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CHAPTER I 

INTRODUCTION 

1.1 Background and rationale  

 The reliable strength estimation of a rock salt is necessary to develop safe and 

economical designs for solution mining, cavern air energy storage and underground 

salt mining.  Rock salt is an inhomogeneous and anisotropic material with complex 

behavior.  The effects of confining pressures at great depths on the mechanical 

properties of rocks are commonly simulated in a laboratory by performing triaxial 

compression testing.  A significant limitation of these conventional methods is that 

the mean stress is not constant during the test.  The actual in-situ rock is normally 

subjected to an anisotropic stress state where the maximum, intermediate and 

minimum principal stresses are different (σ1≠σ2≠σ3) and mean stress of this condition 

is always constant.  It has been commonly found that compressive strengths obtained 

from conventional polyaxial load frame or true triaxial load frame can represent the 

actual in-situ strength where the rock is subjected to an anisotropic stress state.   

1.2 Research objectives 

The objectives of this study are as follows. 

1.  Study the mechanism of rock salt specimen under anisotropic stress states. 

2.  Develop the failure criterion of the rock salt that can be readily applied in 

the design and stability analysis of geological engineering underground 

structures. 
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3.  Simulate the storage caverns to demonstrate the effect of anisotropic 

stresses.to develop two failure criterions of the rocks that can be readily 

applied in the design and the stability analysis of geologic structures. 

1.3 Research methodology 

 The research methodology shown in Figure 1.1 comprises 6 steps: literature 

review, sample collection and preparation, design and develop true triaxial testing 

device, laboratory experiments, data analysis, development of mathematical relations, 

and thesis writing and presentation. 

 1.3.1 Literature review 

Literature review are carried out to study the previous research on 

compressive strength in triaxial and polyaxial states, the effect of intermediate 

principal stress on rock failure, rock deformation and strength in triaxial stress state, 

conventional stress state and true triaxial stress state.  The sources of information are 

from text books, journals, technical reports and conference papers.  A summary of the 

literature review are given in the thesis.  

 1.3.2 Sample preparation 

 Rock samples used here have been obtained from the Middle member 

of the Maha Sarakham formation in the northeastern Thailand.  The rock salt is 

relatively pure halite. Sample preparation is carried out in the laboratory at Suranaree 

University of Technology.  Samples prepared for compressive strength test are 

4.4×4.4×8.8 cm
3
. 
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Figure 1.1 Research methodology. 
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 1.3.3 Laboratory experiments 

 The laboratory experiments include conventional triaxial and polyaxial 

compressive strength tests.  The testing performed to determine the strength and 

deformation of rock salt subjected to different stresses paths.  A true triaxial load 

frame (Figure 1.2) is used to apply pressures between 20 MPa to 50 MPa. The elastic 

modulus and compressive strength are investigate.  Neoprene sheets are used to 

minimize the friction at all interfaces between the loading plate and the rock surface.  

All test results are used to develop failure criterion of the rocks. 

1.3.4 Assessment of the Strength Criteria 

 Results from laboratory measurements in terms of the principal 

stresses at failure and dilation are used to formulate mathematical relations. The 

studied strength include strain energy density criteria and octahedral shear stress and 

mean stress relation. 

 1.3.5 Computer Simulations 

 The failure criterion is used to assess the stability of an underground 

storage cavern by using the finite difference code (FLAC). The multi-axial strength 

criterion, calibrated from the true triaxial strength test results and the conventional 

approach of using the uniaxial and triaxial strength test data are used to simulate the 

stability conditions of the storage cavern. 

 1.3.6 Conclusions and Thesis Writing 

All research activities, methods, and results are documented and 

complied in the thesis. The research or findings is published in the conference 

proceedings or journals.  
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1.4 Scope and limitations 

 The scope and limitations of the research include as follows. 

1. Laboratory testing will be conducted on specimens prepared from the 

Maha Sarakham salt. 

2. The samples were dry-cut to obtain rectangular blocks with normal 

dimensions of about 4.44.48.8 cm. 

3. Testing will be performed with constant mean stresses. 

4. The testing will be divided into three conditions, triaxial compression test 

(1≠2=3), true triaxial compression test (1≠2≠3), and triaxial 

extension test (1=2≠3). 

5. All tests will be conducted under ambient temperature and dry condition. 

6. No field testing will be conducted. 

7. The research findings will be published in conference paper or journal. 

1.5 Thesis contents 

 This research thesis is divided into six chapters.  The first chapter includes 

background and rationale, research objectives, research methodology, and scope and 

limitations.  Chapter II presents results of the literature review to improve an 

understanding of rock compressive strength as affected by the intermediate principal 

stress.  Chapter III describes sample collection and preparation.  Chapter IV 

describes the laboratory testing; triaxial compression, triaxial extension, and polyaxial 

compression test.  Chapter V presents test results.  Chapter VI is results analysis and 

strength criteria.  Chapter VII is computer simulation.   Chapter VIII is discussions, 
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conclusions and future studies.  Appendix A provides detailed of technical 

publications. 

 

 



 

 

CHAPTER II 

LITERATURE REVIEW 

2.1 Introduction 

Relevant topics and previous research results are reviewed to improve an 

understanding of rock compressive strength in triaxial and polyaxial compression 

tests.  This review also includes the investigation of the effects of stress path and 

intermediate principal stress on rock strengths, some polyaxial compression.  

2.2 Laboratory testing on rock salt 

 Mellegard et al. (2007) were studied in effect of the Lode angle on the 

creep of salt.  The steady-state creep rate of salt is typically described using only 

the maximum and minimum principal stresses and is generally considered to be 

independent of the intermediate principal stress; thus, the steady-state creep rate of 

salt is expected to be the same under both compressive and extensile states of 

stress.  However, little experimental evidence has been obtained regarding the 

transient nature of salt under alternating states of stress between triaxial 

compression and triaxial extension; i.e. alternating Lode angles. Multistage creep 

tests were performed to investigate the time-dependent behavior of salt at two 

Lode angles. The data show that Lode angle does not affect the steady-state strain 

rate of salt; however, each time the Lode angle was changed, a significant 

transient response was observed. This transient response to changes in Lode angle 
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is not predicted by constitutive models commonly used to evaluate· natural gas 

storage caverns. 

 The value of the intermediate principal stress (represented here by the Lode 

angle) does not have a significant effect on the steady-state strain rates exhibited 

by salt. However, a change in the Lode angle does affect the transient behavior of 

salt. The test results presented here provide insight into the role of the intermediate 

principal stress as it relates to the creep and hardening of salt. Creep constitutive 

model development or review should be considered to assess the best way of 

incorporating Lode angle effects into those models.  The numerical simulations 

and laboratory tests presented here provide a thought-provoking topic and further 

illustrate the complex behavior of salt. Additional experimental and 

microstructural studies are likely to provide the key to explain the intriguing 

behavior exhibited by these laboratory tests. An area where accurate prediction of 

this uncharacterized behavior of salt could have an impact is geomechanical 

modeling of natural gas storage caverns. Previous cavern evaluations have shown 

that the state of stress in the salt changes from triaxial compression to triaxial 

extension, depending on the pressure in the cavern. The significance of this 

behavior is a topic for future research. 

Walsri et al. (2009) developed polyaxial load frame (Figure 2.1) to 

determine the compressive and tensile strengths of three types of sandstone under 

true triaxial stresses.  Results from the polyaxial compression tests on rectangular 

specimens of sandstones suggest that the rocks are transversely isotropic.  The 

measured elastic modulus in the direction parallel to the bedding planes is slightly 

greater than that normal to the bed.  Poisson’s ratio on the plane normal to the  
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Figure 2.1 Polyaxial load frame developed for rock testing under true triaxial stresses 

(Walsri et al., 2009). 

bedding planes is lower than those on the parallel ones.  Under the same σ3, σ1 at 

failure increases with σ2.  Results from the Brazilian tension tests under axial 

compression reveal the effects of the intermediate principal stress on the rock 

tensile strength.  The Coulomb and modified Wiebols and Cook failure criteria 

derived from the characterization test results predict the sandstone strengths in 

term of J2
1/2 

as a function of J1 under true triaxial stresses.  The modified Wiebols 

and Cook criterion describes the failure stresses better than does the Coulomb 

criterion when all principal stresses are in compressions.  When the minimum 

principal stresses are in tension, the Coulomb criterion over-estimate the second 

order of the stress invariant at failure by about 20% while the modified Wiebols 

and Cook criterion fails to describe the rock tensile strengths. 
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Sriapai et al. (2011) have used polyaxial load frame to determine true triaxial 

compressive strength of Maha Sarakham (MS) salt.  The load frame equipped with 

two pairs of cantilever beam is used to apply the constant lateral stress (σ2 and σ3) to 

salt specimen while the axial stress (σ1) is increased at 0.5-1.0 MPa/s until failure 

occurs.  The deformations induced along the three loading directions are monitored 

and used to calculate the tangent elastic modulus and Poisson’s ratio of the salt.  For 

the Coulomb criterion the internal friction angle determined from the triaxial loading 

condition (σ2= σ3).  The effect σ2 of on the salt strengths can be best described by the 

modified Wiebols and Cook criterion.  The empirical (power law) Mogi criterion 

tends to underestimate the salt strengths particularly under high σ3 values.  The 

modified Lade criterion overestimates the actual strengths at all levels of σ3.  The 

Coulomb and Hoek and Brown criteria cannot describe the salt strengths beyond the 

condition where σ2 = σ3, as they cannot incorporate the effects of σ2.  Both 

circumscribed and inscribed Drucker-Prager criteria severely underestimate σ1 at 

failure for all stress conditions. 

 Sriapai et al. (2012) used the strain energy density criterion to describe the salt 

strength and deformability under different temperatures. It is assumed that under a 

given mean strain energy and temperature the distortional strain energy required to 

fail the salt specimens is constant. Regression on the test results shows that the 

distortional strain energy (Wd) increases linearly with the mean strain energy (Wm).  It 

is interesting to note that the rates of the increase of Wd with respect to Wm are 

virtually the same for all temperature levels.  

 Fuenkajorn et al. (2012) were proposed empirical strength criteria base on the 

strain energy density principle of rock salt.  Uniaxial and triaxial compression tests 
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have been performed to assess the influence of loading rate on the compressive 

strength and deformability of the Maha Sarakham alt. The salt specimens with a 

nominal dimension of 5.4×5.4×5.4 cm3 are compressed to failure using a polyaxial 

load frame. The lateral confining pressures are maintained constant at 0, 3, 7, 12, 20 

and 28 MPa while the axial stresses are increased at onstant rates of 0.001, 0.01, 0.1, 

1.0 and 10 MPa/s until failure occurs. The salt elasticity and strength increase with the 

loading rates. The elastic (tangent) modulus determined at about 40% of the failure 

stress varies from 15 to 25 GPa, and the Poisson's ratio from 0.23 to 0.43. The elastic 

parameters tend to be independent of the confining pressures. The strains induced at 

failure decrease as the loading rate increases. Various multiaxial formulations of 

loading rate dependent strength and deformability are derived. The variation of the 

octahedral shear stresses and strains induced at dilation and at failure with the applied 

shear stress rates can be best described by power relations. The distortional strain 

energy at dilation and at failure from various loading rates varies linearly with the 

mean normal stress. The proposed empirical criteria are applied to determine the safe 

maximum withdrawal rate of a compressed-air energy storage cavern in the Maha 

Sarakham salt formation. The strain energy criterion that considers both distortional 

and mean stress–strains at dilation tends to give the most conservative results.   

 Sartkaew and Fuenkajorn (2013) have been performed the uniaxial 

compression test to assess the effects of loading rate on compressive strength and 

deformability of the Maha Sarakham salt under temperatures ranging from 273 to 

373 Kelvin. The variation of the octahedral shear strength with the stress rates and 

temperatures can be described by logarithmic relations. The distortion strain 

energy criterion is proposed to describe the salt strength under varied stress rates 
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and temperatures. The criterion can be used to determine the stability of salt 

around compressed-air energy storage caverns, where the loading rates and 

temperatures are continuously varied during air injection and retrieval periods.  

 The testing is assumed to be under isothermal conditions (constant 

temperature with time during loading). The decrease of the salt strength as the 

temperature increases suggests that the applied thermal energy before the 

mechanical testing makes the salt weaker, and more plastic, failing at lower stress 

and higher strain with lower elastic and shear moduli. 

2.3 Polyaxial compressive strength tests  

Wiebols and Cook (1968) investigate the effect of 2 on rock strength, 

based on the earlier testing results.  Early attempts to examine the influence of 2 

on rock strength were made in 1960s by Murrell (1963) and Handin et al . (1967).  

They compared the results from a series of triaxial tests conducted in marble, 

limestone, dolomite, and glass [triaxial compression tests (1 > 2 = 3) and 

triaxial extension test (1 = 2 > 3)] and noted that the rock strength for any given 

3 was larger in triaxial extension than in triaxial compression, thus suggesting 

that the intermediate principal stress does, in fact, affect mechanical properties 

(Figure 2.2).  Handin and coworkers carried out several triaxial compression and 

triaxial extension tests in Solenhofen limestone, Blaire dolomite and Pyrex glass.  

They obtained results similar to those of Murrell’s showing that rock strength was 

higher when the larger intermediate principal stress (2 = 1) was applied (Figure 

2.3).  Based on these earlier experimental results, Wiebols and Cook pursued a 

theoretical approach to further investigate the effect of 2 on rock strength.  They  
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Figure 2.2 Strtength differences between Carrara marble specimens tested under 

conventional triaxial compression and those under conventional triaxial 

extension (Wiebols and Cook, 1968). 

 
 

 

 

 

 

 

Figure 2.3 Strength differences between Solenhofen limestone specimens tested 

under conventional triaxial compression and those under conventional 

extension (Wiebols and Cook, 1968). 



14 

 

derived a strength criterion based on the strain energy stored by the rock in the 

absence of discontinuities, and the additional strain energy around Griffith cracks 

as a result of sliding of crack surfaces over each other.  They found that under true 

triaxial (polyaxial) compressive stress conditions the intermediate principal stress 

has a pronounced effect, predictable if the coefficient of sliding friction between 

crack surfaces is known.  In particular, Wiebols and Cook determined from their 

model that if 3 is held constant and 2 is increased from 2 = 3 to 2 = 1 the 

strength first increases, reaches a maximum at some value of 2 and then 

decreases to a level higher than that obtained in a triaxial test, i.e. when 2 = 3 

(Figure 2.4). 

