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The purpose of this research is to provide a complete group classification of
systems of two linear second-order ordinary differential equations, and the group
classification of systems of two autonomous nonlinear second-order ordinary differ-
ential equations of the form y” = F(y). Prior to the classification of systems of two
autonomous nonlinear second-order ordinary differential equations, a preliminary
study on nonlinear systems of the form y” = F(z,y) is presented. The preliminary
study on nonlinear systems is also applicable for the group classification of linear
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Ovsiannikov’s 2-step technique was mainly used to obtain the group clas-
sification. This approach involves simplifying the determining equations through
exploiting equivalence transformations and then solving for the reduced cases of
the generators. This allows one to study all possible admitted Lie algebras without

omission.
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CHAPTER 1

INTRODUCTION

Systems of second-order ordinary differential equations arise in various real-
world applications and have been widely studied in many fields of science. They
possess many interesting features including symmetry properties. The presence of
symmetries allows the reduction of order of these differential equations, or even
makes it possible to find general solutions by quadratures.

Group classification studies, dating more than a century back, were first ini-
tiated by the founder of symmetry analysis, Sophus Lie (1883, 1891, 1884, 1881).
These studies were long forgotten until Ovsiannikov (1958, 1978) revived the work
around five decades ago. Lie’s works put emphasis on tackling the group clas-
sification in two ways: 1) the direct way and 2) the indirect way also known as
the algebraic approach. The direct way involves directly finding solutions of the
determining equations and allows one to study all possible admitted Lie algebras
without omission. On the other hand the indirect way involves solving the de-
termining equations up to finding relations between constants defining admitted
generators. The algebraic approach takes into account the algebraic properties of
an admitted Lie group and the knowledge of the algebraic structure of admitted
Lie algebras in order to allow group classification (Mahomed and Leach, 1989;
Gonzalez-Lopez et al., 1992; Popovych et al., 2010; Grigoriev et al., 2013). In
one of Lie’s works (Lie, 1883), he gave a complete group classification of a single
second-order ordinary differential equation of the form y” = f(z,y). Later on

Ovsiannikov (2004) did this group classification in a different way. The method



he used, now also known as the direct approach, involved a two-step technique
where the determining equations were first simplified through exploiting equiva-
lence transformations and later on solved for the reduced cases of the generators.
The same technique was used in a study (Phauk, 2013) to classify a more general
case of equations of the form y” = Ps(z,y;y"), where P3(x,y; 1) is a polynomial of
a third degree with respect to the first-order derivative 1. Sometimes it is difficult
to select or tease out equivalent cases with respect to equivalence transformations.
As similarly observed in the classification of a general scalar second-order ordinary
differential equation of the form y” = f(x,y;%’), the application of the direct tech-
nique gives rise to overwhelming difficulties. In this thesis, both the direct and
indirect techniques are employed, but mainly utilizing the direct method.

Apart from dealing with classification problems there is a significant amount
of research that deals with the dimension and structure of symmetry algebras of
linearizable ordinary differential equations (Gorringe and Leach, 1988; Mahomed
and Leach, 1989, 1990; Wafo Soh and Mahomed, 2000; Ibragimov, 1996; Boyko
et al., 2012). This is also of importance since some nonlinear equations appear in
disguised forms.

Published works (Wafo Soh, 2010; Meleshko, 2011; Boyko et al., 2012;
Campoamor-Stursberg, 2011, 2012) show results on systems of two second-order

ordinary differential equations with constant coefficients of the form

y" =My, (1.1)

where y = and M is a matrix with constant entries. However, these papers
z

do not exhaust the set of all systems of linear second-order differential equations.
In our study (Meleshko et al., 2014), we presented the complete group classification

of these linear systems of two second-order ordinary differential equations with



constant coefficients.
A study by Wafo Soh and Mahomed (2000) shows results of classification

of systems of two second-order linear ordinary differential equations of the form

However, the list of all distinguished representatives of systems of two second-order
linear differential equations was not obtained in this paper.

Despite all these extensive studies, it was surprising that the group classi-
fication of systems of two nonlinear second-order ordinary differential equations
has not yet been exhausted. Even more surprising, both the group classification of
systems of two linear second-order ordinary differential equations and the group
classification of systems of two autonomous nonlinear second-order ordinary dif-

ferential equations of the form
N~ Eg) (1.2)

are not yet complete. Hence, this research considers the group classification of
systems of two linear second-order ordinary differential equations and systems of
two autonomous nonlinear of the form (1.2).

The systems studied here are generalizations of Lie’s study (Lie, 1891).

The degenerate case, which is equivalent to the following
y// = F('r7 y7 Z)? ZI/ = 07 (1'3>

is omitted from this research. We call systems equivalent to (1.3) reducible sys-
tems, and irreducible otherwise.

This thesis is organized as follows. Chapter II introduces some background
knowledge of Lie group analysis. Chapter III presents an algorithm in finding an

admitted Lie group of a system of two linear second-order ordinary differential



equations, followed by its classification. Chapter IV tackles the preliminary study
of systems of two nonlinear second-order ordinary differential equations, and is
followed by the subsequent group classification applied to autonomous systems of
two second-order ordinary differential equations of the form (1.2) in Chapter V.

Lastly, Chapter VI summarizes and concludes the results of the classifications.



CHAPTER 11

GROUP ANALYSIS

In 1890, Sophus Lie, a Norwegian mathematician, introduced the theory of
continuous transformation groups which are now known as Lie groups. Lie group
analysis is a successful method for integration of linear and nonlinear differential
equations by using their symmetries. Later, these methods were applied to many
types of differential equations. An introduction to this method can be found in
textbooks (cf. Ovsiannikov (1978); Olver (1986); Ibragimov (1999)). A collection
of results by using this method is in the Handbooks of Lie Group Analysis (1994,
1995, 1996).

In this chapter, a review on some basic concepts of group analysis is given
such as a one-parameter Lie group, the Lie algebra of a generator, and invariant
solutions. Group classification is given in the last section.

In this thesis, the application of continuous groups to differential equations
makes no use of the global aspects of Lie groups. Hence, we focus only on local
Lie groups of transformations, and for brevity, such a group will be simply called

a Lie group or a group.

2.1 Lie Groups of Transformations

Definition 1. A group G is a set of elements with a law of composition ¢ between

elements satisfying the following axioms:

1. Closure property: For any element a and b of G, ¢(a,b) is an element of G.



2. Associative property: For any element a, b, and c of G,
¢(a, d(b, c)) = d(d(a,b), ).

3. Identity element: There exists a unique identity element e of G such that

for any element a of G,
o(a,e) = o(e,a) = a.

4. Inverse element: For any element a of G there exists a unique inverse

element ¢~ ! in G such that

Definition 2. A subgroup of G is a group formed by a subset of elements of G

with the same law of composition ¢.

Definition 3. Let z = (z1,2,...,2y) lie in the region V' C RY. The set of
transformations

z = g(z;a),
defined for each z € V, depending on parameter a € A C R, with ¢(a,b) defining
a law of composition of parameters a and b € A, as above, forms a group of

transformations on V' if:

1. For each parameter a € A the transformations are one-to-one onto V', in

particular z lies in V.
2. A with the law of composition ¢ forms a group G.

3. Z=1z when a = e, i.e.



2.1.1 One-Parameter Lie Group of Transformations

Definition 4. A group of transformations defines a one-parameter Lie group of

transformations if in addition to axioms 1-4 of Definition 3:

5. a is a continuous parameter, i.e. A is an interval in R. Without loss of

generality a = 0 corresponds to the identity element e.

6. g is infinitely differentiable with respect to z € V' and an analytic function

of a € A.

7. ¢(a,b) is an analytic function of ¢ and b, a € A and b € A.

Due to the analyticity of the group operation ¢, it is always possible to
reparametrize the Lie group in such a way that the group operation becomes the

ordinary sum in R (see proof in Bluman and Kumei, 1989).

2.2 Infinitesimal Transformations

Consider a one-parameter (a) Lie group of transformations

z = g(z;a) (2.1)

with identity a = 0 and law of composition ¢. Expanding equations (2.1) about

)+...
a=0

a = 0, we have (for some neighborhood of a = 0)

_ og, . a’ (g,
Z= z+a(%(z,a) a:o) + <@(z,a)
) + O(a?).

(2.2)

a=0
Let

£t = ((Etmia) ) (23)

The transformation z = z + a(z) is called the infinitesimal transformation of

the Lie group of transformations (2.1), and the components of £(z) are called the

infinitesimals of (2.1).



2.2.1 First Fundamental Lie Theorem

Theorem 1 (First Fundamental Lie Theorem). The Lie group of transformations
(2.1) corresponds to the solution of the initial value problem for the system of first

order differential equations

dz
% t(a), (2.42)
with

zZ =17 when a = 0. (2.4Db)

The tangent vector £(z) is written in the form of the first order differential

operator (the symbol in Lie’s notation)

0 0
X=¢(z)-V= fl(z)ﬁ_zl +---+ 5N(Z>%
For any differentiable function F'(z),
oF oF
XF=§(z) VF = fl(z)aizl +- SN(Z)%
and in particular,
Xz = £(z).

A one-parameter Lie group of transformations, which by Theorem 1 corresponds
to its infinitesimal transformation, also corresponds to its infinitesimal operator.
The latter allows to represent the solution of the differential equations (2.4a) with

the initial conditions (2.4b) in terms of a Taylor series (ezponential map)
_ Xz — x a? X2 = <k
z=-cxp(aX)z=z+a 2+ 5 z_|_..._§H z

where X*z = X(X*~1z), X'z = z.

2.3 Invariance of a Function

From here, we can introduce the concept of invariance of a function with

respect to a Lie group of transformations, and prove the related invariant criterion.



Definition 5. An infinitely differentiable function F'(z) is said to be an invariant
function (or simply an invariant) of the Lie group of transformations (2.1) if and

only if for any group transformation (2.1), the condition
F(Z) = F(z)
holds true.

The invariance of the function is characterized in a very simple way by

means of the infinitesimal generator of the group, as the following theorem shows.

Theorem 2. F(z) is invariant under (2.1) if and only if
XF(z) = 0.

The invariance of a surface of RY with respect to a Lie group can also be
defined. A surface F'(z) = 0 is said to be an invariant surface with respect to the
one-parameter Lie group (2.1) if F(z) = 0 when F(z) = 0. As a consequence of

Theorem 2, the following theorem immediately follows.

Theorem 3. A surface F(z) = 0 is invariant under (2.1) if and only if
XF(z) =0 when F(z) = 0.
A Lie group of transformations may depend as well on many parameters,
z = g(z;a) (2.5)

where a = (ay,as,...,a,) € A C R". The infinitesimal matriz x(z) is the r x N

matrix with entries

_ 05

_ _ Jg,(x;a)
da,

£aj(2) 9

a=0 a=0
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(e=1,...,m5=1,...,N) may be constructed, and for each parameter a,, of the

r-parameter Lie group of transformations (2.5), the infinitesimal generator X,

al )
X, = Zgaj(z)g (a=1,...,7)
j=1 J

is defined. The infinitesimal generator

r N P r
X = Z UaXa = Zgj(z)£7 gj(z) = Z Uafaj(Z)
a=1 j=1 J a=1

where o1, ..., 0, are fixed real constants, in turn defines a one-parameter subgroup
of an r-parameter Lie group of transformations.

Now for a given system of differential equations e, the variable z is
separated into two parts, z= (x,u) € V C R" x R", N = n + m. Here,
x = (z1,%9,...,7,) € R" is the independent variable, u = (u!,u? ... u™) € R™

is the dependent variable. The transformations (2.1) can be decomposed as

X = o(x,u;a), (2.6)
u = Y(x,u;a).
Also, let
u = up(x) = (up(x), up(x), - .., ug'(x))
be a solution of the equations €. A Lie group of transformation of the form (2.6)

admitted by e has the two equivalent properties:

1. a transformation of the group maps any solution of € into another solution

of ¢;

2. a transformation of the group leaves ¢ invariant, say, ¢ reads the same in

terms of the variables (x,u) and in terms of the transformed variables (X, u).

The transformations (2.6) determine suitable transformations for the derivatives

of the dependent variables u with respect to the independent variables x. Let u(®
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denote the set of all m - n first order partial derivatives of u with respect to x,

ul) =

(8u1 out ou™ ou™ )

B B B B
and in general, let u®) denote the set of all kth-order partial derivatives of u with
respect to x. The transformations of the derivatives of the dependent variables
lead to a natural extensions (prolongations) of the one-parameter Lie group of
transformations (2.6). While the one-parameter Lie group of transformations (2.6)

(1))

acts on the space (x, u), the extended group acts on the space (x,u,u""”), and more

in general, on the jet space (x,u, u(l), ...,u®). Since all the information about
a Lie group of transformations is contained in its infinitesimal generator, we need

to compute its prolongations:

1. the first prolongation

m n ‘ P ' (9uj
X(l) & X + J' X, u, u(l) PN u] =

; ; 77[1]( )81@ i axz
with
(1)) _ D??J N ij 8uj

77{4 <X7 u,u

2. the general kth-order prolongation recursively defined by

(k) — x (k=1 julaer=- ;o __T¥
7j=111=1 =1 L1yeslk
with
J
j . Dn[iln--’ikfl] ) ij
My, i) = Dy, etk—1] Dxyy.

Note that the Lie derivative D%;- is defined as

D ) oul 0 O’ 0

Da;, 0 Ow 0w | Ondwoa

and the Einstein convention of summation over repeated indices is used (and this

notation is adopted all throughout the manuscript).
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Remarkably, the search for one-parameter Lie groups of transformations
leaving differential equations invariant leads usually to r-parameter Lie groups of

transformations. Let

F(x,u, u, ;ufy =0 (2.7)

(F = (F,...,F,)) be a system of ¢ differential equations of order k, with inde-
pendent variables x € R™ and dependent variables u € R™. Suppose the system
is written in normal form, i.e., it is solved with respect to some partial derivatives

of order k, forv=1,...,q:

Fy(x,u,ut . ,u(k))

ul? — fox,u,u® o u®) = 0. (2.8)

115000k

The equations (2.8) can be considered as characterizing a submanifold in the kth-
order jet space. One says that the one-parameter Lie group of transformations
(2.6) leaves the system (2.8) invariant (is admitted by (2.8)) if and only if its kth

prolongation leaves the submanifold of the jet space defined by (2.8) invariant.

2.4 Algorithm of Finding Lie Groups Admitted by Differ-

ential Equations

The following theorem, which is a consequence of Theorem 3, leads directly
to the algorithm for the computation of the infinitesimals admitted by a given

differential system.

Theorem 4 (Infinitesimal Criterion for differential equations). Let

- 0
+ 17’ (x,u)=—

0
X = ¢&(x,u) S

(%ci

be the infinitesimal generator corresponding to (2.6) and X (k) the kth prolonged

infinitesimal generator. The group (2.6) is admitted by the system (2.8) if and
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only if
XPP(x, u, uV ,u®) =0 whenever F(x,u, uV ,ulfy = 0. (2.9)

If the differential system is in polynomial form in the derivatives, then the
invariance condition (2.9) are polynomials in the derivative components, with co-
efficients expressed in linear combinations of the unknown &;, 77 and their partial

derivatives. Using (2.8) to eliminate the derivatives uff the equations can be

split with respect to the components of the remaining derivatives of u that can
be arbitrarily varied (also called parametric derivatives). By equating the coeffi-
cients of these partial derivatives to zero, one obtains an overdetermined system
of linear differential equations for the infinitesimals (also called system of deter-
mining equations), whose integration leads to the infinitesimals of the group. The
infinitesimals involve arbitrary constants (and in some cases arbitrary functions)
and hence, we have de facto r-parameter Lie groups (infinite-parameter Lie groups
if arbitrary functions are involved). Note that the general solution of the deter-
mining equations generates a principal Lie algebra LS of the system . The set
of transformations, which is finitely generated by one-parameter Lie groups corre-
sponding to the generators X € LS is called a principal Lie group admitted by
the system e¢.

In this thesis, we limit ourselves to dealing with Lie groups of transfor-
mations admitted by differential equations with infinitesimals depending on the
independent and dependent variables only. These are called local Lie point sym-
metries. Symmetries where the infinitesimals may depend on first (respectively,
higher) order derivatives of the dependent variables with respect to the indepen-
dent variables are called contact (respectively, generalized) symmetries, and sym-

metries with infinitesimals depending also on integrals of dependent variables are

called nonlocal symmetries.
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2.5 Lie Algebras of a Generator

Definition 6 (Lie Algebra). The infinitesimal generators of an r-parameter Lie
group, being solutions of a linear system of partial differential equations, span an
r-dimensional vector space; by introducing an operation of commutation between

two infinitesimal generators,
[Xa, X5] = XaXs — XX,
which is bilinear, antisymmetric and satisfies the Jacobi identity, say,
[(Xa, Xp] X5 + [[Xp, Xy ], Xo] +[[X5, Xal, Xp] = 0,
the vector space of infinitesimal generators gains the structure of a Lie algebra.

It is worth to emphasize that the commutator of two infinitesimal generators
is invariant with respect to any invertible change of variables, and commutes with

the operation of prolongation.

Definition 7. A vector space L of generators is a Lie algebra if the commutator

[ X1, X5] of any two generators X; € L and X, € L belongs to L.
Lemma 5. A commutator is invariant with respect to any change of variables.

For the proof of this, consider the change of variables Z = ¢(z). As the
generators are invariant with respect to this operation, it follows that X = X' =

X(g;)0z and Y =Y’ =Y (g;)0s. Hence.
(X" Y] = (X'(Y(g:) = Y'(X(4))) 9=
= (X(Y(@)) =Y (X(@))) 0z = [X,Y](¢:)0z = [X, Y]
Theorem 6. If a system ¢ admits generators X and Y, then it admits their

commutator [X,Y].
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This theorem means that the vector space of all admitted generators is a Lie
algebra (admitted by the system ). This algebra is called the principal algebra.

To construct exact solutions, one uses subalgebras of the admitted algebra.

Definition 8 (Subalgebra). A vector subspace L' C L of Lie algebra L is called a
subalgebra if it is a Lie algebra,i.e., for arbitrary vectors X, and Xz from L', their

commutator [X,, Xg| belongs to L.

Definition 9 (Ideal). Let I C L be a subspace of Lie algebra L such that [X,Y] €

I, VX €1l and VY € L holds. The subspace I is called an ideal.

Definition 10 (Similar Lie Algebras). Two Lie algebras L' and L” are similar if

there exists a change of variables that transforms one into the other.

Hence, if Lie algebras L' and L” are similar, then the generators X =

¢#(2)0., € L' and X = 55(2)8@3 € L” of these algebras are related by the formula

¢°(2) = X(¢"(»))]

z=q~1(2)
A linear one-to-one map f of a Lie algebra L onto a Lie algebra K is called

an isomorphism (algebra L and K are said to be isomorphic) if

f([Xl“ XI/]L) - [f(XlL>7 f(Xu)]K7

where the indices L and K are used to denote the commutator in the corresponding
algebra. An isomorphism of L onto itself is termed an automorphism. Therefore
the set of all subalgebras can be classified with respect to automorphisms.

If L is an r-dimensional vector space of infinitesimal generators closed un-
der the operation of commutation, i.e., L is an r-dimensional Lie algebra, and

{X1,...,X.} is a basis, then

[XavXﬂ] = Z OgﬁXv
y=1
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with constant coefficients C’gﬁ known as structure constants; they transform like
the components of a tensor under the changes of bases.

Notice that two Lie algebras are isomorphic if they have the same structure
constants in an appropriately chosen basis.

For a given Lie algebra L, with basis { X, Xs, ..., X, }, any X € L is written
as

X =x,X,.

Hence, elements of L, are represented by vectors # = (z1,...,2,). Let L? be the

Lie algebra spanned by the following operators,

)\ a

E, = cw,x,,a—x/\, pw=1 ..

with the commutator defined as in Definition 6. The algebra L# generates the
group G4 of linear transformations of {z,}. These transformations determine
automorphisms of the Lie algebra L, known as inner automorphisms. This set is
denoted by Int(L,). Accordingly, G* is called the group of inner automorphisms
of L,, or the adjoint group of G. Any subalgebra L, C L, is transformed into a

similar subalgebra by an element of Int(L,). Similarity is an equivalence relation;

the collection of similar subalgebras of the same dimension compose a class.

