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CHAPTER I 

INTRODUCTION 

 

1.1 Significance of the study 

 The limited fossil fuel resources along with the need to reduce greenhouse gas 

emissions were major impulses to the development of alternative fuels. Nowadays, a 

large amount of biodiesel is produced around the world; however, it was not used for 

every types of engine. While biodiesel is used worldwide as a renewable replacement 

of diesel fuel, no comparable replacement is available for jet engine fuel (kerosene) at 

sufficient volume. Since biodiesel is too heavy for running the gas turbine engine, there 

are several projects that intend to produce the replacement of jet fuel, which is bio-

derived jet fuel (bio-jet fuel). Bio-jet is an alternative, renewable fuel used for gas 

turbine engine which the main focus is not only in air traffic, but also in power. Modern 

gas turbines burn the fuel at very high temperatures and can reach very high speeds with 

a high stability and short start-up time (http://www.bladonjets.com/technology/ gas-

turbines/). It is a special liquid petroleum that is required higher energy contents per unit 

volume than gas and easier to handle and distribute when compare to solids (Dunn et 

al., 2010 and Dunn et al., 2011). Small variations of gas turbines have been used in 

hybrid vehicles, the company Jaguar, to charge the battery of the electric motor, and so 

the usage was significantly increased. The Jaguar C-X75 (Figure 1) showed the 

developers that even with the use of electric motors, a very high performance can be 

achieved. Several studies indicated that the synthetic alcohols (bioethanol or  methanol),

http://www.bladonjets.com/technology/
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synthetic hydrocarbons from sugars and hydrogen could be possibly used as gas turbine 

alternative fuels. However, the usage of these fuels is still in limitation since the high 

quality requirements for the commercial aviation fuels strictly limit the wide application 

of these alternative fuels for all exiting aircrafts (Gupta et al., 2010; Waynick, 2001). 

Moreover, with the declining petroleum resources and large fluctuation in the price of 

fuels, combined with the increasing in environmental concern and the current economic 

downturn, it is necessary to develop renewably clean and energy efficient technologies 

for producing sustainable products of bio-jet fuels (Lee et al., 2009; Mayor and Tol, 

2010; Pejovic et al., 2008 and Saidur et al., 2009). 

 

 

Figure 1.1 The electrically driven Jaguar C-X75 Blaydon Jet with gas turbines engine

  (http://i.dailymail.co.uk/i/pix/2010/09/30/article13162730B6848CD00005

  DC321_964x523.jpg). 

 Fuels were produced from the second generation of biomass sources including 

camelina, jatropha and algae, reducing the fuel's carbon footprint by 80% relative to jet 

fuel without competing for resources with food production (Bailis and Baka, 2010). 

Aviation liquid fuels can be derived from different materials by different methods 

(Edwards, 2003). One of these technologies is the conversion of vegetables oils as 

http://i.dailymail.co.uk/i/pix/2010/09/30/article13162730B6848CD000
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agricultural sources into bio-jet fuel through trans-esterification reaction with ethanol to 

form fatty acid ethyl esters (FAEEs). Several feedstock sources have been used for 

producing FAEE such as palm oil, palm kernel oil, coconut oil, rapeseed oil, soybean 

oil, etc. Oil palm is the highest vegetable oil production in Thailand, followed by 

coconut oil and soybean oil (Attanatha et al., 2004). Palm kernel oil (PKO) is obtained 

from the kernel oil of the palm fruit and it is located inside the hard shell. It is reported 

that palm oil production within Thailand in 2012 is approximately 0.64 million tons per 

year and still increased by the year. The oil comprises of various fatty acids ranging 

from medium chain to long chain fatty acids. As a result, the boiling point of FAEEs is 

expected to be different, and could be fractionated to produce bio-jet fuel production. 

Thus, it is pertinent to analyze the potential of palm kernel oil for bio-jet production. 

 In this work, a new feasible development of bio-jet production using palm kernel 

oil as a substrate was studied including optimization parameters for high conversion of 

fatty acid ethyl esters product from trans-esterification reaction between palm kernel oil 

and anhydrous ethanol, fractionation distillation of FAEE leads to the physicochemical 

properties of bio-jet fuel to meet the commercial jet fuel standard, and the engine testing 

coupled with the emission determination. Fuel characterization results for the produced 

PKO bio-jet through the ASTM and EN standard fuel tests are reported. 

 

1.2 Research objectives 

 1.2.1 To optimize the conditions of trans-esterification reaction to achieve high 

conversion of fatty acid ethyl esters using palm kernel oil material as the main substrate 

with the reactant ethanol in the presence of potassium hydroxide as catalyst. 
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 1.2.2 To design an efficient fractional distillation process of high purity of bio-

jet fuel from palm kernel oil fatty acid ethyl esters using a simulation program ASPEN 

plus.  

 1.2.3 To compare the physic-chemical properties of the produced bio-jet fuel of 

palm kernel oil material with the standard biofuel ASTM and EN. 

 1.2.4 To test the produced bio-jet fuel on the combustion performance in gas 

turbine engine and analyze the gas emission from the engine during its performance. 

 

1.3 Research hypothesis 

 Palm kernel oil as agricultural source could produce alkyl esters fuel through 

trans-esterification reaction with a high conversion and high yield at the optimal 

conditions. Bio-jet fuel could be obtained as medium chain fatty acid ethyl esters, a 

main product of trans-esterification reaction using fractional distillation process. Bio-

jet fuel then could be used for gas turbine engine with high performance, and lower 

emission. 

 

1.4 Scope and limitation of the study 

 This work involves the investigation reaction conditions including molar ratio 

between ethanol and palm kernel oil, temperature, reaction time, and concentration of 

catalyst to obtain the optimal conditions with high conversion of trans-esterification 

reaction; fractional distillation process was investigated to get high purity of bio-jet fuel. 

Physical chemical properties were compared between the produced bio-jet with the 

conventional jet, and combustion performance by gas turbine engine was with emission 

analysis. The ultimate objective of the whole thesis is to improve the value of 
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agricultural product for the efficient production process of bio-jet fuel by trans-

esterification. Finally, trans-esterification between palm kernel oil and ethanol, and 

process simulation and fractionation distillation were performed to obtain bio-jet and 

engine testing. Its performances in terms of product yield and purity were investigated, 

and compared with the conventional product.  

 

1.5 Expected results 

 1.5.1  High fatty acid ethyl esters yield from trans-esterification reaction under 

optimum condition can be obtained. 

 1.5.2  High purity of bio-jet fuel can be achieved through an efficient fractional 

distillation process. 

 1.5.3  The obtained bio-jet fuel possesses physico-chemical properties as same 

as conventional jet fuel. 

 1.5.4  The model gas turbine engine can be operated using the bio-jet fuel that 

are synthesized in the laboratory and produced in low gas emission with high energy 

density.

  



 
 

CHAPTER II 

LITERATURE REVIEW 

 

2.1 Jet engine (Gas turbine engine) 

 A turbojet engine is a gas turbine engine that works by compressing air with an 

inlet and a compressor, mixing fuel with the compressed air, burning the mixture in the 

combustion chamber, and then passing the hot, high pressure air through a turbine as 

the exhaust. The compressor is powered by the turbine, which extracts energy from the 

expanding gas passing through it. The engine converts internal energy in the fuel to 

kinetic energy in the exhaust, producing driving force or “thrust”. All the air ingested 

by the inlet is passed through the compressor, combustor, and turbine as shown in figure. 

2.1 

 

 

 

Figure 2.1  Basic principle of a gas turbine engine (Mattingly and Jack, 2006).  

 

Air inlet Combustion chamber Turbine 

Exhaust 

Combustion CompressionIntake 
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2.2 Fuel for gas turbine engine and fractionation distillation  

 Petroleum or crude oil, a natural resource that is found naturally in rock of some 

areas of the world, consists of various hydrocarbons and heavy metals. They are mixed 

with the hydrocarbon constituents and varied based on the source of crude dug up. 

Generally, their components are very simple, most is alkane, cyclopentadienyl alkane 

(cycloalkane), and aromatic compounds. Concentration of each element approximately 

is as follows: including 83-89% carbon, 10-14% hydrogen, 0.1-2% nitrogen, 0.1-1.5% 

oxygen, 0.5-6% sulfur, and metals which are about 1000 ppm. The first kind of 

hydrocarbons is the paraffin. This is known as a compound of the alkane, whose 

molecular formula is CnH2n+2, roughly be characterized by a long-chain molecule. The 

binding of carbon atoms is a single bond. The smallest type of paraffin is methane 

(CH4), which is the main component of natural gas. Naftin is cycloalkane compound 

which is a ring of carbon atom. Carbon ring can have 1 or more rings such as 

cyclohexane, etc. The aromatic compounds are chemical group that has a ring of carbon 

and six atoms held together by double bonds and single bonds alternately called 

aromatic ring (benzene ring), for example benzene, toluene and xylene, etc. The last 

type is asphalt or bitumen, which is the last remaining of fractional distillation column 

of crude oil. It is a viscous black liquid, often used in the paving of asphalt, as shown 

in Fig.2.2. 

 Petroleum is a natural product derived from the decomposition of living 

organisms, both plants and animals. These compounds are compressed at high 

temperature under the Earth’s crust for several million years in anaerobic conditions. 

Crude oil pumps up to the surface will be refined respectively. Fractional distillation is 

the most common form of separation technology used in petroleum refineries, 
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petrochemical and chemical plants, natural gas processing and cryogenic air separation 

plants (Kister and Henry Z, 1992; Perry et al., 1984). 

 

Figure 2.2  Fractional distillation column of petroleum products to different products 

(http://en.wikipedia.org).  

 In most cases, the distillation is operated at a continuous steady state. New feed is 

always being added to the distillation column, and products are always being removed. 

Unless the process is disturbed due to changes in feed, heat, ambient temperature, or 

condensing, the amount of feed being added and the amount of product being removed 

are normally equal. This is known as continuous, steady-state fractional distillation. 

Large-scale industrial towers use “reflux” to achieve a more complete separation of 

products. Reflux refers to the portion of the condensed overhead liquid product from a 

distillation or fractionation tower that is returned to the upper part of the tower as in the 

http://en.wikipedia.org/
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schematic diagram of a typical, large-scale industrial distillation tower. Inside the tower, 

the reflux liquid flowing downwards provides the cooling needed to condense the vapors 

flowing upwards, thereby increasing the effectiveness of the distillation tower. The 

more reflux is provided for a given number of theoretical plates, the better the tower's 

separation of lower boiling materials from higher boiling materials. Alternatively, the 

more reflux provided for a given desired separation, the fewer theoretical plates are 

required. Fractionation distillation was used to separate the different types of fuel such 

as LPG (Liquefied petroleum gas), gasoline, jet fuel (kerosene), diesel fuel, and 

bitumen, etc. The jet fuel oil grade is divided into two military jets using military affairs. 

The composition of light hydrocarbons is very volatile. The aircraft can accelerate speed 

and jet fuel will be used in commercial aircraft with high speed in gas turbine engines, 

which use fuel at high burn rate. Thus, to get the most effective results, these fuel types 

are called Jet A-1 and JP-1, which are in line with kerosene oil but have better quality 

kerosene sold in the market and also colorless like water (Leckel, 2007). Jet fuel or 

kerosene is fractionated from crude oil through a refining process with the boiling point 

between 150 °C and 275 °C. The sulfur compounds and contaminated additives were 

needed to control amount of aromatic substances in limited quantities to induce the 

incomplete combustion, more smoke and carbon deposits in the engine as well. The 

dominant feature of the jet fuel is including heat of combustion, and the density in which 

the density of the fuel is a measure of mass per unit volume. Fuel with high density will 

be high heat per unit volume. The heating value of combustion is the heat of combustion. 

Fuel and oxygen that affects the performance of the engine, is also features stability to 

heat (thermal stability) and features low temperature (low temperature properties), 

which is a great feature to take into account a lot of oil, aircraft engine. The physical 
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and chemical properties of the conventional jet fuel’s standard are given at Table 2.1 as 

follow. 

 

Table 2.1  The physical chemical properties of commercial jet fuel  

   (http://www.ncbi.nlm.nih.gov/books/NBK231234/). 

Properties Units Characteristic Test method 

Physical State  liquid  

Color  colorless  

Odor  kerosene-like  

Density @15oC kg/lt 0.775-0.840 ASTM D 1298 

Sulphur wt % 0.3 max IP 336 or ASTM D 1266 

Boiling point/range oC 175-300 ASTM D 86 

Flash point oC 40 ASTM D 328 or D 56 

Kinematic viscosity @ 20oC cSt 2-3.5 ASTM D 445 

Energy density MJ/L 34.7  

Specific energy MJ/kg 42.15  

 

2.3 Synthetic jet fuel 

 Nowadays, many countries now have focused on the research, development of 

fuels production from renewable energy such as diesel oil, petrol for vehicles, naphta in 

chemical. It aims to produce fuel to be used on gas turbine engine, for example in aircraft 

or electric car. The fuel-specific features have dominated the high performance and the 

need to be safe to fly high for fuel from renewable energy which used on aircraft. In 

addition to the performance features as the original fuel, it also has other features, such 

http://www.ncbi.nlm.nih.gov/books/NBK231234/
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as jet fuel remaining unchanged as well for jet fuel from potential renewable energy. 

