC  100.00 0.00 100.00 68.22 18.90 - 0.46 

FRP 1,712.80 4.30 1,717.10 44.62 73.48 6.92 
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(a) (b) 

  

(c) (d) 

 

 

(e)  

Figure 4.19  MODIS hotspot distributions, Upper Northern of Thailand: (a) 2010  

(b) 2011 (c) 2012 (d) 2013 and (e) 2014. 
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Figure 4.20  Distribution of brightness temperature of Band 21/22 from MODIS 

hotspot Upper Northern of Thailand between 2010 and 2014. 

 

 

Figure 4.21 Distribution of brightness temperature of Band 31 from MODIS hotspot 

Upper Northern of Thailand between 2010 and 2014. 
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Figure 4.22  Distribution of fire confidence from MODIS hotspot Upper Northern of 

Thailand between 2010 and 2014. 

 

 

Figure 4.23 Distribution of fire radiative power from MODIS hotspot Upper 

Northern of Thailand between 2010 and 2014. 
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Figure 4.24 Distribution of difference of brightness temperature from MODIS 

hotspot Upper Northern of Thailand between 2010 and 2014. 

 

  For hotspot MODIS accuracy assessment, four selected Landsat 8 data: 

two scenes LC81300472014088, Path 130 and Row 47 dated on 13 and 29 March 

2014 and two scenes LC81310472014079, Path 131 and Row 047 acquired on 4 and 

20 March 2014, which represented fire occurrence, were here used to assess accuracy 

using visual interpretation with ancillary data and fire record by ground survey of 

RFD. Herewith, there were 882 MODIS hotspot points located over two scenes 

LC81300472014088 of Landsat 8 data and fire record by ground survey of RFD was 

123 points. Likewise there were 1,554 MODIS hotspot points situated over two 

scenes LC81310472014079 of Landsat 8 data and ground fire record of RFD was 194 

points. Distribution of hotspots over Landsat data is presented in Figure 4.25 while 

distribution of fire record by ground survey of RFD over two Landsat scenes is shown 

in Figure 4.26. An example of ground fire record and its attribute is shown in Figure 

4.27. 
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(a) 

 

(b) 

Figure 4.25 Distribution of hotspot over Landsat 8 image (a) Scene LC81300472014 

088 and (b) scene LC81310472014079. 
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(a) 

 

(b) 

Figure 4.26 Distribution of fire record by ground survey of RFD over Landsat 8 

image (a) Scene LC81300472014088 and (b) scene LC81310472014079. 
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Figure 4.27 An example of fire record and its attribute by ground survey of RFD. 

 

For accuracy assessment of MODIS hotspots which were separated into 2 

groups (true hotspot and false hotspot) based on visual interpretation with ancillary 

data, i.e. land use data of LDD and fire record of RFD revealed that in scene 

LC81300472014088 true hotspot was 865 points, false hotspot was 17 points and the 

percentage of true hotspot was 98.07% (Figure 4.28). Meanwhile true hotspot was 

1,515 points, false hotspot was 39 points and the percentage of true hotspot was 

97.49% in the scene LC81310472014079 as shown in Figure 4.29. An example of 

visual interpretation for accuracy assessment is presented in Figure 4.30. Validation 

of true and false MODIS hotspot by visual interpretation and fire record by ground 

survey of RFD is again summarized in Table 4.23. 
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Figure 4.28 Distribution true and False MODIS hotspot over Landsat image scene, 

LC81300472014088. 

 

Figure 4.29 Distribution true and False MODIS hotspot over Landsat image scene, 

LC8 1310472014079. 
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Figure 4.30 An example of MODIS hotspot validation by visual interpretation over 

Landsat data as true hotspot (red colored point) and false hotspot (yellow 

colored point) in various locations. 

 

Table 4.23 Summary of accuracy assessment of MODIS hotspot. 