 

 

 

 

 

 

 

 

 

Figure 2.4  Normalized compressive strength of 1/c0 plotted as a function of 2/c0, 

for various values of 3/c0 (Wiebols and Cook, 1968). 
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Wawersik et al. (1997) develop the true-triaxial apparatus (Figure 2.5) that 

makes use of conventional triaxial pressure vessels in combination with specially 

configured, high-pressure hydraulic jacks inside these vessels.  The development 

combines advantages not found in existing facilities, including a compact design, 

pore-pressure and flow-through capabilities, the ability to attain high principal 

stresses and principal stress differences, direct access to parts of the sample, and 

provisions to relatively large deformations without developing serious stress field in 

homogeneities.  

 Colmenares and Zoback (2002) examine seven different failure criteria by 

comparing them to published polyaxial test data (1  2  3) for five different rock 

types at a variety of stress states.  A grid search algorithm was employed to find the 

best set of parameters that describe failure for each criterion and the associated 

misfit. Overall, the polyaxial criteria Modified Wiebols and Cook and Modified 

Lade achieved a good fit to most of the test data.  And this is especially true for the 

rocks with a highly 2 – dependent failure behavior (e.g. Dunham dolomite, 

Solenhofen limestone).  However, for some rock types (e.g. Shirahama sandstone, 

Yuubari shale), the intermediate stress hardly affects failure and the Mohr-Coulomb 

and Hoek and Brown criteria fit these test data equally well or even better than the 

more complicated polyaxial criteria.  The details of the failure criteria that are 

referred above to provide a good fit for different rock types are below. 

Hoek and Brown criterion 

 1  =  3 + C0 (m3 / c0 + s)
1/2 (2.1) 
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Figure 2.5 Sandia true-triaxial testing system with “floating” pressure vessel shell 

(Wawersik et al., 1997). 
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where 1  =  major principal stress at failure 

3  =  least principal stress at failure  

C0  =  uniaxial compressive strength 

m and s are dimensionless strength parameters (m depends on rock type and 

s depends on the characteristics of rock mass). 

Ranges of m-values for some characteristic rock types are as follows. 

5<m<8 = Carbonate rocks with well-developed crystal cleavage 

(dolomite, limestone, marble) 

4<m<10 = Lithified argillaceous rocks (mudstone,siltstone, shale, slate) 

15<m<24 = Arenaceous rocks with strong crystals and poorly developed 

crystal cleavage (sandstone, quartzite) 

16<m<19 = Fine-grained polyminerallic igneous crystalline rocks 

(andesite, dolerite, diabase, rhyolite) 

22<m<33 = Coarse-grained polyminerallic igneous and metamorphic 

rocks (amphibolite, gabbro, gneiss, granite, norite, quartz-

diorite) 

For the parameters:  

s  =  1 for intact rock 

s  =  0 for a completely granulated specimen or a rock aggregate  

Mohr-Coulomb criterion 

τ  =   S0 + µn (2.2) 

where τ  =  shear stress  

S0  =  shear strength or cohesion 
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µ  =  coefficient of internal friction of the material  

n  =  normal stress  

Another linearized form of Mohr-Coulomb to be written: 

 1  =  C0 + q3 (2.3) 

where 1  =  major principal stress at failure 

3  =  least principal stress at failure  

C0  =  uniaxial compressive strength 

q  =  [(µ
2
 + 1)

1/2
 + µ]

2
 =  tan

2
 (/4 +  /2)  

(Assume: 2 has no influence on failure) 

Modified Lade criterion 

 (  1)
3
     3 = 27 + η  (2.4) 

where   1  =  (1+S)+(2+S)+(3+S) 

   3  =  (1+S) (2+S) (3+S) 

S  =  S0 / tan  

η  =  4(tan)
2
 (97sin) / (1-sin)  

tan =  µ  

S0  =  C0 / (2q
1/2

) and 

q  =  [(µ
2
 + 1)

1/2
 + µ]

2
 =  tan

2
 (/4 +  /2)  

(S and η are material constants: S related to cohesion of rock; η representing the 

internal friction) 
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Modified Wiebols and Cook criterion 

 J2
½ 

=  A + BJ1 + C J1
2
 (2.5) 

where J1 = (1/3)(1+2+3)  

 J2
½
 = [1/6 ((1- 2)

2
+ (1- 3)

2
+ (2- 3)

2
)]

1/2
 = (3/2)

1/2
 τoct    

 oct = 1/3 [(1- 2)
2
+ (2- 3)

2
+ (3- 1)

2
]

1/2
  

 A = C0/3
1/2

 – BC0/3 – CC0
2
/9

 
 

 B = 3
1/2

 (q-1)/(q+2) – C/3(2C0 + (q+2)3) 

C = [27
1/2 

/(2C1 + (q-1)3 – C0] [[(C1 + (q – 1)3 – C0)/(2C1 +(2q+1)3 – 

C0)] – [(q-1)/(q+2)]]    

 C1 = (1 + 0.6µ) C0; q = [(µ
2
 + 1)

1/2
 + µ]

2 
 =  tan

2
 (/4 + /2)  

 The values of C0 (uniaxial compressive strength) yielded by the Inscribed and 

the Circumscribed Drucker–Prager criteria bounded the C0 (uniaxial compressive 

strength) value obtained using the Mohr–Coulomb criterion as expected.  In general, 

the Drucker–Prager failure criterion did not accurately indicate the value of 1 at 

failure.  The value of the misfits achieved with the empirical 1967 and 1971 Mogi 

criteria were generally in between those obtained using the triaxial and the polyaxial 

criteria.  The disadvantage of these failure criteria is that they cannot be related to 

strength parameters such as C0: They also found that if only data from triaxial tests 

are available, it is possible to incorporate the influence of 2 on failure by using a 

polyaxial failure criterion.  The results for two out of three rocks that could be 

analyzed in this way were encouraging. 
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Kwasniewski et al. (2003) use prismatic samples of medium-grained 

sandstone from Śląsk Colliery for testing under uniaxial compression, conventional 

triaxial compression and true triaxial compression conditions.  Results of the studies 

show that confining pressure strongly inhibited dilatant behavior of rock samples 

tested under conventional triaxial compression conditions; the increasing confinement 

resulted in the growing compaction of the rock material.  The effect of dilatancy was 

also highly suppressed by the intermediate principal stress. While important dilatant, 

negative volumetric strain corresponded to the peak differential stress at low 

intermediate principal stress conditions, at high intermediate stresses the rock material 

was damaged to much lesser extent.  As a result, faulting of rock samples in the post-

peak region was much more violent and was accompanied by a strong acoustic effect. 

Alexeev et al. (2004) present two generations of true triaxial loading (TTAL) 

apparatus.  First generation was intended primarily for true stress state imitation in 

rock or mineral specimens.  Advanced second-generation is designed to provide 

precise measurements in any stress and simulation of rock outburst at sudden relief of 

one sample face.  Both TTAL apparatuses can apply pressure up to 250 MPa, 

corresponding to earth depth about 10,000 m, independently along each of three axes.  

Experimental results are given on effect of absorbed water on ultimate state in coal as 

well as adsorbed methane influence on simulated coal outbursts.  

Tiwari and Rao (2004) described physical modeling of a rock mass under a 

true triaxial stress state by using block mass models having three smooth joint sets.  

The testing used true-triaxial system (TTS) developed by Rao and Tiwari (2002), 

shown in Figure 2.6.  The test results show the strength of rock mass (σ1) and 

deformation modulus (Ej) increase significantly which is confirmed by fracture shear  
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11.5 

Figure 2.6 True triaxial system used for study (Tiwari and Rao, 2004).  

planes developed on σ2 face of specimen.  Most of the specimens failed in shearing 

with sliding in some cases.  The effect of interlocking and rotation of principal 

stresses σ2 and σ3 on strength and deformation response was also investigated.    

Chang and Haimson (2005) discuss the non-dilatants deformation and failure 

mechanism under true triaxial compression. They conducted laboratory rock strength 

experiments on two brittle rocks, hornfels and metapelite, which together are the 

major constituent of the long valley Caldera (California, USA) basement in the 2025 – 

2996 m depth range.  Both rocks are banded, very high porosity.  Uniaxial 

compression test at different orientations with respect to banding planes reveal that 

the hornfels compressive strength nearly isotropic, the metapelite possesses distinct 

anisotropy.  Conventional triaxial tests in these rocks reveal that their respective 

strengths in a specific orientation increase approximately linearly with confining 
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pressure.  True triaxial compressive experiments in specimens oriented at a consistent 

angle to banding, in which the magnitude of the least (σ3) and the intermediate (σ2) 

principal stress are different but kept constant during testing while the maximum 

principal stress is increased until failure, exhibit a behavior unlike that previously 

observed in other rocks under similar testing conditions.  For a given magnitude of σ3, 

compressive strength σ1 does not vary significantly in both regardless of the applied 

σ2, suggesting little or no intermediate principal stress effect.  Strains measured in all 

three principal directions during loading were used to obtain plots σ1 versus 

volumetric strain.  These are consistently linear almost to the point of rock failure, 

suggesting no dilatants. 

Haimson (2006) describes the effect of the intermediate principal stress (σ2) 

on brittle fracture of rocks, and on their strength criteria.  Testing equipment 

emulating Mogi’s but considerably more compact was developed at the University of 

Wisconsin and used for true triaxial testing (Figure 2.7) of some very strong 

crystalline rocks.  Test results revealed three distinct compressive failure mechanisms, 

depending on loading mode and rock type: shear faulting resulting from extensile 

microcrack localization, multiple splitting along the axis, and nondilatant shear 

failure.  The true triaxial strength criterion for the KTB amphibolite derived from such 

tests was used in conjunction with logged breakout dimensions to estimate the 

maximum horizontal in situ stress in the KTB ultra deep scientific hole. 

Alexeev et al. (2008) determine the effect of stress state factor on fracture of 

sandstone under true triaxial loading.  Experimental results on rock deformation 

revealed a misfit between strain state and stress state, strain state varying from 

generalized compression to generalized shear at 3= 0.  This misfit can lead to data  
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Figure 2.7 Schematic diagram of true triaxial testing system (Haimson, 2006). 

misinterpretation during the stress field reconstruction after loading.  Fracture of rock 

specimens under true triaxial compression occurs by a combined longitudinal/ 

transverse shear and produces the highest dilatancy effect.   

An increase in the hydrostatic pressure level diminishes limiting values of 

shear strains and suppresses the dilatancy effect.  A maximum of dilatancy coincides 

with a maximum of fresh surface area formed during the fracture of rock. The 

generalized cleavage of rocks becomes energetically disadvantageous in a true triaxial 

compressive stress field.  Some sandstone becomes more brittle under true triaxial 
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compression (2 ≠ 0) at low values of the minimal stress component (3) due to high 

initial porosity and dilatancy.  The embrittlement effect found experimentally is 

inconsistent with the conclusion of Mogi (1971) and Haimson and Chang (2000) who 

found an additive effect of minimal compressive stress 3 and intermediate 

compressive stress 2 on strength of rocks.  This discrepancy is obviously caused by 

the high initial porosity and dilatancy of some sandstone. 

 Cai (2008) study the influence of the intermediate principal stress on rock 

fracturing and strength near excavation boundaries, using a FEM/DEM combined 

numerical tool.  At the boundary in an underground setting, the intermediate principal 

stress is often parallel to the tunnel axis, the minimum stress is zero, and the 

maximum principal stress is the tangential stress.  A loading condition of 3= 0, 1≠ 

0, and 2 ≠ 0 thus exists at the boundary (Figure 2.8).  It is seen from the simulation 

that the generation of tunnel surface parallel fractures (onion skins, spalling and 

slabbing) is attribute to the existence of moderate intermediate principal stress and 

low to zero minimum confinement (Figure 2.9).  Material heterogeneity also plays a 

major role as local tensile stresses need to be generated for crack initiation and 

propagation.  The intermediate principal stress confines the rock in such a way that 

fractures can only be developed in the direction parallel to 1 and 2.  This fracturing 

process changes the rock behavior from the original isotropic state to an anisotropic. 

 You (2008) reviewed some strength criteria which include the role of the 

intermediate principal stress, and proposed a new criterion.  Strength criteria of the 

form σoct = fn (σoct), such as Drucker–Prager represent a rotation surface in the 

principal stress space, symmetric to the line σ1 = σ2 = σ3 in the meridian plane.  

Because σoct = fn (σoct) must fit the pseudo-triaxial compressive strength, it will have a  
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Figure 2.8 Stress and rock fracturing condition near the tunnel boundary x0, y0 

and z0 are the far field stress components (Cai, 2008). 

 

 

 

 

 

 

Figure 2.9 A granite slab show the layered fracturing that occurred at the Mine-by 

tunnel at URL.  The stress-induced fractures are parallel to the tunnel 

surface. (Cai, 2008). 
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non-physical outcome for triaxial extension.  Mogi’s criteria, σoct = g1 (σm,2) and σmax 

= g2 (σb) are able to fit experimental data reasonably well, but the prediction of 

strength is not good and sometimes problematic.  Strength criterion with the form 

λ(σ1, σ2, σ3) = F[η(σ1, σ2, σ3)], or a curve of two variables which can be decided by 

fitting pseudo-triaxial experimental data, is not expected to describe the strength 

under various stress states, no matter how high the correlation coefficient of λ and η 

is, or how low the misfit of the equation λ = F(η) is, as these seemingly good 

correlations usually result from the dominant influence of the maximum principal 

stress in the metrics of λ and η.  The intermediate principal stress may improve the 

strength of rock specimen, but its influence will be restricted by σ3.  Also when σ2 is 

high enough to cause failure in the σ2 – σ3 direction, the strength will decrease with 

the increasing σ2.  The new strength criterion with exponent form has just such a 

character, and gives much lower misfits than do all seven criteria discussed by 

Colmenares and Zoback (2002).  A statistical evaluation of intact rock failure criteria 

constrained by polyaxial test data for five different rocks.  

2.4 Effect of stress path on rock strength   

 The strength and deformation behavior of rock material are dependent on the 

loading path, which have been widely investigated in the past decades to understand 

and explore the fracture mechanism of various rock engineering (such deep 

underground rock engineering, and tunnel rock engineering, etc.) under different 

loading paths (Jaeger, 1967; Swanson and Brown, 1971; Crouch, 1972; Yao et al., 

1980; Xu and Geng, 1986; Ferfera et al., 1997; Lee et al., 1999; Cai, 2008; Wang et 

al., 2008; Yang et al., 2011; Yang et al., 2012). In the previous studies, two kinds of 
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loading paths, i.e. conventional triaxial compression (Path I) and confining pressure 

reduction (Path III) (Figure 2.10) (detailed definition can be referred in the paper 

(Yang et al., 2011), are often adopted to analyze the strength and deformation 

behavior of all kinds of rock material. On the influence of the loading path on the 

strength of rock, there are two kinds of contradictory opinions. One opinion regarded 

that the strength of the rock was independent to the stress loading path by carrying out 

triaxial compression experiment for granite and norite (Swanson and Brown, 1971; 

Crouch, 1972). Another opinion regarded that the loading path had a significant 

influence on the loading path. 

