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Abstract

Relaxed control for a class of strongly nonlinear impulsive evolution
equations are investigated. Existence of solutions of strongly nonlinear
impulsive evolution equations is proved and- properties of original and
relaxed trajectories are discussed. The existence of optimal relaxed control
and relaxation results are also presented. For illustration, one example is
given.
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1. Introduction

In this paper, we present sufficient conditions of optimality for optimal re-
laxed control problems arising in systems governed by strongly nonlinear im-
pulsive evolution equations on Banach spaces. The general descriptions of such
systems were proposed in [1] as given below.

E()+ AL, 2(1)) = g(t, 2(t),u(t)) t € I\D, (1)
93(0) = T,
Ax(t) = Filz(t)), 1 =1,2,..,n

where [ = (0, T} is a bounded open interval of the real line and let the set

D = {t1,1ty,...,t,} be a partition on (0,T) such that 0 < £; <ty < ... <t, < T.
In general, the operator A is a nonlinear monotone operator, g is a nonlinear
nonmonotone perturbation, Az(¢) = a(t] ) —2(t7) = a(t])-2(t), i = 1,2, ..., n,
and F)s are nonlinear operators. This model includes all the standard models
used by many authors in the field (see [2],[3]). The objective functional is given

by J{z,u} = fo (t, z(t), w(i))dt.
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In a recent paper by the author [1], the existence of optimal control was
proved, but sufficient conditions of relaxation for optimality were not addressed.
We wish to present just that. Before, we can consider such problems, we need
some preparation.The rest of the paper is organized as follows. In section 2,
some basic notations and terminologies are presented. Section 3 contains some
preparatory results, Relaxed impulsive systems are presented in section 4. Suf-
ficient conditions of relaxation for optimality are disscussed in section 5. In
section 6, we presented an example for illustration.

2. System description

Let V be a real reflexive Banach space with topological dual V* and H be
a real separable Hilbert space. Let V' — H <= V* be an evolution triple and
the embedding V' — H be compact.

The system model considered here is based on this evolution triple (see
chapter 23 of [4]).

Let (x,y) denote the paring of an element z € V™* and an element y € V.
I x,yc H, then (x,y) = (x,y), where (z,y)} is the scalar product on H. The
norm in any Banach space X will be denoted by |- || x.

Let p,g > 1 be such that 2 < p < +oo and 1/p+1/g=1andlet I = (0,7).
For p, g satisfying the preceeding conditions, it follows from reflexivity of V" that
both L,{I,V} and L, (I, V*) are reflexive Banach spaces. The pairing between
Lp(1,V) and Ly(1, V*) will be denoted by ({-)}.

Define

Wae(I) = {z 12 € Lp(I, V), & € Ly(I, V)],
with the norm

2 lw,on=ll @ e,y + 1 & gy

where £ denoted the derivative of o in the generalized sense. The space (Wyo(T),
I - Yw,, () becomes a Banach space which is clearly refliexive and separable and

the embedding W,,(I) — C(I, H) is continuous. If the embedding V — H is
compact, the embedding Wy, (f) — L,(I, M) is also compact (see Problem
23.13(b) of [4]). Sometime, we write Wp,(0,T) instead of Wp,(f).  Simi-
larly, we can define Wp,(s,t) for 0 < s < £ < T and the space (Wpe(s, 1),
| {lw,qis,e)) is also a separable reflexive Banach space. Moreover, the embed-
ding Wp,(s,t) — C([s,¢], H) is continuous and the embedding Wyy(s,t) —
Ly((s,¢t), H) is also compact. We define the set PWpi(0,T) = {z :  |(1,,1,,0 €
Wg(tistiz1); £ = 0,1,2,...,n, ty = 0, tyy1 = T}, For each z € PW,,(0,T), we

define Jiz|lpw,,0,1) = 2 )Wy (t5,840)- AS a tesult, the space (PW,,(0,T),

I New,,01) becomes a Banach space. Let PC([0,T],H) = {# : z is a map
from [0, T] into H such that z is continuous at every point ¢ # ¢;, left continuous



