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1 Introduction

A full description of gas evolution as a system of particles supposes a study of individual
molecule trajectories. But a very small volume contains a large number of molecules. For
example, V = lem? of air contains N = 2.687 x 10'® molecules under normal conditions
(Avogadro hypothesis). If we were able to solve equations for each molecule we could answer any
question about the behavior of gas. However this is impossible, because the number N is very
big. In continuum mechanics we adopt a macroscopic viewpoint: we ignore all the fine details
of the molecular or atomic structure and, for the purpose of study, we replace the microscopic
medium with a hypothetical continuum in which the basic values are replaced by average values.
The kinetic theory approach can be regarded as an intermediate link between the microscopic
gas model (set of individual particles) and the macroscopic (continuum models): all average
values are described with the help of a theoretical-probability approach. The distinguishing
line between the macroscopic model and microscopic one is based on the Knudsen number:

(a) continuum (Kn < 0.1);

(b) rarefied gas (0.1 < K'n < 5);

(c) free molecular flow (Kn > 5).

The typical evolution equation in kinetic theory is a nonlinear Boltzmann equation. This
equation, published more than 125 years ago, describes the evolution of distribution function
of molecules which interact through binary elastic collisions.

According to kinetic theory the state of the gas at time ¢t > 0 is characterized by one particle
distribution function f(x,v,t) of its molecules on space coordinates x € R® and velocity v €
R3. The space-temporal evolution of the distribution function is described by the Boltzmann

equation
of | of _
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with nonlinear collision integral

un

I/, f) = [ dw dn B(u, SD)f (V) f(w') = f(v) f(w)]

where w € R?, dw is an element of volume R?, n is a unit vector, dn = sin()dfde is an element
of unit sphere in R* (0 < 0 < 7,0 <¢e < 27), u = v —w is a relative velocity of particles
in collision, u = |u|, B = uo(u, "), and o(u, ") is a cross section. The initial velocities
v, w and the final velocities of two molecules in collision are connected by the usual dynamic

relationships:

k * 1
\% :§(v—|—w—|—un), w :§(V+w—un).

The main obstacle to the application of Lie’s infinitesimal technique to the Boltzmann equa-
tion is nonlocality and the large number of independent variables. For the (pseudo) Maxwell’s
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molecules (o(u, ) = ¢,(#)) the Boltzmann equation can be simplified by the Fourier transfor-
mation [1] ¢ = [ dve™V f(v) and has following representation

g_f * iai;iv B /dn go(m)[p(W)p(v') = p(0)p(w)], (2)

where w' = (w + |w|n)/2, v/ = (w — |w|n)/2.

Although the Boltzmann equation has been studied for a long time, only one exact solution
in closed form with a nonzero collision integral has been obtained to date, the so—called BKW-
solution (constructed independently by Bobylev [1, 2] and Krook and Wu [3, 4]). The discovery
of the BKW—solution sparked renewed interest in the construction of exact solutions to the
Boltzmann equation and its models (a review of respective results can be found in [5, 6, 7]).

In mathematical physics there are some methods of constructing exact solutions. One of
them is based on symmetries of a given equation: group analysis [8, 9]. The goal of this paper
is to illustrate an application of group analysis in gas kinetics.

2 Approaches of application group analysis to integro—
differential equations

Group analysis was developed especially for differential equations. The application of it to
integro—differential equations presents some difficulties. The main one arises from the integral
(nonlocal) terms present in these equations. There are several ways by which one can overcome
these difficulties, from among which we point out the following?:

(1) by finding a representation of an admissible group or a solution (on the basis of priory
assumptions);

(2) by studying a system of moments — a method of moments;

(3) by transforming the original integro-differential equation into a differential equation;

(4) by constructing determining equations and finding their solutions — a direct method.

The first approach supposes an a priori choice of a form of symmetries or a solution on
the basis of some assumptions about representation. This approach is the simplest and the
most efficient. A well known BKW-solution of the Boltzmann equation was found in this
way. For the Boltzmann equation this approach was applied in [10, 11]. The approach used
in [12, 13, 14, 1, 15] can be related to the first approach above. The main problem in this
approach is to discover a representation of the admissible group (or solution).

