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CHAPTER I 

INTRODUCTION 

  

 It is widely known that the incidence of hospital-acquired infections (HAI) is 

continuously increasing, and that they are responsible for morbidity and mortality in 

hospitalized patients (Yokoe and Classen, 2008). Recently, the Centers for Disease 

Control and Prevention (CDC) have reported that in 2014. HAIs were found in central 

line-associated bloodstream infections, catheter-associated urinary tract infections, 

certain surgical site infections and hospital-onset Clostridium difficile infections (CDC, 

2016). Similar to other species, many strains of Staphylococcus aureus, such as 

methicillin-resistant S. aureus (MRSA) (Magiorakos et al., 2012). S. aureus is a major 

problem in nosocomial infection diseases such as pneumonia, operative wound 

infections and bloodstream infections (Lowy, 1998). Infections caused by S. aureus 

include skin lesions such as boils, furuncles and more serious infections, for example, 

phlebitis, meningitis, endocarditis and urinary tract infections. The mortality rate for 

nosocomial endocarditis is found higher than that for urinary tract infection when the 

pathogen is S. aureus (Fernandez-Guerrero, Verdejo, Azofra and, de Gorgolas, 1995). 

The hallmark of staphylococcal infection is the abscess, which consists of a fibrin wall 

surrounded by inflamed tissues enclosing a central core of pus containing organisms 

and leukocytes. The organisms may be disseminated hematogenously, even from the 

smallest abscess. S. aureus has a tendency to spread to particular sites, including the 

bones, joints, kidneys, and lungs. 
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 This may result to virulent sepsis. The symtoms of staphylococcal sepsis are 

similar to that of Gram-negative sepsis, with fever, hypotension, tachycardia, and 

tachypnea. Severe cases progress to multiorgan dysfunction, lactic acidosis and death. 

Similar to other species, many strains of S. aureus, such as methicillin-resistant 

S. aureus, are developing resistance to the available antibacterial agents, creating a 

serious problem in public health. The organism may acquire genes encoding enzymes, 

for example β-lactamase that destroys the antibacterial agent before it can have an 

effect. Due to the increasing prevalence of failures in the treatment of infectious 

diseases, the identification and development of novel antibacterial compounds are 

urgently required. Flavonoids derived from natural plants have been proved to have the 

potential to be new leads for antibacterial drug discovery (Cushnie and  Lamb, 2003; 

Cushnie and  Lamb, 2011). 

Flavonoids are well known and interesting sources for new antibacterial agents. 

More than 6000 flavonoid compounds have been purified and identified (Liu, 2011). 

They are ubiquitous in cells and are commonly found in fruit, vegetables, nuts, seeds, 

stems, flowers, tea, wine, propolis and honey. These compounds have been used in 

traditional herbal medicine as the principal physiologically active constituents to treat 

human diseases for centuries. In addition, this class of natural products is becoming the 

subject of antimicrobial research. Many groups of flavonoids possessing antiviral, 

antifungal or antibacterial activities have been isolated and identified for the structure 

(Cushnie and  Lamb, 2005). 

Derris plants have been received much interest from phytochemical researchers 

because of their plentiful bioactive compounds of flavonoids. Many of Derris 

flavonoids exhibit wide varieties of biological activities. For example, D. reticulata has 
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been reported to possess anti-diabetic action (Kumkrai, Kamonwannasit, and 

Chudapongse, 2014) and anti-inflammatory activity (Vongnam, 2013). 

Lupinifolin is a prenylated flavonoid isolated from several medicinal plants, such 

as Myriopteron extensum (Soonthornchareonnon, Ubonopas, Kaewsuwan, and 

Wuttiudomlert, 2004), Eriosema chinense (Prasad, Laloo, Kumar,  and Hemalatha, 

2013), Albizia myriophylla (Joycharat et al., 2013) and Erythrina fusca (Khaomek et 

al., 2008). It is also reported to be a major compound of Derris reticulata (Chivapat, 

Chavalittumrong, Attawish, and Soonthornchareonnon, 2009). There are several lines 

of evidence  demonstrating  that lupinifolin exerts antimicrobial activities, such as  

antiviral activity against herpes simplex virus type 1 (Soonthornchareonnon, Ubonopas, 

Kaewsuwan, and Wuttiudomlert, 2004), antimycobacterial activity against 

Mycobacterium  tuberculosis (Sutthivaiyakit et al., 2009) and antibacterial activity 

against Bacillus cereus, Corynebacterium diphtheria and S. epidermidis 

(Soonthornchareonnon, Ubonopas, Kaewsuwan, and Wuttiudomlert, 2004; 

Sutthivaiyakit et al., 2009). Lupinifolin possesses very strong activity against 

Streptococcus mutans with minimum inhibitory concentration (MIC) and minimum 

bactericidal concentration (MBC) of 1 and 2 µg/ml, respectively (Joycharat et al., 

2013). It has been demonstrated to exhibit antidiarrheal activity on castor oil-induced 

intestinal fluid accumulation with a significant recovery from Na+, K+ loss (Prasad, 

Laloo, Kumar, and Hemalatha, 2013). The same report showed that antibacterial 

activity of lupinifolin against bacterial strains mainly implicated in diarrhea such as B. 

cereus. 

Several studies have demonstrated the mechanisms of action underlying 

antimicrobial effects of flavonoids extracted from medicinal plants. Because of a 
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variety of the structures in this phytochemical class, the mechanism of action previously  

established by researchers varies dramatically. For example, sophoraflavanone G and 

catechins alter the fluidity of outer and inner layers of bacterial membranes (Cushnie 

and Lamb, 2005).  Epicatechingallate inhibits cell wall synthesis and increases the 

quantity of autolysins (Stapleton, Shah, Ehlert, Hara, and Taylor, 2007). 6,8-

Diprenyleriodictyol, isobavachalcone, and 4-hydroxylonchocarpin, flavonoids from 

Dorstenia genus, cause damage of cell membrane. In addition, an inhibition of 

macromolecule synthesis such as DNA, RNA, and proteins have also been found 

(Dzoyem, Hamamoto, Ngameni, Ngadjui, and Sekimizu, 2013). 

Antimicrobial activities of the plant flavonoid lupinifolin has been demonstrated. 

Therefore, In the present study, lupinifolin was isolated from D. reticulata stem and 

tested for antibacterial activities against four strains of Gram-positive and Gram-

negative bacteria. Due to its highest susceptibility to lupinifolin, S. aureus was used to 

investigate the mechanism underlying this antibacterial activity. It is first reported here 

that lupinifolin purified from D. reticulata inhibits growth of S. aureus by damaging 

the bacterial cell membrane. The data obtained from this study will provide scientific 

evidence to support the use or development of this compound as antimicrobial agent.   

 

 

 

 

 



CHAPTER II 

LITERATURE REVIEW 

 

2.1 Staphylococcus aureus 

All living organisms can be classified as either eukaryotes or prokaryotes. 

Eukaryotes are organisms made up of cells that contain a membrane-enclosed nucleus 

as well as other membrane-enclosed structures outside the nucleus. Prokaryotes are 

simple cells that lack a nucleus and any other structures enclosed by a membrane. 

Bacteria are prokaryotic cells whose external structure is composed of cell wall, 

cytoplasmic membrane, pili, glycocalyx and flagella, whereas bacterial intracellular 

structure consists of DNA, plasmid, ribosome and cytoskeletons (Lowy, 1998). The  

major bacterial shapes are spheres (cocci, coccus), rods (bacilli, bacillus), and 

coccobacilli. Rod-shaped bacteria that have tapered ends are called fusiform bacilli. 

S. aureus, a member of the Micrococcaceae family is a Gram-positive cocci in 

grape like clusters (Figure 2.1A), which consist of non-spore forming, non-motile, 

catalase-positive and facultative anaerobic bacteria that can invade the body via  

broken skin or mucous membrane. The term Staphylococcus is derived from the 

Greek term staphyle, meaning “a bunch of grapes”. The cell wall contains 

peptidoglycan and teichoic acid. The organisms are resistant to temperature as high as 

50°C, high salt concentrations, and dry environments. Colonies are usually large (6-8 

mm in diameter), smooth, and translucent. The colonies of most strains are 

pigmented, ranging from cream-yellow to orange (Lowy, 1998). An example of skin 
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infected by S. aureus is shown in Figure 2.1B. This type of microorganism is one of 

coagulase-positive staphylococci which become increasingly recognized as pathogen 

of nosocomial infection, following osteomyelitis, endocarditis, food poisoning, toxic 

shock syndrome and more serious skin infections (Ruimy et al., 2010). 

 

Figure 2.1 Morphology of S. aureus (A) and skin lesion of S. aureus infection (B) 

(Carr and Hageman, 2005). 

 

S. aureus can grow at 6 - 46°C, with the optimum temperature at 30 - 37°C. 

Like most pathogenic bacteria, it best grows in pH 7.2-7.4. S. aureus classified as 

facultative anaerobes are able to grow well in the presence of oxygen and lack growth 

in the absence of oxygen. S. aureus can create toxins, and the enterotoxins are divided 

into eight types, which are A, B, C1, C2, C3, D, E, and H. Common causes of food 

poisoning are A and D toxins that have special resistant features. Toxins are not 

destroyed by heat, even if boiled for half an hour. Common sources of S. aureus are 

bacteria that can be found in the nasal cavity, skin, mucous membranes, respiratory 

tract, wounds, abscesses, as well as in soil and dust. Food is often contaminated with 

S. aureus, such as meat, poultry, egg products, tuna, chicken, potato salad, macaroni 

products, pastries, cream pies, chocolate, sandwich and milk products (Lowy, 1998).  

A B 
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S. aureus can cause food poisoning. It is caused by eating food contaminated 

with the toxin, even in small amounts of less than 1 microgram can cause illness. 

High volume of S. aureus contamination in food of 100,000 cells per gram of food 

can cause acute infection and acute toxemia of pregnancy. After eating food 

contaminated with the bacteria within 1-6 hours, a person will start to have symptoms 

of nausea, vomiting, diarrhea, severe tiredness, abdominal pain and cramps. Most 

patients with symptomatic severe shock will also see signs of fever. Other severe 

complications may occur in newborns, the elderly and people with diabetes. However, 

most will recover within 8-24 hours, depending on the body ̓s resistance and the 

amount of toxins that get into the body (Carr and Hageman, 2005). 

