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CHAPTER I 

INTRODUCTION 

 

1.1 Background 

In plant, nitrogen is a critical limiting element for plant growth and production 

thus it is applied as N­fertilizer to increase yield of important crops. However, the 

excess uses of nitrogen fertilizer have various adverse effects on soil, such as depletes 

water holding capacity, soil fertility and disparity in soil nutrients and water pollution.  

Therefore, a number of microorganisms (bacteria, fungi and algae) are considered as 

beneficial for agriculture and used as bio­fertilizers (Pedraza 2008). Rhizobium is one 

of biofertilizers that can nodulate specific leguminous plants and able to fix nitrogen 

from the atmosphere into the plants themselves. This process is called "Biological 

Nitrogen Fixation" (BNF). Nowadays, the BNF approach becomes a very attractive 

and promising alternative to expensive nitrogen chemical fertilizers. However, the 

number of rhizobia in the soil are low or containing higher number of ineffective 

strain. In order to take advantage of this association of bacteria and leguminous 

plants, it is often necessary to provide suitable legume inoculants to assure effective 

nodulation of leguminous crops. The application of these bacteria to seed or soil is 

called "inoculum" (Burton 1984). 

The key success of having high quality legume inoculant is an effective 

quality control system. The rhizobial strain must be identified and the number of cell 

should be higher than the standard with no contamination (Olsen et al. 1996). 

Therefore, several methods are needed to validate the identity and quantity of specific 
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rhizobia in the inoculant. Nowadays, there are many methods for detection and 

monitoring of rhizobia in quality control procedures, such as microbiological 

techniques, immunological techniques and molecular techniques (Olsen et al. 1996). 

The immunological techniques used widely in quality control procedures to obtain 

information about rhizobial cultures and products.  However, polyclonal antibody is 

very often to have cross­reactivity with other rhizobial strains within the same 

species.  This cross­reactivity may also extend to other rhizobial biovars or species 

and sometimes even to members of other bacterial genera (Olsen et al. 1996).  These 

cross­reactions are the main problem of using polyclonal antibody to detect and 

monitor specific rhizobium.  The hybridoma technology which enabled a defined 

specificity of monoclonal antibodies (mAbs) has been introduced to produce mAbs in 

consistent quality and in large quantities in the laboratory (Kohler et al. 1975). Since 

then, mAbs have been favored as they can be produced in unlimited quantities to 

practically bind to any antigen and are more easily standardized. However, mAbs face 

difficulties in production. The monoclonal antibody producing technology is 

laborious, time consuming, and costly (Ahmad et al. 2012), thus it is difficult to be 

produced and applied in agriculture. 

Comparing to all antibody ­ based methods, phage display technology offers 

an attractive way of producing antibodies against diverse antigens. The phage display 

technique allowed isolation of antibodies directly from diverse repertoires of antibody 

genes. These antibody genes are expressed on the surface of filamentous 

bacteriophage as fusion proteins (Smith 1985, McCafferty et al. 1990, Smith et al. 

1997). Recently, the technology has been improved through recombinant DNA 

technology and antibody engineering whereby antibody genes can now be cloned and 

expressed successfully as a fragment in many expression systems such as, bacteria 
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(Skerra et al. 1988), mammalian cell and yeast (Ho et al. 2006), plant (Galeffi et al. 

2006), and also insect cells (Choo et al. 2002). One advantage of this new technology 

is that they could retain the intact antigen binding site (paratope) while reducing the 

size of the antibody molecule. In addition, the combination of small antibody 

molecule together with the efficient microbial production systems can finally lead to 

the production of a homogenous protein in sufficient amounts for diagnostic and 

therapeutic purposes as well as in structural studies (Ahmad et al. 2012). 

Bradyrhizobium sp. DOA9, a non­photosynthetic bradyrhizobial strain was 

isolated from Aeschynomene americana L. in Thailand. Previous study based on 

phenotypic characteristics and sequence analysis of 16sRNA and 3 housekeeping 

genes (dnaK, recA, glnB) confirming that this strain is closely related to B. 

yuanmingense. This strain has board host range and be able to nodulate several 

legumes and colonize rice plant (Noisangiam et al. 2012). Thus, this strain has great 

potential in inoculant production for bio­fertilizers. 

Thus, it is interesting to develop antibody specific to Bradyrhizobium sp. 

DOA9 by using engineering antibody through phage display technique to reduce the 

problem of cross­reaction occurring from polyclonal antibody or difficulty in 

monoclonal antibody production. 

 

1.2 Research objectives 

To construct a recombinant single­chain variable fragment antibody (scFv) 

against nitrogen fixing bacteria Bradyrhizobium sp. DOA9 for agricultural 

application. 



4 
 

Specific objectives for this thesis are: 

1. To construct a phage displayed single chain fragment variable (scFv) 

antibodies from rabbit immunized with nitrogen fixing bacteria Bradyrhizobium sp. 

DOA9. 

2. To affinity select phage displayed scFv antibodies which are specific to 

Bradyrhizobium sp. DOA9 by bio­panning from naïve human antibody and 

immunized rabbit antibody constructed from step 1. 

3. To verify the selected single chain fragment variable (scFv) for the 

detection of Bradyrhizobium sp. DOA9 in different agricultural processes. 
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CHAPTER II 

LITERATURE REVIEWS 

 

2.1 Biological Nitrogen Fixation (BNF) 

In nature, some prokaryotes can convert atmospheric nitrogen into a form that 

plants can use. They utilize the nitrogenase enzyme to catalyze the conversion of 

atmospheric nitrogen (N2) to ammonia (NH3). This process is called biological 

nitrogen fixation (BNF). They consist of aquatic organisms, such as cyanobacteria, 

free­living soil bacteria, such as Azotobacter, bacteria that form associative 

relationships with plants, such as Azospirillum, and most importantly, bacteria 

Rhizobia, such as Rhizobium and Bradyrhizobium that form symbioses with legumes 

and other plants (Sessitscha et al. 2002). 

The enzyme nitrogenase catalyzes the breaking of hydrogen bond and the 

addition of three hydrogen atoms to each nitrogen atom. Microorganisms that fix 

nitrogen require 16 moles of adenosine triphosphate (ATP) to reduce each mole of 

nitrogen. They obtain this energy by oxidizing organic molecules. Non­photosynthetic 

free­living microorganisms must obtain these molecules from other organisms, while 

photosynthetic microorganisms, such as cyanobacteria, use sugars produced by 

photosynthesis. The symbiotic nitrogen­fixing microorganisms obtain these 

compounds from their host plants (Bhattacharjee et al. 2008). 
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 2.1.1 Rhizobia 

Rhizobia are the general name given to a diverse group of soil bacteria 

which are able to symbiosis with leguminous plants. They are gram­negative 

chemoheterotrophic organotroph bacilli that live freely in the soil. Rhizobia could 

form the specialized organs, called nodules, on roots or stems of leguminous hosts. 

The nodule inside bacteria could convert atmospheric nitrogen into ammonia, 

providing the nitrogen requirements of both rhizobia and their host plants. In feedback 

way, the plant feeds sugars, proteins, and oxygen for the bacteria (Sessitscha et al. 

2002). 

In the past, rhizobia were divided into two groups depending on growth 

rate: Rhizobium and Bradyrhizobium. The firstly genus, Rhizobium is the fast­growing 

acid producers that develop pronounced turbidity in liquid media within 2­3 days and 

have a mean doubling time of 2­4 h. The cells are motile by two to six peritrichous 

flagella. They can grow on a wide range of carbohydrates, but usually grow best on 

glucose, mannitol, or sucrose. This group is generally effective on temperate legumes. 

The second genus, Bradyrhizobium, is emerged as the genus of the slow­growing and 

alkaline­producing rhizobial strains. They are the slow­growing, alkali­producing 

rhizobia, collectively known as bradyrhizobia. They require 3­5 days to produce 

moderate turbidity in liquid media and have a mean doubling time of 6­8 h. Most 

strains in this group grow best with pentoses as their carbon source. The cells are 

motile by a single polar or subpolar flagellum. A large genera of tropical legume 

species are nodulated by bradyrhizobia (Somasegaran et al. 1994). 

The classification and taxonomy of rhizobia is becoming increasingly 

complex and is revised periodically because of new findings that propose new genera 

and new species. DNA homology values, guanine­cytosine (GC) content, sequence 
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homologies of multiple loci (such as small subunit ribosomal RNA gene (16S rDNA), 

house­keeping genes and symbiotic genes), locations of symbiotic genes and 

phenotypic characteristics provide more and deeper information for the classification 

of rhizobia (Pongsilp 2012). 

To date, rhizobia have been classified into six genera, including 

Azorhizobium, Bradyrhizobium, Mesorhizobium, Allorhizobium, Sinorhizobium, and 

Rhizobium (Martinez­Romero et al. 2000, Teamroong et al. 2006, Pongsilp 2012). 

The current genera of Rhizobiaceae are summarized in Table 2.1 

 

 2.1.2 Rhizobial antigens 

 Antigens of rhizobia can be categorized into somatic, flagella, and 

capsular, depending on their derivation. Somatic antigens are closely related to the 

rhizobial cell wall and are usually designated by the letter O. Some somatic antigens 

may be tightly bound to the cell wall, in which case they are not removed by washing 

of the cells. Therefore, these antigens are only detected when whole cells of rhizobia 

react with the antibody, as in agglutination or immunofluorescence. The somatic 

antigens that are soluble and easily removed by washing are detected by precipitation 

in gel. Somatic antigens are also heat stable. They are the most specific of the three 

groups of antigens. 

 The precipitating "internal antigens" are more widely shared and 

taxonomically significant. These are released from cells having fragile or broken 

walls. Because internal antigens are widely cross­reactive within and between species, 

they require recognition and interpretation in gel immune­diffusion. 
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Table 2.1 Current taxonomy of rhizobia (Martinez­Romero et al. 2000). 

 

Genus 
 

Species 
 

Host 
 

Allorhizobium 
 

A. undicola 
 

Nepunia natans 

Azorhizobium A. caulinodans Sesbania rostrata 

Bradyrhizobium B. elkanii 
B. japonicum 
B. liaoningense 

Glycine max 
G. max 
G. max 

Mesorhizobium M. amorphae 
M. cicero 
M. huakuii 
M. loti 
M. mediterraneum 
M. plurifarium 
M. tianshanse 

Amorpha fructicosa 
Cicer arietinum 
Astragalus 
Lotus japonicas 
C. arietinum 
Acacia, Leucaena 
Glycyrrhiza, Sophora, Glycine and 
others 

Rhizobium R. etli 
R. galegae 
R. gallicum 
R. giardinii 
R. hainanense 
 
R. huantlense 
R. leguminosarum 
R. mongolense 
R. tropici 

Phaseolus vulgaris, Mimosa affinis 
Galega 
P. vulgaris 
P. vulgaris 
Stylosanthes, Centrocema, 
Desmodium, 
Tephrosia 
S. herbacea 
Vicia, Trifolium 
Medicago ruthenica, P. vulgaris 
P. vulgaris, Leucaena 

Sinorhizobium S. arboris 
S. fredii 
S. kostiense 
S. medicae 
S. meliloti 
S. saheli 
S. terangae 
S. xinjiangense 

A. senegal, Prosopis chilensi 
G. max 
A. senegal, P. chilensis 
Medicago spp. 
M. sativa 
Sesbania 
Sesbania, Acacia 
G. max 

 

 The flagella of the rhizobia are also antigenic and appropriately called 

flagella or H antigens. They are heat labile and are commonly detected by 

agglutination or immunofluorescence test. The extracellular antigens are surface 
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antigens and are found outside the cell itself. They are usually designated by the letter 

K. 

 

2.2 The methods to detect and monitoring of Rhizobia 

Rhizobia that have dramatic differences in such important traits as host 

specificity, invasiveness, and effectiveness are indistinguishable from each other 

under the microscope. However, the detection and monitoring of rhizobial strain after 

introducing to the field are difficult (Somasegaran and Hoben 1994). 

 

 2.2.1 The microbiological techniques 

 Many morphological characteristics and biochemical and metabolic tests 

are frequently used to differentiate among rhizobial species. These tests include 

vitamin requirements, salt, acid and alkali tolerance, carbohydrate utilization, and 

resistance to antibiotics. Numerical analysis employs a large range of biochemical and 

metabolic tests to differentiate among rhizobial species. The results obtained from 

numerical analysis support the proposal of several novel species of rhizobia. 

Rhizobial species vary in their enzymatic production and several enzymes are found 

to be necessary for the symbiotic effectiveness. Carbohydrate utilization properties 

are of taxonomic significance (Somasegaran and Hoben 1994). 

 The possibility of resistance to low levels of antibiotics also can be used 

for rhizobial strain characterization and identification. When high­density inoculant of 

a rhizobial strain is inoculated into media containing an antibiotic, a few cells may 

exhibit resistance as a result of spontaneous genetic changes or mutations. The 

resistance of a rhizobial strain to a particular antibiotic is a useful marker. If the 

mutant strain is used to inoculate a legume, then nodules occupied by that strain may 
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be identified by plating nodule isolates on media containing the respective antibiotic. 

The mutant rhizobial strain will grow on the antibiotic media and other bacteria will 

be suppressed. Streptomycin resistance is frequently used as a marker for rhizobia. 

Mutants resistant to this aminoglycoside are stable, have a low incidence of cross­

resistance, and infrequently lose their symbiotic capacity. Besides streptomycin, 

spectinomycin and rifampicin have also been used (Olsen et al. 1996). 

 

 2.2.2 The immunological techniques 

 When bacteria (including rhizobia) are injected into a mammal, the animal 

produces antibodies which will bind antigens on the surface of the bacteria. As a 

result of antigen injections, complex immunological reactions result in the animal 

producing special proteins called globular antibodies (immunoglobulins). The study 

of the reactions of the immune serum with the antigens outside the animal is known as 

serology. If the surface antigens on the rhizobia are relatively unique and unshared by 

other microorganisms the binding of the antibodies can be used to both detect and 

identify the target rhizobia. Antigen­antibody reactions are highly specific. The 

antibody reacts only with the antigen that elicited its formation. A variety of method 

based on antibody­antigen reactions and which are useful in the detection of rhizobial 

broth or inoculants have been developed. In rhizobial, both cultured cells and nodule 

antigens (bacteroids) are used for strain identification (Olsen et al. 1983, Somasegaran 

and Hoben 1994, Olsen et al. 1996). 

 Nowadays, several methods have been applied to study the phenotypic 

diversity of rhizobia, particularly numerical analysis, enzyme pattern and serological 

study. Serological techniques are the most specific methods for identifying rhizobia 

based on natural marker characteristics. Phenotypic characterization by serotyping has 
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been used widely to study rhizobial populations in different geographical origins. 

Rhizobia in different serogroups have been found predominant among field 

populations (Pongsilp 2012). 

 

 2.2.2.1 Agglutination 

 The process in which the antigens are linked together by their 

corresponding antibodies is called agglutination. The linked antigens may be 

microscopically or macroscopically visible as clumps, agglutinates or aggregates. The 

agglutination reaction depends on a firm structural relationship between an exposed 

bacterial antigen and the antibody. If the antibodies do not bind to the cells, no 

agglutination occurs. Agglutination is commonly used as a method of identifying 

specific bacterial antigens, and in turn, the identity of such bacteria. The agglutination 

test was one of the first methods to be applied to serological investigations of 

rhizobial bacteria. It is among the simplest of serological techniques to use and it has 

been widely applied in many taxonomic and ecologic investigations (Somasegaran 

and Hoben 1994). 

 Advantages: the agglutination reaction is the simplest of all 

immunological procedures and involves only primary antisera.  No secondary 

antibodies or signal producing labels are needed.  The technique is fast and does not 

require specialized equipment and skill. 

 Limitations: The cross­reactivity between rhizobia is common with 

non­adsorbed primary antisera.  The agglutination test is not as sensitive as other 

immunological tests and does not demonstrate cell viability (Olsen et al. 1996). 
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 2.2.2.2 Precipitation 

 In recent years, the precipitation tests of somatic antigens have 

been used widely for rhizobia. The precipitation reaction occurs when certain soluble 

antigens are brought into contact with the corresponding antibody. Precipitation 

differs from agglutination in that the precipitating antigens are not whole bacterial 

cells (cellular), but are proteins or polysaccharide molecules in solution (Somasegaran 

and Hoben 1994). 

 

 2.2.2.3 Immunodiffusion 

 The somatic antigens of many rhizobium strains diffuse slowly in 

the agar gels; they yield either no precipitin bands or only weak bands close to the 

antigen well since the location of bands is dependent upon the relative concentrations 

of diffusable antigens and antibodies (Somasegaran and Hoben 1994). 