Proof: See ([1], Theorem B) for the proof of existence and boundedness. The
uniqueness follows from assumption {G)(2). To see this, suppose that system(2)
has two solutions z1, z3. Then it follows from integration by part formula and
monctonicity of A{t,z) that

fo1(6) = 32(O)y = 2 1 () = 52(6), () = )
22 (Als, 21(5)) = Als, 22(5)), 1 (5) ~ 2())y-_y d5
42 [{a(s,51(5) ~ 905, 22(5)), 33(5) - 3a(8))vo_v s
<2 [gls,21(5)) — gls, 2a(), 31(s) — a(s))v_vdls

<2 [ [ g(s,21(8)) ~ g(s,22(8)) v+ || @1(s) — w2(s) |lv ds

Dy o O 0 Oy

< 20(9) [ Dar(s) = 2a(s) Ll (8) = 2a(s) Iy

< 2L(p C‘lf | z1{8) - za (s} |I% ds,

for some positive constant 1. By Gronwall’s lemma, we get z;(¢) = 2a(t) for
all ¢ £ [0,7]. Hence x1 = 3 and this prove the uniqueness of the solution of
system {2).

Now, let us consider the corresponding control system. We model the coittrol
space by a separable complete metric space Z (i.e., a Polish space). By Py
(Pro)ywe denote a class of nonempty closed (closed and convex) subset of Z. Let
I = (0,7). Recall that a multifunction I : ] — P;(Z) is said to be measurable
if for each F € P;Z, I'"}(F) is Lebesque measurable in . We defined St to be
the set of all measurable selections of I'(-), i.e.,

Sr = {u: I — Z|ult) is measurable and u(¢) € T'(¢), y-a.e. t € I},

where u is the Lebesgue measure on I. Note that the set Spr #£¢ if I':J —
P¢(Z) is measurable (see [5], Theorem 2.23, p.100). Consider the following
control systems

#(t) + A(t, x(2)) = g(t, x(t),u(t)) t € I, {h)
QZ‘(O) =1zq € H,
Az(t;) = Fy(z(t)), i=12,.,n(0<ty <la < ... <l <T).

Here, we require the operator A, and F/s of (5) satisfy hypothesis {A), and (F),

respectively as in section 3. We now give some new hypotheses for the remaining

data.

(U) U:I— P (Z) is a measurable multifunction satisfying U(-) C F, where
I i5 a compact subset of Z. For the admissible controls, we choose the set



Usa = Sy

(G1) g: I x H x Z — V* ig an operator such that
(1} £+ g(t,x,2) is measurable, and the map (z, z} — g(t, z, 2) is
continuous on H x Z.
(2) For each fixed z, g(t, x, z} is locally Lipschitz continuous with respect
to # and uniformly in ¢,
(3) There exist constants @, b > 0 such that

v<atb] o

I 9(t,2,2) |

forall ze€ H,te (0,T), and z € Z, where 2 < k < p.

By assumption (U), the control set Sy is nonempty and is called the class
of original control. Now, let us define
Xy = {x € PWyo(I) N PC(I, H) | x is a solution of (5) corresponding to u}.
X is called the class of original trajectories.
Ag = {(z,u) € PWy{I) N PC(I,H) x Sy | z is a solution of (5) corresponding
to u}.
Ap is called the class of admissible state-control pairs.

The following theorem guarantee that Xy # ¢. Its proof follows immediately
from Theorem 3.1 by defining the function g, (¢, z) == g(¢, z, ) and noting that
g satisfies all hypotheses of Theorem 3.1.

Theorem 3.2 Assume that hypotheses (A),(F), (G1) and (U) hold. For every
u € Sy, equation (5) has a unique solution x(u) € PWpy{I) N PC(I,H).
Moreover the set Xp is bounded in PW,o (I)NPC(I, H), i.e., || #(w) ||pw,, 0,1 <
M and ” SE(’LL) “PC([O,T],H} < M for all u e 5.

4. Relaxed impulsive systems

We consider the following optimal control problem

(P) inf{J(z,u) = jL(t, a(t), u(t))dt}

stibject to equation (5).