 

2.2 Antibacterial drugs 

Humans have used natural anti-pathogen in the treatment of infectious diseases 

for over 2500 years. The 19th century marks the beginning of antimicrobials due to 

the discovery of several antibiotics. They are widely used to prevent and treat 

infectious diseases. The modern era of antimicrobial therapy started in 1936 with the 

discovery of sulfonamides and other drugs used in the treatment of infections in 

patients. During the next decade in 1940, penicillin and streptomycin were used to 

treat infections in patients. It can be said that the year 1950 was the golden age of 

antibiotics. Since then, antimicrobial drug discovery has developed into a new type of 

industry. Increasingly, the synthetic of the drugs for effectiveness and decreasing the 

side effects on humans is processed. The discovery of antibiotics is the greatest 

achievement in the medical industry (Hessen and Kaye, 2004).  
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The use of antimicrobial drugs in the past is a double blade sword. It will be 

very useful to reduce the rate of morbidity and mortality from infectious diseases. 

Whenever, if used inappropriately, it will make the cost of healthcare rises because it 

causes the ability to develop resistant to antimicrobial drugs. To select antimicrobials 

appropriately, we need to know the clinical features of the syndrome and the 

infectious diseases, based on information which was obtained from history. Physical 

examination and appropriate laboratory tests, which are useful in determining the 

cause of the infection (Colgan and Powers, 2001). We should understand the 

mechanism of action of drugs, pharmacokinetics, pharmacodynamics and adverse 

reaction (Hessen and Kaye, 2004). Mechanisms of resistance and sensitivity pattern of 

bacteria to antimicrobial agents are the factors in treatment the patient. In addition, 

position of infection, liver function, kidney conditions, immune intolerance, 

pregnancy and age of the patient are important to follow up for successful therapy 

(Niederman, 2003). 

 The basic principles, considered for the treatment of patients with antimicrobial, 

are to keep in mind that antimicrobials are not antipyretic drugs. Fever caused by 

different reasons are not necessarily always due to infectious diseases. Some 

infections do not need treatment with antibiotics such as cold medicine, so patients 

should be evaluated carefully. All antimicrobials are particularly dangerous when not 

used properly. In the treatment, drug effectiveness should be appropriately used and 

adjusted after known the drugs susceptibility testing (Slama et al., 2005). The using of 

narrow spectrum antimicrobial agents can be prevented drugs resistance 

microorganisms. 
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2.2.1 The susceptibility of pathogens to antimicrobial agents 

   Each pathogen is sensitive to different antibiotics, and even the same 

type of infection is also sensitive to different drugs. Therefore, it is necessary to 

perform the culture and the susceptibility testing to the antimicrobial agents, which 

can be done in several ways by the standards of the Clinical and Laboratory Standards 

Institute (CLSI) methods. Easy and popular practice commonly disc diffusion 

susceptibility testing was done by placing a filter paper disc with the antimicrobial at 

concentrations that are defined as standard on agar plates.  After incubation for 16 -18 

hours, the antibacterial activity was determined by measuring the diameter of the 

inhibition zone occurred and the results were demonstrated to resistant, intermediate 

and susceptible tested. This method will not be able to tell the minimal inhibitory 

concentration (MIC), which represents to the concentration of the lowest dose that can 

inhibit the replication of the bacteria. The MIC will focus on the use of antimicrobials, 

including the size of the dose required to treat certain infections, such as infection of 

the heart valves and patients infected with S. pneumoniae meningitis from the current 

problem of drug resistance. The MIC can be done in many ways such as broth 

macrodilution, microdilution, and agar dilution (Niederman, 2005). 

    The control of microorganisms is critical for the prevention and treatment of 

diseases. Microbial colonization can lead to disease, disability and death. Thus the 

control or destruction of microorganisms residing within the bodies of humans is of 

great importance. 

The discovery of the first antibiotic was an accident. Alexander Fleming 

was working with S. aureus in 1928, and while plating this organism he accidentally 

allowed the fungus Penicillium to contaminate his plate. He subsequently observed 
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that the plate had a uniform growth of S. aureus except where the fungi were growing. 

In this area, Fleming saw a clearly defined region where there was no bacterial 

growth. This was what eventually became referred to as a zone of inhibition 

(Strelkauskas, Strelkauskas, and Moszyk-Strelkauskas, 2010). 

The growth of microbes are inhibited by a number of diverse molecules. The 

first group of these molecules that inhibited bacterial growth were natural products 

isolated from specific microorganisms. As a result of increasing bacterial resistance, 

these natural molecules have been modified, and several types of semi-synthetic 

antibiotics have been derived.  Penicillin was the original natural molecule used by 

humans that its activity was restricted to Gram-positive organisms and essentially 

ineffective against Gram-negative organisms. It had a very narrow spectrum of 

activity.  

 2.2.2 Mechanism and site of antibacterial action 

  Some of antibiotics were obtained naturally. Their structures have been 

put to chemical modification by removing some chemical groups and adding other in 

attempts to increase beneficial effects while minimizing the toxic effects. 

Chemotherapeutic agents can be either cidal or static. The antibacterial drugs are 

often described as bacteriostatic or bactericidal. Bacteriostatic describes a drug that 

temporarily inhibits the growth of microorganism whereas bactericidal describes a 

drug that attaches to its receptor and causes the death of microorganism. Many of the 

bacteriostatic drugs in higher doses act as bactericidal agents (Purohit, Saluja, and 

Kakrani, 2006). Base on the mechanism of action, antibacterial agent generally falls 

within one of the following five categories. 
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2.2.2.1 Cell wall inhibitors 

 The bacterial cell wall provides structural integrity to the cell. In 

prokaryotes, the primary function of the cell wall is to protect the cell from internal 

turgor pressure caused by the much higher concentrations of proteins and other 

molecules inside the cell compared to its external environment. It is a necessary 

component for the survival of the bacteria. While cell wall is found in bacteria, but 

absent in human cells. Therefore, the most appealing target for antibiotics is the 

bacterial cell wall. During the construction of the cell wall, synthesis of components 

are involved to many enzymatic interactions. These processes can be used as targets 

of antibiotic molecules such as penicillin, cephalosporins, cephamycins, vancomycin 

and bacitracin. The cell wall is composed of layers of peptidoglycan, which is made 

up of repeating units of N-acetyl glucosamine (NAG) and N-acetyl muramic acid 

(NAM) (Park and Uehara, 2008). The NAG and NAM molecules are cross-linked 

through the activity of transglycosylase and transpeptidase enzymes. Many antibiotics 

that target the cell wall act by inhibiting the activity of these two enzymes. The result 

is that the cell wall is not properly cross-linked leading to weak and unable to endure 

the environmental pressures (bactericidal). General comparison of Gram- positive and 

Gram-negative bacterial cell wall structure illustrate in Figure 2.2. 

http://en.wikipedia.org/wiki/Cell_envelope
http://en.wikipedia.org/wiki/Prokaryote
http://en.wikipedia.org/wiki/Turgor_pressure
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Figure 2.2 Diagrams of Gram-positive (Left) and Gram-negative cell wall (Right) 

(Strelkauskas, Strelkauskas, and Moszyk-Strelkauskas, 2010). 

 

The cell walls have penicillin-binding proteins (PBPs) in the construction 

because the β-lactam ring of penicillin binds to these proteins. During active growth 

of bacteria, new cell wall is continuously being built. It is at this time that the activity 

of penicillin is most effective, because penicillin prevents the cross-linking of the 

NAG and NAM units and thereby prevents the formation of an intact cell wall. 

Consequently, the more rapidly the bacteria are dividing, the more devastating is the 

effect of penicillin. However, penicillin is effective to against Gram-positive more 

than Gram-negative that depends on the amounts of peptidoglycan (Strelkauskas, 

Strelkauskas, and Moszyk-Strelkauskas, 2010). 

 2.2.2.2 Cell membrane inhibitors 

 The plasma membrane of a bacterium, also known as the cell 

membrane or cytoplasmic membrane, is a delicate flexible structure that holds in the 

internal cellular matrix of cytosol and organelles. The most important features of any 



13 

 

plasma membrane are selective permeability, the production of ATP, and other 

physiological functions. It is therefore a prime target for antimicrobials such as 

polymyxin and daptomycin. Because any disruption of this membrane will destroy the 

ability of bacteria to survive (bactericidal). Gram-negative bacteria have both a 

plasma membrane and an outer membrane. The outer membrane is rich in 

lipopolysaccharide and thus increase virulence (Strelkauskas, Strelkauskas, and 

Moszyk-Strelkauskas, 2010).  

 2.2.2.3 Protein synthesis inhibitors 

 Proteins are assembled at a ribosome in combination with 

messenger RNA, and assembly of a protein begins with the formation of an intact 

ribosome from two ribosomal subunits. Here amino acids are linked together through 

peptide bond formation. Because ribosomes are found in both prokaryotic and 

eukaryotic cells, so the selection of protein synthesis is a target for antibiotic therapy 

against bacteria. The ribosomes of prokaryotes are not the same as those of 

eukaryotes. Therefore, antibiotics that target the synthesis of proteins in bacteria do 

meet the criterion of selective toxicity (Strelkauskas, Strelkauskas, and Moszyk-

Strelkauskas, 2010). The bacterial 70S ribosome is composed of two subunits, 30S 

and 50S. Several targets of antibiotics are located on these subunits. Some 

mechanisms of antibiotic inactivation involve improper orientation of the mRNA, 

inability to form peptide bonds, or inhibition of peptide elongation (bacteriostatic). 

Such as aminoglycosides change 30S subunit shape so mRNA is misread, macrolide 

binds 50S subunit and prevents mRNA moving through ribosome, tetracycline blocks 

ribosome docking site of tRNA and chloramphenicol inhibits peptide bond formation 

(Strelkauskas, Strelkauskas, and Moszyk-Strelkauskas, 2010). 
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2.2.2.4 Nucleic acid inhibitors 

            The most obvious target of antibiotic therapy would be the nucleic 

acids DNA and RNA. Because these molecules have critical roles in the reproduction 

of bacteria. The disruption in their function will result in the death of the bacteria 

(bactericidal). The structure of DNA and RNA in bacteria is not different from the 

structure of these cells in humans so the main difficulty in using nucleic acids as 

targets is selective toxicity. Currently, over the years a variety of potential antibiotics 

have been developed, such as rifamycin and quinolone groups. The anti-

mycobacterial rifamycins inhibit the growth of most Gram-positive bacteria by 

binding to the RNA polymerase molecules and disrupt its structure, leading to the 

polymerase molecule unable to function properly. Similarly, the quinolones have been 

found to be disrupt the three-dimensional structure of topoisomerase and gyrase 

(Strelkauskas, Strelkauskas, and Moszyk-Strelkauskas, 2010). These two enzymes are 

essential for DNA synthesis. 