 

 2.2.2.4 Immunofluorescence (IF) 

 One of the most sensitive of the serological methods available to 

study rhizobia is the fluorescent antibody (FA) technique.  It allows for the 

visualization and investigation of the antigens of individual cells with the fluorescent 

microscope and requires only small quantities of both antigen and antibody. In 

contrast both agglutination and immunodiffusion require large amount of antigen and 

antisera to give a visible reaction. 

 Certain chemical dyes such as fluorescein isothiocyanate (FITC) 

and lissamine rhodamine have the property of fluorescing when excited by near UV 

light. Rhizobial antibodies developed in rabbits can be conjugated to these fluorescing 

chemical dyes or fluorochromes. In work with rhizobia, the chemical dye commonly 
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used for labeling the specific antibody is FITC, which has an apple­green 

fluorescence upon irradiation with blue light. 

 There are two types of fluorescent antibody techniques, namely the 

direct and indirect immunofluorescence. In the direct method, the specific antiserum 

is conjugated and is used as a stain in the procedure. This is different from the indirect 

method, where the unconjugated (unlabeled) specific or primary antibody is first 

reacted with the antigen smear, and after sufficient time is allowed for antigen­

antibody reaction, the smear is then washed free of excess antiserum. This step is 

followed by staining with the FITC­labeled secondary antibody. 

 In serological work with rhizobia, the specific or primary antibody 

against the rhizobial strain is most often developed in rabbits. The secondary antibody 

is developed by immunization of goats or sheep with purified rabbit immunoglobulins 

from a previously unimmunized rabbit. Thus, the rabbit immunoglobulin serves as an 

antigen for immunization of the goat or sheep. Therefore, the antibody produced in 

the goat or sheep will not only react with the rabbit antiserum, but will also react with 

rhizobial antigen with specific unlabeled rabbit antibody attached when the indirect 

procedure is employed. Though the results are the same, the indirect method is 

considered more sensitive. The indirect method requires the labeling of only the 

immune serum from the goat or sheep, and involves two reaction steps; the indirect 

method is also known to give more nonspecific staining reactions. In the direct 

method, each rabbit antiserum developed against each rhizobial strain must be 

conjugated (Somasegaran and Hoben 1994, Olsen et al. 1996). 

 Fluorescent antibody (FA) has been applied widely in working 

with rhizobia, such as, used to identify strains of rhizobia, to identify the nodule­

bacteria, to detect doubly infected nodules, to study rhizobium in soil, to study 
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population dynamics of R. japonicum in the rhizosphere, and to make quantitative 

studies of rhizobium in soil. The FA test is rapid and simple but requires fluorescent 

microscopy equipment and special skill (Somasegaran and Hoben 1994). 

 

 2.2.2.5 Enzyme-Linked Immunosorbent Assay (ELISA) 

 Enzyme­linked immunosorbent assay (ELISA) is one of the several 

enzyme immunoassays used in detecting antigens and antibodies. Basically, in an 

enzyme immunoassay, either the antibody or antigen is tagged with an enzyme (e.g., 

alkaline phosphatase). After completing the assay, the presence or absence of the 

enzyme­labeled component is detected by the addition of an appropriate substrate 

(e.g., paranitrophenylphosphate) resulting in a colored product. 

 In direct ELISA, the specific antibody (Abl) developed for a 

particular strain of rhizobia is immobilized in the wells of the plate. Excess unreacted 

Abl is washed off. The rhizobial antigen is then added to the Ab1­coated wells. After 

an incubation period, excess unreacted antigen is removed by washing. This is 

followed by the addition of an enzyme­Abl conjugate, which binds to its specific 

antigen. Excess enzyme Abl is washed off. The substrate is then added and the 

reaction is stopped following incubation; the colored product is measured 

colorimetrically by ELISA reader machine. 

 In indirect ELISA, which is more popular with rhizobial workers, 

the antigen is immobilized first in the wells. This is followed by the addition of Abl, 

incubation, and washing. The next reactant added is enzyme­Ab2 conjugate. Ab2 is 

usually sheep or goat antibody against Ab1. The enzyme­Ab2 conjugate specifically 

binds to Ab1. After addition of the substrate, the reaction is completed as with direct 
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ELISA. In both ELISA approaches, a 96­well plastic microtiter plate (solid support) is 

used to immobilize the antigen or antibody. 

 The advantages of ELISA are requirement very small amounts of 

antiserum and no microscopic equipment is necessary. But, ELISA requires a purified 

antigen preparation, either from culture or from a root­nodule (Somasegaran and 

Hoben 1994, Olsen et al. 1996). 

 

 2.2.2.6 Membrane immunoblot 

 The membrane immunoblot procedure is another enzyme 

immunoassay that has been developed to detect antigen or antibodies (proteins) 

immobilized (bound) onto a membrane support. This technique has been applied in 

inoculant quality control and ecological studies of rhizobia. The rhizobial cells 

(antigens) are blotted or applied onto membranes made of nitrocellulose or nylon. 

After incubating, the membrane­bound antigens with the homologous antibody (Abl) 

solution, and washing to remove excess unbound Abl, the membrane is immersed in a 

solution containing enzyme Ab2. As with ELISA, Ab2 is usually sheep or goat 

antibody against Ab1. Ab2 has been conjugated with alkaline phosphatase enzyme 

and binds specifically to Ab1. The assay is completed by the addition of substrate 

reagents. These reagents are a mixture of 5­bromo­4­chloro­3­ indolyl­phosphate 

(BClP) and Nitro Blue Tetrazolium (NBT). 

 This technique is not complex and requires no specialized 

equipment.  However, like all immunological techniques for identifying rhizobia, the 

results of the spot blot test are only as good as the specificity of the anti­rhizobial 

antisera used.  Also, the test does not demonstrate cell viability (Somasegaran and 

Hoben 1994, Olsen et al. 1996). 
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 2.2.3 The DNA-based techniques 

 Nowadays, the DNA­based techniques have been widely used for 

evaluating the genetic diversity of microorganisms. For rhizobial, the several 

techniques have been employed to examine genotypic diversity of rhizobial 

populations and to discriminate among rhizobial strains. These techniques include 

random amplified polymorphic DNA (RAPD), two­primers RAPD (TP­RAPD), 

repetitive sequence based PCR (rep­PCR) and amplified fragment length 

polymorphism (AFLP). The 3 main techniques of rep­PCR are enterobacterial 

repetitive intergenic consensus (ERIC)­PCR, repetitive extragenic palindromic (REP)­

PCR and BOX­PCR. While RAPD uses a single primer to amplify the segments of 

DNA randomly throughout the genome, rep­PCR uses pairs of primers (for ERIC­and 

REP­PCR) or a single primer (for BOX­PCR) to amplify the intervals between 

conserved repeated sequences present in genome. In AFLP, total genomic DNA is 

digested and then ligated to oligonucleotide adapters. A pair of specific primer is used 

to amplify the product from restriction. RAPD, rep­PCR and AFLP are suitable for 

distinguishing strains at species or below levels but they are less valuable for 

taxonomic purpose. TP­RAPD has been developed for taxonomic purpose as the 

patterns of strains in the same species have been found to be identical. The TP­RAPD 

patterns supported the proposal of novel species of rhizobia (Pongsilp 2012). 

 Polymerase chain reaction­restriction fragment length polymorphism 

(PCR­RFLP) is used in determining the genetic relationships based upon PCR and 

restriction analysis. Specific genes, such as small subunit ribosomal RNA gene (16S 

rDNA), large subunit ribosomal RNA gene (23S rDNA), 16S­23S rRNA intergenic 

spacer (IGS) and symbiotic genes have been used in PCR­RFLP. The PCR­RFLP 

profile is used to estimate the genetic diversity of microorganisms. The PCR­RFLP 
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method has been used successfully in the differentiation of rhizobial species (Pongsilp 

2012). 

 Restriction fragment length polymorphism (RFLP) also has been used to 

examine the genotypic diversity of bacteria. The technique is based on restriction 

analysis and hybridization, resulting in the fingerprint patterns. For rhizobia, 

symbiotic genes have been frequently used as probes for hybridization. Based on the 

same approach, the insertion sequences (ISs) can be used as probes, resulting in the 

patterns termed as “IS fingerprints”. The use of ISs as probes for hybridization can 

provide high­resolution fingerprints of rhizobial strains. The ISs have been found to 

be abundant in rhizobia. The distribution of ISs varies widely in both IS type and copy 

number. Several ISs are specific to rhizobial species (Pongsilp 2012). 

 The identification of bacteria based on phenotypic characteristics is 

generally not accurate because several species are very difficult to be distinguished 

phenotypically. F rhizobia, the current classification is mainly based on DNA 

sequences [especially a DNA sequence encoding small subunit ribosomal RNA (16S 

rDNA)], DNA homologies, phylogenetic relationships and the locations of symbiotic 

genes. The 16S rDNA is very useful for estimating the evolutionary relationships and 

identifying bacteria. For bacterial identification, 16S rDNA sequencing is particularly 

important in the case of bacteria with unusual phenotypic profiles, rare bacteria, slow­

growing bacteria, uncultivable bacteria and culture­negative infections. The most 

dramatic progress in microbial phylogeny and taxonomy is based on sequence 

analysis of 16S rDNA. These sequences mainly support the proposal of novel genera 

and species of rhizobia. In some cases, several genera are identical in 16S rDNA 

sequence analysis. The other regions, such as large subunit ribosomal RNA gene (23S 

rDNA) as well as intergenic spacer between 16S and 23S rRNA sequences (16S­23S 
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IGS), are suitable alternatives for classification and identification purposes. 

Multilocus sequence analysis (MLSA), which employs a set of nucleotide sequences 

including 16S rDNA, house­keeping genes and symbiotic genes, has the greater 

potential for rhizobial classification. Currently, sequence analysis is the most 

promising and useful method for identification of rhizobial genera (Pongsilp 2012). 

 

2.3 Phage display technology as possible tool to detect and monitor 

rhizobia 

 2.3.1 Recombinant antibody 

 An antibody (Ab), also known as an immunoglobulin (Ig), is a large Y­

shape protein produced by plasma cells that is used by the immune system to identify 

and neutralize foreign objects such as bacteria and viruses. The antibody recognizes a 

unique part of the foreign target, called an antigen. Each tip of the "Y" of an antibody 

contains a paratope (a structure analogous to a lock) that is specific for one particular 

epitope (similarly analogous to a key) on an antigen, allowing these two structures to 

bind together with precision. Using this binding mechanism, an antibody can tag a 

microbe or an infected cell for attack by other parts of the immune system, or can 

neutralize its target directly (for example, by blocking a part of a microbe that is 

essential for its invasion and survival). The production of antibodies is the main 

function of the animal immune system. 

 Immunoglobulin G (IgG) is an antibody isotype. It is a protein complex 

composed of four peptide chains­two identical heavy chains and two identical light 

chains arranged in a Y­shape typical of antibody monomers. Each IgG has two 

antigen binding sites. Immunoglobulin G (IgG) is a heterotetrameric molecule 



19 
 

consisting of two heavy and two light chains, respectively, which are connected via 

disulfide bonds. Heavy and light chains (HC and LC) also contain intramolecular 

disulfide bonds for stabilization (Edelman 1973). IgG is the most abundant antibody 

isotype found in the circulation, approximately 75% of serum immunoglobulins in 

humans. 

 These structural properties require a sophisticated folding apparatus as 

well as an oxidizing environment for the generation of disulfide bonds. Consequently, 

many traditionally expression hosts do not provide these mechanisms for efficient 

production of IgGs. Therefore, smaller antibody fragments have been developed 

which combine easier production with full antigen binding capacity of an IgG 

(Frenzel et al. 2013). 

 Recently, the technology has been improved by recombinant DNA 

technology and antibody engineering whereby antibody genes can now be cloned and 

expressed successfully as a fragment in bacteria (Skerra and Plückthun 1988), on 

mammalian cell and yeast (Ho et al. 2006), plant (Galeffi et al. 2006) and also insect 

cells (Choo et al. 2002). One advantage of this new technology is that they could 

retain the intact antigen binding site (paratope) while reducing the size of the antibody 

molecule. In comparison to the parental antibody, these minimized antibodies have 

several advantages in clinical practices including better tumor penetration, more rapid 

blood clearance, and lower memory times in non­target tissue. It also could lead to the 

expression of the functional antibody and their fusion in bacteria and also allow their 

display on a filamentous phage. In addition, the combination of small antibody 

molecule together with the efficient microbial production systems can finally lead to 

the production of a homogenous protein in sufficient amounts for diagnostic and 

therapeutic purposes as well as in structural studies (Ahmad et al. 2012). 
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Figure 2.1 Recombinant antibody formats for different applications compared to 

IgG. Red and dark red: variable regions; blue: constant regions; green: 

artificial peptide linkers; yellow: dHLX represents amphiphatic helices 

used for dimerization of scFv fragments (Frenzel et al. 2013). 

 

 The recombinant antibody libraries have some type of libraries, naive 

antibody libraries, immune antibody libraries, synthetic antibody libraries, semi­

synthetic antibody libraries. 

 

 2.3.1.1 Naive antibody libraries 

 Non­immune (or naïve) libraries are derived from natural, 

unimmunized, rearranged V­genes of animal or human. (Pansri et al. 2009). Key 

advantages of single­pot repertoires include: (i) isolation of human antibodies to self, 

non­immunogenic or toxic antigens; (ii) a single library can be used for all antigens; 

(iii) short time needed for antibody generation (2­4 rounds of selection in two weeks); 

and (iv) direct isolation of high affinity antibodies when very large repertoires are 

used. Disadvantages of naïve libraries are: (i) low affinity of antibodies isolated from 

small sized libraries; (ii) the time needed to construct large libraries, and (iii) content 
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and quality of the library are influenced by the unequal expression of the V­genes 

repertoire, unknown history of the B­cell donor, and potential limited diversity of the 

IgM repertoire (Azzazy et al. 2002). 

 

 2.3.1.2 Immune antibody libraries 

 In this library, V­genes are derived from the IgG mRNA of B­cells 

from an immunized animal. Immune libraries are advantageous in that antigen­

specific and affinity­matured clones are enriched (Weisser et al. 2009). However, 

disadvantages of immune libraries include: (i) long time required for animal 

immunization, (ii) lack of immune response to self or toxic antigens, (iii) the 

unpredictability of the immune response to the antigen of interest, (iv) a new antibody 

library must be constructed for each antigen (this increases the total time of the 

procedure by 1­3 months), and (v) restrictions in generating human antibodies 

(Azzazy and Highsmith 2002). 

 

 2.3.1.3 Synthetic antibody libraries 

 Synthetic repertoires are libraries in which the antibodies are built 

artificially by in vitro assembly of V, D and J gene segments. Artificial V­genes 

assembly can include introducing a predetermined level of randomization of CDR 

regions into germline V­gene segments (Azzazy and Highsmith 2002, Zhou et al. 

2011). 

 

 2.3.1.4 Semi-synthetic antibody libraries 

 Semi­synthetic libraries combine elements of natural and synthetic 

diversity and often are engineered to increase natural diversity while maintaining a 

certain level of synthetically introduced functional diversity (Zhou et al. 2011). 
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 2.3.2 Single chain fragment variable (scFv) 

 The variable fragment is the smallest unit of immunoglobulin molecule 

with function in antigen­binding activities. An antibody in scFv format consists of 

variable regions of heavy (VH) and light (VL) chains, which are joined together by a 

flexible peptide linker that can be easily expressed in functional form in E. coli, 

allowing protein engineering to improve the properties of scFv such as increase of 

affinity and alteration of specificity (Griffiths et al. 1998). 

 The length of the flexible DNA linker used to link both of the V domains 

is critical in yielding the correct folding of the polypeptide chain. Previously, it has 

been estimated that the peptide linker must span 3.5 nm (35 Å) between the carboxyl 

terminus of the variable domain and the amino terminus of the other domain without 

affecting the ability of the domains to fold and form an intact antigen­binding site. In 

addition to the linker peptides designed de novo, peptide sequences derived from 

known protein structure have been applied to provide a compatible length and 

conformational in bridging the variable domains of a without serious steric 

interference. Apart from the length of the linker, their amino acid composition also 

plays an important role in the design of a viable linker peptide. They must have a 

hydrophilic sequence in order to avoid intercalation of the peptide within or between 

the variable domains throughout the protein folding. Nowadays, the most extensively 

used designs have sequences comprising stretches of Gly and Ser residues which 

meant for flexibility and or together with the charged residues such as Glu and Lys 

interspersed to enhance the solubility (Ahmad et al. 2012). 

 The scFv antibodies have been constructed mainly from hybridoma (Singh 

et al. 2010), spleen cells from immunized mice (Hayhurst et al. 2003, Wang et al. 