It is well known that, to solve optimization problem involving (P) and obtain
an optimal state-control pair, we need some kind of convexity hypothesis on the
orientor field L(¢, z{t), u(¢)). If convexity hypothesis is no longer satisfied. In
order to get an optimal admissible pair, we need to pass to a larger systems
with measure control (or know as "relaxed control") in which the orientor field
have been convexified. For this purpose, we introduce the relaxed control and
the corresponding relaxed systems.

Let Z be a separable complete metric space (i.e. a Polish space) and B(Z)
be its Borel o-fteld. Let ({3, I, 1) be a measure space. We wiil denote the space
of probability measures on the measurable space (Z, B(Z)} by M}(Z).



A Caratheodory integrand on §! x Z is a function f : 2 x Z — R such
that f(-,z) is T-measurable on Q, f{w,-) is continvous on Z for all w € §2, and
sup{| f(w,2) |: z € Z} < a{w) a.e,, for some functions of-} € L;(2). We denote
the set of all Caratheodory integrands on §2 x Z by Car{Q}, Z}.

By a transition probability, we mean a function X : © x B(Z) - [0,1]
such that for every 4 € B(Z),A(-, A) is D-measurable and for every w € (1,
Mw, ") € M1(Z). We use R(Q, Z) to denote the set of all transition probability
from (2, X} into (Z, B{Z)). Following Balder (6], we can define a topology on
R(Q, Z) as follows : Let f € Car(f2, Z} and define

I (A) = fo Jz Hw, )M w)(dz)dp(w). (6)

The weak topology on R(f, Z) is defined as the weakest topology for which all
functionals Iy : R(Q}, Z) — R, f € Car($, Z), are continuous.

Suppose @ = [ = [0,7] and Z is a compact Polish space, then the space
Car(I, Z) can be identified with the separable Banach space L(7,C(Z)) where
C'(Z) is the space of all real valued continuous functions on Z. To see this,
we associate to each Caratheodory integrand ¢(:,.) the map ¢t ~— ¢(¢,-) €
G(Z). Let M(Z) be the space of all regular bounded countably additive measure
defined on B(Z}. We note that AM{Z) is a Banach space under the total variation
norm, i.e., || A laz(zy=| A | (Z). Then by Riesz representation theorem, the dual
[C(Z)]* can be identified algebraically and metrically with M(Z) . The duality
pair between M{Z) and C(Z) is given by

= Jz F(2)Mdz

So M(Z) is a separable (see([7], p.265) dual Banach space and hence has
a Radon-Nikodym property. This ohservation combined with Theorem 1 of
Diestel and Uhr ([8], p.98), tell us that

Li(I,C(2))" = Lo (I, M(2)). (7)

So the weak topology on R(I, Z) coincides with the relative
w*(Leo (I, M{Z))), L1(1, C(Z))-topology. The duality pair between Lo (I, M(Z})
and L1(J,C(Z)}) is given by

(1)) = f«\(t) o
~f [z FR(2AE)(dz)dt (8)
“'—‘_{fz F(t, 2)A () (d=)dt,

which is the same formula as in (6) with f(t,z) = f(#){(2). This fact will be
useful in the study of the relaxed control system where the control functions are
transition probability.



Now we introduce some assumptions imposed on the class of relaxed control
which will be denoted by S5.

(U1) Z is a compact Polish space, U : I — Py.(Z) is a measurable multi-
function.

Define £(¢) = {A € M{(Z), MU(t)) = 1} and let Sy C R(I, Z) be the set
of transition probabilities on I x B(Z) that are measurable selections of Z().
For any u € Sy, we define the relaxation §, € 5% of © by §.(¢) = Dirac
probability measure at u(¢). Then we can identify Sy C Sy. From now on, we
shall consider Sy and Sy as a subspace of the topological space R(I, Z) with
the weak topology defined above,

We list two lemmas which will be useful in discussing relaxation problem.
The proofs can be found in J. Warga ([7], Theorem IV 2.1} and Balder ([6],
Corollary 3) respectively.

Lemma 4.1 Suppose Z is a compact Polish space. Then Sy is convex, compact,
and sequentially compact.

