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The purpose of this research is to provide a complete group classification of

systems of two linear second-order ordinary differential equations, and the group

classification of systems of two autonomous nonlinear second-order ordinary differ-

ential equations of the form y′′ = F(y). Prior to the classification of systems of two

autonomous nonlinear second-order ordinary differential equations, a preliminary

study on nonlinear systems of the form y′′ = F(x,y) is presented. The preliminary

study on nonlinear systems is also applicable for the group classification of linear

systems.

Ovsiannikov’s 2-step technique was mainly used to obtain the group clas-

sification. This approach involves simplifying the determining equations through

exploiting equivalence transformations and then solving for the reduced cases of

the generators. This allows one to study all possible admitted Lie algebras without

omission.
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CHAPTER I

INTRODUCTION

Systems of second-order ordinary differential equations arise in various real-

world applications and have been widely studied in many fields of science. They

possess many interesting features including symmetry properties. The presence of

symmetries allows the reduction of order of these differential equations, or even

makes it possible to find general solutions by quadratures.

Group classification studies, dating more than a century back, were first ini-

tiated by the founder of symmetry analysis, Sophus Lie (1883, 1891, 1884, 1881).

These studies were long forgotten until Ovsiannikov (1958, 1978) revived the work

around five decades ago. Lie’s works put emphasis on tackling the group clas-

sification in two ways: 1) the direct way and 2) the indirect way also known as

the algebraic approach. The direct way involves directly finding solutions of the

determining equations and allows one to study all possible admitted Lie algebras

without omission. On the other hand the indirect way involves solving the de-

termining equations up to finding relations between constants defining admitted

generators. The algebraic approach takes into account the algebraic properties of

an admitted Lie group and the knowledge of the algebraic structure of admitted

Lie algebras in order to allow group classification (Mahomed and Leach, 1989;

Gonzalez-Lopez et al., 1992; Popovych et al., 2010; Grigoriev et al., 2013). In

one of Lie’s works (Lie, 1883), he gave a complete group classification of a single

second-order ordinary differential equation of the form y′′ = f(x, y). Later on

Ovsiannikov (2004) did this group classification in a different way. The method
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he used, now also known as the direct approach, involved a two-step technique

where the determining equations were first simplified through exploiting equiva-

lence transformations and later on solved for the reduced cases of the generators.

The same technique was used in a study (Phauk, 2013) to classify a more general

case of equations of the form y′′ = P3(x, y; y
′), where P3(x, y; y

′) is a polynomial of

a third degree with respect to the first-order derivative y′. Sometimes it is difficult

to select or tease out equivalent cases with respect to equivalence transformations.

As similarly observed in the classification of a general scalar second-order ordinary

differential equation of the form y′′ = f(x, y; y′), the application of the direct tech-

nique gives rise to overwhelming difficulties. In this thesis, both the direct and

indirect techniques are employed, but mainly utilizing the direct method.

Apart from dealing with classification problems there is a significant amount

of research that deals with the dimension and structure of symmetry algebras of

linearizable ordinary differential equations (Gorringe and Leach, 1988; Mahomed

and Leach, 1989, 1990; Wafo Soh and Mahomed, 2000; Ibragimov, 1996; Boyko

et al., 2012). This is also of importance since some nonlinear equations appear in

disguised forms.

Published works (Wafo Soh, 2010; Meleshko, 2011; Boyko et al., 2012;

Campoamor-Stursberg, 2011, 2012) show results on systems of two second-order

ordinary differential equations with constant coefficients of the form

y′′ = My, (1.1)

where y =

 y

z

 and M is a matrix with constant entries. However, these papers

do not exhaust the set of all systems of linear second-order differential equations.

In our study (Meleshko et al., 2014), we presented the complete group classification

of these linear systems of two second-order ordinary differential equations with
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constant coefficients.

A study by Wafo Soh and Mahomed (2000) shows results of classification

of systems of two second-order linear ordinary differential equations of the form

y′′ =

 a(x) b(x)

c(x) −a(x)

y.

However, the list of all distinguished representatives of systems of two second-order

linear differential equations was not obtained in this paper.

Despite all these extensive studies, it was surprising that the group classi-

fication of systems of two nonlinear second-order ordinary differential equations

has not yet been exhausted. Even more surprising, both the group classification of

systems of two linear second-order ordinary differential equations and the group

classification of systems of two autonomous nonlinear second-order ordinary dif-

ferential equations of the form

y′′ = F(y) (1.2)

are not yet complete. Hence, this research considers the group classification of

systems of two linear second-order ordinary differential equations and systems of

two autonomous nonlinear of the form (1.2).

The systems studied here are generalizations of Lie’s study (Lie, 1891).

The degenerate case, which is equivalent to the following

y′′ = F (x, y, z), z′′ = 0, (1.3)

is omitted from this research. We call systems equivalent to (1.3) reducible sys-

tems, and irreducible otherwise.

This thesis is organized as follows. Chapter II introduces some background

knowledge of Lie group analysis. Chapter III presents an algorithm in finding an

admitted Lie group of a system of two linear second-order ordinary differential
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equations, followed by its classification. Chapter IV tackles the preliminary study

of systems of two nonlinear second-order ordinary differential equations, and is

followed by the subsequent group classification applied to autonomous systems of

two second-order ordinary differential equations of the form (1.2) in Chapter V.

Lastly, Chapter VI summarizes and concludes the results of the classifications.



CHAPTER II

GROUP ANALYSIS

In 1890, Sophus Lie, a Norwegian mathematician, introduced the theory of

continuous transformation groups which are now known as Lie groups. Lie group

analysis is a successful method for integration of linear and nonlinear differential

equations by using their symmetries. Later, these methods were applied to many

types of differential equations. An introduction to this method can be found in

textbooks (cf. Ovsiannikov (1978); Olver (1986); Ibragimov (1999)). A collection

of results by using this method is in the Handbooks of Lie Group Analysis (1994,

1995, 1996).

In this chapter, a review on some basic concepts of group analysis is given

such as a one-parameter Lie group, the Lie algebra of a generator, and invariant

solutions. Group classification is given in the last section.

In this thesis, the application of continuous groups to differential equations

makes no use of the global aspects of Lie groups. Hence, we focus only on local

Lie groups of transformations, and for brevity, such a group will be simply called

a Lie group or a group.

2.1 Lie Groups of Transformations

Definition 1. A group G is a set of elements with a law of composition ϕ between

elements satisfying the following axioms:

1. Closure property: For any element a and b of G, ϕ(a, b) is an element of G.
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2. Associative property: For any element a, b, and c of G,

ϕ(a, ϕ(b, c)) = ϕ(ϕ(a, b), c).

3. Identity element: There exists a unique identity element e of G such that

for any element a of G,

ϕ(a, e) = ϕ(e, a) = a.

4. Inverse element: For any element a of G there exists a unique inverse

element a−1 in G such that

ϕ(a, a−1) = ϕ(a−1, a) = e.

Definition 2. A subgroup of G is a group formed by a subset of elements of G

with the same law of composition ϕ.

Definition 3. Let z = (z1, z2, . . . , zN) lie in the region V ⊂ RN . The set of

transformations

z̄ = g(z; a),

defined for each z ∈ V, depending on parameter a ∈ △ ⊂ R, with ϕ(a, b) defining

a law of composition of parameters a and b ∈ △, as above, forms a group of

transformations on V if:

1. For each parameter a ∈ △ the transformations are one-to-one onto V , in

particular z̄ lies in V.

2. △ with the law of composition ϕ forms a group G.

3. z̄ = z when a = e, i.e.

g(z; e) = z.

4. If z̄ = g(z; a) and ¯̄z = g(z̄; b), then

¯̄z = g(z;ϕ(a, b)).
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2.1.1 One-Parameter Lie Group of Transformations

Definition 4. A group of transformations defines a one-parameter Lie group of

transformations if in addition to axioms 1-4 of Definition 3:

5. a is a continuous parameter, i.e. △ is an interval in R. Without loss of

generality a = 0 corresponds to the identity element e.

6. g is infinitely differentiable with respect to z ∈ V and an analytic function

of a ∈ △.

7. ϕ(a, b) is an analytic function of a and b, a ∈ △ and b ∈ △.

Due to the analyticity of the group operation ϕ, it is always possible to

reparametrize the Lie group in such a way that the group operation becomes the

ordinary sum in R (see proof in Bluman and Kumei, 1989).

2.2 Infinitesimal Transformations

Consider a one-parameter (a) Lie group of transformations

z̄ = g(z; a) (2.1)

with identity a = 0 and law of composition ϕ. Expanding equations (2.1) about

a = 0, we have (for some neighborhood of a = 0)

z̄ = z + a

(
∂g
∂a

(z; a)
∣∣∣∣
a=0

)
+
a2

2

(
∂2g
∂a2

(z; a)
∣∣∣∣
a=0

)
+ · · ·

= z + a

(
∂g
∂a

(z; a)
∣∣∣∣
a=0

)
+ O(a2).

(2.2)

Let

ξ(z) =
(
∂g
∂a

(z; a)
∣∣∣∣
a=0

)
. (2.3)

The transformation �z = z + aξ(z) is called the infinitesimal transformation of

the Lie group of transformations (2.1), and the components of ξ(z) are called the

infinitesimals of (2.1).
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2.2.1 First Fundamental Lie Theorem

Theorem 1 (First Fundamental Lie Theorem). The Lie group of transformations

(2.1) corresponds to the solution of the initial value problem for the system of first

order differential equations
dz̄
da

= ξ( �z), (2.4a)

with

z̄ = z when a = 0. (2.4b)

The tangent vector ξ(z) is written in the form of the first order differential

operator (the symbol in Lie’s notation)

X = ξ(z) · ∇ = ξ1(z)
∂

∂z1
+ · · ·+ ξN(z)

∂

∂zN

For any differentiable function F (z),

XF = ξ(z) · ∇F = ξ1(z)
∂F

∂z1
+ · · ·+ ξN(z)

∂F

∂zN

and in particular,

Xz = ξ(z).

A one-parameter Lie group of transformations, which by Theorem 1 corresponds

to its infinitesimal transformation, also corresponds to its infinitesimal operator.

The latter allows to represent the solution of the differential equations (2.4a) with

the initial conditions (2.4b) in terms of a Taylor series (exponential map)

z̄ = exp(aX)z = z + aXz +
a2

2
X2z + · · · =

∞∑
k=0

ak

k!
Xkz

where Xkz = X(Xk−1z), X0z = z.

2.3 Invariance of a Function

From here, we can introduce the concept of invariance of a function with

respect to a Lie group of transformations, and prove the related invariant criterion.



9

Definition 5. An infinitely differentiable function F (z) is said to be an invariant

function (or simply an invariant) of the Lie group of transformations (2.1) if and

only if for any group transformation (2.1), the condition

F (z) ≡ F (z)

holds true.

The invariance of the function is characterized in a very simple way by

means of the infinitesimal generator of the group, as the following theorem shows.

Theorem 2. F (z) is invariant under (2.1) if and only if

XF (z) = 0.

The invariance of a surface of RN with respect to a Lie group can also be

defined. A surface F (z) = 0 is said to be an invariant surface with respect to the

one-parameter Lie group (2.1) if F (z) = 0 when F (z) = 0. As a consequence of

Theorem 2, the following theorem immediately follows.

Theorem 3. A surface F (z) = 0 is invariant under (2.1) if and only if

XF (z) = 0 when F (z) = 0.

A Lie group of transformations may depend as well on many parameters,

z̄ = g(z; a) (2.5)

where a = (a1, a2, . . . , ar) ∈ △ ⊂ Rr. The infinitesimal matrix χ(z) is the r × N

matrix with entries

ξαj(z) =
∂z̄j
∂aα

∣∣∣∣
a=0

=
∂gj(x; a)
∂aα

∣∣∣∣
a=0
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(α = 1, . . . , r; j = 1, . . . , N) may be constructed, and for each parameter aα of the

r-parameter Lie group of transformations (2.5), the infinitesimal generator Xα

Xα =
N∑
j=1

ξαj(z)
∂

∂zj
(α = 1, . . . , r)

is defined. The infinitesimal generator

X =
r∑

α=1

σαXα =
N∑
j=1

ξj(z)
∂

∂zj
, ξj(z) =

r∑
α=1

σαξαj(z)

where σ1, . . . , σr are fixed real constants, in turn defines a one-parameter subgroup

of an r-parameter Lie group of transformations.

Now for a given system of differential equations ε, the variable z is

separated into two parts, z = (x,u) ∈ V ⊂ Rn × Rm, N = n + m. Here,

x = (x1, x2, . . . , xn) ∈ Rn is the independent variable, u = (u1, u2, . . . , um) ∈ Rm

is the dependent variable. The transformations (2.1) can be decomposed as

x̄ = φ(x,u; a),

ū = ψ(x,u; a).
(2.6)

Also, let

u = u0(x) = (u10(x), u20(x), . . . , um0 (x))

be a solution of the equations ε. A Lie group of transformation of the form (2.6)

admitted by ε has the two equivalent properties:

1. a transformation of the group maps any solution of ε into another solution

of ε;

2. a transformation of the group leaves ε invariant, say, ε reads the same in

terms of the variables (x,u) and in terms of the transformed variables (x,u).

The transformations (2.6) determine suitable transformations for the derivatives

of the dependent variables u with respect to the independent variables x. Let u(1)
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denote the set of all m · n first order partial derivatives of u with respect to x,

u(1) ≡
(
∂u1

∂x1
, · · · , ∂u

1

∂xn
, · · · , ∂u

m

∂x1
, · · · , ∂u

m

∂xn

)
and in general, let u(k) denote the set of all kth-order partial derivatives of u with

respect to x. The transformations of the derivatives of the dependent variables

lead to a natural extensions (prolongations) of the one-parameter Lie group of

transformations (2.6). While the one-parameter Lie group of transformations (2.6)

acts on the space (x,u), the extended group acts on the space (x,u,u(1)), and more

in general, on the jet space (x,u,u(1), . . . ,u(k)). Since all the information about

a Lie group of transformations is contained in its infinitesimal generator, we need

to compute its prolongations:

1. the first prolongation

X(1) = X +
m∑
j=1

n∑
i=1

ηj[i](x,u,u
(1))

∂

∂uji
, uji =

∂uj

∂xi

with

ηj[i](x,u,u
(1)) =

Dηj

Dxi
− Dξj
Dxi

∂uj

∂xj

2. the general kth-order prolongation recursively defined by

X(k) = X(k−1) +
m∑
j=1

n∑
i1=1

. . .

n∑
ik=1

ηj[i1,...,ik]
∂

∂uji1,...,ik
, uji1,...,ik =

∂kuj

∂xi1 . . . ∂xik

with

ηj[i1,...,ik] =
Dηj[i1,...,ik−1]

Dxik
− uji1,...,ik−1j

Dξj
Dxik

Note that the Lie derivative D
Dxi

is defined as

D

Dxi
=

∂

∂xi
+
∂uj

∂xi

∂

∂uj
+

∂2uj

∂xi∂xj

∂

∂ujj
+ . . . ,

and the Einstein convention of summation over repeated indices is used (and this

notation is adopted all throughout the manuscript).
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Remarkably, the search for one-parameter Lie groups of transformations

leaving differential equations invariant leads usually to r-parameter Lie groups of

transformations. Let

F(x,u,u(1), . . . ,u(k)) = 0 (2.7)

(F = (F1, . . . , Fq)) be a system of q differential equations of order k, with inde-

pendent variables x ∈ Rn and dependent variables u ∈ Rm. Suppose the system

is written in normal form, i.e., it is solved with respect to some partial derivatives

of order kv for v = 1, . . . , q:

Fv(x,u,u(1), . . . ,u(k)) ≡ ujvi1,...,ikv − fv(x,u,u(1), . . . ,u(k)) = 0. (2.8)

The equations (2.8) can be considered as characterizing a submanifold in the kth-

order jet space. One says that the one-parameter Lie group of transformations

(2.6) leaves the system (2.8) invariant (is admitted by (2.8)) if and only if its kth

prolongation leaves the submanifold of the jet space defined by (2.8) invariant.

2.4 Algorithm of Finding Lie Groups Admitted by Differ-

ential Equations

The following theorem, which is a consequence of Theorem 3, leads directly

to the algorithm for the computation of the infinitesimals admitted by a given

differential system.

Theorem 4 (Infinitesimal Criterion for differential equations). Let

X = ξi(x,u)
∂

∂xi
+ ηj(x,u) ∂

∂uj

be the infinitesimal generator corresponding to (2.6) and X(k) the kth prolonged

infinitesimal generator. The group (2.6) is admitted by the system (2.8) if and
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only if

X(k)F(x,u,u(1), . . . ,u(k)) = 0 whenever F(x,u,u(1), . . . ,u(k)) = 0. (2.9)

If the differential system is in polynomial form in the derivatives, then the

invariance condition (2.9) are polynomials in the derivative components, with co-

efficients expressed in linear combinations of the unknown ξi, η
j and their partial

derivatives. Using (2.8) to eliminate the derivatives ujvi1,...,ikv , the equations can be

split with respect to the components of the remaining derivatives of u that can

be arbitrarily varied (also called parametric derivatives). By equating the coeffi-

cients of these partial derivatives to zero, one obtains an overdetermined system

of linear differential equations for the infinitesimals (also called system of deter-

mining equations), whose integration leads to the infinitesimals of the group. The

infinitesimals involve arbitrary constants (and in some cases arbitrary functions)

and hence, we have de facto r-parameter Lie groups (infinite-parameter Lie groups

if arbitrary functions are involved). Note that the general solution of the deter-

mining equations generates a principal Lie algebra LS of the system ε. The set

of transformations, which is finitely generated by one-parameter Lie groups corre-

sponding to the generators X ∈ LS is called a principal Lie group admitted by

the system ε.

In this thesis, we limit ourselves to dealing with Lie groups of transfor-

mations admitted by differential equations with infinitesimals depending on the

independent and dependent variables only. These are called local Lie point sym-

metries. Symmetries where the infinitesimals may depend on first (respectively,

higher) order derivatives of the dependent variables with respect to the indepen-

dent variables are called contact (respectively, generalized) symmetries, and sym-

metries with infinitesimals depending also on integrals of dependent variables are

called nonlocal symmetries.
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2.5 Lie Algebras of a Generator

Definition 6 (Lie Algebra). The infinitesimal generators of an r-parameter Lie

group, being solutions of a linear system of partial differential equations, span an

r-dimensional vector space; by introducing an operation of commutation between

two infinitesimal generators,

[Xα, Xβ] = XαXβ −XβXα,

which is bilinear, antisymmetric and satisfies the Jacobi identity, say,

[[Xα, Xβ]Xγ] + [[Xβ, Xγ], Xα] + [[Xγ, Xα], Xβ] = 0,

the vector space of infinitesimal generators gains the structure of a Lie algebra.

It is worth to emphasize that the commutator of two infinitesimal generators

is invariant with respect to any invertible change of variables, and commutes with

the operation of prolongation.

Definition 7. A vector space L of generators is a Lie algebra if the commutator

[X1, X2] of any two generators X1 ∈ L and X2 ∈ L belongs to L.

Lemma 5. A commutator is invariant with respect to any change of variables.

For the proof of this, consider the change of variables z̃ = q(z). As the

generators are invariant with respect to this operation, it follows that X = X ′ =

X(qi)∂z̄i and Y = Y ′ = Y (qi)∂z̄i . Hence.

[X ′, Y ′] = (X ′(Y (qi))− Y ′(X(qi))) ∂z̄i

= (X(Y (qi))− Y (X(qi))) ∂z̄i = [X,Y ](qi)∂z̄i = [X, Y ]′.