In the second approach (a method of moments) a transition to an infinite system of differen-
tial equations (system of moment equations) is made. After that for each differential equation
of the system, containing a finite number of terms, classical group analysis (for differential
equations) is applied. Then the process of limitation is carried out. The first application of
this approach for finding an admissible Lie group was done in [16] and then it was used for one
of model of the Boltzmann equation in [17, 18]. There are some problems in the application of
this approach. One of them is that for some equations the construction of the moment system
is impossible.

In the third approach, as in the previous one, a transformation of initial integro—differential
equations to differential is made. After that a classical algorithm of group analysis is applied

2Some discussion of applications of group analysis to integro—differential equations can be found in [7].



to the differential equations. The results of works [4, 19, 20] are obtained by this approach. In
this way the same question as in the previous approaches, about the completeness of the Lie
group, can not be solved.

It is worth noting that no heuristic expedient permits a complete answer to the question:
what is the widest Lie group of transformation, admissible by a given nonlocal equation. In
the first three approaches listed above one needs to prove that the constructed admissible
Lie group is a full group, because, in general case, either loss of some invariant properties
or obtaining new ones is possible®>. For the completeness of description group properties of
equations with nonlocal operators it is necessary to use successive approach of group analysis:
constructing of the determining equations and finding their solutions. Such an approach for
studying group properties of integro—differential equations was proposed in [10, 21] and later
was applied in [22, 23, 24, 25]. For other models this approach was used in [26, 27, 28|.
Another advantage of this approach is the possibility of applying Lie-Béclund transformations,
conditional symmetries and other methods to integro—differential equations (there are some
trivial examples of such applications). The main difficulty of this approach is in finding the
general solution of determining equations (in differential equations a splitting process leads to
an overdetermined system of equations that helps to solve determining equations).

Here we illustrate a successive application of the direct method.

3 The direct method

Let us consider an abstract equation with nonlocal operators, in particular, integral:
®(z,u) = 0. (3)

Here u is a vector of dependent variables, x is a vector of independent variables. We consider
one-parametric Lie group G'(X) of transformations

¥ = " (x,u;a), o = f"(x,u;a) (4)

with generator
X ="z, u)0, + £ (x,u)0,.

Definition. A one-parametric Lie group G' of transformations (4) is a symmetry group
admissible by the equation (3) if G! converts every solution u(z) of (3) into a solution u,(z) of
the same equation.

The transformed solution is

ua(z') = f*(x, u(x); )
with substituted = ¢*(z'; @) which is found from the relation 2’ = f*(z, u(x); a).
The equation, determining an admissible Lie group ( 4) is
0

(502, 4a(2)))ao = 0. o)

3For example, the one—parametric semigroup of integral transformations [1] is transferred by the Fourier
transformation to the group of point transformations.




The practical construction of determining equations for integro-differential equations is per-
formed by using the canonical Lie-Backlund’s representation of the generator X:

X = 5(1 u® 5 5(1 = Cua (.T:,u) - gzﬁ(l‘au)ugg

and acting on the equation ( 3), where the derivatives J,o should be understood in terms of
Frechet derivatives. Here we should remember that the determining equations (5) have to be
satisfied for arbitrary solution of the original equations ( 3).

The obtaining of the determining equations for integro—differential equations like for differ-
ential equations should not present problems. The main difficulty is in the finding of the general
solutions of the determining equations. Here the important circumstance is the knowledge of
properties of solutions of the original equations.

The main advantage of the direct method is in ability to answer on the question about
completeness of an admissible group.

Remark. For a system of differential equations (without nonlocal terms) the determining
equations ( 5) coincide with the determining equations constructed by usual way (after some
trivial simplifications?).