 2.2.2.5 Inhibitors of metabolism 

            The metabolism of folic acid is a molecule using for nucleic acid 

synthesis. One of the intermediates in the pathway is para-amino benzoic acid 

(PABA). Sulfa drugs competitively inhibit the function of the enzyme that 

incorporates the PABA molecule into the folic acid metabolic pathway (Strelkauskas, 

Strelkauskas, and Moszyk-Strelkauskas, 2010). It is referred to as competitive 

inhibition because the sulfa molecule is remarkably similar in structure to the PABA 

molecule. The enzyme simply gets fooled into incorporating the sulfa molecule into 

the folic acid structure instead of the PABA. This stops the pathway and is a cell 
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death of bacteria (bactericidal) because they cannot survive without folic acid 

(Strelkauskas, Strelkauskas, and Moszyk-Strelkauskas, 2010).  

  

 

Figure  2.3 The target sites of antibiotics on bacteria (Sahare, Moon, and Shinde, 

2013). 

 

2.3 Mechanisms of Antimicrobial Resistance 

2.3.1  Intrinsic or natural resistance 

Intrinsic or natural resistance may be a result of the drug or active 

ingredient has no target for the drugs (Tenover, 2006). Microorganisms naturally do 

not possess target sites for the drugs. In addition, they naturally have low permeability 

to those agents because of the differences in the chemical nature of the drug and the 

microbial membrane structures. The Figure 2.4 shows an overview of intrinsic 

resistance mechanisms. The example shown is of β-lactam antibiotics targeting a 

penicillin-binding protein (PBP). Antibiotic A can enter the cell via a membrane-

Cell membrane Cell membrane 

Metabolis

m 
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spanning porin protein, reach its target and inhibit peptidoglycan synthesis. Antibiotic 

B can also enter the cell via a porin, but unlike antibiotic A, it is efficiently removed 

by efflux. Antibiotic C cannot cross the outer membrane and so is unable to access the 

target PBP. In this example, it is said that this type of bacteria is naturally resistance to 

antibiotics B and C.  

 2.3.2 Acquired resistance 

      Acquired resistance is often a result from the widespread using of 

antibiotics and inappropriate in terms of medicine. Bacteria pathogens are trying to 

adaptation for survival after they are exposed to antimicrobial drugs. Mechanism of 

resistance is possible in many ways. In summary, mechanisms for acquired resistance 

consists of the presence of an enzymes that inactivates the antimicrobial agent. A 

mutation in the antimicrobial agent ̓s target and post-transcriptional or post-

translational modification can reduce binding of the antimicrobial agent. The active 

efflux of bacteria possesses elimination of the drugs. For example, β-lactamase 

production is the most common mechanism of resistance (Katzung, Masters, and 

Trevor, 2009). These enzyme is produced by S. aureus, Haemophilus spp, P. 

aeruginosa, Enterobacter spp. and E. coli. The reduced affinity of antimicrobial 

targets lead to reduce the affinity of PBPs in S. pneumoniae, S. aureus (Ifesan, 

Joycharat, and Voravuthikunchai, 2009). Some bacteria, such as methicillin-resistant 

S. aureus create a new goal or change the cell wall structure, involving in alteration of 

target PBP.  
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Figure 2.4 Examples of intrinsic mechanisms of resistance (Blair, Webber, Baylay, 

Ogbolu, and Piddock, 2015). 
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Table 2.1 Mechanism of resistance to antimicrobial agents (Blair, Webber, Baylay, 

Ogbolu, and Piddock, 2015). 

Antimicrobial 

agents 

Mode of Action Resistance mechanisms 

β-lactams Inhibit cell wall synthesis, 

Cell division 

β- lactamases, altered 

penicillin binding protein, 

altered GNB outer-membrane 

porins, active efflux 

Glycopeptides 

(vancomycin, 

cycloserine) 

Inhibit cell wall division Altered target site 

 

Aminoglycosides 

 

Inhibit protein synthesis             

(bind to30s ribosome) 

 

Aminoglycoside-modifying 

enzyme, 

Decreased membrane 

permeability, active efflux 

Macrolides Inhibit protein synthesis              

(bind to 50s ribosome) 

Altered target, enzymatic 

inactivation, active efflux 

Tetracycline Inhibit protein synthesis             

(bind to 30s ribosome) 

Efflux, altered target, 

enzymatic inactivation, 

decreased permeability 

Chloramphemcol Inhibit protein synthesis             

(bind to 50s ribosome) 

Chloramphenicol 

acetyltransferase, active efflux 

Rifampin Inhibits nucleic acid synthesis Altered target, decreased 

permeability of membrane 

 

Sulfonamides 

Trimethoprim 

Inhibit folic acid synthesis Altered target 
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2.4   Derris reticulata Craib. 

 Derris reticulata Craib., a plant in Leguminosae family, contains flavonoids as 

its major bioactive compound similar to other plants in genus Derris. It is a well-

known Thai herbal medicine commonly called as Cha-am-nuea. The picture of this 

plant is shown in Figure 2.5. 

 Derris plants are benificial in traditional herbal medicine all over the tropical 

areas. The biological activities of some species of Derris plants have been reported. 

Some of the significant ethnopharmacology and medical applications of Derris plants 

are shown in Table 2.2. 

Plant flavonoids have been demonstrated to possess a variety of biological 

activities including antibacterial, antiviral, antioxidant, antiulcerogenic, 

antineoplastic, antihepatotoxic, anti-inflammatory activities and cytotoxicity (Cushnie 

and Lamb, 2005; Pengelly, 2004). Flavonoids sources are mainly found in fruit, 

vegetables, nuts, seeds, stems and flowers, tea, wine, propolis and honey. According 

to biosynthetic origin, flavonoids can be classified into several groups, for example 

chalcones, catechins, flavanones, isoflavones, anthocyanidins, xanthones, aurones, 

flavones and flavonols (Figure 2.6). Flavonoids have attracted considerable interest 

recently because of their potential beneficial effects on human health. They have been 

reported to possess many useful properties, including antioxidant, anti-inflammatory, 

antiallergic, vascular, cytotoxic antitumor, oestrogenic, antibacterial activities, and 

enzyme inhibitory. 
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Figure 2.5 Derris reticulata (Ruckhachati, 2010). 

 

Table 2.2 Selected ethnomedical applications of Derris plants (Kongjinda, 2004). 

Sources   Plant part   Ethnomedical activity 

D. amazonica   Dried root   Fish poison 

D. elliptica   Root    Insecticide 

    Dried root   Blood purification 

        Fish poison 

D. indica   Dried seed   Fish poison 

D. malaccensis  Dried root   Fish poison 

    Dried root   Leprosy 

D. oblonga   Root    Insecticide 

D. robusta   Fresh root   Sore throat 
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Table 2.2 Selected ethnomedical applications of Derris plants (Kongjinda, 2004) 

(Continued). 

Sources   Plant part   Ethnomedical activity 

D. scandens   Dried stem   Rheumatism 

    Dried entire plant  Fish poison 

    Dried stem   Analgesic 

    Dried stem   Antipyretic 

    Dried stem   Arthistic symptoms 

    Dried stem   Antidysenteric 

    Dried stem   Antidiuretic 

D. spruceana   Dried leaf   Fish poison 

D. trifoliata   Root    Insecticide 

    Dried entire plant  Stimulant 

    Dried entire plant  Antipasmodic 

_____________________________________________________________________ 

 

 

Derris plants received much attention from phytochemical researchers because 

of their plentiful bioactive compounds of flavonoids. Many kinds of Derris flavonoids 

exhibit wide varieties of biological activities. Some flavonoid compounds and their 

biological activities of certain Derris plants are illustrated in Table 2.3. 

According to their antimicrobial activities, D. elliptica, D. indica and D. 

trifoliata showed varied levels of broad spectrum against 25 pathogens (Khan, 

Omoloso, and Barewai, 2006). The methanol fractions of leaves and root heart-wood, 
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as well as petrol, butanol and methanol fractions of the root bark of D. indica 

including ethyl acetate fractions of D. trifoliate possessed significant antibacterial 

activity. D. scandens showed a good inhibitory effect on growth of S. aureus, S. 

epidermidis and E. coli (Sittiwet and Puangpronpitag, 2009). Moreover, it has been 

used to treat arthritis patients (Laupattarakasem, Houghton, Hoult and Itharat, 2003). 

Different parts of D. trifoliate were used for treatment of wounds, rheumatism, 

dysmenorrhea and asthma (Jiang et al., 2012). 

 

 

 

 

 

 

 

 

 

Figure 2.6 Family of major dietary flavonoid groups (Skibola and Smith, 2000). 
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Table 2.3  Active compounds from Derris plants and biological activity (Kongjinda, 

2004). 

Compounds   Plant   Biological activity 

Deguelin  D. malaccensis  antibacterial 

Dehydrorotenone D. malaccensis  antibacterial 

Dereticulatin  D. reticulata   cytotoxic against P-388 Cell line 

Derrisisoflavone A D. scandens   anti-dermatophyte 

Derrisisoflavone B D. scandens   anti-dermatophyte 

Derrisisoflavone C D. scandens   anti-dermatophyte 

Derrisisoflavone D D. scandens   anti-dermatophyte 

Derrisisoflavone E D. scandens   anti-dermatophyte 

Derrisisoflavone F D. scandens   anti-dermatophyte 

Elliptone  D. malaccensis  antibacterial 

Epoxylupinifolin D. reticulata   cytotoxic against P-388 Cell line 

Erysenegalensein E D. scandens   anti-dermatophyte 

12a-hydroxyrotenone D. malaccensis  antibacterial 

Lupalbigenin  D. scandens   anti-dermatophyte 

Lupinifolin  D. reticulata   cytotoxic against P-388 Cell line  

Lupinisoflavone G D. scandens   anti-dermatophyte 

_____________________________________________________________________ 

In addition, the ethanolic extract of D. reticulata stem contains anti-

inflammatory activity by inhibiting the production of several known inflammatory 

mediators in LPS-activated macrophages (Vongnam, 2013). D. reticulata has been 

used in traditional medicine for the relief of thirst and as an expectorant (Mahidol, 
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Prawat, Prachyawarakorn, and Ruchirawat, 2002). Moreover, recently it was 

demonstrated to possess anti-diabetic activity, resulting from its pancreatic 

cytoprotective effect and inhibition of intestinal glucose absorbtion (Kumkrai, 

Kamonwannasit, and Chudapongse, 2014). As contributing to the hypoglycemic 

action, D. indica has been shown to exert intestinal α-glucosidase inhibitory activity 

(Ranga Rao et al., 2009). 

Phytochemicals isolated from some species of Derris plants have been reported 

to possess biological activities. Three pyranoflavanones, lupinifolin, 2''', 3''' - 

epoxylupinifolin and dereticulatin were identified from the stems of D. reticulata 

Benth. (Mahidol et al., 1997). These compounds shown in Figure 2.7. 