Definition 11 (Optimal System). A set of representatives from all classes is called

an optimal system of subalgebras.

Thus, an optimal system of subalgebras of a Lie algebra L with inner au-

tomorphisms A = Int(L) is a collection of subalgebras © 4(L) such that

(1) No two elements of this collection can be transformed into each other by an

inner automorphism of the Lie algebra L.

(2) Every subalgebra of the Lie algebra L can be transformed into one of the

subalgebras of the set ©4(L) by an inner automorphism.
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2.6 Use of Lie Symmetries of Differential Equations

The knowledge of Lie groups of transformations admitted by a given system

of differential equations can be used to

1. lower the order or eventually reduce the equation to quadrature, in the case

of ordinary differential equations; and

2. determine particular solutions, called invariant and partially-invariant solu-
tions, or generate new solutions, once a special solution is known, in the case

of ordinary or partial differential equations.

2.6.1 Invariant Solutions of Partial Differential Equations

The function u = ug(x) with components v/ = u!(x) (j =1,...,m), is

said to be an invariant solution of (2.7) if w/ = w)(x) is an invariant surface of

(2.6), and is a solution of (2.7), i.e., a solution is invariant if and only if

X(w —up(x)) =0 for ) =uy(x) (j=1,...,m) (2.10)

F(x,u, u(l), YY1\ \
The first equations of (2.10), called the invariant surface conditions, have the form

ou? o’ ‘
— - . e — T ] ) f—
&1(x,u) o + + &u(x, u) v (x,u) (j=1,...,m)

and are solved by introducing the corresponding characteristic equations:

dx, dz, du' du™

a Nm (X, 1) '

& (x,u) T Glxw) mi(xu)

This allows to express the solution u = ug(x) as

uw = (L(x,a),..., [,_(x,0) (j=1,...,m).

By substituting this into the second equation of (2.10), a reduced system of differ-

ential equations involving (n—1) independent variables (called similarity variables)
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is obtained. The name similarity variables is due to the fact that the scaling in-
variance, i.e., the invariance under the similarity transformations, was one of the

first examples where this procedure has been used systematically.

2.7 Group Classification

Many differential equations involve arbitrary elements, constants, parame-
ters or functions, which need to be determined. Mainly, these arbitrary elements
are determined experimentally. However, the Lie group analysis has shown to
be a versatile tool in specifying the forms of these elements systematically. The
group classification problem consists of finding all principal Lie groups admitted
by a system of partial differential equations. Part of these groups is admitted
for all arbitrary elements. This part is called the kernel of admitted Lie groups.
Another part depends on the specification of the arbitrary elements. This part
contains nonequivalent extensions of the kernel. In this thesis, the system of
two linear second-order ordinary differential equations and the system of two au-
tonomous nonlinear second-order ordinary differential equations without the first-
order derivatives are the chosen functions for classification.

The first problem of group classification is constructing transformations
which change arbitrary elements, while preserving the differential structure of the
equations themselves. These transformations are called equivalence transforma-
tions. The group classification is regarded with respect to such transformations.

At the stage where one studies for the specific cases of arbitrary elements, it
is important to emphasize that there are several methods for solving the determin-
ing equations: i.e., using 1) the direct approach and/or 2) the algebraic approach.
The direct method involves utilizing equivalence transformations to obtain gen-

erators of simple equations, which later on are substituted into the determining
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equations in order to find extensions of the generators. On the other hand, the
algebraic approach involves solving the determining equations up to finding rela-
tions between constants defining admitted generators. This takes into account the
algebraic properties of an admitted Lie group and the knowledge of the algebraic
structure of the admitted Lie algebras. In this thesis, the direct method is mainly

implemented.

2.7.1 Equivalence Lie Group

Consider a system of differential equations:
FF(z,u,p,0) =0, (k=1,...,s), (2.11)

where ¢ : V' — R are arbitrary elements of system (2.11) and (z,u) € V C R"*™.

A nondegenerate change of dependent and independent variables that trans-
forms a system of differential equations (2.11) to a system of equations of the same
class or the same structure is called an equivalence transformation.

In order to find a Lie group of equivalence transformations, one must con-
struct a transformation of the space R™™™*(z, u, ¢) that preserves the equations
whilst only changing their representative ¢ = ¢(z,w). For this purpose, a one
parameter Lie group of transformations of the space Rt with the group pa-
rameter a is used. Suppose that the following transformations compose a Lie group

of equivalence transformations:

= f"(z,u,¢;a), = f"(z,u,é;a), o= f=,u,¢;a). (2.12)
So the infinitesimal generator of this group (2.12) has the form

X€ — ga:laxl + Cujauj + C¢ka¢k
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with the coefficients

goi = of*(x, u,d;a)
a a(l a:()’
v = of" (x,u, ¢;a)
N da ’
a=0
C(z)k — 8f¢k ('I7 u, ¢7 Cl)
da ’
a=0
wherei=1,...,n; j=1,....,m;and k=1,...,t. The main requirement for the

Lie group of equivalence transformations is that any solution ug(x) of the system
(2.11) with the functions ¢(z, u) is transformed by (2.12) into a solution u = u,(Z)
of the system (2.11) of the same equations £’ but with other transformed functions

¢a(x,u). The functions ¢,(z,u) are defined as follows. Solving the relations

7= (o u b, a)ia), 0= f'(r,u,d(z,u);a)

r=g"(z,u;a), wu=g"(z,u;a). (2.13)
The transformed function is
¢a(T,0) = f(x,u, ¢(x,u); a),

where instead of (x,u), one has to substitute the expressions (2.13). Because of

the definition of the function ¢,(z, @), the identity with respect to x and u follows:

(¢a 0 (f7, f)) (@, u, ¢, u);a) = f(z,u, ¢(z,u); a).

The transformed solution T, (u) = u,(z) is obtained by solving the relations

T = [, uo(x), ¢(x, uo(2)); a)

for = and substituting the solution = = ¢*(z; a) into

ua(T) = [*(2, uo(), ¢(2, uo(2)); a).
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As for the function ¢,, the following identity with respect to x follows:

(ta 0 f7) (@, uo(2), (2, uo(w)); @) = f*(x, uo(x), d(x, uo(x)); a). (2.14)

Formulae for transformations of the partial derivatives p, = f?(z,u,p,,...,a)

are obtained by differentiating (2.14) with respect to .
Lemma 7. The transformations 7,(u), as constructed above, form a group.

The proof of this lemma follows from the property of a Lie group of trans-

formations and the sequence of the equalities

T = f*(z,uo(x), (z, uo(z));0), ua(Z) = f"(z,u0(2),d(x,uo(x)); )
T = (T, ua(T), $a(T,ua(T)); 0),  w(Z) = f(T, ua(T), §a(Z, ua(T)); D)
(up 0 f7)(Z, ua(Z), Pa(T, ua(T)); b) = f(T, ua(T), Pa(T; ua(T)); b)
S (@, uo(), @z, ug(®)); a), [ (2, uo(2), ¢z, uo(x)); a),
f(z, uo(2), oz, uo(@)); )i b) = f(x, uo(x), d(x,uo()); a + b)
= (tap © f7)(, uo(2), (2, uo(z)); @ + b).
Since the transformed function u, (z) is a solution of system (2.11) and along with

the transformed arbitrary elements ¢,(Z, ), the equations
F*(Z, 147, Pa(T), 60T, 1a (7)) = 0, (K =1,...,5)

are satisfied for any arbitrary z. By one-to-one correspondence between x and Zz,

it follows that
FH(f*(2(x); ), f*(2(x); ), fP(zp(2); 0), fO(2(2))) =0, (k=1,...,s)

where z(z) = (x,up(z), ¢(x,uo(z))) and z,(z) = (x,uo(x), p(z,up(x)), po(x),...).
After differentiating these equations with respect to the group parameter a evalu-

ated at 0, one obtains an algorithm for finding equivalence transformations (2.12).
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The difference in the algorithms for obtaining an admitted Lie group and equiv-
alence group is only in the prolongation formulae of the infinitesimal generator.
Hence, after differentiating these equations with respect to the group parameter

a, the determining equations

XeFE(z,u,p,¢) =0 (k=1,...,5s) (2.15)

€

are obtained. The prolonged operator for the equivalence Lie group is
Xe = X+ ¢y, + %0y, + 0y, + ...
where the coordinates related to the dependent functions are
(" = D5C" —up DSE®, DS = Ox + ur0y + (dyur + ¢02)0s,

where A takes the values x;, (i = 1,...,n), and the coordinates related to the

arbitrary elements are
(" = D5C" = 6, D5€° = 6, D¢, DS = 0y + 6,0,

where v takes the values z; and v/ (i = 1,...,n, j = 1,...,m). The sign |
means that the equations X¢F*(x, u, p, ¢) are considered on any solution ug(z) of
system (2.11). The solution of the determining equations (2.15) gives the coeffi-
cients of the infinitesimal generator. The set of transformations, which is finitely
generated by one-parameter Lie groups corresponding to the generators X¢, is

called an equivalence group. This group is denoted by G.S°.

Theorem 8. The kernel of the principal Lie groups is included in the equivalence

group GS°.

The kernel and the equivalence group GS¢ are considered in the same ap-

proach.
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Remark 1. In some cases, additional requirements are included for arbitrary

elements. For example, it is supposed that the arbitrary elements ¢“ do not
oJo
oxy,
appended to the original system of differential equations (2.11). These lead to

depend on the independent variables, i.e. = 0. These conditions have to be

additional determining equations.



CHAPTER III
APPLICATION OF GROUP ANALYSIS TO

LINEAR SYSTEMS

The general form of a system of two linear second-order ordinary differential
equations is
y' = B@)y' + Ax)y + f(=), (3.1)
where A(x) and B(z) are 2 x 2 matrices and f(x) is a vector. In studying sym-
metries, it is convenient to rewrite equations in their simplest equivalent form.
Hence, a simpler equivalent form of (3.1) is sought first before proceeding to the
group classification.
Using a particular solution y,(7) and the change y =y +y,, without loss
of generality, it can be assumed that f(x) = 0. Applying the change y = C(x)y,

where C' = C(z) is a nonsingular matrix, system (3.1) becomes
y' = B(@)y' + )y, (3.2)

where B = C~Y(BC — 2C") and A = C~Y(AC + BC' — C"). If one chooses the

1 ~ ~ 1 1
matrix C'(x) such that C' = §BC, then B=0and A=C""! (A + ZBQ - 53/) C.

The existence of the nonsingular matrix C(x) is guaranteed by the existence of
the solution of the Cauchy problem

1
'=_-B
C 5 C

C(O) - ]2,
where I, is the unit 2 x 2 matrix. Notice that if the matrices A and B are

constant, then the matrix A in (3.2) is constant only for commuting matrices A
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and B. The complete study of noncommutative constant matrices A and B was
done in (Meleshko et al., 2014). Without loss of generality up to equivalence
transformations in the class of systems of the form (3.1), it suffices to study the

systems of the form
y' = Az)y. (3.3)

Note that the above process of simplification of the 2 x 2 systems of the form (3.1)
to systems of the form (3.3) can be extended to any n x n linear system.
Therefore, the classical group analysis method, which is described in detail

in the succeeding sections, is applied to the system of equations

y' = Ay, (3.4)

a11(z) ax(z) o o
where y = and A = . Another similar notation is also

z as1(z) ag(x)

used in this thesis, i.e.,

y' =F(x,y), (3:5)
y F :'E’ y? z
where y = and F(x,y) = ( ) where
z G(z,y,2)

F(x,y,2) = ann(x)y + a12(7)z
(3.6)
G(7,y,2) = axn(2)y + ag(r)z.
Before finding the admitted Lie algebras of the linear system, it is essential
to compute the equivalence transformations of the given system.

Notice also that every system of linear equations (3.4) admits the following

generators:

Y0, + 20., (3.7)

Ci(x)0y + G(2)0:, (3.8)
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where (3.7) is the homogeneity symmetry, and (;(z) and (3(z) are solutions of the

equations (3.4), i.e.,

| = an ()G + a12(7) G, G5 = a1 (w)C1 + ag(z)C,.

Thus, for the classification problem, one needs to study systems of linear equations

(3.4) which admit generators apart from (3.7) and (3.8).

3.1 Equivalence Transformations of (3.4)

Consider the linear system (3.4). Equivalence transformations of the stud-
ied system of equations are considered in this section. The arbitrary elements are
the functions a;;(z), where the indices ¢ and j run over the values 1 to 2 (For this
chapter, i, j = 1, 2 is applied to all texts.). The generator of the equivalence Lie

group is assumed to be in the form
X©=£80; + nyay + 170, + Caijaaija

where the coefficients &, ¥, n*, and (*’’s depend on the variables z, y, z, and
a;;’s. Note here that the summation with respect to repeated indices is assumed

over 7, j = 1, 2. The prolonged operator is

X=X+ 0y + 0700+ 0" Oyr + 07 O + (9200, + (900, + ("0,

Note that the conditions % — 0 and ai
dy 0z

system. The coefficients of the prolonged generator are

= 0 are appended to the original

' =D’ —y'Dsg, Y =D’ —y' D,
0w = Doy —#D§, 07 = Doy — 2"D¢,
(e = Degms — aly DEg, ¢v = D — aly D,

(o= = D™ — alyDiE.
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Here, the operators D, 52, 5; and 132 are

D5 =0, + 90, + 2'0. + y"0y + 2"0. + a};0a,,

+ a;;0u,
D = 9, + dl;0,,,
D: =9,
De = 9..

The determining equations of the equivalence Lie group become

(ny" —(My — (M2 —qpnY — amnz) lyr—ay =0,
(nZ” — ("2 — ("2 — agn¥ — CLQQ’T]Z) lyr—ay = 0.
After substitutions of n¥', n¥", 0%, n*", (%=, (“9v, and (% and the transition

onto the manifold y” = Ay, the determining equations are split with respect to

the variables y’, a;;’s, and af;’s. Initial analysis of the split determining equations
leads to conditions that (*7’s do not depend on y and z, nY and n* do not depend
on the a;;’s, and £ do not depend on y, # and a;;’s. From here, it follows that

€ = &(x). As a result, the remaining determining equations are as follows:

ngy - 07 ng T 0’ ngz = 0’ ngz s 07 any - 5” = 07

(3.9a)
nZy - 07 7752 - O’ 17;2 =0, nﬂzcy = 07 277;2 N 5,/ = 07
Mo + Mya11y + Nyai22 + a1y + niaznz — 28 any — 28 a2
(3.9b)
_ @1177y _ a1277z o Cauy _ <a12z _ 0’
Now T Mpa11Y + 00122 + Ma21y + 1Saxnz — 28 any — 28 agz (3.90)
9c

—agn? — agn® — 'y — (%2 = 0.

Solving equations (3.9a), it follows that

Y =1y + ky + koz + Gi(2),

Nt = %f’z + ksz + kyy + (),
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where k;’s (I = 1,...,4) are constant. Substituting these into equations (3.9b) and
(3.9¢), and splitting these equations further with respect to y and z, the following
solutions are obtained:

¢t = 28" — 2¢a1y — aroky + aziko,

(M2 = —=2¢ayy + (age — an)ky + ara(ky — k3),

¢ = =28ay — (agy — ai)ks — axn(ky — k3),

(*2 = 3£ — 28 agy + aroky — aniko.

Note also that (;(z) and (»(z) are solutions of the linear system (3.4), i.e.,

L =an(z)¢ + arz(z) G, Gy = a9 ()1 + az(z)Co.

From the above calculations’, it is shown that the equivalence Lie group of system

(3.4) is defined by the following generators:

XT 120y + 09104, + (ag2 — a11)0ay, — 42100y,
X$ 1 y0, — 41204, + (@11 — 022) 0oy — 01204,
XS 1 y0, + 20,
X§ 1 y0y — 20, + 2(01204,, — 02104,,)
X5 0 280, + &' (yOy + 20.) + (£ — 4 a1 ) 0ay,
—4€'a1904,, — 4’9104, + (£ = 4 a22) 0y,
where & = £(z) is an arbitrary function.
The transformations corresponding to the generators X7, X5, X§ and X{
define the linear changes of dependent variables y = Py with a constant non-

singular matrix P. The transformations corresponding to X¢ are 7 = ¢(z),y =

y(x),z = z(x) where the functions () and () satisfy the condition

oY

oY

*Computations were solved manually and were verified using the symbolic manipulation pro-

gram REDUCE (Free CSL version 07-Oct-10).
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Now that the equivalence transformations are obtained, then we are more
than equipped to begin finding the admitted Lie algebras of the linear system

(3.4).

3.2 Admitted Lie Group of the Linear System (3.4)
Admitted generators are sought in this form
0 0
ng(x,y,z)%jLny(x,y,z)a—y —I—nz(x,y,z)%. (3.10)
The prolonged operator for this equation is
X=X+n0"0y +170. + 0" 0y + 17" 0. (3.11)

with the coefficients
0 = Dun¥ —y'Dak, 0" = Do’ — y"Dat,
7 = Do —2'Do€, 07 = Do — 2" Dyé,
where
D, =0, +y0,+ 20, +y"0y + 2"0..
According to the Lie algorithm (Ovsiannikov, 1978), X is admitted by the

system (3.4) if it satisfies the associated determining equations, i.e., the generator

(3.10) is admitted by the equations (3.4) if and only if

(X(y" — Ay)]|yr=ay = 0.

The latter equations become

y/=Ay = 07

=0.

y'=Ay

[ — an(z)n? — ara(z)n® — £(dhy (2)y + ay2)]

Z//

(77" — s ()0’ — asa(@)n® — §(ay (2)y + agyz)]
After substituting the coefficients n¥", n*" and the differential equations y” = Ay,

and splitting with respect to the parametric derivatives 3y’ and 2/, the first part of
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the determining equations are as follows:

ngy = 2§$y7 7732 = gacza 7722 =0, (312)
ngjy - 0’ 7752 = 65’31/’ njz = zgxz

The general solution of the first three (3) equations of (3.12) is

§=&(2)y + &x)z + &) (3.13)

Substituting equation (3.13) into the last six (6) equations of (3.12), the general

solutions of ¥ and 7n* are obtained as follows

n? =28 @)y + &@)yz + m(z) + mu(@)y + ma(2)z, (3.14)
n* = 286(x)z + &1 (x)yz + n2(x) + 11 (2)y + M2 ()2
Substituting the general solutions of &, 1Y and 7* into the remaining unlisted

determining equations, one obtains the following:

381y + &z — &) + 21}y — 3a11&1y — 3a12612 — an &y — axbez =0, (3.15)

265y + Ty — aney — a1aéez = 0, (3.16)
28(z + 1y — an&iy — anéiz =0, (3.17)

3852+ &y — &+ 2nhy — a11&1y — a1212 — BagiEay — 3axész = 0, (3.18)
—ahy2y€a — ayyPEn — ahyyo — a192°6s — alyzyés — ahp2&o

—28pzarz — 2§yan + §'y? — §leyars — EyPan + &2y — 26527 a1

—2&2yan + §zyass + &yPax + 0y + 0y + 0z — zanme + zainn

—Zza12M22 + 22212 — Ya127)21 + Yao112 — a1y — a2n2 = 0, (3.19)
—ay 2y&a — Ay Y& — ayy€o — anpz*o — ah2y&s — anyzéy — 265zaz

—280yas + &' zy + &1 2%ars + L zyan — 281 zyass — 28 y%asn + £5'2°

—&y2%a — §h2yan + 0y + N5y + Nz + 2a1anen — zanma + yani

—Yao1M11 + Ya21M22 — YA2M21 — G217 — G272 = 0.
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Equations (3.16) and (3.17) can be split with respect to y and z. Hence, one

obtains the following:

51 = 52 =0, m2=c1, N2 = cy, (3-20)

where ¢; and ¢y are constant. Substituting equations (3.20) into equations (3.15)

and (3.18), one obtains the relations

1 1
mi = 55() +c3, N2 = 556 + ¢4, (3.21)

where ¢3 and ¢4 are constant. Substituting equations (3.20) and (3.21) into equa-
tions (3.19), collecting terms, renaming &y(x) as £(x), and keeping in mind that
F = a1y + a192 and G = as1y + agez, the remaining determining equations are of

the form

Fy(y(& + ko) + zhg +m) + Fo(2(E + ka) + yhs + o) +2F:€ = (3.22)

"y + i + F(ky — 3¢) + Gk,

Gy(y(&' + k1) + 2ka +m) + G.(2(§' + ka) + yks +n2) +2G.§ = (3.23)

"z +n5 + G(ky — 38') + Fks.