Landsat scene True Hotspot False Hotspot True Hotspot percentage 

LC81300472014088 865 17 98.07 

LC81310472014079 1,515 39 97.49 

 

As results, it shows that the finding corresponds with the study of 

Tanpipat, Honda, and Nuchaiya (2009) who validated the MODIS hotspot data from 

year 2007, 2008 and 2009 in protected forest areas of national parks and wildlife 

sanctuaries in three represented region (North, Upper South and East) of Thailand by 

using both ground and aerial field surveys. The study found high accuracy of 91.84%, 

95.60%, and 97.53% for the 2007, 2008, and 2009 in fire seasons, respectively. 
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4.3.2  Fire detection based on MODIS hotspot with decision tree 

classification 

 To construct of MODIS hotspot data with decision tree classification, 

800 sampling points (previous 16 days) over Landsat 8 scene LC81300472014088 

were here randomly selected and joined with 6 types of factor combination from 13 

factors (elevation, slope, NDVI, distance from stream, distance from water body, 

distance from road, distance from village, distance from fire ground survey, distance 

from agricultural area, distance from shifting cultivation, distance from evergreen 

forest, distance from deciduous forest, and distance from degraded forest) as shown in 

Figure 4.31 and then created decision tree with CRT algorithm under SPSS statistic 

software.  

 

 

 

Slope NDVI 

Figure 4.31 Biophysical factor maps. 
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Distance from water body Distance from village 

 

 

Distance from road Distance from stream 

Figure 4.31 (Continued) Biophysical factor maps. 
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Distance from fire ground survey Distance from agricultural area 

 

 

Distance from shifting cultivation Distance from evergreen forest 

Figure 4.31 (Continued) Biophysical factor maps. 
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Distance from deciduous forest Distance from degrade forest 

Figure 4.31 (Continued) Biophysical factor maps. 

 

The result based on 800 sampling hotspot points shows that decision 

tree with three biophysical factors include (1) distance from fire ground survey, (2) 

elevation and (3) slope can provide the highest overall accuracy at 71.00%. The 

derived decision tree structure for true and false MODIS hotspot of this combination 

is presented in Figure 4.32. The final criteria for true and false MODIS hotspot 

detection are as follows: 

IF Distance from fire ground survey ≤ 1,053.42 (Node 3), OR  

IF Distance from fire ground survey ≤ 2,538.24 AND Distance from 

fire ground survey > 1,053.42 (Node 4), OR  

IF Distance from fire ground survey > 2,538.24 AND Elevation > 

729.50 (Node 6),  

THEN, they are True MODIS hotspot. 

OTHERWISE,  
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IF Distance from fire ground survey > 9,527.83 AND Elevation ≤ 

729.50 (Node 8), OR 

IF Distance from fire ground survey > 2,538.24 AND Distance from 

fire ground survey ≤ 9,527.83 AND Elevation ≤ 729.50 AND Slope ≤ 1.78 (Node 9), 

OR 

IF Distance from fire ground survey > 2,538.24 AND Distance from 

fire ground survey ≤ 9,527.83 AND Elevation ≤ 729.50 AND Slope > 1.78 (Node 10), 

THEN, they are false MODIS hotspot. 

 Furthermore, simple decision tree with any biophysical factor (Type I) 

provided overall accuracy varied between 50% and 67.88%. Meanwhile decision tree 

with proximity factors and all 13 factors (Type V and VI) provides overall accuracy at 

66.38% and 70.63%, respectively (Table 4.24). 
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Figure 4.32 Optimum decision tree to classify true and false MODIS hotspot using 

distance from fire ground survey, elevation and slope. 
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Table 4.24 Overall accuracy comparison by various combination biophysical factors of decision tree classification. 