2006) and B lymphocytes from human (Reiche et al. 2002, Pansri et al. 2009). The 
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scFv is a non­covalent heterodimer comprised of the VH and VL domains (Skerra and 

Plückthun 1988). For producing, mRNA is first isolated from hybridoma (or also from 

the spleen, lymph cells, and bone morrow) followed by reverse transcribed into cDNA 

to serve as a template for antibody genes amplification (PCR). With this method, 

large libraries with a diverse range of antibody VH and VL genes could be created 

(Pansri et al. 2009). In the scFv construction, most of them are constructed in a VH­

linker­VL orientation (Ahmad et al. 2012).  One of the most popular methods used is 

through PCR assembly which was first described by Horton et al. (1990). In this 

method, it allows the V domains of antibody to be cloned without any prior 

information about the nucleic acid as well as amino acid sequence of the particular 

antibody. Moreover, the V domains of antibody can be combined by in vitro 

recombination directly after the PCR of VH and  VL genes into plasmid (Chaudhary 

et al. 1990) or phagemid (Ahmad et al. 2012). 

 Numerous scFv have been constructed against hapten (Kobayashi et al. 

2005), protein (Dai et al. 2003), carbohydrate (Ravn et al. 2004, Sakai et al. 2007), 

receptor (Galeffi et al. 2006), tumor antigen (Shadidi et al. 2001, He et al. 2002), and 

viruses (Griep et al. 2000, Hu et al. 2005, Saldarelli et al. 2005). All these scFv have 

good potential for use in many fields such as medical therapies and diagnostic 

applications. 

 Nowadays, scFv have been successfully isolated and displayed as 

fragments in various expression systems such as mammalian cell and yeast (Ho et al. 

2006), plant (Galeffi et al. 2006), and also insect cells (Choo et al. 2002). The scFv 

antibody can be expressed as correctly folded and directly active proteins or as 

aggregates requiring in vitro refolding to become active. Depending on the expression 

system, it varies in their ability to fold and secrete the scFv proteins. There are some 
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general regulations to consider on the design of vectors and expression system used 

with the different hosts and each of this host has advantages and disadvantages for the 

production of active antibody (Verma et al. 1998). Nevertheless, the bacterial 

expression system is most often applied for the production of scFv antibody fragments 

compared to the various expression strategies available (Frenzel et al. 2013). 

 

 2.3.3 Page display 

 2.3.3.1 Principle of phage display 

 Phage display was first described by George P. Smith in 1985, 

when he demonstrated the display of peptides on filamentous phage by fusing the 

peptide of interest on to gene III of filamentous phage (Smith 1985). Later, the 

technique was taken further by Greg Winter and John McCafferty at the Laboratory of 

Molecular Biology in Cambridge, UK, and Richard Lerner and Carlos F. Barbas at 

The Scripps Research institute, US, who independently used phage display to build 

large libraries of fully human antibody sequences. They have successfully 

demonstrated that a scFv fragment can be displayed on the phage surfaces as a 

functional protein which retains an active antigen­binding domain capability. This 

work laid the foundation for the development of human antibody based drugs  

(McCafferty et al. 1990). Therefore, this technology could allow rare clones to be 

screened and isolated from a large population of phage using any desirable antigen 

(Ahmad et al. 2012). Phage display is a laboratory platform that facilitates the study 

of protein to protein, protein to peptide, and protein to DNA interactions. Since its 

invention in 1985, phage display has been successfully applied to many different 

fields of research including immunology, cancer research, drug discovery, epitope 

mapping, protein­protein interactions, plant sciences, and infectious diseases, 
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targeting a broad cross­section of protein families. It has also been used to identify 

small peptide ligands and antibodies inhibiting the function of targeted receptors for a 

wide range of applications (Huang et al. 2012). Phage display is now playing a 

significant role for the discovery of peptides and antibodies that may serve as novel 

therapeutics (Nelson et al. 2010, Fjell et al. 2012). 

 Phage display involves the expression of peptides, proteins, or 

antibody fragment on the surface of filamentous bacteriophage. The interested DNA 

sequence is inserted into a location in the phage genome and fused to a gene encoding 

a phage coat protein. The interested protein is expressed or displayed on the surface of 

the phage particle, fused to one of the phage coat proteins. The phenotype of the 

expressed protein is thus linked to its genotype, which is present in the genome of the 

phage.  Using recombinant DNA technology collections of billions of peptides, 

protein variants, gene fragments or cDNA­encoded proteins presented on phage can 

be constructed and surveyed for specific affinity and activity (Bratkovic 2010). 

 

 2.3.3.2 Biology of the filamentous bacteriophage 

 Although T4, T7, and λ phage have been used for phage display, 

the most commonly used  phages are M13 and fd filamentous phage because they do 

not lyse infected bacteria during their life cycle (Huang et al. 2012). 

 Filamentous phages are a large family of bacterial viruses that 

infect many gram­negative bacteria by using the bacterial pili as a receptor. The most 

information about filamentous phages derives from those that infect E. coli: 

fl/M13/fd. They are usually referred to collectively, as Ff phages. These infect E. coli 

containing the F conjugative plasmid. The genomes of above three bacteriophages 

have been completely sequenced and are 98% homologous (Russel et al. 2004). 
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 Structure of the phage particle: The native particle of filamentous 

phages is a thin, cylindrical shape, approximately 7 nm wide and 900nm in length. 

They have a single­stranded DNA genome (6,407base pairs in length) which encodes 

11 genes (Carmen et al. 2002). The gene products are listed in Table 2.2 

 

Table 2.2 Genes and gene products of fl bacteriophage (Webster 1996). 

 

Gene 
 

Amino acid 
 

Function 
 

I 
 

Assembly 
 

348 

II DNA replication 410 

III Minor capsid protein 406 

IV Assembly 405 

V Binding of ssDNA 87 

VI Minor capsid protein 112 

VII Minor capsid protein 33 

VIII Major capsid protein 50 

IX Minor capsid protein 32 

X DNA replication 111 

XI Assembly 108 

 

 The genes are grouped in the genome according to their functions 

in the life cycle of the bacteriophage (Figure. 2). There are three groups of genes 

(Webster 1996). The first group encodes proteins required for DNA replication. They 

consist of three genes (II, V, X). The second group encodes the proteins which make 

up the capsid. They consist of five genes (III, VI, VII, VIII and IX). The third group 

encodes three proteins related in the membrane assembly of the phage. They consist 

of three genes (I, IX, XI) 
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Figure 2.2 The schematic structure of filamentous bacteriophage, the copy number 

of each protein is shown in brackets (Mullen et al. 2006). 

 

 Life cycle: The stages of a phage life cycle are infection, replication 

of the viral genome, assembly of new viral particles, and then release of the progeny 

particles from the host. During phage infection, the pIII end of the phage attaches to 

the F pilus of male E. coli. Then, the pVIII major capsid proteins and other capsid 

proteins integrate into the inner bacterial membrane. The phage ssDNA is translocated 

into the cytoplasm of bacteria. This process requires the presence of the bacterial 

TolQRA protein (Karlsson et al. 2003). Mutations in any one of these genes block the 

uptake of the phage DNA into the cytoplasm. After that, the circular single­stranded 

viral DNA (plus strand) is converted to a double­stranded replicative form (RF) using 

the host cell DNA replication mechanism. The RF is then used to express all of the 

viral genes. The viral gene II product nicks the plus strand of the RF to initiate 

replication. In the initial stages of viral infection the newly synthesized plus strands of 

circular single­stranded DNA are converted to the RF which is used for protein 

synthesis and DNA replication. In the latter stages the synthesized single­stranded 

DNA is bound by the viral gene V protein (gpV­DNA) for viral assembly. The five 

viral structural proteins are synthesized and inserted into the inner membrane of the 
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host cell. The phage­assembly process involves both the gene I protein and the gene 

IV protein which form a pore in the membrane of the host cell from which the viral 

particle is released. The gene VII proteins and the gene IX proteins are assembled 

first. The gene V protein in the gpV­DNA complex is replaced by gpVIII coat as the 

phage is extruded from the host cell. Finally, the gene VI protein is assembled 

followed by gpIII, which terminates phage assembly (Webster 1996, Adda et al. 

2002). 

 

 

Figure 2.3 Life cycle of filamentous phage. Filamentous phage binds to the F pilus 

of a host bacteria cell thorough pIII. Then the host TolA protein starts to 

depolymerize the phage coat, which remain in the inner membrane for 

recycling.  The ssDNA of the phage enters into the cytoplasma, converts 

into dsDNA and starts replication and expression using host enzymes, 

ssDNA and coated pV protein dimers form the precursors of the phage. 

Then pV is replaced by pIII in the chanel formed by pI, pXI, pIV and the 

host thioredoxin; in the meantime, mature phage particles are 

assemblyed and released (Russel et al. 2004, Huang et al. 2012). 
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 2.3.3.3 Phage display vectors and types of phage display systems 

 Phagemids are Ff­phage­derived vectors, containing the replication 

origin of a plasmid. The basic components of a phagemid mainly include the 

replication origin of a plasmid, the selective marker, the intergenic region (IG region, 

usually contains the packing sequence and replication origin of minus and plus 

strands, a gene of a phage coat protein, restriction enzyme recognition sites, a 

promoter and a DNA segment encoding a signal peptide (Azzazy and Highsmith 

2002, Qi et al. 2012). Moreover, phagemids often contain an amber stop codon, to 

allow host specific expression of pIII fusion protein or soluble fusion partner 

(Hoogenboom et al. 1991) and a gene encoding one coat protein that will be fused to 

the foreign DNA that is to be expressed (Barbas et al. 1991, Kang et al. 1991). 

 Phagemids can maintain themselves as plasmids, resulting in the 

expression of the desired protein in the bacteria. However, they lack other genes that 

encode proteins necessary for assembly of phage particle. To get production of viable 

phage, an infection with a helper phage is necessary. The helper phage provides the 

genes for the phage proteins that are missing on the phagemid. The packing signal in 

the helper phage genome has been altered to be less effective, and thus the 

recombinant ssDNA of phagemid is packaged into phage particles using helper phage 

proteins (Bass et al. 1990). 
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Figure 2.4 Phagemid display vector. A “typical” phagemid display vector contains 

origins of replication for double­stranded DNA and ssDNA synthesis 

(plasmid and filamentous phage origins), an antibiotic resistance gene 

providing selection of transformed bacteria and a fusion gene under the 

control of a regulated promoter (Qi et al. 2012). 

 

 There are many different types of phage­display libraries. In most 

cases the recombinant protein is expressed on either gpIII or gpVIII referred to as the 

type 3 and type 8 libraries respectively (Smith and Petrenco.P.A. 1997, Adda et al. 

2002).  There are three general classes of phage display systems. The first is based on 

the natural filamentous phage genome, the ssDNA vector. Libraries constructed by 

introducing foreign DNA inserts into the phage genome will result in the fusion gene 
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product displayed on all the coat proteins. The second system entails the use of 

plasmid vectors, also known as phagemids. Third, a “hybrid system,” which still 

utilizes the phage genome but which contains both a wide­type phage gene and a 

fusion gene, can be employed (Huang et al. 2012). To distinguish between these 

systems based on the expressed protein, Smith coined the terms “3,” “3 3,” and “33,” 

respectively (Smith and Petrenco.P.A. 1997). In the type 3 libraries, a gene insert 

encoding the recombinant protein can be included as a fusion fragment within the 

phage genome such that all copies of gpIII are expressed as a chimera with the foreign 

protein. Alternatively, if the phage genome contains genes for both the wild type and 

recombinant gpIII, then a mixture of recombinant and wild type gpIII molecules are 

produced and incorporated into the viral particles. This system is referred to as type 

33.When the foreign protein is large, as in the case of antibody libraries, the gene 

sequence encoding recombinant gpIII is contained on a phagemid within the phage 

particle.  Helper phage which contain a defective origin of replication, are used to 

produce the wild type phage proteins, such that the resulting phage particle contains 

the phagemid DNA and variable (ie. 0 ­ 5) copies of the recombinant gpIII molecule. 

These are referred to as the type 3+3 libraries. A series of random peptide libraries 

displayed on gene VIII, referred to as type 8 libraries are also available. These parallel 

the type 3 libraries in that they include types 8, 88 and 8+8 (Smith and Petrenco.P.A. 

1997, Bratkovic 2010). 
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Figure 2.5 Types  of phage display systems (Smith and Petrenco.P.A. 1997). 

 

 2.3.3.4 Selection of antibody libraries: “bio-panning” 

 Antibody libraries are screened and enriched for antigen­specific 

clones by a technique known as bio­panning in which phages displaying scFv are 

incubated with an immobilized antigen of interest (Nissim et al. 1994). A selection 

cycle basically contains four stages: (i) incubation of target molecules with a phage 

display library, (ii) washing off unbound phage, (iii) elution of the bound phage, and 

(iv) amplification of the eluted phage. This selection cycle is illustrated in Figure 6. 

Ideally, only one cycle of selection should be required, however the binding of 

nonspecific phage limits the enrichment that can be achieved per cycle. In practice, 

several rounds of selection are necessary (average 2­4 cycles). Several biopanning 

strategies are discussed below. 
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Figure 2.6 Biopanning of a phage display library to select phage binding to an 

immobilized target (Huang et al. 2012). 

 

 Although the principle of biopanning technique is simple, the 

outcome can vary due to multiple factors, such as library complexity, nature of the 

target, binding affinity and avidity, and other multiple experimental parameters. Even 

with an excellent selection strategy, the experiment will fail if the desired 

peptide/antibody is not present in the library. Binding affinity and avidity are other 

factors that need to be taken into consideration (Huang et al. 2012). 

 Selection using immobilized antigens: Phage libraries are selected 

by flowing through an affinity column with the immobilized antigen of interest 

(Clackson et al. 1991). Following washing of the column to remove nonspecific 

clones, specific binders are eluted and amplified in E. coli. Selection can also be 

performed against antigen adsorbed onto plastic surfaces such as immunotubes or 

enzyme­linked immunosorbent assay (ELISA) plates (Marks et al. 1991). 
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Alternatively, antigen may be immobilized on chips of BIAcore sensors (Malmborg et 

al. 1996). 

 It should be noted that selection of the immobilization method must 

take into consideration the conformational integrity of the immobilized antigen. Some 

phage antibodies selected against an adsorbed antigen may not be able to recognize 

the native form of the antigen. One way to circumvent such problem is to employ 

indirect antigen coating through the use of antigen­specific capture antibodies (Sanna 

et al. 1995). 

 

 Selection using antigens in solution: This technique allows solution 

binding and overcomes issues with conformational changes that are encountered upon 

coating antigens on solid surfaces. The use of labeled soluble antigens also allows a 

more accurate quantification of the antigen used during selection and consequently 

enhances the ability to use lower concentrations of the antigen to favor selection of 

high­affinity phage antibodies. Following incubation of phage­antibodies with 

biotinylated antigen, phage bound to the labeled antigen are recovered with avidin or 

streptavidin­coated paramagnetic beads. Specific phages are then dissociated from the 

antigen and characterized (Hawkins et al. 1992). One disadvantages of this technique 

is that antistreptavidin antibodies will also be isolated. However, this problem can be 

resolved by a depletion step using streptavidin­coated beads (Azzazy and Highsmith 

2002). 

 

 Selection on whole cells: Direct selection of antibodies against 

markers on cell surfaces may be carried out on either monolayers of adherent cells or 

on cells in suspension. Unbound phage can be washed away by rinsing tissue culture 

flasks (monolayers) or centrifugation (cell suspension). To optimize the isolation of 
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antigen­specific binders and minimize the binding of irrelevant binders, a 

simultaneous positive and negative selection may be applied. In this approach, a 

competition is set up between a small number of antigen­positive target cells and an 

excess of antigen­negative “absorber” cells to bind antibodies of phage library; the 

absorber cells serve as a sink for the nonspecific adherence of irrelevant binders. A 

fluorescently labeled antibody against an irrelevant antigen present only on the target 

cells is added and FACS (Fluorescence­activated cell sorting) is used to isolate the 

target cells binding the specific phage antibodies (de Kruif et al. 1995). Similar 

approaches can be utilized to identify putative tumor­specific antigens and provide a 

quick high­yield approach for isolating self­replicative antibody fragments directed 

against novel or conformationally dependent cell surface markers. Another group 

subjected a scFv library to three rounds of positive selection on human melanoma 

cells and negative selection on human peripheral blood mononuclear cells (Kupsch et 

al. 1999). Selections may also be carried out on tissue sections as well as whole 

tissues (Azzazy and Highsmith 2002). 

 The advantages of whole­cell phage display are easy to see. In the 

case of when antigen is unavailable or the antigen is not stable under immobilization 

conditions, whole­cell phage display panning is normally the best choice. In addition, 

it is also useful in the discovery of unknown antigens. The biopanning procedure 

typically requires no prior knowledge of the cell surface biomarkers, allowing for the 

isolation of targeting peptides for cell types for which little is known about the 

cellular profile. For whole­cell screening, the cellular targets are identified in a two­

part process. First, peptides or antibodies are first identified by screening whole cells 

against a phage display library. Second, the binding peptides or antibodies are tested 

individually in functionally based screens. In all cases, activity is confirmed in 
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functional assays; one does not need to either purify or identify a particular receptor in 

advance. Since whole cells are used as the affinity matrix, the receptors are likely to 

be in their native conformation, and a large variety of receptors are being screened at 

one time. It should be noticed that the cell surfaces would share a high degree of 

similarity and that the peptides would be recognizing abundant, common receptors. 