Theorem 6. If a system ε admits generators X and Y , then it admits their

commutator [X,Y ].
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This theorem means that the vector space of all admitted generators is a Lie

algebra (admitted by the system ε). This algebra is called the principal algebra.

To construct exact solutions, one uses subalgebras of the admitted algebra.

Definition 8 (Subalgebra). A vector subspace L′ ⊂ L of Lie algebra L is called a

subalgebra if it is a Lie algebra,i.e., for arbitrary vectors Xα and Xβ from L′, their

commutator [Xα, Xβ] belongs to L′.

Definition 9 (Ideal). Let I ⊂ L be a subspace of Lie algebra L such that [X, Y ] ∈

I, ∀X ∈ I and ∀Y ∈ L holds. The subspace I is called an ideal.

Definition 10 (Similar Lie Algebras). Two Lie algebras L′ and L′′ are similar if

there exists a change of variables that transforms one into the other.

Hence, if Lie algebras L′ and L′′ are similar, then the generators X =

ζβ(z)∂zβ ∈ L′ and X̂ = ζ̂β(z̄)∂z̄β ∈ L′′ of these algebras are related by the formula

ζ̄β(z̄) = X(qβ(z))
∣∣
z=q−1(z̄)

.

A linear one-to-one map f of a Lie algebra L onto a Lie algebra K is called

an isomorphism (algebra L and K are said to be isomorphic) if

f([Xµ, Xν ]L) = [f(Xµ), f(Xν)]K ,

where the indices L and K are used to denote the commutator in the corresponding

algebra. An isomorphism of L onto itself is termed an automorphism. Therefore

the set of all subalgebras can be classified with respect to automorphisms.

If L is an r-dimensional vector space of infinitesimal generators closed un-

der the operation of commutation, i.e., L is an r-dimensional Lie algebra, and

{X1, . . . , Xr} is a basis, then

[Xα, Xβ] =
r∑

γ=1

Cγ
αβXγ
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with constant coefficients Cγ
αβ known as structure constants; they transform like

the components of a tensor under the changes of bases.

Notice that two Lie algebras are isomorphic if they have the same structure

constants in an appropriately chosen basis.

For a given Lie algebra Lr with basis {X1, X2, ..., Xr}, any X ∈ L is written

as

X = xµXµ.

Hence, elements of Lr are represented by vectors x = (x1, ..., xr). Let LAr be the

Lie algebra spanned by the following operators,

Eµ = cλµνxν
∂

∂xλ
, µ = 1, ..., r,

with the commutator defined as in Definition 6. The algebra LAr generates the

group GA of linear transformations of {xµ}. These transformations determine

automorphisms of the Lie algebra Lr known as inner automorphisms. This set is

denoted by Int(Lr). Accordingly, GA is called the group of inner automorphisms

of Lr, or the adjoint group of G. Any subalgebra Ls ⊂ Lr is transformed into a

similar subalgebra by an element of Int(Lr). Similarity is an equivalence relation;

the collection of similar subalgebras of the same dimension compose a class.

Definition 11 (Optimal System). A set of representatives from all classes is called

an optimal system of subalgebras.

Thus, an optimal system of subalgebras of a Lie algebra L with inner au-

tomorphisms A = Int(L) is a collection of subalgebras ΘA(L) such that

(1) No two elements of this collection can be transformed into each other by an

inner automorphism of the Lie algebra L.

(2) Every subalgebra of the Lie algebra L can be transformed into one of the

subalgebras of the set ΘA(L) by an inner automorphism.
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2.6 Use of Lie Symmetries of Differential Equations

The knowledge of Lie groups of transformations admitted by a given system

of differential equations can be used to

1. lower the order or eventually reduce the equation to quadrature, in the case

of ordinary differential equations; and

2. determine particular solutions, called invariant and partially-invariant solu-

tions, or generate new solutions, once a special solution is known, in the case

of ordinary or partial differential equations.

2.6.1 Invariant Solutions of Partial Differential Equations

The function u = u0(x) with components uj = uj0(x) (j = 1, . . . ,m), is

said to be an invariant solution of (2.7) if uj = uj0(x) is an invariant surface of

(2.6), and is a solution of (2.7), i.e., a solution is invariant if and only if

X(uj − uj0(x)) = 0 for uj = uj0(x) (j = 1, . . . ,m)

F(x,u,u(1), . . . ,u(k)) = 0.
(2.10)

The first equations of (2.10), called the invariant surface conditions, have the form

ξ1(x,u)
∂uj

∂x1
+ · · ·+ ξn(x,u)

∂uj

∂xn
= ηj(x,u) (j = 1, . . . ,m)

and are solved by introducing the corresponding characteristic equations:

dx1
ξ1(x,u)

= · · · = dxn
ξn(x,u)

=
du1

η1(x,u)
= · · · = dum

ηm(x,u)
.

This allows to express the solution u = u0(x) as

uj = ψj(I1(x,u), . . . , In−1(x,u)) (j = 1, . . . ,m).

By substituting this into the second equation of (2.10), a reduced system of differ-

ential equations involving (n−1) independent variables (called similarity variables)
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is obtained. The name similarity variables is due to the fact that the scaling in-

variance, i.e., the invariance under the similarity transformations, was one of the

first examples where this procedure has been used systematically.

2.7 Group Classification

Many differential equations involve arbitrary elements, constants, parame-

ters or functions, which need to be determined. Mainly, these arbitrary elements

are determined experimentally. However, the Lie group analysis has shown to

be a versatile tool in specifying the forms of these elements systematically. The

group classification problem consists of finding all principal Lie groups admitted

by a system of partial differential equations. Part of these groups is admitted

for all arbitrary elements. This part is called the kernel of admitted Lie groups.

Another part depends on the specification of the arbitrary elements. This part

contains nonequivalent extensions of the kernel. In this thesis, the system of

two linear second-order ordinary differential equations and the system of two au-

tonomous nonlinear second-order ordinary differential equations without the first-

order derivatives are the chosen functions for classification.

The first problem of group classification is constructing transformations

which change arbitrary elements, while preserving the differential structure of the

equations themselves. These transformations are called equivalence transforma-

tions. The group classification is regarded with respect to such transformations.

At the stage where one studies for the specific cases of arbitrary elements, it

is important to emphasize that there are several methods for solving the determin-

ing equations: i.e., using 1) the direct approach and/or 2) the algebraic approach.

The direct method involves utilizing equivalence transformations to obtain gen-

erators of simple equations, which later on are substituted into the determining
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equations in order to find extensions of the generators. On the other hand, the

algebraic approach involves solving the determining equations up to finding rela-

tions between constants defining admitted generators. This takes into account the

algebraic properties of an admitted Lie group and the knowledge of the algebraic

structure of the admitted Lie algebras. In this thesis, the direct method is mainly

implemented.

2.7.1 Equivalence Lie Group

Consider a system of differential equations:

F k(x, u, p, ϕ) = 0, (k = 1, . . . , s), (2.11)

where ϕ : V → Rt are arbitrary elements of system (2.11) and (x, u) ∈ V ⊂ Rn+m.

A nondegenerate change of dependent and independent variables that trans-

forms a system of differential equations (2.11) to a system of equations of the same

class or the same structure is called an equivalence transformation.

In order to find a Lie group of equivalence transformations, one must con-

struct a transformation of the space Rn+m+t(x, u, ϕ) that preserves the equations

whilst only changing their representative ϕ = ϕ(x, u). For this purpose, a one

parameter Lie group of transformations of the space Rn+m+t with the group pa-

rameter a is used. Suppose that the following transformations compose a Lie group

of equivalence transformations:

x̄ = fx(x, u, ϕ; a), ū = fu(x, u, ϕ; a), ϕ̄ = fϕ(x, u, ϕ; a). (2.12)

So the infinitesimal generator of this group (2.12) has the form

Xe = ξxi∂xi + ζu
j

∂uj + ζϕ
k

∂ϕk
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with the coefficients

ξxi =
∂fxi(x, u, ϕ; a)

∂a

∣∣∣∣
a=0

,

ζu
j

=
∂fu

j
(x, u, ϕ; a)

∂a

∣∣∣∣∣
a=0

,

ζϕ
k

=
∂fϕ

k
(x, u, ϕ; a)

∂a

∣∣∣∣∣
a=0

,

where i = 1, . . . , n; j = 1, . . . ,m; and k = 1, . . . , t. The main requirement for the

Lie group of equivalence transformations is that any solution u0(x) of the system

(2.11) with the functions ϕ(x, u) is transformed by (2.12) into a solution u = ua(x̄)

of the system (2.11) of the same equations F k but with other transformed functions

ϕa(x, u). The functions ϕa(x, u) are defined as follows. Solving the relations

x̄ = fx(x, u, ϕ(x, u); a), ū = fu(x, u, ϕ(x, u); a)

for (x, u), one obtains

x = gx(x̄, ū; a), u = gu(x̄, ū; a). (2.13)

The transformed function is

ϕa(x̄, ū) = fϕ(x, u, ϕ(x, u); a),

where instead of (x, u), one has to substitute the expressions (2.13). Because of

the definition of the function ϕa(x̄, ū), the identity with respect to x and u follows:

(ϕa ◦ (fx, fu))(x, u, ϕ(x, u); a) = fϕ(x, u, ϕ(x, u); a).

The transformed solution Ta(u) = ua(x) is obtained by solving the relations

x̄ = fx(x, u0(x), ϕ(x, u0(x)); a)

for x and substituting the solution x = ϕx(x̄; a) into

ua(x̄) = fu(x, u0(x), ϕ(x, u0(x)); a).
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As for the function ϕa, the following identity with respect to x follows:

(ua ◦ fx)(x, u0(x), ϕ(x, u0(x)); a) = fu(x, u0(x), ϕ(x, u0(x)); a). (2.14)

Formulae for transformations of the partial derivatives p̄a = f p(x, u, p, ϕ, . . . , a)

are obtained by differentiating (2.14) with respect to x̄.

Lemma 7. The transformations Ta(u), as constructed above, form a group.

The proof of this lemma follows from the property of a Lie group of trans-

formations and the sequence of the equalities

x̄ = fx(x, u0(x), ϕ(x, u0(x)); a), ua(x̄) = fu(x, u0(x), ϕ(x, u0(x)); a)

x̃ = fx(x̄, ua(x̄), ϕa(x̄, ua(x̄)); b), ub(x̃) = fu(x̄, ua(x̄), ϕa(x̄, ua(x̄)); b)

(ub ◦ fx)(x̄, ua(x̄), ϕa(x̄, ua(x̄)); b) = fu(x̄, ua(x̄), ϕa(x̄, ua(x̄)); b)

fu(fx(x, u0(x), ϕ(x, u0(x)); a), f
u(x, u0(x), ϕ(x, u0(x)); a),

fϕ(x, u0(x), ϕ(x, u0(x)); a); b) = fu(x, u0(x), ϕ(x, u0(x)); a+ b)

= (ua+b ◦ fx)(x, u0(x), ϕ(x, u0(x)); a+ b).

Since the transformed function ua(x̄) is a solution of system (2.11) and along with

the transformed arbitrary elements ϕa(x̄, ū), the equations

F k(x̄, uax̄, p̄a(x̄), ϕa(x̄, ua(x̄))) = 0, (k = 1, . . . , s)

are satisfied for any arbitrary x̄. By one-to-one correspondence between x and x̄,

it follows that

F k(fx(z(x); a), fu(z(x); a), f p(zp(x); a), f
ϕ(z(x))) = 0, (k = 1, . . . , s)

where z(x) = (x, u0(x), ϕ(x, u0(x))) and zp(x) = (x, u0(x), ϕ(x, u0(x)), p0(x), ...).

After differentiating these equations with respect to the group parameter a evalu-

ated at 0, one obtains an algorithm for finding equivalence transformations (2.12).
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The difference in the algorithms for obtaining an admitted Lie group and equiv-

alence group is only in the prolongation formulae of the infinitesimal generator.

Hence, after differentiating these equations with respect to the group parameter

a, the determining equations

X̃eF k(x, u, p, ϕ)
∣∣∣
ε
= 0 (k = 1, . . . , s) (2.15)

are obtained. The prolonged operator for the equivalence Lie group is

X̃e = Xe + ζux∂ux + ζϕx∂ϕx + ζϕu∂ϕu + ...

where the coordinates related to the dependent functions are

ζuλ = De
λζ

u − uxD
e
λξ

x, De
λ = ∂λ + uλ∂u + (ϕuuλ + ϕλ)∂ϕ,

where λ takes the values xi, (i = 1, . . . , n), and the coordinates related to the

arbitrary elements are

ζϕγ = D̃e
γζ

ϕ − ϕxD̃
e
γξ
x − ϕuD̃

e
γζ

u, D̃e
γ = ∂γ + ϕγ∂ϕ,

where γ takes the values xi and uj (i = 1, . . . , n, j = 1, . . . ,m). The sign |ε

means that the equations X̃eF k(x, u, p, ϕ) are considered on any solution u0(x) of

system (2.11). The solution of the determining equations (2.15) gives the coeffi-

cients of the infinitesimal generator. The set of transformations, which is finitely

generated by one-parameter Lie groups corresponding to the generators Xe, is

called an equivalence group. This group is denoted by GSe.

Theorem 8. The kernel of the principal Lie groups is included in the equivalence

group GSe.

The kernel and the equivalence group GSe are considered in the same ap-

proach.
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Remark 1. In some cases, additional requirements are included for arbitrary

elements. For example, it is supposed that the arbitrary elements ϕu do not

depend on the independent variables, i.e. ∂ϕu

∂xk
= 0. These conditions have to be

appended to the original system of differential equations (2.11). These lead to

additional determining equations.



CHAPTER III

APPLICATION OF GROUP ANALYSIS TO

LINEAR SYSTEMS

The general form of a system of two linear second-order ordinary differential

equations is

y′′ = B(x)y′ + A(x)y + f(x), (3.1)

where A(x) and B(x) are 2 × 2 matrices and f(x) is a vector. In studying sym-

metries, it is convenient to rewrite equations in their simplest equivalent form.

Hence, a simpler equivalent form of (3.1) is sought first before proceeding to the

group classification.

Using a particular solution yp(x) and the change y = ỹ + yp, without loss

of generality, it can be assumed that f(x) = 0. Applying the change y = C(x)ỹ,

where C = C(x) is a nonsingular matrix, system (3.1) becomes

ỹ′′ = B̃(x)ỹ′ + Ã(x)ỹ, (3.2)

where B̃ = C−1(BC − 2C ′) and Ã = C−1(AC + BC ′ − C ′′). If one chooses the

matrix C(x) such that C ′ =
1

2
BC, then B̃ = 0 and Ã = C−1

(
A+

1

4
B2 − 1

2
B′

)
C.

The existence of the nonsingular matrix C(x) is guaranteed by the existence of

the solution of the Cauchy problem C ′ =
1

2
BC

C(0) = I2,

where I2 is the unit 2 × 2 matrix. Notice that if the matrices A and B are

constant, then the matrix Ã in (3.2) is constant only for commuting matrices A
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and B. The complete study of noncommutative constant matrices A and B was

done in (Meleshko et al., 2014). Without loss of generality up to equivalence

transformations in the class of systems of the form (3.1), it suffices to study the

systems of the form

ỹ′′ = Ã(x)ỹ. (3.3)

Note that the above process of simplification of the 2×2 systems of the form (3.1)

to systems of the form (3.3) can be extended to any n× n linear system.

Therefore, the classical group analysis method, which is described in detail

in the succeeding sections, is applied to the system of equations

y′′ = Ay, (3.4)

where y =

 y

z

 and A =

 a11(x) a12(x)

a21(x) a22(x)

. Another similar notation is also

used in this thesis, i.e.,

y′′ = F(x,y), (3.5)

where y =

 y

z

 and F(x,y) =

 F (x, y, z)

G(x, y, z)

 where

 F (x, y, z) = a11(x)y + a12(x)z

G(x, y, z) = a21(x)y + a22(x)z.
(3.6)

Before finding the admitted Lie algebras of the linear system, it is essential

to compute the equivalence transformations of the given system.

Notice also that every system of linear equations (3.4) admits the following

generators:

y∂y + z∂z, (3.7)

ζ1(x)∂y + ζ2(x)∂z, (3.8)
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where (3.7) is the homogeneity symmetry, and ζ1(x) and ζ2(x) are solutions of the

equations (3.4), i.e.,

ζ ′′1 = a11(x)ζ1 + a12(x)ζ2, ζ ′′2 = a21(x)ζ1 + a22(x)ζ2.

Thus, for the classification problem, one needs to study systems of linear equations

(3.4) which admit generators apart from (3.7) and (3.8).

3.1 Equivalence Transformations of (3.4)

Consider the linear system (3.4). Equivalence transformations of the stud-

ied system of equations are considered in this section. The arbitrary elements are

the functions aij(x), where the indices i and j run over the values 1 to 2 (For this

chapter, i, j = 1, 2 is applied to all texts.). The generator of the equivalence Lie

group is assumed to be in the form

Xe = ξ∂x + ηy∂y + ηz∂z + ζaij∂aij ,

where the coefficients ξ, ηy, ηz, and ζaij ’s depend on the variables x, y, z, and

aij’s. Note here that the summation with respect to repeated indices is assumed

over i, j = 1, 2. The prolonged operator is

X̃e = Xe + ηy
′
∂y′ + ηz

′
∂z′ + ηy

′′
∂y′′ + ηz

′′
∂z′′ + ζaijx∂aijx + ζaijy∂aijy + ζaijz∂aijz .

Note that the conditions ∂aij
∂y

= 0 and ∂aij
∂z

= 0 are appended to the original

system. The coefficients of the prolonged generator are

ηy
′
= De

xη
y − y′De

xξ, ηy
′′
= De

xη
y′ − y′′De

xξ,

ηz
′
= De

xη
z − z′De

xξ, ηz
′′
= De

xη
z′ − z′′De

xξ,

ζaijx = D̃e
xζ

aij − a′ijD̃
e
xξ, ζaijy = D̃e

yζ
aij − a′ijD̃

e
yξ,

ζaijz = D̃e
zζ
aij − a′ijD̃

e
zξ.
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Here, the operators De
x, D̃

e
x, D̃

e
y and D̃e

z are

De
x = ∂x + y′∂y + z′∂z + y′′∂y′ + z′′∂z′ + a′ij∂aij + a′′ij∂a′ij ,

D̃e
x = ∂x + a′ij∂aij ,

D̃e
y = ∂y,

D̃e
z = ∂z.

The determining equations of the equivalence Lie group become

(
ηy

′′ − ζa11y − ζa12z − a11η
y − a12η

z
)
|y′′=Ay = 0,(

ηz
′′ − ζa21y − ζa22z − a21η

y − a22η
z
)
|y′′=Ay = 0.

After substitutions of ηy′ , ηy′′ , ηz′ , ηz′′ , ζaijx , ζaijy , and ζaijz and the transition

onto the manifold y′′ = Ay, the determining equations are split with respect to

the variables y′, a′ij’s, and a′′ij’s. Initial analysis of the split determining equations

leads to conditions that ζaij ’s do not depend on y and z, ηy and ηz do not depend

on the aij’s, and ξ do not depend on y, z and aij’s. From here, it follows that

ξ = ξ(x). As a result, the remaining determining equations are as follows:

ηyyy = 0, ηyzz = 0, ηyyz = 0, ηyxz = 0, 2ηyxy − ξ′′ = 0,

ηzyy = 0, ηzzz = 0, ηzyz = 0, ηzxy = 0, 2ηzxz − ξ′′ = 0,
(3.9a)

ηyxx + ηyya11y + ηyya12z + ηyza21y + ηyza22z − 2ξ′a11y − 2ξ′a12z

− a11η
y − a12η

z − ζa11y − ζa12z = 0,

(3.9b)

ηzxx + ηzya11y + ηzya12z + ηzza21y + ηzza22z − 2ξ′a21y − 2ξ′a22z

− a21η
y − a22η

z − ζa21y − ζa22z = 0.