 

 

 

 

Figure 2.7   Isolated compounds from Derris reticulata Benth (Mahidol et al., 1997). 

 

 

 

Lupinifolin 2′′′,3′′′-Epoxylupinifolin Dereticulatin 
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Lupinifolin is the prenylated flavanone that have been isolated from several 

medicinal plants, such as Derris reticulate Benth. (Mahidol et al., 1997),  

Myriopteron extensum (Soonthornchareonnon, Ubonopas, Kaewsuwan, and 

Wuttiudomlert, 2004), Eriosema chinense (Prasad, Laloo, Kumar, and Hemalatha, 

2013) and Albizia myriophylla (Joycharat et al., 2013). The solubilities of lupinifolin 

in solvents depend on their existing forms which is less soluble in water, but easily 

soluble in methanol, ethanol, trichoromethane, and other organic solvents. There are 

several lines of evidence demonstrating that lupinifolin exerts antimicrobial activities, 

such as an antiviral activity against herpes simplex virus type 1 

(Soonthornchareonnon, Ubonopas, Kaewsuwan, and Wuttiudomlert, 2004), 

antimycobacterial activity against Mycobacterium tuberculosis (Sutthivaiyakit et al., 

2009) and antibacterial activity against B. cereus, Corynebacterium diphtheria, S. 

epidermidis (Soonthornchareonnon et al., 2004; Sutthivaiyakit et al., 2009). 

Lupinifolin possess a strong activity against Streptococcus mutans with MIC and 

MBC ranging from 0.25-8 µg/ml (Joycharat et al., 2013). It has been demonstrated to 

exhibit antidiarrhoeal activity on castor oil-induced intestinal fluid accumulation with 

a significant recovery from Na+, K+ loss. The same report showed antibacterial 

activity of lupinifolin against bacterial strains mainly implicated in diarrhea such as B. 

cereus (Prasad, Laloo, Kumar, and Hemalatha, 2013). Acute toxicity study also 

encourages the therapeutic use of lupinifolin because it did not affect on body weight, 

food consumption or the animal’s health investigated on hematological and 

biochemistry tests (Chivapat, Chavalittumrong, Attiwist, and Soonthornchareonnon, 

2009).  
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For anti-carcinogenesis, lupinifolin, isolated from plants belonging to Citrus 

tamurana, C. medica and D. trifoliata, was tested on Epstein-Barr virus (EBV) early 

antigen activation induced by 12-O- tetradecanoylphorbol-13-acetate in Raji cells 

(Itoigawa et al., 2002). The results showed that lupinifolin possessed inhibitory 

activity against EBV without exhibiting any cytotoxicity. In vitro bioassay of 

lupinifolin demonstrated that the growth of P-388 cells was inhibited at the 

concentration of 0.4-0.5 µg/ml (Mahidol et al., 1997). In addition, lupinifolin 

illustrated a marked inhibitory effect on mouse skin tumor promotion by in vivo two-

stage carcinogenesis test (Itoigawa et al., 2002). The inhibitory activity was shown to 

be correlated with the number of prenyl groups in the molecule. The presence of one 

or more prenyl side-chains is suggested be an important structural characteristic for 

the inhibitory effect of flavanones. One of the proposed reasons for the enhanced 

biological activities of prenylated flavonoids is that the prenylation of the flavonoid 

core increases the lipophilicity and the membrane permeability of the compound 

(Sasaki, Kashiwada, Shibata, and Takaishi, 2012).  
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Table 2.4 Flavanones from Derris genus (Khan, Omoloso, and Barewai, 2006). 

Compounds Plant organs Plant sources 

 

 

Root 

 

D. laxiflora 

  

 

Stems 

 

 D. reticulata 

   

 

 

 

 

 

               Stems 

 

 

 

 

               Root 

              Wood 

 

 

 

 

 

            D. reticulata 

 

 

 

 

           D. florobunda 

           D. rariflora 
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Table 2.4 Flavanones from Derris genus (Khan, Omoloso, and Barewai, 2006) 

(Continued). 

Compounds Plant organs Plant sources 

 

 

Stems 

 

D. reticulata 

 

 

Root 

 

D. laxiflora 

 

 

Root 

 

D. laxiflora 

 

 

 

Wood 

 

D. rariflora 
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Table 2.4 Flavanones from Derris genus (Khan, Omoloso, and Barewai, 2006) 

(Continued). 

Compounds Plant organs Plant sources 

 

 

Root 

 

D. araripensis 

 

 

Root 

 

D. araripensis 

 

 

2.5   Antibacterial mechanisms of action of flavonoids 

2.5.1 Inhibition of nucleic acid synthesis 

       Several lines of evidence have suggested that DNA and/or RNA are targets 

of various flavonoids. For example, using a radioactive precursors, it was found that 

robinetin, myricetin and (−)-epigallocatechin inhibited the growth of Proteus vulgaris 

by intercalation or hydrogen bonding with the stacking of nucleic acid bases, resulting 

in the interfering of DNA synthesis (Mori, Nishino, Enoki, and Tawata, 1987).  

Topoisomerases, enzymes that alter the supercoiling of double-stranded 

DNA, are the molecular targets of the antibiotics quinolones. The topoisomerases act 

by transiently cutting one or both strands of the DNA. Topoisomerase type I cuts one 

strand whereas topoisomerase type II cuts both strands of the DNA to relax the coil 



30 

 

and extend the DNA molecule. DNA gyrase or topoisomerase type II is 

an enzyme within the class of  topoisomerase  that relieves strain while double-

stranded DNA is being unwound by helicase. Fourteen flavonoids were selected to 

investigate for antibacterial mechanisms in a variety strains of bacteria. The data 

suggested that seven flavonoids, including quercetin and apigenin, from the tested 14 

compounds possessed antibacterial activities in part by their inhibition of DNA gyrase 

(Ohemeng, Schwender, Fu, and Barrett, 1993). From separate study, it was 

demonstrated that quercetin inhibited E. coli DNA gyrase caused by its binding to 

GyrB subunit and inhibition of GyrB ATPase activity (Plaper, Golob, Hafner, Oblak, 

Solmajer, and Jerala, 2003). Bernard and co-workers also found that the glycosylated 

flavonol rutin exhibited antibacterial activity against a permeable E. coli strain by 

inducing E. coli topoisomerase IV-dependent DNA cleavage (Bernard et al., 1997). 

Using a technique known as the SOS chromotest, it was found that the glycosylated 

flavonol rutin inhibited growth of E. coli cells by producing an SOS response. Finally, 

a study using 4-quinolone resistant strains of S. aureus by Cushnie and Lamb 

(Cushnie and Lamb, 2006) suggested that topoisomerase IV and the relatively 

homologous gyrase enzyme are involved in the antibacterial mechanism of action of 

galangin.  

2.5.2 Inhibition of cytoplasmic membrane function 

 The antibacterial actions of sophoraflavanone G have gained increasing 

attention.  The mechanism of action of this flavanone has been reported by several 

groups of researchers (Sakagami et al., 1998; Tsuchiya et al., 1994). Using liposomal 

model membranes, the data showed that sophoraflavanone G significantly increase 

fluorescence polarisation of the liposomes, suggesting that it reduced the fluidity of 

https://en.wikipedia.org/wiki/Enzyme
https://en.wikipedia.org/wiki/Topoisomerase
https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/Helicase
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outer and inner layers of bacterial membranes. (Tsuchiya and Iinuma, 2000). It has 

been widely accepted that catechins, a group of flavonoids in green tea, possess 

antibacterial activity. Using the same cell membrane model, Ikigai and coworkers 

(Ikigai, Nakae, Hara, and Shimamura, 1993) concluded that epigallocatechin gallate 

primarily act on and damage bacterial membranes, resulting in leakage of small 

molecules from the intraliposomal space. Two hypotheses proposed by the author has 

been  (1) directly penetratign and disrupting the barrier function; and (2) causing 

membrane fusion, resulting in the leakage of intramembranous materials and 

aggregation. From the same study, catechins were found to have greater activity 

against Gram-positive than Gram-negative bacteria. Interestingly, it appeared that 

leakage induced by epigallocatechin gallate was significantly lower when liposome 

membranes were prepared containing negatively charged lipids. It was therefore 

suggested that the low catechin susceptibility of Gram-negative bacteria may be 

depend on  the presence of lipopolysaccharide acting as a barrier (Ikigai, Nakae, Hara 

and Shimamura, 1993). Moreover, another group of investigators studied the 

mechanism of  (−)-epicatechin gallate and 3-O-octanoyl-(+)-catechin in MRSA 

clinical isolate cells using fluorescent stain propidium iodide as an indicator of cell 

membrane integrity (Sato, Tsuchiya, Akagiri, Takagi, and Iinuma, 1997). The data 

from this work was accordance with the result from Ikigai’s experiment, 

substantiating the hypothesis that catechins act on and damage bacterial membranes.  

 At least two more lines of evidence supporting this hypothesis have been 

documented. First, the effect of galangin upon cytoplasmic integrity in S. aureus has 

been investigated by measuring loss of internal potassium (Cushnie and Lamb, 2005). 

The data suggest that galangin induces cytoplasmic membrane damage and potassium 



32 

 

leakage. However, whether galangin damages the membrane directly, or indirectly as 

a result of autolysis or cell wall damage and osmotic lysis is inconclusive (Cushnie 

and Lamb, 2011). Second evidence was reported by the investigation of antimicrobial 

action of propolis by Mirzoeva and colleagues (Mirzoeva, Grishanin, and Calder, 

1997). Synergistic effect between propolis and other antibiotics such as tetracycline 

and ampicillin has been published (Stepanovic, Antic, Dakic, and Svabic-Vlahovic, 

2003). It was suggested that the effect of propolis on membrane permeability and 

membrane potential may contribute to the synergism effect and decrease the 

resistance of cells to another antibacterial agent.   

2.5.3  Inhibition of energy metabolism 

The antibacterial mode of action of two retrochalcones (licochalcone A 

and C) from the roots of Glycyrrhiza inflata was investigated (Haraguchi, Tanimoto, 

Tamura, Mizutani, and Kinoshita, 1998). These flavonoids were demonstrated to have 

inhibitory activity against S. aureus and Micrococcus luteus but not against E. coli. 

Since inhibition of macromolecule biosynthesis by these compounds was found, a 

possible mechanism in interfering with energy metabolism was hypothesized by a 

group of investigators (Haraguchi, Tanimoto, Tamura, Mizutani, and Kinoshita, 

1998). The data showed that the licochalcone A and C inhibited oxygen consumption 

in the Gram-positive bacteria, M. luteus and S. aureus, but not in the Gram-negative 

bacteria E. coli. These data were correlated well with the observed spectrum of 

antibacterial activity. It was further demonstrated that the inhibition site of 

licochalcones A and C was between CoQ and cytochrome c in the bacterial 

respiratory electron transport chain.  