Xu and Geng (1986) studied the various loading paths causing strength, 

deformation and failure in hard and soft rocks. His results showed that the effect of 

two loading paths (Paths I and III) on the peak strength was related to lithologic 

character. Wang et al. (2008) thought that the cohesion of marble under Path III was 

distinctly lower than that under Path I, but the internal friction angle of marble under 

Path III had no obvious difference with that under Path I. But on the influence of the 

loading path on the deformation behavior of rock, Yao et al. (1980) carried out triaxial 

experiment for gabbro and marble under Paths I and III, which showed that the 

gabbro under Path III was more brittle than that under Path I, but marble under Path 

III could appear some brittle fracture even though under higher confining pressure. 

Yang (2013) performed triaxial compression test of red sandstone to 

investigated its strength and deformation behavior.  The conditions of testing were 

under simple and complex loading path.  In this research, tested confining pressure 

was in the range from 5 to 35 MPa.  Under simple loading path, the peak strength, 

residual strength and critical damage of samples all increase with the confining pressure, 
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Figure 2.10 Six different loading paths presented in the principal stress space (σ3, σ1) 

(Yang et al., 2011). 

which are in good agreement with the linear Mohr–Coulomb criterion.  The 

differences of strength and deformation parameters of red sandstone between simple 

and complex loading paths are evaluated detailed.  The elastic moduli under those 

loading paths all increase nonlinearly with the confining pressure. It is suggested and 

recommended to predict the peak strength of rock under simple loading path by 

adopting complex loading path A (increasing gradually the confining pressure) not 

complex loading path B (reducing gradually the confining pressure). On the basis of 

the linear Mohr–Coulomb criterion, a kind of new method is put forward to revise the 

peak strength of red sandstone under complex loading path A, which is testified to be 

right and reasonable. Some noticeable result shown in Figure 2.11, the influence of 

confining pressure on the elastic modulus of red sandstone under complex loading 

path B. 

Yang et al. (2011) have investigated the mechanical behavior of coarse marble 

under six different loading paths.  A series of triaxial compression experiments 

preformed for the samples by the rock mechanics servo-controlled testing system. 

Based on the experimental results of complete stress-strain curves, the influence of  

http://link.springer.com/search?facet-author=%22S.+Q.+Yang%22
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Figure 2.11 Effect of confining pressure on elastic modulus of red sandstone under 

complex loading path B. 

loading path on the strength and deformation failure behavior of coarse marble is 

made a detailed analysis. Three loading paths (Paths I–III) are put forward to confirm 

the strength parameters (cohesion and internal friction angle) of coarse marble in 

accordance with linear Mohr-Coulomb criterion. Compared among the strength 

parameters, two loading paths are suggested to confirm the triaxial strengths of rock 

under different confining pressures by only one sample, which is very applicable for a 

kind of rock that has obvious plastic and ductile deformation behavior. In order to 

investigate re-fracture mechanical behavior of rock material, three loading paths 

(Paths IV–VI) are also put forward for flawed coarse marble. The peak strength and 

deformation failure mode of flawed coarse marble are found depending on the loading 

paths (Paths IV–VI). Under lower confining pressures, the peak strength and Young’s 

modulus of damage sample (compressed until post-peak stress under higher confining 

pressure) are all lower compared with that of flawed sample.  Mechanical parameter 
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of damage sample is lower for the larger compressed post-peak plastic deformation of 

coarse marble. However under higher confining pressures (e.g. σ 3 = 30 MPa), the 

axial supporting capacity and elastic modulus of damage coarse marble (compressed 

until post-peak stress under lower confining pressure) is not related to the loading 

path, while the deformation modulus and peak strain of damage sample depend on the 

difference of initial confining pressure and post-peak plastic deformation. The friction 

among crystal grains determines the strength behavior of flawed coarse marble under 

various. 

 Yang et al. (2011) have investigated the mechanical behavior of coarse marble 

under six different loading paths.  A series of triaxial compression experiments 

preformed for the samples by the rock mechanics servo-controlled testing system. 

Based on the experimental results of complete stress-strain curves, the influence of 

loading path on the strength and deformation failure behavior of coarse marble is 

made a detailed analysis. Three loading paths (Paths I–III) are put forward to confirm 

the strength parameters (cohesion and internal friction angle) of coarse marble in 

accordance with linear Mohr-Coulomb criterion. Compared among the strength 

parameters, two loading paths are suggested to confirm the triaxial strengths of rock 

under different confining pressures by only one sample, which is very applicable for a 

kind of rock that has obvious plastic and ductile deformation behavior. In order to 

investigate re-fracture mechanical behavior of rock material, three loading paths 

(Paths IV–VI) are also put forward for flawed coarse marble. The peak strength and 

deformation failure mode of flawed coarse marble are found depending on the loading 

paths (Paths IV–VI). Under lower confining pressures, the peak strength and Young’s 

modulus of damage sample (compressed until post-peak stress under higher confining 

http://link.springer.com/search?facet-author=%22S.+Q.+Yang%22
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pressure) are all lower compared with that of flawed sample.  Mechanical parameter 

of damage sample is lower for the larger compressed post-peak plastic deformation of 

coarse marble. However under higher confining pressures (e.g. σ 3 = 30 MPa), the 

axial supporting capacity and elastic modulus of damage coarse marble (compressed 

until post-peak stress under lower confining pressure) is not related to the loading 

path, while the deformation modulus and peak strain of damage sample depend on the 

difference of initial confining pressure and post-peak plastic deformation. The friction 

among crystal grains determines the strength behavior of flawed coarse marble under 

various loading paths. In the end, the effect of loading path on failure mode of intact 

and flawed coarse marble is also investigated. The present research provides increased 

understanding of the fundamental nature of rock failure under different loading path 

 A change of stress state in the rock mass causes the accumulation of damage at 

macro- but also at micro scale. Hence, the damage that has been created in the past, 

remains in the rock and represents a ‘fingerprint’ of the completed loading history 

(Lavrov, 2005). In this way, the former stress path influences the response of the rock 

material in future loadings. The Kaiser effect (Lavrov et al., 2002) is a well known 

expression of this phenomenon. In its easiest form, the Kaiser effect can be observed 

in rocks during their cyclic uniaxial loading by acoustic emission (AE) monitoring. 

As soon as the load achieves its previously reached peak value, a noticeable increase 

in acoustic emission activity takes place. As such, it is used to determine the peak 

stresses and principal stress orientations of rock material in the past. Another example 

of the influence of the stress path is linked to core drilling (Holt et al., 2000). As the 

drilling of cores causes a stress evolution, the characteristics of the drilled core 

material are affected by the drilling. If these cores are to be tested, laboratory tests 
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may be performed in away that limits core damage effects. In this reasoning, Holt et 

al. (2000) propose among others the use of a specific stress path for UCS (uniaxial 

compressive strength) determination and the use of multiple loading cycles to 

determine the compaction modulus of drilled cores. The stress path dependency of the 

response of the rock material manifests itself also at large scale, such as fracture 

development in underground mines, tunnels and on slopes. Recent research projects 

have focused on the study of the stress path: in-situ measuring of stress path around 

excavations (Kaiser et al., 2001), laboratory tests to investigate the effect of stress 

path on the response of rock material (Der-Her Lee et al. 1999; Vervoort 2003) and 

numerical modelling (Eberhardt 2001; Alassi et al. 2006). Eberhardt (2001) reports 

that in the case of an advancing tunnel face in rock material (calculated with a three-

dimensional finite difference code), the principal stresses change in magnitude as well 

as in orientation. He demonstrates that around an advancing tunnel face, the principal 

stress components can change from a situationwith three principal stresses in 

compression to a situation where one principal stress is tension. The paper describes 

and discusses the influence of the stress path on micro-damage. Two specific 

situations are considered. First, samples successively damaged by macro-compressive 

and tensile stresses are studied. Second, samples successively damaged by macro-

tensile and compressive stresses are studied and compared to the first case. In this 

way, the influence of the succession of the compressive and tensile stresses is 

quantified. Most of the study is based on a systematic observation of thin slices and 

recorded AE. 
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2.5 True-triaxial testing techniques 

The deformation and failt1re of crust and engineering rock masses are under a 

stress state with three unequal principal stresses, i.e., a true triaxial stress state. One of 

the major goals of rock mechanics testing in a laboratory is to characterize 

deformation and strength behaviors under in-situ stress states. The Karman-type 

triaxial test (Figure 2.12) proposed by Karman (1911), in which a short, cylindrical 

specimen is loaded axially, has been widely used in experimental rock mechanics 

because of the simplicity of the equipment and the convenient preparation of 

specimens.  In a Karman-type triaxial test, the intermediate and minimum principal 

stresses are equal, and therefore, it is also called a conventional triaxial test (CTT).  

The characteristics of rock strength, deformation and failure have mainly come from 

CTT.  However, two of the three principal stresses are equal in CTT, which means the 

stress paths are only confined on a certain plane in the stress space.  As a result, the 

intermediate principal stress has no effect on rock failure and this is the key 

assumption in conventional triaxial tests. This point is typically illustrated by the 

Mohr-Coulomb criterion. 

A large number of in-situ stress measurements have shown that an actual 

stress state is almost anisotropic. Thus, in the CTT initiated by Karman (1911) and 

Boker (1915), besides that the compressive strength of brittle rocks is very 

dependent on confining pressure,  which is well  explained  by  the Mohr-Coulomb  

and  Griffitn theories, the strengths of Carrara marble determined from compression (1 

> 2  = 3) and extension (1  = 2  > 3) tests under the same confining pressure are 

slightly different.  The unconformity of Mohr's envelopes between compression and 

tension under the same confining pressure was reconfirmed by Murrell (1965) and  
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Figure 2.12  Schematic of a CTT apparatus. 

Handin et al. (1967).  This finding was the starting point in taking into account the 

intermediate principal stress 2 in the rock failure criterion. Thereafter, scholars became 

enthusiastic over the development of a compression testing apparatus which could 

control 2 and 3 independently in order to examine the effect of 2 on rock strength. 

Since then, various types of true triaxial test (TTT) apparatuses which can 

simulate the general stress state (1> 2 > 3) have been developed one after another and 

the research on the effect of intermediate principal stress has entered a new phase.  

Among the true triaxial test apparatuses, the one designed by Mogi (1970) is perhaps the 

first that permitted the application of three mutually independent and uniform loads to 

the specimen faces (Haimson & Chang 2000).  It was found that the maximum principal 

stress 1, at failure is a function of 2 with a concave curve of 1 vs. 2 under constant 

3 (e.g., Mogi 1967, Xu & Geng 1985, Kwasniewski & Mogi 1990, Li & Xu 1991, 

Haimson & Chahg, 2000). The theories and applications which have their roots in true 

triaxial test have been verified by practical engineering cases such as borehole breakout 

(e.g., Vernik & Zoback 1992, Haimson & Chahg 2002) and rock-burst (e.g., Xu et al. 
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2000, Alexeev et al. 2004, He et al. 2007). Moreover, the importance of the effect of the 

intermediate principal stress on the hydro-mechanical behavior of rocks has been studied 

by Takahashi et al. (1993), Skoczylas and Henry (1995), King et al. (1995), etc.  

However, the true triaxial test techniques for rock testing are far from mature. 

There is no piece of equipment that is as extensively used as the standard CTT 

apparatt1ses even though it has undergone vigorous development in the past few 

decades. The true triaxial test techniques are subject to a number of obstacles and 

problems such as end friction, blank loading corners, high costs, etc. In addition, no 

country or academic society associated with rock mechanics has true triaxial test 

procedures as yet. 

In the early stages, hollow cylindrical specimens (e.g., Robertson 1955, Hoskins 

1969) were used for compression tests (e.g., Robertson 1955, Hoskins 1969) and for 

con1bined compression and torsion tests (Handin et al. 1967) in order to obtain true 

triaxial stress states.  In order to overcon1e the stress gradient that exists in a thick 

hollow cylinder and to achieve a nearly homogeneous stress distribt1tion, a very thin 

hollow cylinder was used by Handin et al. (1967) as is shown in Figure 2.13.  The 

thickness of the wall of the hollow cylinder used in the tests was 0.7 mm and the 

confining pressure reached 500 MPa. So1ne valt1able conclusions about the effects of 2 

on sl1ear strength, fracture angle and brittle-ductile transitional pressure were obtained 

from Handin's tests.  However, such tests did not find a wider application.  As was 

pointed out by Mogi (2007), the experimental data obtained from thin-hollow-cylinder 

tests are very scattered.  The thickness of a Hollow cylinder wall is too thin to be suitable 

for tests of brittle rocks and furthermore, it is inevitable that microcracks will be 

generated when fabricating such a thin hollow cylinder.  Even so, the method of hollow  
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Figure 2.13  Schematic of a hollow cylinder for a torsion test (Handin et al., 1967). 

cylinder torsion was the initiation of the true-triaxial testing technique for rocks.  It is 

unique in that it is a compressive test for applying general principal stresses indirectly, 

and it planted the seed for realizing true triaxial loading. 

For the next few decades in the field of true triaxial test, the three principal 

stresses were applied directly by dozens of true triaxial test apparatuses. According to 

Takahashi et al. (1989, 2001) and Mogi (2007), the true triaxial test apparatuses can be 

neatly classified into three types in terms of loading methods, i.e., Type-I: the rigid 

platen type, Type-II: the flexible mediu1n type ai1d Type-III: the mixed type.  Figures 

2.14 through 2.16 are present the true triaxial compression apparatuses used in true 

triaxial testing. 
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Figure 2.14 Schematic of a true triaxial apparatus by Fuuruzumi and Sugimoto 

(1986). (a) Conceptual diagram of the apparatus.  (b) Force analysis of 

the specimen.  

 

 

 

 

 

 

 

 

 

Figure 2.15 Schematic of a true triaxial apparatus by Fing et al. (1995). (a) 

conceptual diagram of the apparatus.  (b) Force analysis of the 

specimen.  
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Figure 2.16 Schematic of a true triaxial apparatus by Mogi (1970). (a) Front view of 

the apparatus.  (b) Assembly of a specimen and platens.  