(3.9c)

Solving equations (3.9a), it follows that

ηy = 1
2
ξ′y + k1y + k2z + ζ1(x),

ηz = 1
2
ξ′z + k3z + k4y + ζ2(x),
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where kl’s (l = 1, . . . , 4) are constant. Substituting these into equations (3.9b) and

(3.9c), and splitting these equations further with respect to y and z, the following

solutions are obtained:

ζa11 = 1
2
ξ′′′ − 2ξ′a11 − a12k4 + a21k2,

ζa12 = −2ξ′a12 + (a22 − a11)k2 + a12(k1 − k3),

ζa21 = −2ξ′a21 − (a22 − a11)k4 − a21(k1 − k3),

ζa22 = 1
2
ξ′′′ − 2ξ′a22 + a12k4 − a21k2.

Note also that ζ1(x) and ζ2(x) are solutions of the linear system (3.4), i.e.,

ζ ′′1 = a11(x)ζ1 + a12(x)ζ2, ζ ′′2 = a21(x)ζ1 + a22(x)ζ2.

From the above calculations*, it is shown that the equivalence Lie group of system

(3.4) is defined by the following generators:

Xe
1 : z∂y + a21∂a11 + (a22 − a11)∂a12 − a21∂a22

Xe
2 : y∂z − a12∂a11 + (a11 − a22)∂a21 − a12∂a22

Xe
3 : y∂y + z∂z

Xe
4 : y∂y − z∂z + 2(a12∂a12 − a21∂a21)

Xe
5 : 2ξ∂x + ξ′(y∂y + z∂z) + (ξ′′′ − 4ξ′a11)∂a11

−4ξ′a12∂a12 − 4ξ′a21∂a21 + (ξ′′′ − 4ξ′a22)∂a22

where ξ = ξ(x) is an arbitrary function.

The transformations corresponding to the generators Xe
1 , Xe

2 , Xe
3 and Xe

4

define the linear changes of dependent variables ỹ = Py with a constant non-

singular matrix P . The transformations corresponding to Xe
5 are x̃ = φ(x), ỹ =

yψ(x), z̃ = zψ(x) where the functions φ(t) and ψ(t) satisfy the condition

φ′′

φ′ = 2
ψ′

ψ
.

*Computations were solved manually and were verified using the symbolic manipulation pro-

gram REDUCE (Free CSL version 07-Oct-10).
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Now that the equivalence transformations are obtained, then we are more

than equipped to begin finding the admitted Lie algebras of the linear system

(3.4).

3.2 Admitted Lie Group of the Linear System (3.4)

Admitted generators are sought in this form

X = ξ(x, y, z)
∂

∂x
+ ηy(x, y, z)

∂

∂y
+ ηz(x, y, z)

∂

∂z
. (3.10)

The prolonged operator for this equation is

X̃ = X + ηy
′
∂y′ + ηz

′
∂z′ + ηy

′′
∂y′′ + ηz

′′
∂z′′ (3.11)

with the coefficients

ηy
′
= Dxη

y − y′Dxξ, ηy
′′
= Dxη

y′ − y′′Dxξ,

ηz
′
= Dxη

z − z′Dxξ, ηz
′′
= Dxη

z′ − z′′Dxξ,

where

Dx = ∂x + y′∂y + z′∂z + y′′∂y′ + z′′∂z′ .

According to the Lie algorithm (Ovsiannikov, 1978), X is admitted by the

system (3.4) if it satisfies the associated determining equations, i.e., the generator

(3.10) is admitted by the equations (3.4) if and only if

[X̃(y′′ − Ay)]|[y′′=Ay] = 0.

The latter equations become

[ηy
′′ − a11(x)η

y − a12(x)η
z − ξ(a′11(x)y + a′12z)]

∣∣
y′′=Ay = 0,

[ηz
′′ − a21(x)η

y − a22(x)η
z − ξ(a′21(x)y + a′22z)]

∣∣
y′′=Ay = 0.

After substituting the coefficients ηy′′ , ηz′′ and the differential equations y′′ = Ay,

and splitting with respect to the parametric derivatives y′ and z′, the first part of
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the determining equations are as follows:

ξyy = 0, ξzz = 0, ξyz = 0,

ηyyy = 2ξxy, ηyyz = ξxz, ηyzz = 0,

ηzyy = 0, ηzyz = ξxy, ηzzz = 2ξxz.

(3.12)

The general solution of the first three (3) equations of (3.12) is

ξ = ξ1(x)y + ξ2(x)z + ξ0(x). (3.13)

Substituting equation (3.13) into the last six (6) equations of (3.12), the general

solutions of ηy and ηz are obtained as follows

ηy = 2ξ′1(x)y + ξ′2(x)yz + η1(x) + η11(x)y + η12(x)z,

ηz = 2ξ′2(x)z + ξ′1(x)yz + η2(x) + η21(x)y + η22(x)z.
(3.14)

Substituting the general solutions of ξ, ηy and ηz into the remaining unlisted

determining equations, one obtains the following:

3ξ′′1y + ξ′′2z − ξ′′0 + 2η′11 − 3a11ξ1y − 3a12ξ1z − a21ξ2y − a22ξ2z = 0, (3.15)

2ξ′′2y + η′12 − a11ξ2y − a12ξ2z = 0, (3.16)

2ξ′′1z + η′21 − a21ξ1y − a22ξ1z = 0, (3.17)

3ξ′′2z + ξ′′1y − ξ′′0 + 2η′22 − a11ξ1y − a12ξ1z − 3a21ξ2y − 3a22ξ2z = 0, (3.18)

−a′11zyξ2 − a′11y
2ξ1 − a′11yξ0 − a′12z

2ξ2 − a′12zyξ1 − a′12zξ0

−2ξ′0za12 − 2ξ′0ya11 + ξ′′′1 y
2 − ξ′1zya12 − ξ′1y

2a11 + ξ′′′2 zy − 2ξ′2z
2a12

−2ξ′2zya11 + ξ′2zya22 + ξ′2y
2a21 + η′′1 + η′′11y + η′′12z − za11η12 + za12η11

−za12η22 + za22η12 − ya12η21 + ya21η12 − a11η1 − a12η2 = 0,

−a′21zyξ2 − a′21y
2ξ1 − a′21yξ0 − a′22z

2ξ2 − a′22zyξ1 − a′22zξ0 − 2ξ′0za22

−2ξ′0ya21 + ξ′′′1 zy + ξ′1z
2a12 + ξ′1zya11 − 2ξ′1zya22 − 2ξ′1y

2a21 + ξ′′′2 z
2

−ξ′2z2a22 − ξ′2zya21 + η′′2 + η′′21y + η′′22z + za12η21 − za21η12 + ya11η21

−ya21η11 + ya21η22 − ya22η21 − a21η1 − a22η2 = 0.

(3.19)
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Equations (3.16) and (3.17) can be split with respect to y and z. Hence, one

obtains the following:

ξ1 = ξ2 = 0, η12 = c1, η21 = c2, (3.20)

where c1 and c2 are constant. Substituting equations (3.20) into equations (3.15)

and (3.18), one obtains the relations

η11 =
1

2
ξ′0 + c3, η22 =

1

2
ξ′0 + c4, (3.21)

where c3 and c4 are constant. Substituting equations (3.20) and (3.21) into equa-

tions (3.19), collecting terms, renaming ξ0(x) as ξ(x), and keeping in mind that

F = a11y + a12z and G = a21y + a22z, the remaining determining equations are of

the form

Fy(y(ξ
′ + k1) + zk2 + η1) + Fz(z(ξ

′ + k4) + yk3 + η2) + 2Fxξ =

ξ′′′y + η′′1 + F (k1 − 3ξ′) +Gk2

(3.22)

Gy(y(ξ
′ + k1) + zk2 + η1) +Gz(z(ξ

′ + k4) + yk3 + η2) + 2Gxξ =

ξ′′′z + η′′2 +G(k4 − 3ξ′) + Fk3.

(3.23)

The admitted generator for this has the form

X = 2ξ(x)∂x + (yξ′ + yk1 + zk2 + η1(x))∂y + (zξ′ + zk4 + yk3 + η2(x))∂z (3.24)

where kl, (l = 1, ..., 4) are constant, and ξ, η1 and η2 are some functions of x. From

here, the determining equations (3.22) and (3.23) are analyzed through separating

them into 2 cases:

1. there exists a generator with ξ ̸= 0 in the admitted Lie algebra; and

2. ξ = 0 for all generators of the admitted Lie algebra.
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3.2.1 Case ξ ̸= 0

Consider the generator (3.24) for which ξ ̸= 0 in the admitted Lie algebra.

Using the equivalence transformation

y1 = y + ϕ(x), z1 = z + ψ(x),

the generator X becomes

X = 2ξ(x)∂x + (y1ξ
′ − ξ′ϕ+ 2ξϕ′ + y1k1 − ϕk1 + z1k2 − ψk2 + η1(x))∂y1

+(z1ξ
′ − ξ′ψ + 2ξψ′ + z1k4 − ψk4 + y1k3 − ϕk3 + η2(x))∂z1 .

One can choose the functions ϕ(x) and ψ(x) such that

2ξϕ′ − ξ′ϕ− ϕk1 − ψk2 + η1(x) = 0,

2ξψ′ − ξ′ψ − ψk4 − ϕk3 + η2(x) = 0.

The generator X is then reduced to

X = 2ξ∂x + (y1ξ
′ + y1k1 + z1k2)∂y1 + (z1ξ

′ + z1k4 + y1k3)∂z1 .

Using the equivalence transformation

x2 = α(x), y2 = y1β(x), z2 = z1β(x),

where

α′′β = 2α′β′, (α′β ̸= 0),

the generator X is reduced further to

X = 2α′ξ∂x2 + ((2ξβ′/β + ξ′ + k1)y2 + z2k2)∂y2 + ((2ξβ′/β + ξ′ + k4)z2 + y2k3)∂z2 .

Choosing β(x) such that 2ξβ′/β + ξ′ = 0, the generator X is reduced to

X = 2α′ξ∂x2 + (k1y2 + k2z2)∂y2 + (k4z2 + k3y2)∂z2 .

Notice that in this case
d(α′ξ)

dx2
= 0,
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i.e.,
d(α′ξ)

dx2
=

(α′ξ)′

α′ = ξ′ +
α′′ξ

α′ = −2ξ
β′

β
+ 2ξ

β′

β
= 0.

Thus, the generator X becomes

X = k∂x2 + (k1y2 + k2z2)∂y2 + (k4z2 + k3y2)∂z2 ,

where k = 2α′ξ ̸= 0 is a constant. Rewriting, the generator X follows the form

X = ∂x + (k1y + k2z)∂y + (k3y + k4z)∂z, (3.25)

for which the determining equations are

Fy(k1y + k2z) + Fz(k3y + k4z) + Fx = k1F + k2G, (3.26)

Gy(k1y + k2z) +Gz(k3y + k4z) +Gx = k3F + k4G (3.27)

or simply

(Ay) · ∇F + Fx = AF, (3.28)

where A =

 k1 k2

k3 k4

, ∇ =

 ∂y

∂z

, and “·” denotes the dot product.

Further simplifications are related to the simplification of the matrix A.

Using the equivalence transformation ỹ = Py, where P =

 p11 p12

p21 p22

 is a

nonsingular constant matrix, equations (3.4) become ỹ = F̃(x, ỹ), where

F̃(x, ỹ) = PF(x,P−1ỹ).

The partial derivatives with respect to the variables y are changed as follows

b · ∇ = (Pb) · ∇̃.

With this, equations (3.28) are changed as follows

(AP−1ỹ) · ∇̃
(
P−1F̃

)
+ P−1F̃x − AP−1F̃

= P−1((PAP−1ỹ) · ∇̃F̃ + F̃x − PAP−1F̃)

= P−1((Ãỹ) · ∇̃F̃ + F̃x − ÃF̃) = 0.
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This means that the change ỹ = Py reduces equations (3.28) to the same form

with the matrix A changed. The generator (3.25) is also changed to the same form

with the matrix A changed:

X = ∂x + (Ãỹ)∇̃. (3.29)

Using this change, the matrix A can be represented in its Jordan form. For a

real-valued 2× 2 matrix A, the real-valued Jordan matrix is of the following three

types:

J1 =

 a 0

0 b

 J2 =

 a c

−c a

 J3 =

 a 1

0 a

 , (3.30)

where a, b, c are real numbers and c > 0. Also, c can be reduced to 1 using a

dilation of x.

3.2.1.1 Case A = J1

In this case, the determining equations (3.28) become

aa11y + ba12z + a′11y + a′12z − aa11y − aa12z = 0,

aa21y + ba22z + a′21y + a′22z − ba21y − ba22z = 0.

Splitting these equations with respect to y and z, the following conditions are

satisfied
a′11 = 0, a′12 = (a− b)a12,

a′22 = 0, a′21 = (b− a)a21.

These conditions give the form of F and G as

F (x, y, z) = c1y + c2e
αxz,

G(x, y, z) = c3e
−αxy + c4z,

where α = a − b, and c′is (i = 1, 2, 3, 4) are constant. Note that if c2 = c3 = 0,

then the system of equations is a linear system with constant coefficients, which is



35

not in the scope of this research as this has already been studied (Wafo Soh, 2010;

Meleshko, 2011). This is also true if α = 0. Hence, without loss of generality, one

can assume that αc2 ̸= 0. Using a dilation of x and then z, one can assume that

α = c2 = 1. Thus,
F (x, y, z) = c1y + exz,

G(x, y, z) = c3e
−xy + c4z.

Since for c3 = 0 the system of equations are reduced to the case where G = 0,

then one can also assume that c3 ̸= 0. From (3.29) with A = J1, one obtains

X = ∂x + ay∂y + (a− 1)z∂z.

Disregarding the trivial generator, the additional nontrivial generator

∂x − z∂z

is found.

3.2.1.2 Case A = J2

In this case, the determining equations (3.28) become

(ay + cz)a11 + (−cy + az)a12 + a′11y + a′12z − aa11y − aa12z − ca21y − ca22z = 0,

(ay + cz)a21 + (−cy + az)a22 + a′21y + a′22z + ca11y + ca12z − aa21y − aa22z = 0.

Splitting these equations with respect to y and z, the following conditions are

satisfied
a′11 = c(a12 + a21), a′12 = c(a22 − a11),

a′22 = −c(a12 + a21), a′21 = c(a22 − a11).

These give the following relations

a22 = −a11 + 2c1, a21 = a12 + 2c2,

which lead to finding the solution of the following first order system of equations

a′11 = c(2a21 + 2c2), a′12 = c(−2a11 + 2c1).
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The general solution of these equations is

a11 = c0 sin(2cx) + c3 cos(2cx) + c1,

a12 = c0 cos(2cx)− c3 sin(2cx)− c2,

which give the general form of F and G as

F (x, y, z) = (c0 sin(2cx) + c3 cos(2cx) + c1)y + (c0 cos(2cx)− c3 sin(2cx)− c2)z,

G(x, y, z) = (c0 cos(2cx)− c3 sin(2cx) + c2)y + (−c0 sin(2cx)− c3 cos(2cx) + c1)z,

where c′is (i = 0, 1, 2, 3) are constant. Notice that if c3 ̸= 0, then the change

ỹ = Py with the matrix

P =

 cos(2θ) sin(2θ)

− sin(2θ) cos(2θ)


and the angle θ satisfying the equation c3τ 4 − 4c0τ

3 − 6c3τ
2 + 4c0τ + c3 = 0, with

τ = tan(θ), reduces the functions F and G to the form

F (x, y, z) = (c0 sin(2cx) + c1)y + (c0 cos(2cx)− c2)z,

G(x, y, z) = (c0 cos(2cx) + c2)y + (−c0 sin(2cx) + c1)z.

Hence, without loss of generality, one can choose c3 = 0. Note also that if c0 = 0,

the system is reduced to a system of linear equations with constant coefficients,

which is omitted in this study. Hence, one has to consider that c0 ̸= 0. Without

loss of generality, one can also set that c0 = 2c = 1. Thus, the system (3.2.1.2) is

reduced to
F (x, y, z) = (sin(x) + c1)y + (cos(x)− c2)z,

G(x, y, z) = (cos(x) + c2)y + (− sin(x) + c1)z.

From (3.29) with A = J2, the form of X is

2∂x + (2ay + z)∂y + (2az − y)∂z.

Disregarding the trivial generator, the additional generator

2∂x + z∂y − y∂z

is obtained in this case.
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3.2.1.3 Case A = J3

In this case, the determining equations (3.28) become

(ay + z)a11 + aa12z + a′11y + a′12z − aa11y − aa12z − a21y − a22z = 0,

(ay + z)a21 + aa22z + a′21y + a′22z − aa21y − aa22z = 0.

Splitting these equations with respect to y and z, the following conditions are

satisfied
a′11 = a21, a′12 = a22 − a11,

a′22 = −a21, a′21 = 0,

which give us the form of F and G:

F (x, y, z) = (c3x+ c1)y + (−c3x2 + (c4 − c1)x+ c2)z,

G(x, y, z) = c3y + (−c3x+ c4)z,

where c′is (i = 1, 2, 3, 4) are constant. Notice that for c3 = 0, one has G = c4z.

Using an equivalence transformation, G = 0. This case is omitted in this study.

Hence, one has to assume that c3 ̸= 0. Without loss of generality, set c3 = 1.

Hence,
F (x, y, z) = (x+ c1)y + (−x2 + (c4 − c1)x+ c2)z,

G(x, y, z) = y + (−x+ c4)z.

From (3.29) with A = J3, one obtains

X = ∂x + (ay + z)∂y + az∂z.

Disregarding the trivial generator, the additional nontrivial generator

∂x + z∂y

is obtained.
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3.2.2 Case ξ = 0

Consider all generators (3.24) of the admitted Lie algebra for which ξ = 0.

For this case, the determining equations (3.22) and (3.23) are reduced to

Fy(k1y + k2z + η1) + Fz(k3y + k4z + η2) = η′′1 + k1F + k2G, (3.31)

Gy(k1y + k2z + η1) +Gz(k3y + k4z + η2) = η′′2 + k3F + k4G (3.32)

or simply

(Ay + k) · ∇F = AF + k′′,

where A =

 k1 k2

k3 k4

, k =

 η1(x)

η2(x)

, ∇ =

 ∂y

∂z

. The admitted generator

is rewritten as

X = (k1 y + k2 z + η1(x)) ∂y + (k3 y + k4 z + η2(x)) ∂z.

Substituting the functions (3.6) into the determining equations (3.31) and (3.32)

and splitting with respect to y and z, one has

a21k2 − a12k3 = 0,

(a11 − a22)k2 + (k4 − k1)a12 = 0,

(k1 − k4)a21 + (a22 − a11)k3 = 0,

(3.33)

a11η1 + a12η2 = η′′1 , a21η1 + a22η2 = η′′2 . (3.34)

Equations (3.34) define the trivial set of generators. The nontrivial generators

X = (yk1 + zk2)∂y + (yk3 + zk4)∂z (3.35)

are defined by the equations (3.33). Similar to the case where one admitted gen-

erator has ξ ̸= 0, equations (3.33) are simplified by using the Jordan form of the

matrix A.
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3.2.2.1 Case A = J1

For this case, equations (3.33) become

(b− a)a12 = 0, (a− b)a21 = 0.