The admitted generator for this has the form
X =28(2)0, + (Y& + yky + zka +m1(x))0y + (2§ + zky + yks + ma2(x))0, (3.24)

where ki, (I = 1, ...,4) are constant, and &, n; and 7, are some functions of z. From
here, the determining equations (3.22) and (3.23) are analyzed through separating

them into 2 cases:
1. there exists a generator with £ # 0 in the admitted Lie algebra; and

2. £ = 0 for all generators of the admitted Lie algebra.
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3.2.1 Case £#0

Consider the generator (3.24) for which £ # 0 in the admitted Lie algebra.

Using the equivalence transformation

=9y + qb(l’), 21 =2z+ ¢(I)7
the generator X becomes

X =28(2)0, + (& — o+ 289" + yiky — k1 + 21ky — Yka + (7)) 0y,
F(218 — & + 260" + 21 kg — Vky + y1ks — ks + n2(x))0s, -

One can choose the functions ¢(z) and ¥ (z) such that

280 — €' — dky — ko + mi(z) =0,
26" — &' — kg — ks + ma(z) = 0.

The generator X is then reduced to
X =280, + (1€ + yiks + 21ka)0y, + (21E" + 21ks + y1k3)0s, .
Using the equivalence transformation
Ty = a(w), ya = 1 B(x), 22 = 218(x),
where
a8 =20 B (8 £ 0),
the generator X is reduced further to
X =20/80,, + ((268'/ B+ &' + k1)ya + 22k2) 0y, + (268" B + & + ka) 22 + yaks) O,
Choosing () such that 2£5'/8 + ¢ = 0, the generator X is reduced to
X =2a'€0,, + (krya + ko22)0y, + (kaza + k3y2)0s, -
Notice that in this case

d(’§)

dl‘g

=0,



33

ie.,
/ //5 5/ 5/
3 +7——2§E+2§E = 0.

dxs o

d(e'§) _ (o€)
; =
Thus, the generator X becomes
X = ]{38332 + (k1y2 + k222)8y2 + (/{3422 + kgyg)am,
where k = 2a/¢ # 0 is a constant. Rewriting, the generator X follows the form
X = 836 + (k’1y + k:gz)ﬁy + (kgy + kz;z)@z, (325)

for which the determining equations are

Gy<k1y -+ ]{?22) -+ Gz<k3y -+ ]{?4,2) -+ Gx = k?gF + k4G (327)
or simply
(Ay) - VF +F, = AF, (3.28)
ki ko 0y
where A = , V= , and “-7 denotes the dot product.
ks ky 0.,
Further simplifications are related to the simplification of the matrix A.
~ P11 P12
Using the equivalence transformation y = Py, where P = is a
P21 P22

nonsingular constant matrix, equations (3.4) become y = f‘(w, y), where
F(z,¥) = PF(z, P'y).

The partial derivatives with respect to the variables y are changed as follows

b-V = (Pb)- V.
With this, equations (3.28) are changed as follows
(AP71§)-V (P7'F) + P'F, — APT'F

— PY((PAP7'Y)-VF +F, — PAP'F)

— PY((Ay)-VF + F, — AF) = 0.
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This means that the change y = Py reduces equations (3.28) to the same form
with the matrix A changed. The generator (3.25) is also changed to the same form

with the matrix A changed:
X =9, + (Ay)V. (3.29)

Using this change, the matrix A can be represented in its Jordan form. For a

real-valued 2 x 2 matrix A, the real-valued Jordan matrix is of the following three

types:

a 0 a c a 1
Jl = Jg = J3 = 5 (330)

0 b —Cc a 0 a

where a, b, ¢ are real numbers and ¢ > 0. Also, ¢ can be reduced to 1 using a

dilation of z.

3.2.1.1 Case A=,
In this case, the determining equations (3.28) become

aairy + balgz i a’ny 1in CLIIQZ — aay — aapr = 0,
aagy + bagsez + abyy + abyz — bas1y — bagsz = 0.
Splitting these equations with respect to y and 2, the following conditions are

satisfied

ay; =0, aly = (a—"0b)a,
ah, =0, ahy = (b—a)ag.
These conditions give the form of F' and G as
F(z,y,2) = 1y + c2e*z,
G(z,y,2) = cge™ "y + ¢4z,
where @ = a — b, and s (i = 1,2,3,4) are constant. Note that if ¢ = ¢3 = 0,

then the system of equations is a linear system with constant coefficients, which is
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not in the scope of this research as this has already been studied (Wafo Soh, 2010;
Meleshko, 2011). This is also true if @ = 0. Hence, without loss of generality, one
can assume that acy # 0. Using a dilation of x and then z, one can assume that
a = cp = 1. Thus,
F(z,y,z) =y +e*z,
G(z,y,2) = cze "y + ¢42.

Since for ¢3 = 0 the system of equations are reduced to the case where G = 0,

then one can also assume that ¢z # 0. From (3.29) with A = J;, one obtains
X =0, +aydy + (a — 1)z0,.
Disregarding the trivial generator, the additional nontrivial generator
Oy — 20,

is found.

3.2.1.2 Case A= J,

In this case, the determining equations (3.28) become

(ay + c2)ay + (—cy + az)ays + ajyy + alpz — aar1y — aajaz — cagy — cagz = 0,
(ay + cz)as + (—cy + az)ass + aby + ahyz + cany + carnz — aasy — aazez = 0.
Splitting these equations with respect to y and z, the following conditions are

satisfied

a’n = C(au + a21), a’12 = C(a22 - Clu),

ahy = —c(arg + ag1), ahy, = c(age — an).

These give the following relations

Ay = —ayy + 2¢1, a1 = agp + 2¢o,

which lead to finding the solution of the following first order system of equations

aly = c(2a91 + 2¢9), dly = c(—2a11 + 2¢1).
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The general solution of these equations is
a1 = cosin(2ex) + ¢z cos(2¢cx) + ¢,
a1 = ¢y cos(2cx) — ez sin(2cz) — ea,
which give the general form of F' and G as
F(z,y,z) = (cosin(2cz) + c3 cos(2¢cx) + ¢1)y + (co cos(2¢cx) — e3sin(2cx) — o)z,
G(z,y,2) = (cocos(2cx) — cgsin(2cx) + c2)y + (—cosin(2cz) — c3 cos(2cx) + ¢1)z,
where ¢s(i = 0,1,2,3) are constant. Notice that if ¢35 # 0, then the change

y = Py with the matrix

b cos(20)  sin(20)
—sin(260) cos(20)
and the angle 0 satisfying the equation c37* — 4cq7® — 6¢372 4 4coT + 3 = 0, with
7 = tan(f), reduces the functions F' and G to the form
F(z,y, z) = (¢osin(2cx) 4 ¢1)y + (¢ cos(2cx) — ¢3)z,
G(z,y,2) = (cocos(2cx) + c2)y + (—cosin(2cx) + ¢1)z.
Hence, without loss of generality, one can choose ¢3 = 0. Note also that if ¢y = 0,
the system is reduced to a system of linear equations with constant coefficients,
which is omitted in this study. Hence, one has to consider that ¢y # 0. Without

loss of generality, one can also set that ¢y = 2¢ = 1. Thus, the system (3.2.1.2) is

reduced to

F(x,y,z) = (sin(x) + ¢1)y + (cos(x) — c2)z,

Gz, y,2) = (cos(x) + c2)y + (= sin(z) + e1)=.
From (3.29) with A = J,, the form of X is

20, + (2ay + 2)0, + (2az — y)0,.
Disregarding the trivial generator, the additional generator
20, + 20, — Y0,

is obtained in this case.
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3.2.1.3 Case A=J;
In this case, the determining equations (3.28) become

(ay + 2)a11 + aarz + a1y + a9z — aay — aaipz — a9y — agez = 0,
(ay + z)ag) + aagez + ahy + ahyz — aasy — aasez = 0.
Splitting these equations with respect to y and z, the following conditions are

satisfied

/ /

17 = A21, G19 = Q22 — 411,
/ _ / _

Qoo = —a21; as =0,

which give us the form of F' and G:
F(2,y,2) = (c3x + 1)y + (—c32” + (ca — c1)z + c2) 2,
G(z,y,2) = c3y + (—c3z + c4)2,
where ¢s (i = 1,2,3,4) are constant. Notice that for ¢3 = 0, one has G = ¢4z2.
Using an equivalence transformation, G = 0. This case is omitted in this study.

Hence, one has to assume that c¢3 # 0. Without loss of generality, set c3 = 1.

Hence,

F(LU, Y, Z) = (37 + Cl)y + <—$2 \ (C4 = Cl)ZU + CQ)Zv
G(r,y,2) =y + (—x + c4)z.
From (3.29) with A = J3, one obtains

X =0, + (ay + 2)0, + az0,.
Disregarding the trivial generator, the additional nontrivial generator
Oy + 20,

is obtained.
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3.2.2 Case (=0

Consider all generators (3.24) of the admitted Lie algebra for which & = 0.

For this case, the determining equations (3.22) and (3.23) are reduced to

Fy(lﬁy + kZZ + 7]1) + Fz(kg’y + k4Z + 7]2) = 771/ + le + k2G, (331)
Gy(ky + kez +m) + Go(ksy + kaz + m2) = 0y + ksF + kG (3.32)
or simply

(Ay + k) - VF = AF + /|

ki ko m(x) 9y .
where A = k= , V = . The admitted generator
k’3 k?4 772 (.I) 8Z

is rewritten as
X=Fy+kyz+m(@)) 0, + (ksy + ks z+ n2(z)) 0,.

Substituting the functions (3.6) into the determining equations (3.31) and (3.32)

and splitting with respect to y and z, one has

as1 ko — a12k3 =0,
(11 — ag2)ka + (ks — k1)aia =0, (3.33)

(k1 — ka)asy + (aga —aii)ks =0,

apn + aene = 771/7 a21M1 + Q272 = 7]5'. (3-34)

Equations (3.34) define the trivial set of generators. The nontrivial generators
X = (yk?l + Zk?g)ay + (ykg + Z]{?4)az (335)

are defined by the equations (3.33). Similar to the case where one admitted gen-
erator has £ # 0, equations (3.33) are simplified by using the Jordan form of the

matrix A.
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3.2.2.1 Case A=,
For this case, equations (3.33) become

(b—a)a;a =0, (a—"b)ay =0.
Since for b = a the generator (3.35) is also trivial, one has to assume that b # a.
The last condition gives
ao =0, as =0.
In this case, the linear system of equations (3.4) is reduced to the degenerate case

with G = 0. Hence, no additional nontrivial generators are found.

3.2.2.2 Case A=,
For this case, equations (3.33) become

ay — age =0, ajp+ay =0.

Here one has to assume that ajs # 0, else it is reduced to a degenerate form. Using

the equivalence transformation of the form

! /
where — = QE’ one can reduce a1 = 1. Also in this case one also has to assume

that a), # 0, else it is equivalent to a degenerate case. Hence,
F(z,y,2) = any + z,

G(Ia Y, Z) =Y + anz.
The form of X is

(ay + cz)0, + (az — cy)0,.
Excluding the trivial generator yd, + 20., the nontrivial generator

20y — Y0,

is found.
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3.2.2.3 Case A= ;3

For this case, equations (3.33) become

ayp — azp =0, ag =0.

In this case, the linear system of equations (3.4) is reduced to the degenerate case
with G = 0. Hence, no additional nontrivial generators are found.

All in all, four cases of linear systems of equations which are not equivalent
to the linear systems with constant coefficients and the degenerate case are found.

The complete representative classes is summarized in Table 6.1.



CHAPTER 1V
PRELIMINARY STUDY OF NONLINEAR

SYSTEMS

This chapter focuses on the preliminary study of systems of two nonlin-
ear second-order ordinary differential equations of the form (Moyo et al., 2013;

Meleshko and Moyo, 2015)

y' =F(z,y), (4.1)

where
N AN S
z G(z,y,2)
The classical group analysis is applied to the system of equations (4.1). For finding
group classes of the system of the form (4.1) in this chapter and the succeeding
chapters, the case of systems of two linear second-order ordinary differential equa-

tions in Chapter III and the degenerate case (1.3) are omitted. We call systems

that are equivalent to these cases as reducible systems, and irreducible otherwise.

4.1 Equivalence Transformations

Equivalence transformations of the studied system of equations are consid-
ered in this section. Consider the nonlinear system (4.1). The arbitrary elements
are the functions F(x,y,z) and G(x,y, z). The generator of the equivalence Lie

group is assumed to be of the form

X = E0y + 170y + 170, + (" Or + (%0,
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where the coefficients &, 0¥, n?, (¥ and (¢ depend on the variables z, y, z, F' and

G. The prolonged operator is

Xe =X+ 00y + 1070 + 0" 0y + 17 0
The coefficients of the prolonged generator are
0 =Dy’ —y'Dg& " = Dgn’ — y'Dgg,
W = Doy = 2'Dgg, n7 = Don” — 2" Dgg,
¢F = De¢F — F,De€ — F,Dén — F, Doy,
CFv = DZCF — F,Dy¢ — F,Din? — F.D;n?,
(" = Di¢* — F.D% — F, Dy — F.Do’,
(G = D3¢ — GuD5¢ — Gy Den — G.Dgrp,
(v = DZCG - G.Dy§ — G,Din? — G.Din?,
(6= = DC — G,DE — Gy Doy — G. Dy
Here, the operators D, 5;, 5; and 152 are
DS =0, +y'0,+ 20, +y"0y + 2"0s + (Fp +y'F, + 2'F.)0p
+HG, + Y Gy + G0+ (Fow +Y'Fy+ 2"F, + y'Fyy + 2'Fy, ) O,
+(F:cy + y,Fyy + Z/Fyz)aFy + (Fa:z + y/Fyz Cy Z/Fzz)an
H(Cow +Y'Gy + 2"G + Y Goy + 2'Grz) 0, + (Goy +Y'Gyy + 2'G )0,
+(Grz + y,Gyz + Z/Gzz>an7
5; = ax + anF + GxaGy
Dt = 9, + F,0r + G,0a,
D¢ = 0, + F.0p + G.0.

The determining equations of the equivalence Lie group become

T}y// . CF’y”:F — 0

nzu . CG|y”:F =0.
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After substitutions of n¥" and n*" and the transition onto the manifold y” = F,
the equation is split with respect to the variables y', F,, F,, F,, Fu, Fuy, Fys,
F..Fy, F.., Gy, Gy, G, Gua, Guy, Guzy Gy, Gy and G,

Initial analysis of the split determining equations yields that &, n¥, n* do

not depend on F' and G. As a result, the remaining determining equations are as

follows
gyz - 07 gyy - 07 gzz - 07 (42>
n,zz/z = 07 nyz B ng - 07 TIy - 2€w = 07
! W (4.3)
n;’y = O’ 7752 n g;ry u 07 77; - 251’2’ - 07
ngz_sz:(L 27’% _gxm_'ng_sz:O,
/ ! (4.4)
nazcy - fyG =0, 205, — oz — gyF —38.G =0,
My + 0y F + MG — 26, F — (7 =0,
! (4.5)
Moo + 05 F + 102G = 26,G — (9 = 0.
The general solution of equations (4.2) is
£ = &o(z) + &)y + &(2)2, (4.6)

where &, (z) (n = 0, 1,2) are arbitrary functions of its arguments. Substituting this

to remaining determining equations and solving equations (4.3), one finds that

=&y + Gyz + () + i (@)y + 0y (2)2, ()
n =Gz + &2+ i) + i@y + 03 ()2,
nY(z) and n%(x) (n = 0, 1,2) are arbitrary functions of its arguments. Substituting
(4.6) and (4.7) into equations (4.4), and keeping in mind that F' and G are arbi-

trary, one obtains that & = 0, & = 0, and 7§ and 7] are constant. In addition,

1 1
n! = 55% + 1}y and ni = 55090 + n3, where 0}, and 15, are constant. Substituting
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all these to equations (4.5), one finds that

1
¢ =5 (20" + &'y — 3G F + 2l F + 23G) (4.8)
1 2 z 4 .
(6 = 5 (25" + &'z = 361G + 203G + 207 F).

Finally from the above calculations”, the equivalence Lie group is defined by the
following generators:

X7 =y0, + Fop, X§ = 20, + GOp,

X§ =90, + Fog, X5 =20, + GOg,

X5 = d1(x)0y + ¢ (2)0p, X§ = ¢2(2)0. + ¢3(2) 0,
X7 = 28(2) 02+ (2)ydy +& (1) 20+ (6" (2)y — 3¢ (2) F')Op + (£ () 2 = 3 (2) G) O
Hence, the system (4.1) has the following equivalence transformations correspond-

ing to the above equivalence Lie group:

1. a linear change of the dependent variables y = Py with constant nonsingular

2 X 2 matrix P;
2. the change y =y + ¢(x) and Z = z + 9(x); and

3. the transformation related with the change T = ¢(x), y = y¢(z), z = z¢(x),

/! !/
where the functions ¢(z) and ¥(x) satisfy the condition % = 2%.
4.2 Determining equations
Admitted generators are sought in this form
0 0 0
The prolonged operator for this equation is
X=X 4170y +17 0.+ 0y + 17" 0.0 (4.10)

“Computations were implemented with the aid of the symbolic manipulation program RE-

DUCE (Free CSL version 07-Oct-10).
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with the coefficients
Y =Dy —y' Do, Y = Do’ —y" Dyt
W =Dy — 2Dy, 07" = Dy — 2" Dk,
where
D, =0, +y0,+ 20, +y"dy +2"0..

According to the Lie algorithm (Ovsiannikov, 1978), X is admitted by the
system (4.1) if it satisfies the associated determining equations, i.e., the generator

(4.9) is admitted by the equations (4.1) if and only if
(X(y" = F)][yr=r) = 0.

The previous equations become

[ny// y Fmg ] Fyny - FZT]Z] }y//:F - 07

[772” r ng u Gyny — Gznz] =0.

y//:F

After substituting the coefficients n¢", n*" and the differential equations y” = F,
and splitting with respect to the parametric derivatives " and 2/, the determining

equations are as follows:
Syz T 0: Syy 11 07 gzz = 07 (411>

ng = 07 7733’,2 - g:):z = Oa 7753, - 25903/ = Oa

(4.12)
ley = 07 7];2 - gmy - 07 n;z - 2€mz - 0,
’ ’ (4.13)
Ny — &G =0, 2%, — &uw — §F —36.G =0,
ng$+nyF+ngG_2€xF_Fx€_Fny—Fxnz:07
’ ’ (4.14)

Now T F + 102G = 26,G — Go§ — Gyn? — Gui® = 0.
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Solving equations (4.11) and (4.12), one obtains the general solution for £, n¥ and

z

n*
§=&(@) + &(2)y + &)z, (4.15)
N =&y + Sz + () + i (2)y + 05 (2)2, (4.16)
=Gz + 62+ i) + i)y + n3 o)z,
where &,(z), n¥(z) and nZi(x) (n = 0,1,2) are arbitrary functions of its argu-

ments. Differentiating the equations (4.13) with respect to y and z, one obtains

the following determining equations

3£1<Fy - Gz) + £2Gy - 07 gle - 07

51F2+3£2(Fy_Gz):07 €2Fz:0

From these equations, one can conclude that £ + &2 # 0 only for the case where

F,—G.=0, G,=0, F.=0. (4.17)

Solving the conditions (4.17), one obtains the general solution

F(z,y,2) = a(z)y +b(x), G(x,y,z) =a(x)z+ c(z).