 
 

CHAPTER III 

SAMPLE PREPARATION 

This chapter describes the rock sample preparation.  The rock samples used in 

this study is rock salt. The salt specimens tested here are obtained from the Middle 

members of the Maha Sarakham formation in the northeastern Thailand.   This salt 

member has dedicate by THAI KALI Company Limited.  The core specimens with a 

nominal diameter of 63 mm tested here were drilled from depths ranging between 150 

and 330 m.  The rectangular block specimens are cut and ground to have a nominal 

dimension of 4.5×4.5×9.0 cm
3
 as shown in Figure 3.1.  Sample preparation is 

conducted in laboratory facility at the Suranaree University of Technology.  Table 

3.1 summarizes the specimen number, dimensions and density. 
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Figure 3.1 Some salt specimens prepared for true triaxial testing.  The nominal 

dimension is 4.54.59.0 cm
3
. 
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Table 3.1 Specimen dimensions prepared for testing. 

Specimen No. Width (mm.) Length (mm.) Height (mm.) Density (g/cc) 

MS-PX-01 52.1 54.3 108.6 2.14 

MS-PX-02 56.2 57.4 104.8 2.24 

MS-PX-03 53.9 52.7 105.4 2.26 

MS-PX-04 55.0 55.3 109.6 2.24 

MS-PX-05 54.0 55.1 106.2 2.19 

MS-PX-06 57.5 55.1 106.2 2.32 

MS-PX-07 53.3 54.5 109.0 2.19 

MS-PX-08 54.7 51.2 102.4 2.18 

MS-PX-09 56.0 54.9 109.7 2.28 

MS-PX-10 55.7 56.1 102.2 2.19 

MS-PX-11 55.0 54.5 109.0 2.25 

MS-PX-12 53.8 54.5 109.0 2.29 

MS-PX-13 54.4 53.5 107.0 2.30 

MS-PX-14 53.4 54.3 108.6 2.20 

MS-PX-15 51.5 55.0 105.0 2.22 

MS-PX-16 54.3 55.6 101.2 2.00 

MS-PX-17 54.1 54.3 108.6 2.19 

MS-PX-18 55.5 55.3 110.6 2.15 

MS-PX-19 55.4 54.4 108.8 2.10 

MS-PX-20 54.7 54.7 109.4 2.14 

MS-PX-21 54.9 57.5 105.0 2.22 

MS-PX-22 54.0 56.6 103.2 2.32 

MS-PX-23 56.0 56.1 102.2 2.23 

MS-PX-24 57.3 55.4 110.8 2.20 

MS-PX-25 56.6 54.8 109.6 2.12 

MS-PX-26 54.0 54.7 109.4 2.30 

MS-PX-27 57.0 55.7 101.4 2.17 

MS-PX-28 56.0 56.2 102.4 2.27 

MS-PX-29 54.2 55.6 101.2 2.26 

MS-PX-30 55.3 57.1 104.2 2.13 

MS-PX-31 54.5 56.4 102.8 2.19 

MS-PX-32 56.9 56.1 102.2 2.16 

MS-PX-33 57.1 53.5 107.0 2.35 

MS-PX-34 54.9 54.5 109.0 2.18 

MS-PX-35 56.1 56.7 103.4 2.23 

MS-PX-36 55.7 56.2 102.4 2.28 

MS-PX-37 54.0 54.3 108.6 2.25 
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Table 3.1 Specimen dimensions prepared for testing (cont.). 

 

 

Specimen No. Width (mm.) Length (mm.) Height (mm.) Density (g/cc) 

MS-PX-38 55.4 55.1 107.2 2.12 

MS-PX-39 56.8 55.9 101.8 2.05 

MS-PX-40 55.0 55.3 107.6 2.01 

MS-PX-41 53.7 54.2 108.4 2.22 

MS-PX-42 54.0 56.5 103.0 2.15 

MS-PX-43 54.5 55.2 106.4 2.34 

MS-PX-44 54.0 54.6 109.2 2.15 

MS-PX-45 55.6 55.6 101.2 2.05 

MS-PX-46 53.7 53.9 107.8 2.22 

MS-PX-47 53.8 53.1 106.2 2.32 

MS-PX-48 56.1 56.5 103.0 2.35 

MS-PX-49 55.2 55.5 101.0 2.13 

MS-PX-50 53.4 54.6 109.2 2.21 

Average 2.20  0.09 



 

CHAPTER IV 

TEST PROCEDURE 

4.1 Introduction 

The objective of this study is to examine the influence of stress paths on rock 

deformation and failure.  Multi-axial compression tests are performed on rock salt 

specimens to examine the effects of stress paths. Six different stress paths are planned 

on this laboratory test. The failure stresses are recorded and the elastic parameters 

calculated. This chapter describes the testing methods and equipment.  

4.2 Test equipment 

 The main equipment for the multi-axial compression tests is the true triaxial 

load frame.  Figure 4.1 shows the isometric drawing of the true triaxial loading device 

and the picture of this device during the tests.  This device is developed to test the 

rock specimens with soft to medium strengths under polyaxial stress states.  During 

the test each set of the three load frames will apply independent loads to provide 

different principal stresses on to the rock specimens.  The main components of 

measurement system are pressure transducer, displacement transducer, switching box, 

and data logger. This loading device can accommodate the cubic or rectangular 

specimens of different sizes by adjusting the distances between the opposite steel 

loading platens.  For this study, the rock specimens have the nominal dimensions of 

4.5×4.5×9.0 cm
3
. 
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Figure 4.1 True triaxial load frame (a) general isometric drawing (b). 

4.3 Test schemes 

 Three test scheme and six different stress paths have been implemented.  The 

intermediate (2) and minimum (3) principal stresses depend on the stress paths 

while maximum principal stresses (1) are increased until failure occurs.  The three 

test schemes are briefly describe as follows. 

 The triaxial compression test (σ1σ2σ3) is divided into two stresses paths.  

Stress path (1.1) is triaxial compression test with constant minimum principal stress; 

σ3 (compression [σ3], σ1 increases while σ2 and σ3 are equally maintained constant).  

Stress path (1.2) is triaxial compression test with constant mean stress (σm) 

(compression [σm], σ1 increases while σ2 and σ3 are simultaneously decreases).  The 

constant 3 is varied from 1.0 to 28.0 MPa, and m from 17.4 to 69.4 MPa. 

 The polyaxial compression test (σ1σ2σ3) is divided into two stresses paths.  

Stress path (2.1) is the polyaxial compression test with constant σ3 (polyaxial [σ3], σ1 

and σ2 increases while σ3 maintained constant).  Stress path (2.2) is the polyaxial 

(a) (b) 
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compression test with constant σm (polyaxial [σm], σ1 increases while σ2 maintain 

constant and σ3 decreases).  The constant 3 is varies from 1.0 to 7.0 MPa, and m is 

from 23.3 to 79.4 MPa.  

 The triaxial extension test (σ1σ2σ3) divided into two stresses paths.  Stress 

path (3.1) is triaxial extension test with constant σ3 (extension [σ3], σ1 and σ2 equally 

increase while σ3 is maintained constant).  Stress path (2.2) is the triaxial extension 

test with constant σm (extension [σm], σ1 and σ2 equally increase while σ3 decreases).  

The constant 3 is varied from 0 to 10.0 MPa, and m from 20.6 to 65.0 MPa. 

 Figure 4.2 shows the applied principal stress directions for all test schemes. 

Table 4.1 summarizes the test plan for all stress paths.  For all tests, neoprene sheets 

are used to minimize the friction at all interfaces between the loading platens and the 

specimen surfaces.  The measured deformations are measured to insument  10 

microns used to determine the strains along the principal axes during loading.  The 

failure stresses are recorded.   

 

 

 

 

 

 

 

 
Figure 4.2 Directions of loading with for all test schemes: triaxial compression test 

(a), polyaxial compression test (b), and triaxial extension test (c).   

(a) (b) (c) 
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Table 4.1 Test plan for all stress paths. 

 

Test schemes 
Stress path 

Constant [σ3] Constant [σm] 

Scheme 1 

Compression 

(σ1 ≠ σ2 σ3) 

 

 

σ3 = 1.0 to 28.0 MPa     

   

 

 

σm = 17.4 to 69.4 MPa 

Scheme 2 

Polyaxial 

(σ1 ≠ σ2 ≠ σ3) 

 


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
1


2

S
tr

es
s

Time

Path 2.1


1


2

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σ3 = 1.0 to 7.0 MPa 

 

 

  

σm = 23.3 to 79.4 MPa 

Scheme 3 

Extension 

(σ1 σ2 ≠ σ3) 

 

 

σ3 = 0.0 to 10.0 MPa 

 

 

 

σm = 20.6 to 65.0 MPa 



 

CHAPTER V 

TEST RESULTS 

5.1 Introduction 

 This section describes test results in terms of the stress-strain curves, strength 

and elasticity for all test schemes.  The measured deformations are used to determine 

the strains along the principal axes during loading.  The failure loads are recorded and 

mode of failure examined.   

5.2 Stress-strain curves 

5.2.1  Test scheme 1: compression test 

Figures 5.1 and 5.2 show all stress-stain curves for the test scheme 1.  

The results of triaxial compression tests of the test scheme 1 are shown in Table 5.1.  

The results indicate that stress path 1.1 (constant 3) provide higher strengths than 

those of stress path 1.2 (constant m).  Both paths show non-linear relation between 

stress and strain.                                                                                                                                                                                                                                                                                                                                                                                                 

5.2.2  Test scheme 2: polyaxial test 

The stress-strain curves of test scheme 2 are shown in Figures 5.3 and 

5.4.  For this test scheme the salt specimens are tested under polyaxial stress condition 

(123).  The stress path 2.1 maintains constant 3 during loading until failure 

while stress path 2.2 maintains constant m.  Table 5.2 shows the polyaxial 

compression test results for both stress paths.   
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Figure 5.1 Stress-strain curves for triaxial compression test for stress path 1.1 

constant 3.  The numbers in the bracket represent [1, 2, 3] at failure. 
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Figure 5.2 Stress-strain curves for triaxial compression test for stress path 1.2 

constant m.  The numbers in the bracket represent [1, 2, 3] at failure. 
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Figure 5.3 Stress-strain curves for polyaxial compression test of stress path 2.1 

constant 3.  The numbers in the bracket represent [1, 2, 3] at failure. 
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Figure 5.4 Stress-strain curves for polyaxial compression test of stress path 2.2 

constant m.  The numbers in the bracket represent [1, 2, 3] at failure. 
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Table 5.1 Strength results of triaxial compression tests (scheme 1). 

 

  

 

Table 5.2 Strength results of polyaxial compression tests (scheme 2). 

 

 

 

 

 

 

 

Stress path (1.1) (constant σ3) Stress path (1.2) (constant σm) 

σ2 = σ3 (MPa) σ1 (MPa) σ2 = σ3 (MPa) σ1 (MPa) 

1.0 37.2 0.25 24.9 

2.2 49.9 1.1 29.4 

3.0 55.1 3.3 44.4 

5.0 64.8 6.5 56.0 

6.5 71.9 7.6 64.2 

10.0 87.3 10.8 71.4 

12.0 94.1 15.2 88.1 

20.0 120.0 19.5 110.8 

22.8 138.9 25.2 129.7 

28.0 167.2 30.4 148.5 

Stress path (2.1) (constant σ3) Stress path (2.2) (constant σm) 

σ3 (MPa) σ2 (MPa) σ1 (MPa) σ3 (MPa) σ2 (MPa) σ1 (MPa) 

1.0 7.0 30.2 0.9 21.0 41.1 

1.0 35.0 55.5 4.0 32.0 60.0 

3.0 25.0 65.1 4.8 40.0 75.2 

3.0 40.0 75.2 7.0 50.0 93.5 

5.0 50.0 90.6 11.2 65.0 118.8 

7.0 50.0 99.5 15.1 80.0 144.9 

7.0 65.0 119.5 
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5.2.3  Test scheme 3: extension test 

Figures 5.5 and 5.6 show the stress-stain curves from start loading until 

failure for test scheme 3.  Table 5.3 summarizes the strength results.  For triaxial 

triaxial extension tests, stress path 3.1 yields higher strengths of specimens, compared 

to the stress path 3.2.  From Table 5.3, for 3 equals to 6.5 MPa, the sample shows 

failure stress of 89.1 MPa under stress path 3.1, and of 73.5 MPa under stress path 

3.2. 

5.3 Octahedral shear stress-strain relations 

 An attempt is made here to compare the stress-strain relations obtained from 

different stress paths.  To combine the principal stress and principal strain, a muti-

axial form of stress-strain relation is needed.  Here the octahedral shear stress (oct) are 

calculated as a function of octahedral shear strain (oct).  The results are show in 

Figure 5.7.  Jaeger et al. (2007) give the solutions for calculating these parameters, as 

follows; 

 oct  = (1/3)[(1  2)
2 

+ (1  3)
2 

+ (2  3)
2
]
1/2

  (5.1) 

 oct  = (1/3)[(1  2)
2 

+ (1  3)
2 
+ (2  3)

2
]
1/2

  (5.2) 

 From the oct - oct diagrams (Figure 5.7) it is clear that the stress-strain 

relation for all stress paths are non-linear, where the non-lineality is greatest for the 

test scheme 1 (compression test).  Under extension condition, the stress-strain curves 

show less non-linearly.  For all stress paths, the strain at failure clearly increase with 3 

and m.  
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Figure 5.5 Stress-strain curves for triaxial extension test stress path 3.1 constant 3.  

The numbers in the bracket represent [1, 2, 3] at failure. 
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Figure 5.6 Stress-strain curves for triaxial extension test stress path 3.2 constant m.  

The numbers in the bracket represent [1, 2, 3] at failure.  
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Table 5.3 Strength results of triaxial extension tests (scheme 3). 

 

5.4 Octahedral shear strengths 

 For each specimen the octahedral shear stress at failure (oct,f)  and at dilation 

(oct,d)  are calculated from the principal stresses as follows: 

 oct,f  (1/3)[(1,f  2,f)
2 
+ (1,f  3,f)

2 
+ (2,f  3,f)

2
]
1/2

 (5.3) 

 oct,d  (1/3)[(1,d  2,d)
2 
+ (1,d  3,d)

2 
+ (2,d  3,d)

2
]

1/2
 (5.4) 

 m  = (1,f + 2,f + 3,f) / 3
 

(5.5) 

 m,d  = (1,d + 2,d + 3,d) / 3
 

(5.6) 

where 1,f , 2,f  and 3,f  are the major, intermediate and minor principal stresses at the 

point where the failure occurs respectively.  Three principal stresses equivalent to the 

dilation point are also represented by  1,d , 2,d  and 3,d .   