Lemma 4.2 Sy is dense in Sy,

Theorem 4.3 Let h: I x H x Z — R be such that
1. t+— (¢,x,z) is measurable and (z, z) — A(t, 2, z) is continuous.
2. |kt z,2) IS () € Li({) for all (x,z) € H xZ.
If ap— xeC(0,7T],H) then

b, ) = B, ) in Li(1,C(2))
as k — oo, where hy(t, z) = h{t, 2x(t), 2} and A(t, z) = h{t, (1), 2).
Proof : The proof is similar to Lemma 3.3 in [3].
Next, let us consider this new larger system know as "relaxed impulsive system"

&(f) + At 2(t)) = [ 9(t, 2(t), 2)A()dz), 0 <t LT,
Aﬁ')(tl) = F.,;(.’L'(t.i)), 1= 1, 2, vy T2

We will denote the set of trajectories of (9} by X,, ie,

X, = {x € PWo(NNPC(I, H) | z is a solution of (9) corresponding to A € Sz}
Moreover, the set of admissible state-control pairs of (9) will be denoted by

Ap = {(z,A} € PWyp(I) N PC(I, H) x S5 | % is a solution of (9) corresponding
to A€ Sz:}.

Note that Xy C X,, since Sy C Sz and if the hypotheses of Theorem 3.2 are
satisfied, X # ¢ = X, # ¢. To see this, given any relaxed control A € 5%,
if we set §(t,z(t), M2)) = [, 9(t,2(t), 2)A(2)(dz) then, working as in the proof
of Theorem 3.2, one can show that there exists a relaxed admissible trajectory
z(\) corresponding to A. We summarize the above discussion into a theorem.



Theorem 4.4 Assume that hypotheses (A), (F), (G1) and (U1) hold. For
every A € Sy, equation (9) has a unique solution z(A) € PWy,(I) N PC(I, H).
Moreover the set X, is bounded in PW,,,(1)NPC(I, H), i.e., || z(A) lpw,, (0,7)
< M and || 2(A) ”PG([D,T],H) < Miorall Ae Ss.

The next theorem give us a useful relation betweeen X, and X,.

Theorem 4.5 If assumption (A), (F), (G1) and (Ul) hold, then X, = X
(closure is taken in PC(I, H)).

Before proving this theorem, we need a lemma.

Lemma 4.6 If assumption (A}, (F), (G1) and (U1) bold and Ay — X in R(I, Z).
Suppose that {xk, 2} is the solution of (9) corresponding to {Ag, A}, by working
with a subsequence if necessary, oy — « in PC(I, H) as k — occ.

Proof. Suppose that A, — XA in H([,Z) as k — oo and {z,, z} is the solution
of (9) corresponding to {Az, A}. Since (zx, Ax) € A, for each positive integer ,
then (z,u;) must satisfy the equation

x(t) + At 2 (t) = [, 908 2u(t), 2)Au(E)d2), (10)
.‘L'k(o) =xp € H;
Aa:k(ti) = Fi(as,c(t,-)), i=12,..,n(0<t) <tlg < ... <tp < T)

To finish the proof, we try to choose y € X, such that y is a solution of (9)
correspond to this A and zx — y in PC(I,H) as k — oc. The uniqueness
property of the solution of (9) implies x = y and hence 2, — z in PC(I, H).
This prove that z € Xg and we are done. We shall do this by considering in
each case separately.

Casel. Find y on the interval {0,¢;). For notational convenience, we let
I = (0,t1), X1 = Lp(f1,V) and X} = Ly(J1,V*). We note that X; =
L,(f;,V) can be consider as a closed subspace of X = Ly(I, V). Let i and )\}c
be the restriction of the functions x4, Az on the interval [; (& = 1,2, ...). Hence,
by Theorem 4.4, {x{} is bounded in Wp,(11). By reflexivity of Wq(/1) there
is a subsequence of {z1}, again denoted by {zl}, such that