From the literature, technology for the bio-jet synthesis can be divided into various 

categories as follows to decompose biomass as fuel for aircraft and synthesis of a new 

bio-jet fuel. 

 

 2.3.1  Synthetic jet fuel using Fisher-Winthrop France (Fischer-Tropsch 

process) 

   Fischer-Tropsch (F–T) process is a collection of chemical reactions that 

converts a mixture of carbon monoxide and hydrogen into liquid hydrocarbons. F–T 

process is often regarded as the key technological component for converting synthesis 

gas (or “syngas”) to transportation fuels and other liquid products (Jalama et al., 2011). 

German researchers Franz Fischer and Hans Tropsch developed this method bearing 

their names in 1922 as a method for making liquid fuels from coal with alkalized under 

high pressure (>100 bar) (Khodakov et al., 2007). Demirbas (2008) and Lobo et al. 

(2011) showed that nowadays, several major companies have announced plans to build 

large plants and these projects would yield about 1 million barrels per day of total 

product by 2020 when it completed, some of which could potentially be used as aviation 

fuel. F–T fuels have several characteristics that make them attractive as a jet fuel such 

as their higher specific energy, it leads to a small reduction in the amount of energy 

required to fly a given distance with a given payload and could allow for increased 

payload capacity (Martı́nez et al., 2003). Following by the studies of Yang et al. (2010) 

and Bermúdez et al. (2011), the advantages of F–T fuels are clean burning without sulfur 

dioxide (SO2) or sulfuric acid (H2SO4) aerosol emissions, thus leading to increased 

combustor and turbine life, and meanwhile their improved thermal stability should 
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reduce deposits on engine components and fuel lines. Furthermore, this aromatic-free 

fuel emits fewer particulates than conventional jet fuel. However, being no aromatic 

fuels, F–T fuels still has some disadvantages. Firstly, F–T kerosene has minimum 

density requirement. Secondly, the absence of aromatic compounds can cause fuel leaks 

in certain system. However, these disadvantages can be solved by blending synthetic 

fuel with traditional jet fuel in various ratios to resolve such problems. 

   The F–T process involves a series of chemical reactions that produce a 

variety of hydrocarbons, ideally having the formula CnH2n + 2 when n is typically 10-20. 

The F-T process has three main steps as shown on Fig. 2.3 F–T process scheme (Liu et 

al., 2013). The first step is the production of synthesis gas, which is a mixture of 

hydrogen and carbon monoxide, that can be produced from many different sources, 

including coal (which is used to produced liquid fuels call Coal to liquid: CTL), natural 

gas (Gas to liquid: GTL), biomass (biomass to liquid: BTL) and synthesis gas will be 

applied into chemical reactions for the next steps.  

   The second step is removed undesired compounds such as CO2 as well as 

impurities from synthesis gas stream. This stage can produce straight-chain hydrocarbon 

compounds. The size and length depend on the ratio of carbon monoxide and hydrogen. 

Catalysts and the conditions of the reaction, the equilibrium of the reaction is: 

 

nCO  +  2nH2  →   [-CH2-]n  +  H2O 

 

   The third step is F-T synthesis, which makes mainly straight chain 

hydrocarbons, and to improve the quality of liquid fuels to synthetic cruel oil, which 

can lead to some processes such as cutting chain is shortened (cracking) from long chain 



13 
 

into small units, and rearranging some of the atoms (isomerizing) to get the desired 

synthetic fuels such as naphtha for producing gasoline, kerosene for aircraft and diesel 

for cars, etc. The product composition will vary depending on the hydrogen to carbon 

monoxide ratio, the catalyst and process conditions. The advantage of this process is 

enabling the combustion of the engine clean, no soot and no pollution emitted as well. 

However, there is drawbacks to even synthetic jet fuel in this way to meet the specific 

items, but all other features are less dense than conventional jet fuel 

 

Figure 2.3 Fischer-Tropsh process scheme (Liu et al., 2013). 
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 2.3.2  Hydro-processed Renewable Jet fuel: HRJ fuel 

   For the HRJ fuel pathways, oil seed farming, oil extraction, and HRJ fuel 

production stages generate the majority of Green House Gas (GHG) emissions (Stratton 

et al., 2010; Elgowainy et al., 2012). Major sources of GHG emissions in oil seed 

farming include nitrogen fertilizer and fossil fuel use. In 2013, Han et al. indicated that 

nitrogen fertilizer used is a major source of GHG emissions. Plant oils are already 

familiar oils, such as the current crop oil soybean or rasped or the micro-organism oil 

that has received more attention nowadays is oil from algae. This oil will be brought 

into the process to produce jet fuel. In HRJ production, triglyceride in vegetable oil is 

hydrogenated to saturate the double bonds and then breaking its glycerin backbone, 

which co-produces propane to release the fatty acids. Oxygen in free fatty acids is 

removed by either hydro-deoxygenation (producing water) or decarboxylation 

(producing CO2), which generate straight chain alkanes then add hydrogen to make 

synthetic fuel as needed. The second major step of the reaction steps is starting from the 

vegetable oil which goes through the process of cleaning. The long chain-shaped of 

triglycerides free fatty acid and oxygen is introduced into the molecular structure into 

shorter chains, then eliminating oxygen molecules out in the form of water and carbon 

dioxide. The steps are made of synthetic fuel. Length of the chain is a diesel (Diesel-

range paraffin), and then put them into a synthetic fuel with hydrogen to make synthetic 

fuel. Han et al. (2013) has introduced the chain length of jet fuel (jet-range paraffin) by 

synthetic fuel for aircraft, however it is still a stub. Molecules are in the same format as 

the existing synthetic fuel. By synthetic fuel through reactions steps will be taken to a 

refinery. This will yield for a jet fuel gasoline and diesel for cars. The schematic diagram 

for hydro-processed renewable jet fuel (HRJ) is given in Fig. 2.4. 
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Figure 2.4 Schematic diagram for the production process of HRJ fuel (Kalnes et al., 

2010). 

   The saturation of double bonds, the removal of glycerin backbone, the 

hydro-deoxygenation, and hydrocracking consume a significant amount of H2. This 

hydrogen is a major source of GHG emissions during its production from natural gas 

via steam methane reforming. However, discussions in the literature of the process 

assumptions in the production of HRJ fuel are still limited (Bailis and Baka, 2010; 

Stratton et al., 2010; Agusdinata et al., 2011; Pearlson et al., 2013). Moreover, the basis 

for most cited studies is the Universal Oil Products (UOP) hydro-deoxygenation 

process, which was designed for soy oil, and these studies do not concern about the 

variation in oil characteristics from various feedstock sources. The advantages of HRJ 

fuel are not only new replacements for traditional jet fuel, but also they offer a lower-

emission option for fueling commercial. However, it still has high cost since it has to 

blend with conventional jet fuel and this blending ratio of traditional jet fuels is high. 

The process HRJ is complicated and difficult to handle since lots of conditions for 
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process hydro-cracking. Thus it’s leading to further research that need to reduce the 

price of jet fuel with the optimum blending ratio. 

 

2.4 Ester based bio-jet fuel production process (Bio-derived jet fuel) 

 Biomass-based biofuel production represents a pivotal approach to face high 

energy prices and potential depletion of fossil fuels, to reduce greenhouse gas emissions 

and to enhance a sustainable economy (Zinoviev et al., 2010). Renewable jet fuel comes 

from feedstock produced by green plants, which absorb atmospheric CO2 and convert it 

to other sources such as sugars and oils which can be made into low-carbon jet fuel. 

 

 2.4.1  Trans-esterification reaction 

   Through our knowledge, the production of bio-jet based on trans-

esterification process has not been reported so far. Biodiesel, mixture of fatty acid alkyl 

esters is a nontoxic, biodegradable, and renewable fuel which can be prepared from a 

range of organic feedstock, including new or waste vegetables oil, animal fats, and 

oilseed plants (Graboski et al., 1998). Biodiesel has significantly lower emission than 

petroleum-based diesel when it is burned, it does not contribute to a net rise in the level 

of atmospheric carbon dioxide with a minimal greenhouse effect (Antolin et al., 2002). 

Well-known methods for fatty acid alkyl esters biodiesel are micro-emulsions (Sharma 

et al., 2008) and trans-esterification of oil to ester (Kusdiana et al., 2004). Among these 

processes, trans-esterification has proven to be the simplest and economical route to 

produce biodiesel, with physical characteristics similar to the fossil diesel, forming little 

or no deposits when used in diesel engine. Due to its literature review, transesterification 
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can be a feasible and efficient method that can use to produce esters in bio-jet production 

process. 

   Trans-esterification reaction is a process in which short chain alcohol in 

the presence of catalyst (strong acid or base) is used to chemically break the molecule 

of the triglycerides into a mixture of fatty acids alkyl esters and glycerol. The glycerol 

layer settles down at the bottom of the reaction vessel. Diglycerides and monoglycerides 

are the intermediates in this process. The base-catalyzed transesterification of vegetable 

oils proceeds faster than the acid-catalyzed reaction (Freedman et al., 1984). Due to this 

reason, together with the fact that the alkaline catalysts are less corrosives than acidic 

compounds, industrial processes usually favor base catalysts, such as alkaline metal 

alkoxides (Schwab et al., 1987) and hydroxides (Wimmer et al., 1994). Alkaline metal 

alkoxides (as CH3ONa for the methanolysis) are the most active catalysts, since they 

give very high yields (>98%) in short reaction times (30 min) even if they are applied 

at low molar concentrations (0.5 mol%). However, they require the absence of water 

which makes them inappropriate for typical industrial processes (Freedman et al., 

1984). Alkaline metal hydroxides (KOH and NaOH) are cheaper than metal alkoxides, 

but less active. Nevertheless, they are a good alternative since they can give the same 

high conversions of vegetable oils just by increasing the catalyst concentration to 0.5 or 

1.5 mol%. It has been reported that the most desirable biodiesel properties were obtained 

using KOH as the catalyst in many studies (Refaat et al., 2008; Roy et al., 2003). The 

excess amount of sodium hydroxide catalyst leads to saponification resulting in lower 

biodiesel yield and lower biodiesel quality. Moreover, palm oil biodiesel or soybean oil 

biodiesel have successfully been produced by Darnoko and Cheryan (2000) and Zagonel 

et al. (2005) through KOH-catalyzed trans-esterification processes. In this study, fatty 
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acid alkyl ester production through trans-esterification reaction of triglycerides and 

ethanol in the presence of potassium hydroxide as catalyst was carried out, as shown in 

Fig. 2.5. 

   The stoichiometric reaction requires 1 mole of a triglyceride and 3 mole 

of the alcohol. However, an excess of the alcohol is used to increase the yields of the 

alkyl esters, and to allow its phase separation from the glycerol formed. The most 

important steps are alcohol that used in process must be anhydrous and the byproduct 

glycerol must be removed out the reactor. The key factor affecting the production of 

FAEEs in terms of production yield and purity of FAEEs was resulted in the process 

removing of glycerol byproduct from reaction (Attantho et al., 2004). The more glycerol 

byproduct was removed from reaction, the higher yield of FAEEs was formed. 

 

 

Figure 2.5  Trans-esterification reaction (Nambiar, 2003). 
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 2.4.2  Palm kernel oil 

   Nowadays, biodiesel is produced a large amount around the world. Since 

the boiling of biodiesel is too high for the application as bio-jet fuel for the gas turbine 

engine, it is needed to find new material. Alternatively, the boiling point of the esters 

can be reduced by achieving the shorter chain or medium chain of triglycerides through 

the trans-esterification reaction. Operating condition used in bio-jet production, and 

property of bio-jet produced depend on the feedstock source. Numerous feedstock 

sources have been used for producing esters, such as palm oil, coconut oil, rapeseed oil, 

etc. In which, oil from palm fruit is the highest vegetable oil production in Thailand 

followed by coconut oil and soybean oil. It is reported that the total crude palm oil 

production within Thailand is approximately 0.64 million tons per year in 2012. Palm 

kernel oil is one of the vegetable oil obtained from oil palm (Fig. 2.6). Palm kernel oil 

contained 80% of saturated fatty acid mainly lauric acid. Around 5.086 tons of palm 

kernel oil is excess from domestic used and export to other country (www.oae.go.th). 

Fatty acid profiles of vegetable oils from several agricultural sources was shown on 

Table 2.2. It was illustrated that both coconut oil and palm kernel oil are able to synthetic 

jet fuel production. High concentration of medium chain fatty acid is the desires 

characteristic for bio-jet fuel production process. 

Figure 2.6  Palm kernel oil (http://naturalnigerian.com/2012/02/pam-kernel-oil). 

http://www.oae.go.th/
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Table 2.2 Triglyceride profiles of vegetable oils from soybean, palm, palm kernel, 

sunflower, etc (Pearlson et al., 2013). 