Type 
Biophysical factor 

and its combination 

Total 

pixel 

Correct 

fire hit 

Fire 

missing 

False 

alarm 

Correct 

non-fire 

hit 

False 

alarm 

rate 

fire  

detection 

rate 

Overall 

Accuracy 
Kappa 

I 

Elevation 800 232 168 142 258 35.50 58.00 61.25 22.50 

Slope 800 324 76 272 128 68.00 81.00 56.50 13.00 

NDVI 800 141 259 108 292 27.00 35.25 54.13 8.25 

Distance from water body 800 231 169 133 267 33.25 57.75 62.25 24.50 

Distance from village 800 270 130 215 185 53.75 67.50 56.88 13.75 

Distance from road 800 263 137 209 191 52.25 65.75 56.75 13.50 

Distance from stream 800 - 400 - 400 - - 50.00 - 

Distance from fire ground survey 800 214 186 71 329 17.75 53.50 67.88 35.75 

Distance from agricultural area 800 101 299 77 323 19.25 25.25 53.00 6.00 

Distance from shifting cultivation 800 289 111 205 195 51.25 72.25 60.50 21.00 

Distance from evergreen forest 800 - 400 - 400 - - 50.00 - 

Distance from deciduous forest 800 - 400 - 400 - - 50.00 - 

Distance from degrade forest 800 81 319 54 346 13.50 20.25 53.38 6.75 

II Elevation and slope 800 232 168 142 258 35.50 58.00 61.25 22.50 

III Elevation, slope, and NDVI 800 164 236 68 332 17.00 41.00 62.00 24.00 

IV Elevation, slope, and distance from 

fire ground survey 

800 257 143 89 311 22.25 64.25 71.00 42.00 

V Proximity factors 800 224 176 93 307 23.25 56.00 66.38 32.75 

VI All 13 factors 800 285 115 120 280 30.00 71.25 70.63 41.25 
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By applying the criteria of the best decision tree of three factors (Type 

IV) with MODIS hotspot over Landsat 8 scene LC81300472014088 and 

LC81310472014079, it was found that overall accuracy based on visual interpretation 

with ancillary data, i.e. land use data of LDD and fire record of RFD was 62.47% and 

63.84%, respectively as results shown in Figure 4.33 and Figure 4.34, respectively.  

 

 

Figure 4.33  True and false hotspot classification using decision tree with three 

biophysical factors of MODIS hotspot over Landsat scene LC8130047 

2014088. 
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Figure 4.34 True and false hotspot classification using decision tree with three 

biophysical factors of MODIS hotspot over Landsat scene LC8 

1310472014079. 

 

4.3.3  Optimal fire detection algorithm 

Based on accuracy assessment (overall accuracy) of two approaches for 

fire detection algorithm identification in the previous sections (4.4.1 and 4.4.2), it can 

be here concluded that hotspot (MOD14/MYD14 algorithm) of MODIS was an 

optimal fire detection algorithm for Upper Northern region of Thailand. 
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CHAPTER V 

CONCLUSION AND RECOMMENDATIONS 

 

Under this chapter, two main results which were reported according to 

objectives in the study including (1) to identify an optimal top three spectral indices 

for burned area evaluation and (2) to identify the algorithms for burned area and fire 

detection using MODIS and Landsat data are here separately concluded and 

recommended for future research and development. 

 

5.1 Conclusions 

5.1.1 Optimal top three spectral indices for burned area evaluation 

To identify an optimal top three spectral indices for burned area 

evaluation, MODIS data were firstly used to calculate spectral indices, (NDVI, 

MSAVI, BAI, BAIM, NBR, GEMI, MIRBI, NDSWIR, NDWI, NMDI, SMI, and 

CSI) and their values were then compared with the extracted burned area and its 

severity from Landsat data using deviance value of the ordinal logistics regression. 

The study found that optimal top three of MODIS spectral indices for burned area 

detection were CSI, BAI, and NDSWIR. These spectral indices from MODIS Level 

1B data show top three best goodness of fit with burn severity classes deriving from 

12 scenes of Landsat 5 and 8 data. 
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5.1.2 Optimal burned area detection algorithm identification 

For optimal burned area detection algorithm identification, MODIS data 

in 2014 were firstly used to extract burned area using threshold technique and 

decision tree classification with top three MODIS spectral indices and to assess 

accuracy with the burned areas from Landsat data extraction using BAMS. Using 

thresholding technique, BAI spectral index of MODIS Level 1B data (Scene 

2014064) with threshold value between 104.7674 and 124.7674 can provide the best 

result for burned area extraction with overall accuracy between 97.8855% and 

98.1059%, Kappa hat coefficient between 22.7512% and 20.9283%, burned area 

detection rate between 18.3929% and 14.6429%, and false alarm rate between 

0.6667% and 0.3740%. Meanwhile, decision tree classification with combination BAI 

and CSI spectral indices can provide the best result for burned area extraction with 

overall accuracy at 98.3390%, Kappa hat coefficient at 23.6969%, burn detection rate 

at 14.8214%, and false alarm rate at 0.1399%. In addition, result of pairwise Z-test 

between Kappa hat coefficient between thresholding technique and decision tree 

classification showed statistically significantly at 90, 95, and 100% of confidence 

level.  