Using a particular solution and equivalence transformations, equations (4.1) are
reduced to the trivial case of the free particle equation, which is omitted in this
study. Hence, we consider the case only when the conditions (4.17) are not satis-
fied, implying that

§1=0, &=0.
Substituting all the conditions into equations (4.14), it follows that the determining

equations in matrix form for irreducible systems of the form (4.1) are given by

2F, +3F + (A+¢E)y+¢) - V)F — AF = "y + (", (4.18)
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where the matrix A = (a;;) is constant and ((x) = ((1,¢2)" is a vector. The

associated infinitesimal generator has the form (Moyo et al., 2013)

X =20(x)0; + (A+ E)y +¢(2)) - V.

Similar to the case of linear systems, when the equivalence transformation
(1) with linear change y = Py is applied to equations (4.1), equations (4.18) and
its associated infinitesimal generator are reduced to the same form with the matrix
A and the vector ¢ changed.

The systems of two nonlinear second-order ordinary differential equations
are equivalent to one of the following ten (10) types listed below in Table 4.1 (See
also (Moyo et al., 2013)). Looking closely at these systems, there is a necessity to
conduct an initial study where the systems of two equations do not depend on .

This is the focus of the next chapter.
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CHAPTER V

APPLICATION OF GROUP ANALYSIS TO

AUTONOMOUS NONLINEAR SYSTEMS

WITHOUT FIRST DERIVATIVES

This chapter focuses on systems of two nonlinear second-order ordinary

differential equations (4.1) where F' and G' do not depend on z, i.e., of the form

y' =F(y), (5.1)

where

Fy, z
A Yy | b (y,2)
2 G(y. 2)

The classical group analysis method is applied to the system of equations

(5.1).

5.1 Equivalence Transformations

The process of finding the equivalence Lie group of the nonlinear system
(5.1) is similar to finding the equivalence Lie group of the nonlinear system (4.1)
with the difference that the arbitrary elements for system (5.1) are the functions

F(y, z) and G(y, z). In addition, the conditions

are included for analysis.
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Calculations” show that the equivalence Lie group is defined by the following

generators:
X7 =y0, + Fop, X§ = 20, + GOp,
X5 =90, + Fog, X§ =20, + GOg,
XE=0,+ 0., X§ =0, — 0.,

X$ =120, —2(FOp + GOg), X§ = 0,.
Hence, the system (5.1) has similar equivalence transformations as the sys-

tem (4.1):

1. a linear change of the dependent variables y = Py with constant nonsingular

2 X 2 matrix P;
2. the change y = y + ¢(z) and zZ = z + ¥ (z); and

3. the transformation related with the change = = ¢(x), y = yi(z), z = 29 (z),

/" !/
where the functions ¢(x) and 1 (x) satisfy the condition % = 2%.

5.2 Determining Equations

Since for autonomous systems, F, = 0, then the determining equations

(4.18) of irreducible systems have the form
EF+(A+EE)yYy+()-V)F-AF - "y = (" =0 (5.2)
and with an admitted generator of the form

X =26(x)0, + (A+€E)y + ((z)) - V. (5.3)

This also implies that the generator 0, is admitted by system (5.1).

“Computations were implemented with the aid of the symbolic manipulation program RE-

DUCE (Free CSL version 07-Oct-10).
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Differentiating the determining equations (5.2) with respect to x, equations
(5.2) become

3E'F + ((€"y +¢) - V)F =Wy — (" =0. (5.4)
From here, the group classification study is reduced into two cases, namely,
1. the case with at least one admitted generator with £” # 0; and

2. the case where all admitted generators have £” = 0.

The group classification of the two (2) cases are explained in detail in the succeed-

ing sections.

5.2.1 Case " #0

For the case of systems admitting at least one generator with & # 0,
consider the differentiated determining equations (5.4) with respect to x and divide

them by &”. The determining equations become

/ (4) "
3F+(<y+%>-v)F—%y_%:o. (5.5)

Fixing z, and shifting y and z, equations (5.5) are reduced to
BF+(y-V)F—ay—b=0

where vector b = (b, ¢)!, and a, b, ¢ are constant.

The general solution of these equations is

b ay _3
F=c+—+y f(uw)

34 . (5.6)
G = g‘f’z‘f'z g9(u),

where u = = and f'g # 0. It is easy to see that if f'¢g’ = 0, system (5.1) is
Yy

equivalent to the linear case, which was already studied in Chapter III, and hence,
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is excluded for this chapter. The functions F' and G in (5.6) are then substituted
into the determining equations (5.2). The determining equations are then solved
directly in order to find generators admitted by equations (5.1). The first part of

the determining equations is given as follows:

5/// - ag/ =0, (57)
(Gu — Q) f + 3¢ f =0,
1 2 1 (5.8)
(w?C — ula)g’ + 3¢9 =0,

12C{/ — 1265, | 3@41 + 4@11[) + 4@12C = O,
(5.9)

12C§/ — 1205/ - ?)CLCQ + 4@21b + 4@220 = 0,
(a11u4 + ajpu’® — agu® — a22u4)f’ + (dapu® + 3a12u4)f + apg =0, (5.10)

(CL11U2 =+ a12u3 — a1U — a22u2)g’ —+ a21u4f N (3@21 + 4a22u)g = O,

where a;;’s are constant.

5.2.1.1 General solution of ¢

From equation (5.7), it can be seen that the general solution of ¢ depends

on three values of a, i.e., a = 0, a = —p* and a = p?, where p # 0.

5.2.1.1.1 Case a = 0. For this case, the general solution of £ is
£ =&’ + G+ &,
where & # 0, &1, & are constant.
5.2.1.1.2 Case a = —p? For this case, the general solution of ¢ is

§ = & cos(pr) + & sin(px) + &o,

where & # 0, & # 0, & are constant.
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5.2.1.1.3 Case a = p*> Lastly, the general solution of £ for this case is
§=8&e "+ &e’ + &,

where & # 0, & # 0, & are constant.

5.2.1.2 General solution of ( and representations of f and ¢

Subsequently the determining equations (5.8) lead to the study of two cases,

i.e., (1) there exists a generator with ¢; # 0 and (2) all generators have (; = 0.

5.2.1.2.1 Case (; # 0. Suppose that there exists a generator with (; # 0.
Dividing by ¢; and differentiating with respect to x the equations (5.8), one obtains
(o = k(1, where k is a constant. Substituting (, back into equations (5.8), one
obtains f = fo(u — k)% and g = gou®(u — k)~3. Also, differentiating equations
(5.9) with respect to x and taking its linear combination, it follows that ¢ = kb.

At this point, equations (5.6) have the following form

b
Feet —a4y + folz — yk) 7,
kb az M
G = T1 + go(z — yk) 3.

Utilizing equivalence transformations, one can verify that this is a reducible case,

and is, therefore, excluded.

5.2.1.2.2 Case (; = 0. Consider that all generators have (; = 0. From equa-
tions (5.8), it follows that ¢, = 0. Differentiating equations (5.9) with respect to
x, it immediately follows that b = ¢ = 0. Observe in equations (5.10) that if the
functions f and g are arbitrary, then we obtain the conditions that all of the a;;’s
are equal to zero. Hence, we obtain the following table of classification (see Table

5.1) .
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Table 5.1 Group classification of nonlinear systems of the form y” = Fy admit-
ting at least one generator with £&” # 0. Here, f and g are arbitrary

functions of u = z and f'g # 0.

F G Extension of Kernel
y > fu) 2 g(u) Vs, Y3
2 2
— _ — Z _
ey =+ ¥z, Yi
P’y Pz
e +y7° f(u) e +27g(u) Yy, Yio

In order to obtain additional extensions of the generator, one must find
the general solutions of f and g. Hence, from equations (5.10), the equivalence
transformation y = Py, where P is a constant nonsingular 2 x 2 matrix, is utilized.
Similar to the linear case, the constant matrix A is reduced to one of the real-valued
Jordan forms (3.30). The general solutions for f and ¢ (excluding reducible cases)

are listed as follows:

Jordan form i g
I fou 3T fruma
J2 (90y — 12)7(y.2) (902 + 919)7(y, 2)
Js eu(fou ™t +hu?) foeu

where 7(y, z) = e ™ (12 4 22)"2 and fof1 0, G2 +¢2 £ 0,7 £ 0,1 #£0,1,

k # 0, and h; are constant.

5.2.1.3 Extension of the kernel of the admitted Lie algebras

Combining the solutions of functions f and ¢, £ and (, and excluding

reducible systems, the table of classification for nonlinear systems of the form

7

y”" = F(y) which admit at least one generator with £” # 0 is listed on Table 5.2.
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The kernel of the admitted Lie algebras consists of the generator X; = 0,,

which is omitted on the list. The extension of the kernel is listed as follows:

Yy = 220, + y0, + 20, Y7 = 2cos (px)0, — psin (px)(ydy + 20,),
Ys = 2(20, + y0, + 20,), Ys = 2sin (px)0, + pcos (px)(y0, + 20,),
Y, = yy0, + 20,, Yy = e 77(20, — p(yo, + 20,)),

Ys = (ay + 2)0, + (az — y)0,, Yio = €P*(20, + p(y0, + 20,)),

Ys = (ky + 42)0, + K20,.
The Lie algebras Y5, Y3, Y7, Yg, Yy, and Yo are associated with the coefficient &
and the Lie algebras Yy, Y5, and Yg are related to the type of Jordan form of matrix
A. Also, using different equivalence transformations, p is reduced to 2 and k is

reduced to 1.

5.2.2 Case ¢" =0

For the case of systems where all admitted generators have £’ = 0, return
first to the analysis of the determining equations (5.2). Since £” = 0, it follows
that £ = & + &, where & and & are constant. This property of the coefficient

forces ¢ to become constant.

5.2.2.1 Claim: ( is constant

Proof. Substituting £” = 0 into determining equations (5.2), these equations re-

duce to the form

' =F,0+ F.(c+ ¢,
Lo 2 (5.11)

é/ = Gy(l + GzCQ + qo,

where ¢; and ¢y are functions of y and 2. Differentiating these equations with

respect to x, one obtains

= FQ+ FG,

I = Gyl + GG
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Differentiating the latter equations with respect to y and z, one obtains the con-

ditions
Fyyq + FyzCé = 07

Fyzg + Fzzgé =0,

nyg =+ Gyzg =0,
Gy.C1 + G..¢ = 0.

From here, one can study two cases: (1) F,, # 0 and (2) F., = 0.

5.2.2.1.1 Case F,, # 0. For this case, one has

E,. F? F,. F,.
Cé = _F_yC{7 Fyy - F_y = 07 ny - GyzF_y - O, Gyz - Gzsz = 0.

Thus,
I
Tv: g
FZZ ’

and

F <kF, =0, Gy~ kGy=0, Gyr— kG, =0
or

(F, — kF.),=0, (F,—kF,),=0, (G, —kG.),=0, (G, —kG,),=0.
One obtains the general solution for F and G. If
F,—kF, =k, Gy — kG, = ko,

then
F = (= + ky) + hy,

G =V(z+ ky) + kay.

Using the change of variables
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system (5.1) becomes
y' = ®(Z) + ky, 7' = (k®(2) 4+ V(2)) + (kk1 + k2)y.
Thus, one has
v =ky+ f(2), 2" = koy + g(2), where ko f” # 0.

Substituting the general solution of ' and G into equations (5.11), one has

1=kG+ fG+aq,
(5.12)

5 = kaCi + 9'Co + a2,
Differentiating the first equation of (5.12) by x and then z, one obtains
16 = 0.

Since f” # 0, then ¢, = 0. Differentiating the second equation of (5.12) by z, one
has

Hence, for this case ( is constant.

5.2.2.1.2 Case I, =0. Let F.. =0, then by symmetry G,, = 0. Hence, one

has the conditions
Full+ Fp.Co =0, F.(l =0, G5 =0, Gy(i +G..¢3 =0.
If F,. # 0, then from the first equation, one obtains (; =0, (5 = 0. Hence,
F,.=0, F,,=0, Gy, =0, G, =0

and

F,(1 =0, G..¢;,=0.
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Thus, the general solution of this is
y'=kiz+ fy), 2=k +g(z),  where kiky(f" + g") # 0.
Substituting this into (5.12), one has

V= fC4 kG + q,
(5.13)

5 = kaCi +9'G + go
Differentiating the first equation of (5.13) with respect to x and y, and because
f" # 0, one has (| = 0. Similarly, differentiating the second equation of (5.13)
with respect to x and z, and because ¢” # 0, then () = 0.

Hence, for both cases F.,, # 0 and F,, = 0, one obtains that ( is a constant.

O
The determining equations (5.2) are then reduced to
3GF 4+ (((A+ &E)y +k) - V)F — AF =0 (5.14)
with the following admitted generator
X =2 +&x)0, + (Ay +k) -V (5.15)

where &, &1, the matrix A and the vector k are constant. By rewriting (5.15), the

generator can be represented as

X =¢X; (1=1,...,8) (5.16)
where ¢;’s are constant. Corresponding to the constants ¢;’s, the basis operators
of the Lie algebra are as follows:

X1 :893 X2 :Iaz X3 :ay X4=(9z
(5.17)
X5 = yay X6 = z@z X7 = Zay Xg = y@z
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From here, the one-dimensional optimal system of one parameter subgroups of
the main group of system (5.1) with &” = 0 is constructed. Note that the action
of equivalence transformations coincides with the action of group automorphisms.
For the direct approach, sometimes it is difficult to select out equivalent cases
with respect to equivalence transformations. Fortunately, if the algebraic struc-
ture of the admitted Lie algebra is known, then using the algebraic approach aids
in simplifying the group classification problem. Thus, for finding the group classi-
fication of systems of two nonlinear second-order ordinary differential equations of
the form (5.1) with all admitted generators satisfying £” = 0, the one-dimensional
optimal system of one parameter subgroups is utilized and is then proceeded by

the direct approach. The commutators of the basis operators are

(X1, Xo] = Xy, (X5, X7] = — X7,

(X3, X5] = X, (X5, Xs] = Xg,

(X3, Xs] = Xy, (X6, X7] = Xy, (5.18)
(X4, X6] = Xy, [Xe, Xs] = —Xg,

(X4, X7 = X, (X7, Xs] = X¢— Xs.

The following inner automorphisms A; (i = 1,...,8) of the above Lie algebra are
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found without difficulties:

A6 =0 — a1Ca,
A2 . 61 = 6a201,
As i C3 = c3 —ascs, C4 = Cq— a3cs,
Ay C3=c3—ascr, C4 = Cy4— Q4Cs,
A5 103 =e%c3, Cr=e%er g = e %y,
(5.19)
Ag: ¢y =€%cy, Cr=e % (g = e%cg,
A7 13 = c3+agcy, C5 = C5 + azcs, Cg = Cg — A7Cs,

A 2
C7 = C7 — Q%Cg + A7Cg — Q7Cs,

1 C4 = ¢4+ agC3, C5 = C5 — AgC7, Cg = Cg + AgCr,

ég = Cg — 0%07 — agCg + AgCs.

Note that a; (i = 1, ...,8) are the parameters on which the transformations of the

group depend on. Apart from these automorphisms, the following involutions hold:

Eli
Ezi
Egi

E4:

—Z| 7
—y| e
—z| &
z, 2=y

= —C4, Cy = —C7, C§ = —Cs;
= —Cs, Cr = —Cr, Cg = —Cg;
= —C1;

C3 = C4, C4 = C3, C5 = Cg, C5 = C5, C7 = Cg, Cg = C7.

We study the way in which the coefficients of equation (5.16) are changed under

the action of inner automorphisms of the group above. Here and further on, only

changeable coordinates of the generator are presented. Looking closely at the com-

mutators, the Lie algebra Lg, which is composed of the generators X; (i = 1,...,8),

can be split into 2 subalgebras Lo® Lg = { X1, Xo}&{ X3, X4, X5, X6, X7, Xs}. Note

also that Lg can be decomposed further to Ly ® Iy = { X5, X, X7, Xs} ®{ X3, X4},

where L, makes up a 4-dimensional subalgebra and I is ideal.
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5.2.2.2 One-dimensional optimal system of subalgebras of the Lie al-

gebra L, = { X5, X¢, X7, Xs}

Consider the 4-dimensional subalgebra L, = {Xj5, X, X7, Xg}. Cross-
referencing the results found here with the study of Patera and Winternitz (1977),
there is a need to show the classification of this 4-dimensional Lie algebra due to
some misprint in their paper.

Suppose that the operator X of a one parameter subgroup has the form

X = C5X5 + CGXﬁ + C7X7 + Cng 5 c5y8y + cﬁzﬁz + c7z8y + ngaz (520)

Cs Cr
X = y| - V.
Cg Cg
For this, automorphisms As up to Ag are utilized in order to find the one-
dimensional optimal system of subalgebras of this Lie algebra. From the auto-

morphisms As and Ag, one can find the invariant ¢z¢g = c7cg, which leads one to

consider the following cases:

(@) ereg >0

() cres <0

(¢) ercs = 0.
Utilizing the invariant of A7 and As, which is (¢ — é)° +4¢nés = (¢5 — ¢6)* +4crcs,
one can obtain relations between cs, cg, ¢; and cg. It can be verified that the

coefficients of equation (5.20) satisfy only the following cases:
(@) s —cs #0, ez =0, ¢c5=0;
() es—c6=0, =1, ¢g=0;
(¢)es—cg=0, c7=-1, cg=1.

The involutions are also utilized. Hence, the following one-dimensional optimal
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system of subalgebras of the Lie algebra L, is obtained:

1. X5+ aXg where —1<a<1
2. X5+ Xg) + Xs — X7 where a >0
(5.21)

3. B(Xs5+ Xg) + Xy where §=0,1

4. 0.
Note that the 0 element is considered on this list (Ovsiannikov, 1993). There is
a necessity to include this element on the list as when the direct sum Ly & I is
applied, more subalgebras of the Lie algebra Lg may appear on the list.
Remark 1: The one-dimensional optimal system of subalgebras (5.21) closely
resembles Patera and Winternitz’s (1977) dimension 1 of Algebra Asg @ A;.
Remark 2: As the action of the above automorphisms coincides with the action
of the equivalence transformations, it is possible to get the optimal system of
one-dimensional subalgebras of the Lie algebra L, using the latter. From the
determining equations (5.14) admitting the generator (5.20) and the utilization of
the equivalence transformation y = Py, where P is a nonsingular 2 X 2 matrix

with constant entries, the matrix of coefficients of (5.20)

cs Cr
cs Cg

is reduced to one of its real-valued Jordan forms (3.30). Looking closely at (5.21),

subalgebra 1. coincides with Jordan matrix .J;, subalgebra 2. coincides with Jordan

matrix Jy, and subalgebra 3. coincides with Jordan matrix J3.

5.2.2.3 One-dimensional subalgebras of the Lie algebra Lgs =

{X37 X4) X57 X67 X77 XS}

After obtaining the one-dimensional optimal system (5.21) of subalgebras

of the Lie algebra L, = { X5, Xg, X7, Xg}, the next step is to combine L, with the
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ideal I, = {X3, X4}. Here, again Ovsiannikov’s two-step method (Ovsiannikov,
1993) is applied. Hence, for the study of the one-dimensional subalgebras of the

Lie algebra Lg, the study is reduced to analyzing the following elements:

1. 3 X3+ cuXs+ Xs+aXg where —1<a<1
2. Cng + C4X4 + Oé(X5 + XG) + Xg — X7 where « > 0 (5 22)
3. 03X3+C4X4+5(X5+X6) +X7 where B = 0,1

4. Cng + C4X4.

Using automorphisms As, Ay and the involutions, the list of one-
dimensional subalgebras of the Lie algebra Lg = { X3, X4, X5, Xg, X7, Xg} is ob-

tained as follows:

1. X5+ aXg where —1<a<1

2. X4+ X5

3. Xz — X5

4. BX3+ a(X5+ Xg) + Xg — X; where §=-1,0,1, >0 (5.23)
5. BX4+ X7 where §=0,1

6. X5+ Xg+ X5

7. X;

8. 0.

Again, it is necessary to study the element 0 of the subalgebras of the Lie algebra

Lg as this may generate additional elements when Lg is combined with Ls.