Source of oil C10 C12 C14 C16 C18 C18:1 C18:2 C20 

Coconut 9.5 50 15 10 2.0 7.5 0.5 0.5 

Jatropha - - 1.0 14 8.5 55 30 0.3 

Palm - - 2.0 39 5.6 42 8.2 - 

Palm kernel 6.2 47 16 8.2 17.3 15 1.5 - 

Algae 
  

4.5 36 1 12 1.5 20 

Sunflower - - - 5 7 20 65 0.5 

Soy bean 
   

7 5 32 52 - 

Cotton seed - - 0.4 20 2 35 42 - 

Y. lipolytica 
  

5 11 1 28 51 1 

 

   In this study, palm kernel oil (PKO) was used in trans-esterification 

reaction. PKO was obtained from the kernel of palm fruit, located inside the hard shell, 

and is one of the potential raw materials in Thailand. Fatty acids mostly found in palm 

kernel oil are including several types: lauric acid (C12:0), myristic acid (C14:0), 

palmitic acid (C16:0), capric acid (C10:0), caprylic acid (C8:0), stearic acid (C18:0), 

oleic acid (C18:1), linoleic acid (C18:2), etc (Pearlson et al., 2013; Alamu et al., 2008) 

(Table 2.2). It was described that at the end of trans-esterification reaction, fatty acid 

alkyl esters were comprised of both medium chain and long chain of fatty acid. 

However, only medium chain fatty acid ethyl ester is used solely as the bio-jet 

production, due to kerosene or jet fuel has carbon chains from C10 to C14. Then, from 

fatty acid alkyl esters of palm kernel oil, bio-jet production could be obtained by 
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fractionation distillation (obtained as medium chain fatty acid alkyl ester) since these 

esters have dissimilar boiling points to others long chain. 

 

 2.4.3  Ethanol 

   Short-chain alcohols such as methanol, ethanol, and butanol are the most 

frequently employed. The selection of the alcohol is based on cost and performance 

consideration. In this work, the usage of ethanol instead of methanol was emphasized. 

As known, almost all fatty acid alkyl esters currently produced worldwide come from 

trans-esterification of oils and methanol, however next logical step is the use of ethanol 

instead of methanol, since ethanol was produced from agricultural renewable resources, 

and had lower human toxicity than methanol (Hamelinck et al., 2007). In addition, 

ethanol is preferable to methanol not only due to its much higher dissolving power oils 

but also the lower cloud and pour points of the formed fatty acid ethyl esters than the 

methyl esters (Encinar et al., 2007). Therefore, producing ethyl esters rather than methyl 

esters is of considerable interest, because, in addition to the entirely agricultural nature 

of ethanol, the extra carbon atom provided by the ethanol molecule slightly increases 

the heat content and the cetane number (Vicente et al., 2007). However, limitation of 

using ethanol as the reactant is the increasing in the mutual solubility of ethyl ester and 

glycerol, making phase separation more difficult (Mittelbach et al., 2004). This 

drawback can be solved by addition of glycerol (Encinar et al., 2007) or evaporation of 

ethanol (Bouaid et al., 2009). For the bio-jet production process, anhydrous ethanol 

(approximately 99.8 wt.%) is required. Since the concentration of the distilled ethanol 

was 92-95 wt.%, further step was applied to obtained anhydrous ethanol by dehydration 

using vapor permeation with membrane. The distilled ethanol was supplied at high 
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temperatures, and high pressure to the membrane module in order to remove water prior 

to circulating to the trans-esterification reaction (dehydrated ethanol). Since water is the 

smallest molecule compared to ethanol, it is possible to use a filter at the molecular level 

(molecular sieving) to remove water from the system. The technique used is called vapor 

permeation (VP) (Khunnonkwao et al., 2012). The ethanol contained some water at the 

concentration of approximately 6 wt.%, and this mixture is called azeotropic 

concentration. Water was penetrated through the surface of the membrane and 

condensed on the other side as permeate. In order to make this system economically 

possible in a more commercial, the system must remove water from the reaction 

efficiently and at a high dehydration rate. The main purpose is making the separation of 

water completely occur within a short operating time. In addition, the VP system avoids 

direct contact of the membrane with the reacting solution which has a high acid 

condition. This operation can extend the life of the membrane for a longer time. In VP 

process, the feed side needs to be vaporized prior to enter the vapor permeation module. 

In addition, the vapor feed can be pressurized and superheated resulting in higher 

dehydration rate as shown in Fig. 2.7. The materials for preparation of membrane can 

be varied, but are classified into polymer, and ceramic-based materials. For ceramics, 

this type of membrane shows superior dehydration performances due to its rigid 

structure in comparison to polymer membranes. In addition, the molecular sieve 

property results in a very high separation factor. 

   The NaA zeolite membrane (Mitsui Engineering and Shipbuilding, Japan) 

was installed in jacket stainless steel housing. A high pressure piston pump head 

mounted on a 1/10 hp pump drive was employed to increase the liquid feed pressure 

with the help of a needle valve. Prior to entering the membrane module, the pressurized 
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liquid feed was heated to the desired inlet temperature through a shell and tube heat 

exchanger by using an oil bath. On the downstream side, the permeate vapor was 

condensed by using two parallel glass cold traps filled with liquid nitrogen to ensure 

that permeate was completely collected. The downstream pressure was maintained at 

approximately 3 mbar by using a vacuum pump. This vapor-permeation-assisted 

esterification system above was studied by Khunnonkwao et al. (2012). Thus, 

anhydrous ethanol could be achieved by using vapor permeation techniques. Membrane 

was used to enhancing the concentration of ethanol with dehydration process, due to its 

different pore sizes (2.6 A of water and 4.4A of ethanol molecular Sieve Pore Sizes). 

Water was completed removal through vapor permeation process with membrane (pore 

size were at 3A).  

 

 

Figure 2.7 The schematic diagram of vapor permeation (Khunnonkwao et al., 2012). 
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      Fatty acid ethyl esters (FAEEs) were produced through trans-

esterification of palm kernel oil and ethanol. Anhydrous ethanol was played as an 

important role in trans-esterification reaction producing FAEEs for bio-jet production. 

Higher FAEEs production could be obtained with anhydrous ethanol. Prior to 

distillation process, the by-product glycerol would be removed from the reactor. The 

higher glycerol was removed out, the more FAEEs were obtained. Due theirs diverse 

boiling points, bio-jet or biodiesel could be separated. From one process, both bio-jet 

and bio-diesel can be obtained, make an efficient process in terms of economic and 

technical. As mentioned, in HRJ process, people tried to produce jet fuel production 

from breaking down the long chain fatty acid into short chain, that’s required of several 

conditions and difficult to handle. Vice versa, started from medium chain fatty acid of 

suitable vegetables oils to get desired bio-jet, this is one of the advantages of ester based 

bio-jet production process. Ester based bio-jet production is process making bio-jet fuel 

by fractionation distillation FAEEs from trans-esterification reaction between palm 

kernel oil and anhydrous ethanol  

 

 2.4.4  Factors effecting the trans-esterification reaction 

   The process of trans-esterification is affected by various factors depending 

upon the reaction condition used. The effect of these factors are described below. 

    2.4.4.1 Molar ratio between ethanol and palm kernel oil 

       One of the most important variables affecting the yield of ester is 

the molar ratio of alcohol to triglyceride. The stoichiometric ratio for trans-esterification 

requires three moles of alcohol and one mole of triglyceride to yield three moles of fatty 

acid alkyl esters and one mole of glycerol. However, trans-esterification is an 
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equilibrium reaction in which a large excess of alcohol is required to drive the reaction 

to the right. The molar ratio has no effect on acid, peroxide, saponification and iodine 

value of methyl esters (Tomasevic et al., 2003). However, the high molar ratio of 

alcohol to vegetable oil interferes with the separation of glycerol because there is an 

increase in solubility. When glycerol remains in solution, it helps drive the equilibrium 

to back to the left, makes reverse reaction and lowering the yield of esters. The ester 

yield increased as the molar ratio increased up to a specific volume.  

       The base catalyzed formation of ethyl ester is difficult compared 

to the formation of methyl esters. Specifically, the formation of stable emulsion during 

ethanolysis is a problem. Ethanol is not miscible with triglycerides at ambient 

temperature, and the reaction mixtures are usually mechanically stirred to enhance mass 

transfer. During the course of reaction, emulsions usually form. In the case of 

methanolysis, these emulsions quickly and easily break down to form a lower glycerol 

rich layer and upper methyl ester rich layer. In ethanolysis, these emulsions are more 

stable and severely complicate the separation and purification of esters (Zhou et al., 

2003).  

 

    2.4.4.2  Reaction time and temperature 

       The conversion rate increases with reaction time. The reaction 

was slow during the first minute due to the mixing and dispersion of ethanol into palm 

kernel oil; then reaction is fast and reached the equilibrium at optimal residence time. 

Trans-esterification can occur at different temperatures, depending on the oil used. 

Moreover, the rate of reaction is strongly influenced by reaction temperature. However, 

given enough time, the reaction will process to near completion even at room 
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temperature. Generally, the reaction is conducted not too high due to high volatile of 

ethanol and waste electricity or further increase in temperature has negative effect on 

the conversion (Bajpai and Tyagi, 2006). Several researchers studied about the effect of 

reaction time and temperature, such as Freedman et al. (1984) trans-esterified peanut, 

cotton-seed, sunflower, and soybean oil under the condition of methanol–oil molar ratio 

6:1, 0.5 wt.% sodium methoxide catalyst and 60 °C. An approximate yield of 80% was 

observed after 1 min for soybean, and sunflower oils. After 1 h, the conversion was 

almost the same for all four oils (93–98%). Moreover, the reaction was studied with 

different temperature, the results were indicating that temperature clearly influenced the 

reaction rate and yield of esters (Ma and Hanna, 1999). Thus, it is important to determine 

the effect of temperature and reaction time to achieve optimal conditions for the higher 

conversion of trans-esterification reaction. 

 

    2.4.4.3  Concentration of catalyst 

       Catalyst concentration is a critical factor to be determined in the 

trans-esterification process. High catalytic activity depends on the catalyst processing 

strong basic sites (Dorado et al., 2004). Low and high catalyst concentrations may result 

in undesired FAEEs yield as well as high production costs. The effect of four different 

concentrations of KOH as catalyst, including 0.5 wt.%, 1 wt.%, 1.5 wt.% and 2 wt.% 

were investigated in study of Prafulla et al. (2009). It showed that, at different amount 

of KOH, the conversions of trans-esterification were changed as the change of catalyst 

concentration, the highest yield was achieved at 1 wt.% of KOH catalyst. Thus, it is 

indicating that at higher catalyst concentrations, the intensification of mass transfer 

becomes more important than increasing the amount of catalyst. In this study, different 
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catalyst amounts were evaluated to obtain the optimal concentration of catalyst which 

is used for the trans-esterification reaction. 

 

 2.4.5  Response surface methodology (RSM) 

    The trans-esterification process is influenced by several operating 

parameters. The reaction temperature, concentration of catalyst, oil to ethanol molar 

ratio, reaction time are the main parameters that influence on the FAEE yield (Atabani 

et al., 2012; Yaakob et al., 2013). As mentioned by many authors, an important stage in 

the production process is the optimization of operating conditions. Process optimization 

is often time-consuming and requires repeated expensive experiments. Furthermore, due 

to simultaneous effects of some operating variables on the system, the design and 

application of modeling tools such as response surface methodology (RSM) are 

essential for maximizing the productivity and reducing the production process costs. 

Moreover, its main advantage is the reduced number of experimental runs required to 

generate sufficient information for statistically acceptable results. RSM is a set of 

mathematical and statistical methods for modeling and problem analysis which has been 

applied in research into complex variation process. The multiple regression and 

correlation analyses are used as tools to assess the effects of two or more independent 

factors on the dependent variables. This methodology is suitable for optimizing 

complicated systems where response is influenced by several parameters (Abd Rabu et 

al., 2013; Halim et al., 2009; Noshadi et al., 2012; Wu and Leung, 2011). Furthermore, 

the central composite design (CCD) of the RSM is the most commonly used in the 

optimization process for several biotechnological and chemical processes (Jeong et al., 

2009). RSM has been successfully applied for optimization biodiesel production from 



28 
 

different raw materials and different types of catalysts (Ghadge et al., 2006). The 

method includes a full fractional factorial design with center points that are augmented 

with a group of star points. As the distance from the center of the design space to a 

factorial point is defined as ±1 unit for each factor. In this study, the central composite 

design was used to optimize operating variables (temperature, catalyst concentration, 

residence time and oil to ethanol molar ratio) to achieve high value of FAEE yield.



 
 

CHAPTER III 

MATERIALS AND METHODS 

 

3.1 Materials 

 3.1.1  Palm kernel oil 

   Palm kernel oil was purchased from the Chumporn palm oil industry, 

Thailand. The palm kernel oil was stored at room temperature before reaction. The 

concentration of different fatty acids from C8 to C20 of purchased palm kernel oil was 

specified using Gas Chromatography (Agilent GC, 7890A, USA) (Fig. 3.1).  