Since for b = a the generator (3.35) is also trivial, one has to assume that b ̸= a.

The last condition gives

a12 = 0, a21 = 0.

In this case, the linear system of equations (3.4) is reduced to the degenerate case

with G = 0. Hence, no additional nontrivial generators are found.

3.2.2.2 Case A = J2

For this case, equations (3.33) become

a11 − a22 = 0, a12 + a21 = 0.

Here one has to assume that a12 ̸= 0, else it is reduced to a degenerate form. Using

the equivalence transformation of the form

x̃ = φ(x), ỹ = yψ(x), z̃ = zψ(x)

where φ
′′

φ′ = 2
ψ′

ψ
, one can reduce a12 = 1. Also in this case one also has to assume

that a′11 ̸= 0, else it is equivalent to a degenerate case. Hence,

F (x, y, z) = a11y + z,

G(x, y, z) = −y + a11z.

The form of X is

(ay + cz)∂y + (az − cy)∂z.

Excluding the trivial generator y∂y + z∂z, the nontrivial generator

z∂y − y∂z

is found.
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3.2.2.3 Case A = J3

For this case, equations (3.33) become

a11 − a22 = 0, a21 = 0.

In this case, the linear system of equations (3.4) is reduced to the degenerate case

with G = 0. Hence, no additional nontrivial generators are found.

All in all, four cases of linear systems of equations which are not equivalent

to the linear systems with constant coefficients and the degenerate case are found.

The complete representative classes is summarized in Table 6.1.



CHAPTER IV

PRELIMINARY STUDY OF NONLINEAR

SYSTEMS

This chapter focuses on the preliminary study of systems of two nonlin-

ear second-order ordinary differential equations of the form (Moyo et al., 2013;

Meleshko and Moyo, 2015)

y′′ = F(x,y), (4.1)

where

y =

 y

z

 , F =

 F (x, y, z)

G(x, y, z)

 .

The classical group analysis is applied to the system of equations (4.1). For finding

group classes of the system of the form (4.1) in this chapter and the succeeding

chapters, the case of systems of two linear second-order ordinary differential equa-

tions in Chapter III and the degenerate case (1.3) are omitted. We call systems

that are equivalent to these cases as reducible systems, and irreducible otherwise.

4.1 Equivalence Transformations

Equivalence transformations of the studied system of equations are consid-

ered in this section. Consider the nonlinear system (4.1). The arbitrary elements

are the functions F (x, y, z) and G(x, y, z). The generator of the equivalence Lie

group is assumed to be of the form

Xe = ξ∂x + ηy∂y + ηz∂z + ζF∂F + ζG∂G,
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where the coefficients ξ, ηy, ηz, ζF and ζG depend on the variables x, y, z, F and

G. The prolonged operator is

X̃e = Xe + ηy
′
∂y′ + ηz

′
∂z′ + ηy

′′
∂y′′ + ηz

′′
∂z′′

+ ζFx∂Fx + ζFy∂Fy + ζFz∂Fz + ζGx∂Gx + ζGy∂Gy + ζGz∂Gz .

The coefficients of the prolonged generator are

ηy
′
= De

xη
y − y′De

xξ, ηy
′′
= De

xη
y′ − y′′De

xξ,

ηz
′
= De

xη
z − z′De

xξ, ηz
′′
= De

xη
z′ − z′′De

xξ,

ζFx = D̃e
xζ

F − FxD̃
e
xξ − FyD̃

e
xη

y − FzD̃
e
xη

z,

ζFy = D̃e
yζ
F − FxD̃

e
yξ − FyD̃

e
yη

y − FzD̃
e
yη

z,

ζFz = D̃e
zζ
F − FxD̃

e
zξ − FyD̃

e
zη
y − FzD̃

e
zη
z,

ζGx = D̃e
xζ

G −GxD̃
e
xξ −GyD̃

e
xη

y −GzD̃
e
xη

z,

ζGy = D̃e
yζ
G −GxD̃

e
yξ −GyD̃

e
yη

y −GzD̃
e
yη

z,

ζGz = D̃e
zζ
G −GxD̃

e
zξ −GyD̃

e
zη
y −GzD̃

e
zη
z.

Here, the operators De
x, D̃

e
x, D̃

e
y and D̃e

z are

De
x = ∂x + y′∂y + z′∂z + y′′∂y′ + z′′∂z′ + (Fx + y′Fy + z′Fz)∂F

+(Gx + y′Gy + z′Gz)∂G + (Fxx + y′′Fy + z′′Fz + y′Fxy + z′Fxz)∂Fx

+(Fxy + y′Fyy + z′Fyz)∂Fy + (Fxz + y′Fyz + z′Fzz)∂Fz

+(Gxx + y′′Gy + z′′Gz + y′Gxy + z′Gxz)∂Gx + (Gxy + y′Gyy + z′Gyz)∂Gy

+(Gxz + y′Gyz + z′Gzz)∂Gz ,

D̃e
x = ∂x + Fx∂F +Gx∂G,

D̃e
y = ∂y + Fy∂F +Gy∂G,

D̃e
z = ∂z + Fz∂F +Gz∂G.

The determining equations of the equivalence Lie group become

ηy
′′ − ζF |y′′=F = 0

ηz
′′ − ζG|y′′=F = 0.
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After substitutions of ηy′′ and ηz
′′ and the transition onto the manifold y′′ = F,

the equation is split with respect to the variables y′, Fx, Fy, Fz, Fxx, Fxy, Fxz,

Fyz, Fyy, Fzz, Gx, Gy, Gz, Gxx, Gxy, Gxz, Gyz, Gyy and Gzz.

Initial analysis of the split determining equations yields that ξ, ηy, ηz do

not depend on F and G. As a result, the remaining determining equations are as

follows

ξyz = 0, ξyy = 0, ξzz = 0, (4.2)

ηyzz = 0, ηyyz − ξxz = 0, ηyyy − 2ξxy = 0,

ηzyy = 0, ηzyz − ξxy = 0, ηzzz − 2ξxz = 0,
(4.3)

ηyxz − ξzF = 0, 2ηyxy − ξxx − 3ξyF − ξzG = 0,

ηzxy − ξyG = 0, 2ηzxz − ξxx − ξyF − 3ξzG = 0,
(4.4)

ηyxx + ηyyF + ηyzG− 2ξxF − ζF = 0,

ηzxx + ηzyF + ηzzG− 2ξxG− ζG = 0.
(4.5)

The general solution of equations (4.2) is

ξ = ξ0(x) + ξ1(x)y + ξ2(x)z, (4.6)

where ξn(x) (n = 0, 1, 2) are arbitrary functions of its arguments. Substituting this

to remaining determining equations and solving equations (4.3), one finds that

ηy = ξ′1y
2 + ξ′2yz + ηy0(x) + ηy1(x)y + ηy2(x)z,

ηz = ξ′1yz + ξ′2z
2 + ηz0(x) + ηz1(x)y + ηz2(x)z,

(4.7)

ηyn(x) and ηzn(x) (n = 0, 1, 2) are arbitrary functions of its arguments. Substituting

(4.6) and (4.7) into equations (4.4), and keeping in mind that F and G are arbi-

trary, one obtains that ξ1 = 0, ξ2 = 0, and ηy2 and ηz1 are constant. In addition,

ηy1 =
1

2
ξ0x + ηy10 and ηz2 =

1

2
ξ0x + ηz20, where ηy10 and ηz20 are constant. Substituting
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all these to equations (4.5), one finds that

ζF =
1

2

(
2ηy0

′′ + ξ′′′0 y − 3ξ′0F + 2ηy10F + 2ηy2G
)

ζG =
1

2

(
2ηz0

′′ + ξ′′′0 z − 3ξ′0G+ 2ηz20G+ 2ηz1F
)
.

(4.8)

Finally from the above calculations*, the equivalence Lie group is defined by the

following generators:

Xe
1 = y∂y + F∂F , Xe

2 = z∂y +G∂F ,

Xe
3 = y∂z + F∂G, Xe

4 = z∂z +G∂G,

Xe
5 = ϕ1(x)∂y + ϕ′′

1(x)∂F , Xe
6 = ϕ2(x)∂z + ϕ′′

2(x)∂G,

Xe
7 = 2ξ(x)∂x+ξ

′(x)y∂y+ξ
′(x)z∂z+(ξ′′′(x)y−3ξ′(x)F )∂F+(ξ′′′(x)z−3ξ′(x)G)∂G.

Hence, the system (4.1) has the following equivalence transformations correspond-

ing to the above equivalence Lie group:

1. a linear change of the dependent variables ỹ = Py with constant nonsingular

2× 2 matrix P ;

2. the change ỹ = y + ϕ(x) and z̃ = z + ψ(x); and

3. the transformation related with the change x̃ = ϕ(x), ỹ = yψ(x), z̃ = zψ(x),

where the functions ϕ(x) and ψ(x) satisfy the condition ϕ′′

ϕ′ = 2
ψ′

ψ
.

4.2 Determining equations

Admitted generators are sought in this form

X = ξ(x, y, z)
∂

∂x
+ ηy(x, y, z)

∂

∂y
+ ηz(x, y, z)

∂

∂z
. (4.9)

The prolonged operator for this equation is

X̃ = X + ηy
′
∂y′ + ηz

′
∂z′ + ηy

′′
∂y′′ + ηz

′′
∂z′′ (4.10)

*Computations were implemented with the aid of the symbolic manipulation program RE-

DUCE (Free CSL version 07-Oct-10).
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with the coefficients

ηy
′
= Dxη

y − y′Dxξ, ηy
′′
= Dxη

y′ − y′′Dxξ,

ηz
′
= Dxη

z − z′Dxξ, ηz
′′
= Dxη

z′ − z′′Dxξ,

where

Dx = ∂x + y′∂y + z′∂z + y′′∂y′ + z′′∂z′ .

According to the Lie algorithm (Ovsiannikov, 1978), X is admitted by the

system (4.1) if it satisfies the associated determining equations, i.e., the generator

(4.9) is admitted by the equations (4.1) if and only if

[X̃(y′′ − F)]|[y′′=F] = 0.

The previous equations become

[ηy
′′ − Fxξ − Fyη

y − Fzη
z]
∣∣
y′′=F = 0,

[ηz
′′ −Gxξ −Gyη

y −Gzη
z]
∣∣
y′′=F = 0.

After substituting the coefficients ηy′′ , ηz′′ and the differential equations y′′ = F,

and splitting with respect to the parametric derivatives y′ and z′, the determining

equations are as follows:

ξyz = 0, ξyy = 0, ξzz = 0, (4.11)

ηyzz = 0, ηyyz − ξxz = 0, ηyyy − 2ξxy = 0,

ηzyy = 0, ηzyz − ξxy = 0, ηzzz − 2ξxz = 0,
(4.12)

ηyxz − ξzF = 0, 2ηyxy − ξxx − 3ξyF − ξzG = 0,

ηzxy − ξyG = 0, 2ηzxz − ξxx − ξyF − 3ξzG = 0,
(4.13)

ηyxx + ηyyF + ηyzG− 2ξxF − Fxξ − Fyη
y − Fxη

z = 0,

ηzxx + ηzyF + ηzzG− 2ξxG−Gxξ −Gyη
y −Gxη

z = 0.
(4.14)
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Solving equations (4.11) and (4.12), one obtains the general solution for ξ, ηy and

ηz :

ξ = ξ0(x) + ξ1(x)y + ξ2(x)z, (4.15)

ηy = ξ′1y
2 + ξ′2yz + ηy0(x) + ηy1(x)y + ηy2(x)z,

ηz = ξ′1yz + ξ′2z
2 + ηz0(x) + ηz1(x)y + ηz2(x)z,

(4.16)

where ξn(x), η
y
n(x) and ηzn(x) (n = 0, 1, 2) are arbitrary functions of its argu-

ments. Differentiating the equations (4.13) with respect to y and z, one obtains

the following determining equations

3ξ1(Fy −Gz) + ξ2Gy = 0, ξ1Gy = 0,

ξ1Fz + 3ξ2(Fy −Gz) = 0, ξ2Fz = 0.

From these equations, one can conclude that ξ21 + ξ22 ̸= 0 only for the case where

Fy −Gz = 0, Gy = 0, Fz = 0. (4.17)

Solving the conditions (4.17), one obtains the general solution

F (x, y, z) = a(x)y + b(x), G(x, y, z) = a(x)z + c(x).

Using a particular solution and equivalence transformations, equations (4.1) are

reduced to the trivial case of the free particle equation, which is omitted in this

study. Hence, we consider the case only when the conditions (4.17) are not satis-

fied, implying that

ξ1 = 0, ξ2 = 0.

Substituting all the conditions into equations (4.14), it follows that the determining

equations in matrix form for irreducible systems of the form (4.1) are given by

2ξFx + 3ξ′F + (((A+ ξ′E)y + ζ) · ∇)F − AF = ξ′′′y + ζ ′′, (4.18)
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where the matrix A = (aij) is constant and ζ(x) = (ζ1, ζ2)
t is a vector. The

associated infinitesimal generator has the form (Moyo et al., 2013)

X = 2ξ(x)∂x + ((A+ ξ′E)y + ζ(x)) · ∇.

Similar to the case of linear systems, when the equivalence transformation

(1) with linear change ỹ = Py is applied to equations (4.1), equations (4.18) and

its associated infinitesimal generator are reduced to the same form with the matrix

A and the vector ζ changed.

The systems of two nonlinear second-order ordinary differential equations

are equivalent to one of the following ten (10) types listed below in Table 4.1 (See

also (Moyo et al., 2013)). Looking closely at these systems, there is a necessity to

conduct an initial study where the systems of two equations do not depend on x.

This is the focus of the next chapter.
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CHAPTER V

APPLICATION OF GROUP ANALYSIS TO

AUTONOMOUS NONLINEAR SYSTEMS

WITHOUT FIRST DERIVATIVES

This chapter focuses on systems of two nonlinear second-order ordinary

differential equations (4.1) where F and G do not depend on x, i.e., of the form

y′′ = F(y), (5.1)

where

y =

 y

z

 , F =

 F (y, z)

G(y, z)

 .

The classical group analysis method is applied to the system of equations

(5.1).

5.1 Equivalence Transformations

The process of finding the equivalence Lie group of the nonlinear system

(5.1) is similar to finding the equivalence Lie group of the nonlinear system (4.1)

with the difference that the arbitrary elements for system (5.1) are the functions

F (y, z) and G(y, z). In addition, the conditions

Fx = 0, Gx = 0

are included for analysis.



51

Calculations* show that the equivalence Lie group is defined by the following

generators:

Xe
1 = y∂y + F∂F , Xe

2 = z∂y +G∂F ,

Xe
3 = y∂z + F∂G, Xe

4 = z∂z +G∂G,

Xe
5 = ∂y + ∂z, Xe

6 = ∂y − ∂z,

Xe
7 = x∂x − 2(F∂F +G∂G), Xe

8 = ∂x.

Hence, the system (5.1) has similar equivalence transformations as the sys-

tem (4.1):

1. a linear change of the dependent variables ỹ = Py with constant nonsingular

2× 2 matrix P ;

2. the change ỹ = y + ϕ(x) and z̃ = z + ψ(x); and

3. the transformation related with the change x̃ = ϕ(x), ỹ = yψ(x), z̃ = zψ(x),

where the functions ϕ(x) and ψ(x) satisfy the condition ϕ′′

ϕ′ = 2
ψ′

ψ
.

5.2 Determining Equations

Since for autonomous systems, Fx = 0, then the determining equations

(4.18) of irreducible systems have the form

3ξ′F + (((A+ ξ′E)y + ζ) · ∇)F − AF − ξ′′′y − ζ ′′ = 0 (5.2)

and with an admitted generator of the form

X = 2ξ(x)∂x + ((A+ ξ′E)y + ζ(x)) · ∇. (5.3)

This also implies that the generator ∂x is admitted by system (5.1).
*Computations were implemented with the aid of the symbolic manipulation program RE-

DUCE (Free CSL version 07-Oct-10).
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Differentiating the determining equations (5.2) with respect to x, equations

(5.2) become

3ξ′′F + ((ξ′′y + ζ ′) · ∇)F − ξ(4)y − ζ ′′′ = 0. (5.4)

From here, the group classification study is reduced into two cases, namely,

1. the case with at least one admitted generator with ξ′′ ̸= 0; and

2. the case where all admitted generators have ξ′′ = 0.

The group classification of the two (2) cases are explained in detail in the succeed-

ing sections.

5.2.1 Case ξ′′ ̸= 0

For the case of systems admitting at least one generator with ξ′′ ̸= 0,

consider the differentiated determining equations (5.4) with respect to x and divide

them by ξ′′. The determining equations become

3F +

((
y +

ζ ′

ξ′′

)
· ∇

)
F − ξ(4)

ξ′′
y − ζ ′′′

ξ′′
= 0. (5.5)

Fixing x, and shifting y and z, equations (5.5) are reduced to

3F + (y · ∇)F − ay − b = 0

where vector b = (b, c)t, and a, b, c are constant.

The general solution of these equations is

F =
b

3
+
ay

4
+ y−3f(u),

G =
c

3
+
az

4
+ z−3g(u),

(5.6)

where u =
z

y
and f ′g′ ̸= 0. It is easy to see that if f ′g′ = 0, system (5.1) is

equivalent to the linear case, which was already studied in Chapter III, and hence,
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is excluded for this chapter. The functions F and G in (5.6) are then substituted

into the determining equations (5.2). The determining equations are then solved

directly in order to find generators admitted by equations (5.1). The first part of

the determining equations is given as follows:

ξ′′′ − aξ′ = 0, (5.7)

(ζ1u− ζ2)f
′ + 3ζ1f = 0,

(u2ζ1 − uζ2)g
′ + 3ζ2g = 0,

(5.8)

12ζ ′′1 − 12bξ′ − 3aζ1 + 4a11b+ 4a12c = 0,

12ζ ′′2 − 12cξ′ − 3aζ2 + 4a21b+ 4a22c = 0,
(5.9)

(a11u
4 + a12u

5 − a21u
3 − a22u

4)f ′ + (4a11u
3 + 3a12u

4)f + a12g = 0,

(a11u
2 + a12u

3 − a21u− a22u
2)g′ + a21u

4f + (3a21 + 4a22u)g = 0,
(5.10)

where aij’s are constant.

5.2.1.1 General solution of ξ

From equation (5.7), it can be seen that the general solution of ξ depends

on three values of a, i.e., a = 0, a = −p2 and a = p2, where p ̸= 0.

5.2.1.1.1 Case a = 0. For this case, the general solution of ξ is

ξ = ξ2x
2 + ξ1x+ ξ0,

where ξ2 ̸= 0, ξ1, ξ0 are constant.

5.2.1.1.2 Case a = −p2 For this case, the general solution of ξ is

ξ = ξ1 cos(px) + ξ2 sin(px) + ξ0,

where ξ2 ̸= 0, ξ1 ̸= 0, ξ0 are constant.
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5.2.1.1.3 Case a = p2 Lastly, the general solution of ξ for this case is

ξ = ξ1e
−px + ξ2e

px + ξ0,

where ξ2 ̸= 0, ξ1 ̸= 0, ξ0 are constant.