 

Stress path (3.1) (constant σ3) Stress path (3.2) (constant σm) 

σ3 (MPa) σ1 = σ2 (MPa) σ3 (MPa) σ1 = σ2 (MPa) 

0.0 35.0 0.9 30.3 

0.5 42.1 3.3 40.3 

1.0 49.0 4.5 45.6 

2.5 55.2 5.5 58.9 

4.0 69.9 6.5 73.5 

6.5 89.1 9.8 92.4 

8.0 112.0 11.9 106.7 

10.0 127.0 12.9 121.1 
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Figure 5.7 Octahedral shear stress – strain of all specimens for different stress paths. 
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Figure 5.8 shows how to determine the 1,d , 2,d  and 3,d from the test results. Table 

5.4 lists the mean stresses and octahedral shear strength values.  For all stress paths, 

the octahedral shear stresses at failure and at dilation are plotted as a function of mean 

stress in Figure 5.9.  The octahedral shear strength linearly increases with the mean 

stress for both failure and dilation.  The dash and solid lines as shown in Figure 5.9 

indicate the magnitudes of octahedral shear strength at failure (oct,f) and at dilation 

(oct,d) respectively.   

 

 

 

 

 

 

 

 

Figure 5.8 Stress-strain diagrams showing how principal stresses at dilation are 

determined from test results. 

 

 

 

 

 



59 

 

Table 5.4 Summary of strength results from different stress paths.

Test 

schemes 

Stress 

path 

Sample 

number 
σ1 σ2 σ3 σm oct,f σm,d oct,d 

S
ch

em
e 

1
 

C
o
m

p
re

ss
io

n
 

(σ
1
 ≠

 σ
2
 

σ
3
) 

P
at

h
 1

.1
: 

C
o
n
st

an
t 

[σ
3
] 

TC-01 

TC-02 

TC-03 

TC-04 

TC-05 

TC-06 

TC-07 

TC-08 

TC-09 

TC-10 

37.2 

49.9 

55.1 

64.8 

71.9 

87.3 

94.1 

120.0 

138.9 

167.2 

1.0 

2.2 

3.0 

5.0 

6.5 

10.0 

12.0 

20.0 

22.8 

28.0 

1.0 

2.2 

3.0 

5.0 

6.5 

10.0 

12.0 

20.0 

22.8 

28.0 

13.0 

18.1 

20.3 

25.0 

28.3 

35.7 

39.3 

53.3 

61.9 

74.3 

17.0 

22.5 

24.5 

28.3 

30.8 

36.3 

38.7 

47.1 

55.2 

65.5 

11.7 

14.5 

16.0 

19.3 

22.4 

29.3 

36.3 

47.8 

54.6 

65.3 

15.1 

17.3 

18.4 

20.3 

22.5 

27.3 

34.4 

39.3 

45.0 

52.8 

P
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 1

.2
: 
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t 

[σ
m

] 

TC-11 

TC-12 

TC-13 

TC-14 

TC-15 

TC-16 

TC-17 

TC-18 

TC-19 

TC-20 

24.9 

29.4 

44.4 

56.0 

64.2 

71.4 

88.1 

110.8 

129.7 

148.5 

0.25 

1.1 

3.3 

6.5 

7.6 

10.8 

15.2 

19.5 

25.2 

30.4 

0.25 

1.1 

3.3 

6.5 

7.6 

10.8 

15.2 

19.5 

25.2 

30.4 

8.5 

10.5 

17.0 

23.0 

26.5 

31.0 

39.5 

50.0 

60.0 

70.0 

11.7 

13.3 

19.4 

23.3 

26.7 

28.5 

34.4 

43.1 

49.3 

55.7 

8.5 

10.5 

17.0 

23.0 

26.5 

31.0 

39.5 

50.0 

60.0 

70.0 

11.0 

12.4 

17.0 
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23.7 

25.4 

31.5 

38.9 

43.8 

49.7 

S
ch

em
e 

2
 

P
o
ly

ax
ia

l 

(σ
1
 ≠

 σ
2
 ≠

 σ
3
) 

P
at

h
 2

.1
: 

C
o
n
st

an
t 

[σ
3
] 

PX-01 

PX-02 

PX-03 

PX-04 

PX-05 

PX-06 

PX-07 

30.2 

55.5 

65.1 

75.2 

90.6 

99.5 

119.5 

7.0 

35.0 

25.0 

40.0 

50.0 

50.0 

65.0 

1.0 

1.0 

3.0 

3.0 

5.0 

7.0 

7.0 

17.1 

32.8 

33.2 

39.3 

48.1 

51.7 

60.5 

12.5 

22.3 

25.7 

29.4 

35.0 

37.8 

45.9 

11.8 

25.3 

28.9 

36.7 

44.9 

48.3 

59.6 

11.5 

20.5 

23.5 

27.0 

31.6 

34.0 

42.1 

P
at

h
 2

.2
: 

C
o
n
st

an
t 

[σ
m

] PX-08 

PX-09 

PX-10 

PX-11 

PX-12 

PX-13 

41.1 

60.0 

75.2 

93.5 

118.8 

144.9 

21.0 

32.0 

40.0 

50.0 

65.0 

80.0 

0.9 

4.0 

4.8 

7.0 

11.2 

15.1 

21.0 

32.0 

40.0 

50.0 

65.0 

80.0 

16.4 

22.9 

28.7 

35.1 

43.9 

53.0 

21.0 

32.0 

40.0 

50.0 

65.0 

80.0 

15.5 

20.4 

26.9 

31.3 

41.0 

49.0 
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Table 5.4 Summary of strength results from different stress paths (cont.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test 

schemes 

Stress 

path 

Sample 

number 
σ1 σ2 σ3 σm oct,f σm,d oct,d 

S
ch

em
e 

3
 

E
x
te

n
si

o
n

 

(σ
1
 

σ
2
 ≠

 σ
3
) 

P
at

h
 3

.1
: 

C
o

n
st

an
t 

[σ
3
] 

TE-01 

TE-02 

TE-03 

TE-04 

TE-05 

TE-06 

TE-07 

TE-08 

35.0 

42.1 

49.0 

55.2 

69.9 

89.1 

112.0 

127.0 

35.0 

42.1 

49.0 

55.2 

69.9 

89.1 

112.0 

127.0 

0.0 

0.5 

1.0 

2.5 

4.0 

6.5 

8.0 

10.0 

23.3 

28.2 

33.0 

37.5 

48.0 

61.5 

76.0 

88.0 

16.5 

19.6 

22.6 

24.7 

31.1 

38.9 

48.1 

55.2 

16.1 

19.5 

22.9 

26.1 

33.5 

43.1 

54.2 

61.7 

11.4 

13.4 

15.5 

16.7 

20.9 

25.9 

32.7 

36.6 

P
at

h
 3

.2
: 

C
o
n
st

an
t 

[σ
m

] 

TE-09 

TE-10 

TE-11 

TE-12 

TE-13 

TE-14 

TE-15 

TE-16 

30.3 

40.3 

45.6 

58.9 

73.5 

92.4 

106.7 

121.1 

30.3 

40.3 

45.6 

58.9 

73.5 

92.4 

106.7 

121.1 

0.9 

3.3 

4.5 

5.5 

6.5 

9.8 

11.9 

12.9 

20.5 

28.0 

32.0 

41.0 

51.0 

65.0 

75.0 

85.0 

13.9 

17.4 

19.4 

25.2 

31.6 

38.9 

44.7 

51.0 

20.5 

28.0 

32.0 

41.0 

51.0 

65.0 

75.0 

85.0 

11.7 

14.6 

16.2 

21.0 

26.4 

32.4 

37.1 

42.4 



61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 Octahedral shear stresses at failure (dash line) and at dilation (solid line) 

as a function of mean stress for all stress paths. 
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5.5 Mode of failure 

Post-failure observations suggest that compressive shear failures are 

predominant in the specimens tested under low σ2 while splitting tensile fractures 

parallel to σ1 and σ2 directions dominate under higher σ2.  Table 5.5 summarizes mode 

of failure for each stress path.  Stress path 1.1 provides the single shear fracture under 

low confining pressure and the multiple shear failures occur when confining pressure 

increases to 20 MPa.  The compressive shear failure is the only one failure mode that 

presented on stress path 1.2.  Under a low σ3 condition, few factures are observed 

from the surface on which σ3 is applied for stress paths 2.1 and 2.2.  The fracture 

patterns at the end of loading for stress path 3.1 show the extensile failures parallel to 

both σ1 and σ2 directions.  For the stress path 3.2 the direction of extensile failure 

surface patterns is similar to that of stress path 3.1, but under low σ3 the failure plane 

clearly inclines from the σ1 and σ2 axis.  

The observed extensile fractures under relatively high σ2 suggest that the 

fracture initiation has no influence from the friction at the loading interface in the σ2 

direction.  As a result the increase of σ1 with σ2 should not be due to the interface 

friction.  Figure 5.10 demonstrates the examples of the modes of failure and failure 

stresses for six stress paths.  
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Table 5.5 Summary of the mode of failure. 

Stress path m (MPa) 3 (MPa) Mode of failure 

Path 1.1: 

Compression 

Constant 3 

 

- 1.0 Single shear plane 

- 2.2 Single shear plane 

- 3.0 Single shear plane 

- 5.0 Single shear plane 

- 6.5 Single shear plane 

- 10.0 Single shear plane 

- 12.0 Single shear plane 

- 20.0 Multiple shear plane 

- 22.8 Multiple shear plane 

- 28.0 Multiple shear plane 

Path 1.2: 

Compression 

Constant m 

 

8.5 - Single shear plane 

10.5 - Single shear plane 

17.0 - Single shear plane 

23.0 - Single shear plane 

26.5 - Single shear plane 

31.0 - Single shear plane 

39.5 - Single shear plane 

50.0 - Single shear plane 

60.0 - Single shear plane 

69.8 - Single shear plane 

Path 2.1: 

Polyaxial 

Constant 3 

 

- 1.0 Single shear plane 

- 1.0 Single shear plane 

- 3.0 Single shear plane 

- 3.0 Single shear plane 

- 5.0 Single shear plane 

- 7.0 Single shear plane 

- 7.0 Single shear plane 
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Table 5.5 Summary of the mode of failure (cont.). 

 

 

Stress path m (MPa) 3 (MPa) Mode of failure 

Path 2.2: 

Polyaxial 

Constant m 

 

21.0 - Single shear plane 

32.0 - Single shear plane 

40.0 - Single shear plane 

50.0 - Single shear plane 

65.0 - Single shear plane 

80.0 - Single shear plane 

Path 3.1: 

Extension 

Constant 3 

 

- 0.0 Extensile failure 

- 0.5 Extensile failure 

- 1.0 Extensile failure 

- 2.5 Extensile failure 

- 4.0 Extensile failure 

- 6.5 Extensile failure 

- 8.0 Extensile failure 

- 10.0 Extensile failure 

Path 3.2: 

Polyaxial 

Constant m 

 

20.5 - Single shear plane 

28.0 - Single shear plane 

31.9 - Extensile failure 

41.1 - Extensile failure 

51.2 - Extensile failure 

64.9 - Extensile failure 

75.1 - Extensile failure 

85.0 - Extensile failure 
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Figure  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Some post-tested specimens. Numbers in blankets indicate [1,2,3]  

at failure. 
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 5.6 Elastic parameters 

The elastic parameters of the salt are determined from the linear portion of the 

stress-strain curves (before dilation occurs).  Assuming that the salt specimen is 

isotropic, the shear (rigidity) modulus (G), Lame constant (), Young’s modulus (E) 

and Poisson’s ratio () can be calculated from the following relations (Jaeger et al., 

2007):  

 G = (1/2) (oct,e/oct,e) (5.4) 

 3m,e = (3 + 2G) v,e (5.5) 

 E = 2G (1 + ) (5.6) 

  = /(2( + G)) (5.7) 

where oct,e, oct,e, m,e and v,e are the octahedral shear stress and strain, mean stress, 

and volumetric strain at the point where the elastic parameters are determined.  

 The elastic parameters are calculated for the three-dimensional principal 

stress-strain relations.  An attempt is made to calculate the elastic moduli along the 

three loading directions.  It is assumed here that the Poisson's ratio of each rock type 

is the same for all principal planes (ν  0.36).  The elastic moduli along the major, 

intermediate and minor principal directions can be calculated by (Jaeger et al., 2007): 

 ε1 = σ1/ E1- ν (σ2/ E2+ σ3/ E3)  (5.8) 

 ε2 = σ2/ E2- ν (σ1/ E1+ σ3/ E3)  (5.9) 
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 ε3= σ3/ E3- ν (σ1/ E1+ σ2/ E2)  (5.10) 

where ε1, ε2 and ε3 are the major, intermediate and minor principal strains, and E1, E2 

and E3 are the elastic moduli along the major, intermediate and minor directions.  

Table 5.6 summarizes these stress and strain values and their corresponding elastic 

parameters for each specimen.  The calculation results are shown in Figure 5.11 

which suggest that the elastic moduli along the principal directions are relatively 

similar, with the standard deviation of about  2.0 and  1.6.  This implies that all 

rock specimens are isotropic.  The discrepancies shown in these figures are probably 

due to the intrinsic variability of among salt specimens.   

 

 

 

 

 

 

 

 

Figure 5.11  Elastic modulus calculated along the major principal axis as a function 

of intermediate and minor principal axes.  
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Table 5.6 Summary of the elastic parameters. 

Stress 

path 

Sample 

number 

v,e 

(10
-3

) 

E 

G   
E1 E2 E3 Avg. 