Thus, additional negative selections are necessary to avoid unexpected cell specificity 

of selected peptides (Huang et al. 2012). 

 

 The in vivo selection: In this method phage repertoires are directly 

injected into animals and then tissues are collected and examined for phage bound to 

tissue­specific endothelial cell markers as was demonstrated for peptide phage. 

Pasqualini et al. (1996) were the first to isolate phage­displayed peptides that home to 

selective vascular beds in vivo. In vivo panning has several advantages: (i) the isolated 

phage­displayed peptides home selectively to “intact” targets of interest; (ii) an 

inherent blocking step is included where most of the phage­displayed peptides that 

recognize ubiquitous plasma and cell surface proteins are eliminated; (iii) these 

peptides may be useful for the functional analysis of new receptors and potential 

identification of novel drug target candidates because some of the isolated peptides 

have been found to bind to endothelial receptors expressed in the vasculature of 

specific tissues. 

 

 2.3.3.5 Application of phage display 

 Applications for phage-displayed peptide libraries: Phage display 

of random peptides:  Synthetic oligonucleotides with a constant length but with 

unspecified codons, randomized through site­directed mutagenesis using degenerate 
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oligodeoxynucleotides, are cloned as fusions to one of the coat proteins of M13 phage 

where they are expressed as peptide­capsid fusion proteins (Azzazy and Highsmith 

2002). Phage­displayed peptide libraries can be used to isolate peptides that bind with 

high specificity and affinity to virtually any target protein. These binding peptides can 

be used as reagents to understand molecular recognition, as minimized mimics for 

receptors, or as lead molecules in drug design (Sidhu 2000). 

 Mapping antibody epitopes: Fragments of DNA that encode parts 

of the protein antigen are fused to a gene encoding one of the capsid proteins. Phage 

particles displaying antigenic peptides can be used for mapping epitopes of 

monoclonal and polyclonal antibodies (Hill et al. 1996). Phage display libraries of 

random peptides have also proven useful for identifying antibody epitopes in cases in 

which the antigen is not available or even not yet known (Cortese et al. 1994). 

  

 Phage-antibody applications: Phage­displayed recombinant 

antibodies have several advantages over monoclonal antibodies generated by 

hybridoma technology. In comparison to the time­consuming and labor­intensive cell 

screening processes of hybridoma production, antibody genes can be cloned directly 

from spleen cells using rapid recombinant DNA methods. Generation of a large 

natural display library from variable gene repertoires can eliminate animal 

immunization and large­scale cell culture for hybridoma development and allow 

isolation of antibodies with high affinity against any antigen. Phage display is 

particularly useful in cases where monoclonal antibodies could not be obtained by 

classical hybridoma technique such as antibodies against nonimmunogenic or toxic 

antigens. Phage displayed antibodies have stable genetic source. Phage antibody 

technology can also be used to clone and rescue monoclonal antibodies from 
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genetically unstable hybridomas. Phage antibody genes can be easily sequenced, 

mutated, and screened to improve antigen binding. Finally, soluble recombinant 

antibodies (not displayed on phage) can be produced quickly and economically and 

can be used as in vitro diagnostic reagents (Azzazy and Highsmith 2002). 

 Phage display has been used widely for identification of specific 

antibodies against pathogen targets. These targets are generally subdivided into two 

categories: (i) molecular targets, such as replication/cell division enzymes and host­

pathogen virulence factors, and (ii) whole bacterial cells. In comparison with specific 

molecular targets, cell­based screening has the advantage in that it is an assumption­

free strategy with the potential to recognize cell surface structures that may not have 

been considered targets using genomic­based approaches or that have not yet been 

identified. Using live pathogens as the target also has the advantage that all 

“druggable” targets on the cell surface are screened simultaneously in their native 

physiological context, thus allowing for the selection of potential antimicrobial 

activity from the outset. Antigens on the cell surface of pathogens are appealing 

targets for biologics because they provide potential binding sites for molecules to 

interfere with bacterial division (Lock et al. 2008) colonization, and virulence (Rasko 

et al. 2010). Both strategies have been widely applied for developing novel diagnostic 

tools and therapeutic treatments for infectious diseases (Huang et al. 2012). 

 Phage enzymes: Several enzymes have been displayed on M13 

bacteriophages and retained their catalytic activities. These include alkaline 

phosphatase (McCafferty et al. 1991), trypsin (Corey et al. 1993), and β­lactamase 

(Siemers et al. 1996). In theory, any enzyme that can be expressed in E. coli may also 

be displayed on M13 phage. 
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 Phage display libraries based on suitable enzymes can improve 

diagnostics by enhancing the stability and catalytic activities of enzymes, and 

probably enabling the engineering of catalysis that is modifiable by antigen binding. 

 

 Application of phage display technology in detection and 

monitoring of microorganisms: Conventional bacterial detection, diagnostic methods, 

especially pathogenic bacteria and virus, largely rely on microbiological and 

biochemical analysis which can be sensitive but overly time consuming, cost­

ineffective and non­amenable to integration for on­site diagnosis. 

 Today, phage display is recognized as a powerful tool for selecting 

novel peptides and antibodies that can bind to a wide range of antigens, ranging from 

whole cells to proteins and lipid targets. Phage display has been used widely for 

identification of specific peptides and antibodies against pathogen targets. These 

targets are generally subdivided into two categories: (i) molecular targets, such as 

replication/cell division enzymes and host­pathogen virulence factors, and (ii) whole 

bacterial cells. Both strategies have been widely applied for developing novel 

diagnostic tools and therapeutic treatments for infectious diseases. (Huang et al. 

2012). 

 Staphylococcus aureus, one of the most important human 

pathogens, has become a major threat to human health.  Soykut et al. (2008) has used 

a peptide­phage display library to identify peptides binding to Staphylococcal 

enterotoxin B produced by S. aureus, is a pyrogenic toxin responsible for 

staphylococcal food poisoning in humans and has been an attractive choice of 

biological aerosol weapon due to its inherent stability and high intoxication effect. 
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 Listeria monocytogenes is a severe food­borne pathogen that 

causes life­threatening listeriosis. To avoid infection by L. monocytogenes, it is 

important to detect low levels of the pathogen in food samples. Paoli and colleagues 

used phage display to identify a scFv antibody that can only bind to L. monocytogenes 

(Paoli et al. 2004). Later, in 2007, a surface plasmon resonance (SPR) sensor was 

developed based on the scFv antibody by Nanduri et al. (2007). L. monocytogenes­

specific scFv­displayed phage was immobilized on the sensor surface to detect L. 

monocytogenes at a detection limit of 2x106 CFU/ml. The some results about 

application of phage display technique in detection of microorganisms were 

summarized in Table 2.3 
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Table 2.3 The phage display targets of some microorganisms. 

 

Target 
 

Library 
 

Potential application 
 

Reference 
 

Molecule target 
     SEB (staphylococcal enterotoxin B) 
     SEB (staphylococcal enterotoxin B) 
     Staphylococcal enterotoxin A and B 
     Surface layer protein of Campylobacter fetus 
     Lipopolysaccharide (LPS) of Ralstonia 

solanacearum 
     Clostridium difficile toxin B 
     Plasmodium vivax duffy binding protein 
     S. aureus SdrC 
     P. aeruginosa MurA 
     P. aeruginosa MurC 
     Esp and Intimin of Escherichia coli O157:H7 
     Intimin virulence of Escherichia coli 
     Surface epitopes of Phytophthora infestans 
     Bhlp 29.7 protein of Brachyspora 

hyodysenteriae 
     Fumonisin B1 of Fusarium verticillioides 
     H. pylori surface protein 
     Cell wall­bound proteins of  Fusarium  

verticillioides 
     Cell wall­bound proteins of Aspergillus flavus 
     σ 54 factor of Pseudomonas putida 
     Liposaccharide/lipid A 
 
     Lipopolysaccharide (LPS) of Burkholderia 

mallei 
     SapA protein of Campylobacter fetus 
     Protective antigen of Bacillus anthracis 
 
     HrpA of Pseudomonas syringae 
     Botulinum neurotoxin A light chain 

 

 
12­mer peptide library 
ScFv library 
ScFv library 
peptide library 
 
ScFv library 
ScFv library 
ScFv library 
12­mer peptide library 
C7C cyclic peptide, 12­mer peptide library 
C7C cyclic peptide, 12­mer peptide library 
ScFv library 
ScFv library 
ScFv library 
ScFv library 
 
ScFv library 
ScFv library 
ScFv library 
 
ScFv library 
ScFv library 
ScFv libraries, peptide libraries 
 
ScFv libraries 
 
Peptide libraries 
ScFv libraries 
 
ScFv library 
ScFv libraries 

 

 
Anti­S. aureus 
Anti­S. aureus 
Diagnosis 
Anti­C. fetus 
 
Diagnosis 
Diagnosis 
Diagnostics, vaccine design 
Anti­S. aureus 
Anti­P. aeruginosa 
Anti­P. aeruginosa 
Diagnosis 
Diagnosis 
Diagnosis 
Diagnosis 
 
Detection 
Anti­H. pylori 
Detection of Fusarium 
verticillioides 
Detection of Aspergillus flavus 
Detection 
Anti­Gram­negative bacterial 
agents 
Detection of Burkholderia 
mallei 
Detection 
Detection of Bacillus 
anthracis 
Diagnosis 
Anti­botulinum neurotoxin 

 

 
(Soykut et al. 2008) 
(Singh et al. 2010) 
(Liang et al. 2011) 
(Zhao et al. 2012) 
 
(Griep et al. 1998) 
(Deng et al. 2003) 
(Kim et al. 2007) 
(Barbu et al. 2010) 
(Molina­Lopez et al. 2006) 
(El Zoeiby et al. 2003) 
(Kühne et al. 2004) 
(Menezes et al. 2011) 
(Gough et al. 1999) 
(Lobová et al. 2008) 
 
(Lauer et al. 2005) 
(Cao et al. 2000) 
(Hu et al. 2013) 
 
(Xue et al. 2013) 
(Jurado et al. 2012) 
(Griep et al. 1998, Hayhurst 
et al. 2003) 
(Kim et al. 2011) 
 
(Zhao et al. 2012) 
(Wang et al. 2006) 
 
(Yang et al. 2013) 
(Miethe et al. 2014) 
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Table 2.3 (Continued). 

 

Target 
 

Library 
 

Potential application 
 

Reference 
 

     Capsular of Burkholderia pseudomallei 
      
     Pseudonitzchia pungens toxin domoic acid 
     Crf antigen of Aspergillus fumigatus 
     OmpD of Salmonella Typhimurium 
     Shiga toxins (Stxs) of Escherichia coli 
     Ts1 toxin from Tityus serrulatus 
     Staphylococcal enterotoxins of Staphylococcus 

aureus 
     Plasmodium falciparum histidine rich protein 2 
     Toxoplasma gondii MIC2 protein 
     Hepatitis C virus proteins 
 
     Hepatitis A virus antibodies 
     Hepatitis E virus capsid protein 
     Phosphoprotein of Newcastle disease virus 
     H5N1 HA 
     Transmembrane envelope glycoprotein gp46 of 

maedi­visna virus 
     p25 protein of the Maedi­Visna virus 
     Eimeria acervulina surface antigen 
 
     Vesicular stomatitis virus (VSV) nucleocapsid 
     E protein and N protein of severe acute 

respiratory syndrome virus 
     CoV spike protein of severe acute respiratory 

syndrome virus 
 
     Porcine reproductive and respiratory syndrome 

virus­N protein 
     VP2 protein of infectious bursal disease virus 
     S Protein of porcine epidemic diarrhea virus 

 

ScFv libraries 
 
ScFv libraries 
ScFv library 
ScFv library 
ScFv library 
ScFv library 
ScFv library 
 
ScFv library 
ScFv library 
ScFv libraries, peptide libraries 
 
9­mer peptide library 
Antibody library 
ScFv libraries 
Fab library 
ScFv libraries 
 
ScFv libraries 
ScFv libraries 
 
ScFv libraries 
ScFv libraries 
 
ScFv libraries 
 
 
12­mer peptide library 
 
ScFv libraries 
scFv libraries 

 

Detection of Burkholderia 
pseudomallei 
Anti­toxin domoic acid 
Diagnosis 
Diagnosis 
Diagnosis 
Anti­scorpion 
Anti­toxin 
 
Diagnosis 
Against parasite antigens 
Diagnostics, vaccine design 
 
Diagnostics 
Anti­HEV infection 
Anti­virus 
Anti­H5N1 infection 
Diagnosis 
 
Diagnosis 
Diagnostics, vaccine design 
 
Diagnosis 
Diagnosis 
 
Diagnosis 
 
 
Detection of PRRSV 
 
Diagnosis 
Diagnosis 

 

(Kim et al. 2011) 
 
(Finlay et al. 2006) 
(Schütte et al. 2009) 
(Meyer et al. 2011) 
(Neri et al. 2011) 
(Amaro et al. 2011) 
(Chen et al. 2014) 
 
(Leow et al. 2014) 
(Hoe et al. 2005) 
(Bugli et al. 2001, Bugli et 
al. 2009) 
(Larralde et al. 2007) 
(Schofield et al. 2000) 
(Li et al. 2014) 
(Lim et al. 2008) 
(Blazek et al. 2004) 
 
(Celer et al. 2003) 
(Kim et al. 2001, Park et al. 
2005) 
(Cortay et al. 2006) 
(Liu et al. 2004) 
 
(Lee, Leu, Hu, et al. 2007, 
Lee, Leu, Hung, et al. 2007, 
Zhao et al. 2007) 
(Ren et al. 2010) 
 
(Xu et al. 2014) 
(Zhu et al. 2013) 
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Table 2.3 (Continued). 

 

Target 
 

Library 
 

Potential application 
 

Reference 
 

Whole cell target 
     L. monocytogenes 
      
     P. aeruginosa 
     H. pylori 
     Eimeria acervulina merozoite 
     Neisseria meningitides group B 
     Lawsonia intracellularis 
     S. typhimurium 
     Burkholderia mallei 
     Ceratitis capitata 
     Fusarium verticillioides 
     Brucella melitensis 
     Plasmodium falciparum 
     Spores of Bacillus 
 
 
 
     Venezuelan equine encephalitis virus 

(VEEV) 
     Chlamydia trachomatis EBs 
     Eimeria acervulina merozoite 
     Grapevine virus B 
     Tomato spotted wilt virus 
     Infectious haematopoietic necrosis 

virus 
     Foot and mouth disease virus 
     Rabies virus 
     Virulent infectious bursal disease virus 
 
     Severe acute respiratory syndrome 

virus 

 

 
ScFv library 
 
9­mer peptide, 12­mer peptide 
ScFv library 
ScFv library 
ScFv library 
ScFv library 
8­mer peptide library 
ScFv libraries 
ScFv libraries 
ScFv libraries 
ScFv libraries 
ScFv libraries 
ScFv libraries, peptide libraries 
 
 
 
ScFv library 
 
ScFv library 
ScFv library 
ScFv library 
ScFv library 
ScFv library 
 
ScFv library 
scFv library 
scFv library 
 
scFv library 

 

 
Diagnostics of L. monocytogenes 
infection 
Diagnostics of P. aeruginosa infection 
Diagnostics of H. pylori infection 
Diagnostics, vaccine design 
Diagnosis 
Diagnosis 
Diagnostics of S. Typhimurium 
Detection of Burkholderia mallei 
Detection of C.capitata 
Detection 
Diagnosis 
Diagnosis 
Detection of Bacillus species 
 
 
 
Detection of VEEV infection 
 
Detection of C. trachomatis 
Detection of Eimeria acervulina 
Detection of virus 
Detection of virus 
Detection of virus 
 
Detection of virus 
Anti­virus 
Detection of virus 
 
Detection of virus 

 

 
(Nanduri et al. 2007) 
 
(Carnazza et al. 2008) 
(Sabarth et al. 2005) 
(Zhao et al. 2010) 
(Stacy et al. 2003) 
(Dezorzová­Tomanová et al. 2007) 
(Sorokulova et al. 2005) 
(Zou et al. 2007) 
(Monzó et al. 2012) 
(Hu et al. 2013) 
(Hayhurst et al. 2003) 
(Wajanarogana et al. 2006) 
(Zhou et al. 2002, Knurr et al. 2003, 
Turnbough 2003, Williams et al. 2003, 
Brigati et al. 2004, Mechaly et al. 2008, 
Walper et al. 2012) 
(Kirsch et al. 2008) 
 
(Lindquist et al. 2002) 
(Zhao et al. 2010) 
(Saldarelli et al. 2005) 
(Griep et al. 2000) 
(Liu et al. 2014) 
 
(ShengFeng et al. 2003) 
(Pruksametanan et al. 2012) 
(Sapats et al. 2003, Sapats et al. 2005, 
Sapats et al. 2006) 
(Liu et al. 2005) 43 
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CHAPTER III 

MATERIALS AND METHODS 

 

3.1 Materials 

All chemical reagents are molecular biology grade. Yamo1, a human non­

immunized ScFv library, was constructed in laboratory using B­lymphocytes from 

140 healthy people in the Northeastern Thailand (Pansri et al. 2009).  Escherichia coli 

TG1 [(lac-proAB) Sup E thi hrd D5/F’ tra D36 pro A
+
B lacI

q
 lacZΔM15] and 

HB2151 [K12 ara (lac-proAB) thi/F’proA
+

B lacI
q
 lacZΔM15] was obtained from the 

MRC, Cambridge, UK, and used for cloning and amplification of phage, or 

production of soluble ScFv fragments, respectively. The anti­M13/HRP detection kit 

was purchased from Amersham­Pharmacia Biotech (Uppsala, Sweden) and Protein L 

peroxidase HRP will be from Sigma. Bradyrhizobium sp. DOA9 was isolated from A. 

americana L. in Thailand in our laboratory (Noisangiam et al. 2012). 
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3.2 Instruments 

These are all instruments that we used in this work. 