5.2.2.4 One-dimensional subalgebras of the Lie algebra Lg =

{X1, Xo, X3, X4, X5, X6, X7, Xs}

Combining Lg with Ly and keeping in mind that for autonomous systems

X is already admitted, the following elements comprise the list of one-dimensional
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subalgebras of the Lie algebra Lg:

1. v Xo+ X5+ aXg where —1<a<1

2. v Xo+ X4+ X5

3. v X+ Xg— X7

4. vXo+ X3+ (X5 + X6) + Xs — X7 where f=—-1,0,1, « >0 (5.24)
5. v Xo+ Xy + X7 where 5 =0,1

6. vXo+ X5+ Xg+ X7

7. v X+ X5

8. Xs.
Using this list of subalgebras, the solutions of F' and G are sought after. These

functions are substituted into the determining equations (5.2), which are solved

completely in order to find all other generators admitting equations (5.1).

5.2.2.5 Representations of systems of two nonlinear second-order or-

dinary differential equations with all generators having ¢’ =0

From (5.16), ¢; (i = 1,...,8) are the coefficients of the generator chosen
from the above list of subalgebras (5.24). Only one subalgebra is presented in
this Chapter as computations for the other subalgebras are done in a similar
way. See Appendix A for obtaining representations of systems admitting the other

remaining subalgebras.

5.2.2.5.1 Subalgebra 1. with the generator vX; + X5 + aXs where —1 <

a < 1. For this case, the determining equations (5.14) become

yF, +azF, — (27— 1)F =0,

yGy, + azG, — (2y — )G = 0.
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The general solution of these equations is

F(y,z) = f(uw)y'™® and G(y,2) = g(u)y*=?, (5.25)

where u = y*/z and gf" # 0. If gf’ = 0, then system (5.1) is equivalent to a
reducible case. Substituting these functions to the determining equations (5.2),

the following initial determining equations are obtained

y**ap(auf' + (1= 27) f — ug)

+y*Tu((aan + (a = 1)& — an)uf’ —2(van + (v = 2)6)f)

Ty Gulauf’ + (1 =27)f) = y*anw’ f' — yGuP f =0,

y**arz(aug’ + (o — 27)g)

+y*Tu((aan + (@ = 1)& — an)ug’ = (@ — 27)arr + (@ — 2y + 3)& — az)g)

+y*uli (aug’ + (o — 27)g) — y*anu(v®y + f) — yGuly' = 0.
(5.26)

Determining equations (5.26) can be split with respect to y, where the
powers of y depend on the values of a. Thus, upon further analysis, the study is
continued based on the following cases: (1) a =0, (2) a =1, (3) @ =1 and (4)

a#0, 1, 1.

1. Case a =0

After splitting equations (5.26) with respect to y, it can be verified that

as; = 0 and one is left with the following determining equations

(1 =29)(Cru + a12)) f — argug = 0, (5.27a)
2(yan + (v = 2)&) f + (a2 + & + Gu)uf’ =0, (5.27b)
Y(a12 + Giu)g = 0, (5.27¢c)

(2’7&11 + (2’)/ — 3)&1 + azg)g + (a22 + 51 + Cgu)ug' = 0. (527d)
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From equation (5.27c¢), v # 0. Notice that if v = 0, G becomes a function
solely of z and hence, this case is reducible. Thus, it follows that a;s = 0
and (; = 0. These conditions also satisfy equation (5.27a). Dividing equation
(5.27b) by f" and u, and differentiating it with respect to u 2 times, one can

f " f "
study the following cases: a. | — | #0andb. [ — | =0.
uf’! uf'!

1l.a Case (uif’>” #0

9 _
For this case, it follows that a;; = 51( )

. Consequently, ¢, = 0
and agy = —&;. These conditions also satisfy equation (5.27d). These
conditions give no other extensions of the generator apart from the

studied subalgebra.

1.b Case (J}/) =0

For this case, it follows that % = ku + (. Furthermore, the general
u

solution of this depends on 3, i.e., whether i. § # 0 or ii. § = 0.

1.b.i Case §#0

For this case, the general solution for f (with a possible shift) is

B

1

fo <—) , fo # 0. Substituting this into the determining equations
u

(27 = 8= 4&+ 2yan
B

B+1
sequently, the general solution for g is go (—) , go # 0. From
u

(5.27b), ‘one gets agy = and (5 = 0. Con-

here, the extension
BXs5 + 27X
is obtained along with the studied subalgebra.
1.b.ii Case =0

For this case, it follows that x # 0. Hence, the general solution

for fis foe®™, fo # 0. Substituting this into equation (5.27b), one
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2(yay + (v — 2)&1)

obtains (, = and ass = —&;. Consequently, the

general solution for ¢ is goe™/*, go # 0. The extension
2’7X4 -+ KJX5

is obtained aside from the studied subalgebra.

1
2

. Case a =
After splitting equations (5.26) with respect to y, it follows that ay; = 0.
Also, since (1 —4v)g + ug’ = 0 leads to a reducible case it then follows that

(1 = 0. The remaining determining equations are

2a15(1 — 279) f — 2a12ug + (ayy — 2Gu)uf =0, (5.28a)
4((2 = v)6 — yan) f + (a1 = 2a — &)uf’ =0, (5.28b)
(1 — 47)ayeg + (a1 — 2Gu*)ug’ = 0, (5.28c¢)

((1 — 4’}/)6111 -+ (7 = 4’}/)51 N 2&22)g -+ (an e 2@22 — fl)ug’ =0. (528d)

Dividing equation (5.28d) by ¢ (as it is nonzero) and differentiating it with

AN
respect to u, one is left to study the following cases: a. (_g) # 0 and b.
g

AN
(_g) = 0.
g
ug"\’
2.a Case (—) #0
g
For this case, it follows that a;; = 2a90 + &;. If v = 0 then & = 0, but
1 —
if v # 0 then ag = & (—7) . These conditions also satisfy equation
Y

(5.28b). From equation (5.28¢c), the following cases are studied: i. there

exists a generator with a5 # 0, and ii. all generators have a5 = 0.

2.a.i Case a;3 #0
If there exists a generator with a;s # 0, then ¢ satisfies the form

(1—4v)g+ (1 —Bu*)ug’ = 0. Notice that 3 = 0 leads to a reducible
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case. Hence, 8 # 0. Without loss of generality, one can assume

1 v
that § = 1. Then the general solution of g is gq <1 — —2> , where
u

~ 1-4 ~
go # 0 and 7 = 5 7 # 0 (if ¥ = 0, the case is reducible).
Substituting this into equation (5.28¢c), we obtain that ¢, = %.
L\ T+
From equation (5.28a), it follows that f = ¢(u) (1 - —2> :
u

1

where ¢ = fy — 2go (m

) . Here, the extension
Xy +2X5

is obtained besides the studied subalgebra.
2.a.ii Case a2 =0

i. For the case where all generators have a5, = 0, it follows that (, =
0. All remaining equations are satisfied, and no other extensions

are obtained.

/ /
2.b Case (%) =0
g

For this case, the general solution is ¢ = gou”, where gy # 0. Substi-
tuting this into equation (5.28c), further analysis leads one to obtain
that a;5 = 0 and ¢, = 0. These conditions also satisfy (5.28a). From
equation (5.28b), the form of f satisfies (k+1)f —uf’ = 0. The general
solution is f = fou""!, where fy # 0, K # —1. Moreover, this leads to

ase = (kK — 4y + 1)(a1; — &) + 8. Here, the extension
(FL + I)XQ + 2X6

is obtained apart from the studied subalgebra.

3. Case a=1

The determining equations after splitting equations (5.26) with respect to y
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are as follows

(L=29)Gf + (G — Guuf =0, (5.29a)

(1 —=2v)a12 + ((4 — 2y)§1u — 2yanu)) f — apug (5.20b)
+((a11 — ag2)u + a2 — agu?)uf’ =0,

(1 =27)¢1g + (G — Gu)ug’ = 0, (5.29¢)

—anuf 4+ g((1 = 2y)anu+ (1 = 2y)az + (4 — 27)§1u — axu) (5.20d)

+glu((a11 - CLQQ)U + a12 - a21u2) = O

From equations (5.29a) and (5.29¢), one can study the following 2 cases: a.

f9 —gf =0,and b. f¢g' —gf" #0.

3.a Case f¢g —gf' =0
For this case, we obtain the relation g = gy f where gy is a constant. Us-
ing equivalence transformations, one can show that the second equation
can be reduced to zero, i.e., G = 0, which is equivalent to a reducible

case.

3.b Case fg'—gf #0

It follows from equations (5.29a) and (5.29¢) that ¢; = (» = 0. From
here, one can assume that g = ¢(u)f (as f is nonzero), where ¢’ #
0. If it is assumed further that ¢ = ¢ (u) + 1/u, then the remaining

determining equations (5.29b) and (5.29d) are reduced as follows:

(2(=yanu+ (2 = y)6u) — (v + Yu)a) f

+((a11 — ag)u + ajg — anu®)uf’ =0,

(5.30a)

((au—a22)u—i—alz—a21u2)1//+a121/12+(a11—|—2a12u’1—a22)¢ = 0. (530b)
These equations lead one to study the following two cases:

i. there exists at least one generator with a5 # 0, and



ii. where all generators have a5 = 0.

3.b.i Case a5 #0
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For the case where there exists at least one generator with a;s # 0,

it follows that ¥(u) =

_/w2 +Au+p
u(B — ou)

JWhereﬂ%Oa ?/107&0;)\7“

are constant. Without loss of generality, it is assumed further that

£ = 1. Consequently, we obtain a;; = Aais + g9 and asy = —Kaqs.

Substituting this into determining equations (5.30a), the solution

for f appears, which depends on the following three cases: A. 4k —

A2 >0,B. 4k — X\ <0, and C. 45 — \? = 0.

3.b.i.A

3.b.i.B

3.b.i.C

Case 4k — \? >0

For this case, it is assumed that 4k — A2 = p?, p # 0. The

solution for f is

p

(1 — tpou)u>" e( P

Jo (ku? + Au + 1)7

where 4 is constant.

Case 4k — N2 < 0

(2Xy — 4p) <)\ + 2Ku
———~arctan

)

For this case, it is assumed that 4x — A2 = —p?, p # 0. The

solution for f is

(1 — You)u® =t (2ku+ X —p S
(ku? + M+ 1)" \26u+ A +p

fo

where p is constant.
Case 4k — \? =0

For this case, it follows that

T _4(7+/w)>
B — You)u " \u 4+ 2
f_fo(mﬂ%—)\u—i-l)ve

where p is constant.
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All three cases yield the same results for ags, & and the extension
(2 = 7)& — pars
Y

of the generator. If v # 0, then ay = If~v=0,

Hai

then & = . The extension

ILLXQ + )\X5 + X7 — HXg

is obtained apart from the studied subalgebra.

Case a1 =0
For the case where all generators have a;5 = 0, the determining

equations (5.30) are reduced to
2(—vyayu+ (2 = y)au) f + ((a11 — axn)u — agu®)uf =0, (5.31a)

((a11 2 CLQQ)’LL — a21u2)¢' -+ (a11 — agg)@b = 0. (531b)

Dividing equation (5.31a) by uf’ and differentiating this equation

with respect to u twice, this leads to the study of the following

sub-cases: A. (uif’) =# 0, and B. (uif’> =0.

f 14
3.b.ii.A Case <—> #0

uf’
f " ' ] 2 — ¥
If 7 2 0, then it follows that if 4 # 0 then a1; = & ,
U Y
9 _
A9y = 51 1 and 91 = 0. If v = 0 then 51 — 07 Q22 = A11 and

as1 = 0. For both cases, no extensions are obtained apart from

the studied subalgebra.

f "
3.b.ii.B Case (7) =0
"

If (i) = 0, then the general solution for f is fj ( 4 ) ,

flu 1+u
where k£ # 0 (else it is reducible) and fy # 0. Substi-

tuting this into equation (5.31a), one obtains that as =

5 (—’7@11 +/§2 — ’Y)fl) and a9y = (K — 27)a11: (4— 2’7)§1'
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Substituting this into equation (5.31b), one finds that 1 sat-

isfies ¢'(u® + u) + ¢ = 0. The general solution of this is

1
P = go (u + ) The extension
U

HXQ + 2(X6 —+ Xg)
is obtained aside from the studied subalgebra.

4. Case a £ 0, 1,1

) 2

For the case where a # 0, %, 1, the determining equations (5.26) are split
with respect to y. Since f’ # 0, it follows that (; = 0 and as; = 0. Notice
also that since aug’ + (o — 27v)g = 0 leads to a reducible case, then ¢(; = 0
and ajp = 0. Substituting these conditions, the determining equations (5.26)

become
(aay + (@ — 1)& — ag)uf' + (=2va; + (4 — 27)&) f =0, (5.32a)

(aar;+(a—1)& —ag)ug’ + ((a—27y)a1; + (@ —2y+3)&; —ag)g = 0. (5.32b)
Dividing equation (5.32a) by f (as it is nonzero) and differentiating with

’ /
respect to w, the following cases are studied: a. <%) # 0 and b.

uf"\
(F) -
4.a Case (qu/>/ # 0

For this case, it follows from equation (5.32a) that ass = a1+ (a—1)&;.

2—7

Consequently, if v # 0 then a;; = &1, and if ¥ = 0 then & = 0.
These conditions also satisfy equation (5.32b). No other extensions of

the generator is found other than the studied subalgebra.
N !
4.b Case (%) =0



76

For this case, the general solution for f is fou”, where fox # 0. Substi-

tuting this function into the determining equations (5.32a), it follows
(ka — 2y)ay; + (ka — k — 2y +4)&
K

that ag = . From (5.32b), exten-
sions of the generator can only be found if g satisfies the condition
g'u — g(k — 1) = 0, where the general solution for g is gou"~!, go # 0.
Another extension of the generator apart from the studied subalgebra
is

K/XQ —|— 2X6

The complete representative classes for the autonomous system with all

admitted generators having &’ = 0 is listed in Tables 6.3 and 6.4.



CHAPTER VI

CONCLUSIONS

In this thesis, the complete group classification of systems of two linear
second-ordinary differential equations and the group classification of systems of
two nonlinear second-ordinary differential equations of the form y” = F(y) were
studied. A preliminary study of two nonlinear second-order differential equations
of the form y” = F(z,y) was also done before classification of the latter.

The group classification process is done both directly and indirectly (alge-
braic approach). For the direct approach, all possible Lie algebras were found with
the aid of the equivalence transformations applied to the determining equations.
As for the algebraic approach, the study was reduced to the analysis of relations
between constants of the generator with its corresponding basis operators.

The results of the group classification of the linear system are presented in
Table 6.1, where the first column presents the form of the functions F' and G and
the second column lists the admitted generator apart from the trivial ones (3.7
and 3.8) obtained in Chapter III.

For the autonomous nonlinear system, the analysis of determining equa-
tions were separated into classes depending on the coefficient of generator &, i.e.,
whether it involves 1) at least one admitted generator with £” # 0 or 2) all ad-
mitted generators have £” = 0. Note also that the kernel of the generator contains
0;. The results of the group classification of the autonomous nonlinear system is
presented in Tables 6.2, 6.3 and 6.4. Table 6.2 provides the group classification of

the autonomous nonlinear system which admits at least one generator containing
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& =0, and Tables 6.3 and 6.4 present the group classification of the autonomous
nonlinear system for which all admitted generators have £” = 0. The first two
columns of Tables 6.2 and 6.3 show the forms of F' and G, which admit the Lie
algebras listed on the fourth column. The third column of these tables show the
conditions and relations of F' and GG. Table 6.4 gives additional extensions of the
generators in Table 6.3 along with its representative classes. The generators found

in the Tables are defined as follows:

Yy = 220, + y0, + 20., Xo = 20,
Y; = x(20, + y0, + 20,), X3 = 0,
Y, = (v —4)ydy, + v20., X, =0,

Ys = (ay — 42)0, + (az +4y)0,, X5 = y0,,
Ys = (y + 42)0, + 20., Xe = 20,,
Y7 = cos 220, — sin 2x(y0, + 20,), X7 = 20
Ys = sin 2x0, + cos 2z(y0, + 20,), Xs = y0,,
Y = e22(8, = (yd), + 20.)),

Yip = €* (0, + y0, + 20,).

It is highly likely that the same methods shown in this thesis are applicable
to finding the group classification of systems of two nonlinear second-order ordinary
differential equations, which will be next goal for further studies. As seen in the
preliminary study of nonlinear systems in Chapter IV, simplified classes of the
functions F' and G are not yet known. In addition, it is also believed that this
can be extended to systems in more general cases. Another recommendation for

further studies is to find applications of these classes in the real world.



79

N@Q _ \MQN

"oz + 0

0l — "0z + "0t

N@N _ &@

Z'h'x

()0 -+ i

Z 4 fi(x)o

| J

z(fo+x—) +

‘Z(to 4 x(To = 7)) + &lv + fi(1o 4 o)

Z2(To + (z)us —) + fi(% + (x)s00)

‘2(% — (7)s00) + fi(To + (w)urs)

2V + fi, 9%

(z*fi'z)D
(= *fitx)q
(= ‘z)D
(= *fi'x)q
(= z)D
(z‘f'z) g
(z*fi'z)p
(= *fitx)q

‘2,9 + AT Zhx

I0}RIDUOY) POYIUIPY

D pue 4

ore (‘T = 1) 0 ‘eI

0 # P pue JuURISUOD

"SW9YSAS Ieoul] Jo uorjesyissed dnoir) -9 o[qe],



80

94 “OLg 6% 1
U YU -
X XL 0 290 20f f2M  (2ly +fi0f), _2:0 + fiy
g “OLK 0K 1
DL -
S{ ‘6L ‘e 0 (2 f)L(A™H + 200) + zu (2 fi)L(z™ — fiOh) + fi
TR OLg 6K 1
PRI -
VR EL T 0 %WVTNQ u & Tﬂmv?mo,\ + fizd
LR ‘g 1
8K -
€1 ‘e 0 Q&mmww 4+ zy Asv\?@ + Ay
[PUISY] JO UOISUIXH Y 9 A
URISTOD T Tt Pue ‘F— ‘0 FE 0 T 0 F L0 FE B+ 00 F YU P (22 4 ) pepren

OIdH () # ,3 UMM I0JeIousd ouo Isea] Je Junjrupe (£) g = ,A WLIOJ oY) JO SWISAS IRIUI[UOU JO uoljeoyisse[d dnoir) g9 a[qe],

2= (zN)s



81

£y + oyl
Ly 4+ 95 + Sy + exh
Ly + vy 4+ oxh
Ly +exhk

X + 4% — (X + “x)v + exh

X+ 4x — (OX + Sx)v + Ex 4 ek

X 44X — (OX + )0 + £y — ey

w;X1+bvm| NX\P

0F#Db,f
045 s 0z=n
O*\QBQN|NN”

0# D+ f ‘(nusa =z {(n)sooa =1fi

AQ hﬁv N%:Abwlsvw

A@ rb\v m%:hmlm|

ag—2(2)f
(z/8) (g—1)? () f + (n)0(z /1))
Auhm\vw?zv% + Nﬁj\vmv

(ntz—)2 () f +n()b)

(an) On(Lg—0)?

Aa “3\v Hmﬁi\m\dvm

(1) 00 (Lg—0)?