Figure 3.1  Fatty acid contents in palm kernel oil of this study (%).
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 3.1.2  Ethanol 

   The ethanol of 99.5% was produced from the Biotechnology’s laboratory, 

Suranaree University of Technology, Thailand (Biofuel Production Laboratory from 

Biomass Research Unit).  

 

Figure 3.2  Gas turbine engine used in this study. 

 

 3.1.3  Gas turbine engine 

   In this work, a gas turbine engine PST, J 1300R was obtained from PST 

jet, Thailand. Three parts including compressor, combustion and turbine are the main 

compartments of the machine. In each parts of the engine, several temperature and 

pressure sensors were set up. Firstly, compressor compresses air flown into the system 

to achieve high pressure, and fed into the combustion chamber. Second, combustion 

chamber with the function of fuel burning is used to increase the speed and pressure of 
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the gas. The last one is turbine, in which energy change of the gas from the combustion 

chamber to the rotation. By using this machine, the parameters including temperature 

and pressure were measured at five different points as shown in Fig. 3.2. In addition, 

rotational speed and driving force (thrust) were measured and recorded using a data 

logging system.  

 

3.2 Equipment 

 All of equipment used in the trans-esterification and fractional distillation process 

to produce bio-jet fuel production were shown as follow: 

Names of equipment Company 

Analytical Balance PRESICA, USA 

Micropipettes 10, 100, 200, 1000 µL BRAND, GERMANY 

pH Meter OHAUS, USA 

Hot plate and Stirrer SCILOGEX, USA 

Reactor 20L AB GLASS, UK 

Stirrer Rotor IKA, MALAYSIA 

Separation funnel BUDHER, GERMANY 

Cold trap LABTECH, USA 

Condenser  KONTES, USA 

Oil bath GRANTS, ENGLAND 

Vacuum pump DAIKAWA, USA 

Cooler water CHIILLER, THAILAND 

Gas chromatography 7890A AGILENT, USA 

Bomb Calorimeter IKA, MALAYSIA 

Density meter ANTONPAAR, AUSTRIA 

High speed rotation indicator METROLOGY TECH, THAILAND 

Refrigerator -4 oC, -20 oC RIVACOLD, THAILAND 

Vortex Mixer DRAGONLAB, CHINA 
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3.3 Methods 

 3.3.1  Free fatty acid analysis in palm kernel oil 

   Prior to trans-esterification reaction, palm kernel oil obtained from market 

was analyzed for free fatty acid concentration using titration method. Free fatty acid 

content has an influence on the course of the trans-esterification by reaction. Soap is 

produced when a higher free fatty acid or a greater number of water molecules is 

available. Titration method is an analytical technique used to determine free fatty acid 

(FFA) in oil. It is based on a complete chemical reaction between analyte and reagent 

of known concentration of which is added to sample. The volume of base required to 

neutralize the acid in the PKO is an indication of the amount of FFA in oil. Firstly, 10 

ml PKO was prepared and put into a 250 ml flask. 20 ml of isopropyl alcohol with 3 

drops of phenolphthalein was then added into PKO. Then titrate by using KOH was 

carried out by dropping KOH solution into PKO until medium in flask change into pink 

color in 10 seconds. Calculate volume of KOH used for titration. The amount of used 

potassium hydroxide (dissolved in ethanol) was based on the amount needed to 

neutralize the unreacted acids (Official Methods and Recommended Practices of the 

AOCS, 1997). Free fatty acid concentration was calculated using equation as follow: 

𝐹𝐹𝐴 =
𝑉 ×𝑀×𝑊

𝑚
 ×100 

 Which,  FFA: Concentration of free fatty acid (%) 

    V:  Volume of KOH used (ml) 

    M:  Molarity of KOH used (mol/1000ml) 

    W:  Average molecular weight of fatty acid component, g/mol 

    m:  Mass of PKO sample, (g) 
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 3.3.2  Trans-esterification reaction laboratory 

   The schematic diagram of the experimental set-up for trans-esterification 

reaction was shown as follows (Fig 3.3) 

 

   3.3.2.1 Trans-esterification steps 

     The transesterification reaction was carried out with 

ethanol/palm kernel oil molar ratio (6:1, 9:1, 12:1), using (0.5wt.%, 1 wt.%, 1.5 wt.%) 

of potassium hydroxide as an alkaline catalyst. The reaction was carried out at 40, 50, 

60 °C and the reaction time was specified within 60, 90 and 120 minutes. The choice of 

said variables and their range were selected based on several outside sources and on 

preliminary studies in our laboratory. The upper reaction temperature level, 60 oC, was 

determined by its not higher than the boiling point of ethanol. The lower level was 40 

oC, normal temperature, since lower temperatures would require a cooling system for 

reactor, which would increase the cost of the process. Catalyst concentration level were 

0.5 and 1.5 wt.%, according to literature data (Freedman et al., 1984). The combination 

of these variables (temperature, catalyst concentration, reaction time and molar ratio of 

alcohol to oil) was used in a factorial experimental design for fatty acid ethyl esters 

production optimization by transesterification of palm kernel oil with ethanol. 

     The trans-esterification experiment step was carried out with 

100g of palm kernel oil, as shown in Figure 3.3. Palm kernel oil was measured into a 

flask and heated to a temperature of 110 oC (pretreatment step for oil). The flask was 

maintained at this temperature for 30 minutes to evaporate water in the oil, subsequently 

oil was cooled down to desired temperature. By the stoichiometry of the trans 



34 
 

esterification process, one mole of PKO is required to react with three moles of ethanol 

to produce three moles of FAEE and one mole of glycerol. 

 
 

Figure 3.3  The schematic diagram of the unit for FAEE production. 

     However, an excess of alcohol is required to push the reaction to 

the forward side (Gerpen, 2005). The K-ethoxide was prepared by mixing the calculated 

anhydrous ethanol with potassium hydroxide into a flask and heated up to certain 

temperature. The flask was closed and swirled round thoroughly for about two minutes 

repeatedly about six times for complete mixing. The K-ethoxide mixture was slowly 

transferred to mix with PKO and the flask was capped. Reaction time was then recorded 

as soon as the mixture of KOH/ethanol was added. The speed of the stirrer was kept 

constant at 400 rpm throughout the experiment. After a specific time, the heating and 

stirring were stopped, and reactor was removed from the water bath. Since ethanol 

distributes favorably in the aqueous phase, the more residual ethanol is in the reactor, 

the more difficult phase separation is formed (Oliveira et al., 2011). Thus, the residual 

ethanol was subsequently removed out using rotary evaporator.  

Separation funnel Separation funnel 
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     The trans-esterification reaction was carried out as a batch 

reaction set-up (Fig 3.4). The reaction products (mixture of FAEEs and glycerol) were 

transferred to a separator funnel. Then, mixture was allowed to settle and phase 

separation by gravity overnight. The settling stages were shown in Fig 3.5 (left) and 

(right). The mixtures were separated into two layers. The top layer is a mixture of 

FAEEs, and the bottom layer is glycerol as shown on Fig. 3.5 (c). 

 

Figure 3.4  Batch trans-esterification reaction set-up. 

     After separation of the layers by gravity separation, ethyl ester 

was purified by washing by distilled warm water several times in order to remove 

catalyst until the washing become clear. Then, the washed ethyl ester was dried at 120 

oC for 60 min. The purified fatty acid ethyl esters contents were analyzed using Gas 

chromatography (GC). An Agilent Technology GC 7890A /MSD 5975C with an 

Agilent 7693A automated liquid sampler was configured at the following conditions. 

The column was HP-INNOWAX, 50 m x 0.2 mm id x 0.4 µm, column flow rate of      

0.6 mL.min-1and helium as the carrier gas. The initial oven temperature was 40 oC (holds 
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for 2 min) with a programming rate of 14 oC /min to 140 oC (holds for 2 min) then 6 oC 

/min to 290 oC (holds for 9 min). The maximum temperature was 310 oC and run time 

of 45.143 minutes. The relative fractions of each fatty acid ethyl ester were calculated 

from the fraction of total peak area attributed to each by the mass spectrum libraries 

supplied with the GC-MS software. The final analysis was recorded and analyzed by 

the computer using Acq-Method on the GC Plus The FAEE of biodiesel samples was 

identified and then the peak areas were utilized to quantify the FAEE content. 

 

Figure 3.5  Settling stages for separation of the produced palm kernel oil-FAEEs and  

   glycerin, stage (a), stage (b) and stage (c). 

     The fatty acid ethyl ester content in each experiment was 

calculated via the following equation: 

%𝐹𝐴𝐸𝐸 =
∑ 𝐶 ×100

𝑊𝑖
 

 Which,  FAEE: Concentration of fatty acid ethyl esters (%) 

    C:  Calculated weight of fatty acid ethyl esters (g) 

    Wi:  Weight of sample, (g) 
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   3.3.2.2 Experimental design using RSM  

     The trans-esterification process is influenced by several 

operating parameters. The reaction temperature, concentration of catalyst, ethanol to oil 

molar ratio, reaction time are the main parameters that influence on the FAEE yield 

(Atabani et al., 2012; Yaakob et al., 2013). Response surface methodology was used for 

statistical analysis of the experimental data using Design Expert software version 

10.0.3. Temperature, ethanol to oil ratio, catalyst concentration, and reaction time were 

chosen as independent variables, and the production of ethyl esters was the dependent 

variable. The 3 level - 4 factors central composite design (CCD) was employed in trans-

esterification step optimization requiring 26 experiments. The code and uncoded levels 

of the independent variables were shown in Table 3.1.  

Table 3.1 Experimental levels of independent process variables for FAEE production. 

Independent variables 

Symbols 

(uncoded) 

Code levels 

-1 0 1 

Molar ratio  X1 6 9 12 

Temperature (oC)  X2 40 50 60 

Catalyst concentration (wt%)  X3 0.5 1 1.5 

Reaction time (min)  X4 60 90 120 

 

     For this study, a set of 26 experiments were carried out. Usually 

a low-order polynomial in some range of independent variables is employed for 

modeling. If the response is well modeled by a linear function of independent variables, 

then the approximating function is the first-order model. If there is curvature in the 

system, then a polynomial of higher degree must be used, such as the second-order 
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model (Montgomery, 2001). In this study, there was a curvature. Experiments were then 

employed to fit the second-order polynomial model, which indicated that 26 

experiments were required for this process. The coded values of the independent 

variables for the design of the experiment for FAEE production and glycerol are given 

in Table 3.2. For statistical calculations, the variables Xi were coded as xi according to 

the following relationship: 

𝑥𝑖 =
(𝑋𝑖 − 𝑋𝑂)

𝑋
 

     Where, Xo is the average value of variables in high and low levels 

     X   is (variable at high level - variable at low level)/2 

     X1 is a coded variable that represents the molar ratio 

     X2 is a coded variable that represents the catalyst concentration 

     X3 is a coded variable that represents the temperature 

     X4 is a coded variable that represents the time of reaction 

     The behavior of the system discussed was described by a 

quadratic equation, Eq. (2), which follows Box et al. (1978), Box et al. (1951). A 

multiple regression data analysis was carried out with the statistical package (StatSoft 

Inc., Tulsa, Okla., USA). The optimum values of selected variables were obtained by 

solving the regression equation and also by analyzing the response surface contour plots: 

𝑌 = 𝛽0 + ∑ 𝛽𝑗𝑋𝑗

𝑘

𝑗=1

+ ∑ ∑ 𝛽𝑖𝑗𝑋𝑗

𝑖<𝑗

𝑋𝑖 + ∑ 𝛽𝑗𝑗𝑋𝑗
2

𝑘

𝑗=1

+ 𝜀 
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  where Y is the predicted FAEE yield; βo, βj, βij and βjj constant model 

coefficients; xi and xj are the coded independent variables or factors; ε is random error. 

Table 3.2 Full factorial central composite design matrix for FAEE production. 

Run 
Independent variables 

X1 X2 X3 X4 

1 6 60 1.5 120 

2 9 50 1 90 

3 6 60 0.5 120 

4 12 60 0.5 60 

5 12 50 1 90 

6 12 40 0.5 120 

7 12 40 1.5 120 

8 9 50 1 60 

9 9 50 0.5 90 

10 6 60 1.5 60 

11 6 40 1.5 60 

12 12 60 1.5 60 

13 6 40 1.5 120 

14 6 40 0.5 120 

15 9 50 1 120 

16 9 50 1 90 

17 6 40 0.5 60 

18 6 60 0.5 60 

19 9 40 1 90 

20 12 40 1.5 60 

21 12 40 0.5 60 

22 6 50 1 90 

23 12 60 1.5 120 

24 12 60 0.5 120 

25 9 60 1 90 

26 9 50 1.5 90 
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     All results are expressed as mean ±SD. The determine the effect 

of treatment, data were analyzed using one-way analysis of variance (ANOVA) repeated 

measures. Response surface plots was developed using the fitted quadratic polynomial 

equation obtained from regression analysis, holding one of the independent variables at 

constant value corresponding to the stationary point and changing the other two 

variables. P-values of less than 0.05 were regarded as significant.  