xp S at in Wpe(f) as k — oc. (11}

Since the embedding Wp,(f1) < X, is continuous, the embedding Wp(l1) —
L,(I,, H) is compact and the operator A : X; — X maps bounded sets to
bounded sets, it follows from (11) that there exists a subsequence of {zi},
again denoted by {z}} such that

zh S ztin X1, @) 2lin X7, (12)
Azl B gin X2,
z} % a2t in Ly(I, H), and, by ([3], theorem 3.B.), z} > 2! in C([0,t4], H),



as k — oo and for some ¢ € X7, Consider the following equation,

FH(t) + Alt, L (1) = [z 9(t,3}(2), 2DAp(eNd2); 0 <t < ty
(13)
xile(o) = %g.
Define an operator Gy : [y — V*and G [y — V* as follow
Gk(‘t) =fzg(t,m,t(t),z)}‘}c(t)(dz) (k‘_“' 1}253:-")
G(t) = [, ot 2'(t), )X (2)(d2).
It follows from assumption (G1) that G and Gy € Lg(I, V*)

With this new notation, equation (13) can be rewritten into an equivalent
operator equation of the form

:U,{;'%A(ﬂfi;)zgk 0<t<iy

21(0) = ap. (14)

For each fixed v € V, define
gi(t,2) = (g(t, m,(2), 2), vhve-v
g(t, 2) = {g(t, 2 (1), 2), v)v~-v
It follow from assumption (G1) that, for each fixed ¢ € I,
gk(t,-), and (¢, ) € C(Z)
and furthermore

.ng('s')y and ?(!) EL](IlsC(Z))
Since z} > a2l in C({0,t1], H) (see equation (12)), then Theorem 4.3 gives
() == () in Li{fh,C(Z)) as k — oo

Since AL — A in R(Iy, Z), by equation (7}, we have A} “ A in (I (I, C(2)))*
as k — co. Hence, it follows from Proposition 21.6(e) of Ziedler ([4],page 216)
that

(M Gid) — (A1, 5)) as k — oo,

This means that

10



ot J2l9(t (1), 2), )M (d=)dt = [ [ (gt 21 (2), 2), w)AT (E)(dz)dt (1)
ags k — oo . The convergence in (15) is true for all v € V' then we get
Gr = G as k — oo in L,{I;,V*).
By equation (12), xi 2 2! in C([0,t;], H} and this implies =} (0) — z(0) in H
as k — oo. Referring to the initial condition ,we have 2}(0) = zo € H for all

k=1,2,3,... Thus 2*(0) = wo.
Up to this point, we can conclude that z'satisfies the following equation

$(8) + £(0) = J 9(t,510), D) )

2! (0)==z0€ H

Next we aim to prove that £ == Az! in X7.
To prove this we note from equation(14) that

(A(h), o)xp -x, = {(AD), 2))xpx, — (517 = )y -x,
+{(Grrak ~ 2 xj-x, (16)
From integration by part formula, we have
(8L 2k — 2 xrox, = (64 38— s Wxpox, + 300 @hltn) — 220 %
~ || #h(0) - 21(0) [%) (17)

Substitute (17) into (16) and noting that the second term on the right hand
side of (17) is always nonnegative, then we get

({A(zd), zidhxp—x, < {{A(zL), 2 ) xr—x, — (@Y 2h — ') x - x,
+ 1 2 (0) — 2 (0) I +{(Grr mk = @) x;-x,
Therefore
lim (A, 2 gy < (6T,
and hence A satisfies condition (M) (see [4] page 474). Then we have
Alzly = ¢

Now we can say that z' is the solution of the following equation

11



2'(t) + Alt, 2 (1) = [, 9(t, &' (1), 2)A(2)(dz)
210} =29 € H

This proves that z* satisfies () on the interval (0,¢;) and z* is the required y
on {0,#1).

Case 2 : Find y on the interval (¢, ¢2).