AQ nj\v ﬂ%:?mlm

Sy + Ty + exk 0#b,f ¢, afi=n (Lg=yi(n)b (Lg—nfi(n)f
9% + Sy + eyl 0£b6,f TS0>1— ﬁ% =n (Lg—n)fi(n)B (Lg—pfi(n)f
[OUIOY] JO UOISUIXG] SUOTYR[NY 15 A
+ .0 + ;0
Il (0)eX pue 170 (0)1X “(a)6(n)s0d — (a)f(n)uis = (a‘n)%y
I 0

‘((a)b(n)uts+(a)f(n)soo) = (a‘n)lgerry om ool ‘() = ,3 [IM SIOJRISULS [[B SUIJTWPR SWISAS JO UOIROYIsse[d dnoir)  ¢'g a[qe],



82

1973250} paSiowt oq uep)

0=\ =7 UMM 274 fiy 2= (z'fi)en

(zk + Arl)y B
z(d — ) + fivig
¢ d‘ d— = — _ | = ‘R
pue ig #d ‘; X T HP UM ANE+6+?N (zf)eq
Ly —ng
DFd A= X—"pyun g d 2= (2f)Tq ey
uejore
fizig, + 2 "y — kg T p v (h 5 )
FNE:TN KLTNN FNE+N <+NN

8 — 4 G oy of ¢ fotm T = A yup—= — — T 0f— Ayvp—= - © 70
XM — LY+ SXY + X 0F# ‘0FPecT=1 (= vgﬁdf«vt&; f (2 f)*p o f

[UI93] JO UOISUIIXT [RUOINPPY suoryey 19 A
9Y + S + TxA T eaqoSreqng

N 3 3
IXT+exy 07 i L0FAT+HY =10 060/ e 1+4fly 20
LXT+ X 206g + ¢/1(cz — )0 = ¢
&

07 060 # e =4 (g7 — fi)06 (g7 — i) (=)

[PUIS}] JO UOISULIXH [RUOINIPPY suorjeRYy [ A
@xm +9x + ¢x4 °T evIgeSreqng

I

PXA — Sx 07 060f ‘o#w‘0#kg— =k 232 f100 232 L+ 100f
DXk —Sxd 07 050 ‘0# g ‘0# ke— =k iy 4700 et 1fig=Of

[OUIO}] JO UOISUDIXY [EUOHIPPY suorje[aYy D d

Sx + tx A *T eiqeSeqng

ore L pue y ‘0f ‘y ‘g ‘0 ‘Ip ‘0p ‘06 ‘0f ‘Drof ‘() = ,3 YIM SIOJRIdUSS [[B SUIPIWIPe SWISAS Jo uoneoyissed dnoir) $°9 a[qey,

"JURISUO0D



83

(tx —8x) (¥ — 1)+ (Ox + 9x) & % T i = g0 {(A/z)ueiore = n ‘g # Lg— = k
TENOEDB+ L 4((n)s00 06 — (n)uts 0f ) 2 ya((n)us 06 + (n)soo 0f ) 2
[OUIS}] JO UOISUIIXH [RUOINPPY SuoIye[eYy ) g
0# L ‘8Y + Lx — Ty L g eiqeSreqng
@vm.fmvm._.mvmzmﬂ 77+ fi = go {(fi/z)uejore = n
TENOFED+Y »2((1n)s05 06 — (n)urs 0f) L ((n)urs 06 + (n)soo 0f)
[PUIO3] JO UOISUIXG [BUOIHPPY suoryeoY] ) A
8Y + LY — ‘g eiqaSreqng
vxy + Sx0 070y~ M 5 =& ‘0# 06%f 2102 (2)fL00 202 (14:)f10f
[OUID}] JO UOISUSIXT [RUOINPPY SUOT}e[OY ) g
SY + VX + TxL g eaqoeSreqng
LOXT +ex 0# T T/10#0 kg —y0=1L"‘0#060f LMy 1206 14l _20f
[PUID3] JO UOISUOIXG [BUOIHPPY suorye[ay ) A
I>0> 11— 9y 4 8 + exL T eiqalreqng
Z+ R Z R zZ+ R
(5x + 9x)z + Ex 0Fu0AL02 Yt (T (e - ) wit ()
[0UI9] JO UOISUGIXT [BUOIIPPY suoryeey H I9) o

(ponunpuop) 9x + Sx + exi ‘T eaqeSreqng

(penurjuoy)) jurISuOd

ore L pue y ‘0nf ‘y ‘g ‘0 ‘Ip ‘0p ‘06 ‘0f ‘D0 () = ,3 YIM SIOJRISUSS [[R SUIPJTWPR SWL)SAS Jo uorjeoyisse[d dnoiry -9 o[qer,



84

C
=1

wvmixfmvw;vmx

(27 + M) nwg—2 = g0 (fi/z)uejore = n

A E B+ Y

»((n)s00 06 — (n)urs obs?mlde L ((n)urs 06 + (n)sod obs?mlde

[PWIBY] JO UOISUSIXG] [BUOINIPPY suorye[oy ) A
0<© 8y + 4y — (9x + Sx)©0 + ¢x i * eiqelreqng
PXEX — EX X 4 Oy 4 €x + By — TR (myox L2 — (o)1
8 —71 1 )
»ANAAdvmx - Nv + NAAUVﬁX + @vvﬁdmlw = g0
()X + A
“{ —4———— | uejoie =n
(0)eX — 2
TENOEL+Y 5((1)800 06 — (n)u1s Of )1z )2 w((n)urs 06 + (n)s00 0f ) 11z )2
[PUISY] JO UOISUIXE] [RUOINPPY SUOTYR[N] f5) i
0<© 8y +Lixy —(9x + %x)0 + €x + ¢x L * eiqeleqng
TYTX + €xIX — 9y + SY + X ¢ :‘NUHAR&NXF:‘NGHA@VCA
Y —71 T 0
(((P)EX +2) + ((0)TX = i) g2 = 0
(0)IX — £
1 ———— Jueppre=n
(@)
TAEMOE D+ Y 4((n)s00 06 — (n)UTS Of ) 1y (17— )2 4((n)urs 05 + (n)809 0f) 1y (12— )2
[PUIDY] JO UOISUIXF [BUOIIPPY suotye[aY ) oA

0< 8y + Ly — (9x + Sx)0 + €x — tx L *§ eiqelreqng

ore L pue y ‘0nf ‘y ‘g ‘0 ‘Ip ‘0p ‘06 ‘0f ‘D0 () = ,3 YIM SIOJRISUSS [[R SUIPJTWPR SWL)SAS Jo uorjeoyisse[d dnoiry -9 o[qer,

(penurjuoy)) jurISuOd



85

Xk + Lxvg + Exd

Xk 4 Lx¥ + Ex(1T — )

[eUIa3] JO UOISULIXY [RUOINPPY

e/ (0pL) = ‘0 # 0¢ ‘T + 200 = ¢

‘0% 06 ‘kg = A
0#k/06 =0 hg =14
suorjey

AL— NNVTTNQwo@.
fik— 222 nwom

9]

ANvﬂAm\w\NNEATNQmVO%v
AHQ\M‘ + NEVAQ\N\NEMH\QNO.HV
A

0# L ‘€x + exA - eiqaSreqng

Lxg+exk

[OUISY] JO UOTSUIIXY [RUOINPPY

0FT—¥+hig=~L'0# 00

SUOTYR[OY

(z/)—2% 0B

9]

(z/f)—2 1 -7 (20f + fi05)

A

Ly + 9 + S + x4 ‘9 eiqaSreqng

OX + SxT + exY

[9UID}] JO UOISUSIXY [RUOINPPY

[4
H4c—1

0# = ‘fig—,z=mn‘0# 06

suorjePYy

nob

4n(zn0f + z06)
T
A

Ly + ¥y *g eiqoSreqng

EX + Txd 0# ¢ ‘fig— F=n ‘0 # 06 ANFNISQVmo@. AnkNI:vaﬁo.\. + Nom.v
[OUID3] JO UOISUIIXT [RUOINPPY suoreRy 9] A
Ly + VX + TxL g eaqoSreqng
Lx(1—¢) + 9%k + 9x Lg=4L0# 06 /9700 (Zhst + ), g 27 _ g2 06
[PUId3] JO UOISUdIXY [RUOINPPY suolje[ey O A

Ly + ¢x A ‘g eviqa3reqng

(penurjuoy)) jurISuOd

ore L pue y ‘0nf ‘y ‘g ‘0 ‘Ip ‘0p ‘06 ‘0f ‘D0 () = ,3 YIM SIOJRISUSS [[R SUIPJTWPR SWL)SAS Jo uorjeoyisse[d dnoiry -9 o[qer,



REFERENCES



REFERENCES

Bluman, G. W., and Kumei, S. (1989). Symmetries and Differential Equa-
tions. New York: Springer-Verlag, Inc.

Boyko, V. M., Popovych, R. O., and Shapoval, N. M. (2012). Lie symmetries of
systems of second-order linear ordinary differential equations with constant
coefficients. Journal of Mathematical Analysis and Applications. 397:
434-440.

Campoamor-Stursberg, R. (2011). Systems of second-order linear ode’s with con-
stant coefficients and their symmetries. Communications in Nonlinear
Science and Numerical Simulation. 16: 3015-3023.

Campoamor-Stursberg, R. (2012). Systems of second-order linear ode’s with con-
stant coefficients and their symmetries. [I. Communications in Nonlinear
Science and Numerical Simulation. 17: 1178-1193.

Gonzalez-Lopez, A., Kamran, N., and Olver, P. J. (1992). Lie algebras of differ-
ential operators in two complex variables. American Journal of Mathe-
matics. 114: 1163-1185.

Gorringe, V., and Leach, P. (1988). Lie point symmetries for systems of 2nd
order linear ordinary differential equations. Quaestiones Mathematicae.
1: 95-117.

Grigoriev, Y. N., Meleshko, S. V., and Suriyawichitseranee, A. (2013). On the
equation for the power moment generating function of the Boltzmann equa-
tion. group classification with respect to a source function. In O. Vaneeva,
C. Sophocleous, R. Popovych, P. Leach, V. Boyko, and P. Damianou (Eds.),

Group Analysis of Differential Equations & Integrable Systems (pp.



38

98-110). Nicosia: University of Cyprus.

Ibragimov, N. H. (Ed.). (1994, 1995, 1996). CRC Handbook of Lie Group
Analysis of Differential Equations (Vols. 1, 2, 3). Boca Raton: CRC
Press.

Ibragimov, N. H. (Ed.). (1996). CRC Handbook of Lie Group Analysis of
Differential Equations (Vol. 3). Boca Raton: CRC Press.

Ibragimov, N. H. (1999). Elementary Lie Group Analysis and Ordinary
Differential Equations. Chichester: Wiley & Sons.

Lie, S. (1881). Uber die Integration durch bestimmte Integrale von einer Klasse
linearer partieller Differentialgleichungen. Arch. fiir Math.. 6(1): 328-
368. (English translation "On Integration of a Class of Linear Parabolic
Differential Equations by Means of Definite Integrals” in CRC Handbook
of Lie Group Analysis of Differential Equations, ed. N.H.Ibragimov, vol.2,
1995, pp.473-510)

Lie, S. (1883). Klassifikation und Integration von gewohnlichen Differentialgle-
ichungen zwischen z, y, die eine Gruppe von Transformationen gestatten. I1I.
Archiv for Matematik og Naturvidenskab. 8(4): 371-427. (Reprinted
in Lie’s Gesammelte Abhandlungen, 1924, 5, paper XIY, pp. 362-427)

Lie, S. (1884). Klassifikation und Integration von gewohnlichen Differentialgle-
ichungen zwischen x, y, die eine Gruppe von Transformationen gestatten. I'V.
Archiv for Matematik og Naturvidenskab. 8(4): 431-448. (Reprinted
in Lie’s Gesammelte Abhandlungen, 1924, 5, paper XY1, pp. 432-446)

Lie, S. (1891). Vorlesungen iiber Differentialgleichungen mit bekannten
infinitesimalen Transformationen. Leipzig: B.G.Teubner. (Bearbeitet
und herausgegeben von Dr. G.Scheffers)

Mahomed, F. M., and Leach, P. G. L. (1989). Lie algebras associated with scalar



89

second-order ordinary differential equations. Journal of Mathematical
Physics. 30(12): 2770-2777.

Mahomed, F. M., and Leach, P. G. L. (1990). Symmetry Lie algebras of nth order
ordinary differential equations. Journal of Mathematical Analysis and
Applications. 151(12): 80-107.

Meleshko, S. V. (2011). Comment on symmetry breaking of systems of lin-
ear second-order ordinary differential equations with constant coefficients.
Communications in Nonlinear Science and Numerical Simulation.
16(1): 3447-50.

Meleshko, S. V., and Moyo, S. (2015). On the study of the general group clas-
sification of systems of linear second-order ordinary differential equations.
Communications in Nonlinear Science and Numerical Simulation.
22: 1002-1016.

Meleshko, S. V., Moyo, S., and Oguis, G. F. (2014). On the group classification
of systems of two linear second-order with constant coefficients. Journal of
Mathematical Analysis and Applications. 410: 341-347.

Moyo, S., Meleshko, S. V., and Oguis, G. F. (2013). Complete group classifi-
cation of systems of two linear second-order ordinary differential equations.
Communications in Nonlinear Science and Numerical Simulation.
18(11): 2972-2983.

Olver, P. J. (1986). Applications of Lie Groups to Differential Equations.
New York: Springer-Verlag.

Ovsiannikov, L. V. (1958). Groups and group-invariant solutions of partial differ-
ential equations. Dokl. AS USSR. 118(3): 439-442.

Ovsiannikov, L. V. (1978). Group Analysis of Differential Equations.

Moscow: Nauka. (English translation, Ames, W.F., Ed., published by Aca-



90

demic Press, New York, 1982)

Ovsiannikov, L. V. (1993). On optimal system of subalgebras. Docl. RAS.
333(6): 702-704.

Ovsiannikov, L. V. (2004). Group classification of equation of the form y” =
f(z,y). Journal of Applied Mechanics and Technical Physics. 45(2):
153-157.

Patera, J., and Winternitz, P. (1977). Subalgebras of real three- and four-
dimensional lie algebras. Journal of Mathematical Physics. 18(7): 1449
1455.

Phauk, S. (2013). Group Classification of Second-Order Ordinary Differ-
ential Equations in the Form of a Cubic Polynomial in the First-
order Derivative (Unpublished Master’s thesis). School of Mathematics,
Suranaree University of Technology, Nakhon Ratchasima, Thailand. (MS
Thesis at School of Mathematics, Suranaree University of Technology, Thai-
land)

Popovych, R. O., Kunzinger, M., and Eshraghi, H. (2010). Admissible transfor-
mations and normalized classes of nonlinear Schrodinger equations. Acta
Applicandae Mathematicae. 109: 315-359.

Wafo Soh, C. (2010). Symmetry breaking of systems of linear second-order differen-
tial equations with constant coefficients. Communications in Nonlinear
Science and Numerical Simulation. 15: 139-143.

Wafo Soh, C., and Mahomed, F. M. (2000). Symmetry breaking for a system of two
linear second-order ordinary differential equations. Nonlinear Dynamics.

22: 121-133.



APPENDIX



APPENDIX
COMPUTATIONS FOR EXTENSIONS OF

OTHER SUBALGEBRAS IN CHAPTER V

Subalgebra 2. with generator vX, + X, + X;.

For this case, the determining equations (5.14) become

yF,+ F. +(2y —1)F =0,

yGy + G, +29G = 0.

The general solution of these equations is

F(y,z) = f(w)y'™, G(y,z) = glu)y™, (A1)

where u = ye™* and gf" # 0 (or else it is a degenerate case). This solution is
substituted into the determining equations (5.2), which are split with respect to z

after substituting y = ue®. The determining equations are

G(fu+(1=27)f) = ag =0, (A.2a)

frulan — G+ &) + f(26(2 —7) — 2yau1) =0, (A.2b)
an f' =0, (A.2¢)

(&1 +axn)f =0, (A.2d)

aa(f'u+ (1 —2y)f =0, (A.2e)

Gi(g'u —279) =0, (A.2f)

gu(an — G +&1) + 9(&(3 = 27) — 2va11 — ax) =0, (A.2g)
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as (f —g'u) =0, (A.2h)
aia(g'u —2vg) =0, (A.21)
(&1 +ax)gd = 0. (A.2j)

Since f’ # 0, equations (A.2c) and (A.2d) give the conditions as; = 0 and & =
—asgg, respectively. These conditions also satisfy equations (A.2h) and (A.2j). Also,
since ¢g'u — 2yg = 0 makes the system (5.1) equivalent to a degenerate case then
it follows from equations (A.2f) and (A.2i) that ¢; = 0 and a5 = 0, respectively.
These conditions also satisfy equations (A.2a) and (A.2e). Equations (A.2b) and

(A.2g) are reduced as follows:

fu(ar — ase — G) — 2f(v(ann — aze) +2as0) =0
gu(an — azx — C) — 2g(y(ann — az) + 2a2) = 0.

From here, there is a need to study 2 cases: 1. f'/g—¢'f #0,and 2. fl/g—¢'f =0.

2.1 Case f'g—g'f #0.

For this case, we get the condition (; = ay; — agy. If ¥ = 0, then agy = 0. If

v # 0, then ay; = id. ag. This gives no other generators apart from the

studied subalgebra.

2.2 Case f'g—¢'f=0.

For this case, we obtain functions ¢ = gou® and f = fig, where a # 0
(else degenerate case), go # 0 and f; # 0 are constant. This gives us
(o= é((a —27)a11 + (27y —a—4)ass). These result to an additional extension
of the generator,

IiX4 + Oz)(57

— K

Q@
aside from the studied subalgebra. Note that v = , k # 0 is constant.

Subalgebra 3. with generator v.X, + Xg — X7.
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For this case, the determining equations (5.14) become
—zF, +yF, +2vF + G =0,
—2Gy+yG, — F+27vG =0

for which the general solution is

F(y,z) = e (cos(u) f(v) + sin(u)g(v)),

G(y, z) = e7*"(sin(u) f(v) — cos(u)g(v)),

(A.3)

where u = arctan(z/y), v? = y* + 2% and f? + ¢g* # 0 (else degenerate). These
functions are substituted into the determining equations (5.2), which are split with
respect to y and z after substitution of these variables with respect to u and v.

The determining equations are as follows

anv(f'v — f) + awgv + anv(=2fy +g) + &Lo(f'v+3f) + flvéi — 2f7C

+gC2 =0,
(Ada)

2a110(fy — g) + arv(f'v — f) + aav(f'v — f) + 2a00(—fy + g) + fvée

+2fv¢ — g¢ =0,

(A.4b)

a2(2fy — 9) — ang + an(fv — f) + &(fv+3f) =0, (A.4c)
fo6i =2/ + 96 =0, (A.4d)

oG +2fvG — g6 =0, (A.de)

ang'v’ = 2a9179v — asgv + &v(g'v + 39) — gvG + fG + 279G =0, (A.4f)
2a1179v +arpv(g'v+g) +anv(g'v+g) —2amy9v — g'vi — fG—279C = 0, (A.4g)
—a119 + 2a1279 + az29'v + & (g'v + 3g) =0, (A.4h)

gv¢ — fl — 279G =0, (A.4i)

v+ G+ 279G = 0. (A.4j)
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Equations (A.4d), (A.de), (A.4i) and (A.4j) force (; = 0 and ¢ = 0. If not,
these lead to f = 0 and g = 0, which lead to a degenerate case. The remaining

determining equations are simplified as follows
(a1 + &) f'v = (2vaz + ann — 36) f + a2+ az)g =0, (A.5a)

(a12 + az1) f'v — (2a207 — 20117 + a1 + a12) f + 2 aze — a11)g = 0, (A.5b)

(a2 + &) f'v — (ase — 2ya12 — 361) f — ar2 + axn)g = 0, (A.5¢)
(a11 + &1)g'v — (2vag + az — 3&)g =0, (A.5d)

(a19 + az1)g'v — (2a29y — 2a117y — as; — aga)g = 0, (A.5e)
(age + &1)g'v — (a11 — 2va12 — 3&)g = 0. (A.5f)

From Equations (A.5d), (A.5e) and (A.5f) (since g is nonzero), we obtain

that ag; = —ayo and agy = ay;. From here, we need to separate whether 1. v =0,

or 2. v # 0.
3.1 Case v # 0.

If v # 0, we obtain a;; = agy. From here, we need to study the following

cases: a. f'g—¢'f=0,and b. f'g—4¢'f #0.

3.1.a Case f'g —¢'f=0.
If f'g—¢'f =0, then we obtain that f = fyg, where fy # 0 is constant.

Substituting this into the remaining determining equation, we obtain
! 3 / / 3
gv+ g> £ 0or (gv+ g

279 279

—26L22

/
that either ( ) = 0. If it is not satisfied, we

obtain that as; = . No extensions of the generator are obtained.

2773 where gg # 0 is constant.

If it is satisfied, then we get that g = gov
2

It will also follow that as; = K&+ (K — —> ass. Here, we obtain another
Y

extension apart from the studied subalgebra, which is

2X2 + X5 + X6 + K(Xg — X7)
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3.1.b Case f'g—¢'f #0.

If f'g — ¢ f # 0, we obtain that as = —& . Substituting this into
a
the remaining determining equation, we obtain that & = 7221. No

extensions of the generator are obtained.