5.2.1.2 General solution of ζ and representations of f and g

Subsequently the determining equations (5.8) lead to the study of two cases,

i.e., (1) there exists a generator with ζ1 ̸= 0 and (2) all generators have ζ1 = 0.

5.2.1.2.1 Case ζ1 ̸= 0. Suppose that there exists a generator with ζ1 ̸= 0.

Dividing by ζ1 and differentiating with respect to x the equations (5.8), one obtains

ζ2 = kζ1, where k is a constant. Substituting ζ2 back into equations (5.8), one

obtains f = f0(u − k)−3 and g = g0u
3(u − k)−3. Also, differentiating equations

(5.9) with respect to x and taking its linear combination, it follows that c = kb.

At this point, equations (5.6) have the following form

F =
b

3
+
ay

4
+ f0(z − yk)−3,

G =
kb

3
+
az

4
+ g0(z − yk)−3.

Utilizing equivalence transformations, one can verify that this is a reducible case,

and is, therefore, excluded.

5.2.1.2.2 Case ζ1 = 0. Consider that all generators have ζ1 = 0. From equa-

tions (5.8), it follows that ζ2 = 0. Differentiating equations (5.9) with respect to

x, it immediately follows that b = c = 0. Observe in equations (5.10) that if the

functions f and g are arbitrary, then we obtain the conditions that all of the aij’s

are equal to zero. Hence, we obtain the following table of classification (see Table

5.1) .
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Table 5.1 Group classification of nonlinear systems of the form y′′ = Fy admit-

ting at least one generator with ξ′′ ̸= 0. Here, f and g are arbitrary

functions of u = z
y
, and f ′g′ ̸= 0.

F G Extension of Kernel

y−3f(u) z−3g(u) Y2, Y3

−p2y
4

+ y−3f(u)
−p2z
4

+ z−3g(u) Y7, Y8

p2y

4
+ y−3f(u)

p2z

4
+ z−3g(u) Y9, Y10

In order to obtain additional extensions of the generator, one must find

the general solutions of f and g. Hence, from equations (5.10), the equivalence

transformation ỹ = Py, where P is a constant nonsingular 2×2 matrix, is utilized.

Similar to the linear case, the constant matrix A is reduced to one of the real-valued

Jordan forms (3.30). The general solutions for f and g (excluding reducible cases)

are listed as follows:

Jordan form f g

J1 f0u
− 4γ

γ−1 f1u
− 4

γ−1

J2 (g0y − g1z)τ(y, z) (g0z + g1y)τ(y, z)

J3 e
κ
u (f0u

−4 + h1u
−3) f0e

κ
u

where τ(y, z) = e−4α arctan z
y (y2+z2)−2, and f0f1 ̸= 0, g20+g

2
1 ̸= 0, γ ̸= 0, 1 α ̸= 0, 1,

κ ̸= 0, and h1 are constant.

5.2.1.3 Extension of the kernel of the admitted Lie algebras

Combining the solutions of functions f and g, ξ and ζ, and excluding

reducible systems, the table of classification for nonlinear systems of the form

y′′ = F(y) which admit at least one generator with ξ′′ ̸= 0 is listed on Table 5.2.
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The kernel of the admitted Lie algebras consists of the generator X1 = ∂x,

which is omitted on the list. The extension of the kernel is listed as follows:

Y2 = 2x∂x + y∂y + z∂z, Y7 = 2 cos (px)∂x − p sin (px)(y∂y + z∂z),

Y3 = x(x∂x + y∂y + z∂z), Y8 = 2 sin (px)∂x + p cos (px)(y∂y + z∂z),

Y4 = γy∂y + z∂z, Y9 = e−px(2∂x − p(y∂y + z∂z)),

Y5 = (αy + z)∂y + (αz − y)∂z, Y10 = epx(2∂x + p(y∂y + z∂z)),

Y6 = (κy + 4z)∂y + κz∂z.

The Lie algebras Y2, Y3, Y7, Y8, Y9, and Y10 are associated with the coefficient ξ

and the Lie algebras Y4, Y5, and Y6 are related to the type of Jordan form of matrix

A. Also, using different equivalence transformations, p is reduced to 2 and κ is

reduced to 1.

5.2.2 Case ξ′′ = 0

For the case of systems where all admitted generators have ξ′′ = 0, return

first to the analysis of the determining equations (5.2). Since ξ′′ = 0, it follows

that ξ = ξ0 + ξ1x, where ξ1 and ξ0 are constant. This property of the coefficient

forces ζ to become constant.

5.2.2.1 Claim: ζ is constant

Proof. Substituting ξ′′ = 0 into determining equations (5.2), these equations re-

duce to the form
ζ ′′1 = Fyζ1 + Fzζ2 + q1,

ζ ′′2 = Gyζ1 +Gzζ2 + q2,
(5.11)

where q1 and q2 are functions of y and z. Differentiating these equations with

respect to x, one obtains
ζ ′′′1 = Fyζ

′
1 + Fzζ

′
2,

ζ ′′′2 = Gyζ
′
1 +Gzζ

′
2.
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Differentiating the latter equations with respect to y and z, one obtains the con-

ditions
Fyyζ

′
1 + Fyzζ

′
2 = 0,

Fyzζ
′
1 + Fzzζ

′
2 = 0,

Gyyζ
′
1 +Gyzζ

′
2 = 0,

Gyzζ
′
1 +Gzzζ

′
2 = 0.

From here, one can study two cases: (1) Fzz ̸= 0 and (2) Fzz = 0.

5.2.2.1.1 Case Fzz ̸= 0. For this case, one has

ζ ′2 = −Fyz
Fzz

ζ ′1, Fyy −
F 2
yz

Fzz
= 0, Gyy −Gyz

Fyz
Fzz

= 0, Gyz −Gzz
Fyz
Fzz

= 0.

Thus,
Fyz
Fzz

= k,

and

Fyy − kFyz = 0, Gyy − kGyz = 0, Gyz − kGzz = 0

or

(Fy − kFz)y = 0, (Fy − kFz)z = 0, (Gy − kGz)y = 0, (Gy − kGz)z = 0.

One obtains the general solution for F and G. If

Fy − kFz = k1, Gy − kGz = k2,

then

F = Φ(z + ky) + k1y,

G = Ψ(z + ky) + k2y.

Using the change of variables

ȳ = y, z̄ = z + ky,
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system (5.1) becomes

y′′ = Φ(z̄) + k1y, z̄′′ = (kΦ(z̄) + Ψ(z̄)) + (kk1 + k2)y.

Thus, one has

y′′ = k1y + f(z), z′′ = k2y + g(z), where k2f ′′ ̸= 0.

Substituting the general solution of F and G into equations (5.11), one has

ζ ′′1 = k1ζ1 + f ′ζ2 + q1,

ζ ′′2 = k2ζ1 + g′ζ2 + q2,
(5.12)

Differentiating the first equation of (5.12) by x and then z, one obtains

f ′′ζ ′2 = 0.

Since f ′′ ̸= 0, then ζ ′2 = 0. Differentiating the second equation of (5.12) by x, one

has

0 = k2ζ
′
1 ⇒ ζ ′1 = 0.

Hence, for this case ζ is constant.

5.2.2.1.2 Case Fzz = 0. Let Fzz = 0, then by symmetry Gyy = 0. Hence, one

has the conditions

Fyyζ
′
1 + Fyzζ

′
2 = 0, Fyzζ

′
1 = 0, Gyzζ

′
2 = 0, Gyzζ

′
1 +Gzzζ

′
2 = 0.

If Fyz ̸= 0, then from the first equation, one obtains ζ ′1 = 0, ζ ′2 = 0. Hence,

Fyz = 0, Fzz = 0, Gyy = 0, Gyz = 0

and

Fyyζ
′
1 = 0, Gzzζ

′
2 = 0.



61

Thus, the general solution of this is

y′′ = k1z + f(y), z′′ = k2y + g(z), where k1k2(f ′′2 + g′′2) ̸= 0.

Substituting this into (5.12), one has

ζ ′′1 = f ′ζ1 + k1ζ2 + q1,

ζ ′′2 = k2ζ1 + g′ζ2 + q2.
(5.13)

Differentiating the first equation of (5.13) with respect to x and y, and because

f ′′ ̸= 0, one has ζ ′1 = 0. Similarly, differentiating the second equation of (5.13)

with respect to x and z, and because g′′ ̸= 0, then ζ ′2 = 0.

Hence, for both cases Fzz ̸= 0 and Fzz = 0, one obtains that ζ is a constant.

The determining equations (5.2) are then reduced to

3ξ1F + (((A+ ξ1E)y + k) · ∇)F − AF = 0 (5.14)

with the following admitted generator

X = 2(ξ0 + ξ1x)∂x + (Ay + k) · ∇ (5.15)

where ξ0, ξ1, the matrix A and the vector k are constant. By rewriting (5.15), the

generator can be represented as

X = ciXi (i = 1, . . . , 8) (5.16)

where ci’s are constant. Corresponding to the constants ci’s, the basis operators

of the Lie algebra are as follows:

X1 = ∂x X2 = x∂x X3 = ∂y X4 = ∂z

X5 = y∂y X6 = z∂z X7 = z∂y X8 = y∂z.
(5.17)
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From here, the one-dimensional optimal system of one parameter subgroups of

the main group of system (5.1) with ξ′′ = 0 is constructed. Note that the action

of equivalence transformations coincides with the action of group automorphisms.

For the direct approach, sometimes it is difficult to select out equivalent cases

with respect to equivalence transformations. Fortunately, if the algebraic struc-

ture of the admitted Lie algebra is known, then using the algebraic approach aids

in simplifying the group classification problem. Thus, for finding the group classi-

fication of systems of two nonlinear second-order ordinary differential equations of

the form (5.1) with all admitted generators satisfying ξ′′ = 0, the one-dimensional

optimal system of one parameter subgroups is utilized and is then proceeded by

the direct approach. The commutators of the basis operators are

[X1, X2] = X1, [X5, X7] = −X7,

[X3, X5] = X3, [X5, X8] = X8,

[X3, X8] = X4, [X6, X7] = X7,

[X4, X6] = X4, [X6, X8] = −X8,

[X4, X7] = X3, [X7, X8] = X6 −X5.

(5.18)

The following inner automorphisms Ai (i = 1, ..., 8) of the above Lie algebra are
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found without difficulties:

A1 : ĉ1 = c1 − a1c2,

A2 : ĉ1 = ea2c1,

A3 : ĉ3 = c3 − a3c5, ĉ4 = c4 − a3c8,

A4 : ĉ3 = c3 − a4c7, ĉ4 = c4 − a4c6,

A5 : ĉ3 = ea5c3, ĉ7 = ea5c7 ĉ8 = e−a5c8,

A6 : ĉ4 = ea6c4, ĉ7 = e−a6c7 ĉ8 = ea6c8,

A7 : ĉ3 = c3 + a7c4, ĉ5 = c5 + a7c8, ĉ6 = c6 − a7c8,

ĉ7 = c7 − a27c8 + a7c6 − a7c5,

A8 : ĉ4 = c4 + a8c3, ĉ5 = c5 − a8c7, ĉ6 = c6 + a8c7,

ĉ8 = c8 − a28c7 − a8c6 + a8c5.

(5.19)

Note that ai (i = 1, ..., 8) are the parameters on which the transformations of the

group depend on. Apart from these automorphisms, the following involutions hold:

E1 : z̄ = −z| c̄4 = −c4, c̄7 = −c7, c̄8 = −c8;

E2 : ȳ = −y| c̄3 = −c3, c̄7 = −c7, c̄8 = −c8;

E3 : x̄ = −x| c̄1 = −c1;

E4 : ȳ = z, z̄ = y| c̄3 = c4, c̄4 = c3, c̄5 = c6, c̄5 = c5, c̄7 = c8, c̄8 = c7.

We study the way in which the coefficients of equation (5.16) are changed under

the action of inner automorphisms of the group above. Here and further on, only

changeable coordinates of the generator are presented. Looking closely at the com-

mutators, the Lie algebra L8, which is composed of the generators Xi (i = 1, ..., 8),

can be split into 2 subalgebras L2⊕L6 = {X1, X2}⊕{X3, X4, X5, X6, X7, X8}. Note

also that L6 can be decomposed further to L4⊕ I2 = {X5, X6, X7, X8}⊕{X3, X4},

where L4 makes up a 4-dimensional subalgebra and I2 is ideal.
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5.2.2.2 One-dimensional optimal system of subalgebras of the Lie al-

gebra L4 = {X5, X6, X7, X8}

Consider the 4-dimensional subalgebra L4 = {X5, X6, X7, X8}. Cross-

referencing the results found here with the study of Patera and Winternitz (1977),

there is a need to show the classification of this 4-dimensional Lie algebra due to

some misprint in their paper.

Suppose that the operator X of a one parameter subgroup has the form

X = c5X5 + c6X6 + c7X7 + c8X8 = c5y∂y + c6z∂z + c7z∂y + c8y∂z (5.20)

or

X =


 c5 c7

c8 c6

y

 · ∇.

For this, automorphisms A5 up to A8 are utilized in order to find the one-

dimensional optimal system of subalgebras of this Lie algebra. From the auto-

morphisms A5 and A6, one can find the invariant c̄7c̄8 = c7c8, which leads one to

consider the following cases:

(a) c7c8 > 0

(b) c7c8 < 0

(c) c7c8 = 0.

Utilizing the invariant of A7 and A8, which is (c̄5 − c̄6)
2+4c̄7c̄8 = (c5 − c6)

2+4c7c8,

one can obtain relations between c5, c6, c7 and c8. It can be verified that the

coefficients of equation (5.20) satisfy only the following cases:

(a) c5 − c6 ̸= 0, c7 = 0, c8 = 0;

(b) c5 − c6 = 0, c7 = 1, c8 = 0;

(c) c5 − c6 = 0, c7 = −1, c8 = 1.

The involutions are also utilized. Hence, the following one-dimensional optimal
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system of subalgebras of the Lie algebra L4 is obtained:

1. X5 + αX6 where − 1 ≤ α ≤ 1

2. α(X5 +X6) +X8 −X7 where α ≥ 0

3. β(X5 +X6) +X7 where β = 0, 1

4. 0.

(5.21)

Note that the 0 element is considered on this list (Ovsiannikov, 1993). There is

a necessity to include this element on the list as when the direct sum L4 ⊕ I2 is

applied, more subalgebras of the Lie algebra L6 may appear on the list.

Remark 1: The one-dimensional optimal system of subalgebras (5.21) closely

resembles Patera and Winternitz’s (1977) dimension 1 of Algebra A3,8 ⊕ A1.

Remark 2: As the action of the above automorphisms coincides with the action

of the equivalence transformations, it is possible to get the optimal system of

one-dimensional subalgebras of the Lie algebra L4 using the latter. From the

determining equations (5.14) admitting the generator (5.20) and the utilization of

the equivalence transformation ỹ = Py, where P is a nonsingular 2 × 2 matrix

with constant entries, the matrix of coefficients of (5.20) c5 c7

c8 c6


is reduced to one of its real-valued Jordan forms (3.30). Looking closely at (5.21),

subalgebra 1. coincides with Jordan matrix J1, subalgebra 2. coincides with Jordan

matrix J2, and subalgebra 3. coincides with Jordan matrix J3.

5.2.2.3 One-dimensional subalgebras of the Lie algebra L6 =

{X3, X4, X5, X6, X7, X8}

After obtaining the one-dimensional optimal system (5.21) of subalgebras

of the Lie algebra L4 = {X5, X6, X7, X8}, the next step is to combine L4 with the
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ideal I2 = {X3, X4}. Here, again Ovsiannikov’s two-step method (Ovsiannikov,

1993) is applied. Hence, for the study of the one-dimensional subalgebras of the

Lie algebra L6, the study is reduced to analyzing the following elements:

1. c3X3 + c4X4 +X5 + αX6 where − 1 ≤ α ≤ 1

2. c3X3 + c4X4 + α(X5 +X6) +X8 −X7 where α ≥ 0

3. c3X3 + c4X4 + β(X5 +X6) +X7 where β = 0, 1

4. c3X3 + c4X4.

(5.22)

Using automorphisms A3, A4 and the involutions, the list of one-

dimensional subalgebras of the Lie algebra L6 = {X3, X4, X5, X6, X7, X8} is ob-

tained as follows:

1. X5 + αX6 where − 1 ≤ α ≤ 1

2. X4 +X5

3. X8 −X7

4. βX3 + α(X5 +X6) +X8 −X7 where β = −1, 0, 1, α > 0

5. βX4 +X7 where β = 0, 1

6. X5 +X6 +X7

7. X3

8. 0.

(5.23)

Again, it is necessary to study the element 0 of the subalgebras of the Lie algebra

L6 as this may generate additional elements when L6 is combined with L2.

5.2.2.4 One-dimensional subalgebras of the Lie algebra L8 =

{X1, X2, X3, X4, X5, X6, X7, X8}

Combining L6 with L2 and keeping in mind that for autonomous systems

X1 is already admitted, the following elements comprise the list of one-dimensional
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subalgebras of the Lie algebra L8:

1. γX2 +X5 + αX6 where − 1 ≤ α ≤ 1

2. γX2 +X4 +X5

3. γX2 +X8 −X7

4. γX2 + βX3 + α(X5 +X6) +X8 −X7 where β = −1, 0, 1, α > 0

5. γX2 + βX4 +X7 where β = 0, 1

6. γX2 +X5 +X6 +X7

7. γX2 +X3

8. X2.

(5.24)

Using this list of subalgebras, the solutions of F and G are sought after. These

functions are substituted into the determining equations (5.2), which are solved

completely in order to find all other generators admitting equations (5.1).

5.2.2.5 Representations of systems of two nonlinear second-order or-

dinary differential equations with all generators having ξ′′ = 0

From (5.16), ci (i = 1, . . . , 8) are the coefficients of the generator chosen

from the above list of subalgebras (5.24). Only one subalgebra is presented in

this Chapter as computations for the other subalgebras are done in a similar

way. See Appendix A for obtaining representations of systems admitting the other

remaining subalgebras.

5.2.2.5.1 Subalgebra 1. with the generator γX2 +X5 + αX6 where −1 ≤

α ≤ 1. For this case, the determining equations (5.14) become

yFy + αzFz − (2γ − 1)F = 0,

yGy + αzGz − (2γ − α)G = 0.
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The general solution of these equations is

F (y, z) = f(u)y1−2γ and G(y, z) = g(u)yα−2γ, (5.25)

where u = yα/z and gf ′ ̸= 0. If gf ′ = 0, then system (5.1) is equivalent to a

reducible case. Substituting these functions to the determining equations (5.2),

the following initial determining equations are obtained

y2αa12(αuf
′ + (1− 2γ)f − ug)

+yα+1u((αa11 + (α− 1)ξ1 − a22)uf
′ − 2(γa11 + (γ − 2)ξ1)f)

+yαζ1u(αuf
′ + (1− 2γ)f)− y2a21u

3f ′ − yζ2u
3f ′ = 0,

y2αa12(αug
′ + (α− 2γ)g)

+yα+1u((αa11 + (α− 1)ξ1 − a22)ug
′ − ((α− 2γ)a11 + (α− 2γ + 3)ξ1 − a22)g)

+yαuζ1(αug
′ + (α− 2γ)g)− y2a21u(u

2g′ + f)− yζ2u
3g′ = 0.

(5.26)

Determining equations (5.26) can be split with respect to y, where the

powers of y depend on the values of α. Thus, upon further analysis, the study is

continued based on the following cases: (1) α = 0, (2) α = 1
2
, (3) α = 1 and (4)

α ̸= 0, 1
2
, 1.