4 Example of application of the direct method

Let us consider an application of the direct method to the Fourier-image of the spatially
homogeneous and isotropic Boltzmann equation

P = % + o(@, (0, £) — /01 s, )p(z(1 — 5), ) ds = 0. (6)

The group generator is written in the form
X =&(a,1, )05 + (2,1, 9)0 + (2,1, ),
In this example, the determining equation ( 5) has the following form:
Dy, 1) + (0, 8)p(x, 1) + (2, ) 0(0,1) — (7)
-2 /01 o(x(1 = s)s,t)(xs,t) ds =0,
where ¢(z,t) is an arbitrary solution of ( 6), D; is the total differentiation with respect to ¢

and the function ¢ (z,t) is determined by an infinitesimal generator X in accordance with the
transition to the canonical Lie-Backlund operator:

w(xat) = C(xata So(xat)) - {(x,t, (p(xat))QOI(xat) - 77(«75,75, So(xat))got(xat)'

The approach for constructing the general solution of determining equation ( 7) is the
following one. We restrict the determining equation to the subset of solutions of equation ( 6)
determined by the initial conditions

o(x,ty) = ba™ (8)

4These simplifications are connected with a consideration of the infinitesimal generator X as Lie-Bicklund
canonical generator




at the given (arbitrary) moment ¢ = t,°. Here n is a positive integer. More precisely, we let
t = to in the determining equation ( 7), and substitute the function ¢(z,¢) and its derivatives
obtained from equations ( 6) and ( 8). We consider the resulting equation at an arbitrary
initial time ¢y, which is denoted again by ¢. Accordingly, equation ( 7) is written in terms of the
following functions:

E(z,t) = E(ba™, 2, 1), (. t) = n(ba", z,1),
((x,t) = C(ba™, z,t), Co(x,t) = Cp(ba™, z, 1),
Gz, t) = Gba™, x, 1), Colm,t) = Colba™, z, 1),

Then we solve equation (7) by letting n = 0,1,2,... in the initial condition (8), and simul-
taneously varying the parameter b.

We proceed now to the calculations. The coefficients of infinitesimal generator X are as-
sumed to be locally analytic functions. Hence they can be represented by the Taylor series with

respect to ¢:
E(x,t,0) = D alz, )¢', (. t,0) =D nilz, )¢,
1>0 1>0

xt,gp Zplxt
>0

Let n = 0 in initial data ( 8). Then the determining equation ( 7) has the form
A A A 1.
$( ) + B0, 1) + L 1) = 26 [ Llws, ) ds.
0

It follows:

Opo —0 Opr1
ot b0t
with [ =0,1,....
Let n > 1 in equation ( 8). Then

(2,4) + pi(x, £) + pu(0, £) — 2/01pl(xs,t) ds = 0 )

o = Pnb2x2”, Oy = nbx”’l, S anSxS”, Dtz = 2nPnb2x2”’1,

and the determining equation ( 7) yields:

Gt om0 C(0,0) 20 [ (1= "o, ) ds ]+
+b*[— P, x? 77t+P:1:2”C@—2nP 2 1§ 6n1§( t) +

na?n ! /01(1 — 5)"s" " E(ws, 1) ds |+ (10)

. 1

+0* [—nP,a* 1, — Q™ + 2Pn:c3”/ (1 —s)"s*"f(xs,t) ds | —
0

_b4[P2x4nA ] =0

where
(n!)?

" 2n+ )l

(2n)'n'

@n = m,

®Solvability of the Cauchy problem (6)—(8) is proved (see, for example, [6]).
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Now we treat b as an arbitrary parameter. Accordingly, we split equation ( 10) into a
series of equations by equating to zero the coefficients of b¥, k = 0,1, ... in the left-hand side
of equation ( 10). The resulting system of equations, together with equations ( 9), solve the
determining equation ( 7).

It follows from the expansions of functions &(x,t,¢), n(z,t,¢), ((z,t,¢) that for k =0
the corresponding coefficient in the left—hand side of equation (10) vanishes in virtue of the
first equation (9).