The proof is similar to case 1. Here, let Iy = (t1,12}, X2 = Ly(I,V) and
X5 = Ly(I,V*). Let zf,u} be the restriction of the functions z; and u, on
the interval [ respectively (k = 1,2,...). It follows from equation (10) that
(z},u?) satisfies the operator equation

&7 + A(zd) = Gy it <t <y
22 () = 2} (¢7) + Fi(ai(t1)) (18)

where zZ(t7) = zi(t1) = z}(t1) (k= 1,2,3,...). By using the same proof as in
case 1, we get that

23 5 2? in Wpy(te t2) and @2 5 2% in C({t1, 2], H) as &k — o0

which implies that z2{¢]) -~ %(tJ) in H as k — oo and, moreover, 27 is also
satisfied the operator equation

4+ A(x?) =G 1t < <ty

We are left to verify the initial condition at £,.To see this, we note that the
expression on the right hand side of (18) converges to z'(t;) + Fi(z(t1))
as k — oo (see hypothesis (F)). On the other hand, the left hand side 22(¢])
2%(t7) in H as k — oco. Hence, 22(t]) = z'(t) + Fi(z'(t)) = 22(t]) +
Fi(2%(t1)). This proves that z* satisfies (9} on the interval (t1,%;) and z” is
the required y on (#;,t2). Continue this process we can find y on the inter-
val (¢,t;41) ,7 = 0,1,...,n. By piecing them together from 7 = 1,2,...,n and
taking into account the impact of jump, we obtain y which is the solution of
(9) corresponding to the relaxed control A satisfying =y — y in PC(I,H) as
k — cc. Since x =y, a2 — = in PC{I, H) as k — co. The proof of Lemma 4.6
is now complete.

Proof of Theorem 4.5 Firstly, we shall show that X, C Xg. Let z € X,.,
then there exists A € Sg such that (z,2) € A,. By virtue of density result
Lemma 4.2, there exists a sequence {ug} € Sy such that &, — A in R(I, Z).
Let z; be the solution of (9) corresponding to . Then we have a sequence
{(zk,u)} C Ag. Since (zy,ur) € Ay for each positive integer k, then (zy, ug)
must satisfy the equation

12



(2} + At 24(8)) = f7 9(; 2r(1), )00, ()(d2)
wk(OJ =z € H
Awk(ti) = Fi(ﬂ?k(ti)), i = ]., 2, veny T2y k= 1,2,3, very
O<ty <ty <...<ty <T).

Apply Lemma 4.6, we get zp — z in PC(I,H). This prove that z € Xo
and hence X, C X;. Finally, we will show that X, is closed in PC(I, H).
Let {x} be a sequence of points in X, such that z, — z in PC(],H) as
'k — o0. By definition of X, there is a sequence { Az} of points in Ss such that
(zgs Ar) € Ap, k= 1,2,3,.... By Lemma 4.1, Sy is compact in R(/, Z) under
the weak topology. Moreover, R(I,Z)—topology coincides with the relative
w*(Loo{l, M(2)), L1(1, C(Z)))}-topology which is metrizable (see [2) page 276).
Then, by passing to a subsequence if necessary, we may assume that Ay — A in
R(I,Z). Apply Lemma 4.6, there is & € X such that zx — z in PC(I,H) as
k — 0o, Hence X, is closed in PC(I, H) and, consequently, Xy C X, = X,.
The proof of Theorem 4.5 is now complete.

The following corollary is an immediate consequence of Lemma 4.6

Corollary 4.7 Under assumption of Theorem 4.5, the function A +— x(A) is
conttinuous from Sy € R(J, Z) into PC(I, H).

5. Existence of optimal controls

Consider the following Lagrange optimal control problem (P,}): Find a control

- policy A € Sx, such that it imparts a minimum to the cost functional J given
by

(P) J(A) = J(=M ) = [ [ 12 (1), 2) M) (dz)de

where z” is the solution of the system (9) corresponding to the control A € Sx.
We make the following hypothesis concerning the integrand {(., .,.).

(L) 1:IxHxZ-— RU{+oco} is Borel measurable satisfying the following
conditions:

(1) (&, 2) — I{£,&, 2) is lower semicontinuous on H x Z for each fixed .
(2) ¥(t) < (¢, ¢, 2) almost everywhere with ¥(t) € Ly(I).

Let m, = inf{J(A) : A € Sx}. We have the following theorem on the existence
of optimal impulsive control.