P
at

h
 1

.1
 

C
o
n
st

an
t 

[σ
3
] 

TC-01 

TC-02 

TC-03 

TC-04 

TC-05 

TC-06 

TC-07 

TC-08 

TC-09 

TC-10 

0.70 

0.90 

0.77 

1.50 

1.20 

2.20 

3.80 

4.50 

5.69 

8.00 

20.0 

19.1 

18.0 

19.8 

18.7 

20.6 

22.8 

18.0 

19.5 

20.9 

21.8 

20.1 

18.5 

18.5 

19.7 

21.8 

21.6 

19.9 

18.5 

20.0 

22.7 

20.4 

17.9 

20.1 

18.8 

22.4 

25.6 

20.9 

21.4 

20.3 

21.52 

19.87 

18.13 

19.47 

19.05 

21.59 

22.08 

19.63 

19.80 

20.39 

7.79 

7.50 

6.73 

7.28 

7.55 

8.02 

7.90 

6.96 

6.88 

7.72 

25.11 

13.92 

15.19 

15.05 

18.22 

18.00 

13.53 

31.61 

49.44 

13.78 

0.38 

0.33 

0.35 

0.34 

0.36 

0.35 

0.31 

0.41 

0.44 

0.32 

P
at

h
 1

.2
 

C
o
n
st

an
t 

[σ
m

] 

TC-11 

TC-12 

TC-13 

TC-14 

TC-15 

TC-16 

TC-17 

TC-18 

TC-19 

TC-20 

0.76 

0.83 

0.95 

2.30 

3.21 

4.00 

5.10 

6.40 

8.20 

8.66 

22.0 

22.1 

20.9 

18.6 

19.5 

18.8 

19.5 

21.7 

20.3 

18.4 

22.9 

21.5 

22.0 

16.1 

18.3 

18.2 

19.1 

18.8 

19.3 

17.6 

21.5 

20.7 

20.3 

18.3 

21.4 

21.3 

21.6 

20.2 

22.8 

19.4 

22.12 

21.43 

21.05 

17.65 

19.72 

19.45 

20.08 

20.22 

20.80 

18.45 

7.86 

8.04 

7.58 

6.53 

6.80 

6.84 

6.65 

6.52 

7.38 

6.55 

34.41 

16.06 

26.23 

15.40 

27.95 

36.90 

15.78 

22.58 

33.57 

29.13 

0.41 

0.33 

0.39 

0.35 

0.40 

0.42 

0.34 

0.38 

0.41 

0.41 

P
at

h
 2

.1
 

C
o
n
st

an
t 

[σ
3
] 

0.50 

2.50 

2.64 

4.20 

5.86 

9.00 

8.50 

22.2 

15.3 

22.4 

21.3 

20.8 

21.1 

19.5 

24.1 

18.2 

22.4 

22.0 

21.9 

17.9 

20.7 

21.6 

16.0 

20.7 

21.5 

21.1 

18.9 

18.6 

22.64 

16.49 

21.49 

21.61 

21.26 

19.27 

19.59 

7.98 

6.31 

7.56 

8.03 

7.35 

6.86 

6.99 

41.24 

10.06 

40.89 

17.92 

60.92 

29.22 

28.42 

0.42 

0.31 

0.42 

0.35 

0.45 

0.40 

0.40 

0.50 

2.50 

2.64 

4.20 

5.86 

9.00 

8.50 
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Table 5.6 Summary of the elastic parameters (cont.). 

Stress 

path 

Sample 

number 

v,e 

(10
-3

) 

E 

G   
E1 E2 E3 Avg. 

P
at

h
 2

.2
 

C
o
n
st

an
t 

[σ
m

] 

PX-08 

PX-09 

PX-10 

PX-11 

PX-12 

PX-13 

1.80 

2.20 

3.76 

4.20 

7.02 

8.95 

22.1 

21.9 

21.6 

22.8 

22.2 

23.2 

19.7 

21.3 

25.3 

24.2 

22.9 

25.0 

19.9 

20.0 

18.7 

21.1 

20.4 

24.1 

20.60 

21.03 

21.87 

22.70 

22.15 

24.09 

7.61 

7.97 

8.24 

8.53 

8.20 

8.49 

18.26 

14.15 

15.64 

16.74 

19.18 

43.75 

0.35 

0.32 

0.33 

0.33 

0.35 

0.42 

P
at

h
 3

.1
 

C
o
n
st

an
t 

[σ
3
] 

TE-01 

TE-02 

TE-03 

TE-04 

TE-05 

TE-06 

TE-07 

TE-08 

0.98 

1.46 

2.08 

3.72 

4.50 

3.83 

5.56 

4.52 

19.8 

21.2 

20.2 

21.4 

20.6 

18.8 

16.2 

16.9 

19.7 

20.2 

21.6 

20.5 

22.1 

20.0 

18.6 

16.9 

19.4 

22.1 

21.6 

22.5 

22.1 

20.7 

18.6 

16.9 

19.61 

21.18 

21.13 

21.08 

21.61 

19.86 

17.79 

16.89 

7.05 

7.50 

7.58 

7.66 

7.59 

7.96 

7.23 

6.59 

24.95 

34.82 

28.03 

23.60 

41.56 

16.78 

13.11 

19.54 

0.39 

0.41 

0.39 

0.38 

0.42 

0.35 

0.33 

0.38 

P
at

h
 3

.2
 

C
o
n
st

an
t 

[σ
m

] 

TE-09 

TE-10 

TE-11 

TE-12 

TE-13 

TE-14 

TE-15 

TE-16 

1.32 

1.34 

2.05 

2.53 

2.92 

2.17 

2.63 

4.06 

20.8 

20.9 

21.0 

19.5 

19.4 

22.2 

23.1 

19.9 

21.2 

19.5 

21.2 

18.9 

19.1 

20.4 

22.1 

19.7 

21.7 

20.2 

22.6 

19.8 

20.2 

20.7 

22.0 

20.4 

21.23 

20.22 

21.58 

19.41 

19.57 

21.09 

22.41 

20.02 

8.39 

7.69 

8.56 

7.56 

7.69 

7.92 

8.58 

7.85 

21.06 

34.47 

20.37 

23.16 

20.93 

46.37 

34.78 

22.10 

0.37 

0.41 

0.36 

0.38 

0.37 

0.43 

0.41 

0.38 
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CHAPTER VI 

STRENGTH CRITERIA 

6.1 Introduction 

 This chapter describes the strength and dilation criteria under multi-axial 

compression condition.  The study offers two empirical criteria, octahedral shear 

strength and mean stress criterion and strain energy density criterion. An attempt here 

is to correlate the rock salt strengths with the stress and strain conditions in terms of 

the octahedral shear strength and distortional strain energy density for all stress 

paths.   

6.2 Lode parameter 

 The Lode parameter () proposed by Lode (1925), who tested tubes of steel, 

copper, and nickel under various combinations of longitudinal tension and internal 

hydrostatics pressure.  Lode devised a very sensitive method of differentiating by 

determining the effect of the intermediate principal stress on yielding.  Here, the Lode 

parameter has been used to define the effect of 2 on the strength and deformation of 

the salt specimens.  This parameter has values ranging from 1 to 1.  The parameter 

equals to 1 for triaxial compression,1 for triaxial extension and between 1 to 1 for 

polyaxial compression.  It can be calculated by using the following relation (Lode, 

1925).  

   ( 22  3  1 ) ( 3  1 ) (6.1) 
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where 1, 2, and 3 are major, intermediate and minor principal stresses applied on 

the salt.  The  is thus the ratio of the difference between the intermediate stress and 

the average of largest and smallest stresses to half the difference between the largest 

and smallest stresses.  This parameter will be used here to incorporate into the 

strength and dilation criteria to be developed.      

6.3 Octahedral shear strength and mean stress relation 

 From the test results in chapter V, the variation of shear strengths can be 

observed from the oct - m diagram, as shown in Figure 6.1.  The octahedral shear 

stresses at failure (oct,f) and at dilation (oct,d)  of rock salt linearly increase with 

increasing mean stress.  The linear relation between the octahedral shear strength and 

the mean stress at failure and can be best represented by: 

 oct,f  A  m + B   (6.2) 

 oct,d  A  m,d + B   (6.3) 

where A, A B, and B are empirical parameters for mean stress multipliers and 

octahedral shear strength constants for the salt at failure and at dilation, respectively.   

Good correlations and obtained for all stress paths (R
2
 > 0.95).  Figure 6.1 presents 

the octahedral shear strength-mean stress diagrams fitted by the equations above for 

all stress paths.  For the Maha Sarakham salt the parameters A, A, B and B are 

defined by the regression analysis as summarized in Table 6.1.  These parameters 

trend to decreases when the stress states change from triaxial compression, polyaxial  
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Figure 6.1 Octahedral shear stresses as a function of mean stresses at failure and at 

dilation for all stress paths. 
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Table 6.1 Summary of A, B, A and B parameters. 

 

 to extension conditions.  The stress paths where the 3 are maintained constant 

always shows higher strengths and dilation than those with constant m. 

6.4 Octahedral shear strength - Lode parameter criterion 

 An empirical criterion is proposed to predict the octahedral shear strengths 

under various stress paths and mean stresses.  The relation derived by taking the Lode 

parameter into consideration.   Figures 6.2 through 6.5 show the octahedral shear 

stress-Lode parameter diagrams at failure and at dilation for constant 3 and constant 

m test conditions.  The italic numbers in their Figures represent the magnitudes of m 

where their locations indicate the corresponding magnitudes of oct and  at failure 

and at dilation.  Set of empirical (linear) equations can be used to determine the 

variation of octahedral shear stress with Lode parameter at failure and at dilation for  

Test 

schemes 

Stress 

paths 

At Failure At Dilation 

A B R
2
 A B R

2
 

Triaxial 

compression 

Path 1.1 0.756 8.68 0.996 0.696 7.16 0.995 

Path 1.2 0.714 6.57 0.997 0.635 6.06 0.995 

Polyaxial 

compression 

Path 2.1 0.637 4.80 0.996 0.620 4.54 0.994 

Path 2.2 0.623 3.45 0.996 0.577 2.96 0.995 

Triaxial 

extension 

Path 3.1 0.596 2.64 0.997 0.551 2.55 0.998 

Path 3.2 0.580 1.43 0.998 0.480 1.36 0.998 
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Figure 6.2 Octahedral shear stress at failure (oct,f) as a function of Lode parameter 

() for various mean stresses under constant 3 condition.  The numbers 

denote m in MPa for each data point.  
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Figure 6.3 Octahedral shear stress at failure (oct,f) as a function of Lode parameter 

() for various mean stresses under constant m condition.  The numbers 

denote m in MPa for each data point.  
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Figure 6.4 Octahedral shear stress at dilation (oct,d) as a function of Lode parameter 

() for various mean stresses under constant 3 condition.  The numbers 

denote m in MPa for each data point.  

 



77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 Octahedral shear stress at dilation (oct,d) as a function of Lode parameter 

() for various mean stresses under constant m condition.  The numbers 

denote m in MPa for each data point.  
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 the selected mean stress magnitudes of 20, 30, 40, 50 and 60 MPa. 

 oct,f =    +    (6.4) 

 oct,d =    +   (6.5) 

where , ,  and  are Lode parameter multiplier and octahedral shear stress 

constant for the salt at failure and at dilation, respectively.  The diagrams as shown in 

Figures 6.2 through 6.5 represent the interpolation lines between the data points 

obtained from testing.  These constants are defined by regression analysis of the 

above equations.  They depend on the magnitude of m: 

  = 1  m + 2  (6.6) 

  = 1  m,d + 2  (6.7) 

  = 1  m + 2  (6.8)  

  = 1  m,d + 2  (6.9) 

where 1, 2, 1, and 2 are the regression analysis constants of the Lode parameter 

multiplier for failure and dilation criteria.  The parameters 1, 2, 1, and 2 are the 

regression analysis constant of octahedral shear constant. 

 By substituting the parameters in equations (6.6) through (6.9) into equations 

(6.4) and (6.5), the failure and dilation criteria of salt for constant 3 and constant m 

conditions can be presented in the forms of the Lode parameter and mean stress.   
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 oct,f = (1  m + 2)   + (1  m + 2)  (6.10) 

 oct,d = (1  m,d + 2)   + (1  m,d + 2)  (6.11) 

 Table 6.2 gives numerical values of these empirical constants.  For all stress 

paths and loading schemes the salt strengths and dilations increase with increasing the 

Lode parameters.  The proposed linear relations agree well with the test results, as 

evidenced by the good coefficients of correlation for all curves (R
2
  0.9).  

Table 6.2 Numerical values of the empirical constants for octahedral shear strength 

and dilation criteria. 

 

6.5 Strain energy density principle 

 The strain energy density principle is applied here to describe the salt strength 

and deformability under different stress paths.  The distortional strain energy at failure 

(Wd) and at dilation (Wd,d) can be calculated from the octahedral shear stresses and 

shear modulus (G) for each salt specimen (Table 6.3) using the following equation 

(Jaeger et al., 2007):  

 Wd = (3/4G)oct,f
2
 (6.12) 

Stress 

conditions 

At Failure At Dilation 

1, 2 1 2 R
2
 1 2 1 2 R

2
 

Constant 

3 
0.081 3.02 0.676 5.67 0.985 0.072 2.68 0.653 4.07 0.965 

Constant 

m 
0.067 2.57 0.621 3.75 0.987 0.061 2.46 0.564 3.46 0.992 



80 

 

 Wd,d = (3/4G)oct,d
2

 (6.13) 

where oct,f and oct,d are octahedral shear stress at failure and at dilation, G  is 

shear modulus for each specimen. 

 The distortion strain energy at failure (Wd)  and at dilation (Wd,d) can be 

presented as a function of the mean strain energy density at failure (Wm) and at 

dilation (Wm,d) which can be calculated from the mean stress at failure (m) and at 

dilation m,d) and bulk modulus (K) of the salt as follows: 

 Wm = m
2

   (6.14) 

 Wm,d = m,d
2

  (6.15) 

 Figure 6.6 plots the relations between Wd and Wm at failure and at dilation for 

all stress paths which can be represented by: 

 Wd  = C Wm  + D     (6.16) 

 Wd ,d  = C   Wm,d  + D      (6.17) 

where C, C, D, and D are empirical parameters for mean strain energy density 

multipliers and distortional strain energy density constant for strength and dilation 

criteria.  Table 6.3 shows the strain energy density at failure and at dilation for each 

specimens. 
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Table 6.3 Strain energy density at failure and at dilation for each specimens. 