 

Table 3.1 Instruments and brands. 

 

Instrument 
 

Brand 
 

Autoclave 
 

Hiclave HA­3000MIV, Hirayama, Japan 

Balance Precisa 205A, Precisa Instruments, Switzerland 

Precisa 3000C, Precisa Instruments, Switzerland 

Centrifuge machine Sorvall RC5C plus, Kendro laboratory Products, USA 

Eppendrof centrifuge 5810 R, Eppendrof, USA 

Deep freezer ­70 OC Heto, Ultra Freeze, Denmark 

ELISA reader Sunrise, TECAN, Austria 

Electroporator Eppendrof 2510, Eppendrof, USA 

Freezer ­20 OC Heto, HLLF 370, Denmark 

MyBio LFT420, DAIREI, Denmark 

Gel Document set White/Ultraviolet Transilluminator GDS7500, UVP, USA 

Digital Graphic Printer UP­D890, Sony, Japan 

Gel dryer Drygel sr. SLAB GEL Dryer model SE1160, Hoefer 
Scientific Instruments, USA 

Gel electrophoresis apparatus Mini Protean® 3 cell, BioRad, USA 

Heat Box HB1, Wealtee Corp., USA 

Incubator shaker C24 Incubator shaker, New Brunswick Scientific, USA 

Incubator Memmert, BE 500, WTB Binder BD115, Shel­Lab 2020 
Low Temperature Incubator, Sheidon, USA 

Laminar hood Holten LaminAir HBB 2448, Denmark 

BH2000 Series ClassII Biological Safety Cabinets 

BHA120 & BHA180, Clyde­Apac 

Membrane transfer machine Semi Phor, Hoefer Scientific instruments, USA 
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Table 3.1 (Continued). 

 

Instrument 
 

Brand 
 

Microcentrifuge 
 

Mini spin plus, Eppendrof, USA 

Eppendorf 54154, Eppendorf, Germany 

pH meter Ultra Basic pH meter, Denver Instruments, Germany 

PCR machine DNA Engine PTC 200 peltier Thermal cycler, MJ Research, 
USA 

Rotator Certomat TCC, B. Braun Biotech International, Germany 

Sequencing machine ABI prism model 310 Genetic Analyzer, Applied Biosystems, 
USA 

Shaker Innova 2300 platform shaker, New Brunswick Scientific, UK 

Certomat TC2, B. Braun Biotech International, Germany 

Sonicator Waken GE100 Ultrasonic processor, Japan 

Spectrophotometer Ultrospec 2000, Pharmacia biotech, UK 

Stirrer Variomag Electronicrührer Poly 15, Germany 

Magnetic stirrer MSH300, USA 

Thermomixer Thermomixer compact, Eppendrof, USA 

Vortex Vortex­Genie 2 G506, Scientific Industries, USA 

 

3.3 Methods 

 3.3.1 Rabbit immunization with Bradyrhizobium sp. DOA9 

 3.3.1.1 Antigen preparation 

 Rabbits were selected for immunization. Rabbit antiserum was 

developed against Bradyrhizobium sp. DOA9 as described previously (Somasegaran 

and Hoben 1994).  The Bradyrhizobium sp. DOA9 strain was cultured in yeast 

mannitol medium flask in 28°C and 250 rpm for 5­7 days (Hoben et al. 1994). Cells 

were centrifuged at 4500 rpm at 4°C in 10 minutes and discarded supernatant. The 
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pellet was re­suspended in sterilized saline buffer by using a vortex mixer. The cell 

concentration was adjusted to approximately 1×109 cells ml­1 by diluting with saline 

buffer. Then, the cell suspension was boiling for 1 h at 100°C to inactivate any 

remaining flagella antigens. The merthiolate was added to achieve a final 

concentration of 1:10,000 as a preservation. The stock solution was stored at ­20°C 

until use (Somasegaran and Hoben 1994). 

 

 3.3.1.2 Immunization and antisera development 

 The healthy, young rabbit (6­12 months) was used for antiserum 

development. Three rabbits were used for the development of each antiserum. The 

rabbit was immunized by ear (intravenous) injections. The rabbit was rolled in a large 

towel, tightly securing the fore and rear limbs. The vein of rabbit was exposed by 

shaving a small section of the ear with a razor blade. Swab the shaved area with 

alcohol (70%) and inject the antigen with a syringe fitted with a narrow (25 gauge) 

needle (Somasegaran and Hoben 1994). The schedules for immunization were done 

following the schedule (Table 3.2). 

 

Table 3.2 The schedule of immunization of rabbit (Somasegaran and Hoben 1994). 

 

Day 
 

Method 
 

Antigen 
 

1 
 

intravenously (IV) 
 

0.5 ml working solution (WS) 

2 IV 0.5 ml WS 

3 IV 1.0 ml WS 

4 IV 1.5 ml WS 

5 IV 2.0 ml WS 

6­12 Resting  

13 Test bleed and perform agglutination titer  
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 3.3.1.3 Trial bleeding for titer determination 

 Blood was first bleed from intravenous (3­5 ml) to test the titer 

prior to get more blood by cardiac puncture. The rabbit was tied to the inclining 

bleeding rack. The area above the sternum was sterilized with 70% alcohol. The blood 

was drawn from heart with a 50­ml syringe equipped with a 26­gauge needle. Collect 

20­30 ml of blood in a test tube. Then, the blood was centrifuged at 4500 rpm in 10 

minutes. The supernatant was transferred into the new sterile tube and stored in ­200C 

(Somasegaran and Hoben 1994). The titer of serum was determined by the 

agglutination method (Somasegaran and Hoben 1994). 

 

 3.3.1.4 Agglutination method 

 Firstly, the stock antiserum was diluted as follows: Arrange 10 test 

tubes (16×125 mm) in a row on a test­tube rack. Label them 1 through 10. Then, 9.6 

ml of saline buffer was added into tube 1. For tubes 2­10, adding 2.5 ml of saline 

buffer. Accurately pipette 0.4 ml of the stock antiserum into tube 1. Mix the saline 

and serum thoroughly by sucking the serum­saline mixture into the pipette and then 

expelling the contents. This process will be repeated five times. Expelling should be 

done gently to avoid frothing. This tube now contains anti­serum of a 1/25 dilution. 

After that, 2.5 ml of diluted serum from tube 1 was transferred to tube 2, then mix 

well by using a fresh pipette (the dilution of the serum in tube 2 became 1/25×1/2 = 

1/50). The dilution was repeated successively from the previous tube to the next until 

reaching tube 10 by using a fresh pipette tip each time. 

 Performing agglutinations in microtiter tray: The process was 

started with the highest dilution (tube 10). The 500 µl of diluted antiserum were 

transferred from tube into well A10 of the plastic agglutination tray by using a clean 
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pipette. Then, the process was repeated until all the dilutions of the antiserum were 

dispensed into the respective wells of row A of the agglutination tray. After that, the 

500 µl of the homologous antigen (approximately 1×109 cells ml­1) were dispensed 

into each of the wells from well Al through A10 by using pipette. Then, the 500µl of 

serum of 1/25 dilution were transferred into well A11 and then 500 µl of saline were 

added into this well with another calibrated Pasteur pipette.  This serves as the serum­

saline control. Next, the 500µl of saline were placed into well A12 and then the 500 

µl of antigen were also added into this well. This serves as the antigen­saline control. 

All wells (Al through A12) were sealed with a strip of cellophane tape. The 

agglutination tray was placed in a water bath at 37°C for 2 h and then transferred to a 

refrigerator before reading the reactions. Figure 7 shows the steps for the antiserum 

titer determination in wells. The highest dilution of the serum for positive 

agglutinations was read and recorded. Positive agglutination appeared as granular 

clumps with clear supernatant. Negative agglutinations were indicated by cells 

settling on the bottom of the well and turbid supernatant. 

 To calculate the titer (serum titer is the reciprocal of the highest 

serum dilution at which positive agglutination occurs). The highest dilution of the 

serum that has positive agglutination was multiplied by two. This is because equal 

volumes of the diluted serum and antigen were titrated in the well. Example: If 

positive agglutination was detected at 1/3200 dilution of the serum, the true titer will 

be 3200×2 = 6400 (Figure 3.1). 
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Figure 3.1 Scheme for antiserum titer determination in wells (Somasegaran and 

Hoben 1994). 

 

 Collecting blood and giving booster injections: Once the titer was 

satisfactory (not less than 1:1600), blood was transferred into a sterile screw­cap test 

tube of 50­ml capacity. After the blood has been clotted and refrigerated, decant the 

serum and centrifuge at 5000×g for 15 min to clear the serum of red blood cells. 

Transfer the clear serum supernatant into an appropriate container for storage by 

freezing. Serum was stored in in suitable­sized vials. If the titer was too low in the 

trial bleeding (less than 1:1600), give a booster injection of 1 ml of antigen 

subcutaneously immediately after the titer determination (Somasegaran and Hoben 

1994). This serum was used as polyclonal antibody against Bradyrhizobium sp. 

DOA9 to compare with antibody derived from other methods. 
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 3.3.2 Phage display library construction from immunized rabbit 

 3.3.2.1 Isolation of total RNA from rabbit spleen cells 

 Seven days after the last boost, spleen cells from immunized rabbit 

with strain DOA9 were prepared for mRNA extraction. Total RNA was extracted 

from spleen cell by TRIzol reagent (Invitrogen, USA) according to the manufacturer’s 

protocol. The spleen was cut roughly up into small pieces with sterile scissors in a 

sterile Petri dish under liquid nitrogen, and the pieces were transferred into a sterile 

small mortar. Then, 1 ml of Trizol reagents were added into the mortar. The spleen 

tissues were homogenized with pestle under liquid nitrogen. After that, the 

homogenized solution was transferred to a 1.5 ml tube and 0.1 ml of chloroform was 

added.  After shaking vigorously for 15 seconds, the homogenized solution was 

centrifuged at 13000 rpm at 4ºC for 15 min. Then, the clear aqueous upper layer was 

carefully pipetted off from the lower organic layer, and the upper layer was 

transferred to a fresh tube. An equal volume of isopropanol was added to the tube. 

The tube was incubated at room temperature for 10 minutes. The precipitated RNA 

was pelleted by centrifugation at 13000 rpm for 15 minutes at 4°C. The pellet was 

washed with 0.5 ml of 75% ethanol and then centrifuged at 13000 rpm for 15 minutes 

at 4°C. After the supernatant was removed, the pellet was air dried for 5 minutes at 

room temperature and dissolved in sterile deionized water. Then 1 µl of RnaseOut 

(40U/µl, Invitrogen, USA) was added into total RNA solution to remove RNase and 

stored at ­70°C. 
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 3.3.2.2 Synthesis of cDNA 

 The RNA was converted to first strand cDNA using reverse 

transcriptase enzyme with oligo­dT18 and random hexamer primers. The first strand 

synthesis will be started at the 3’ end of poly (A)+ mRNA by using the oligo­dT 

primer. The total volume of the reaction was 100 µl which consisted of 10 µg RNA, 2 

µM oligo­dT primer, 8 ng of random hexamer primers, and 0.125 mM of dNTPs 

(Promega, USA), 200 units of MMuLV reverse transcriptase  (200U/µl, NEB, USA) 

and 160 units of RNaseOut (40U/µl, Invitrogen, USA), all were dissolved in 1 × RT 

buffer. The RNA was heated to at 90C for 5 minutes and quickly chilled on ice 

before it was added to the reaction. The reaction was incubated at 42C for 2 hours 

and then the reaction was heated to 95C for 3 minutes and quickly chilled on ice. 

After that, the PCR reaction was performed as described below. The second strand 

synthesis was done using the mRNA/DNA as a template. The cDNA was kept at ­

20°C. 

 

 3.3.2.3 Amplifying and reassembling heavy and light chain sequences 

 The genes for variable regions of heavy chain, κ light chain, and λ 

light chain (VH, Vκ, and Vλ) were amplified separately and recombined by three 

subsequent PCR reactions. The first set of PCR consists of 79 independent reactions 

to generate variable domains of the heavy and light chains. The heavy chain 5' 

primers were designed to include a SfiI site, and the light chain 3' primers include a 

NotI site (Table 5). Light chain 5' primers were designed to include part of the linker 

region (Gly4Ser)3 and compatible with the heavy chain 3' primers. The total volume 

of each reaction was 50 µl which consisted of 2.5­5 µl of reaction from previous step, 

1 µM of each forward and reverses primers, 200 µM of dNTPs, 1× ThermoPol buffer, 
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2.5 units of Taq DNA polymerase enzyme (5U/µl, NEB, USA), 1.25 units of Pfu 

DNA polymerase enzyme (3U/µl, Promega, USA) and 0.1 mg/ml of BSA. The PCR 

cycles were initiated by pre­denaturing at 94°C for 5 minutes, following by 35 cycles 

of denaturation at 94°C for 1 minute, annealing at 57­65°C for 1 minute, extension at 

72°C for 2 minutes. The final extension was performed, by heating the reaction to 

72°C for 10 minutes. The heavy chain primers were modified to include a SfiI site and 

linker sequence whereas the light chain primers were generated a NotI site and a 

linker sequence. Equal amount of PCR products were pooled into collections of VH, 

Vκ, and Vλ gene repertoire, and purified from the low melting temperature agarose 

gel according to standard protocol. 

 In the second PCR, heavy and light chains were assembled and 

amplified using Pfu DNA Polymerase (Promaga, USA). The assembly PCR reaction 

contained equal molar mixture of the pooled heavy (VH) DNA and pooled light (Vκ, 

or Vλ) gene repertoire. The total volume of the PCR reaction was 50 µl, which 

consisted of equal molar amounts of DNA, approximately 500­1,000 ng, 200 µM of 

dNTPs, and 1.25 units of Pfu DNA polymerase enzyme (3U/µl, Promega, USA), all 

in 1× pfu DNA polymerase buffer. The separated heavy and light chain fragments 

were converted to scFv by amplification under the following conditions: five cycles of 

denaturation at 94°C for 45 seconds, annealing at 60°C for 50 seconds and extension 

at 72°C for 1 minute. The correctly linked products from the assembly step were 

extended by PCR under the following conditions: 30 cycles of denaturation at 94°C 

for 1 minute, annealing at 60°C for 1 minute and extension at 72°C for 2 minutes. 

This was followed by the final extension at 72°C for 10 minutes. 

 The third reaction created a full­length scFv gene repertoire from 

the second PCR by PCR amplification in the presence of pull­through primers. This 
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PCR extended the scFv gene from the SfiI and NotI sites flanking scFv genes, using 

the following primers: PTfw (5'­CCT TTC TAT GCG GCC CAG CCG GCC ATG 

GCC­3') and PTrv (5'­CAG TCA TTC TCG ACT TGC GGC CGC ACG­3'). The 

reaction was performed using the Taq polymerase and 1 μl of assembled products 

from the second PCR. This pull­through PCR was cycled 30 times (94°C for 1 min, 

60°C for 1 min, 72°C for 2 min), and a final extension at 72°C for 10 min. Then the 

samples were purified by a QIAquick PCR Purification Kit (QIAGEN, Germany) for 

the next step. 