 



 

 

CHAPTER III 

MATERIALS AND METHODS 

 

3.1  Plant material 

3.1.1  Plant collection and preparation  

  Derris reticulata Craib. was collected from Prachinburi province, Thailand 

by the former Ph.D. student (Dr. Pakarang Kumkrai). Botanical identification was 

performed by Dr. Paul J. Grote, School of Biology, Suranaree University of Technology 

(SUT). A voucher specimen (Pharm-Chu-006) was deposited at School of Preclinical 

Sciences, SUT. The stems were cut into small pieces and dried at 50C in hot-air oven. 

The dried stems were stored at room temperature until used for extraction. 

3.1.2  Purification of lupinifolin 

 Sixty grams of dried stems were extracted with 400 ml of hexane using a  

Soxhlet extractor. After washing twice with deionized water, the extract became turbid 

due to precipitation of lupinifolin. The hexane layer was collected and heated  at 65C 

until the extract became clear, and was then left at room temperature overnight for 

crystallization. The purity of the yellow needle-shaped lupinifolin crystals was first 

analyzed by TLC. Dichrolomethane:methanol (95:5) was used as the mobile phase and 

the composition of the extract was detected by UV light at 254 nm. Specific rotation 

was measured with a Bellingham & Stanley P 20 polarimeter.
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 Yellow crystallized lupinifolin was dissolved in 10 ml of chloroform (1.10 

g/ml) and analyzed with a 20.0 cm polarimeter tube. The calculated specific rotation 

was -10.0°, which matched the published value (Mahidol et al., 1997). Further 

identification was carried out with nuclear magnetic resonance (NMR) and mass 

spectrometry (MS). 

 

3.2  Identification of lupinifolin 

3.2.1  Nuclear magnetic resonance (NMR) 

 The purified lupinifolin was confirmed by NMR spectra on a 500 MHz 

NMR spectrometer (Bruker AVANE III HD; Fällanden, Switzerland) with a CPP BBO 

500 CryoProbe. Deuterated chloroform (CDCl3) was used as solvent and 

tetramethylsilane (TMS) was used as reference standard. The 1H- and 13C- NMR spectra 

were collected at frequencies of 500.366 and 125.83, respectively. They were consistent 

with the previously published data (Mahidol et al., 1997). 

3.2.2  Mass spectrometry (MS) 

 The structure of lupinifolin was also confirmed by its mass spectrum. The 

yellow lupinifolin crystals were dissolved in methanol (containing 0.1% formic acid) 

and injected directly to the electrospay ionization (ESI) source of a Bruker micro-TOF-

Q mass spectrometer (Bremen, German). The ESI source was used in positive mode, 

and the scan range of the mass detector was 50-1500 m/z. The expected valued for 

detection of [M+H]+at m/z is 407.1853 (C25H27O5). 
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3.3  Antibacterial assays 

3.3.1  Disc diffusion 

  Bacteria used in this study were obtained from Thailand Institute of 

Scientific and Technological Research (TISTR). The antibacterial activities of 

lupinifolin were evaluated with Gram-positive bacteria S. aureus (TISTR 1466), S. 

epidermidis (TISTR 518), B. subtilis (TISTR 008) and B. cereus (TISTR 687), and 

Gram-negative bacteria  E. coli (TISTR 780), Pseudomonas aeruginosa (TISTR 781), 

Enterococcus aerogenes (TISTR 1540), Salmonella typhi (TISTR 292) and Proteus 

mirabilis (TISTR 100). The screening of the antibacterial activity was done by the  disc 

diffusion method (Humeera et al., 2013). Bacterial suspensions were prepared by 

inoculating one loopful of a pure colony into Mueller-Hinton Broth (MHB), incubated 

overnight and diluted in 0.9% NaCl. Cell suspensions, which adjusted turbidity 

equivalent to that of a 0.5 McFarland standard (~108 cfu/ml), were inoculated on 

Mueller-Hinton Agar (MHA) plates by swabbing over the entire agar surface. 

Lupinifolin (25, 50, 75 µg/disc) was impregnated on filter paper discs (Whatman No.1, 

6 mm diameter) and then placed on the previously inoculated agar plate. After 24 h of 

incubation at 37°C, the antibacterial activity was determined by measuring the diameter 

of the inhibition zones formed around the disc. Ampicillin (10 µg) and 0.1 N NaOH (10 

µl) were used as positive and vehicle controls, respectively. 

3.3.2  Determination of minimum inhibitory concentration (MIC) and 

minimum bactericidal concentration (MBC) 

    A modified broth microdilution method according to Clinical and 

Laboratory Standard Institute Guidelines (CLSI, 2012) was used to determine the MIC 

and MBC of lupinifolin (Joycharat et al., 2013). Two-fold serial dilutions of lupinifolin 
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were made in MHB using 96-well flat-bottom microtiter plates. A suspension of mid-

logarithmic growth phase bacteria in MHB adjusted to 5×105 cfu/ml was added to each 

well. The final concentrations of lupinifolin ranged from 0.25-32 µg/ml. Ampicillin and 

0.1 N NaOH (at the same volume as for lupinifolin) were used as positive and vehicle 

controls, respectively. The MIC was considered to be the lowest concentration of the 

agents showing no visible growth of microorganism after incubation at 37°C for 24 h. 

The MBC determination was carried out by sub-culturing 20 µl from the broth with no 

growth onto MHA plates after 24 h incubation at 37°C. All tests were performed in 

triplicate independent experiments. 

3.3.3  Time-course of inhibitory effect 

        Staphylococcus aureus cells at mid-logarithmic growth phase (1.8108 

cfu/ml: 100 ml) were incubated with lupinifolin at MIC in 250-ml flasks. The optical 

density was measured to compare the onset of inhibitory activity of lupinifolin to 

ampicillin for 24 h at 37°C.   

 

3.4  Determination of the mechanism of action 

 3.4.1  Scanning electron microscopy (SEM) 

        Staphylococcus aureus cells at mid-logarithmic growth phase (1.8108 

cfu/ml) were treated with either 8 g/ml lupinifolin or 0.25 g/ml ampicillin for 1, 3, 6 

h. After incubation in 37°C shaking incubator (200 rpm), the cells were spun down and 

MHB medium were removed. The cell pellets were spread on 0.1% gelatin-coated 

slides and air-dried for 15 min, and then fixed with 4% paraformaldehyde at 4°C for 1 

h. After fixation, the specimens were washed with phosphate buffer solution (PBS) 
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twice and post-fixed with 1% Osmium at 4°C for 30 min.  The samples were then 

washed twice with PBS at 4°C for 10 min and dehydrated twice with serial graded 

concentrations of ethanol (50, 70, 80, 90 and 95%) at 4°C for 7 min, followed by 100% 

ethanol. The samples were then dried to the critical point under CO2 with Leica EM 

CPD300 dryer (Vienna, Austria) and stained with gold ions in a pressure metallic 

chamber. Microscopy was performed with a JEOL JSM-6010LV scanning electron 

microscope (Tokyo, Japan). 

3.4.2  Transmission electron microscopy (TEM) 

 Transmission electron microscopy (TEM) was used to visualize the change 

in morphology at the membrane and cell wall ultrastructure of S. aureus after treatment 

with lupinifolin. TEM preparations were made in accordance with the previously 

reported method with slight modifications (Ghosh, Indukuri, Bondalapati, Saikia, and 

Rangan, 2013).  

The bacterial samples were prepared similar to the SEM method. After lupinifolin 

treatment for 12 h, cells were gently washed with 0.1 M PBS (pH 7.2), fixed with 2.5% 

glutaraldehyde in PBS and rinsed with PBS. Post-fixation was then carried out with 1% 

osmium tetroxide (Electron Microscopy Sciences: Hatfield, PA, USA) in 0.1 M PBS 

for 2 h at room temperature. After washing in the buffer, the samples were dehydrated 

using sequential exposure for acetone concentrations ranging from 20 to 100%.  

Subsequently, infiltration and embedding were performed using Spurr’s resin (EMS). 

Finally, the samples were sectioned using an ultramicrotome with a diamond knife and 

were mounted on copper grids. They were stained with 2% uranyl acetate and lead 

citrate. The samples were viewed with a JEM-1230 electron microscope (Tokyo, 
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Japan). The morphology of bacterial cells was observed and compared to ampicillin-

treated cells as positive control. 

3.4.3  Flow cytometry analysis 

        In this study, flow cytometry was used to measure bacterial cell membrane 

integrity. Bacterial membrane potential was determined by using the carbocyanine dye 

(3,3′-diethyloxacarbocyanine iodide; DiOC2)  according to the method previously 

described (Eun et al., 2012). Bacterial cells at mid-logarithmic growth phase (1106 

cells/ml) were resuspended in PBS and treated with lupinifolin (8 µg/ml) or ampicillin 

(0.25 µg/ml). Then, 10 µl of 3 mM DiOC2 was added to each tube and mixed. The 

samples were incubated at room temperature for 15 min and then the signal was 

examined. Carbonyl cyanide 3-chlorophenylhydrazone (CCCP; 5 µg/ml) was used to 

produce a positive depolarized control. The analysis of the cells was performed using a 

flow cytometer (FACScan; BD Biosciences, San Jose, CA, U.S.A.) equipped with 

CellQuest software (BD Biosciences). 

3.4.4  DNA laddering assay 

   S. aureus cells (5×105 cfu/ml) were incubated with lupinifolin at MIC and 

MBC for 8 h. Then, genomic DNA of S. aureus cells were extracted by using the 

NucleoSpin Tissue kit (Macherey-Nagel, Germany). The DNA was electrophoresed in 

0.7% agarose gel and visualized by MaestroSafe nucleic acid gel stain reagent 

(Maestrogen, USA). The gel was photographed under ultraviolet light. Autolysis cells 

by 0.05% Triton-X and untreated cells were used as positive and negative controls, 

respectively. 
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3.5  In vitro cytotoxicity assay 

        To compare the antibacterial activity and toxicity to mammalial cell, in vitro 

cytotoxicity tests of lupinifolin were performed as follows. 

3.5.1  Hemolysis of rabbit red blood cells 

        To test the direct toxicity of lupinifolin on mammalian cell membranes, a 

hemolysis test was conducted using rabbit red blood cells (RBCs). RBCs (50% in PBS) 

were treated with lupinifolin at doses similar to those in the cytotoxicity test for 24 h in 

96-well plates. After incubation, optical density at 600 nm was measured using a 

spectrophotometric microplate reader (Bio-Rad; Hercules, CA, USA).  