1. Case α = 0

After splitting equations (5.26) with respect to y, it can be verified that

a21 = 0 and one is left with the following determining equations

((1− 2γ)(ζ1u+ a12))f − a12ug = 0, (5.27a)

2(γa11 + (γ − 2)ξ1)f + (a22 + ξ1 + ζ2u)uf
′ = 0, (5.27b)

γ(a12 + ζ1u)g = 0, (5.27c)

(2γa11 + (2γ − 3)ξ1 + a22)g + (a22 + ξ1 + ζ2u)ug
′ = 0. (5.27d)
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From equation (5.27c), γ ̸= 0. Notice that if γ = 0, G becomes a function

solely of z and hence, this case is reducible. Thus, it follows that a12 = 0

and ζ1 = 0. These conditions also satisfy equation (5.27a). Dividing equation

(5.27b) by f ′ and u, and differentiating it with respect to u 2 times, one can

study the following cases: a.
(
f

uf ′

)′′

̸= 0 and b.
(
f

uf ′

)′′

= 0.

1.a Case
(
f

uf ′

)′′

̸= 0

For this case, it follows that a11 = ξ1
(2− γ)

γ
. Consequently, ζ2 = 0

and a22 = −ξ1. These conditions also satisfy equation (5.27d). These

conditions give no other extensions of the generator apart from the

studied subalgebra.

1.b Case
(
f

uf ′

)′′

= 0

For this case, it follows that f

uf ′ = κu + β. Furthermore, the general

solution of this depends on β, i.e., whether i. β ̸= 0 or ii. β = 0.

1.b.i Case β ̸= 0

For this case, the general solution for f (with a possible shift) is

f0

(
1

u

)β

, f0 ̸= 0. Substituting this into the determining equations

(5.27b), one gets a22 =
(2γ − β − 4)ξ1 + 2γa11

β
and ζ2 = 0. Con-

sequently, the general solution for g is g0
(
1

u

)β+1

, g0 ̸= 0. From

here, the extension

βX5 + 2γX6

is obtained along with the studied subalgebra.

1.b.ii Case β = 0

For this case, it follows that κ ̸= 0. Hence, the general solution

for f is f0eκ/u, f0 ̸= 0. Substituting this into equation (5.27b), one
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obtains ζ2 =
2(γa11 + (γ − 2)ξ1)

κ
and a22 = −ξ1. Consequently, the

general solution for g is g0eκ/u, g0 ̸= 0. The extension

2γX4 + κX5

is obtained aside from the studied subalgebra.

2. Case α = 1
2

After splitting equations (5.26) with respect to y, it follows that a21 = 0.

Also, since (1− 4γ)g + ug′ = 0 leads to a reducible case it then follows that

ζ1 = 0. The remaining determining equations are

2a12(1− 2γ)f − 2a12ug + (a12 − 2ζ2u
2)uf ′ = 0, (5.28a)

4((2− γ)ξ1 − γa11)f + (a11 − 2a22 − ξ1)uf
′ = 0, (5.28b)

(1− 4γ)a12g + (a12 − 2ζ2u
2)ug′ = 0, (5.28c)

((1− 4γ)a11 + (7− 4γ)ξ1 − 2a22)g + (a11 − 2a22 − ξ1)ug
′ = 0. (5.28d)

Dividing equation (5.28d) by g (as it is nonzero) and differentiating it with

respect to u, one is left to study the following cases: a.
(
ug′

g

)′

̸= 0 and b.(
ug′

g

)′

= 0.

2.a Case
(
ug′

g

)′

̸= 0

For this case, it follows that a11 = 2a22 + ξ1. If γ = 0 then ξ1 = 0, but

if γ ̸= 0 then a22 = ξ1

(
1− γ

γ

)
. These conditions also satisfy equation

(5.28b). From equation (5.28c), the following cases are studied: i. there

exists a generator with a12 ̸= 0, and ii. all generators have a12 = 0.

2.a.i Case a12 ̸= 0

If there exists a generator with a12 ̸= 0, then g satisfies the form

(1−4γ)g+(1−βu2)ug′ = 0. Notice that β = 0 leads to a reducible
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case. Hence, β ̸= 0. Without loss of generality, one can assume

that β = 1. Then the general solution of g is g0
(
1− 1

u2

)γ̃

, where

g0 ̸= 0 and γ̃ =
1− 4γ

2
̸= 0 (if γ̃ = 0, the case is reducible).

Substituting this into equation (5.28c), we obtain that ζ2 =
a12
2
.

From equation (5.28a), it follows that f = ϕ(u)

(
1− 1

u2

)γ̃+(1/2)

,

where ϕ = f0 − 2g0

(
1

(u2 − 1)(1/2)

)
. Here, the extension

X4 + 2X7

is obtained besides the studied subalgebra.

2.a.ii Case a12 = 0

i. For the case where all generators have a12 = 0, it follows that ζ2 =

0. All remaining equations are satisfied, and no other extensions

are obtained.

2.b Case
(
ug′

g

)′

= 0

For this case, the general solution is g = g0u
κ, where g0 ̸= 0. Substi-

tuting this into equation (5.28c), further analysis leads one to obtain

that a12 = 0 and ζ2 = 0. These conditions also satisfy (5.28a). From

equation (5.28b), the form of f satisfies (κ+1)f−uf ′ = 0. The general

solution is f = f0u
κ+1, where f0 ̸= 0, κ ̸= −1. Moreover, this leads to

a22 = (κ− 4γ + 1)(a11 − ξ1) + 8ξ1. Here, the extension

(κ+ 1)X2 + 2X6

is obtained apart from the studied subalgebra.

3. Case α = 1

The determining equations after splitting equations (5.26) with respect to y
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are as follows

(1− 2γ)ζ1f + (ζ1 − ζ2u)uf
′ = 0, (5.29a)

((1− 2γ)a12 + ((4− 2γ)ξ1u− 2γa11u))f − a12ug

+((a11 − a22)u+ a12 − a21u
2)uf ′ = 0,

(5.29b)

(1− 2γ)ζ1g + (ζ1 − ζ2u)ug
′ = 0, (5.29c)

−a21uf + g((1− 2γ)a11u+ (1− 2γ)a12 + (4− 2γ)ξ1u− a22u)

+g′u((a11 − a22)u+ a12 − a21u
2) = 0.

(5.29d)

From equations (5.29a) and (5.29c), one can study the following 2 cases: a.

fg′ − gf ′ = 0, and b. fg′ − gf ′ ̸= 0.

3.a Case fg′ − gf ′ = 0

For this case, we obtain the relation g = g0f where g0 is a constant. Us-

ing equivalence transformations, one can show that the second equation

can be reduced to zero, i.e., G = 0, which is equivalent to a reducible

case.

3.b Case fg′ − gf ′ ̸= 0

It follows from equations (5.29a) and (5.29c) that ζ1 = ζ2 = 0. From

here, one can assume that g = ϕ(u)f (as f is nonzero), where ϕ′ ̸=

0. If it is assumed further that ϕ = ψ(u) + 1/u, then the remaining

determining equations (5.29b) and (5.29d) are reduced as follows:

(2(−γa11u+ (2− γ)ξ1u)− (γ + ψu)a12)f

+((a11 − a22)u+ a12 − a21u
2)uf ′ = 0,

(5.30a)

((a11−a22)u+a12−a21u2)ψ′+a12ψ
2+(a11+2a12u

−1−a22)ψ = 0. (5.30b)

These equations lead one to study the following two cases:

i. there exists at least one generator with a12 ̸= 0, and
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ii. where all generators have a12 = 0.

3.b.i Case a12 ̸= 0

For the case where there exists at least one generator with a12 ̸= 0,

it follows that ψ(u) = −κu
2 + λu+ β

u(β − ψ0u)
, where β ̸= 0, ψ0 ̸= 0, λ, κ

are constant. Without loss of generality, it is assumed further that

β = 1. Consequently, we obtain a11 = λa12 + a22 and a21 = −κa12.

Substituting this into determining equations (5.30a), the solution

for f appears, which depends on the following three cases: A. 4κ−

λ2 > 0, B. 4κ− λ2 < 0, and C. 4κ− λ2 = 0.

3.b.i.A Case 4κ− λ2 > 0

For this case, it is assumed that 4κ − λ2 = p2, p ̸= 0. The

solution for f is

f0
(1− ψ0u)u

2γ−1

(κu2 + λu+ 1)γ
e

(2λγ − 4µ)

p
arctan

(
λ+ 2κu

p

)

where µ is constant.

3.b.i.B Case 4κ− λ2 < 0

For this case, it is assumed that 4κ − λ2 = −p2, p ̸= 0. The

solution for f is

f0
(1− ψ0u)u

2γ−1

(κu2 + λu+ 1)γ

(
2κu+ λ− p

2κu+ λ+ p

)λγ−2µ
p

where µ is constant.

3.b.i.C Case 4κ− λ2 = 0

For this case, it follows that

f = f0
(1− ψ0u)u

2γ−1

(κu2 + λu+ 1)γ
e

−
4(γ + µu)

λu+ 2



where µ is constant.
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All three cases yield the same results for a22, ξ1 and the extension

of the generator. If γ ̸= 0, then a22 =
(2− γ)ξ1 − µa12

γ
. If γ = 0,

then ξ1 =
µa12
2

. The extension

µX2 + λX5 +X7 − κX8

is obtained apart from the studied subalgebra.

3.b.ii Case a12 = 0

For the case where all generators have a12 = 0, the determining

equations (5.30) are reduced to

2(−γa11u+ (2− γ)ξ1u)f + ((a11 − a22)u− a21u
2)uf ′ = 0, (5.31a)

((a11 − a22)u− a21u
2)ψ′ + (a11 − a22)ψ = 0. (5.31b)

Dividing equation (5.31a) by uf ′ and differentiating this equation

with respect to u twice, this leads to the study of the following

sub-cases: A.
(
f

uf ′

)′′

̸= 0, and B.
(
f

uf ′

)′′

= 0.

3.b.ii.A Case
(
f

uf ′

)′′

̸= 0

If
(
f

uf ′

)′′

̸= 0, then it follows that if γ ̸= 0 then a11 = ξ1
2− γ

γ
,

a22 = ξ1
2− γ

γ
and a21 = 0. If γ = 0 then ξ1 = 0, a22 = a11 and

a21 = 0. For both cases, no extensions are obtained apart from

the studied subalgebra.

3.b.ii.B Case
(
f

uf ′

)′′

= 0

If
(
f

f ′u

)′′

= 0, then the general solution for f is f0
(

u

1 + u

)κ

,

where κ ̸= 0 (else it is reducible) and f0 ̸= 0. Substi-

tuting this into equation (5.31a), one obtains that a21 =

2

(
−γa11 + (2− γ)ξ1

κ

)
and a22 =

(κ− 2γ)a11 + (4− 2γ)ξ1
κ

.
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Substituting this into equation (5.31b), one finds that ψ sat-

isfies ψ′(u2 + u) + ψ = 0. The general solution of this is

ψ = g0

(
u+ 1

u

)
. The extension

κX2 + 2(X6 +X8)

is obtained aside from the studied subalgebra.

4. Case α ̸= 0, 1
2
, 1

For the case where α ̸= 0, 1
2
, 1, the determining equations (5.26) are split

with respect to y. Since f ′ ̸= 0, it follows that ζ2 = 0 and a21 = 0. Notice

also that since αug′ + (α − 2γ)g = 0 leads to a reducible case, then ζ1 = 0

and a12 = 0. Substituting these conditions, the determining equations (5.26)

become

(αa11 + (α− 1)ξ1 − a22)uf
′ + (−2γa11 + (4− 2γ)ξ1)f = 0, (5.32a)

(αa11+(α−1)ξ1−a22)ug′+((α−2γ)a11+(α−2γ+3)ξ1−a22)g = 0. (5.32b)

Dividing equation (5.32a) by f (as it is nonzero) and differentiating with

respect to u, the following cases are studied: a.
(
uf ′

f

)′

̸= 0 and b.(
uf ′

f

)′

= 0.

4.a Case
(
uf ′

f

)′

̸= 0

For this case, it follows from equation (5.32a) that a22 = αa11+(α−1)ξ1.

Consequently, if γ ̸= 0 then a11 =
2− γ

γ
ξ1, and if γ = 0 then ξ1 = 0.

These conditions also satisfy equation (5.32b). No other extensions of

the generator is found other than the studied subalgebra.

4.b Case
(
uf ′

f

)′

= 0
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For this case, the general solution for f is f0uκ, where f0κ ̸= 0. Substi-

tuting this function into the determining equations (5.32a), it follows

that a22 =
(κα− 2γ)a11 + (κα− κ− 2γ + 4)ξ1

κ
. From (5.32b), exten-

sions of the generator can only be found if g satisfies the condition

g′u − g(κ − 1) = 0, where the general solution for g is g0uκ−1, g0 ̸= 0.

Another extension of the generator apart from the studied subalgebra

is

κX2 + 2X6.

The complete representative classes for the autonomous system with all

admitted generators having ξ′′ = 0 is listed in Tables 6.3 and 6.4.



CHAPTER VI

CONCLUSIONS

In this thesis, the complete group classification of systems of two linear

second-ordinary differential equations and the group classification of systems of

two nonlinear second-ordinary differential equations of the form y′′ = F(y) were

studied. A preliminary study of two nonlinear second-order differential equations

of the form y′′ = F(x,y) was also done before classification of the latter.

The group classification process is done both directly and indirectly (alge-

braic approach). For the direct approach, all possible Lie algebras were found with

the aid of the equivalence transformations applied to the determining equations.

As for the algebraic approach, the study was reduced to the analysis of relations

between constants of the generator with its corresponding basis operators.

The results of the group classification of the linear system are presented in

Table 6.1, where the first column presents the form of the functions F and G and

the second column lists the admitted generator apart from the trivial ones (3.7

and 3.8) obtained in Chapter III.

For the autonomous nonlinear system, the analysis of determining equa-

tions were separated into classes depending on the coefficient of generator ξ, i.e.,

whether it involves 1) at least one admitted generator with ξ′′ ̸= 0 or 2) all ad-

mitted generators have ξ′′ = 0. Note also that the kernel of the generator contains

∂x. The results of the group classification of the autonomous nonlinear system is

presented in Tables 6.2, 6.3 and 6.4. Table 6.2 provides the group classification of

the autonomous nonlinear system which admits at least one generator containing
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ξ′′ = 0, and Tables 6.3 and 6.4 present the group classification of the autonomous

nonlinear system for which all admitted generators have ξ′′ = 0. The first two

columns of Tables 6.2 and 6.3 show the forms of F and G, which admit the Lie

algebras listed on the fourth column. The third column of these tables show the

conditions and relations of F and G. Table 6.4 gives additional extensions of the

generators in Table 6.3 along with its representative classes. The generators found

in the Tables are defined as follows:

Y2 = 2x∂x + y∂y + z∂z, X2 = x∂x,

Y3 = x(x∂x + y∂y + z∂z), X3 = ∂y,

Y4 = (γ − 4)y∂y + γz∂z, X4 = ∂z,

Y5 = (αy − 4z)∂y + (αz + 4y)∂z, X5 = y∂y,

Y6 = (y + 4z)∂y + z∂z, X6 = z∂z,

Y7 = cos 2x∂x − sin 2x(y∂y + z∂z), X7 = z∂y,

Y8 = sin 2x∂x + cos 2x(y∂y + z∂z), X8 = y∂z,

Y9 = e−2x(∂x − (y∂y + z∂z)),

Y10 = e2x(∂x + y∂y + z∂z).

It is highly likely that the same methods shown in this thesis are applicable

to finding the group classification of systems of two nonlinear second-order ordinary

differential equations, which will be next goal for further studies. As seen in the

preliminary study of nonlinear systems in Chapter IV, simplified classes of the

functions F and G are not yet known. In addition, it is also believed that this

can be extended to systems in more general cases. Another recommendation for

further studies is to find applications of these classes in the real world.
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APPENDIX

COMPUTATIONS FOR EXTENSIONS OF

OTHER SUBALGEBRAS IN CHAPTER V

Subalgebra 2. with generator γX2 +X4 +X5.

For this case, the determining equations (5.14) become

yFy + Fz + (2γ − 1)F = 0,

yGy +Gz + 2γG = 0.

The general solution of these equations is

F (y, z) = f(u)y1−2γ , G(y, z) = g(u)y−2γ, (A.1)

where u = ye−z and gf ′ ̸= 0 (or else it is a degenerate case). This solution is

substituted into the determining equations (5.2), which are split with respect to z

after substituting y = uez. The determining equations are

ζ1(f
′u+ (1− 2γ)f)− a12g = 0, (A.2a)

f ′u(a11 − ζ2 + ξ1) + f(2ξ1(2− γ)− 2γa11) = 0, (A.2b)

a21f
′ = 0, (A.2c)

(ξ1 + a22)f
′ = 0, (A.2d)

a12(f
′u+ (1− 2γ)f = 0, (A.2e)

ζ1(g
′u− 2γg) = 0, (A.2f)

g′u(a11 − ζ2 + ξ1) + g(ξ1(3− 2γ)− 2γa11 − a22) = 0, (A.2g)
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a21(f − g′u) = 0, (A.2h)

a12(g
′u− 2γg) = 0, (A.2i)

(ξ1 + a22)g
′ = 0. (A.2j)

Since f ′ ̸= 0, equations (A.2c) and (A.2d) give the conditions a21 = 0 and ξ1 =

−a22, respectively. These conditions also satisfy equations (A.2h) and (A.2j). Also,

since g′u − 2γg = 0 makes the system (5.1) equivalent to a degenerate case then

it follows from equations (A.2f) and (A.2i) that ζ1 = 0 and a12 = 0, respectively.

These conditions also satisfy equations (A.2a) and (A.2e). Equations (A.2b) and

(A.2g) are reduced as follows:

f ′u(a11 − a22 − ζ2)− 2f(γ(a11 − a22) + 2a22) = 0

g′u(a11 − a22 − ζ2)− 2g(γ(a11 − a22) + 2a22) = 0.

From here, there is a need to study 2 cases: 1. f ′g−g′f ̸= 0, and 2. f ′g−g′f = 0.

2.1 Case f ′g − g′f ̸= 0.

For this case, we get the condition ζ2 = a11 − a22. If γ = 0, then a22 = 0. If

γ ̸= 0, then a11 =
γ − 2

γ
a22. This gives no other generators apart from the

studied subalgebra.

2.2 Case f ′g − g′f = 0.

For this case, we obtain functions g = g0u
α and f = f1g, where α ̸= 0

(else degenerate case), g0 ̸= 0 and f1 ̸= 0 are constant. This gives us

ζ2 =
1
α
((α−2γ)a11+(2γ−α−4)a22). These result to an additional extension

of the generator,

κX4 + αX5,

aside from the studied subalgebra. Note that γ =
α− κ

2
, κ ̸= 0 is constant.

Subalgebra 3. with generator γX2 +X8 −X7.
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For this case, the determining equations (5.14) become

−zFy + yFz + 2γF +G = 0,

−zGy + yGz − F + 2γG = 0

for which the general solution is

F (y, z) = e−2γu(cos(u)f(v) + sin(u)g(v)),

G(y, z) = e−2γu(sin(u)f(v)− cos(u)g(v)),
(A.3)

where u = arctan(z/y), v2 = y2 + z2 and f 2 + g2 ̸= 0 (else degenerate). These

functions are substituted into the determining equations (5.2), which are split with

respect to y and z after substitution of these variables with respect to u and v.