 

 3.3.2.4 Cloning of scFv fragments into pMOD1 vector 

 The scFv fragments DNA were inserted into pMOD1 vector 

(Pansri et al. 2009) between SfiI and NotI sites. The DNA of scFv fragments and 

pMOD1 vector was sequential digested with SfiI (20U/µl, NEB, USA) and NotI 

(10U/µl, NEB, USA) enzymes, respectively, to generate compatible sticky ends. The 

digestion reactions of scFv fragments and pMOD1 vector were performed separately, 

each in a total volume of 500 µl. For the SfiI digestions, the reaction mixtures 

consisted of 10 µg of insert DNA, 12 µg of vector DNA, 1x NEB buffer 2, 1 µg/ml 

BSA and 200U of SfiI (20U/µl, NEB, USA). The reactions were incubated at 50°C for 

16 hours. The SfiI digested DNA was cleaned by Wizard clean up kit (Promega, USA) 

before the next digestion step. The NotI digestion mixtures consisted of 400 µl of 

purified SfiI digested DNA, 1× NEB buffer 3, 1 µg/ml BSA and 100 U of NotI 

(10U/µl, NEB, USA). The reaction mixtures were incubated at 37°C for 16 hours. 

After the digestion, the SfiI/NotI digested vector was dephosphorylated by adding 3 µl 

of CIP enzyme (10U/µl, NEB, USA) and incubated at 37ºC for 1 hour. After the 

dephosphorylation, the vector was inactivated by heat at 65ºC for 15 minutes. The 
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inserts and vectors were separated from stuffer fragments by gel electrophoresis 

followed by Wizard clean up kit (Promega, USA). The scFv DNA was ligated into 

pMOD1 vectors at a 3:1 ratio. The total volume of ligation reaction was 200 µl, which 

consisted of 2.8 µg of inserted DNA, 5.5 µg of pMOD1 vector, 1× T4 DNA ligase 

buffer and 15 µl of T4 DNA ligase (400U/µl, NEB, USA). After 16 hours of 

incubation at 16ºC, the ligation reaction was concentrated to 40 µl by precipitating 

overnight with 3 M sodium acetate pH 5.2 plus absolute ethanol. The ligation reaction 

was then transformed into 600 µl of E.coli TG1 cells by electroporation method. The 

reaction was done in two separate cuvettes by pipetting 20 µl of ligated sample into a 

2 mm cuvette containing 300 µl of E.coli TG11 competent cells. The electroporation 

was performed at 2.5 kV, 25 µF, 200 Ω and τ approximately 4 msec using an 

electroporation machine (Eppendrof 2510, Eppendrof, USA). The cuvette was flushed 

immediately with 3 ml of SOC medium (20g Bacto Tryptone, 5g Bacto Yeast Extract, 

2ml of 5M NaCl, 2.5ml of 1M KCl, 10ml of 1M MgCl2, 10ml of 1M MgSO4, 20ml of 

1M glucose, 1L distilled H2O)  at room temperature, and the two separate 

transformation reactions were combined in 50 ml polypropylene tube. The 6 ml of 

combined transformed cells were incubated at 37ºC for 1 hour. After that the 

transformed cells were spread on eight 24×24 cm plates, containing TYE medium (10 

g tryptone, 5 g yeast extract, 8 g NaCl and 15 g bacto­agar in 1 L distilled H2O), 100 

µg/ml ampicillin plus 1% glucose, and incubated overnight at 37ºC. 

 The size of the library was quantified by spreading dilutions of the 

transformation reaction on separate plates. A volume of 100 µl from transformation 

reactions was taken and a four­step 10­fold serial dilution was made. Then 100 µl of 

non­diluted and the four dilutions were spread on separate TYE agar plates containing 

100 µg/ ml ampicillin and 1% glucose. The vector ligation control was performed in 
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parallel to evaluate the background of library. Ligation efficiency was also determined 

by counting the number of colonies from no­insert ligation. 

 The large plates of library were scraped into 20 ml of 2×YT 

medium (16 g tryptone, 10 g yeast extract and 5 g NaCl in 1 L distilled H2O) with 

20% glycerol and aliquoted into freezing vials. The glycerol stock of library was 

stored at ­70ºC.  The library size was determined by serial plating on TYE plates 

containing 100 µg/ ml ampicillin and 1% glucose and incubated overnight at 37°C. 

 

 

Figure 3.2 Schematic outline of the strategy used for the construction of 

recombinant scFv antibody library from immunized rabbit (Pansri et al. 

2009). 
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Table 3.3 Listing of primers for PCR amplification of rabbit antibody heavy and 

light chain variable regions. 

 

Primer 
 

Numbers 
 

Sequence 

VH5’SfiI 1 
 

5’CCT TTC TAT GCG GCC CAG CCG GCC ATG GCC CAG TCG 
GTG GAG GAG TCC RGG 3’ 

 

2 5’CCT TTC TAT GCG GCC CAG CCG GCC ATG GCC CAG TCG 
GTG AAG GAG TCC AGA 3’ 

3 5’CCT TTC TAT GCG GCC CAG CCG GCC ATG GCC CAG TCG 
YTG GAG GAG TCC GGG 3’ 

4 5’CCT TTC TAT GCG GCC CAG CCG GCC ATG GCC CAG SAG 
CAG CTG RTG GAG TCC GG 3’ 

5 5’CCT TTC TAT GCG GCC CAG CCG GCC ATG GCC CAG TCG 
CTG GAG GAG TCC GGG GGT 3’ 

VH3’linker 
1 

5’GCC AGA ACC GCC TCC CCC CAT CCC TCC GCC ACC CGA 
TGG GCC CTT GGT GGA GGC TGA RGA GAY GGT GAC CAG 
GGT GCC 3’ 

 
2 5’ GCC AGA ACC GCC TCC CCC ACT CCC TCC GCC ACC 

GAC TGA YGG AGC CTT AGG TTG C 3’ 

VLκ5’linker 1 5’ AGT GGG GGA GGC TCT GGC GGA GGT GGG TCG GAG 
CTC GTG MTG ACC CAG ACT CCA 3’ 

 

2 5’ AGT GGG GGA GGC TCT GGC GGA GGT GGG TCG GAG 
CTC GAT MTG ACC CAG ACT CCA 3’ 

3 5’ AGT GGG GGA GGC TCT GGC GGA GGT GGG TCG GAG 
CTC GTG ATG ACC CAG ACT GAA 3’ 

4 5’ AGT GGG GGA GGC TCT GGC GGA GGT GGG TCG GCT 
CAA GTG CTG ACC CAG AC 3’ 

5 5’ AGT GGG GGA GGC TCT GGC GGA GGT GGG TCG GMC 
MYY GWK MTG ACC CAG ACT CC 3’ 

VLλ5’linker 1 5’ AGT GGG GGA GGC GGT TCT GGC GGA GGT GGG TCG 
GAG CTC GTG CTG ACT CAG TCG CCC TC 3’ 

 2 5’ AGT GGG GGA GGC GGT TCT GGC GGA GGT GGG TCG 
CAG CCT GTG CTG ACT CAG TCG  3’ 

VLκ5’NotI 1 5’ CAG TCA TTC TCG ACT TGC GGC CGC ACG TTT GAT TTC 
CAC ATT GGT GCC 3’ 

 

2 5’ CAG TCA TTC TCG ACT TGC GGC CGC ACG TAG GAT CTC 
CAG CTC GGT GCC 3’ 

3 5’ CAG TCA TTC TCG ACT TGC GGC CGC ACG  TTT GAC 
SAC CAC CTC GGT GCC3’ 

VLλ5’NotI 1 5’ CAG TCA TTC TCG ACT TGC GGC CGC GCC TGT GAC GGT 
CAG CTG GGT CCC 3’ 

 2 5’ CAG TCA TTC TCG ACT TGC GGC CGC ACC TGT GAC 
GGTCAG CTG GGT CC 3’ 

 

Note: S=G/C; R=G/A; K=G/T; M=A/C; Y=C/T; W=A/T; H=A/C/T; B=C/G/T; V=A/C/G; 

D=A/G/T; N=A/T/G/C. Bold fonts indicate linker sequence. Recognition sites for restriction 

enzymes (SfiI/NotI), and linker sequence are italicized. 
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 The quality of library was determined by restriction fragment 

analysis. The colonies were randomly picked into 5 ml media containing appropriate 

antibiotic. After the cultures were incubated for 16­18 hours at 37oC with shaking, the 

cultures were centrifuged at 6800xg for 3 minutes to collect the cells for DNA 

extraction. Then plasmid minipreparations were made from each clone (QIAgen spin 

Mini­prepkit, USA). Digestion reactions of DNA were performed in a total volume of 

10 µl. The reaction mixtures consisted of 2 µl of DNA, 0.2 µg of vector DNA 1× 

NEB buffer 3, 1 µg/ml BSA, 1 U of NcoI and 1 U of NotI. The reaction was incubated 

at 37°C overnight and was run on 1 % (w/v) agarose gel (Emresco, USA) in TAE 

buffer at 100 volts for 45 minutes.  The diversity of library was performed by 

restriction fragment analysis using BstNI enzyme. The digestion reactions of DNA 

were performed in a total volume of 10 µl. The reaction mixtures consisted of 2 µl of 

DNA, 0.2 µg of vector DNA 1×NEB buffer 3, 1 µg/ml BSA, 1 U of BstNI. The 

reactions were incubated at 65°C for overnight and were run on 1 % (w/v) agarose gel 

in TAE buffer at 100 volts for 45 minutes. 

 

 3.3.3 Amplification of phage library for bio-panning 

 To rescue phagemid library,  the 500 µl library stock was add into 50 ml 

pre­warmed 2×YT containing 100 µg/ml ampicillin (Emresco, USA)  and 1% (w/v) 

glucose (Carlo erba, Italy) and grow with shaking at 37oC until the cell reached to the 

mid­log phase (OD600 about 0.4). The 2×1011 KM13 helper phage was added into 50 

ml cultures and was then incubated at 37oC without shaking for 30 minutes. The 

culture was centrifuged at 4,000 rpm for 10 minutes following by resuspension of the 

cell pellet in 100 ml of 2×YT containing 100 µl/ml ampicillin, 50 µg/ml kanamycin 
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(Fluka, Switzerland) and 0.1 % glucose. After that the culture was incubated with 

shaking at 30oC overnight. The next day, the overnight culture was centrifuged at 

4,000 rpm for 30 minutes. The supernatant was precipitated by using PEG (Fluka, 

Switzerland) /NaCl (Emresco, USA) (20 % Polyethylele glycol 6000, 2.5 M NaCl) for 

1 h on ice followed by centrifugation at 4,000 rpm for 30 minutes. All supernatant 

was removed; the pellet was resuspended in phosphate buffered saline (PBS, 137 mM 

NaCl, 3 mM KCl (Emresco, USA), 8 mM Na2HPO4 (Merck, Germany), 1.5 mM 

KH2PO4 (AnalaR, England), pH 7.4). The phage solution was centrifuged at 10,000 

rpm for 10 min. To remove any pellet, the phage library solution was transferred to 

new tube and stored at 4oC before biopanning. For long term storage, phage 

supernatant was kept in 20% glycerol (Emresco, USA)/PBS and stored at ­70oC. To 

determine the phage titer, the PEG precipitate phage was diluted by making six 100­

fold serial dilutions and adding 100 µl of diluted phage into 900 µl of mid­log E. coli 

TG1. The infected E. coli TG1 cells were incubated at 37oC for 30 minutes followed 

by plating on separate 2×YT agar containing 100 µg/ml ampicillin and 1% (w/v) 

glucose. The plates were incubated at 37oC overnight. 

 

 3.3.4 Biopanning against Bradyrhizobium sp. DOA9 

 The phage antibody library was used for selecting the phage particles that 

specifically bind to immobilized antigen. The biopanning method was done to select 

phage clone that specific binding with strain DOA9 from naïve human library and 

immunized rabbit library from the step 3.3.2 according to the protocol described by 

Pansri et al. (2009). 

 Broth culture antigen preparation for biopanning: The DOA9 strain was 

grown in 50 ml flask containing yeast extract mannitol broth (YMB) at 28°C, 200 rpm 
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for 5 days. Cell pellets were harvested aseptically in sterile saline buffer (0.85% 

NaCl), then washed three times in sterile saline by centrifugation at 4500 rpm, 20 min 

at 4°C. Cell pellets were re­suspended in saline buffer and were adjusted to 1×109 

cells/ml. This could be estimated by reading the optical density of the suspension on a 

spectrophotometer.  An optical density of 0.45 (OD600) is approximately equal to 1 × 

109 cells/ml. Then, the suspension was treated by boiling in water bath for 1 h to 

inactivate flagella and other protein antigens. The total protein was determined by 

Bradford assay (Bradford 1976) The merthiolate as a preservation was added to 

achieve a final concentration of 1:10,000. The stock solution was stored at ­20°C until 

use. 

 The selection was done on immunotube (Nunc, Denmark) with 

immobilized antigen. The 20 µg antigen was immobilized in 400 µl of 100 mM 

NaHCO3 pH 8.5. The immobilizing was performed overnight at 4ºC.  Next day, the 

tube was washed three times with PBS. The immunotube was then blocked to avoid 

non­specific binding of phage particles with 2% (w/v) skimmed milk (2% MPBS) and 

incubated at room temperature for 2 hours with rotating. The blocking solution was 

poured off and the well was washed three times with PBS. Then 300 µl of 2% MPBS 

and containing 1012 phages from the phage antibody library was added to the tube and 

incubated at room temperature for 1 h with rotating and 1 h on bench at room 

temperature. The unbound phages were removed by washing three times with PBS 

containing 0.1% (v/v) tween 20 (PBST) and two times with PBS. After shaking out 

the wash buffer and repeating this washing step for ten times, the well was rinsed with 

PBS ten times. The bound phages could be eluted by trypsinization or/and low pH 

condition using acidic elution buffer (50 mM glycine­HCl pH, 2.0). The trypsinization 

was performed by adding 50 µl of freshly prepared trypsin buffer (5 µl of 10mg/ml 
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trypsin stock in 45 µl of PBS) to the well and leaving it for 10 minutes at room 

temperature. The low pH elution was performed by using 50 µl of 50 mM glycine­

HCl pH, 2.0, to be elution buffer. After incubation at room temperature for 10 

minutes, the acidic solution had to be neutralized by adding 50 µl of neutralization 

solution (200 mM NaHPO4 pH 7.5). The recovered phages were amplified in E.coli 

TG1 cells by infecting 175 µl of mid­log phase E.coli TG1 at OD600 of 0.4 with 25 µl 

of eluted phages and incubating at 37ºC for 30 minutes. For the output titering, the 

eluted phages were diluted. Three 10­fold serial dilutions were performed. Then 100 

µl of non­diluted and the three dilutions were separately spread on TYE agar plates 

containing 100 µg/ ml ampicillin and 1% (w/v) glucose. The plates were incubated at 

37ºC overnight. 

 To continue with the next round of selection, 1 ml of 2 × YT media was 

added on agar plates containing a lawn of infected bacteria, and the cells were 

loosened with a glass spreader. The scraped cells were kept as a 15% (v/v) glycerol 

stock at ­70°C, and 10 μl of scraped bacteria were added into 10 ml of 2 × YT 

supplemented with 100 μg/ml ampicillin and 1% (w/v) glucose, and incubated at 

37°C with shaking until the OD600 was 0.4 (approximately 2 h). After this procedure, 

phage was rescued by super­infecting the cells with 5 × 1010 helper phage KM13 and 

incubated at 37 °C, without shaking, for 30 minutes. Afterward, the culture media was 

exchanged by centrifugation at 4,000 rpm at 4°C for 15 minutes, the supernatant was 

removed, and the pelleted bacteria were resuspended in 5 ml of 2 × YT containing 

100μg/ml ampicillin, 50 μg/ml kanamycin, and 0.1% (w/v) glucose. Later, it was 

incubated at 30°C with shaking overnight. On the following day, the overnight culture 

was centrifuged at 4,000 rpm and 4°C for 15 minutes. Phage was precipitated by 

adding 1 ml of PEG/NaCl (20% (v/v) polyethylene glycol 6000 in 2.5 M NaCl) into 4 
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ml of the supernatant and kept on ice for 1 h, and later centrifuged at 4,000 rpm, at 

4°C for 30 minutes. The supernatant was removed and the pellet was resuspended in 

100 μl PBS for the next round of selection. 

 

 3.3.5 Individual Phage Rescue 

 Individual phage­infected colonies were randomly picked from the TYE 

plate and grown in wells of a 96­well plate (Nunc, Denmark) containing 100 μl 2 × 

YT plus 100 μg/ml ampicillin and 1% (w/v) glucose. After overnight incubation at 37 

°C, small inocula (5 μl) from each well were transferred to a second 96­well plate 

containing 200 μl of 2 × YT plus 100 μg/ml ampicillin and 1% (w/v) glucose. The 

first plate was kept as master stock by adding glycerol to a final concentration of 20% 

(v/v) and kept at ­20 °C. The second plate was incubated with shaking at 37 °C for 2 

h, and later phage was rescued by adding 1010 helper phage to each well. Following 

this they were then incubated at 37 °C for 1 h before centrifugation of the plate at 

4,000 rpm for 10 minutes. The supernatant was discarded and the pellet was 

resuspended in 200 μl of 2 × YT containing 100 μg/ml ampicillin and 50 μg/ml 

kanamycin, and cultured at 30°C overnight (20 h) with shaking (250 rpm). The 

overnight culture was spun at 4,000 rpm for 10 minutes, and 50 μl of the supernatant­

containing phage was used in monoclonal phage ELISA. 