 

 3.3.3  Fractionation distillation for bio-jet production process 

   After optimization trans-esterification reaction for FAEE production, 

purified FAEEs were obtained and continued carrying on distillation. Due to FAEEs in 

palm kernel oil had different boiling point depending on long chain and medium chain 

of fatty acids, fractional distillation was used to separate the lower boiling point of fatty 

acid ethyl esters from the heavy one (Table 3.3). To produce bio-jet production, FAEE 

from C8 to C14 was needed to distillate out from the mixture. The higher purity of 

achieved FAEE C8-C14, the more efficient of the distillation system. 

   Experiment of fractional distillation process for bio-jet production was 

carried out as following Figure 3.6. Mixture of purified FAEE was put into reactor, 

which was covered by the first jacket. It was filled up by thermal oil, and connected to 

the oil bath, which was set up at 165 oC. Vacuum pump was controlled at 25 mbar with 

the pressure indicator (Fig 3.6). 

   When the reactor was heat up to desire conditions above, C8-C14 FAEE 

in the mixture were become a vapor and went to the top of the reactor which was 

connected to the fractional column. The second jacket was used at fractional column, 

which was controlled the temperature of the column (Fig 3.6). The fraction column was 
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set up at 131oC using that jacket, this due to if the came out components had higher 

boiling point than this such as C20 FAEE, it was not be fractionated out of the system, 

and was refluxed back into the reactor. The vapor was came to the condenser. The 

temperature for the condenser was maintained at -4 oC using a water bath, in this case, 

ethanol was used instead of water, due to ethanol has lower freezing point than water. 

Reactor was stirred by motor coupled with the controller at 800 rpm. The higher value 

of stirrer speed was done for mixing well of the mixture and reduce the time for heating 

up. In order to reducing the losses of the distillated FAEE C8-C14 and extended longer 

life for the vacuum pump, the cold trap was included in the system to trap all of the 

losen product which was not condensed from the condensor. The temperature was -30oC 

at the cold trap.  

Table 3.3 Boiling points of organic acid ethyl esters. 

Organic acids Source Boiling point (C) 

Caprylic acid (C8:0) Triglyceride 207 

Capric acid (C10:0) Triglyceride 245 

Lauric acid (C12:0) Triglyceride 259 

Myristic acid (C14:0) Triglyceride 265 

Palmitic acid (C16:0) Triglyceride 303 

Stearic acid (C18:0) Triglyceride 215 (15 mmHg) 

Oleic acid (C18:1) Triglyceride 218 (15 mmHg) 

Linoleic acid (C18:2) Triglyceride 224 (17 mmHg) 

 

   The distillated FAEE C8-C14 was then determined using GC-MS and was 

used for further analytical method for fuel properties and engine testing. 
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Figure 3.6  Fractionation distillation column laboratory. 

 

 3.3.4  Properties of bio-jet fuel and gas turbine engine testing 

   The FAEE quality was evaluated according to the European standard (EN) 

and American Section of the International Association for Testing Materials (ASTM) 

by Scientific Equipment Center Prince of Songkla University, Thailand.  

   Different properties of the distillated FAEE C8-C14 or bio-jet were 

determined: density at 15oC (ASTM D1298), kinetic viscosity at 40oC (ASTM D445), 

carbon residue (ASTM D4530), flash point (ASTM D93), cloud point (ASTM D2500), 

pour point (ASTM D97), acid number (ASTM D664), copper corrosion (ASTM D130), 

phosphorus content (ICP-OES),  calcium content (ICP-OES), magnesium (ICP-OES), 

sulfated ash (ASTM D874), total contaminant (ASTM D5452), iodine value (EN 

14111), sulfur content (XRF), oxidation stability at 100oC (EN 15751), mono-, di- and 

triglyceride content (EN 14105), free and total glycerin (EN 14105). Energy density of 
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the product was measured using bomb calorimeter from Suranaree university of 

technology.  

 

Figure 3.7  Testo 350 Portable Emission Analyzer 

   Moreover, the performance of gas turbine engine was carried out using the 

purified FAEE C8-C14 (bio-jet). It was mixed well with the lubricant in the ratio of 1:18 

of FAEE before testing. The concentration of CO, CO2, NO2 and hydrocarbon (HC) 

from the exhausted gas from the engine was measured using Testo 350 Portable 

Emission Analyzer (Fig 3.7). The value of fuel consumption and the thurst were also 

determined in this study. 



 
 

CHAPTER IV 

RESULTS AND DISCUSSION 

 

4.1 Free fatty acid concentration in palm kernel oil 

 The experiment was carried out by titration method using KOH as solution. The 

volume of base KOH required to neutralize the acid in the PKO is an indication of the 

amount of FFA in oil. The effect of FFA content strongly depends on the type of catalyst 

used during trans-esterification. The FFA content is a key parameter for determine the 

viability of the vegetable oil trans-esterification process (Dorado et al., 2002). The 

results of titration based on the volume of KOH used to neutralize the acid content of 

the palm kernel oil for the calculation of the percentage FFA content were shown on 

Table 4.1 as follow: 

Table 4.1 Concentration of free fatty acid using titration method. 

Run 
Volume of KOH used 

(ml) 
Free fatty acid concentration (%) 

1 0.6 0.1536 

2 1.1 0.2816 

3 0.9 0.2304 

 

 To carry out the base-catalyzed reaction to completion, a value of free fatty acid 

in oil lower than 1% is needed. The higher the acidity of the oil is, the smallest the 

efficiency of conversion is. Above that limit, trans-esterification reaction favors to 

saponification reaction to formation of soap, undesired product of trans-esterification 
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resulting in a lower ester yield and against this reaction (Viele et al., 2013; Atadashi et 

al., 2012; Hingu et al., 2010; Morais et al., 2010). In this study, the concentration of 

FFA was resulted in lower than 1%, indicating that it is efficient and reasonable to use 

potassium hydroxide as alkali-catalyzed for trans-esterification reaction between palm 

kernel oil and ethanol. Ma, Clements, and Hanna (1998) studied the trans-esterification 

of beef tallow catalyzed by sodium hydroxide (NaOH) in the presence of FFA. Without 

adding FFA, the apparent yield of beef tallow methyl esters (BTMEs) was the highest. 

When 1.6% of FFA was added, the apparent yield of BTMEs reached the lowest level 

(less then 5%). If low qualities of beef tallow or vegetable oil with high FFA are used 

to produce ester, they must be refined by saponification using NaOH solution to remove 

FFA. The starting materials used for base-catalyzed alcoholysis should meet certain 

specifications. In this work, the triglycerides of palm kernel oil with lower acid value 

was used for trans-esterification in the presence of KOH as base-catalyzed, and all 

materials are also anhydrous. 

 

4.2 Optimization of fatty acid ethyl ester production from trans-

esterification reaction between palm kernel oil and ethanol  

 

 4.2.1  Fitting the model and evaluation 

   As mentioned earlier, RSM was used to optimize trans-esterification 

reaction from studying the interaction factors, experiments were performed at varying 

physical parameters by central composite design. The results were presented on Table 

4.2. Experimental yield was analyzed to get a regression model.  
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Table 4.2 CCD arrangement of code level of variables of temperature, molar ratio of 

ethanol to oil, catalyst concentration and reaction time in RSM design. 

Run 
Independent variables FAEE (%) 

X1 X2 X3 X4 Experimental Predicted 

1 6 60 1.5 120 82.88 
86.64 

[76.27/97.00] 

2 9 50 1 90 87.89 
88.33 

[83.27/93.39] 

3 6 60 0.5 120 65.24 
71.06 

[60.69/81.42] 

4 12 60 0.5 60 61.86 
64.04 

[53.67/74.40] 

5 12 50 1 90 75.66 
82.60 

[73.42/91.78] 

6 12 40 0.5 120 73.44 
77.16 

[67.02/87.31] 

7 12 40 1.5 120 83.31 
84.75 

[74.50/95.01] 

8 9 50 1 60 83.22 
85.09 

[76.27/93.92] 

9 9 50 0.5 90 83.07 
80.21 

[71.03/89.39] 

10 6 60 1.5 60 76.58 
72.62 

[62.26/82.99] 

11 6 40 1.5 60 61.64 
66.58 

[56.22/76.95] 

12 12 60 1.5 60 75.52 
78.66 

[68.30/89.03] 

13 6 40 1.5 120 77.99 
75.00 

[64.64/85.37] 

14 6 40 0.5 120 65.12 
62.94 

[52.68/73.19] 

[95% CI low/ 95% CI high] 
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Table 4.2 Continued. 

Run 
Independent variables FAEE (%) 

X1 X2 X3 X4 Experimental Predicted 

15 9 50 1 120 98.21 
97.96 

[89.78/106.15] 

16 9 50 1 90 90.28 
88.26 

[83.20/93.32] 

17 6 40 0.5 60 48.63 
50.63 

[40.27/60.99] 

18 6 60 0.5 60 53.72 
54.22 

[44.08/64.36] 

19 9 40 1 90 75.65 
80.11 

[70.93/89.29] 

20 12 40 1.5 60 84.47 
77.80 

[67.54/88.05] 

21 12 40 0.5 60 69.53 
66.47 

[56.11/76.84] 

22 6 50 1 90 79.78 
73.65 

[64.82/82.48] 

23 12 60 1.5 120 93.55 
90.74 

[80.37/101.10] 

24 12 60 0.5 120 83.98 
79.74 

[69.37/90.10] 

25 9 60 1 90 87.84 
84.36 

[75.18/93.54] 

26 9 50 1.5 90 89.93 
93.78 

[84.60/102.96] 

[95% CI low/ 95% CI high] 

 

   The FAEE production from trans-esterification reaction was investigated 

at different molar ratio of ethanol to oil, concentration of catalyst, temperature, and 

reaction time, which is known as the most important parameters affecting the efficiency 
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of the fatty acid ethyl esters production. The empirical model was constructed from 

experimental data and the significant of each variable term in the model was analyzed 

through p and F – value. The reliability of fitted models was determined by analysis of 

regression coefficient including F-value, p-value, R2, adjusted R2, predicted R2, and 

%C.V., respectively as represented in Table 4.3 and 4.4. 

confidence.  

Table 4.3 Regression analysis (ANOVA).  

Sources of 

variation 

Sum of 

squares 

Degrees of 

freedom 

Mean 

squares 

F-value 

Probability 

(P) 

Model 3360.45 14 240.03 7.13 0.0012 

Residual 370.09 11 33.64   

Total 3730.54 25    

 

   For Table 4.3, the model F-value of 7.13 was implied that this model is 

significant. There was only a 0.12% chance that an F-value could occur due to noise. 

Values of probability p-value was shown less than 0.0500, indicated that this model 

terms are significant. The lack of fit F-value of 12.86 implies the lack of fit is not 

significant relative to the pure error. There is a 21.40% chance in lack of fit F-value, 

this large could occur due to noise. Non-significant lack of fit is good since the model 

is required to be fitted. This fit of the model was checked with the coefficient of 

determination R2, which was calculated to be 0.941, revealed that 94.1% of the response 

variability could be explained by the previously discussed model and the model 

adequately represented the experimental results. This study indicated that the model can 

be considered statistically significantly according to the F-test with 95%  
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 The effect of the variables as linear, quadratic or interaction coefficients on the 

response was tested for significance by ANOVA. Table 4.4 illustrated F-value and        

p–value for each variable in the polynomial model. The p-value associated with a test 

statistic at least as extreme as the one that was actually observed that the null-hypothesis 

of observing a test statistic was true. The p–value lower than 0.05 indicated the 

dependent variables were significantly difference at 95% confident interval. In this 

experiment, the p-value of all models was lower than 0.0001, indicated that the model 

fitness was highly significant. The p-value for lack of fit showed the undesirable 

characteristic of the model, whereas p greater than 0.05 indicate that the lack of fit was 

not significant. It means that, the variation of the data around the fit model was small 

and the predicted models fitted the experimental data sufficiently. 

   Table 4.4 shows the linear, interaction, and quadratic regression 

coefficient of the models. The mark of the regression coefficient specified trends effect 

to the dependent variables as positively and negatively. Evaluations of independent 

parameter in fitted model for each dependent variable were determined. According to 

Table 4.4, three factors including molar ratio (X1), catalyst concentration (X3), and 

retention time (X4) affected to ethyl esters FAEE concentration. Considering the 

concentration of FAEE, molar ratio of ethanol to oil, catalyst concentration and retention 

time were significant term while temperature was non-significant term. This implied 

that the temperature of reaction in this experiment could overcome the high yield of 

FAEE with no matter how the temperature was. The relations between these three above 

parameters were described as the quadratic term. In which, catalyst concentration and 

molar ratio of ethanol to oil are the most significant variables for FAEE production 
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(effect of X3= 24.29 and effect of X1 = 19.46). Catalyst concentration has a substantially 

higher effect on ethyl esters production compared to the molar ratio. 