3.5.2  Preparation of HepG2 cell culture 

 HepG2 cells obtained from American Type Culture Collection (ATCC, 

HB-8065) were cultured in DMEM containing 10% fetal bovine serum, 100 U/ml 

penicillin and 100 U/ml streptomycin at 37°C, with 5% CO2, and 95% relative 

humidity. The cells with good proliferation were digested and passaged with 0.25% 

trypsin-EDTA solution at 37°C for 5 min.  

3.5.3  MTT assay 

 HepG2 cells were used to determine the cytotoxicity of lupinifolin  by the 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (Cui, 

Zhang, Wang, Chen, Zhang, and Tong, 2014). The cells (2×105 cells/well) were seeded 

in triplicate into 96-well culture plates overnight. The medium was removed and 

replaced with fresh medium  containing different concentrations of lupinifolin ranging 

from 5 to 100 µg/ml. After 24 h incubation, the media were discarded and 20 µl of MTT 

solution  (5 mg/ml in PBS) were added to each well followed by incubation for 4 h at 
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37°C with 5% CO2. The MTT solution was then carefully removed. The insoluble 

purple formazan products formed in living cells were dissolved by 100 µl of dimethyl 

sulfoxide (DMSO). Absorbance was read at 570 nm using a microplate reader (Bio-

Rad). Cell viability was expressed as a percentage after comparison with the control 

group which was assumed to have 100% viability. 

3.5.4  Trypan blue exclusion assay 

 HepG2 cells (2×105 cells/well) were prepared similar to the experiment for 

MTT assay. After treatment with various concentration of lupinifolin ranging from 0-

100 µg/ml for 24 h, cells were harvested by digestion with 0.25% trypsin-EDTA 

solution at 37°C for 5 min. The cell suspension was mixed with an equal volume of 

0.4% (w/v) trypan blue. The number of viable (unstained) and dead (stained) cells were 

counted by hemacytometer under a light microscope. The results were calculated and 

expressed as a percentage of live cells compared to control. 

 

3.6  Statistical analysis 

        Data were expressed as means ± SD and the comparisons between different groups 

were analyzed by one-way ANOVA followed by the Student-Newman-Keuls test, 

unless stated otherwise. A p value less than 0.05 was considered to show a  statistically 

significant difference. 
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CHAPTER IV 

RESULTS 

 

4.1   Purification of lupinifolin 

Lupinifolin extracted from the stem of D. reticulate (Figure 4.1A) in the present 

study is shown in Figure 4.1B. The active compound appeared to be needle yellow-

shaped crystals. The crystals obtained were dissolved in ethanol and submitted to TLC. 

Figure 4.2 shows that the extracted lupinifolin was relatively pure, suggesting that it 

could be used for further analysis by NMR. 

 

  

Figure 4.1 D. reticulata Craib.  stem (A) and yellow needle-shaped crystals of the 

extracted lupinifolin (B)
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Figure 4.2 TLC chromatogram of the extracted compound detected by UV light at 254 

nm.  

 

4.2  Identification of lupinifolin  

The purified of lupinifolin was identified by 1H and 13C NMR spectroscopic data 

as well as comparison with previously reported data (Mahidol et al., 1997). The spectra 

(appendix A and B) of the extracted lupinifolin was consistent with the published data 

as shown in Table 4.1.  

 Chemical structure of lupinifolin isolated from D. reticulata stem was illustrated 

in Figure 4.3. Its formula was confirmed by mass spectrometry. In the positive mode, 

[M+H]+ at m/z 407.1850 (Figure 4.4) which was in accordance with the monoisotopic 

mass of lupinifolin (406.1780) was recorded. The purity of lupinifolin obtained from 

this study was more than 95% based on the NMR spectrum. 

Lupinifolin 
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Table 4.1 Comparison of 1H and 13C NMR spectra of the extracted compound and 

lupinifolin.  

Position Yellow needle-shaped compounda  Lupinifolinb 

 δC (ppm) δH (ppm)  δC (ppm) δH (ppm) 

4 196.68   196.84  

7 159.75   160.13  

8a 159.53   159.44  

5 157.50   156.48  

4՛ 156.56   156.09  

3՛՛՛ 130.99   131.11  

1՛ 129.62   130.60  

2՛/6´ 127.56 7.32 (d, 8.4)  127.66 7.31 (d, 8.4) 

3՛՛ 125.91 5.50 (d, 10.0)  126.02 5.52 (d, 10.1) 

2՛՛՛ 122.56 5.14 (dd, 7.2,7.2)  122.40 5.16 (dd, 7.2,7.2) 

4՛՛ 115.67 6.64 (d, 10.0)  115.53 6.64 (d, 10.1) 

3´/5՛ 115.67 6.87 (d, 8.4)  115.53 6.89 (d, 8.4) 

8 108.59   108.73  

6 102.70   102.79  

4a 102.69   102.61  

2 78.80 5.34 (dd, 12.8,2.8)  78.47 5.33(dd, 12.6,3.0) 

2՛՛ 78.05   78.20  

CDCl3 77.37     

CDCl3 77.11     
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Table 4.1 Comparison of 1H and 13C NMR spectra of the extracted compound and 

lupinifolin (Continued).  

Position Yellow needle-shaped compounda  Lupinifolinb 

 δC (ppm) δH (ppm)  δC (ppm) δH (ppm) 

CDCl3 76.86     

3 43.23 3.04 (dd,17.6,12.8)  42.97 3.06(dd,17.1,12.6) 

  2.80 (dd,17.6,3.0)   2.81 (dd,17.1,3.0) 

6՛՛ 28.39 1.45 (s)  28.25 1.46 (s) 

5՛՛ 28.29 1.44 (s)  28.33 1.45 (s) 

4՛՛՛ 25.80 1.65 (s)  25.78 1.66 (s) 

1՛՛՛ 21.47 3.21 (d, 7.2)  21.42 3.22 (d, 7.2) 

5՛՛՛ 25.80 1.65 (s)  25.78 1.66 (s) 

5-OH  12.24 (s)   12.24 (s) 

a Recorded in CDCl3 at 500 MHz for 1H-NMR and 125 MHz for 13C-NMR 

b Recorded in CDCl3 at 300 MHz for 1H-NMR and 75.6 MHz for 13C-NMR, cited in 

 (Mahidol et al., 1997) 

 

4.3   Antibacterial activity of lupinifolin 

In order to investigate the antibacterial activity of lupinifolin, susceptibility of 

bacteria pathogens was evaluated by using the disc diffusion assay. It was found that 

lupinifolin, at 25, 50 and 75 µg/disc, inhibited growth of all Gram-positive bacteria 

tested, but not that of Gram-negative bacteria. The diameters of inhibition zone caused 

by lupinifolin compared to ampicillin as positive control are shown in Table 4.2. 
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 Lupinifolin evidently possessed antibacterial activities against Gram-positive 

bacteria, therefore, they were further used to evaluate the MIC and MBC values by 

using the microdilution method. The MIC and MBC of lupinifolin against S. aureus, B. 

subtilis and B. cereus obtained from this study were found at 8 and 16 µg/ml, 

respectively. While the MIC and MBC of lupinifolin against S. epidermidis were at 16 

and 32 µg/ml, respectively. The assay was carried out in triplicate. As found to be more 

often responsible for a nosocomial infection and higher incidence in drug resistance 

than the other pathogens tested, S. aureus was selected for further investigation.   

 

 

 

Figure 4.3 Chemical structure of lupinifolin (Soonthornchareonnon, Ubonpas, 

Kaewsuwan, and Wuttiudomlert, 2004). 
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Figure 4.4 Mass spectrum of lupinifolin.  
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Table  4.2 Antibacterial activity of lupinifolin. 

Microorganism 

Diameter of inhibitions zone (mm)   

Lupinifolin  (µg) Ampicillin (µg) 

25 50 75 10 

Gram-positive 

     
Staphylococcus aureus 11 ± 0.6 15 ± 0.6 16 ± 0.7 37 ± 1.7 

Staphylococcus epidermidis 14 ± 0.5 18 ± 0.6 21 ± 0.6 52 ± 1.1 

Bacillus cereus 10 ± 1.1 13 ± 0.6 25 ± 0.6 13 ± 0.6 

Bacillus subtilis 8 ± 0.1 11 ± 0.2 14 ± 0.5 28 ± 1.7 

 

Gram-negative 

     
Escherichia coli n.i. n.i. n.i. 20 ± 0.6 

Enterobacter  aerogenes n.i. n.i. n.i. n.i. 

Salmonella typhi n.i. n.i. n.i. 30 ± 0.6 

Pseudomonas aeruginosa n.i. n.i. n.i. n.i. 

Preteus mirabilis n.i. n.i. n.i. 31 ± 1.1 

n.i.; no inhibition zone, Data are means ± SD (n=3). 
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Table 4.3 Minimum inhibitory concentration (MIC) and minimum bactericidal 

concentration (MBC) of lupinifolin from D. reticulata against Gram-positive bacteria 

compared with ampicillin. 

Microorganisms Lupinifolin Ampicillin 

  

MIC 

(µg/ml) 

MBC 

(µg/ml) 

MIC 

(µg/ml) 

MBC 

(µg/ml) 

S. aureus 8 16 0.25 1 

S. epidermidis 16 32 0.25 0.25 

B. subtilis 8 16 16 32 

B. cereus 8 16 8 16 

 

4.4  Time-course of inhibitory effect 

Time-course effects curves was observed with lupinifolin and ampicillin. 

Lupinifolin evidently had faster onset than ampicillin. It inhibited the growth of S. 

aureus within the first hour of incubation, whereas ampicillin was seen to affect 

bacterial growth later at three hours of incubation (Figure 4.5). 
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Figure 4.5 Time-course effect of lupinifolin. S. aureus bacteria cells were treated with 

lupinifolin (8 µg/ml) and ampicillin (0.25 µg/ml) as described in Materials and 

methods. The growth of bacteria was subsequently determined using spectrometry (600 

nm) at 0, 1, 3, 6, 12 and 24 h of incubation. Values are expressed as mean ± SD (n=3). 