The determining equations are as follows

a11v(f
′v − f) + a12gv + a21v(−2fγ + g) + ξ1v(f

′v + 3f) + f ′vζ1 − 2fγζ2

+gζ2 = 0,

(A.4a)

2a11v(fγ − g) + a12v(f
′v − f) + a21v(f

′v − f) + 2a22v(−fγ + g) + f ′vζ2

+2fγζ1 − gζ1 = 0,

(A.4b)

a12(2fγ − g)− a21g + a22(f
′v − f) + ξ1(f

′v + 3f) = 0, (A.4c)

f ′vζ1 − 2fγζ2 + gζ2 = 0, (A.4d)

f ′vζ2 + 2fγζ1 − gζ1 = 0, (A.4e)

a11g
′v2 − 2a21γgv − a22gv + ξ1v(g

′v + 3g)− g′vζ1 + fζ2 + 2γgζ2 = 0, (A.4f)

2a11γgv+a12v(g
′v+g)+a21v(g

′v+g)−2a22γgv−g′vζ2−fζ1−2γgζ1 = 0, (A.4g)

−a11g + 2a12γg + a22g
′v + ξ1(g

′v + 3g) = 0, (A.4h)

g′vζ1 − fζ2 − 2γgζ2 = 0, (A.4i)

g′vζ2 + fζ1 + 2γgζ1 = 0. (A.4j)
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Equations (A.4d), (A.4e), (A.4i) and (A.4j) force ζ1 = 0 and ζ2 = 0. If not,

these lead to f = 0 and g = 0, which lead to a degenerate case. The remaining

determining equations are simplified as follows

(a11 + ξ1)f
′v − (2γa21 + a11 − 3ξ1)f + �a12 + a21)g = 0, (A.5a)

(a12 + a21)f
′v − (2a22γ − 2a11γ + a21 + a12)f + 2�a22 − a11)g = 0, (A.5b)

(a22 + ξ1)f
′v − (a22 − 2γa12 − 3ξ1)f − �a12 + a21)g = 0, (A.5c)

(a11 + ξ1)g
′v − (2γa21 + a22 − 3ξ1)g = 0, (A.5d)

(a12 + a21)g
′v − (2a22γ − 2a11γ − a21 − a12)g = 0, (A.5e)

(a22 + ξ1)g
′v − (a11 − 2γa12 − 3ξ1)g = 0. (A.5f)

From Equations (A.5d), (A.5e) and (A.5f) (since g is nonzero), we obtain

that a21 = −a12 and a22 = a11. From here, we need to separate whether 1. γ = 0,

or 2. γ ̸= 0.

3.1 Case γ ̸= 0.

If γ ̸= 0, we obtain a11 = a22. From here, we need to study the following

cases: a. f ′g − g′f = 0, and b. f ′g − g′f ̸= 0.

3.1.a Case f ′g − g′f = 0.

If f ′g− g′f = 0, then we obtain that f = f0g, where f0 ̸= 0 is constant.

Substituting this into the remaining determining equation, we obtain

that either
(
g′v + 3g

2γg

)′

̸= 0 or
(
g′v + 3g

2γg

)′

= 0. If it is not satisfied, we

obtain that a21 =
−2a22
γ

. No extensions of the generator are obtained.

If it is satisfied, then we get that g = g0v
2κγ−3, where g0 ̸= 0 is constant.

It will also follow that a21 = κξ1+

(
κ− 2

γ

)
a22. Here, we obtain another

extension apart from the studied subalgebra, which is

2X2 +X5 +X6 + κ(X8 −X7)
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.

3.1.b Case f ′g − g′f ̸= 0.

If f ′g − g′f ̸= 0, we obtain that a22 = −ξ1. Substituting this into

the remaining determining equation, we obtain that ξ1 =
γa21
2
. No

extensions of the generator are obtained.

3.2 Case γ = 0.

If γ = 0, we also obtain a11 = a22. From here,we need to study the following

cases: a. f ′v − f = 0, and b. f ′v − f ̸= 0.

3.2.a Case f ′v − f = 0.

If f ′v − f = 0, then f = f0v, where f0 is constant. Substituting this

into the determining equations, we obtain that ξ1 = 0. The remaining

determining equation leads us to study the following cases: i. g′v− g =

0, and ii. g′v − g ̸= 0.

3.2.a.i Case g′v − g = 0.

If g′v − g = 0, the g = g0v, where g0 is constant. Aside from the

studied subalgebra, we obtain the extension

X5 +X6.

3.2.a.ii Case g′v − g ̸= 0.

If g′v − g ̸= 0, then a22 = 0. No extensions are obtained.

3.2.b Case f ′v − f ̸= 0.

If f ′v − f = 0 ̸= 0, then we need to study the following cases: i.

f ′g − g′f = 0, and ii. f ′g − g′f ̸= 0.

3.2.b.i Case f ′g − g′f = 0.
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If f ′g − g′f = 0, we need to study further if
(
−(f ′v − 3f)

f ′v − f

)′

= 0

or
(
−(f ′v − 3f)

f ′v − f

)′

̸= 0. If it is satisfied, we obtain that f = f0v
κ,

where κ ̸= 1. Substituting this into the determining equation, we

obtain that a22 =
−(κ+ 3)ξ1
κ− 1

. Another extension is obtained aside

from the studied subalgebra, i.e., we obtain

1− κ

2
X2 +X5 +X6.

If it is not satisfied, we obtain that ξ1 = 0. No extensions are

obtained.

3.2.b.ii Case f ′g − g′f ̸= 0.

If f ′g − g′f ̸= 0, then it follows that ξ1 = 0. No extensions are

obtained.

Subalgebra 4. with generator γX2 + α(X5 +X6) +X8 −X7, α > 0.

For this case, the determining equations (5.14) become

(αy − z)Fy + (αz + y)Fz + (2γ − α)F +G = 0,

(αy − z)Gy + (αz + y)Gz − F + (2γ − α)G = 0

for which the general solution is

F (y, z) = e(α−2γ)u(cos(u)f(v) + sin(u)g(v)),

G(y, z) = e(α−2γ)u(sin(u)f(v)− cos(u)g(v)),
(A.6)

where u = arctan(z/y) and v2 = e−2αu(y2 + z2). These functions are substituted

into the determining equations (5.2), which are split with respect to u after sub-

stitutions of y and z. The following determining equations are obtained:

f ′v(−αζ2 + ζ1) + fζ2(α− 2γ) + gζ2 = 0, (A.7a)
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f ′v(αζ1 + ζ2) + g′v(−αζ2 + ζ1) + f(−αζ1 + 2γζ1 − ζ2)

+g(αζ2 − 2γζ2 − ζ1) = 0,
(A.7b)

f ′v(αζ2 − ζ1) + 4g′v(αζ1 + ζ2) + f(−αζ2 + 2γζ2 + 4ζ1)

+g(−4αζ1 + 8γζ1 − ζ2) = 0,
(A.7c)

f ′v(−αa21 + a11 + ξ1) + f(αa21 − 2γa21 − a11 + 3ξ1) + g(a12 + a21) = 0, (A.7d)

f ′v(αa11 − αa22 + a12 + a21) + g′v(−αa21 + a11 + ξ1)

+f(−αa11 + αa22 + 2γa11 − 2γa22 − a12 − a21)

+g(αa21 − 2γa21 − 2a11 + a22 + 3ξ1) = 0,

(A.7e)

f ′v(4αa12 + 3αa21 − 3a11 + 4a22 + ξ1) + 4g′v(αa11 − αa22 + a12 + a21)

+f(−4αa12 − 3αa21 + 8γa12 + 6γa21 + 3a11 − 4a22 + 3ξ1)

+g(−4αa11 + 4αa22 + 8γa11 − 8γa22 − 3a12 − 3a21) = 0,

(A.7f)

f ′v(αa11 − αa22 + a12 + a21) + g′v(−2αa12 − αa21 + a11 − 2a22 − ξ1)

+f(−αa11 + αa22 + 2γa11 − 2γa22 − a12 − a21)

+g(2αa12 + αa21 − 4γa12 − 2γa21 + a22 − 3ξ1) = 0,

(A.7g)

g′v(αζ2 − ζ1) + fζ2 + gζ2(−α + 2γ) = 0, (A.7h)

f ′v(αζ2 − ζ1) + g′v(αζ1 + ζ2) + f(−αζ2 + 2γζ2 + ζ1)

+g(−αζ1 + 2γζ1 − ζ2) = 0,
(A.7i)

4f ′v(αζ1 + ζ2) + g′v(−αζ2 + ζ1) + f(−4αζ1 + 8γζ1 − ζ2)

+g(αζ2 − 2γζ2 − 4ζ1) = 0,
(A.7j)

g′v(αa21 − a11 − ξ1) + g(−αa21 + 2γa21 + a22 − 3ξ1) = 0, (A.7k)

f ′v(αa21 − a11 − ξ1) + g′v(αa11 − αa22 + a12 + a21)

+f(−αa21 + 2γa21 + a11 − 3ξ1) + g(−αa11 + αa22 + 2γa11 − 2γa22) = 0,

(A.7l)
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4f ′v(αa11 − αa22 + a12 + a21) + g′v(−4αa12 − 3αa21 + 3a11 − 4a22 − ξ1)

+4f(−αa11 + αa22 + 2γa11 − 2γa22 − a12 − a21)

+g(4αa12 + 3αa21 − 8γa12 − 6γa21 − 4a11 + 5a22 − 3ξ1) = 0,

(A.7m)

f ′v(2αa12 + αa21 − a11 + 2a22 + ξ1) + g′v(αa11 − αa22 + a12 + a21)

+f(−2αa12 − αa21 + 4γa12 + 2γa21 + a11 − 2a22 + 3ξ1)

+g(−αa11 + αa22 + 2γa11 − 2γa22 − 2a12 − 2a21) = 0.

(A.7n)

From here, as g ̸= 0, we can assume that f = ϕg, where ϕ = ϕ(v) ̸= 0. Substituting

this into the determining equations (A.7), these equations are reduced to the

following

g′ϕv(−αζ2 + ζ1) + g(−ϕ′αvζ2 + ϕ′vζ1 + αϕζ2 − 2γϕζ2 + ζ2) = 0, (A.8a)

g′v(αϕζ1−αζ2+ϕζ2+ζ1)+g(ϕ′αvζ1+ϕ
′vζ2−αϕζ1+αζ2+2γϕζ1−2γζ2−ϕζ2−ζ1) = 0,

(A.8b)

g′v(αϕζ2 + 4αζ1 − ϕζ1 + 4ζ2)

+g(ϕ′αvζ2 − ϕ′vζ1 − αϕζ2 − 4αζ1 + 2γϕζ2 + 8γζ1 + 4ϕζ1 − ζ2) = 0,
(A.8c)

g′ϕv(−αa21 + a11 + ξ1)

+g(−ϕ′αa21v + ϕ′a11v + ϕ′ξ1v + αa21ϕ− 2γa21ϕ− a11ϕ+ a12 + a21 + 3ξ1ϕ) = 0,

(A.8d)

g′v(αa11ϕ− αa21 − αa22ϕ+ a11 + a12ϕ+ a21ϕ+ ξ1)

+g(ϕ′αa11v − ϕ′αa22v + ϕ′a12v + ϕ′a21v − αa11ϕ

+αa21 + αa22ϕ+ 2γa11ϕ− 2γa21 − 2γa22ϕ− 2a11 − a12ϕ− a21ϕ+ a22 + 3ξ1) = 0,

(A.8e)

g′v(4αa11 + 4αa12ϕ+ 3αa21ϕ− 4αa22 − 3a11ϕ+ 4a12 + 4a21 + 4a22ϕ+ ξ1ϕ)

+g(4ϕ′αa12v + 3ϕ′αa21v − 3ϕ′a11v + 4ϕ′a22v + ϕ′ξ1v − 4αa11

−4αa12ϕ− 3αa21ϕ+ 4αa22 + 8γa11 + 8γa12ϕ+ 6γa21ϕ

−8γa22 + 3a11ϕ− 3a12 − 3a21 − 4a22ϕ+ 3ξ1ϕ) = 0,

(A.8f)
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g′v(αa11ϕ− 2αa12 − αa21 − αa22ϕ+ a11 + a12ϕ+ a21ϕ− 2a22 − ξ1)

+g(ϕ′αa11v − ϕ′αa22v + ϕ′a12v + ϕ′a21v

−αa11ϕ+ 2αa12 + αa21 + αa22ϕ+ 2γa11ϕ

−4γa12 − 2γa21 − 2γa22ϕ− a12ϕ− a21ϕ+ a22 − 3ξ1) = 0,

(A.8g)

g′v(αζ2 − ζ1) + gζ2(−α + 2γ + ϕ) = 0, (A.8h)

g′v(αϕζ2 + αζ1 − ϕζ1 + ζ2)

+g(ϕ′αvζ2 − ϕ′vζ1 − αϕζ2 − αζ1 + 2γϕζ2 + 2γζ1 + ϕζ1 − ζ2) = 0,
(A.8i)

g′v(4αϕζ1 − αζ2 + 4ϕζ2 + ζ1)

+g(4ϕ′αvζ1 + 4ϕ′vζ2 − 4αϕζ1 + αζ2 + 8γϕζ1 − 2γζ2 − ϕζ2 − 4ζ1) = 0,
(A.8j)

g′v(αa21 − a11 − ξ1) + g(−αa21 + 2γa21 + a22 − 3ξ1) = 0, (A.8k)

g′v(αa11 + αa21ϕ− αa22 − a11ϕ+ a12 + a21 − ξ1ϕ)

+g(ϕ′αa21v − ϕ′a11v − ϕ′ξ1v − αa11

−αa21ϕ+ αa22 + 2γa11 + 2γa21ϕ− 2γa22 + a11ϕ− 3ξ1ϕ) = 0,

(A.8l)

g′v(4αa11ϕ− 4αa12 − 3αa21 − 4αa22ϕ+ 3a11 + 4a12ϕ+ 4a21ϕ− 4a22 − ξ1)

+g(4ϕ′αa11v − 4ϕ′αa22v + 4ϕ′a12v + 4ϕ′a21v

−4αa11ϕ+ 4αa12 + 3αa21 + 4αa22ϕ+ 8γa11ϕ− 8γa12

−6γa21 − 8γa22ϕ− 4a11 − 4a12ϕ− 4a21ϕ+ 5a22 − 3ξ1) = 0,

(A.8m)

g′v(αa11 + 2αa12ϕ+ αa21ϕ− αa22 − a11ϕ+ a12 + a21 + 2a22ϕ+ ξ1ϕ)

+g(2ϕ′αa12v + ϕ′αa21v − ϕ′a11v + 2ϕ′a22v + ϕ′ξ1v

−αa11 − 2αa12ϕ− αa21ϕ+ αa22 + 2γa11 + 4γa12ϕ+ 2γa21ϕ

−2γa22 + a11ϕ− 2a12 − 2a21 − 2a22ϕ+ 3ξ1ϕ) = 0.

(A.8n)

Based on equation (A.8k), we can further study the following two cases:

1.
(
g′v

g

)′

= 0, and 2.
(
g′v

g

)′

̸= 0.

4a.1 Case
(
g′v

g

)′

= 0.
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If
(
g′v

g

)′

= 0, then g = g0v
κ, where g0 ̸= 0, κ are constant. Substituting this

into equation (A.8k), we obtain that a22 = (α(1−κ)−2γ)a21+κa11+(κ+3)ξ1.

From here, we need to study the following cases: a. κ = 0, and b. κ ̸= 0.

4a.1.a Case κ = 0.

If κ = 0, then we need to study if ϕ′ = 0 or ϕ′ ̸= 0. For ϕ′ = 0, we

obtain that a12 = −a21, a11 = (α− 2γ)a21 + 3ξ1 and ζ1 = ζ2 = 0. Aside

from the studied subalgebra, we obtain the extension

X2 + 2(X5 +X6).

If ϕ′ ̸= 0, we obtain that ζ1 = ζ2 = 0. Consequently, we obtain that

a12 = −a21, a11 =
(2α− γ)a21

2
and ξ1 =

γa21
2
. No additional extensions

are obtained.

4a.1.b Case κ ̸= 0.

Similarly for κ ̸= 0, we need to study if ϕ′ = 0 or ϕ′ ̸= 0. We note that

for ϕ′ = 0, κ ̸= 1 as this is equivalent to the studied case subalgebra

3. For ϕ′ = 0, we obtain that ζ1 = ζ2 = 0, a12 = −a21, and a11 =

(α(κ− 1) + 2γ)a21 − (κ+ 3)ξ1
κ− 1

. Aside from the studied subalgebra, we

obtain the extension

1− κ

2
X2 +X5 +X6.

If ϕ′ ̸= 0, we obtain that ζ2 = 0. Consequently, we obtain that

a11 =
(2α− γ)a21

2
, a12 = −a21, ξ1 =

γa21
2

and ζ1 = 0. No additional

extensions are obtained.

4a.2 Case
(
g′v

g

)′

̸= 0.
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If
(
g′v

g

)′

̸= 0, then from equation (A.8k), it follows that a11 = −ξ1 + αa21

and a22 = (α− 2γ)a21 +3ξ1. From equation (A.8d), we can consider 2 cases:

a. ϕ′ = 0 or b. ϕ′ ̸= 0.

4a.2.a Case ϕ′ = 0.

For this case, ϕ = constant. It follows from equation (A.8d) that a12 =

2(γa21 − 2ξ1)ϕ − a21. Substituting these into the remaining equations,

equation (A.8m) gives the condition that ξ1 =
γa21
2
. These also satisfies

equations (A.8e), (A.8f), (A.8g), (A.8l) and (A.8n). From equation

(A.8h), ζ1 = αζ2. Consequently from the same equation, one must

study the following 2 cases: i. ϕ = α− 2γ or ii. ϕ ̸= α− 2γ.

4a.2.a.i Case ϕ = α− 2γ.

For this case, equation (A.8a) gives the condition that ζ2 = 0. No

extensions are obtained in this case.

4a.2.a.ii Case ϕ ̸= α− 2γ.

For this case, equation (A.8h) gives the condition that ζ2 = 0. No

extensions are obtained in this case.

4a.2.b Case ϕ′ ̸= 0.

For this case, from equation (A.8d), it follows that ξ1 =
γa21
2

and

a12 = −a21. These conditions satisfy equations (A.8e), (A.8f), (A.8g),

(A.8h), (A.8l), (A.8m) and (A.8n) From here, we substitute equation

(A.8h) into the other equations. From equation (A.8a), we can consider

2 cases: i.
(
ϕ2 + 1

ϕ′v

)′

= 0 or ii.
(
ϕ2 + 1

ϕ′v

)′

̸= 0.

4a.2.b.i Case
(
ϕ2 + 1

ϕ′v

)′

= 0.

For this case, ϕ = tan(κ ln(v)), where κ ̸= 0. Substituting this into

the remaining determining equations and from equation (A.8a),
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one obtains ζ1 =
ζ2(ακ− 1)

κ
. Consequently from what remains of

equation (A.8a), one must study the following cases:

A. g′v + κg(tan(κ ln(v))− α+ 2γ) ̸= 0 or

B. g′v + κg(tan(κ ln(v))− α+ 2γ) = 0.

4a.2.b.i.A Case g′v + κg(tan(κ ln(v))− α + 2γ) ̸= 0.

For this case, it follows that ζ2 = 0. No additional extensions

are obtained.

4a.2.b.i.B Case g′v + κg(tan(κ ln(v))− α + 2γ) = 0.