 

 3.3.6 Screening for specific binder by monoclonal phage ELISA 

 Broth culture antigen was prepared with the same method for biopanning. 

Then, the broth culture antigen was dilute in sodium carbonate buffer and calculated 

with 5µg protein total per wells of 96 MicroWell™ plates (Nunc, Denmark). For 

negative control, wells were coated with 2% (w/v) skim milk in sodium carbonate 
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buffer. After incubation at 4 °C overnight, the plates were washed three times with 

PBS. The wells were then blocked with 4% (w/v) MPBS for 2 h at room temperature. 

The wells were re­washed three times with PBS. Then, one hundreds μl of phage 

supernatant and 50 μl of 4% (w/v) MPBS were added to each well and incubated at 

room temperature for 2 h. Unbound phage was removed by washing three times with 

PBST and three times with PBS. Subsequently, 100 μl of HRP­labeled anti­M13 

(1:5000 dilution in 2% (w/v) MPBS) was added into each well. After incubation for 

an additional 1 h at room temperature, the wells were washed again, as described 

previously, and 100μl of ABTS substrate solutions were added into each well and 

incubated at 37°C for 30 min. The resulting absorbance was read at 405 nm by plate 

ELISA reader (Sunrise, TECAN, Austria). 

 

3.4 Detection of DOA9 strain by phage ELISA 

 3.4.1 In pure culture sample 

 To determine the optimum value of antigen for phage ELSIA, the antigen 

was prepared as described above. Then, the broth culture antigen was diluted in 

sodium carbonate buffer and calculated with variable amount of total protein (4, 5, 6, 

and 7 µg) per wells of 96 MicroWell™ plates (Nunc, Denmark). The procedure 

ELISA was done according to the protocol described by Pansri, Jaruseranee et al. 

(2009). The broth culture antigen was dilute in sodium carbonate buffer and 

calculated with 5 µg protein total per wells. The wells were sealed with tape to avoid 

evaporation and incubated overnight at 4°C. Next day, the wells were rinsed three 

times with PBS and blocked with 2% skim milk in phosphate buffer saline (MPBS) 

for 2 hours, at room temperature with rotating. Then the wells were rinsed three times 

with phosphate buffer saline (PBS). After that, phage stock (about 1012pfu) was added 
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to wells containing 50 µl of 4% MPBS. Then, wells were washed three times with 

PBST (PBS with 0.1% Tween 20) followed by three times of PBS. Secondary 

antibody was used for detecting the bound phages. The 1:5000 dilution of a mouse 

anti­M13 phage­horseradish peroxidase (HRP) conjugate (Amersham­Pharmacia 

Biotech, Sweden) in 50 µl of 2% MPBS was added into each well as secondary 

antibodies. The plates were incubated at room temperature for 1 h with rotating. The 

wells were washed as described above. The 100 µl of ABTS (2, 2­azino­di­3­ethyl­

benzthiazoine­6­sulfonate) peroxidase substrate (Fluka, USA) containing 0.05% H2O2 

was added, and the plates were incubated at room temperature for 1 h. The assay was 

performed in triplicate. The reaction was stopped by adding 50 µl of 1% sodium 

dodecyl sulfate. Detection was done by measuring the absorbance at OD 405 nm in an 

ELISA plate reader (Sunrise, TECAN, Austria). 

 To test cross reactivity of positive phage clones and polyclonal antibody, 

the phage ELISA was done the same with above phage ELISA with optimum value of 

antigen. For negative control, other bacterial strains (SUTN9­2, SUTN1­12, 

USDA110, SUT 47, SUT 19, TAL173 and PRC 008) and Bacillus sp. were used in 

phage ELISA. Besides, 3C1 phage clone (against aflatoxin) was used as negative 

phage control in the test. For polyclonal antibody, the antibody prepared from rabbit 

immunized with DOA9 was diluted 1:7500 in PBS buffer and add 100 µl/well 

containing 50 µl of 4% MPBS. The binding was done at room temperature for 1 h 

with rotating. Secondary antibody was used for detecting the bound phages and 

polyclonal antibody. A 1:5000 dilution in PBS of protein A was added for polyclonal 

antibody wells as secondary antibodies. The next steps was the same as above 

procedure. 
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 3.4.2 In nodule sample 

 Nodule antigen preparation: The seeds of siratro (Macroptilium 

atropurpureum) were sterilized by soaking in concentrated sulfuric acid for 10 

minutes. After that, all seeds were washed with sterilized water five times and then 

soaked in sterilized water overnight at room temperature under dark condition. All 

seeds were germinated on sterilized 0.8% (w/v) water agar for 2 days in the dark 

conditions at room temperature. The germinated seeds were planted in Leonard’s jars 

and inoculated with 1 ml of 1×109 cells/ml of each Bradyrhizobium strain, DOA9, 

SUTN 9­2, SUTN 1­12, and USDA110. All plants were supplemented with N­free 

medium (Hoagland et al. 1950) and grown in a room for 1 month. After 4 weeks, 

nodules were collected from plants. Then, nodules were washed with sterile distilled 

water and stored over silica gel at room temperature. Prior to analyses, nodules were 

revived by distilled water for 1­2 hours (Payakapong et al. 2003). 

 ELISA was done according to the protocol described by Pansri et al. 

(2009) with some small modifications for nodule samples. Nodules were crushed and 

gently grinded in small mortar. Nodules were calculated with 4 nodules/wells. Then, 

sodium carbonate buffer (pH 8.5) was added to mortar. Finally, 200 µl of the nodule 

suspension was added to the wells of ELISA plate (Nunc, Denmark). The broth 

culture antigen was diluted in sodium carbonate buffer and calculated with 5 µg 

protein total per wells as positive control. The wells were sealed with tape to avoid 

evaporation and incubated overnight at 4°C. Then, the procedure was the same phage 

ELISA for pure culture sample. 
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3.5 Detection of DOA9 by immunofluorescence assay 

Immunofluorescence assay was performed according to the protocol described 

by Somasegaran and Hoben (1994) with some modifications for scFv antibody 

against target in both sample pure culture and nodule. Negative control was made 

using only diluents, no phage, no polyclonal antibody and non­related phage clone. 

The phage clone 3C1 also was used the same phage ELISA for control. 

For pure culture sample, the culture spots on the slide were incubated with 10 

µl of polyclonal antibody (1:7500), phage clone (1012pfu) in one hour. The slide was 

rinsed two times with PBS and incubated with 10 µl of secondary FITC labelled anti­

rabbit Ig antibody (for polyclonal antibody) M13­FITC (for phage clone antibody). 

Then, slides were incubated in the moist chamber for one hour at room temperature. 

Unbound proteins were removed by rinsing and washing with PBS and mounted in 

40% glycerol under a cover slip. The slip was examined under a fluorescence 

microscope (Nikon, Japan). 

For nodule sample, the section (30µl) of nodule was placed on slides. Then, 

sections were incubated in PBS containing calcofluor white M2R (Sigma, Germany) 

to a final concentration of 0.01% (w/v) for staining of the plant cell wall. After 

washing with PBS, the procedure was done the same for pure culture samples. 

Finally, the slip was examined under a fluorescence microscope (Nikon, Japan). 

 

3.6 Sequence analysis and structure modeling 

Plasmid DNA from positive scFv phage clones were extracted and purified 

from overnight culture by using a commercially plasmid preparation kit (Mini Preps: 

Qiagen, Germany) and were  completely sequenced by Macrogen (Seoul, Korea) 
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using primers: For VH use link seq new CGA CCC GCC ACC GCC GCT G and For 

V use pHEN seq CTA TGC GGC CCC ATT CA. Sequences of scFvs were aligned 

and analyzed with rabbit germline sequence via http://www.imgt.org (IMGT®, the 

international ImMunoGeneTics information system®). For 3D structure modeling, the 

nucleotide sequence was translated to an amino acid sequence using the Translate 

Program (Expert Protein Analysis System, Expasy). 

Docking between recombinant scFv antibodies and antigen was performed to 

determine possible binding regions by in silico prediction tools of the three 

dimensional structure (Kelley 2009) and used the PDB file on PyMol (The PyMOL 

Molecular Graphics System, Version 1.7.4 Schrödinger, LLC). 

 

3.7 Production of soluble scFv antibodies 

 3.7.1 Subcloning and expression in E. coli HSM174 

 The genes of positive scFv antibody clones, RD6/2 and RB8 were 

subcloned into pET27b vectors between NcoI and NotI sites. Plasmids were purified 

from each clone (QIAgen spin Mini­prepkit, USA) and transformed into E. coli HSM 

174. The E. coli harboring recombinant plasmid was grown at 37oC in 5 ml of M9ZB 

media (1% Tryptone, 0.5% Sodium Chloride, 1XM9 Salts, 0.4% Glucose, 1mM 

Magnesium Sulfate) containing 50 µg/ml kanamycin and 2% w/v glucose. The culture 

was incubated overnight with shaking at 30oC. One percent (v/v) of each overnight 

culture was used to inoculate into M9ZB media supplemented with 2% (w/v) glucose 

and 50 µg/ml kanamycin. Then, the culture was incubated with shaking at 30oC for 4 

hours. After that, the cells were centrifuged at 16oC, 5000 rpm for 15 min followed by 

resuspension with M9ZB media containing 1% (w/v) glycerol, 50 µg/ml kanamycin 

and 1 mM isopropylthio­galactoside (IPTG, Emresco, USA). After continuing 
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incubation at 16oC for 20 hours with shaking, the cell pellet was collected by 

centrifugation at 16oC, 8000 rpm for 15 min for 15 min. The secreted antibody could 

be found in the supernatant. The hexahistidine tag was used for detection and 

purification. 

 

 3.7.2 Purification of soluble scFv antibody 

 The recombinant scFv antibodies containing a hexahistidine tag was 

purified using Ni++ ions immobilized on resin by covalent linkage to nitrilotriacetic 

acid (NTA). The supernatant was immediately applied to a Ni–NTA agarose affinity 

column containing 1­2 ml of bed volume (QIAGEN GmbH, Hilden, Germany), and 

the chromatography was carried out gravitationally at 4oC, following the Qiagen’s 

protocol. The column was washed two times with 50 ml of wash buffer (20 mM Tris–

HCl buffer, pH 8.0 and 150 mM NaCl) containing 20 mM imidazole. Ni–NTA bound 

enzyme was eluted with 250 mM imidazole in the same buffer. The eluted fractions 

were then dialyzed by snake skin dialysis bag followed by centrifugal dialysis using 

Amicon® Ultra­4 Centrifugal Filter Devices (Mr 10,000 cut­off, Millipore, Ireland) to 

remove imidazole and concentrated soluble scFv antibody. SDS­PAGE 

electrophoresis was used to monitor antibody purity. 

 

 3.7.3 Soluble scFv antibody ELISA 

 The Immuno 96 microWellTM plate (Nunc, Denmark) was immobilized 

with pure culture and nodule sample. The procedure is the similar with phage ELISA 

with some small modifications for soluble scFv antibodies. The soluble scFv 

antibodies were detected with His prob­HRP (1:5000). The color of the reaction was 

developed with ABTS reagent (Fluka, Switzerland).  The reaction was quantified by 

measuring the absorbance at OD 405 nm. 
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CHAPTER IV 

RESULTS AND DISCUSSIONS 

 

4.1 Phage display library construction from immunized rabbit 

 4.1.1 RNA extraction and cDNA synthesis 

The total RNA was prepared from rabbit spleen samples by TRIzol reagent 

(Invitrogen, USA) according to the manufacturer’s protocol. The RNA extracts were 

high purity, free of DNA contamination and allowed production of first strand cDNA 

by using MMuLV reverse transcriptase (NEB, USA) and a mix of oligo­dT18 and 

random hexamers primers (Figure 4.1). 

 

 

 

Figure 4.1 The total RNA on 1% agarose gel and stained with 0.5 µg/ml of 

ethidium bromide. Lane 1: 1 kb DNA marker; Lane 2: sample. 
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 4.1.2 Amplifying and reassembling heavy and light chain sequences 

In order to reduce amplification biases, 26 independent PCRs were 

performed using all possible combinations within a designed primer set (Table 4) that 

encompasses the entire theoretical set of whole repertoires of rabbit antibody genes. 

The PCR reactions included five VH forward primers (VH5'SfiI) paired with two VH 

reverse primers (VH3'link) which generated a total of ten reactions; whereas three Vκ 

forward primers (VL5'link­κ) paired with two Vκ reverse primers (VL3'NotI­κ) 

generated a total of six reactions; and five Vλ forward primers (VL5'link­λ) paired 

with two Vλ reverse primers (VL3'NotI­λ) generated a total of ten reactions. The 

PCRs led to the representation in the repertoire of variable regions derived from all 

conceivable framework assemblies. 

The scFv fragments were constructed by assembly of VH and VL genes 

together with linker, which generated VH­linker­VL orientation. In order to create 

scFv fragment genes of a VH­linker­VL type, the separate VH and VL genes were 

converted to a scFv gene by inserting a linker DNA sequence. The assembly of VH, 

VL, and linker fragment was carried out by PCR. The 3′ ends of VH gene 

complementary to 5′ ends of linker sequence and the 3′ ends of this linker DNA was 

complementary to 5′ ends of VL gene. The final pull­through PCR was done with two 

primers (PTfw & PTrv) compatible to the 5' SfiI or 3'NotI segments of the heavy and 

light chain gene repertoires. The size of scfv fragment was approximately 800 bp 

(Figure 4.2). 
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Figure 4.2 PCR products of VH and VL genes and scFv fragment on 1% agarose 

gel and stained with 0.5 µg/ml of ethidium bromide.  M: Marker 100bp. 

 

 4.1.3 Cloning of scFv fragments into pMOD1 vectors 

 The fragments were digested with NotI/SfiI and ligated into NotI/SfiI­

linearized pMOD vector. The recombinant vector was introduced into competent E. 

coli TG1 cells and the transformants were pooled. Finally, the library was obtained 

with 3.5×106 independent clones. The investigation of full­length inserts from some 

randomly clones using NcoI and NotI restriction enzyme digestion showed that 85% 

of all clones had inserted fragment (Figure 4.3). 

 

 4.1.4 Diversity analysis of antibody fragments 

 To analyze the diversity of the scFv repertoire and the quality of the 

primary library, DNA segments encoding the scFv genes from each positive clone 

above were examined by BstNI digestion, and their fingerprint patterns were 

compared. The result showed that clones have different patterns (Figure 4.4). 
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Figure 4.3 DNA fragment of random clones from unselected library after digestion 

with NcoI and NotI restriction enzyme on 1% agarose gel and stained 

with 0.5 µg/ml of ethidium bromide. M: Marker 1kb; 1­20 randomly 

clones. 

 

 

Figure 4.4 DNA fragment of random clones from unselected library after digestion 

with BstNI restriction enzyme on 1% agarose gel and stained with 0.5 

µg/ml of ethidium bromide. M: Marker 100 bp; 1­16 phage clones. 
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4.2 Selection of scFv fragments specific to DOA9 by biopanning 

In order to select the best recombinant scFv phage antibody against target, two 

scFv antibody libraries, naïve human library (Yamo library) and immunized rabbit 

library constructed in this study were used in biopanning with target antigen, DOA9 

in immunotube. Three rounds of selection and amplification of the bound phages were 

performed. As show in Table 4.1, a significant enrichment of specific scFv phage 

antibody was observed during the three time panning. 

 

Table 4.1 Selective enrichment of scFv antibodies during biopanning process with 

rabbit library. 

 

Rounds 

 

Amount of 
antigen (µg) 

 

Input 
(CFU) 

 

Ouoput 
(CFU) 

 

Output rate 
% 

 

1st 
 

20 
 

1.0 x 1012 
 

2.57 x 104 
 

2.57 x 10­6 

2nd 15 1.0 x 1012 1.72 x 105 1.72 x 10­5 

3rd 10 1.0 x 1012 1.02 x 106 1.02 x 10­4 
 

Output rate (%) = (numbers of phage output × 100) / (numbers of phage input) 

 

After each round of panning, 192 clones (two 96­well plates) were picked 

randomly and tested for affinity to target by phage ELISA. Finally, in third round of 

panning, two positive phage clones, RB8 and RG9 were selected from immunized 

rabbit library with high affinity with DOA9 target (Figure 4.5).  Two clones, RB8 and 

RG 9 were used for the further studies. 