 

4.5   Morphological changes of S. aureus treated with lupinifolin  

       S. aureus was treated with the lupinifolin at MIC (8 µg/ml) and incubated at 37°C 

for 6 h. SEM analyses were performed and compared to untreated and ampicillin-

treated groups. Control bacteria in the absence of the extract showed regular 

morphology (Figure 4.6A, D, G), whereas cells treated with lupinifolin (Figure 4.6 B, 

E, H) and ampicillin (Figure 4.6C, F, I) appeared swollen and distorted after 3 h of 

incubation. 
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Figure 4.6 Scanning electron micrographs of S. aureus treated with lupinifolin. Cells 

were treated as described in ‘‘Materials and methods’’. The action of lupinifolin (8 

µg/ml) was faster than that of ampicillin (0.25 µg/ml). At 1 h, abnormal morphology 

could not be seen in any treated cells (B, C) compared to control (A). The damaged 

cells were observed after treatment for 3 h only by lupinifolin (E), but not ampicillin 

(F). At 6 h of incubation, cells treated with lupinifolin and ampicillin were destroyed, 

as shown in (H) and (I), respectively, compared to regular shape of control (G). 

Enlargement: bar = 1 µm, 12,000× 
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     TEM analysis was conducted and the data showed that after incubation with 

MIC for 12 h, lupinifolin, as well as ampicillin, obviously ruptured bacterial cell 

membrane and/or cell wall (Figure 4.7). Cell death and irregular shape of bacterial cells 

were seen in the treated groups, lupinifolin and ampicillin. Damage of cell wall and cell 

membrane of dividing cells were observed after 12 h of incubation with lupinifolin and 

ampicillin, compared with control. 

 

Figure 4.7 Transmission electron micrographs of S. aureus treated with lupinifolin. A-

C overview of control and cells treated with lupinifolin (8 µg/ml) and ampicillin (0.25 

µg/ml), respectively. Cell death and irregular shape of bacterial cells were seen in the 

treated groups, lupinifolin (B) and ampicillin (C). Damage to cell wall and cell 

membrane of dividing cells (indicated by arrows) were observed after 12 h of 

incubation with lupinifolin (E) and ampicillin (F), compared with control (D). 

Enlargement: bar = 1 µm, 10,000; bar = 0.2 µm, 50,000 
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4.6 Effect of lupinifolin on bacterial cell membrane  

The fluorescent probe DiOC2 was used to measure bacterial membrane 

potentials. Red/green fluorescence ratio of bacterial cells treated with CCCP and 

lupinifolin, but not ampicillin, dropped dramatically (Figure 4.8). Figure 4.8B showed 

a significant decrease in red/green ratio after only 15 min of treatment with CCCP and 

lupinifolin (p < 0.05) compared to control which indicated that membrane potential 

dissipated rapidly. 

 

 

Figure 4.8  Effect of lupinifolin on membrane potential. (A) After incubation of 30 μM 

DiOC2 in the presence of 8 g/ml of lupinifolin for 15 min, red/green ratiometric 

histogram was shift to the left similar to CCCP (5 µg/ml), a known protonophore. (B) 

Red/green ratios were calculated using population mean fluorescence intensities. It was 

found that lupinifolin and CCCP, but not ampicillin (0.25 µg/ml), significantly reduced 

Control 

Ampicillin 

CCCP 

Lupinifolin 
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the red/green ratio. *p < 0.05; statistically significant difference compared to control. 

Values are expressed as mean ± SD (n=3). 

 

4.7 Results from DNA laddering assay 

In this study, lupinifolin was found to have no effect on bacterial nucleic acid. 

The results shown in Figure 4.9 revealed that bacteria treated with lupinifolin at the 

concentration of MIC had no DNA fragmentation similar to untreated and ampicillin-

treated cells. Whereas, bacteria treated 0.05% Triton X-100 gave smear band as DNA 

degradation occurred from autolysis.  

 

Figure 4.9 Results of DNA laddering assay. Bacterial DNA, islolated from S. aureus, 

were treated with lupinifolin (8 µg/ml), 0.05% Triton X-100 (positive control) and 

ampicillin (0.25 µg/ml) for 0, 1, 6 and 12 h, and then visualized on a 0.7% agarose gel 

           Control                            Lupinifolin                                0.05% Triton X-100               Ampicillin              
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stained with MaestroSafe nucleic acid gel stain reagent. As seen in the figure, after 12 

h of incubation, only 0.05% Triton X-100 caused DNA fragmentation. Lane M is  

marker. 

 

4.8   Cytotoxicity of lupinifolin 

 4.8.1 Hemolytic effect on rabbit red blood cells 

          It was found that in the concentration up to 40 μg/ml, lupinifolin did not 

significantly disrupt RBC membranes after 24 hr of exposure (Figure 4.10), However, 

at the concentration > 80 μg/ml, lupinifolin produced strong hemolysis effect at the first 

hour of incubation. 

 

Figure 4.10 Toxic effect of lupinifolin on red blood cells. Hemolytic effect of 

lupinifolin on rabbit red blood cells (RBCs). Two-way ANOVA followed by Student-
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Newman-Keuls test was used to analyse the data. It was found that lupinifolin at 

concentration of ≤ 40 µg/ml did not significantly affect the RBC after 24 h of 

incubation, whereas at concentrations of 80 µg/ml and higher caused RBC lysis in the 

first hour of incubation. Values are expressed as mean ± S.D. (n = 3).   

* p < 0.05 statistically significant difference compared to control. 

 4.8.2 Cytotoxicity of lupinifolin on HepG2 cells 

It was found that lupinifolin at MIC and MBC did not affect HepG2 cell 

viability (Figure 4.11). The IC50 of lupinifolin on cell viability measured by MTT and 

trypan blue exclusion assays were 78.3 + 5.6 and 66.7 + 13.3 g/ml, respectively. 

 

 

Figure 4.11 Effect of lupinifolin on cell viability of HepG2 cells measured by MTT 

and trypan blue assays. The calculated IC50s were 78.3 + 5.6 and 66.7 + 13.3 g/ml, 

respectively. Values are expressed as mean ± S.D. (n = 3).  

* p < 0.05 statistically significant difference compared to control. 
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CHAPTER V 

DISCUSSION AND CONCLUSION 

 

 In addition to the plant species mentioned earlier in Chapter I (page 3), lupinifolin 

has been found to be a constituent in at least ten more species, including Citrus medica 

(Chan, Li, Shen, and Wu, 2010), C. limonia (Chang, 1990), Dorstenia mannii (Ngadjui, 

Kouam, Dongo, Kapche, and Abegaz, 2000), Euchresta formosana (Matsuura, Iinuma, 

Tanaka, and Mizuno, 1995), Tephrosia pumila (Pethakamsetty, Seru and Kandula, 

2010) and Lonchocarpus guatamalensis (Ingham, Tahara, and Dziedzic, 1988). It also 

occurs in plants of the genus Derris, such as D. trifoliate (Ntie-Kang, Onguene, 

Lifongo, Ndom, Sippl, and Mbaze, 2014), D. scandens (Ganapaty, Sumitra, and Steve, 

2006) and D. laxiflora (Lin, Chen, and Kuo, 1991). This indicates that sources of 

lupinifolin are readily available in nature. Classical extraction techniques can be used 

to extract bioactive compounds from medicinal plants. Most of these techniques are 

based on the extracting power of different solvents, heating or mixing. In order to obtain 

bioactive compounds from plants, soxhlet extraction has widely been used for 

extracting valuable bioactive compounds from various natural sources (Azmir et al., 

2013).  This method is usually more efficient than simple refluxing and produces a 

higher yield of extract with less volume of solvent. In the present study, hexane was 

used to extract lupinifolin from D. reticulata stem by soxhlet extraction method. 

Crystallization method was used to further purify lupinifolin from the hexane extract. 

In the crystallization process, lupinifolin in hexane was concentrated to be a saturated 
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solution by heating. The saturated solution was then kept at room temperature with a 

cover, but not completely sealed to allow lupinifolin to gradually crystallize while the 

impurities and the other compounds remain in the solvent. The compound crystal was 

separated from solution by careful filtration. The purified lupinifolin was obtained as 

yellow needle-shaped crystal (Figure 4.1B).  

 In principle, TLC can be used to optimize conditions of column chromatography, 

including selective the mobile and solid phases, identify compounds isolated from 

column, as well as confirm purity of the isolates (Liu, 2011). The result from TLC 

(Figure 4.2) showed relatively high purity of the isolated lupinifolin. 

The structure of lupinifolin, depicted in Figure 4.3, was verified by comparison 

of the NMR spectroscopic data in Table 4.1 with values in the previous report (Mahidol 

et al., 1997) which are perfect match. MS, an analytical technique that measures the 

molecular masses of chemicals and atoms precisely by converting them into charged 

ions, is one of the most powerful tools to study the structure of organic compounds 

(Liu, 2011). In this study, structure and formula of the obtained lupinifolin was 

confirmed by MS.  

Because of its nonpolar structure, lupinifolin is very soluble in organic solvents, 

but sparingly soluble in water. Estimated from Kow (Octanol-Water Partition 

Coefficient), the water solubility of lupinifolin at 25C is 0.009 mg/L 

(http://www.chemspider.com/Chemical-Structure.10305920.html). When dissolved in 

alcohol or dimethyl sulfoxide, it precipitates after dilution in aqueous buffer. This 

problem was similar to that encountered by a group of researchers who studied the 

effect of curcumin on 4-hydroxy-2-nonenal protein (Kurien and Scofield, 2007). To 
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avoid precipitation in aqueous media, nonpolar chemicals can be dissolved in acidic or 

basic solutions before dilution. In the present study, lupinifolin was freshly prepared by 

solubilizing in 0.1 N NaOH and immediately diluted in Müller-Hinton broth (MHB) 

for antibacterial test. With this method, lupinifolin remained soluble at all dilutions. 

The same volume of 0.1 N NaOH used in each experiment was also tested and found 

not to significantly affect the growth of bacterial cells compared to control.   

It is widely known that phenolic compounds in plants comprise several groups of 

phytochemicals such as tannin, terpenoids and flavonoids. Over the years, the 

antibacterial activities of flavonoids have been increasingly documented. Plants in 

Derris genus have been reported to produce numerous flavones, isoflavones and 

flavanones. Therefore, not surprisingly, Derris plants such as D. heyneana Benth. and 

D.trifoliata Lour. have been found to possess significant antimicrobial, larvicidal, 

pesticidal, and anti-fungal activities (Ganapaty, Sumitra, and Steve, 2006; Jiang et al., 

2012). Moreover, the extract from D. scandens stem has been found to possess 

antibacterial activities against S. aureus, S. epidermidis and E. coli (Sittiwet and 

Puangpronpitag, 2009). Previously, a group of Thai researchers has reported 

antibacterial activities of the crude hexane extract of Myriopteron extensum stem 

against Gram-positive bacteria, such as S. aureus, S. epidermidis, B. cereus and B. 

subtilis (Soonthornchareonnon, Ubonopas, Kaewsuwan, and Wuttiudomlert, 2004). It 

is suggested that lupinifolin may be an active compound because it possesses very 

strong antimicrobial activity against Gram-positive bacteria (Joycharat et al., 2013).   