Theorem 5.1 Suppose assumptions (A), (F), (G1), (U1}, (L) hold and Z is
compact Polish space, then there exists (%, A) € A, such that J(%, A} = m,.

13



Proof. If J(A} = 4oo for all X € Sy, then every control is admissible. Assume
inf{J{A}: A € Sy} = m, < +o0. By assumption (L), we have m, > —oc. Hence
m, is finite. Let {A;} be a minimizing sequence so that limg ., J(Ax) = my
By Lemma 4.1, Sy, is compact in the topology R{I, Z). Hence, by passing to a
subsequence if neccesary, we may assume that Ay — A in R(I,Z) as k — co.
This means that A\x = X in Lo (I, M(Z))ask — oc. Let {zx, T} be the solution
of (9) correspond to {Ag, A}. By Lemma 4.6, we get xx — & in PC(I, H) and
(%, A) € Ar. Next, we shall prove that (#,A) is an optimal pair.

As before, we identify the space of Caratheodory integrand Car(7, Z) with
the separable Banach space Li(I,C(Z)). We note that every semicontinuous
measurable integrand {: I x H X Z — RU {+oc0} is the limit of an increasing
sequence of Caratheodory integrand {I,} € L,(1,C(Z)) for each fixed h € H.
Thus, there exists an increasing sequence of Caratheodory integrand {i;} €
Ly(1,C(Z)}) such that

L T(t), 2) T8, (t),z)as j v o0 foralltel,ze Z.

Since Sﬂk — & in PC(I,H ) by applying Theorem 4.3 on each subinterval of
0,7}, Lt zelt), 2) = 1 t z(t),z) as k — oo for almost all £ € [ and all z € Z.

We note that since A, = X in Loo(I, M(Z)) as k — co, then

J(@ N = {0 = [, [ 1E3(), )A(t)(dz)dt
= hm fr £ (8 3(8), 2)A(E)(dz)dt
= hm lim ff [5 4t an(t), 2) A (2)(dz)dt

J-roak—

< hm hm I; [z Lt 2e(2), 2)Ax(E)(d2)dt = mo.

—»QQ_‘}

However, by definition of m,, it is obvious that J(Z, X) > m,. Hence J(%, A) =
m.,. This implies that (%, A) is an optimal pair.

Remark. I Jo(ez,u) = [, Iz, 5(2), u(t))dt is the cost functional for the original
problem and m = inf{Jy(z,u) : u € Upq}. In general we have m, < m. it is
desirable that m, = m, i.e., our relaxation is resonable. With some stronger
conditions on /, i.e., the map {£, 7, 2) — 1(¢,£, 2) is continuous and | I{t, £, 2} |<
fr(f) for all most all t € I and 6g € Ly(I), one can show that m, = m. The
proof is similar to Theorem 4.B. in [3).

6. Example
In this section we present an example of strongly nonlinear impulsive system
for which our general theory can be applied. Let J = (0,7) and 2 C R¥Y he a

bounded domain with C? boundary 9. For p > 2 and & > 0, we consider the
following quasi-linear parabolic controi problem
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It is clear that U : I — Py.(Z) is measurable. The set of admissible controls
Uqg is chosen as Uyy = Sy ={u:I — RY ! u is measurable and u(t) € U(?)
a.e. t € [0,T]}. Hence the multifunction U satisfies (U1).

Next, Fort € I,¢ € H,w € Z define a function b : I x H x V' — R by
b (t, b, 9) = [ f(t, 2, ¢, w)p(2)dz. Then, the map ¢ — b*(%, ¢, ¢) is bounded
on V and hence is a continuous linear form on V. Thus there exists an operator
g: I x HxZ—V* such that

bw(ta ¢:¢) = (Q(t,¢,w),¢)v’~~v . (21)

By using hypothesis (G'), we obtain that g satisfies hypothesis (G1) of
Section 3.

Using the operator A and g as defined in equation (20) and (21), one can
rewrite system (19) in an abstract form as in {9). So, apply Theorem 4.4, system
(19) has a solution.
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