 

 

Test schemes Stress path  
Wm,d 

(kPa) 

Wd,d 

(kPa) 

Wm 

(kPa) 

Wd,f 

(kPa) 

Scheme 1 

Compression 

(σ1 ≠ σ2 σ3) 

Path 1.2: 

Constant [σm] 
1.0 

2.0 22.0 2.0 28.0 

2.9 29.5 4.6 49.8 

3.6 33.2 5.8 59.0 

5.2 40.3 8.8 78.5 

7.0 49.7 11.2 93.3 

12.1 73.4 17.8 129.3 

18.5 116.3 21.7 146.7 

32.0 151.4 39.9 218.2 

41.8 198.8 53.7 299.5 

59.8 273.6 77.5 421.5 

Path 1.2: 

Constant [σm] 
1.0 

1.0 11.8 1.0 13.4 

1.6 15.0 1.6 17.5 

4.0 28.3 4.0 36.9 

7.4 41.3 7.4 53.4 

9.8 55.2 9.8 69.9 

13.5 63.5 13.5 80.0 

21.9 97.2 21.9 116.0 

35.0 148.7 35.0 181.9 

50.5 188.5 50.5 238.2 

68.2 242.1 68.2 304.4 

Scheme 2 

Polyaxial 

(σ1 ≠ σ2 ≠ σ3) 

Path 2.1: 

Constant [σ3] 

0.7 1.9 12.9 2.2 18.4 

-0.1 9.0 41.3 10.3 58.6 

0.3 11.7 54.3 13.5 77.6 

0.0 
18.9 71.6 21.7 101.8 

28.3 98.1 33.0 144.2 

0.1 32.7 113.6 38.1 168.3 

-0.2 49.8 174.2 57.1 225.0 

Path 2.2: 

Constant [σm] 
0.0 

6.2 23.6 6.2 26.5 

14.4 40.9 14.4 51.3 

22.4 70.9 22.4 81.1 

35.0 96.3 35.0 121.0 

59.2 164.7 59.2 189.4 

89.7 235.6 89.7 275.7 
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Table 6.3 Strain energy density at failure and at dilation for each specimens (cont.). 

 

 

Test schemes Stress path  
Wm,d 

(kPa) 

Wd,d 

(kPa) 

Wm 

(kPa) 

Wd,f 

(kPa) 

Scheme 3 

Extension 

(σ1 σ2 ≠ σ3) 

Path 3.1: 

Constant [σ3] 
-1.0 

3.6 12.7 7.6 26.7 

5.3 17.7 11.1 37.7 

7.3 23.5 15.3 50.3 

9.6 27.4 19.7 60.1 

15.8 42.8 32.3 95.0 

26.0 65.7 53.0 148.5 

41.1 104.7 81.0 227.2 

53.4 131.4 108.6 298.6 

Path 3.2: 

Constant [σm] 
-1.0 

5.9 13.5 5.9 18.9 

11.0 20.9 11.0 29.9 

14.3 25.6 14.3 36.9 

23.7 43.3 23.7 62.2 

36.7 68.4 36.7 97.9 

59.0 103.1 59.0 148.8 

79.1 135.4 79.1 196.1 

101.4 176.8 101.4 255.4 
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Figure 6.6 Distortional strain energy density as a function of mean mean strain 

energy density at failure and at dilation for all stress paths. 
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 It is assumed that under a given mean strain energy the distortional strain 

energy required to dilate and to fail the specimens is constant.  The results shown in 

Figure 6.6 indicate that the distortional strain energy linearly increases with the mean 

strain energy for all stress paths.  Under the same test scheme the distortional strain 

energy on stress path with constant 3 yield higher values than on the stress path with 

constant m.  For the Maha Sarakham salt the C, C, D and D parameters for all stress 

paths are defined by the regression analysis as summarized in Table 6.4.    

 

Table 6.4 Summary of C, D, C and D parameters.

Test 

scheme 

Stress 

paths 

At Failure At Dilation 

C D R
2
 C D R

2
 

Triaxial 

compression 

Path 1.1 5.03 29.9 0.985 4.28 19.6 0.987 

Path 1.2 4.31 19.3 0.977 3.43 16.1 0.981 

Polyaxial 

compression 

Path 2.1 3.38 12.1 0.989 3.24 10.3 0.995 

Path 2.2 3.08 9.16 0.992 2.56 8.35 0.997 

Triaxial 

extension 

Path 3.1 2.68 7.54 0.991 2.38 4.91 0.994 

Path 3.2 2.47 3.55 0.992 1.70 2.82 0.995 
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6.6 Distortional strain energy density - Lode parameter criteria 

 To determine the effect of the stress path on the salt strength the applied 

distortional strain energy density are fitted as a function of Lode parameter () for 

varied mean strain energy density (Figures 6.7 and 6.8).  The italic numbers in their 

figures represent the magnitudes of mean strain energy density (Wm) where their 

locations in the diagram indicate the corresponding magnitudes of Lode parameter 

and distortional strain energy density at failure (Wd) and at dilation (Wd,d).  

Interpolation between these Wm points allows derivation of the Wd,d and Wd as a 

function of  under selected of Wm (20, 30, 40, 50 and 60 kPa), which can be best 

represented a set of linear equations: 

 Wd     +   (6.18) 

 Wd,d     +  (6.19) 

where , ,  and  are mean strain energy density multipliers and distortional 

strain energy density constants for the salt at failure and at dilation, respectively.  

They are empirically defined as a function of Wm as follows: 

  = 1  Wm + 2  (6.20) 

  = 1  Wm,d + 2  (6.21) 

  = 1  Wm + 2  (6.22) 

  = 1  Wm,d + 2  (6.23) 
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where 1, 2, 1, and 2 are the regression analysis constants of the Lode parameter 

multiplier for failure and dilation criteria.  The parameters 1, 2, 1, and 2 are the 

regression analysis constant of distortional strain energy constant.  Summary of these 

parameters are presented in Table 6.5. 

 By substituting parameters in the equations (6.20) through (6.23)  into 

equations (6.18) and (6.19), the distortional strain energy at failure and dilation 

criteria of salt for 3 and m constant conditions can be represented in the forms of the 

Lode parameter and mean strain energy density as follows: 

 Wd  (1  Wm + 2)   + (1  Wm + 2) (6.24) 

 Wd,d  (1  Wm,d + 2)   + (1  Wm,d + 2) (6.25) 

The strain energy density criterion explicitly considers both octahedral shear stresses 

and strain.  Hence it can describe the salt dilation as affected by stress paths more 

comprehensively than the criteria developed earlier. 
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Figure 6.7  Distortional strain energy density at failure (Wd) as a function of Lode 

parameter () for various mean strain energy density under 3 constant 

(a) and m constant (b) condition.  The numbers denote Wm in kPa for 

each data point.  
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Figure 6.8  Distortional strain energy density at dilation (Wd,d) as a function of Lode 

parameter () for various mean strain energy density under 3 constant 

(a) and m constant (b) condition.  The numbers denote Wm,d in kPa for 

each data point.  
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Table 6.5 Empirical constants for distortional strain energy density at failure and 

dilation criteria. 

  

 

 

  

Stress 

conditions 

At Failure At Dilation 

1 2 1 2 R
2
 1 2 1 2 R

2
 

Constant 

3 
1.04 9.61 3.27 15.87 0.985 0.951 7.35 3.17 11.65 0.965 

Constant 

m 
0.919 7.91 3.12 10.17 0.987 0.863 6.61 2.57 9.07 0.992 



 

 

CHAPTER VII 

DETERMINATION OF SAFE MINIMUM  

STORAGE PRESSURES 

7.1 Fundamental 

 The objective of this chapter is to demonstrate the mechanical stability 

evaluation of storage caverns in the Maha Sarakham salt, as affected by applying 

different strength and dilation criteria developed in the previous chapter.  Two 

simplified geometry and boundary and loading conditions are used: cylindrical cavern 

and spherical cavern.  The factor of safety under different internal (minimum) storage 

pressures are calculated.  Relevant analytical or closed-form solutions are applied to 

determine the stress distribution around the openings. 

7.2 Boundary and loading conditions 

 The two criteria are used here to calculate the factor of safety (FS) of the salt 

at the wall of the cavern.  These include oct -  criterion and Wd –  criterion.  The 

cavern shape discussed here are spherical and cylindrical shapes.  They are located at 

a depth of 500 m.  The cavern configurations, depth and site geology used here 

represent a preliminary design of CAES cavern in the Khorat basin in the northeast of 

Thailand.  The in-situ stress is assumed to be hydrostatic.  Before cavern development 

the salt stress at the casing shoe depth (cs), is defined as: 

 cs = r  h (7.1) 
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where r is specific unit weight of rock salt (21.6 kN/m
3
) adopted from the testing 

results in chapter V, h is depth of overburden.  The maximum cavern pressure is 

defined as 90% of cs.  Three cases with different uniform minimum pressures that 

are commonly used for the salt storage cavern are studied: 10%, 20% and 30% of cs.  

Each case is simulated for the two different cavern shapes.  The input parameters for 

calculation are given in Table 7.1. 

 

Table 7.1 Rock salt properties and loading parameters used in calculations. 

 

 

7.3 Stress distribution around storage caverns 

 7.3.1 Cylindrical cavern 

A cylindrical cavern of radius (a), is placed in a homogeneous, 

isotropic, initially elastic salt mass subjected to a uniform stress field, P0.  The cavern 

wall is supported by a internal pressure Pi.  On the cavern boundary, the salt is in the 

polyaxial stress state where 1  2  3  0, as shown in Figure 7.1.  In the Figure,  

is the maximum principal (tangential) stress, z is the intermediate principal stress and 

is often equal to the vertical in-situ stress along the cavern axis, and r is  

Parameters Values 

Shear modulus, G (GPa) 7.44 

Bulk modulus, K (GPa) 28.4 

Salt unit weight (kN/m
3
) 21.6 

In-situ stress at depth of 500 m, cs (MPa) 10.8 

Pi at 30% cs (MPa) 3.24 

Pi at 30% cs (MPa) 2.16 

Pi at 30% cs (MPa) 1.08 
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Figure 7.1 Stresses at wall of cylindrical cavern in an infinite rock mass. 

  
 

the minimum principal (radial) stress.  They can be calculated by using Kirsch 

solution (Brady and Brown, 1985):  
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For the uniform stress field assumed here Px=Py=Pz=P0:  
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02z P  (7.7) 

where r is radial stress,  is tangential stress, and z is stress along the cavern axis.  

In this case, the stress components at the wall (r=a) are calculated and assumed that 

the salt mass subjects to a hydrostatic stress (P0).  The effect of any internal radial 

pressure (Pi) acting in the hole can be taken into accounted by adding 

2

2

i3r
r

a
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The calculation results for the selected minimum pressures in terms of 

the octahedral shear stress (oct,cs) and distortional strain energy (Wd,cs) at the cavern 

wall of cylindrical cavern are summarized in Table 7.2. 

Table 7.2 Stresses and strain energy density calculation results of cylindrical cavern 

wall for various the internal pressure (Pi) at depth of 500 m. 

Internal pressure (Pi) 
1 

(MPa) 

2 

(MPa) 

3 

(MPa) 

oct,cs 

(MPa) 

Wd,cs 

(kPa) 

10% of cs 20.5 10.8 1.08 7.93 13.81 

20% of cs 19.3 10.8 2.16 6.69 11.56 

30% of cs 18.2 10.8 3.24 5.78 9.98 
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7.3.2  Spherical cavern  

 A spherical cavern with radius (a) is assumed in a homogeneous 

infinite isotropic salt mass subjected to a hydrostatic stress P0, as shown in Figure 7.2.  

An internal pressure Pi uniformly acts on the cavern surface after the excavation.  Due 

to the symmetry of the problem, the stress are only the functions of radius (r).  The 

analytical solution of tangential () and radial (r) can be obtained by (Hoek and 

Brown, 1980): 

)
r

a
)(PP(P

3

3

i003r   (7.8) 

)
r2

a
)(PP(P

3

3

i001 
 (7.9) 

where P0 is the hydrostatic pressure at the casing shoe, Pi is minimum internal gas 

pressure maintain in the cavern.  In this case the stress components are calculated at 

the cavern wall (r=a).  The stress caomponents on the cavern boundary are subject to 

triaxial extension stress condition.  Therefore, the tangential stress represents 1 and 

2, and the radial stress is represents the minor principal stress (3).  The calculation 

results for the selected minimum pressures (Pi is 10%, 20% and 30% of cs) in terms 

of octahedral shear stress and distortional strain energy at the cavern wall are 

summarized in Table 7.3.  
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Figure 7.2 Spherical cavern in an infinite salt mass. 

 

Table 7.3 Stresses and strain energy density calculation results at the wall of cavern 

for various internal pressure (Pi) at depth of 500 m. 

 

7.4 Factors of safety calculation 

 The factor of safety (FS) is used for assessing the stability of cylindrical and 

spherical caverns.  It is defined as the ratio of the maximum strength of material to stress 

occurring in it.  This definition of the factor of safety is used to evaluate stability of the 

cavern wall.  In this study, the oct,f and oct,d criterion is considered to estimate the FS 

under various magnitudes of Pi as shown in Table 7.4 for both cavern shapes.  From the 

results, the FS increases steadily with increasing the internal pressure.  The criterion with 

Internal pressure (Pi) 
 

(MPa) 

r 

(MPa) 

oct,cs 

(MPa) 

Wd,cs 

(kPa) 

10% of cs 15.6 1.08 7.36 8.86 

20% of cs 15.1 2.16 5.24 6.22 

30% of cs 14.5 3.24 4.01 4.76 
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constant 3 gives higher value of FS than that of the criterion with constant m.  Most FS 

values from this criterion signify that the salt caverns still have a stability under various 

internal pressures at the depth of 500 m.   

 On the other hand, the FS calculated from the Wd  -  and Wd,d -  criterion gives 

more conservative results than those of octahedral shear criterion.  The most conservative 

estimation of FS can be obtained by the Wd,d -  criterion.  It shows the FS values lower 

than 1.0 when the internal pressure is less than 2.16 MPa (20% of cs).  The FS results for 

all internal pressures of the Wd and Wd,d criteria are shown in Table 7.5.   

 For the conservative design the surrounding salt is not allowed to dilate during the 

operation period.  Figure 7.3 compares the results of FS calculation for the cylindrical 

cavern calculated from different strength criteria at dilation.  The results of FS on 

spherical storage cavern under different strength criteria at dilation are also presented in 

Figure 7.4.  The FS as a function of Pi (% of cs) for the dilation criteria are summarized 

in Table 7.6.  The comparison indicates that the Wd,d -  criterion with constant m 

provides the most conservative result.  The safe minimum internal pressure is 30% of cs 

for cylindrical cavern and 20% for spherical cavern.      
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Table 7.4 Factors of safety at cavern wall  based on oct,f -  and oct,d -  criterion. 

 

Table 7.5 Factors of safety at cavern wall based on Wd -  and Wd,d -  criterion. 