Similarly, for naïve human library, only one round was performed against 

target DOA9. The result showed in Figure 4.6, one phage clone RD6/2 had high 

signal ELISA with DOA9 target. This clone was used for the further studies. 
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Figure 4.5 Binding of specific phage to DOA9 target from third round of panning 

with immunized rabbit scFv antibody library. 

 

 

 

Figure 4.6 Binding of specific phage to DOA9 target from first round of panning 

with naïve human scFv antibody library. 
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4.3 Detection of DOA9 strain by phage ELISA  

In order to evaluate the potential application of recombinant scfv antibody for 

detecting and monitoring DOA9 in production of bio­fertilizer, positive phage scfv 

antibody was tested with both bacterial sample in broth and in nodule by two 

methods, phage ELISA and immunofluorescence assay. 

The limitation of antigen amount for detection by phage ELISA is 4 μg of total 

protein, while the optimum amount of antigen for detection was 5 μg (Figure 4.7). 

Then, the all ELISAs in next steps were conducted with 5 μg of protein for pure 

culture sample. 

 

 

Figure 4.7 Phage ELISA of scFv clones against DOA9 in pure culture with variable 

antigen amounts. Value indicated mean of triplicate reactions. Error bars 

showed the standard derivation for each set of data. RB9 and RG8 phage 

clones from rabbit library; RD6/2 phage clone from human library. 
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The binding of three positive clones RB8, RG9, RD6/2 and poly clonal 

antibody were tested by phage ELISA to bind with pure culture and nodule sample 

were shown in Figure 4.8 and 4.9, respectively. The results showed that, phage clones 

had high affinity with the target DOA9 in both pure culture and nodule antigen, while 

polyclonal antibody still had cross reactivity with other bacterial strains. No signal 

was observed with negative control phage, 3C1 (specific phage clone for mycotoxin 

antigen). Interestingly, the phage clones have no cross­reactivity with other antigens 

from related rhizobial strains, USDA110, SUTN 9­2 and SUTN 1­12. These results 

suggest that phage clones are more specific with DOA9 than polyclonal antibody. 

 

 

Figure 4.8 Phage ELISA of scFv clones against DOA9 and other antigens in pure 

culture. Value is mean of triplicate reactions. Error bars showed the 

standard derivation for each set of data. RB9 and RG8 phage clones from 

rabbit library; RD6/2 phage clone from human library; 3C1 is negative 

control phage clone. 
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Figure 4.9 Phage ELISA of scFv clones against DOA9 and other antigens in nodule 

sample. Value indicated mean of triplicate reaction. Error bars showed 

the standard deviation for each set of data. RB9 and RG8 phage clones 

from rabbit library; RD6/2 phage clone from human library; 3C1 is 

negative control phage clone. 

 

The phage clones were also checked with some other strains, SUT 47 

(Bacillus sp.), SUT 19 (Pseudomonas sp.), TAL 173 (Bradyrhizobium sp.) and PRC 

008 (Bradyrhizobium sp.). The result showed that phage clones were more specific 

with target DOA9 and no cross reactivity with other targets, while polyclonal 

antibody tended to have higher cross reactivity with tested strains (Figure 4.10). 

In conclusion, the positive phage clones, RD6/2, RB8 and RG9 were specific 

binding to target DOA9 as well as polyclonal antibody. Phage clones also had low 

cross reactivity with other bacterial strains. 
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Figure 4.10 Phage ELISA for checking cross reactivity of phage clones and 

polyclonal antibody with other strains of commercial bacterial 

biofertilizer. Value indicated mean of triplicate reactions. Error bars 

showed the standard derivation for each set of data. RB9 and RG8 phage 

clones from rabbit library; RD6/2 phage clone from human library. 

 

4.4 Detection of DOA9 strain by Immunofluorescence assay 

The reactivity of phage clones RB8 and RG9 (rabbit clones) and RD6/2 

(human clones) against target DOA9 were also confirmed by immunofluorescence 

assays and compared with reactivity of polyclonal antibody and negative phage 

control (3C1). The results were summarized in Figures 4.11 and 4.12. The results 

were the same with phage ELISA experiment. 
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Figure 4.11 Immunofluorescence microscopy of polyclonal antibody and 

recombinant human scFv phage antibodies with some bradyrhizobial 

antigens in form of pure culture and nodule bacteroid.  RD6/2 clone from 

naïve human library; 3C1 clone from naïve human library against 

aflatoxin (for negative control). For pure culture, scale bar is 10 µm and 

magnification is 80×; for nodule sample scale bar is 100 µm and 

magnification is 10×. 

 

The selected phage clones had specific binding activity with DOA9 target 

antigen in both pure culture and nodule sample. No fluorescence was obtained with 

the negative controls which consisted of no phage, no polyclonal antibody, and 

mycotoxin­specific phage clone (3C1 clone). The blue color was detected as 

calcofluor binding with plant cell.  Polyclonal antibody also still had cross reactivity 

with other Bradyrhizobium strains, such as SUT 9­2, SUT1­12, and USDA110 in both 

antigen of pure culture and nodule. 

Visualization of DOA9 bacteroids in nodule sample and bacterial cells in pure 

culture sample by using fluorescence microscopic technique validated the specificity 

and affinity of phage antibody RB8, RG9, and RD6/2 phage clones with target DOA9. 
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Figure 4.12 Immunofluorescence microscopy of polyclonal antibody and 

recombinant rabbit scFv phage antibodies with some bradyrhizobial 

antigens in form of pure culture and nodule bacteroid. RB8 and RG9 

clones from immunized rabbit library; 3C1 clone from naïve human 

library against aflatoxin (for negative control). For pure culture, scale bar 

is 10 µm and magnification is 80×; for nodule sample scale bar is 100 

µm and magnification is 10×. 

 

4.5 Sequence analysis of specific clones and 3D structure prediction 

The DNA sequence of positive clones, RD6/2, RB8 and RG9 were confirmed 

by automated DNA sequencing. The result indicated that the sequence of clone RB8 

and RG9 were identical. Then, the DNA sequences of phage clone RB8 and RD6/2 

were analyzed by using IMGT® software (http://www.imgt.org/IMGT_vquest/ 

vquest). The result showed that the RB8 phage clone belonged to rabbit 

immunoglobulin VH1 heavy chain and VL λ light chain families. The RD6/2 phage 

clone belonged to human immunoglobulin VH4 heavy chain and VLĸ light chain 



81 
 

 
 
 

families. Table 4.2 showed the origin of germline and family of the VH and VL genes 

and the amino acid changing with germline of the two recombinant scFv antibodies. 

 

Table 4.2 Germlines and Families of VH and VL segments of two positive clones. 

 
Clones 

 
Fragment 

 
Germline 

 

Amino â 
change 
number 

 
Family 

 

RB8 (Immunized rabbit library) 
 

VH 

VL 

 

IGHV1S69*01 

IGLV4S4*01 

 

7 

7 

 

VH1 

VLλ 

RD6/2 (Naïve human library) VH 

VL 

IGHV4­59*01 

IGKV3­20*01 

17 

0 

VH4 

VLĸ 

 

 

 

Figure 4.13 Deduced amino acid sequence of RB8 and RD6/2 clones, the sequence 

of complementary determining regions (CDR) of VH and VL chains and 

linker were underlined. 
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Figure 4.13 showed the amino acid sequence alignment of two recombinant 

scFv clones, RD6/2 and RB8, with the complementary determining regions (CDRs) of 

the VH and VL and the linker sequence domains were indicated. 

Antibodies or immunoglobulins are fascinating molecules from both a 

functional and structural point of view. They have the ability to recognize virtually 

any foreign molecule with exquisite specificity and very high affinity. These 

properties are brought about by their three dimensional (3D) structure architecture, 

which consists of a tetramer of two identical pairs of polypeptide chains: the heavy 

and light chains. Each chain includes homologous domains that have a similar tertiary 

structure to each other: the so­called immunoglobulin fold. The two N­terminal 

domains of the polypeptide chains are called variable domains (VL and VH, 

respectively), and they are responsible for antigen binding. Predicting the structure of 

an antibody from its amino acid sequence has several important applications. The 

structural models obtained once such predictions have been made can be used in 

docking simulations to identify the region of the antigen recognized by the antibody. 

Predicting the structure of antibodies also has implications for the re­design of 

biotechnologically useful antibodies adopted in a variety of experimental setups. 

For prediction of 3D structure, the nucleotide sequence of RB8 and RD6/2 

were translated to an amino acid sequence using Expasy (http://web.expasy.org/ 

translate/). The recombinant antibody structures were predicted using the Phyre 

program via the site at http://www.sbg.bio.ic.ac.uk/phyre2. The schematic three 

dimensional structure recombinant scFv antibody RB8 with CDRs was shown in 

Figure 4.14 and 4.15. 
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Figure 4.14 Three­dimensional structure modelling of recombinant rabbit scFv 

antibody RB8. 

 

 

 

 

Figure 4.15 Three­dimensional structure modelling of recombinant human scFv 

antibody RD6/2. 
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4.6 Production of soluble antibody fragments 

In order to express the scFv fragment in E. coli, the scFv genes of RD6/2 and 

RB8 phage clones were inserted into pET21b vector. Recombinant expression 

plasmid was transformed into E. coli HSM 174 for protein expression. This 

expression vector allows the expression of 6xHistidine­tag­fusion­proteins which 

using for purification and detection. The expression was performed overnight at 16°C 

with shaking. The secreted antibody could be found in the supernatant. The 

recombinant antibody scFv proteins were purified from the supernatant. After 

purification by immobilized metal ion affinity chromatography, the purify fraction 

were examined on SDS­PAGE gel (Figure 4.16). The results of SDS­PAGE showed 

that the scFv­hexahistidine fusion antibodies with a size of about 30kDa were 

successfully purified from the supernatant using Ni­NTA resin. 

 

 

Figure 4.16 SDS PAGE of purified scFv antibody from supernatant. A: RD6/2 phage 

clone; B: RB8 phage clone. Lane M, protein molecular weight marker; 

lane S, culture supernatant fraction; lane FT, flow­through fraction; lane 

W1, W2, W3, wash fraction; lane E1, E2, E3, E4: Elution. 
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The reactivity of recombinant antibodies after purification against DOA9 was 

tested by ELISA. The results were shown in Figure 4.17 and 4.18. The results 

demonstrated that the recombinant antibodies retained a specific binding activity for 

target DOA9 in both pure culture and nodules form of antigen as same as the phage 

scFv antibodies. 

 

 

Figure 4.17 ELISA of recombinant scFv antbodies against DOA9 and other antigens 

in pure culture sample. Value indicated mean of triplicate reactions. 

Error bars showed the standard deviation for each set of data. 

 

 

Figure 4.18 ELISA of recombinant scFv antbodies against DOA9 and other antigens 

in nodule samples. Value indicated mean of triplicate reactions. Error 

bars showed the standard deviation for each set. 
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4.7 Discussions 

Since DOA9 may have potential to be used as biofertilizer, DOA9 was used as 

a model in this study for development a new method for detection and monitoring of 

DOA9 in both pure culture and in form of bacteroid in legume nodules. Up to now, 

many techniques useful in the analysis of rhizobial inoculants have been developed by 

using antisera. However, it is very often to have cross­react with other rhizobial 

strains within the same species.  This cross­reactivity may also extend to other 

rhizobial biovars or species and sometimes even to members of other bacterial genera 

(Hoben et al. 1994). These cross­reactions are the main problem of using polyclonal 

antibody to detect and monitor specific rhizobium. In this study, the results clearly 

showed that polyclonal antibody produced from rabbit immunized with DOA9 have 

higher cross reactivity with other bacterial strains than that of phage antibodies. It 

may be due to these tested bacteria contain similar epitopes or antigens on their cells.  

Thus, polyclonal antibody which normally produced from various epitopes presented 

in DOA9, may have antibodies that probably bind to those similar antigens presence 

in other bacteria. 

Therefore, monoclonal antibodies are the ideal method and precise tools for 

bacterial identification that provides higher reliability for detection of rhizobial cell 

during production and application of biofertilizer. However, production of 

monoclonal antibodies by hybridoma technology is high cost and time consuming 

method. Phage display was first reported by George P. Smith (Smith 1985). It is an 

effective tool for producing a large diversity of peptides and proteins, and from these 

selecting molecules that have specific binding properties. This technique can be 

particularly useful for studying protein­ligand interactions, antigen­antibody 
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interactions and to improve the affinity of proteins for their binding properties (Smith 

and Petrenco.P.A. 1997). Production of recombinant antibodies by phage display 

technology has many advantages, such as small amounts of antigen, large scale and 

low cost. Single­chain antibody fragment (scFv) is a small engineered antibody, in 

which the variable heavy chain (VH) and light chain (VL) of the antibody molecule 

are connected by a short, flexible polypeptide linker. Using scFv for detection of 

antigen has several advantages. First, it retains the specific affinity to the antigen, 

though usually lower than its original antibody; second, scFv can be produced in large 

quantity in bacterial expression system at low cost; and third, it is easy to be 

manipulated to adapt different applications, for example, fusion with protein drug to 

target and kill pathogens or with marker molecules for detection purposes (Huang et 

al. 2012). Nowadays, scFv antibodies have considered as one of potential in 

immunological techniques for detecting and monitoring many targets such as: 

bacteria, virus, toxin, pesticides and other residues in both basic research and 

application research. 

In this study, I used two recombinant scFv antibody libraries for screening the 

best scFv antibodies for target, DOA9. The first library is naïve human library, the 

YAMO­I library. This library was constructed from 140 non­immunized (naïve) 

donors (Pansri et al. 2009). This library was applied in successful selections of 

specific antibodies against antigens, such as aflatoxin, crude snake venom, cancer cell 

surface, and rabies virus (Pansri et al. 2009, Rangnoi et al. 2011, Pruksametanan et al. 

2012). The second library was the immunized rabbit library that constructed by phage 

display technology. After bio­panning, one phage clone, RD6/2 (from human library) 

and two phage clones, RB8 and RG9 (from rabbit library) were selected to against 

target DOA9 with similar affinity. Interestingly, the scFv antibody specific to DOA9 
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was also successfully obtained from naïve human library in this study.  It could be 

possible that some of naïve donors may have experience exposed to some bacteria 

that have similar epitopes to DOA9. Moreover, it was noticed that only two scFv 

clones specific to DOA9 were obtained from rabbit library that immunized directly 

with this strain.  However, it is unclear to explain this phenomenon.  The recombinant 

scFv antibody were applied for detection of target DOA9 in both pure culture and 

nodule sample by phage ELISA and immunofluorescence assay comparing with 

polyclonal antibody against other bacterial strains.  Strain SUTN9­2 and SUTN1­12 

were in genus Bradyrhizobium isolated from Aeschynomene americana same as 

DOA9, while strain SUTN1­12 showed high similarity with strain DOA9 when 

compared by using gene multi locus analysis (Noisangiam et al., 2012).  However, the 

derived phage clones could be used to distinguish or have higher specificity to DOA9 

than SUTN1­12 or SUTN9­2.  Moreover, other bradyrhizobia and bacteria used as 

commercial biofertilizer, such as Bradyrhizobium diazoefficiens USDA110 for 

soybean, Bradyrhizobium sp. PRC008 for mungbean, Bradyrhizobium sp. TAL173 

for peanut, and other Plant Growth Promoting Rhizobacteria (PGPR) were included to 

test the cross­reactivity by using these antibodies.   Since these strains have been used 

as biofertilizer in the field for many years and some of them may persist in the soil, it 

is necessary to test whether the scFv antibodies derived from this study could bind or 

have the cross­reactivity with these commercial biofertilizer strains.  The results 

showed that, phage clones were more specific with target than polyclonal antibody 

and were also able to detect the bacteria in the root nodule. However, phage clones 

were not specific when applied directly for detecting the target bacterium in the soil. 

Thus, the result encourage more study to increasing the specific binding of the 

recombinant scFv antibody when applied directly with soil sample. 
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CHAPTER V 

CONCLUSION 

 

In conclusion, I successfully constructed the phage displayed rabbit scFv 

antibody library from the immunized rabbit with high quality. Then, the immunized 

rabbit scFv antibody library and the naïve human scFv antibody library were affinity 

selected against the target, Bradyrhizobium sp. strain DOA9 by biopanning. Two 

recombinant scFv antibodies were obtained from the immunized rabbit scFv antibody 

library. After sequencing, they were identical. From the naïve human scFv antibody 

library, one recombinant scFv antibody was obtained. The result was confirmed in 

two methods, phage enzyme linked immunosorbent assay and immunofluorescence 

assay with two sample types, pure culture and bacteroid in plant nodule. These 

antibodies have higher specificity than that of the polyclonal antibody and no cross­

reactivity with another tested bacterial strains. This study described the first time for 

the isolation of recombinant scFv antibody against N­fixing bacteria. The results 

encourage the further investigation of recombinant scFv antibody for the development 

new immunoassays for rapider and simpler detection of other bacteria using in 

agriculture as well as for studying in plant­microbe interaction. 
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