For k =1, equation (10) yields:

1 Oqo(z,t
rpolet) 42 [ (1 (1= 9 )polas, 1) ds] —n 22850 g
Since n is arbitrary, it follows:
Oqo(x,t
po(z,t) =0, qoét '~
Hence zeta(0,t) = 0.
Similarly, one obtains for k = 2:
1 oro(x,t
o)~ (0,0 +2 [ (1= (1= 55, t) ds — B, 2D
" 1
+P,pi(x,t)] — n% —2nP,qo(z,t) + Qn/ (1 —5)"s" Ygo(ws,t) ds = 0.
0
Whence O (2.) Oro(z.)
_ N \xr,t) . o\, )
pi(z,t) = ¢ + a1, T =0, q(z,t) = ca o Co

where ¢y, c1, co are arbitrary constants.
For k£ = 3, one has

2" —py(x,t) — po(0,t) + 2 /01(1 — (1 — 8)"s*")po(ws, t) ds—

+ 1
—Pn% + 2P, po(z,t) + 2Pn/0 (1 —5)"s*)ro(zs,t) ds — Quro(z,t) |+
" 1
+x"[—n% —2nP,q (z,t) + Qn/ (1 —5)"s* gy (xs,t) ds—
0
—nP,q(x,t) =0.
Whence
0 t 0 t
ql(xat) =0, % =0, p2($,t) =0, % =0, To(ZU,t) = —cot + c3.

where c3 is an arbitrary constant.
For k=441, 1=0,1,..., equation ( 10) yields

0 t '
xn“[pa%@’) —2 / (1= 5)"s5pg o (s, 1) ds+
0
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Orata(@, 1)

5 —(a+ 1) Proy (o, 1)+

(34 @) Pyp3ial(z,t) — P,

1
+2Pn/ (1-— s)”s(3+°‘)”)ra+1(xs, t) ds — Qurasi(x,t) |+
0

a o 7t 1 _
x”[—n%@) —2nP,qaro(z,t) + Qn/o (1 —s)mslet3n=to o(xs,t) ds—
n(a + 2)Pygai2(z,t) = 0.
Whence
pas(z,t) =0, quo(z,t) =0, rq(z,t)=0, (I=0,1,...).

It follows from the above equations that

E=cx, n=c —ct, (= (cr+c)p

with arbitrary constants ¢y, o, ¢3, ¢4.
Thus, equation (6) admits the four-dimensional Lie algebra L* spanned by the generators

X1 = 8t, XQ = ‘TgOa(p, X3 = x@x, X4 = @aw - t@t
An optimal system of one-dimensional subalgebras of L? is
X1, Xy +ceX3, Xo— Xy, Xy Xy, Xy + X5, (11)

where ¢ is arbitrary constant. Invariant solutions, corresponding to this system of subalgebras
have following form:

Xi: =g, y=u1
Xa+cXs: =gy, y=uat4

Xo—-Xi: p=e¢"gy), y=u;

Xi+X5: o=ygy), y=ze

Xyt Xo: o= t’(li‘”)g(y), Y= .

Different invariant solutions are obtained by substitution of these expressions into equation
(6). After that original equation is reduced to the equation with one independent variable. For
example, so called class of the BKW-solutions is obtained as invariant solution with respect to
subalgebra X + X3°. Factor system in this case is

dg(y !
—y% +9(y)g(0) = /0 9(ys)g(y(1 = s)) ds (12)
and BKW-solution is g = 6e¥(1 — y).

The same approach can be applied to the Fourier-image of the Boltzmann equations, de-
scribing homogeneous relaxation of N-component gas mixture with the Maxwell’s molecules
interaction and the Smolukhovskiy kinetic equation of coagulation. Here we gives these results.