 

 

 

 

 

 

 

 

Cavern 

shapes 

Internal 

pressure (Pi) 

FS = oct,f / oct,cs FS = oct,d / oct,cs 

constant 

[3] 

constant 

[m] 

constant 

[3] 

constant 

[m] 

Cylindrical 

cavern 

10% of cs 1.31 1.16 1.12 0.96 

20% of cs 1.55 1.38 1.33 1.14 

30% of cs 1.79 1.59 1.54 1.32 

Spherical 

cavern 

10% of cs 1.85 1.46 1.56 1.31 

20% of cs 2.60 2.05 2.19 1.84 

30% of cs 3.40 2.68 2.87 2.41 

Cavern 

shapes 

Internal 

pressure (Pi) 

FS = Wd / Wd,cs FS = Wd,d / Wd,cs 

constant 

[3] 

constant 

[m] 

constant 

[3] 

constant 

[m] 

Cylindrical 

cavern 

10% of cs 0.97 0.83 0.81 0.72 

20% of cs 1.16 0.99 0.96 0.86 

30% of cs 1.34 1.15 1.12 1.00 

Spherical 

cavern 

10% of cs 1.23 0.76 1.00 0.67 

20% of cs 1.75 1.09 1.42 1.00 

30% of cs 2.29 1.42 1.85 1.25 
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Figure 7.3 Factors of safety (FS) for cylindrical cavern as a function of internal 

pressure (Pi) for different strength criteria at dilation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4 Factors of safety (FS) for spherical cavern as a function of internal 

pressure (Pi) for different strength criteria at dilation. 
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Table 7.6 Summary of FS as a function of Pi (% of cs) for dilation criteria. 

 

 

7.5 Evaluation of minimum storage pressures  

 From the previous section the Wd,d -  with constant m criterion is the most 

conservative approach used in stability analysis.  Using this strength criterion for the 

FS calculation should provide the lower values of FS than other strengths criteria.  

This section demonstrates the safe minimum storage pressures for CAES at various 

depths from ground surface: 300 m, 500 m, 800 m, and 1200 m.  Both cavern shapes 

are used.  The stresses, distortional strain energy density, and FS around these 

openings are summarized in Table 7.7 for the cylindrical cavern and in Table 7.8 for 

the spherical cavern.  Figures 7.6 and 7.7 Plot the FS values as a function of cavern 

depths (measured at the casing shoe).  As the depth increases the safe minimum 

storage pressures increase, which suggests that the salt strength do affect the designed 

minimum storage pressures of the salt caverns.      

  

Cavern shapes Dilation criteria Conditions FS 

Cylindrical 

cavern 

oct,d -  
Constant [3] FS = 0.0208Pi + 0.913 

Constant [m] FS = 0.0179Pi + 0.784 

Wd,d -  
Constant [3] FS = 0.0155Pi + 0.652 

Constant [m] FS = 0.0138Pi + 0.580 

Spherical cavern 

oct,d -  
Constant [3] FS = 0.0653Pi + 0.901 

Constant [m] FS = 0.0548Pi + 0.756 

Wd,d -  
Constant [3] FS = 0.0429Pi + 0.566 

Constant [m] FS = 0.0289Pi + 0.381 
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Table 7.7 Summary results of cylindrical cavern for various depth and the internal 

pressure (Pi). 

Depths 

(m) 

Pi 

(MPa) 
1 

(MPa) 

2 

(MPa) 

3 

(MPa) 

Wd,cs 

(kPa) 

Wd,d 

(kPa) 
FS 

300 

0.65 12.30 6.47 0.65 2.29 3.84 1.67 

1.29 11.65 6.47 1.29 1.81 3.84 2.12 

1.94 11.01 6.47 1.94 1.39 3.84 2.76 

2.59 10.36 6.47 2.59 1.02 3.84 3.76 

3.24 9.71 6.47 3.24 0.71 3.84 5.42 

500 

1.08 20.50 10.79 1.08 6.37 5.01 0.79 

2.16 19.42 10.79 2.16 5.04 5.01 1.00 

3.24 18.34 10.79 3.24 3.86 5.01 1.30 

4.32 17.27 10.79 4.32 2.83 5.01 1.77 

5.40 16.19 10.79 5.40 1.97 5.01 2.55 

800 

1.73 32.80 17.27 1.73 16.31 7.88 0.48 

3.45 31.08 17.27 3.45 12.89 7.88 0.61 

5.18 29.35 17.27 5.18 9.87 7.88 0.80 

6.91 27.62 17.27 6.91 7.25 7.88 1.09 

8.63 25.90 17.27 8.63 5.04 7.88 1.56 

1200 

2.59 49.21 25.90 2.59 36.71 13.75 0.37 

5.18 46.62 25.90 5.18 29.00 13.75 0.47 

7.77 44.03 25.90 7.77 22.21 13.75 0.62 

10.36 41.44 25.90 10.36 16.31 13.75 0.84 

12.95 38.85 25.90 12.95 11.33 13.75 1.21 
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Table 7.8 Summary results of spherical cavern for various depth and the internal  

pressure (Pi). 

 

Depths 

(m) 

Pi 

(MPa) 
1 

(MPa) 

2 

(MPa) 

3 

(MPa) 

Wd,cs 

(kPa) 

Wd,d 

(kPa) 
FS 

300 

0.65 9.39 9.39 0.65 1.72 2.68 1.56 

1.29 9.06 9.06 1.29 1.36 2.68 1.97 

1.94 8.74 8.74 1.94 1.04 2.68 2.57 

2.59 8.42 8.42 2.59 0.76 2.68 3.50 

3.24 8.09 8.09 3.24 0.53 2.68 5.04 

500 

1.08 15.65 15.65 1.08 4.78 3.67 0.77 

2.16 15.11 15.11 2.16 3.78 3.67 0.97 

3.24 14.57 14.57 3.24 2.89 3.67 1.27 

4.32 14.03 14.03 4.32 2.12 3.67 1.73 

5.40 13.49 13.49 5.40 1.48 3.67 2.49 

800 

1.73 25.04 25.04 1.73 12.24 6.09 0.50 

3.45 24.17 24.17 3.45 9.67 6.09 0.63 

5.18 23.31 23.31 5.18 7.40 6.09 0.82 

6.91 22.45 22.45 6.91 5.44 6.09 1.12 

8.63 21.58 21.58 8.63 3.78 6.09 1.61 

1200 

2.59 37.55 37.55 2.59 27.53 11.07 0.40 

5.18 36.26 36.26 5.18 21.75 11.07 0.51 

7.77 34.96 34.96 7.77 16.65 11.07 0.66 

10.36 33.67 33.67 10.36 12.24 11.07 0.90 

12.95 32.37 32.37 12.95 8.50 11.07 1.30 
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Figure 7.5 Factors of safety (FS) of cylindrical cavern as a function of cavern depths 

for different storage pressures (Pi). 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6 Factors of safety (FS) of spherical cavern as a function of cavern depths 

for different storage pressures (Pi). 



 

 

CHAPTER VIII 

DISCUSSIONS, CONCLUSIONS AND 

RECOMMENDATIONS FOR FUTURE STUDIES 

8.1 Discussions 

 This section discusses the key issues relevant to the reliability of the test 

schemes and the adequacies of the test results.  Comparisons of the results and 

findings from this study with those obtained elsewhere under similar test conditions 

have also been made. 

 The numbers of the test specimens seem adequate, as evidenced by the 

good coefficients of correlation for all test schemes and stress paths.  The minimum 

magnitudes of the 3 and m are limited by the capability of the true triaxial test 

frame.  The minimum magnitudes are governed by the salt mechanical properties that 

relate to the maximum difference between the major and intermediate and/or minor 

principal stresses at failure. 

 The test results in terms of the stress-strain relations and strengths are 

believed to be reliable.  They are agreed reasonably well with the related test results 

on the Maha Sarakham salt obtained by Sriapai et al. (2013) and Sartkaew (2013).  

 A difficulty is the controlling the increases and decreases of the applied 

principal stresses to obtain the desired test schemes and stress paths.  High precision 

pressure transducers and electronic displacement gages are used here while the 

pressures in the hydraulic load cells are manually controlled.  Results of the 
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specimens that are subjected to the stresses that deviate for the designed schemes have 

been discarded.   

 The strengths and strain energy densities required to fail the specimens for 

the condition of constant 3 are always greater than those under constant m 

condition.  This is true for all test schemes and confinements. 

 The specimens size used in this study are relatively small.  Recognizing 

the size effects on the rock strengths (Jaeger et al., 2007), larger specimens should be 

used.  In summary the strengths obtained here under all test schemes would 

overestimate the strength of the salt under in-situ condition due to the scale effect.  

Nevertheless, the issue of the size effect would not change the main conclusions 

drawn here that the salt strengths increase with the Lode parameter and that salt 

loaded under constant 3 condition would yield greater compressive strength than that 

under constant m condition. 

 The loading rate used in this study is relatively high as compared to those 

of the salt around the storage caverns.  The loading rate here complies with that of the 

ASTM (D7012-04) standard practice (0.1 MPa/s).  It is recognized that rock under 

high loading rate would give higher strength and stiffness than that under lower 

loading rates (Kumar,  1968; Jaeger and Cook, 1979; Farmer, 1983; Cristescu and 

Hunsche, 1998; Fuenkajorn et al., 2012).  As a results the salt strengths and their 

corresponding criteria derived here may also over-estimate those of the in-situ salt 

where it is likely to subject to much lower loading rates.  

 It should be note that the effects of temperatures have not been considered 

to determine the safe minimum storages pressure in the previous section.  It has been 

recognized that the temperature can decrease the salt strengths (Hansen and Carter, 
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1980; Liang et al., 2006; Fuenkajorn et al., 2012).  The calculation of the factor of 

safety presented here is under ambient and isothermal condition.  The results may 

therefore overestimate the salt strengths around the storage cavern if it is subject to 

elevated temperatures resulting from the fluctuation of the cavern pressures during 

operation.  

 The strain energy density determined here is by assuming that the stress-

strain relations are linear.  In reality, however, non-linear behavior has been observed 

for all test schemes and stress paths, in particular for the salt under large 3 and m 

magnitudes.  As a result the strain energy determined here is likely to underestimate 

the energy that the in-situ salt can absorb before dilation and failure.  This makes the 

application of the strain energy criterion to the stability evaluation even more 

conservative. 

 The advantage of the application of the stain energy criterion over the 

octahedral shear-mean stress criterion is that it considers both stress and strain at 

failure, and hence their results would be more comprehensive than the octahedral 

shear-mean stress criterion. 

 The effect of 2 on the salt strength are obvious as explicitly shown by 

octahedral shear strength-Lode parameter relation (see Figures 6.2 and 6.3) and by the 

strain energy density at failure-Lode parameter relation (see Figure 6.7).  The increase 

of 2 results in a reduction of the salt strength, which agrees with the experimental 

results obtained by Mogi (1967), Handin, et al. (1967), Furuzumi and Sugimoto 

(1986), Takahashi and Koide(1989), Kwasniewski and Mogi (1990), Pobwandee 

(2010) and Komenthammasopon (2014).  This is true for both constant 3 and 

constant m loading conditions.  A possible explanation is that when the salt is subject 
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to high principal stresses in two direction, it tends to dilate and eventually create 

extension failure with the fracture planes parallel to those two directions. 

 For the stress path issues, it is clear from the test results that under 

constant m condition the salt tends to fail easier than when it is under constant 3 

condition.  This could be explained by that when the 2 and/or 3 decrease as the 1 

increases the salt can dilate along the 2 and/or 3 directions easier than when it is 

subject to constant confinement while 1 is increased.  Note that the constant m 

condition is likely to be the  same with the conditions imposed on the rock salt when a 

mine opening or cavern is developed. 

 The proposed criteria (both octahedral shear stress and strain energy 

density) are capable of determination of the safe minimum storage pressures in the 

salt cavern.  It is not intended here that the dilation associated criteria are better than 

the strength criteria.  Depending on the site-specific requirements and load 

regulations, the safe minimum storage pressures may be defined by any criteria.  

Design consideration used in the storage industry normally include both long-term 

mechanical stability and storage capacity. 

 Calculation of the FS for the cylindrical and spherical caverns clearly 

indicates that the stress distribution around the caverns in salt mass is likely to be 

polyaxial compression and triaxial extension rather than triaxial compression as used 

in the conventional laboratory test scheme.  This enhances the significance of the 

loading configurations in the laboratory that should represent the actual in-situ 

conditions, such as polyaxial and triaxial extension as performed in the study.       
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8.2 Conclusions 

 All objectives and requirements of this study have been met.  The results of 

the laboratory testing and analyses can be concluded as follows: 

 The effect of stress path on the rock salt strength can be observed from the 

relations of the octahedral shear stresses as a function of mean stresses (Figure 5.9).  it 

can reduce the salt strength when the salt subjects to constant mean stress condition. 

 Under the same mean stress, the octahedral shear strengths obtained from 

triaxial compression are largest while the triaxial extension yields the lowest values. 

This is true for both under constant 3 and constant m conditions.     

 The direction of fracture plane on the tested specimen trends to be parallel 

to the 2 direction, particularly under high 2 and low 3 magnitudes.  This behavior 

is supported by the post-test observations on the specimens that the triaxial extension 

specimens fails easier than those triaxial compression specimens. (see Figure 5.10).  

 This study proposed two empirical strength criteria, octahedral shear 

strength-Lode parameter and distortional strain energy-Lode parameter.  Both criteria 

can predict the salt strength under various stress conditions by substituting the Lode 

parameter value (see equation 6.1) into the criteria.  The strain energy criterion is 

more conservative as it considers both stresses and strain at failure.  Nevertheless, 

derivation of the strain energy criterion requires a more comprehensive measurements 

of the stress and strain at failure or at dilation during the laboratory testing. 

 The proposed criteria can be applied to conservatively determine the safe 

minimum storage (cushion) pressure of the CAES, LPG and natural gas caverns.        
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8.3 Recommendations for future studies 

 Larger specimen size should be used to enhance the representativeness of 

the test results.  This is invoked by the scale effect that that normally occurs when 

laboratory test results are applied to the in-situ conditions. 

 The results under the polyaxial compression tests should be obtained under 

the broader range of the Lode parameter, i.e. from 1 to +1.  This will provide a more 

rigorous calibration of the empirical constants used in various criteria proposed here. 

 The effect of temperature should assessed in the laboratory.  The 

specimens should be test under the range of temperatures expected to occur in the salt 

around the openings.  

 The proposed criteria may be incorporated into numerical code, and hence 

the factor of safety of the salt domain can be determined directly through there 

algorithm of the program.  In another word the salt strengths automatically calculated 

at individual points around the salt caverns. 

 Different loading rates should be used in the test to assess the rate-

dependent strength of the salt.  The loading rate effects should explicitly include in 

the strength criteria. 

 Verification of the accuracy of the proposed criteria should be made by 

comparing with the actual salt cavern stability.   
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