Furthermore, the derived threshold value of thresholding technique and 

criteria of decision tree classification were reapplied for algorithm validation with 

other MODIS Level 1B data (Scene 2014080). It was found that thresholding 

technique provided overall accuracy at 97.2945%, burned area detection rate at 

30.8458%, false alarm rate at 1.8411%, and Kappa hat coefficient at 21.3704%. At 

the same time, decision tree classification provided overall accuracy at 98.7479%, 
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burned area detection rate at 11.9403%, false alarm rate at 0.1230%, and Kappa hat 

coefficient at 19.3069%. 

As results of accuracy assessment and validation, it can be concluded 

that thresholding technique with BAI of MODIS Level 1B spectral index was an 

optimum algorithm of burned area detection. 

5.1.3 Optimal fire detection algorithm identification 

For identify an optimal fire detection algorithm, MODIS hotspot data in 

2014 and the MODIS hotspot data with decision tree classification with 13 factors 

were here examined and evaluated accuracy. The results showed that overall accuracy 

of MODIS hotspot with original algorithm over Landsat scene LC81300472014088 

and LC81310472014079 were 98.07% and 97.49%, respectively. Meanwhile, MODIS 

hotspot with the best decision tree classification using three criteria (distance from fire 

ground survey, elevation, and slope) over two Landsat scene (LC81300472014088 

and LC81310472014079) can provide overall accuracy between 62.47 and 63.84%. 

Therefore, it can be concluded that hotspot (MOD14/MYD14 algorithm) of MODIS 

was an optimal fire detection algorithm. 

In conclusion, BAI of MODIS Level 1B spectral index can be used to 

estimate burned area while MODIS hotspot data can be daily applied to monitor forest 

fire occurrence as routine work of the concerned agencies. 

 

5.2  Recommendations 

Even though this study had been fulfilled the objectives of the study as 

presented, the possibly expected recommendations could be made for further studies 

as follows:  
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 (1) The burned area extraction by BAMS, which is firstly extract decision tree 

structure for burned area from pre- and post- fire Landsat data with “AND” logical 

operation based on spectral indices (BAIM, GEMI, MIRBI, NBR, and NDVI) from 

training area, can provide acceptable results in this study. According to RFD ground 

fire records during fire season beween February and April 2014, percentage of true hit 

ground fire survey points over burned areas of all Landsat scenes varied between 

79.58% and 94.06%. Therefore, burned area extraction using BAMS should be 

annually implemented to assess effected forest fire on natural forest of the whole 

country by responsible agencies (DNP and RFD). 

 (2) Optimum top three MODIS spectral indices were identified based on 

deviance values using ordinal logistics regression between burn severity classes as 

dependent variable and the selected 12 MODIS spectral indices as independent 

variables in this study. Herein, burn severity classes was systematic assigned based 

burned area extraction from Landsat data using BAMS due to the limitation of ground 

based burn severity classes. Therefore, new approach on optimum top three MODIS 

spectral indices identification for burned area extraction should be investigated and 

examined in the near future, such as separability index suggested by Kaufman and 

Remer (1994). 

 (3) An optimum burned area detection algorithm using thresholding technique 

with BAI of MODIS Level 1B spectral index should be examined in another area or 

region for verification and validation its algorithm. The derived result will be useful to 

extract burned area at low spatial resolution and very high temporal resolution of the 

whole country. 
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 (4) In this study, it was found that MODIS hotspot with MOD14/MYD14 

algorithm can provide overall accuracy more than 97.49%. Consequently, MODIS 

hotspot data can be efficiently used as dependent variable to integrate with influential 

factor on forest fire as independent variables and geospatial model to predict forest 

fire susceptibility/hazard/risk for forest fire management, mitigation and prevention at 

provincial level in the near future. The recommended geospatial model might be 

included Binary logistics model, Frequency ratio model, etc. 
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