Table 4.4 F-value and p–value, regression coefficient of the predicted models for each 

variable and standard errors 

Factors 
FAEE 

(%)  
Sources 

Standard 

error 
F-value P-value 

0 88.42 Model 2.30 7.13 0.0012 

Linear      

1 4.99 X1 1.37 19.46 0.0010 

2 2.30 X2 1.37 2.83 0.1207 

3 6.74 X3 1.37 24.29 0.0005 

4 6.03 X4 1.37 13.30 0.0038 

Interaction      

1 2 -1.30 X1 X2 1.45 0.81 0.3874 

1 3 -1.15 X1 X3 1.45 0.62 0.4460 

1 4 -0.48 X1 X4 1.45 0.11 0.7443 

2 3 0.82 X2 X3 1.45 0.32 0.5854 

2 4 1.40 X2 X4 1.45 0.93 0.3555 

3 4 -0.91 X3 X4 1.45 0.39 0.5442 

Quadratic      

1
2 -10.48 X1

2 3.62 8.35 0.0147 

2
2 -6.45 X2

2 3.62 3.17 0.1027 

3
2 -1.70 X3

2 3.62 0.22 0.6489 

4
2 2.52 X4

2 3.62 0.48 0.5015 

R2 0.9408  - - - 

Adj. R2 0.9013  - - - 

Pred. R2 0.8520  - - - 

C.V.% 7.51  - - - 
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   According to the estimated coefficient exhibited as following, catalyst 

concentration has a positive effect on the ethyl esters yield. It means increase in the 

catalyst concentration accelerates the speed of the trans-esterification reaction. The 

same results were reported by Bouaid et al. (2007) and Yuan et al. (2008) in the 

optimization of FAEE conversion from waste canola oil and used frying oil, 

respectively. Temperature is not significant for ethyl esters production at the confidence 

interval considered (95%). Note that, the chosen optimum conditions took into the 

consideration temperature which are important in defining the operational cost of bio-

jet production on an industrial scale.   

   The coefficient of variation (C.V.) is the standard deviation expressed as 

a percentage of standard error of predicted value to the mean value of observed 

response. A model can be considered logically reproducible if the C.V. is less than 10% 

(Ahmad et al., 2007). Resulted at 7.51%, the FAEE concentration in this model were in 

acceptable range of C.V. 

   The mathematical model generated from the experimental data using 

Design-Expert software is expressed by the following quadratic equations: 

 

𝐴 = −216.42 + 26.039𝑋1 + 6.490𝑋2 + 31.218𝑋3 − 0.427𝑋4 − 0.0435𝑋1𝑋2

− 0.764𝑋1𝑋3 − 0.005𝑋1𝑋4 + 0.163𝑋2𝑋3 − 0.004𝑋2𝑋4 − 0.06𝑋3𝑋4

− 1.164𝑋1
2 − 0.064𝑋2

2 − 6.785𝑋3
2 + 0.002𝑋4

2 

 

   In order to confirm the suitable precision, the point prediction of the model 

was carried out by measuring the dependent variables at the point of the interests in 

triplicate experiments. The average values for each triplicate were compared to the 
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predicted value or must be in range of 95% CI value which the upper and lower bound 

of the 95% confidence interval that surrounded the coefficient estimated for the center 

point. The point predictions of the models were completed (Table 4.2). All of 

experimental values of FAEE concentration were in a range of 95% confident interval. 

As a result, the empirical model of FAEE production were extremely confident and 

suitable for application. 

 

 4.2.2  Analysis of response surface 

   Response surface had been applied successfully for optimization of 

biodiesel production in fat and oil feedstock, including mahua oil (Ghadge and 

Raheman, 2006), jatropha oil (Tiwari et al., 2007) and waste rapeseed oil (Yuan et al., 

2008). The 3-dimension response surface and the 2-dimension contour plots were the 

graphical representations of regression equation. Due to interaction effects between the 

variables, the parameters could not be analyzed independently. The significance of the 

parameters in the model was obtained using statistical techniques. They provided a 

method to reveal the relationship between responses and experimental levels of each 

variable and the type of interactions was between two test variables. The shape of the 

contour plots such as circular or elliptical, indicated whether the mutual interactions 

between the variables were significant or not. Circular contour plot indicated the 

interactions between the corresponding variables are negligible while, elliptical contour 

plot indicated that the interactions between the corresponding variables were significant 

(Zhong and Wang, 2010). 

   The relationship between independent and dependent variables was 

illustrated in 3-dimensional representation of the response surfaces and two-
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dimensional contour plots generated by the model of FAEE production. RSM was 

illustrated with three-dimensional plots by presenting the response in function of two 

factors and keeping the other constant. It is visualized by the yield of FAEE in relation 

to the temperature, ethanol to oil ratio and catalyst concentration and reaction time in 

Figure 4.1 to 4.3. 

   Figure 4.1 was shown the response for the interactive factor temperature 

and catalyst concentration. As expected, Fig. 4.1 showed that ethyl esters conversion 

increased when high catalyst concentration was applied. However, as with the work of 

Vicente et al. (1998), it was observed that temperatures (>60 °C) and catalyst 

concentrations (>1.5%) led to the production of large amounts of soaps in this study. 

Furthermore, the addition of an excessive amount of catalyst increased emulsion 

formation. The response surface corresponding to the second-order model indicated that 

for low temperatures, ethyl esters production increased with an increasing catalyst 

concentration. Maximum ethyl ester conversions were therefore obtained from large 

catalyst concentrations (1 wt.%). This was due to the second most significant factor 

being the catalyst concentration, and to its effect being positive (Table 4.4).  

   When palm kernel oil reacted with KOH dissolved in ethanol, there were 

two reaction pathways: transesterification to produce FAEE and saponification to 

produce soap; therefore, forecasting the temperature effect was not straightforward. 

There were two equilibrium reactions. When saponification reaction was favored, KOH 

was lost and the overall process rate decreased. KOH was a catalyst on trans-

esterification reaction and also a reagent on saponification reaction. On the other hand, 

the trans-esterification reaction could be favored when adequate temperature was used. 
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Low temperature decreased the rate of saponification reaction, thus trans-esterification 

reaction was favored. 

 

Figure 4.1  Response surface contour for interaction on ethyl esters production 

between temperature and catalyst concentration. 

   When temperature increased, the reaction rates were obviously higher 

because molecules had more energy, transesterification reaction was faster than the 

saponification reaction, thus KOH was again a catalyst, therefore the ethyl ester 

concentration increased. That could be compensated for eventually through an increase 

of selectivity for FAEE concentration, but that was not the case (see Figure 4.1). When 

operating at much higher temperature, the saponification reaction rate speeded up also, 

therefore the transesterification reaction yield decreased. Therefore, temperature was 

tested as an important variable to enhance the reaction in FAEE production and reduce 
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the cost of reaction process. In summary, defining the best temperature was clearly an 

optimization problem.  

 

Figure 4.2  Response surface contour for interaction on ethyl esters production 

between molar ratio and temperature. 

   Figure 4.2 showed the response for the interactive factors of temperature 

and molar ratio. Figure 4.3 presented the response for the interactive factor of time and 

molar ratio. The 3D response surface plots indicated that the ethyl esters production 

increases when ethanol concentration increases (molar ratio: ethanol/oil) (Figure 4.2). 

Therefore, the maximum fatty acid ethyl esters conversions were obtained for the high 

molar ratio. This was caused by the stoichiometry of trans-esterification, which requires 

a 3:1 M ratio of alcohol to triglyceride, since this reaction involved the conversion of 
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one ester and an alcohol towards another ester and another alcohol, as an excess of 

alcohol was used to drive the reaction near the completion. 

 

Figure 4.3  Response surface contour for interaction on ethyl esters production 

between molar ratio and time. 

   Consequently, the ethanol concentration resulted in a greater ethyl ester 

conversion within longer time (Figure 4.3), which is similar to Silva et al. (2010). 

However, Tanaka et al. (1981) reported that the FAEE conversion was achieved high 

yield at shorter time of reaction, this due to the reaction was quite difficult for ethanol 

compare to the methanol. On the other hand, an excessive amount of alcohol made the 

recovery of glycerol difficult (Ma et al., 1998; Schuchardt et al., 1998); therefore the 

ideal alcohol/oil ratio had to be established empirically, considering each individual 
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process. Fillieres et al. (1995) found a molar ratio between 9:1 and 12:1 to be the best 

for ethanol.  

   Higher production of ethyl esters was strongly favored when high molar 

ratio was employed for a certain time of reaction (X4), temperature (X2) and catalyst 

concentration (X3) (Figs. 4.2 and 4.3). The molar ratio (ethanol/oil) was a fundamental 

variable in the trans-esterification of the ethyl esters production. This said molar ratio 

affects the separation and recovery of glycerol. A molar ratio of 6:1 is generally 

considered the most appropriate for methanol, although in this work, as has been 

indicated, we found the molar ratio 9:1 to be the best for ethanol. As well, the results 

are quantitatively similar to those of the literature (Ma et al., 1998; Antolin et al., 2002; 

Vicente et al., 1998).  

   Moreover, Fillieres et al. (1995) and Noureddin et al. (1997) had 

hypothesized that the quality of ethyl esters depends on the large excess of alcohol. 

However in this study, the high molar ratio of ethanol to palm kernel oil only was 

resulted in the interfered in the glycerol separation, since there was an increase in 

solubility. When glycerol remained in solution, it helped driving the equilibrium back 

to the left, thereby lowering the yield of esters. The transesterification of  palm kernel 

oil with ethanol was studied at molar ratios between 6:1 and 12:1. When temperature 

was high, higher ethyl ester yield was achieved (Fig. 4.2), mainly when the molar ratio 

increased to values of 12:1. On the other hand, at lower temperatures (40 °C), the best 

results were for molar ratios between 9:1 and 12:1. For molar ratios less than 9:1, the 

reaction was incomplete, resulted in lower FAEE conversion. For a molar ratio of 12:1, 

the glycerol separation was difficult and the apparent yield of esters decreased, since 

some of glycerol remained in the ethyl ester phase. Therefore, molar ratio 9:1 seemed 
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to be the most appropriate. Several researchers had found similar results for fatty acid 

ethyl ester production (Fillieres et al.,1995; Freedman et al., 1982; Tomasevic et al., 

2003). 

 

Figure 4.4  Response surface contour for interaction on ethyl esters production 

between catalyst concentration and molar ratio 

  Figure. 4.4 showed the ethyl ester yield as function of molar ratio and 

catalyst concentration under experimental conditions defined by factorial design. It is 

possible to observe that higher ethyl ester yields occurred at higher molar ratio (9:1) and 

at higher catalyst concentration (>1 wt.%). When molar ratio values were low (6:1), 

yields increased with catalyst concentration. However, when molar ratio was kept in its 

higher level (9:1), a higher ethyl ester yield was always achieved. Thus, catalyst 
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concentration was the most important factor in improving ethyl ester yields. However, 

excess catalyst could produce emulsions and the FAEE that was produced had difficulty 

in the separation phase. It has been reported that low catalyst concentration increases 

conversions with methanol-to-oil ratio (Ghadge et al., 2006). In this present study, 

applying response surface design, we observed that for ethanol, ethyl esters production 

increases when catalyst concentration increases for low molar ratio. 

 

 4.2.3  Optimization parameters for trans-esterification reaction   

   The optimum values of selected variables were obtained by solving the 

regression. The optimum values of the process variables for maximum ethyl esters 

production are shown on Table 4.5, when a yield of 97% was achieved. The ester yield 

increased as the molar ratio ethanol to oil also increased. The best results were for molar 

ratios between 9:1 and 12:1. The reaction was incomplete for molar ratios less 6:1. For 

a molar ratio of 12:1, the glycerol separation was difficult and the apparent yield of 

esters decreased, because of a portion of the glycerol remaining in the ester phase. 

   Table 4.5 indicated that the value molar ratio for ethanol (9:1) was higher 

than the molar ratio found by Freedman et al. (1984) in the methanol (6:1). However, it 

was lower than the molar ratio found by Encinar et al. (2002), who studied the trans-

esterification of Cynara oil with ethanol (12:1). Therefore, molar ratio 9:1 was seemed 

to be the most appropriate. Thus, reaction with ethanol used a molar ratio higher than 

the reaction with methanol. Therefore, the phase separation became more difficult when 

molar ratio of ethanol increased due to its miscibility increasing for both phases 

(glycerol and ethyl ester). 
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Table 4.5 Optimum values of the process parameter for maximum efficiency. 

Parameters Optimum values 

Ethyl esters (%) 97 

Molar ratio (X1) 9:1 

Temperature (X2) 50 

Catalyst concentration (wt.%) (X3) 1 

Time (min) (X4) 120 

 

   The optimum-value temperature was 50 °C. This temperature was far below 

the boiling point of ethanol. Therefore, molar ratio (ethanol/oil) was used between 6:1 

and 12:1, since it did not evaporate. The transesterification rate increased as the 

temperature increased. However, the maximum operating temperature cannot exceed 

the boiling point of the reactants. Encinar et al. (2002) had studied about the ethanolysis 

of refined Cynara cardunculus oils achieved the best results at 75 °C. This temperature 

was higher than the one in this present experiment. However, transesterification reaction 

may occur at different temperatures, depending on the oil used. In addition, ethanol/oil 

molar ratio was presented the difference in solubility as a function of temperature.  