6In physical literature a representation of BKW-solution, which can be obtained as invariant solution with
respect to similar subalgebra Xs — X3 + ¢~ X is usually used.
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An admissible full group of the Fourier-image of the Boltzmann equations

Opi(wi, t
(’0 Li ZVZ]/ dslpi(xi(1 — e458),t)p;(Tie558),t)—

Qpi(xiat)(pj(oa t)]a (Z =1, 2)'

corresponds to Lie algebra with generators [25]
X1 = 8t, XQ = Z.’L’a@aawa, X3 = Zxa&va, X4 = Zg@oﬁ% — 10,

Here €ij, Vjj are constants.
For some kernels of coagulation, the equation ( 6) is structurally close to the Fourier-image
of the Smolukhovskiy’s kinetic equation of coagulation

PABT) o [1 41— (a1 — 5), Phplas), 7) ds,

which is encountered in the kinetic theory of disperse systems, such as atmospheric aerosols,
colloid solutions, suspensions.
An admissible group of the last equation consists of transformations, corresponding to gen-
erators [23]
Xi =0-, Xo =290p, X3 =120, —v90,, X4=¢0,—T10;.

5 Kinetic Vlasov equation in a problem of high—frequency
one—dimensional vibrations of collisionless plasma

The problem mentioned in the heading of this section is described by the following system:
ft+vfx—EU:0,EU:0,Et:/vfdv,Ex:1—/fdv, (13)

where f = f(t,z,v),E = E(t,z,v) and integration is carried out over the one-dimensional
velocity space R!.

In [16] for (13) the admissible Lie group G° was constructed. Its infinitesimal generators
are

at, XQ &E, X3 = x@ + vc’) + E@E - f8f,
X4 =costd, —sintd, + cost g, (14)
X5 =sintd, + costd, +sint g,
This group was obtained on the basis of the infinite system of moment equations derived from
(13). Using the direct method for (13), it can be shown that the group G® is the full Lie group
of transformations admissible by the system (13).

Let u = (f, E,z,t,v) and let the one-parametric Lie group of transformations admissible
by (13) has an infinitesimal generator

X = ClaE + Claf + 68:1: + 773t + Zata
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The acting of the generator X on the former two equations of the system (13) is defined in the
usual form (as for differential equations)

[DtEZ + ,UDIEZ - EDUEZ - fugl]\(S) =0, [Dvg_l]\(S) =0, (15)

where Dy, D,, D, denote the total derivatives with respect to variables ¢, z, v; the subscript (13)
means that the corresponding relation is considered in all the solutions of the system (13),

(i =C —EB, — 0By, — 2By, (o= (o — Ef —nfs — 2fo.

The result of the acting of X in the latter two equations of (13) is derived in accordance with
the scheme given in this section as follows:

[thl — / UQ:Q dv]|(5) = 0, [Dmfl — / 52 dv]|(5) =0. (16)

Since the initial functions are chosen arbitrarily, equations (15) are split with respect to
derivatives Ey, E,, f,, fz- The solution of the split equations has the form

G =E(cr =n'(1)) = ¢"(t) —2n"(t), G =1(f), (17)
z=a (1) + ¢'(t) + c1v, £ = x(cr + 7' (1) + (D),
where n(t), ¢(t), ¥ (f) are arbitrary functions, ¢; are arbitrary constants.

Integration of equations (16), taking into account the solution (17), gives the following
relations:

—E (1 +20) + o1 + /w(f) dv =0, (18)
—Ei(c1 +2n) = 3En" — " —an" — o' — /m/)(f) dv = 0.

If f =0 is put in these relations, then, in order that the integral [1(0)dv be bounded, it
is necessary that ¢(0) = 0 and, therefore, also

"

n=0,¢"+¢ =0,

that is
N = ¢y @ = c3+cysint + cscost. (19)

By substituting the relations (19) into equations (18), we obtain the following

[(err +u(n)ydo =0, [oferf+w(f)dv=o.

Simple reasoning shows that the necessary condition of correctness of the latter relations for
the arbitrary initial function f(¢,z,v) = fo(v) is

¢(f) =—cf.

Comparison shows that the five-dimensional Lie group of transformations obtained here by
means of the direct method coincides with the group G® (14) and, therefore, the latter is the
full Lie group admissible by (13).
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