3.2 Case v = 0.

If v = 0, we also obtain a;; = ags. From here,we need to study the following

cases: a. f'v— f=0,and b. ffv— f #0.

3.2.a Case f'v— f=0.
If f'o — f =0, then f = fov, where f; is constant. Substituting this
into the determining equations, we obtain that & = 0. The remaining

determining equation leads us to study the following cases: i. g'v —g =

0, and ii. g'v — g # 0.

3.2.a.i Case g'v —g=0.
If ¢v—g =0, the g = gov, where g, is constant. Aside from the

studied subalgebra, we obtain the extension

X5 + Xg.

3.2.a.ii Case g'v — g # 0.
If gv — g # 0, then ays = 0. No extensions are obtained.
3.2.b Case f'v— f #0.
If ffo — f =0 # 0, then we need to study the following cases: i.
flg—9¢'f=0,andii. flg—g'f#0.

3.2.b.i Case f'g—4'f =0.
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— v — '
If f'g9— ¢ f =0, we need to study further if (M) -

fro—f
—(f'v—3 !
or (%) # 0. If it is satisfied, we obtain that f = fyv",
U p—
where k # 1. Substituting this into the determining equation, we

—(k+3)&

obtain that aqy = . Another extension is obtained aside

from the studied subalgebra, i.e., we obtain

1—x

Xo+ X5 + Xg.

If it is not satisfied, we obtain that & = 0. No extensions are
obtained.

3.2.b.ii Case f'g—4'f #0.
If f'g— g f # 0, then it follows that £ = 0. No extensions are

obtained.
Subalgebra 4. with generator v.X, + a(X5 + Xg) + Xs — X7, a > 0.

For this case, the determining equations (5.14) become
(ay — 2)By + (a2 + y) . + (27 — a)F +G.= 0,
(ay—=2)Gy+ (az+y)G, — F+ (27 —-a)G =0

for which the general solution is

F(y,z) = e!*727(cos(u) f (v) + sin(u)g(v)),

Gy, z) = el*2V"(sin(u) f (v) — cos(u)g(v)),

(A.6)

—2ou(y? 4 22). These functions are substituted

where u = arctan(z/y) and v? = e
into the determining equations (5.2), which are split with respect to u after sub-

stitutions of y and z. The following determining equations are obtained:

flo(—ale+ G) + fl(a —2v) + gl =0, (A.7a)
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fv(ady + G) + gv(—ale + G) + f(—a +2v¢ — (o)

+g(aC —29¢G — (1) =0,

(A.7b)

flo(ade — C1) +4g'v(aly + (o) + f(—age +2v¢ + 4G1)
+9(—4ai +87G — () =0,

fo(—aan + a1 + &) + f(aan — 2yag — ann + 3&1) + glars + azr) =0, (A.7d)

(A.7¢)

fv(aan — aag + aiz + az) + g'v(—aag + a1 + &)
+f(—aa + aagy + 2ya — 2vaz — a1z — as) (A.Te)

+g(aag — 2yag — 2a11 + an + 36) =0,

flv(daars + 3aas; — 3agy + 4agg + &1) + 4g'v(@ar; — aass + ajn + as)
+f(—4aas — 3aas + 8yajs + 6vas + 3ay; — 4ass + 3&1) (A.Tf)

+g(—40éCL11 + 4&@22 + 8’}/&11 ) 8"}/6122 |y 3(112 — 3&21) = 0,

flu(aar; — aags + arp + asy) + g'v(=2aa1s — aasy + ay; — 2ae — &)
+f(—aay; + aags + 2yay; — 2yaze — a1z — as) (A.7g)
+9(2aa1z + aag — 4ya12 — 2yas + ax — 361) =0,
gv(agy — 1) + fG + gG(—a +27) =0, (A.7h)

flo(aG — 1) + gv(ad + G) + f(—as + 2vG + (1)

(A.70)
+9(—ai + 279G — ¢2) =0,
df'v(aC + &) + gv(—al + G) + f(—4adi +87¢ — () (A7)
1)
+g(ae — 29¢ — 4¢) =0,
g/U(OéCLQl — 11 — fl) + g(—aagl + 2’}/(121 “+ a9y — 351) = O, (A?k)

Jv(aag — any — &) + g'v(aan — aags + aip + ag)

+f(—aag + 2va + ain — 3&) + g(—aar; + aax + 2ya1; — 2yage) =0,
(A.71)
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4]”’0(05&11 — a92 + 12 + a21> + g/U(—40é(112 — 306@21 + 3(111 — 4@22 — fl)
+4f(—aai + aagn + 2ya11 — 270 — a1z — as)

—{—g(4OzCL12 + 3aas — 8’7&12 — 6yag; — 4aq1 + dagy — 351) =0,
(A.7Tm)

fv(2aais + aan — ar + 2a2 + &) + gv(aar; — aaxs + az + ag)
+f(—20a1 — aagy + 4yars + 2vag; + a1 — 2az2 + 3&1) (A.7n)
+g(—aay + aag + 2yay — 2yas — 2a15 — 2a9,) = 0.
From here, as g # 0, we can assume that f = ¢g, where ¢ = ¢(v) # 0. Substituting
this into the determining equations (A.7), these equations are reduced to the

following
gov(—ale + G) + g(—¢' avls + vl + apls — 279G + (o) = 0, (A.8a)

g v(apC—alo+dCo+C)+9(¢ avli+@ vl —adpli+alo+270C — 27— ¢l —(1) = 0,
(A.8b)
gv(apl + 4ol — ¢C + 4¢2)

+g(¢' av(y — PG — ady — 4als + 290 + 8vC + 49¢ — () =0,

(A.8¢)

g dv(—aag + ann + &)

+9(—¢ aanv +¢anv + ¢'&v + aand — 2va1¢0 — apng + are + axn + 36¢) = 0,
(A.8d)

gv(aag — aag — aageg + an + a12¢ + ang + &)
+g(daay v — @ aagv + ¢ajpv + ¢av — aayg @

+aag + aagg + 2ya11¢ — 2ya9 — 2ya220 — 2611 — A12¢ — AP + ag + 3&1) = 0,
(A.8e)

g v(daay; + daaiad + 3aas ¢ — daasy — a1 + 4ajs + dagy + 4asnd + £19)
+9(4¢' aaiov + 3¢ aas v — 3¢ a v + 4¢ anv + ¢'&1v — daayy
—4doa2¢ — 3aag @ + 4daags + 8yary + 8yara¢ + 6yaz ¢

—8vag2 + 3a11¢ — 3a12 — 3ag; — 4agd + 3&16) =0,
(A.81)



100

gv(ay ¢ — 2aai; — aag — aagd + ayy + a12¢ + a1 — 2az2 — &)
+9(¢' aanv — ¢ aazv + ¢'arpv + ¢'agv
—aan ¢+ 2aaiy + aag + aagnd + 2ya11¢
—4ya19 — 27az1 — 27a200 — a12¢ — a1 + ax — 3§;) = 0,
gv(at — G) + gG(—a + 27+ ¢) =0, (A.8h)

g (g + ali — ¢C1 + (2)

+9(¢awle — ¢vG — adle — aGi + 270G + 229G + ¢G — () =0, e
g'v(dadC — ae + 406 + G) (A8i)
+9(4¢'avy +49'v¢ — 4adG + ae + 879G — 29C — ¢C — 4¢1) = 0,
gv(aay —ayn — &) + g(—aag + 2yag + asn — 351) =0, (A.8k)
gv(aay + aasd — aag — aj1d + ars + as — €19)
+g(¢' aagv — ¢layv — ¢&v — aay (A.81)

—Q21 ¢ + aag + 2ya11 + 2ya210 — 2yae + an ¢ — 3619) =0,

g/’U(40[(111¢) — 404(112 — 30[(121 = 4@@22@5 -+ 3(111 + 4@12¢ + 40/21@5 — 4@22 — 51)
+9(4¢' ar v — 4¢' aagnv + 4¢'arv + 4¢'anv
—40&@11¢ + 4040,12 == 3040,21 1 4C¥CLQQ¢ + 8’)/0/11(]5 'Y 87a12

—6yas — 8vand — 4ajy — 4a12¢ — 4dax ¢ + 5ax — 3&) =0,
(A.8m)

g'v(aa + 20a12¢ + aag ¢ — gy — a11¢ + aiz + an + 2a2¢ + £10)
+9(2¢'aaiov + ¢’ aanv — ¢'av + 2¢ azv + ¢'1v
(A.8n)
—aay — 204129 — a1 @ + gy + 2ya1 + 4ya12¢ + 2va ¢
—2va9 + a11¢ — 2a12 — 2a9; — 20220 + 3&1¢) = 0.

Based on equation (A.8k), we can further study the following two cases:

/ / / /
1. (ﬂ) — 0, and 2. (ﬂ> £ 0.
g g

’ /
4a.1 Case (ﬂ> = 0.
g
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/ !/

If (£> = 0, then g = gov", where gy # 0, k are constant. Substituting this
9

into equation (A.8k), we obtain that agss = (a(1—kK)—27)ag +kai1+(k+3)&;.

From here, we need to study the following cases: a. k =0, and b. k # 0.

4a.l.a Case k = 0.
If kK = 0, then we need to study if ¢’ = 0 or ¢’ # 0. For ¢’ = 0, we
obtain that 19 = —Q91, A11 = (Oé — 2’7)@21 + 361 and Cl = CQ = 0. Aside

from the studied subalgebra, we obtain the extension
Xo + 2(X5 + Xo).

If ¢ # 0, we obtain that (; = ¢, = 0. Consequently, we obtain that

(2cc — y)ag yag

9 and 51 =

. No additional extensions

a2 = —Q21, @11 =

are obtained.

4a.1.b Case k # 0.

Similarly for x # 0, we need to study if ¢’ =0 or ¢’ # 0. We note that
for ¢’ = 0, k # 1 as this is equivalent to the studied case subalgebra

3. For ¢/ = 0, we obtain that (; = (o = 0, a;9 = —as1, and a;; =
(a(k =1) +27)ag — (k +3)&
k—1

. Aside from the studied subalgebra, we

obtain the extension

11—k

Xo+ X5 + Xg.

If ¢’ # 0, we obtain that (3 = 0. Consequently, we obtain that

(20— vy)an B _Yax1
ail = T’ a2 = —a21, 51 - 9

extensions are obtained.

and ¢; = 0. No additional

/ /
4a.2 Case (ﬂ) # 0.
g
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Vi /

If (Q) # 0, then from equation (A.8k), it follows that a1 = —& + aag
g

and agy = (a — 27)ag + 3&;. From equation (A.8d), we can consider 2 cases:

a. o =0orb. ¢ #£0.

4a.2.a Case ¢ = 0.

For this case, ¢ = constant. It follows from equation (A.8d) that ajp =

2(yag — 2€1)¢ — a9y. Substituting these into the remaining equations,

a
a2 . These also satisfies

equation (A.8m) gives the condition that & =
equations (A.8e), (A.8f), (A.8g), (A.8]) and (A.8n). From equation
(A.8h), (; = aly. Consequently from the same equation, one must

study the following 2 cases: i. ¢ = a — 2y or ii. ¢ # a — 27.

4a.2.a.i Case ¢ = a — 2.
For this case, equation (A.8a) gives the condition that ¢, = 0. No

extensions are obtained in this case.

4a.2.a.ii Case ¢ # a — 27.
For this case, equation (A.8h) gives the condition that (; = 0. No
extensions are obtained in this case.

4a.2.b Case ¢ # 0.

For this case, from equation (A.8d), it follows that & = 7221 and

ajs = —ag;. These conditions satisfy equations (A.8¢), (A.8f), (A.8g),
(A.8h), (A.81), (A.8m) and (A.8n) From here, we substitute equation

(A.8h) into the other equations. From equation (A.8a), we can consider

2 cases: i. (¢2¢zl> =0 or ii. (qu;;l) # 0.

2.1 /
4a.2.b.i Case &+ =0.
P'v
For this case, ¢ = tan(xIn(v)), where xk # 0. Substituting this into

the remaining determining equations and from equation (A.8a),
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G(ak —1)

one obtains (; = - Consequently from what remains of
equation (A.8a), one must study the following cases:
A. g'v + kg(tan(k In(v)) —a+2y) # 0 or
B. ¢'v + kg(tan(kIn(v)) — a + 27y) = 0.
4a.2.b.i.A Case ¢'v + rg(tan(xIn(v)) — a + 27) # 0.
For this case, it follows that ¢, = 0. No additional extensions

are obtained.

4a.2.b.i.B Case ¢'v + kg(tan(rIn(v)) — a +2vy) = 0.
yrla—27)

For this case, it follows that g = (tan (= Tog(0)) + 1) V2" Sub-
an=(rx log(v

stituting into the remaining determining equations, it leads to

(2 = 0. No additional extensions are obtained.
2 1 /
4a.2.b.ii Case s # 0.
P'v
For this case, it follows from equation (A.8a) that (; = 0 and

consequently, ¢; = 0. All remaining equations are satisfied and no

additional extensions are obtained.
Subalgebra 4. with generator vX,; — X3 + a(X; + Xg) + Xs — X7, a > 0.

For this case, the determining equations (5.14) become
(ay—z—1)F,+ (az+y)F,+ 2y —a)F+ G =0,
(ay —2—1)Gy+ (az+y)G, — F+ 27y —a)G=0
for which the general solution is
F(y, 2) = el 20 (cos(u) f(v) + sin(u)g(v)),

Gy, z) = e*>D(sin(u) f (v) — cos(u)g(v)),

(A.9)

z+ x2(a) 2 _ p=20u((y — i ()2 4 (2 aN?). wi
EEA ) g 2 = ey () + o+ a))), with

(0%
X1<C¥) = a2+ 1 and X2<a) = 2

where © = arctan (

These functions are substituted into the

+1
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determining equations (5.2), which are split with respect to u after substitution of

y and z. The following determining equations are obtained:

f/U(—OlCLm + a1 + &) + flaag — 2vas — ayg + 3&) + glas + az) =0, (A.10a)

f/U(CV2G21 — aagy — oy + a1z + as) + f(—Oé2G21 + 2aryag; + aags

=30y + 2yay1 — 2yas — aja — as) + g(—aais — aas — 2a5; + 2as) =0,
(A.10Db)

fo(=aPG + oPas + o*G — ale + a + (1)
+f(3C — 209 — aPag + 2aryas + aary — Taéy + als + 2van

+29&1 — 296 — ar — agr) + g(?Ca — 2aary — aag — 2ay; + age — & + G2) = 0,
(A.10c)

fro(—atG + &®C + a’agn + o2& — oG+ aly + axn + &)
+f(a*C — 20°9( + aPar — alag
—40& + a*Go + 2aryags + 2098 — 2ay(s — qars + 2yars — ag + 3&1)

(G — aParn — aags — a&y + aly — arz — an) =0,
(A.10d)

foG(a* + 202 + 1) + f(—atC + 20396 — o3¢ + 202y¢ — a?ary + 3026 — a2,
+2av( + aays + aasy — aly + 276 — ax + 3&1)

+9(—043C2 + a’as — Oé2€1 + aa — aag — afy ~ az — Cl) =0,

(A.10e)

gv(—aag + an + &) + glaas; — 2yas; — as + 3&1) =0, (A.10f)
gv(aParn + a?as + a1z + asn) + g(—atars — atas + 2ayas

(A.10g)

+2aya1 — 2cary + 2aagg + 2ya11 — 2yag + a1z + a1) = 0,

gv(aais + ax + &) + g(—aarz + 2ya1s — a1y + 3&1) = 0, (A.10h)
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gv(atay + a*ly + 2a%as + 2a%¢ + as + 1)
+ (¢ + a®an 4+ 0?8 — @G — aary — aagn + oy + az + & — (o)
+g9(—atas — oG + 20%yas1 + 20°7( — aPan + aPagy — 40’ + PG
+202yaq1 + 2029€1 — 2029 — alas; — o+ 2aya + 20y( —

2aay; + 2aags — 4aly + alo + 2vary + 279& — 27C + ap +ag) =0,
(A.10i)

go(aPag + &G + PG + aag + oy + &)
+f(a*C + aarn + a& — arz + G) + g(—aPag — a3 + 2a%vag

+2027¢ — a?ayy + aPagy — 4a2é) + 2aya1; + 2a9E — aly + 276 — ayy + 3&1) = 0.
(A.10))

As g is nonzero, we can assume that f = ¢(v)g, where ¢ # 0. The deter-

mining equations are reduced as follows.

(@' g+ og ) v(—aag + a1 + &) + dg(@an — 2vaz — arn + 3&1) + g(arz + az) = 0,
(A.lla)
(¢'g+ ¢gl)U(042a21 — Qg — aéy + ajg + an) + (bg(—oﬂam + 2arya9; + aag

—3ay + 2vai — 2ya2 — arz — a2) + g(—aais — aas — 2a11 + 2a9) = 0,
(A.11Db)

(¢'g+ ¢g/)U(—043C2 + a?ag) + @*(; — aly + a9 + G1)
+¢9(O‘3C2 - 2@2’%2 — afag + 200yag; + cay — Taéy + aly + 2vaqy

+29&1 — 29C — a1z — ag1) + g(?Ca — 2aary — aas — 2ay1 + age — & + (o) = 0,
(A.llc)

(¢'g+ ¢9/)U(_044C2 + ¥ 4 @?age + @& — oG+ aly + axn + &)
+dg(atCe — 2037( + aPary — alag
—402& + a2G + 2ayaz + 20781 — 207G — aary + 2va1z — axn + 3&)

+9(043C2 - a2a12 — gy — ay + aa — ajp — 021) =0,
(A.11d)
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(¢'g + dg" ) vla(at + 2a% + 1)

+f<_044C2 + 2039¢ — a3 4 2029¢ — a?ay + 302& — PG

(A.11e)
—|—2a’7C2 + aaqg + @ag — CVCl + 2’7C1 — a9 + 351)
+g(—a3C2 + a2a12 — 042C1 + aai — aag — ay — ag — Cl) =0,

gv(—aas + ann + &) + glaasn — 2yaz — asn + 3&) =0, (A.11f)

g’v(a2a12 + &26L21 + ag + CL21) + g(—oz2a12 — a2a21 + 20(70,12
(A.11g)

+2aya1 — 2aar + 2aag + 2ya1 — 2ya + ayp + as) =0,
g/v(ozalg + 9292 + §1) + g(—Oéam + 27@12 — all —+ 361) = 0, (Allh)

gv(atag + a*ly + 2a%ag + 2a%¢ + ag + 1)
+og(’C + @Pan + 0?6 — a?Q — aary — aag + aly + a + & — ()
+g(—atan — a*G + 203 ya91 + 20°7¢ — @Pary + @Paxn — 40PE + PG
+20%yay; + 20%9€ — 209G — alag — ¢ + 2ayag + 20y —

20a11 + 200 — 40y + alo + 2va11 + 2796 — 279G + a1z + ag) =0,
(A.11i)

gv(adag + o3¢ + G + aasy + aly + (o)
+og(a?C + aayy + oy — ajg + ) + g(—aday — 3¢ + 202van

+20%9¢; — @?aq + aagg — 40?8 + 2aya1y + 2av€; — aly + 2v¢ — an + 3&) = 0.
(A.11j)

From equations (A.11f)-(A.11h), we need to study the following cases:

/ / / i
1. <%) — 0, and 2. (%) £ 0.

Vi /
4b.1 Case (ﬂ> = 0.
g

/U /

If (g_) = 0, then g = gov", where gy # 0, k are constant. Substitut-
g

ing this into the determining equations, from the determining equations

one obtains the relations a;; = ag, a2 = ag1, (1 = —(aly + a) and

1
U9y = Z((oz2 + 1)(k + 3)(2) + 2(2a — 7)agy, under the assumption that ¢ is
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constant. Another extension is obtained, i.e.,

1—x

X2 + X5 + X6 + X2X4 — X1X3.

If ¢’ # 0, then we obtain that & =

equations, we obtain that (; = —as; and (s = 0. No additional extensions of

the generator are obtained other than the studied subalgebra.
gvy’
4b.2 Case (—) # 0.
9

If (g U) # 0, then we get that agy = —(aa12+§1) and ayy = (2y—a)ai+3&.
g

Substituting these and analyzing the determining equations, it gives us that

£ = —7;21 and a;s = —ag;. Consequently, (; = 0 and (; = —as;. No

additional extensions of the generator are obtained other than the studied

subalgebra.
Subalgebra 4. with generator X, + X3+ (X5 + Xg) + Xg — X7, a > 0.