   The highest ethyl ester yields were achieved when the reaction time was 120 

min. Other authors reported that similar yields of biodiesel may be obtained following 

ethanolysis or methanolysis; however, the reaction times required to attain them are 

very different: methanolysis is quicker than ethanolysis (Meneghetti et al., 2006). 

   The optimum value of catalyst concentration was at 1% w/v. This value 

agrees with the values duly presented in the literature (Noureddin et al., 1997). As a 

typical catalyst concentration for transesterification reactions (0.5 to 1.5 wt.%), the 
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results that were obtained agreed with those obtained from the response surface analysis, 

confirming that the RSM was effectively used to optimize FAEE production. 

 

 4.2.4  Trans-esterification reaction followed by the optimization 

   Process optimization of trans-esterification reaction between palm kernel 

oil and ethanol was indicated that the best parameters or conditions for higher FAEE 

production were 9:1 molar ratio of ethanol/oil, 1 wt.% catalyst concentration at 50 oC 

within 120 minutes. Trans-esterification reaction was carried out with longer reaction 

time in order to confirm that the highest FAEE was achieved at these parameters and 

resulted in an equilibrium phase. Figure 4.5 was shown about the FAEE concentration 

during the reaction time. FAEE production was analyzed using Gas chromatography 

7890A. As expected, the conversion of FAEE production was reached the highest value 

within 120 min (98.21%). The rate of reaction is strongly influenced by reaction 

temperature (Bajpai and Tyagi, 2006). However, given enough time, the reaction will 

proceed to near completion. In this study, the optimal reaction time for the completion 

conversion to FAEE production was achieved at 120 min. Shorter reaction time          

(<90 min), the conversion was incomplete. On the other hand, longer reaction time was 

also performed at high conversion of FAEE production, nevertheless it was not much 

changed compared to 120 min. The increasing in FAEE production (>120 min) then 

was not significantly increased, indicating that FAEE conversion reached the 

equilibrium and the conversion was almost completed. 
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Figure 4.5  FAEE concentration through trans-esterification at 9:1 molar ratio, 1 wt.% 

catalyst concentration and 50 oC 

4.3 Fractionation distillation process from 20L trans-esterification 

reaction 

 Trans-esterification reaction was carried out in 20 L reactor at the optimal 

parameters 9:1 molar ratio ethanol/oil, 1 wt.% potassium hydroxide, 50 oC (Fig 4.6). 

Phase separation was occurred between palm kernel oil ethyl esters and glycerol at 

certain time (Fig 4.7). Ethanol was removed from the mixture, and it was recovered by 

dehydration system using membrane. After glycerol was removed out of reactor due to 

its high gravity, FAEE was achieved and used for further process which was 

fractionation distillation to achieve FAEE from C8 to C4 or bio-jet. As mentioned 

above, components of fatty acid ethyls ester had different boiling, the lighter boiling 

point of FAEE C8-C14 were in the range from 207 to 265 oC. While the boiling point 
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of FAEE C16-C20 or biodiesel was shown at higher due to its high viscosity and higher 

molecule weight compared to C8-C14 (Table 3.3). 

 

 

Figure 4.6  20L Trans-esterification reactor of PKO and ethanol 

 By tran-esterification reaction, fatty acid ethyl esters were produced in terms of 

hydrocarbon chains from C8 to C20. However for bio-jet production, medium chain of 

fatty acid ethyl esters was required (C8-C14) (Fig 2.2), thus FAEEs C8-C14 were 

needed to be separated from the mixture. The most common used purification process 

for ethyl esters is distillation since it allows the increase in ester content, eliminating 

color and smells in it, improve the filterability test and furthermore reduce the content 

of mono-, di- and triglycerides. On the other hand, it had increase of energy 
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comsumption as it was a process that involves the transfer of heat which therefore 

require energy.  

 

 

Figure 4.7  Phase separation between FAEE and glycerol. 

 The distillation system laboratory was carried out by high vacuum distillation with 

a cold trap to increase the final product avoiding thermal degradation with the use of 

high tempeture and reduce the product loss through the pump during the fractionation. 

The system also included the use of enhancements to increase energy efficiency, this 

way of system was designed with the use of low pressure steam genearation 25 mbar to 

reduce the heating costs of the raw material prior to distillation. 

 The vapor liquid equilibrium of myrictis acid ethyl ester (the highest boiling point 

in mixture of FAEEs C8-C14) and  palmitic acid ethyl ester (the lowest boing point of 

mixture FAEEs C16-C18) were shown on figure 4.8. It was formed an ideal system 
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without aezotrope between two components. Therefore, the distillation process with 

fractionation column was not too difficult to separate these components.  

 

Figure 4.8  Vapor liquid equilibrium of myristic acid ethyl ester (C14) and palmitic

   acid ethyl ester (C16). 

 

 The fractional distillation column was designed by the simulation software 

AspenTech AspenPlusTM version V8.6 (Figure 4.9). After removing ethanol, phase 

separation was occured in the decantor and glycerol was then take out from the system. 

Thus, stream product that was feeded into the column included mixture of FAEEs. The 

distillation process was carried out with the column including 15 stages, pressure was 

set up at 25 mbar with the feed stages in above 3 (feed stage is the stage that feed was 

put into the column) with the reflux ratio was 1.5. The Reflux ratio is the ratio between 

the boil up rate and the take-off rate. Or in the orther words, it is the ratio between the 

amount of reflux that goes back down the distillation column and the amount of reflux 

that is collected in the receiver (distillate). The smaller reflux ratio, the more efficiency 

the distillation column. In this study, the low reflux ratio was used, indicating that the 
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distillation column was efficient and suitable with the economical analysis since higher 

reflux ratio caused an expensive system for distillation. 

 The component profiles of fractional distillation was shown on Figure 4.10. Four 

components including 2 lighter boiling point components (Lauric acid ethyl ester C12- 

the blue line and myristic acid ethyl ester C14- green line) and 2 heavier boiling point 

components (Stearic acid ethyl ester C18:0- pink line and linoleic acid ethyl ester C18:2- 

purple line) during the each fractionation stages was chosen to be reported how the 

process and the concentration of components could happen in each stages.  

 

Figure 4.9  Fractionation distillation column for bio-jet production. 

 As shown on Figure 4.10, the distillation was performed as high process for purify 

bio-jet production. It was uncomplicated to separate C12 out from the mixture due to at 

the stages 7, almost C12 was taken out at the top of the column. However, for the 

myristic acid ethyl ester C14, the distillation process was carried out harder compared 

to C12. It took 13-15 stages to reach the equilibirum to completing system. The profiles 

was shown only C12 and C14, however we wanted to separate out all of FAEE C8-C14 
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since in PKO, around 72% of fatty acid was C12-C14 which had higher boiling point 

than C8-C10. Thus, by column with 15 stages, completion distillation 98.2% was  

achieved, around 97.6% of C8-C14 was fractionated. Then, the FAEE C8-C14 or bio-

jet production from the experimental was analyzed using Gas chromatography (Figure 

4.11) and compared to the predicted data from ASPEN software. 

 

 

Figure 4.10  Components profiles in each stages of fractionation column, including

    FAEE C12, C14, C18:0 and C18:2. 

 

 As expected, the FAEE C8-C14 concentration using GC method was achieved 

96.84 wt.% with the distillated conversion achieved at 97%, such an acceptable result 

compared to the predicted value, indicating that the fractionated distillation was 

efficiency process to purify bio-jet production. Around 3 wt% of fatty acid ethyl esters 

C16 and C18:1 was residual in the distillate stream due to high composition of these 

components in PKO and high temperature with high pressure was maintained to 

completely take out all of the desired product. Bio-jet production then was analyzed the 
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physical-chemical properties and compared to the conventional jet fuel that used in gas 

turbine engine.  

 

 

Figure 4.11  Gas chromatography of distillated bio-jet production. 

 

4.4 Properties of bio-jet fuel production  

 The product of fractional distillation process, bio-jet production was shown Fig 

4.12 as following. Since bio-jet fuel is produced in quite differently scaled plants from 

vegetable oils of varying origin and quality, it was necessary to install a standardization 

of fuel quality to guarantee engine performance without any difficulties. As 

standardization is a prerequisite for successful market introduction and penetration of 

bio-jet fuel, the standards or guidelines for the quality of bio-jet had also been defined 

in other countries like United states, European.  

 The parameters, which defined the quality of bio-jet fuel, were dived into two 

groups. One group contained general parameters, which were also used for mineral oil 
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based fuel and the other group especially described the chemical composition and purity 

of fatty acid ethyl esters (Mittelbach, 1996). Table 4.6 contained the general and the 

FAEE from C8-C14 according to the standards above countries. 

 

Figure 4.12 Distillated FAEE C8-C14 (bio-jet) production. 

 

 In evaluating the suitability of the PKO-biojet as alternative jet the ASTM biofuel, 

standard test procedures was used to characterize the PKO-biojet. The test results and 

the standard limit as recommended by ASTM and EN. The standard limits ASTM and 

EN above was reported by George et al. (2009); Viele et al. (2014) and Meher et al. 

(2006).  
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Table 4.6 General and specific parameters of the quality of bio-jet fuel. 

Parameters Unit Bio-jet Methods 
ASTM 

limits 

EN 

limits 

Density at 15oC kg/m3 866.3 ± 0.0 
ASTM 

D1298 
865-885 - 

Viscosity at 40oC cSt 2.658 ± 0.001 ASTM D445 ≤ 3.5 – 5.0 - 

Carbon residue % wt. 
0.0190 ± 

0.0014 
ASTM D430 ≤ 0.05 - 

Acid value mg KOH/g 1.611 ± 0.008 ASTM D664 ≤ 0.8 - 

Phosphorus (P) % wt. < 0.0000837 ICP-OES ≤ 0.0010  

Calcium (Ca) mg/kg <1.748 ICP-OES ≤ 5.0  

Magnesium (Mg) mg/kg <0.080 ICP-OES ≤ 5.0  

Sulfated Ash % wt. <0.005 ASTM D874 ≤ 0.02  

Total contaminant % w/v 
0.00003 ± 

0.00003 

ASTM 

D5452 
≤ 0.0024  

Iodine value 
g 

Iodine/100g 
1.71 ± 0.02 EN14111 - ≤ 120 

Sulfur content % wt. <0.0001 XRF ≤ 0.0010  

Mono-glyceride % wt. Not detected EN 14105  ≤ 0.70 

Di-glyceride % wt. 0.21 ± 0.00 EN 14105  ≤ 0.20 

Tri-glyceride % wt. Not detected EN 14105  ≤ 0.20 

Free glycerin % wt. 0.02 ± 0.00 EN 14105  ≤ 0.02 

Total glycerin % wt. 0.06 ± 0.00 EN 14105  ≤ 0.25 

Water content % wt. 0.147 ± 0.003 ISO 12937  ≤ 0.05 

Oxidation 

stability at 100oC 
Hours > 10 EN 15751  ≥ 10 

Flash point oC 105 ASTM D93 51  

Cloud point oC -10 
ASTM 

D2500 
-17  

Pour point oC -15 ASTM D97 -44  

Copper corrosion  No. 1a ASTM D130   

Energy density MJ/kg 38.3    

 XRF= X-Ray Fluorescence Spectrometer 
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 Among the general parameters for bio-jet, the viscosity controlled the 

characteristics of the injection from the gas engine injector. The viscosity of fatty acid 

ethyl esters could go very high levels and hence it was important to control it within an 

acceptable level to avoid negative impacts on fuel injector system performance. 

Therefore, the viscosity specifications proposed are nearly same as that of the jet fuel. 

The kinematic viscosity at 40oC for the produced PKO bio-jet fuel was 2.658 cSt. This 

result was acceptable within the requirement of ASTM specification for biojet fuel,  not 

so much higher than the conventional jet fuel (2.37 cSt), indicating that PKO bio-jet 

produced could be used in gas turbine engines. Higher viscosity fuels can cause poor 

fuel combustion that leads to deposit formation as well as higher in cylinder penetration 

of the fuel spray. Viscosity is a measure of the fuel’s adhesive or cohesive property and 

a minimum viscosity is required for some engines because the potential for power loss 

caused by injection pump and injector leakage. 