In the present study, antibacterial activities of lupinifolin were screened in eight 

different bacterial species by the disc diffusion method. In agreement with the previous 
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reports (Khaomek et al., 2008; Soonthornchareonnon et al., 2004), it appeared that only 

Gram-positive bacteria were susceptible to lupinifolin (Table 4.2). Of four species of 

Gram-positive bacteria tested, Staphylococcus seemed to be the most sensitive, as 

revealed by the inhibition zone. Because S. aureus is the most highly opportunistic 

Gram-positive bacteria tested, the MIC and MBC of lupinifolin against this microbe 

was further evaluated using the microdilution method, and were found to be 8 and 16 

g/ml, respectively (Table 4.3).  

It has been suggested that there are three principal direct mechanisms of action 

underlying the antibacterial activities of plant flavonoids (Cushnie and Lamb, 2005) : 

(1) inhibition of nucleic synthesis, (2) inhibition of cytoplasmic membrane function, 

and (3) inhibition of energy metabolism. As shown by time-course effect curves (Figure 

4.4), lupinifolin evidently had a faster onset than ampicillin. It inhibited the growth of 

S. aureus within the first hour of incubation, whereas ampicillin was seen to affect 

bacterial growth later, at 3 hours.This observation was confirmed by the data from SEM 

(Figure 4.6). SEM images showed some damages on bacterial morphology caused by 

lupinifolin and this effect occurred sooner than with ampicillin. The change in 

morphology of S. aureus was similar to that caused by ampicillin, suggesting that one 

of the targets of lupinifolin is the bacterial cell membrane or cell wall. To test our 

hypothesis, TEM analysis was conducted. The data showed that after incubation at MIC 

concentrations for 12 h, the morphology of bacteria treated with lupinifolin, as well as 

ampicillin, was changed compared to control (Figure 4.7A-C and with higher 

magnification Figure 4.7D-F) ; ruptured bacterial cell membrane and/or cell walls were 

observed. During cell division, cell wall synthesis is located between the daughter cells. 
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As indicated by an arrow in Figure 4.7F, the effect of ampicillin, an inhibitor of cell 

wall synthesis, was observed there, whereas the cell wall damages caused by lupinifolin 

was seen around the cell, as indicated by arrows in Figure 4.7E. In accordance with the 

fast onset of action, it is likely that the target of action of lupinifolin may be through 

disrupting the cell membrane, not interfering with cell wall synthesis as ampicillin does. 

This is because the inhibitory effect on cell wall synthesis needs more time than the 

direct interference effect on cell membrane structure. After damaging the cell 

membrane, which acts as a barrier for most molecules, bacteria degrade the cell ̓ s 

permeability control, resulting in an increase in intracellular pressure and subsequently 

destruction of the cell wall.  

Flow cytometry is a laser-based technology for rapidly analyzing large numbers 

of cells or particles individually using light-scattering, fluorescence, and absorbance 

measurements. Flow cytometric assays have been developed to determine both cellular 

properties such as cell size, granularity of cytoplasm, cell viability, and membrane 

potential, and the characteristics of cellular components such as, DNA, RNA, total 

protein, lipid, enzyme activity, surface receptors, and intracellular calcium. This 

technique has been applied to characterize distinct physiological conditions in bacteria 

including responses to antibiotics, medicinal plants, pathogen-host interactions, cell 

differentiation during biofilm formation, and the mechanisms governing development 

pathways (Ambriz-Avina, Contreras-Garduno and Pedraza-Reyes, 2014). Many 

applications of flow cytometry are based on fluorescence monitoring. The cellular 

parameters can be measured using either intrinsic or extrinsic fluorescence. Different 

extrinsic fluorescent dyes have been used for analyzing different specific parameters in 
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flow cytometry. For example, 2′,7′-bis-carboxyethyl-5,6-carboxyfluorescein (BCECF-

AM), 3,3′-dihexyloxacarbocyanine iodide (DiOC6), fluorescein isothiocyanate (FITC) 

and propidium iodide are for used monitoring intracellular pH, membrane potential, 

nucleic acid and protein, respectively. 

To corroborate the postulated mechanism that lupinifolin directly acts on 

bacterial cell membrane, the fluorescent probe DiOC2 was used to measure bacterial 

membrane potentials of S. aureus. When exposed to bacterial cells, molecules of DiOC2 

enter cells and reside either in the membrane or the cytoplasm. In normal cells, DiOC2 

emits green fluorescence at 530 nm, but the fluorescence shifts toward red at 576 nm 

as the dye molecules self-associate at the higher cytosolic concentrations caused by 

large membrane potentials. With higher cytosolic concentration, the ratio of fluorescent 

light emitted at 576/λ530 (red/green ratio) increases. Conversely, when the bacterial 

membrane potential is dissipated by eliminating the proton gradient with proton 

ionophores such as CCCP, DiOC2 cannot accumulate inside the cell and the red/green 

ratio consequently decreases. For  several Gram-positive bacteria, including S. aureus, 

the DiOC2 red/green ratio has been shown to vary with the magnitude of proton gradient 

(Probes, Revised: 13–May–2004). In the present study, the red/green fluorescence ratio 

of bacterial cells treated with CCCP and lupinifolin, but not ampicillin, dropped 

dramatically (Figure 4.8A). Figure 4.8B shows a significant decrease in red/green ratio 

after only 15 min of treatment with CCCP and lupinifolin (p < 0.05) compared to 

control, which indicated that the membrane potential dissipated rapidly. Antibiotics, 

including ampicillin, that do not target the bacterial membrane have been shown to 

decrease the potential over a longer period of exposure (Eun et al., 2012). The rapid 



  62 

 

action of lupinifolin strongly suggests that the dissipation of membrane potential is due 

to its direct effect on the bacterial cell membrane. 

CCCP is widely known as a protonophore whose structure is an aromatic 

compound with a negative charge. It collapses cell membrane potential by transporting 

protons across the membrane when it attaches to the molecule. Several flavonoids have 

aromatic structures with hydroxyl groups which are able to dissociate and produce 

negatively-charged molecules similar to CCCP. It is possible that the flavonoid 

lupinifolin, which also has an aromatic structure with a side-chain hydroxyl group, acts 

as an ionophore that moves protons and/or positive-charged molecules across lipid 

bilayers similar to CCCP. 

 The results found from this study appeared similar to curcumin I which was 

demonstrated to inhibit the growth of S. aureus (Tyagi, Singh, Kumari, and 

Mukhopadhyay, 2015). Curcumin is an important natural component of the rhizome 

Curcuma longa or turmeric. Propidium iodide uptake and calcein leakage assays were 

investigated by using flow cytometry technique. It is suggested that its mechanism of 

action of curcumin I is related to the damaging of bacterial cell membrane, thus 

impairing the permeabilization of bacterial membranes.  

Programmed cell death is genetically regulated from apoptosis that involved in 

the development and viability of multicellular organisms. Extrinsic and intrinsic stimuli 

can trigger apoptosis such as radiation, oxidative stress and genotoxic chemical. 

Chromosome condensation, DNA fragmentation and phosphatidylserine exposure are 

demonstrated characteristic markers of apoptosis. This effect leads to membrane 

dissipation and loss of structural integrity. Therefore, bacterial cell death can be induced 

https://en.wikipedia.org/wiki/Ionophore
https://en.wikipedia.org/wiki/Proton
https://en.wikipedia.org/wiki/Lipid_bilayer
https://en.wikipedia.org/wiki/Lipid_bilayer
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by antibiotics that exhibit physiological and biochemical hallmarks of apoptosis 

(Dwyer, Camacho, Kohanski, Callura, and Collins, 2012). To examine whether the 

action of lupinifolin on cell membrane is not a consequence of DNA fragmentation 

caused by apoptosis, DNA laddering assay was performed. As shown in Figure 4.9, 

unlike 0.05% Triton-X 100, lupinifolin did not show any smear of bacterial DNA 

fragmentation after 12 h exposure.  

To test the toxicity of lupinifolin against mammalian cell membranes, the 

hemolysis of rabbit red blood cells (RBCs) was examined by spectrophotometric 

microplate reader. As shown in Figure 4.10, lupinifolin at the concentrations up to 40 

µg/ml did not significantly affect RBC membranes after 24 h of treatment. However, at 

concentration > 80 μg/ml, lupinifolin produced a strong hemolysis effect in the first 

hour of incubation. The toxicity of lupinifolin in mammalian cells was further studied 

using HepG2 cells. Similar to the effect on RBCs, it is found that at MIC and MBC of 

lupinifolin did not affect HepG2 cell viability (Figure 4.11). The IC50s of lupinifolin on 

cell viability measured by MTT and trypan blue exclusion assays were found 

approximately at 80 g/ml which was ten times of MIC.  

From the current in vitro experimental data, the margin of  safety of lupinifolin 

seemed to be narrow, however, in vivo safety data of lupinifolin extracted from the 

same plant, D. reticulata, have been reported (Chivapat, Chavalittumrong, Attawish, 

and Soonthornchareonnon, 2009). Oral administration of lupinifolin in mice at high 

dose (5 g/kg body weight) showed no acute toxicity. No animal died after 14 days of 

drug administration.  In the same study, a subacute toxicity study was performed in 
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Wistar rats for 28 days. The results showed that lupinifolin did not affect body weight, 

food consumption or animals’ health.  

Conclusion 

 In the current study, lupinifolin from  D. reticulata Craib. stem was purified and  

characterized by spectroscopic techniques, NMR and MS. Its antibacterial properties 

were evaluated. Time course inhibitory effects and the data from SEM showed that 

lupinifolin produced reletively fast onset, suggesting the direct action on cell membrane 

rather than inhibition of cell wall synthesis. The TEM images clearly revealed that 

lupinifolin caused damages to the cell membranes of S. aureus. The compromised state 

of the bacterial membranes was further evaluated by flow cytometry analysis which 

confirmed the strong bactericidal action of lupinifolin. DNA fragmentation assay 

suggested that antibacterial activity of lupinifolin did not involve with bacterial DNA. 

In conclusion, the mechanism of action underlying the antibacterial activity of 

lupinifolin against Gram-positive bacterial of lupinifolin is first reported here. The 

results obtained from this study provide direct evidence to support the hypothesis that 

lupinifolin inhibits bacterial growth by damaging the cytoplasmic membrane. The data 

suggested that lupinifolin may have the potential to be used as antibacterial agent. 

However, its  in vivo efficacy needs further investigation. 
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APPENDIX A 

1H NMR spectra of lupinifolin. 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX B 

13C NMR spectra of lupinifolin. 
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