For this case, the determining equations (5.14) become
(ay — 24+ 1)F, + (az+y)F,+ (27— a)F+ G =0,
(ay—2+1)Gy+ (az+y)G. — F+ (2y—a)G=0
for which the general solution is
F(y,2) = e@=2%(cos(u) f (v) + sin(u)g(v)),

Gy, z) = e* 2D (sin(u) f (v) — cos(u)g(v)),

(A.12)

where u = arctan (%) and v? = e 2"((y + x1())? + (z — x2())?), with

al®) =

and yq(a) = pEaE These functions are substituted into the
determining equations (5.2),

Wthh are split with respect to u after substitution of

y and z. The following determining equations are obtained after initial analysis.

f/U(—OéCLQl + a1 + §1) + f(OéCLQl — 27@21 — al + 351) + g(alz —+ CL21) = 0, (A13a)
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f/U(CL’2CL21 — Q99 — Oéfl “+ ajo + azl)
+f<—0éza21 + 20(70,21 -+ gy — 3@{1 + 27@11 — 2’7@22 — 12 — CL21) (A13b)

+g(—aain — aas — 2a11 + 2ag2) = 0,

Fo(aC + a?agy — @®C + als + asy — G1) + f(—a3G + 20%7¢ — aPag + 2ayas
+aay; — Taéy — alo + 2yan + 296 + 297G — a1 — a9)

+9(—a?C — 2aa19 — aagy — 2a11 + az — & — () =0,
(A.13c)
fro(a*C — ¢ + a?ag + a%& + (e — aly + ax + &)
+f(—a*G + 2039 + A?ay — @Page — 4a2& — (s
(A.13d)
+2aryag, + 20078 + 2007(a — iy + 2va1a — as + 3&)

—9(043@ + @?ayz + aagy + @y + als + ap + as ) =0,
froGa(at 420 + 1) + f(—a'le + 20°7( — @G
+2027( + @?ar — 302§ — @?la 4 2096 — aary — aag — aly + 27 + age — 3&1)

_|_g(_a3§2 e 042@12 N CYQQ — aay; + aagy — ay + ag — Cl) =0,

(A.13e)

gv(—aag + an + &) + glaas — 2vas — ags + 3&;) =0, (A.13f)
gu(—a3C + o — aagy — aéy — als + ars + (1)

+ (=G + aag — az — & — §) (A.13g)

+9(a3C — 20?9 + 4ali + aly — 2yag — 29&; — 27() = 0,

Ju(aPl + aPag — ¢ + ale + ag — C1) + (G — aag + azn + & + ()
+g(—aCo + 20*7( — a®ag + 2ayay — aan

+2aa99 — Taéy — o + 2va11 + 27& + 29 + ar2 + az ) = 0,
(A.13h)

gv(a’e — ¢y + @Pags + a*& + 0PG — aly + agn + &)
+fa(0?l — aag + axn + & + &) + g(—a'Ce + 20%96 — 4a%E — G + 2ayan,

+2av&1 + 2ay7C — aara + 2va1p — apn + 3&) =0,
(A.13i)
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!],"UQ(OC4 + 202 + 1)+ f(a?’@ — a?ag + &% — aary + aag + aly + arp + C1)
+g(—a*Ca + 2039( — 3G + 2a29¢ + aPag

—3a2é, — a®G + 209G + aary + aag — aly + 29¢ + ap — 3&1) = 0.
(A.13j)

As g is nonzero, we can assume that f = ¢(v)g, where ¢ # 0. The deter-

mining equations are reduced as follows.

(¢'g + 99" v(—aaz + an + &) + ¢g(aas — 2vas — an + 3&) + g(aiz + an) = 0,
(A.14a)

(/g + o' v(Pas — cvagy — &y + arz + as)
+og(—atas + 207an + aagy — 3ay + 2yan — 2yaxn — a1y —ay)  (A.14b)

+g(—aais — aas — 2a11 + 2a9) = 0,

(¢'g + 09" )v(a’Ce + a®ag — &+ alo + as — (1)

+dg(—a?Cy + 20279C — a*agr + 2ayan

(A.14c)
+aa — Taéy — ay + 2vag + 2961 + 29¢ — arz — an)
+9(—a*Cy — 2aa1y — aag —2ay +axn — & ~ () =0,
(¢'g + ¢g )w(a*Cy — PG + aPagy + 281 + a*C — aly + age + &)
+og(=atls + 2a39( + a?ar; — a?agy — 4a’E — ¢
’ (A.14d)

+2aryagy + 2007& +207(y — aaiy + 2vais — ass + 3&)

—9(043@ + @?arz + aag + afy + als + ap + asn) =0,

(¢'g + o9 )via(a 4+ 20 + 1) + dg(—a* Gy + 2039(, — ¢y
+2027¢1 + a?ay; — 3a2E, — PG + 2ay( — aayy — aag — aly + 29( + agy — 3&;)

+g(—a3l — a®ayy — @*( — aay + aagy — aly + as — () =0,
(A.14e)

gv(—aag + an + &) + glaas — 2yas; — asn + 3&1) =0, (A.14f)
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glv<_a3C2 + 042C1 — aag — aéy —als + ars + (1)
+¢g(—a?C + aas — azn — & — () (A.14g)

+9(a’C — 2a%7C + 4a&y + aly — 2yax — 29 — 27() = 0,

gv(aC + a?an — &*G + als + an — (1) + ¢g(a?Ce — aagr + asn + & + ()
+g(—aG + 2a%y(s — a?ay + 2ayay — aan

+20ag0 — Taéy — ay + 2vann + 27961 + 279G + ap + agr) =0,
(A.14h)

gv(a*Cy — a3 + alagy + a2y + a2C — aly + agn + &)
+oga(a?ly — aag + asn + & + G2) + g(—a’(e + 20°7( — 40?8 — a?G + 2aryas,

+2a7&1 + 2ay7C — aarp + 2yarp — apg + 3&) =0,
(A.14i)

gvG(at +2a% + 1) + ¢g(aCa — aPag + @*( — aay; + aax + aly + arp + )
+g(—a*l + 2039C — &G + 2029¢ + aPax

_304251 - 042@ + 207Co + @iy + @as — ol + 2v¢ + an — 351) =0.
(A.14))

From the determining equations, we need to study the following cases:

! / / /
1. <%) =0, and 2. (%) £ 0.

12 /
4c.1 Case (ﬂ> =0.
g

"y /
If (g_> = 0, then g = gyv"”, where gg # 0, k are constant. substituting this

9
into the determining equations, we obtain that as = (a(1 — k) — 2y)as; +

ka1 + (k4 3)& . From here, we need to study the following cases: a. ¢’ = 0,

and b. ¢ # 0.

4c.1.a Case ¢’ = 0.
1
If ¢’ =0, we obtain that ¢(; = as; — als and ay; = Z((2(2a —))as —

(@® +1)(k+3)(2). Consequently, & = }1(27@1 +(@® +1)(k —1)¢) and
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a12 = —asy. Aside from the studied subalgebra, we obtain the extension

11—k

XQ + X5 + X6 + X1X3 — X2X4.

4c.1.b Case ¢’ # 0.

If ¢’ # 0, there are no extensions obtained.

/

/
4c.2 Case (ﬂ> # 0.
g

/ /
If (ﬂ) # 0, then we get that a;; = aag — & and agg = (v — 27y)ag + 3.
g

Substituting these and analyzing the determining equations, it gives us that

_ G
$= 5

extensions are obtained other than the studied subalgebra.

and a1o = —a9;. Consequently, (; = 0 and (; = as;. No additional

Subalgebra 5. with generator vX, + X;.

For this case, the determining equations (5.14) become

2Fy 4+ 29F — G =0,

2Gy +29G =0
for which the general solution is
F(y,z) = (ug(2) + f(2))e™"," G(y, 2) = g(2)e™, (A.15)

where u = y/z and vg # 0 (vg = 0 makes system (5.1) equivalent to a reducible
case). These functions are substituted into the determining equations (5.2) and
are split with respect to y. Initial analysis results to as; = 0, (s = 0 and a;; = as.

The remaining determining equations become
F'22 (& 4 an) — f((2ya12 + az — 361)z + 29¢1) + 96 = 0, (A.16a)

9’2 (& + az) — g((27a12 + aze — 3&1)z + 29¢1) = 0. (A.16b)
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Now suppose f(z) = g(2)¢(z) (since g is nonzero) where ¢ # 0. If ¢/ = 0, using
equivalence transformation, system (5.1) is equivalent to a reducible system. Sub-
stituting f into equation (A.16a) and obtaining linear combinations with (A.16b),

equation (A.16a) is reduced to
@' (& + ags) + ¢ = 0. (A.17)

Looking closely at equations (A.16b) and (A.17), there is a need to study the
following 2 cases: 1. there exist at least one generator where & + age # 0, and 2.

all generators have & + ag = 0.

ba.l Case there exist at least one generator where &; + ag # 0.

@
For this case, we obtain the general solution ¢ = ¢0+2— and g = gozPe /7.
vz

Substituting these functions to equations (A.16b) and (A.17), we obtain that
_ Bagy + BE — ag + 38 _afaxn + &)
= and (; = ————=

2y 2y
generator is found,i.e.,

. One extension of the

12

X5 M 2’7X6 -+ (ﬁ - 1)X7

Ha.2 Case all generators have & + ay = 0.

2
For this case, we have £ = —a9y. Consequently, (; = 0 and a5 = é No

extensions of the studied subalgebra were found for this case.
Subalgebra 5. with generator v.X, + X, + X7.

For this case, the determining equations (5.14) become

2By + F, +2vF — G =0,
2Gy+ G, +279G =0

for which the general solution is

F(y,z) = (zg(u) + f())e™2?), Gy, z) = g(u)e =72, (A.18)
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where v = 22 — 2y and ¢’ # 0 (¢’ = 0 is equivalent to a degenerate case). These
functions are substituted into the determining equations (5.2), which is split with
respect to z after substitution of 2y = 2% — u. Initial analysis of the determining
equations yields ag; = 0, and a;; = 2a92+&;. The remaining determining equations

are
2f ((ase + &)u— C1) — 2f (vCo + az — &) — g(a12 — ¢2) =0, (A.19a)

2f (a12 — Q) +2fy(a+&)—2¢ ((axn+&)u—C)+9(2v¢G+axn—3&) =0, (A.19b)
g'(a12 = &) + gy(as + &) =0, (A.19¢)
24" ((age + &1 )u — Cu) — 9(27C2 + age — 3&1) = 0, (A.19d)

Dividing equation (A.19d) with ¢’ and differentiating with respect to u two times,

/! n
one is left to study the following 2 cases: 1. (%) # 0, and 2. (2) =0.
g

/

5b.1 Case (?)H #0
For this case, it follows from equation (A.19d) that asy = 3&; — 2v(s. Con-
sequently, from equation (A.19d), & = %’yég and (; = 0. Substituting these
into determining equations (A.19¢), we get that a;s = (5. These conditions
also satisfy equations (A.19a) and (A.19b). No other extensions were ob-

tained in this case.

"
5b.2 Case (2) = 0.
g/

For the second case, the form of g satisfies g = ¢/(ku + ) for which the

general solution will depend on k, i.e., i. kK #0 orii. kK = 0.

5b.2.i Case k # 0.

For r # 0 (with possible shifting leads to 8 = 0), the general solution of

g is gou”. Substituting this function into determining equations (A.19c)
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and (A.19d), one obtains a2 = (o and ¢; = 0, respectively. Con-

sequently from equation (A.19¢), there is a need to study 2 separate

cases of v, i.e., A. vy # 0, or B. y = 0.

5b.2.i.A Case v # 0.

5b.2.i.B

For this case, one has asy = —¢&;. Consequently from equation
(A.19d), one obtains & = 77@ This condition satisfies equation
(A.19b). Also, since v # 0, from equation (A.19a), one obtains
(2 = 0. From here, no extensions are obtained.

Case 7= 0.

For this case, as a consequence of equation (A.19d), either k = %
or K # % (Observe later that these 2 cases can be generalized.)
Itk = %, it follows that £, = 0. This also satisfies equation (A.19b).
From equation (A.19a), either f satisfies f'u—f # 0or fl'u—f =0.
For f'u— f # 0, it follows that ass = 0 and hence, no extensions

are obtained. For f'u — f = 0, the general solution is f = fyu.

Another extension of the generator is obtained here:

92X, + Xg.

1 2 3
If k # 27 it follows that asy = —%. This also satis-
/i —

fies equation (A.19b). Moreover, from equation (A.19a), either
1 1
f satisfies f'u — f(/€+§> # 0 or flu— f(/€+§> = 0. For
1
flu—f (Fa + 5) # 0, it follows that & = 0 and hence, no exten-
1

sions are obtained. For f'u— f (/{ + 5) = 0, the general solution is
1
K+ =

f = fou 2. Another extension of the generator is obtained here:

1
<§ —/‘i) —|—2X5—|—X6
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5b.2.ii Case k = 0.
When & = 0, then 8 # 0 and the general solution for g is goe®*. Sub-
stituting this into the determining equations (A.19d), one obtains that
G = %(251 — () and agy = —&. From equation (A.19c), one has
a2 = (2. These conditions also satisfy equation (A.19b). From (A.19a),

one needs to study if f' # Bf or f' = (f.

For f' # [f, one obtains & = ’YTCZ No extensions were found.

For f' = f, the general solution for is f = fye™. The extension
BXy + X3
is obtained.
Subalgebra 6. with generator vX, + X5 + X¢g + X7.

For this case, the determining equations (5.14) become

(y+2)Fy+2F.+ (2y—1)F -G =0,
(y+2)Gy+2G,+29G -G =0

for which the general solution is

F(y, 2) = ((y/2)glu) + f(u)el0IWD Gy, 2) = glu)e 200, (A.20)

where u = ze ¥%* and g # 0. These functions are again substituted into the
determining equations (5.2), which is split with respect to z after substitution of
y = z(Inz —Inw). Initial analysis of the determining equations yields as; = 0,

(=0, (1 =0, and aj; = asy. The remaining determining equations are

Ju(—a12 + an + &) — f(2y012 — a1z + azp — 36) (A.21a)

—¢' log(u)u(—ais + ass + &) + glog(u)(2vajs — ajp + aze — 3&;) =0,
g'u(—alz + ag9 + 51) — 9(2’7&12 — a2 + a9y — 351) =0. (A21b)

AN AN
From here, we study 2 cases: 1. (ﬂ) # 0 and 2. (%) = 0.
9
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/ /
6.1 Case (%) # 0.
g
For this case, equation (A.21b) gives a12 = age + &;. Consequently, we need
to study 2 cases of v, i.e., y =0o0r v # 0. If vy =0, then & = 0. If v # 0,

9 _
then ag = ﬂ These conditions also satisfy equation (A.21a). Both

g
cases of v result to having no extension of the generator.

/ /
6.2 Case (%) = 0.
g

For this case, the general solution of ¢ is ¢ = gou”. Substituting to equation
(A.21Db), one needs to separate 2 cases of k, i.e., i. K = 1 and ii. kK # 1.

(Observe later that these 2 cases can be generalized.)

6.2.1 Case K = 1.
From equation (A.21b), then it follows that a1 = 2751 (notice that v # 0
or else system (5.1) is equivalent to a degenerate case). Substituting this
into equation (A.21a), f is again separated into 2 cases, A. uf' — f # 0,
or B.uf — f=0.

6.2.i.A Case uf' — f #0.

2=7&

. 1 .
For this case, asy = . No extensions were found.
7

6.2.i.B Case uf"— f =0.
For this case, the general solution for f is f = fyu. The extension

of the generator

¥ X2 + X7
is obtained.
6.2.ii Case k # 1.
For this case, from equation (A.21Db),

a2 ((2y 4+ Kk — 1)aia — (K + 3)&1). Substituting this into equation

k—1
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(A.21a), f is again separated into 2 cases, A. uf’ — kf # 0, or B.
uf' — kf =0.
6.2.ii.A Case uf' — kf # 0.

Y12 )
. No extensions were found.

For this case, & =
6.2.ii.B Case uf' — kf = 0.
For this case, the general solution for f is f = fyu*. The extension

of the generator

X9 + X7,

where ¥ = 27 + k — 1, is obtained.
Subalgebra 7. with generator 7.X, + Xj.

For this case, the determining equations (5.14) become

F, + 2yF =0,

for which the general solution is
F(y,z) = f(z)e¥ Gy, z) = g(2)e~2", (A.22)

where gf’ # 0 and v # 0. If one of them is zero, then system (5.1) is equivalent
to a degenerate case. These functions are again substituted into the determining
equations (5.2) and are split with respect to y. The determining equations after

splitting with respect to y become
(G + (& + an)z) — f(2va122 + 279G + a — 3&) — gaz = 0, (A.23a)

G (G + (& + ax)z) — g(2ya12z + 271 + ase — 3&1) — fas =0, (A.23D)

flags = 2fy(an + &) =0, (A.23c)
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g'an —2g7v(ar1 + &) = 0. (A.23d)

From equations (A.23c) and (A.23c), there is a need to study if f'g —¢'f =0 or
fla—df #0.1If flg— g f =0 one has f = fog, where fy is constant. Notice
that this is equivalent to a degenerate case and hence, this case is omitted. Hence,
f'g — ¢ f # 0. From equations (A.23c) and (A.23c), one gets that ay; = 0 and

a;; = —&;. Substituting this into equations (A.23a) and (A.23b), one obtains
F(Go+ (&1 + ag)z) — 2f (varaz + 71 — 261) — gars =0, (A.24a)

9' (G + (&1 + ax)z) — g(2ya122 + 271 + az — 361) = 0. (A.24b)

We can suppose that f(z) = g(z)p(z), where ¢’ # 0 (as ¢ is nonzero). Substituting
this into equation (A.24a) and taking linear combinations with equation (A.24b),

equation (A.24a) is transformed into

¢,<C2 + (51 + QQQ)Z) + (51 —+ a22)¢ — Q12 = O, (A25)

From here, there is a need to study the following 3 cases: 1. there exist at
least one generator where & + ass # 0, 2. all generators have & + ass = 0 but

(s # 0 for at least one generator, and 3. all generators have & + aso = 0 and
G =0.
7.1 Case there exist at least one generator where & + as # 0.

For this case, we obtain (, = 0 (after possible shifting of z). Moreover, one

obtains that the forms of ¢ and g satisfy the equations

29" + ¢ = ¢p and

zg' — (2v¢oz + B)g = 0.

The general solution of this is ¢ = ¢ + a2l and g = goz’e*7%0%. Substituting
z

these functions into equation (A.24b), we obtain that a12 = ¢o(&1 +ase), and
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7.3
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1
(= 5 (B(&1 + ag2) — (age — 3&1)) . This gives one additional extension of
Y

the generator, (8 — 1) X3 + 27X + 27¢9 X7 or simply
(B—1)X3+5X6 + kX7,

where 4 = 27 # 0 and kK = 27y¢, are constant.

Case all generators have & + ay; = 0 but (; # 0 for at least one

generator.

For this case, it follows that as = —&;. Moreover, the forms of ¢ and g

satisfy the following equations

¢ = ¢o,
9 = (2v¢oz + B)g =0,
for which the general solution is ¢ = ¢gz + ¢; and g = goeﬂz+“’¢0z2, where
¢o # 0 (else, system (5.1) is equivalent to a degenerate case). Substituting
these functions into equation (A.24b), one obtains that a12 = ¢o(s and (3 =

1
B (B + 4&) . It yields an additional extension of the generator,
g

BX3+ 27Xy + 2790 X5
or simply
BX3 + Xy + 2k X7,

where ¥ = 27 # 0 and k = ¢ are constant.

Case all generators have & + as =0 and (5 = 0.

For this case, it follows that ass = —&; and (5 = 0. Consequently, from equa-
2

tion (A.24b), a1 = 0 and ¢ = é These conditions also satisfy equation
Y

(A.25). No extensions were found here.
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