 Carbon residue of the fuel is indicative of carbon depositing tendencies of the fuel 

and an approximation of the tendency for carbon deposits to form in engine. The carbon 

residue measured according to the ASTM standard for the PKO bio-jet was 0.2%. This 

result was in the agreement with the requirement of ASTM standard. Conradsons carbon 

residue for bio-jet is more important than that in the jet fuel since it showed high 

correlation with the presence of free fatty acids, glycerides, soaps, polymers, higher 

unsaturated fatty acids and inorganic impurites. The acid value of the esters ranged 

higher that the limits specified by the standard (0.8 mg KOH/g), indicating that the acid 

value did not meet the standard ASTM, this due to the process neutrallize was not 

complete and needed to be improved for using in the engine. 
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 The phosphorus and the sulfur content was proven to be almost at zero for the 

ethyl esters sample. The limit set by the ASTM standard was 0.05%. The requirement 

is necessary to reduce sulfate and sulfuric acid pollutant emissions and to protect 

exhausted catalyst systems when they were developed on the gas turbine engine in the 

future. Yet, bio-jet proved to be unsatisfactory in terms of ISO 12937 specifications set 

to measure the content of water, as they surpassed 0.05 wt%. The water content in bio-

jet fuel was high due to the dehydration process which used to remove water out reach 

the equilibrium phase, and due to the storage conditions. However, one of the most 

commonly thought of sources of water contamination is through condensation of 

atmospheric moisture to form liquid water. A research study showed that an empty 200 

gallon fuel tank could contain a maximum amount of 22.8 grams of water vapor at 86 

ºF, and 12.92 grams at 50 ºF (http://www.yachtsurvey.com/mythofcondensationinfuelt 

anks.htm). Condensation is only one of the many ways in which water can contaminate 

fuel. 

 The flash point of a fuel is the temperature at which it will ignite when exposed to 

a flame or spark. Conventional aviation fuel is a complex mixture of a few hundred 

different hydrocarbons and as such, the molecular interactions that may govern the 

temperature at which the flash point occurs are difficult to predict. The flash point of 

the PKO bio-jet was 105 oC. This value falls within the acceptable limit required by the 

ASTM standard. A lower flash point is an indication of the presence of alcohol not 

properply removed from the biojet. A higher flash point means that the alcohol which 

is of lower flash point had been removed and the fuel may only ignite at higher 

temperature. The flash point of bio-jet fuel is higher than the conventional jet fuel, which 

is safe and non hazardous for transport purpose (Bajpai and Tyagi, 2006). From the 

http://www.yachtsurvey.com/mythofcondensationinfuelt%20anks.htm
http://www.yachtsurvey.com/mythofcondensationinfuelt%20anks.htm


73 
 

perspective of storage and fire hazard, bio-jet is much safer than jet fuel. Association 

expressed concern that the oxidative stability of jet fuel, oxidative stability is major 

industry issue for jet and bio-jet fuels. The result was in agreement with the 

requirements of ASTM standard. Unlike biodiesel, some types of biodiesel was instable 

in oxidation, it may result in fuels that have unacceptable low flash point after storage. 

Some biodiesel had excellent storage histories; others had tended to oxidize rapidly. The 

degree of saturation of the fatty acid chains tended to be correlated with its stability. 

The stability of fatty acid was influenced by factors such as presence of air, heat, traces 

of metal, etc. 

 The values of cloud point and pour point in Table 4.6 were very high. However 

for the conventional jet fuel, the cloud point and pour point were -17 and -44 oC, 

respectively. On the other hand, the cloud point is higher than the pour point which is 

in agreement with the findings of Alptekin and Canakci (2008). The cloud point and 

pour point are properties affecting the low temperature operability of bio-jet. The cloud 

point of a fuel is the temperature at which the fuel becomes cloudy due to the formation 

of crystals which can clog fuel filters and supply lines as the fuel cooled, while the pour 

point is the lowest temperature at which the fuel will flow or the temperature at which 

the fuel contains so many agglomarated crystals that it is essentially a gel and will no 

longer flow.  

 Sulfated ash content is a measure of the amount of residual alkali catalyst in the 

bio-jet as well as any other ash-forming compounds that could contribute to injector 

deposits or fuel system fouling. The palm kernel oil bio-jet showed ash content of less 

than 0.005%. This result is below the maximum value of 0.02% set by the ASTM 

standard. 
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 Mono- and diglycerides as well as triglycerides were referred to as bound glycerol. 

They were present in the feedstock oil and could remain in the final product in small 

quantities. A high excess of alcohol in the trans-esterification should ensure that all of 

triglycerides (the major component of palm kernel oil) are reacted. Moreover, the 

presence of high level of ethanol in bio-jet cause accelerated deterioration of natural 

rubber seals and gaskets. Therefore, control of alcohol content is required. A higher 

content of glycerides in the ester, especially triglycerides, may cause formation of 

deposits at the injection nozzles and at the valves (Felizardo et al., 2006; Vicente et al., 

2006). As shown on Table 4.6, the values of mono-, di- and triglycerides were found to 

agree with the specified EN limits. Regarding the free and total glycerol contents, the 

measured values for palm kernel oil were found below the specification limits standard.  

 The energy density of a potential fuel impacts on the range with payload and a 

high energy density is vital in trying to maximize the passenger and cargo capacity while 

retaining range. Where weight capacity is the limiting factor, as is the case with most 

civil aviation flights, it is desirable to have a fuel that produces the most energy per unit 

mass whereas in applications where range is to be maximized, the volumetric energy 

content of the fuel is the most important parameter, and a higher volumetric energy 

content is desirable (Blakey et al., 2011). The bio-jet in this study was found to have an 

energy content of 38.3 MJ.kg-1, lower when compared to the conventional jet fuel. This 

may affect to the fuel consumption of the engine also due to fuel consumption was 

proportional to the volumetric energy density of the fuel based on the lower heating 

value.  
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4.5 Emission characteristics of bio-jet fuel production 

 In the combustion process, bio-jet fuel is mixtures of hydrocarbons, compounds 

that contain hydrogen and carbon atoms. In perfect engine, oxygen in the air would 

convert all of the hydrogen in fuel to water and all of carbon in fuel to carbon dioxide. 

In reality, the combustion process is not perfect and the engines emit several types of 

pollutants. The emission of the produced bio-jet fuel was measured and compared to the 

conventional jet fuel by one group from school of Mechanical Engineering, Suranaree 

University of Technology, Thailand using TESTO 350. The difference value between 

two of these types fuel was obtained on Table 4.7. 

 

Table 4.7 The difference of emission level between the produced bio-jet and the 

conventional jet fuel. 

Emission Level % Difference 

CO2 High 0.7% - 1.8% 

CO Low 30% - 66% 

NO2 Low 18% - 43% 

HC Low 11% - 41% 

 

 The amount of CO2 produced when a fuel is burned is a function of the carbon 

content of the fuel. Carbon dioxide does not directly impair human health, but it is 

considered a “greenhouse gas”. The heat content, or the amount of energy produced 

when a fuel is burned, is mainly determined by the carbon (C) and hydrogen (H) content 

of the fuel. Heat is produced when C and H combine with oxygen (O) during 

combustion. During complete combustion, carbon and hydrogen combine with oxygen 
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(O2) to produce carbon dioxide (CO2) and water (H2O). As shown on the table, the 

produced bio-jet was obtained at higher content CO2 than the conventional jet with the 

acceptable value (<5%), indicating that bio-jet was resulted in efficiency fuel for engine 

with completely burning.  

 Nevertheless, incomplete combustion occurs when the supply of air or oxygen is 

poor. During incomplete combustion, water is still produced but part of the carbon is 

not completely oxidized producing soot or carbon monoxide (CO). As mentioned, bio-

jet fuel was burned with completely process, resulted in lower CO than conventional jet 

around 35%, strongly confirmed that the produced bio-jet fuel would become the 

replacement for conventional jet fuel in the future. Furthermore, incomplete combustion 

resulted in the using fuel inefficiently and the carbon monoxide produced is a health 

hazard. It reduces the flow of oxygen in the bloodstream and is particularly dangerous 

to persons with heart disease.  

 For the hydrocarbon (HC) emissions, HC result when fuel molecules in the engine 

do not burn or burn only partially. Hydrocarbons react in the presence of nitrogen oxides 

(NO2) and sunlight to form ground-level ozone, a major component of smog. Ozone can 

irritate the eyes, damage lungs, and aggravate respiratory problems. It is our most 

widespread urban air pollution problem. Some kinds of exhaust hydrocarbons are also 

toxic, with the potential to cause cancer. The conventional jet fuel was produced in high 

value of HC, strongly effect to the environment (Table 4.7). 

 With the difference value in nitrogen oxides about 18-43%, bio-jet fuel was 

achieved as clean burning compared to the conventional jet fuel. Under the high pressure 

and high temperature conditions in an engine, nitrogen and oxygen atoms in the air we 

breathe react to form various nitrogen oxides, collectively known as NOx. In this study, 
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nitrogen dioxide was measured. Nitrogen dioxide like hydrocarbons, are precursors to 

the formation of ozone. They also contribute to the formation of acid rain. Thus, since 

greenhouse gas emission and pollutant concern were increasing, bio-jet fuel production 

was achieved as perfect replacement for the gas turbine engine instead of using 

conventional jet fuel in the next future. 
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CHAPTER V 

CONCLUSIONS 

 

 Bio-jet has become more attractive to replace petroleum jet fuel. As per the 

reported literature, most of trans-esterification studies have been done on vegetable oils 

such as rapeseed, soybean, sunflower, etc by using methanol and NaOH/KOH as 

catalyst. There are few studies reported on palm kernel oil, which are produced 

worldwide and achieved at high yield per year. The main objective of this study was to 

investigate the feasibility of using palm kernel oil materials as main substrate to produce 

bio-jet fuel production by trans-esterification reaction and fractional distillation. The 

trans-esterification of palm kernel oil and ethanol was carried out on laboratory scale 

experiments using potassium hydroxide as catalyst. In order to obtain FAEE with high 

conversion, the reaction conditions, such as catalyst concentration, reaction 

temperature, molar ratio of ethanol/oil and reaction time were optimized on the 

conversion of palm kernel oil. Consequently, using response surface analysis, it was 

possible to study the effect of key parameters on the FAEE conversion. Process 

optimization was then accomplished by applying factorial design and response surface 

methodology. The high regression coefficient of the polynomial showed that the model 

was well fitted to the experimental data. Moreover, this study clearly showed that 

response surface methodology was a suitable method to optimize the operating 

conditions in order to maximize the ethyl esters production. Graphical response surfaces 
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were used to locate the optimum point. A full factorial central-composite design (26 

assays) was successfully employed for experimental design and results analysis.  

 Satisfactory prediction equations were derived for the ethyl esters using RSM. The 

optimum concentration for molar ratio ethanol to oil, catalyst, reaction time and 

temperature were, 9:1, 1 wt.%, 120 min and 50 °C, respectively. At the optimum 

conditions, the maximum FAEE concentration was 98.21 wt.%, which was also 

confirmed the model prediction of 97.96 wt.%. 

 Subsequently, the mixture of FAEEs from trans-esterification reaction was 

distillated in order to separate or purify fatty acid ethyl ester C8-C14.  The fractional 

distillation was carried out using Aspen Plus software and the column was designed 

followed by the process simulation for the experimental. The results were shown that 

with the distillated column included 15 stages, mixture of ethyl esters was feed in above 

stage 3, a high concentration of 96.84 wt.% bio-jet was purified from the distillation 

laboratory system with an agreement within process simulation by Aspen (97.6 wt.%), 

indicating that the distillation fractionation was successful applied process used to 

purify FAEE C8-C14 or bio-jet from the mixture of ethyl esters.  

 The ethyl ester which was produced at optimal condition and fractionated at 

efficient column had acceptable properties and compared well with jet fuel. It had lower 

sulfur content, sulfated ash, carbon residue and phosphorus than the limit standard for 

biofuel, but kinematic viscosity and heating value of jet fuel were some better relative 

to bio-jet 42 and 38.3 MJ/kg-1, respectively. The flash point of bio-jet 105 oC was higher 

than the conventional jet fuel (51 oC), which is constituted a safety guarantee from the 

point view of storage.  
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 Moreover, bio-jet fuel was obtained at lower emission of CO, NO, HC with the 

burning which was not only completely but also clean at the same condition testing 

compared to the conventional jet fuel, indicating that bio-jet production could become 

the replacement for gas engine in the future. 

 Based on the study results, the conclusion was that ethanol could substitute for the 

methanol in trans-esterification with palm kernel oil, when it was applied in optimized 

conditions, as presented here. As a result, the bio-jet produced comes from renewable 

sources (ethanol derived from molasses). The innovation in this work is the combined 

use of ethanol and palm kernel oil to produce a fuel from 100% renewable energy.
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APPENDIX A 

STANDARD FAEE ANALYSIS CURVE 

 

   

Figure 1A Standard curve of FAEE C8 and C10 using Gas Chromatography (GC). 

 

 

   

Figure 2A Standard curve of FAEE C12 and C14 using Gas Chromatography (GC). 
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Figure 3A Standard curve of FAEE C16:0 and C16:1 using Gas Chromatography (GC). 

 

   

Figure 4A Standard curve of FAEE C18:0 and C18:1 using Gas Chromatography (GC). 

 

   

Figure 5A Standard curve of FAEE C18:2 and C20:0 using Gas Chromatography (GC). 
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APPENDIX B 

EMISSION ANALYSIS OF BIO-JET FUEL 

PRODUCTION  

 

 

Figure 1B CO2 emission from exhaust gas of gas turbine engine. 

 

 

Figure 2B CO emission from exhaust gas of gas turbine engine.
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Figure 3B HC emission from exhaust gas of gas turbine engine. 

 

 

  

Figure 4B NO2 emission from exhaust gas of gas turbine engine. 
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