For this case, it follows that g =
vκ(α−2γ)

(tan2(κ log(v)) + 1)1/2
. Sub-

stituting into the remaining determining equations, it leads to

ζ2 = 0. No additional extensions are obtained.

4a.2.b.ii Case
(
ϕ2 + 1

ϕ′v

)′

̸= 0.

For this case, it follows from equation (A.8a) that ζ2 = 0 and

consequently, ζ1 = 0. All remaining equations are satisfied and no

additional extensions are obtained.

Subalgebra 4. with generator γX2 −X3 + α(X5 +X6) +X8 −X7, α > 0.

For this case, the determining equations (5.14) become

(αy − z − 1)Fy + (αz + y)Fz + (2γ − α)F +G = 0,

(αy − z − 1)Gy + (αz + y)Gz − F + (2γ − α)G = 0

for which the general solution is

F (y, z) = e(α−2γ)u(cos(u)f(v) + sin(u)g(v)),

G(y, z) = e(α−2γ)u(sin(u)f(v)− cos(u)g(v)),
(A.9)

where u = arctan
(
z + χ2(α)

y − χ1(α)

)
and v2 = e−2αu((y−χ1(α))

2 + (z+χ2(α))
2), with

χ1(α) =
α

α2 + 1
and χ2(α) =

1

α2 + 1
. These functions are substituted into the
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determining equations (5.2), which are split with respect to u after substitution of

y and z. The following determining equations are obtained:

f ′v(−αa21 + a11 + ξ1) + f(αa21 − 2γa21 − a11 + 3ξ1) + g(a12 + a21) = 0, (A.10a)

f ′v(α2a21 − αa22 − αξ1 + a12 + a21) + f(−α2a21 + 2αγa21 + αa22

−3αξ1 + 2γa11 − 2γa22 − a12 − a21) + g(−αa12 − αa21 − 2a11 + 2a22) = 0,

(A.10b)

f ′v(−α3ζ2 + α2a21 + α2ζ1 − αζ2 + a21 + ζ1)

+f(α3ζ2 − 2α2γζ2 − α2a21 + 2αγa21 + αa11 − 7αξ1 + αζ2 + 2γa11

+2γξ1 − 2γζ2 − a12 − a21) + g(α2ζ2 − 2αa12 − αa21 − 2a11 + a22 − ξ1 + ζ2) = 0,

(A.10c)

f ′v(−α4ζ2 + α3ζ1 + α2a22 + α2ξ1 − α2ζ2 + αζ1 + a22 + ξ1)

+f(α4ζ2 − 2α3γζ2 + α2a11 − α2a22

−4α2ξ1 + α2ζ2 + 2αγa22 + 2αγξ1 − 2αγζ2 − αa12 + 2γa12 − a22 + 3ξ1)

+g(α3ζ2 − α2a12 − αa22 − αξ1 + αζ2 − a12 − a21) = 0,

(A.10d)

f ′vζ2(α
4 + 2α2 + 1) + f(−α4ζ2 + 2α3γζ2 − α3ζ1 + 2α2γζ1 − α2a11 + 3α2ξ1 − α2ζ2

+2αγζ2 + αa12 + αa21 − αζ1 + 2γζ1 − a22 + 3ξ1)

+g(−α3ζ2 + α2a12 − α2ζ1 + αa11 − αa22 − αζ2 − a21 − ζ1) = 0,

(A.10e)

g′v(−αa21 + a11 + ξ1) + g(αa21 − 2γa21 − a22 + 3ξ1) = 0, (A.10f)

g′v(α2a12 + α2a21 + a12 + a21) + g(−α2a12 − α2a21 + 2αγa12

+2αγa21 − 2αa11 + 2αa22 + 2γa11 − 2γa22 + a12 + a21) = 0,
(A.10g)

g′v(αa12 + a22 + ξ1) + g(−αa12 + 2γa12 − a11 + 3ξ1) = 0, (A.10h)



105

g′v(α4a21 + α4ζ1 + 2α2a21 + 2α2ζ1 + a21 + ζ1)

+f(α3ζ1 + α2a11 + α2ξ1 − α2ζ2 − αa12 − αa21 + αζ1 + a22 + ξ1 − ζ2)

+g(−α4a21 − α4ζ1 + 2α3γa21 + 2α3γζ1 − α3a11 + α3a22 − 4α3ξ1 + α3ζ2

+2α2γa11 + 2α2γξ1 − 2α2γζ2 − α2a21 − α2ζ1 + 2αγa21 + 2αγζ1−

2αa11 + 2αa22 − 4αξ1 + αζ2 + 2γa11 + 2γξ1 − 2γζ2 + a12 + a21) = 0,

(A.10i)

g′v(α3a21 + α3ζ1 + α2ζ2 + αa21 + αζ1 + ζ2)

+f(α2ζ1 + αa11 + αξ1 − a12 + ζ1) + g(−α3a21 − α3ζ1 + 2α2γa21

+2α2γζ1 − α2a11 + α2a22 − 4α2ξ1 + 2αγa11 + 2αγξ1 − αζ1 + 2γζ1 − a11 + 3ξ1) = 0.

(A.10j)

As g is nonzero, we can assume that f = ϕ(v)g, where ϕ ̸= 0. The deter-

mining equations are reduced as follows.

(ϕ′g + ϕg′)v(−αa21 + a11 + ξ1) + ϕg(αa21 − 2γa21 − a11 + 3ξ1) + g(a12 + a21) = 0,

(A.11a)

(ϕ′g + ϕg′)v(α2a21 − αa22 − αξ1 + a12 + a21) + ϕg(−α2a21 + 2αγa21 + αa22

−3αξ1 + 2γa11 − 2γa22 − a12 − a21) + g(−αa12 − αa21 − 2a11 + 2a22) = 0,

(A.11b)

(ϕ′g + ϕg′)v(−α3ζ2 + α2a21 + α2ζ1 − αζ2 + a21 + ζ1)

+ϕg(α3ζ2 − 2α2γζ2 − α2a21 + 2αγa21 + αa11 − 7αξ1 + αζ2 + 2γa11

+2γξ1 − 2γζ2 − a12 − a21) + g(α2ζ2 − 2αa12 − αa21 − 2a11 + a22 − ξ1 + ζ2) = 0,

(A.11c)

(ϕ′g + ϕg′)v(−α4ζ2 + α3ζ1 + α2a22 + α2ξ1 − α2ζ2 + αζ1 + a22 + ξ1)

+ϕg(α4ζ2 − 2α3γζ2 + α2a11 − α2a22

−4α2ξ1 + α2ζ2 + 2αγa22 + 2αγξ1 − 2αγζ2 − αa12 + 2γa12 − a22 + 3ξ1)

+g(α3ζ2 − α2a12 − αa22 − αξ1 + αζ2 − a12 − a21) = 0,

(A.11d)
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(ϕ′g + ϕg′)vζ2(α
4 + 2α2 + 1)

+f(−α4ζ2 + 2α3γζ2 − α3ζ1 + 2α2γζ1 − α2a11 + 3α2ξ1 − α2ζ2

+2αγζ2 + αa12 + αa21 − αζ1 + 2γζ1 − a22 + 3ξ1)

+g(−α3ζ2 + α2a12 − α2ζ1 + αa11 − αa22 − αζ2 − a21 − ζ1) = 0,

(A.11e)

g′v(−αa21 + a11 + ξ1) + g(αa21 − 2γa21 − a22 + 3ξ1) = 0, (A.11f)

g′v(α2a12 + α2a21 + a12 + a21) + g(−α2a12 − α2a21 + 2αγa12

+2αγa21 − 2αa11 + 2αa22 + 2γa11 − 2γa22 + a12 + a21) = 0,
(A.11g)

g′v(αa12 + a22 + ξ1) + g(−αa12 + 2γa12 − a11 + 3ξ1) = 0, (A.11h)

g′v(α4a21 + α4ζ1 + 2α2a21 + 2α2ζ1 + a21 + ζ1)

+ϕg(α3ζ1 + α2a11 + α2ξ1 − α2ζ2 − αa12 − αa21 + αζ1 + a22 + ξ1 − ζ2)

+g(−α4a21 − α4ζ1 + 2α3γa21 + 2α3γζ1 − α3a11 + α3a22 − 4α3ξ1 + α3ζ2

+2α2γa11 + 2α2γξ1 − 2α2γζ2 − α2a21 − α2ζ1 + 2αγa21 + 2αγζ1−

2αa11 + 2αa22 − 4αξ1 + αζ2 + 2γa11 + 2γξ1 − 2γζ2 + a12 + a21) = 0,

(A.11i)

g′v(α3a21 + α3ζ1 + α2ζ2 + αa21 + αζ1 + ζ2)

+ϕg(α2ζ1 + αa11 + αξ1 − a12 + ζ1) + g(−α3a21 − α3ζ1 + 2α2γa21

+2α2γζ1 − α2a11 + α2a22 − 4α2ξ1 + 2αγa11 + 2αγξ1 − αζ1 + 2γζ1 − a11 + 3ξ1) = 0.

(A.11j)

From equations (A.11f)-(A.11h), we need to study the following cases:

1.
(
g′v

g

)′

= 0, and 2.
(
g′v

g

)′

̸= 0.

4b.1 Case
(
g′v

g

)′

= 0.

If
(
g′v

g

)′

= 0, then g = g0v
κ, where g0 ̸= 0, κ are constant. Substitut-

ing this into the determining equations, from the determining equations

one obtains the relations a11 = a22, a12 = a21, ζ1 = −(αζ2 + a21) and

a22 =
1

4
((α2 + 1)(κ+ 3)ζ2) + 2(2α− γ)a21, under the assumption that ϕ is
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constant. Another extension is obtained, i.e.,

1− κ

2
X2 +X5 +X6 + χ2X4 − χ1X3.

If ϕ′ ̸= 0, then we obtain that ξ1 =
γa21
2
. Substituting into the determining

equations, we obtain that ζ1 = −a21 and ζ2 = 0. No additional extensions of

the generator are obtained other than the studied subalgebra.

4b.2 Case
(
g′v

g

)′

̸= 0.

If
(
g′v

g

)′

̸= 0, then we get that a22 = −(αa12+ξ1) and a11 = (2γ−α)a12+3ξ1.

Substituting these and analyzing the determining equations, it gives us that

ξ = −γa21
2

and a12 = −a21. Consequently, ζ2 = 0 and ζ1 = −a21. No

additional extensions of the generator are obtained other than the studied

subalgebra.

Subalgebra 4. with generator γX2 +X3 + α(X5 +X6) +X8 −X7, α > 0.

For this case, the determining equations (5.14) become

(αy − z + 1)Fy + (αz + y)Fz + (2γ − α)F +G = 0,

(αy − z + 1)Gy + (αz + y)Gz − F + (2γ − α)G = 0

for which the general solution is

F (y, z) = e(α−2γ)u(cos(u)f(v) + sin(u)g(v)),

G(y, z) = e(α−2γ)u(sin(u)f(v)− cos(u)g(v)),
(A.12)

where u = arctan
(
z − χ2(α)

y + χ1(α)

)
and v2 = e−2αu((y+χ1(α))

2 + (z−χ2(α))
2), with

χ1(α) =
α

α2 + 1
and χ2(α) =

1

α2 + 1
. These functions are substituted into the

determining equations (5.2), which are split with respect to u after substitution of

y and z. The following determining equations are obtained after initial analysis.

f ′v(−αa21 + a11 + ξ1) + f(αa21 − 2γa21 − a11 + 3ξ1) + g(a12 + a21) = 0, (A.13a)
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f ′v(α2a21 − αa22 − αξ1 + a12 + a21)

+f(−α2a21 + 2αγa21 + αa22 − 3αξ1 + 2γa11 − 2γa22 − a12 − a21)

+g(−αa12 − αa21 − 2a11 + 2a22) = 0,

(A.13b)

f ′v(α3ζ2 + α2a21 − α2ζ1 + αζ2 + a21 − ζ1) + f(−α3ζ2 + 2α2γζ2 − α2a21 + 2αγa21

+αa11 − 7αξ1 − αζ2 + 2γa11 + 2γξ1 + 2γζ2 − a12 − a21)

+g(−α2ζ2 − 2αa12 − αa21 − 2a11 + a22 − ξ1 − ζ2) = 0,

(A.13c)

f ′v(α4ζ2 − α3ζ1 + α2a22 + α2ξ1 + α2ζ2 − αζ1 + a22 + ξ1)

+f(−α4ζ2 + 2α3γζ2 + α2a11 − α2a22 − 4α2ξ1 − α2ζ2

+2αγa22 + 2αγξ1 + 2αγζ2 − αa12 + 2γa12 − a22 + 3ξ1)

−g(α3ζ2 + α2a12 + αa22 + αξ1 + αζ2 + a12 + a21) = 0,

(A.13d)

f ′vζ2(α
4 + 2α2 + 1) + f(−α4ζ2 + 2α3γζ2 − α3ζ1

+2α2γζ1 + α2a11 − 3α2ξ1 − α2ζ2 + 2αγζ2 − αa12 − αa21 − αζ1 + 2γζ1 + a22 − 3ξ1)

+g(−α3ζ2 − α2a12 − α2ζ1 − αa11 + αa22 − αζ2 + a21 − ζ1) = 0,

(A.13e)

g′v(−αa21 + a11 + ξ1) + g(αa21 − 2γa21 − a22 + 3ξ1) = 0, (A.13f)

g′v(−α3ζ2 + α2ζ1 − αa22 − αξ1 − αζ2 + a12 + ζ1)

+f(−α2ζ2 + αa21 − a22 − ξ1 − ζ2)

+g(α3ζ2 − 2α2γζ2 + 4αξ1 + αζ2 − 2γa22 − 2γξ1 − 2γζ2) = 0,

(A.13g)

g′v(α3ζ2 + α2a21 − α2ζ1 + αζ2 + a21 − ζ1) + f(α2ζ2 − αa21 + a22 + ξ1 + ζ2)

+g(−α3ζ2 + 2α2γζ2 − α2a21 + 2αγa21 − αa11

+2αa22 − 7αξ1 − αζ2 + 2γa11 + 2γξ1 + 2γζ2 + a12 + a21) = 0,

(A.13h)

g′v(α4ζ2 − α3ζ1 + α2a22 + α2ξ1 + α2ζ2 − αζ1 + a22 + ξ1)

+fα(α2ζ2 − αa21 + a22 + ξ1 + ζ2) + g(−α4ζ2 + 2α3γζ2 − 4α2ξ1 − α2ζ2 + 2αγa22

+2αγξ1 + 2αγζ2 − αa12 + 2γa12 − a11 + 3ξ1) = 0,

(A.13i)
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g′vζ2(α
4 + 2α2 + 1) + f(α3ζ2 − α2a21 + α2ζ1 − αa11 + αa22 + αζ2 + a12 + ζ1)

+g(−α4ζ2 + 2α3γζ2 − α3ζ1 + 2α2γζ1 + α2a22

−3α2ξ1 − α2ζ2 + 2αγζ2 + αa12 + αa21 − αζ1 + 2γζ1 + a11 − 3ξ1) = 0.

(A.13j)

As g is nonzero, we can assume that f = ϕ(v)g, where ϕ ̸= 0. The deter-

mining equations are reduced as follows.

(ϕ′g + ϕg′)v(−αa21 + a11 + ξ1) + ϕg(αa21 − 2γa21 − a11 + 3ξ1) + g(a12 + a21) = 0,

(A.14a)

(ϕ′g + ϕg′)v(α2a21 − αa22 − αξ1 + a12 + a21)

+ϕg(−α2a21 + 2αγa21 + αa22 − 3αξ1 + 2γa11 − 2γa22 − a12 − a21)

+g(−αa12 − αa21 − 2a11 + 2a22) = 0,

(A.14b)

(ϕ′g + ϕg′)v(α3ζ2 + α2a21 − α2ζ1 + αζ2 + a21 − ζ1)

+ϕg(−α3ζ2 + 2α2γζ2 − α2a21 + 2αγa21

+αa11 − 7αξ1 − αζ2 + 2γa11 + 2γξ1 + 2γζ2 − a12 − a21)

+g(−α2ζ2 − 2αa12 − αa21 − 2a11 + a22 − ξ1 − ζ2) = 0,

(A.14c)

(ϕ′g + ϕg′)v(α4ζ2 − α3ζ1 + α2a22 + α2ξ1 + α2ζ2 − αζ1 + a22 + ξ1)

+ϕg(−α4ζ2 + 2α3γζ2 + α2a11 − α2a22 − 4α2ξ1 − α2ζ2

+2αγa22 + 2αγξ1 + 2αγζ2 − αa12 + 2γa12 − a22 + 3ξ1)

−g(α3ζ2 + α2a12 + αa22 + αξ1 + αζ2 + a12 + a21) = 0,

(A.14d)

(ϕ′g + ϕg′)vζ2(α
4 + 2α2 + 1) + ϕg(−α4ζ2 + 2α3γζ2 − α3ζ1

+2α2γζ1 + α2a11 − 3α2ξ1 − α2ζ2 + 2αγζ2 − αa12 − αa21 − αζ1 + 2γζ1 + a22 − 3ξ1)

+g(−α3ζ2 − α2a12 − α2ζ1 − αa11 + αa22 − αζ2 + a21 − ζ1) = 0,

(A.14e)

g′v(−αa21 + a11 + ξ1) + g(αa21 − 2γa21 − a22 + 3ξ1) = 0, (A.14f)
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g′v(−α3ζ2 + α2ζ1 − αa22 − αξ1 − αζ2 + a12 + ζ1)

+ϕg(−α2ζ2 + αa21 − a22 − ξ1 − ζ2)

+g(α3ζ2 − 2α2γζ2 + 4αξ1 + αζ2 − 2γa22 − 2γξ1 − 2γζ2) = 0,

(A.14g)

g′v(α3ζ2 + α2a21 − α2ζ1 + αζ2 + a21 − ζ1) + ϕg(α2ζ2 − αa21 + a22 + ξ1 + ζ2)

+g(−α3ζ2 + 2α2γζ2 − α2a21 + 2αγa21 − αa11

+2αa22 − 7αξ1 − αζ2 + 2γa11 + 2γξ1 + 2γζ2 + a12 + a21) = 0,

(A.14h)

g′v(α4ζ2 − α3ζ1 + α2a22 + α2ξ1 + α2ζ2 − αζ1 + a22 + ξ1)

+ϕgα(α2ζ2 − αa21 + a22 + ξ1 + ζ2) + g(−α4ζ2 + 2α3γζ2 − 4α2ξ1 − α2ζ2 + 2αγa22

+2αγξ1 + 2αγζ2 − αa12 + 2γa12 − a11 + 3ξ1) = 0,

(A.14i)

g′vζ2(α
4 + 2α2 + 1) + ϕg(α3ζ2 − α2a21 + α2ζ1 − αa11 + αa22 + αζ2 + a12 + ζ1)

+g(−α4ζ2 + 2α3γζ2 − α3ζ1 + 2α2γζ1 + α2a22

−3α2ξ1 − α2ζ2 + 2αγζ2 + αa12 + αa21 − αζ1 + 2γζ1 + a11 − 3ξ1) = 0.

(A.14j)

From the determining equations, we need to study the following cases:

1.
(
g′v

g

)′

= 0, and 2.
(
g′v

g

)′

̸= 0.

4c.1 Case
(
g′v

g

)′

= 0.

If
(
g′v

g

)′

= 0, then g = g0v
κ, where g0 ̸= 0, κ are constant. substituting this

into the determining equations, we obtain that a22 = (α(1 − κ) − 2γ)a21 +

κa11 +(κ+3)ξ1. From here, we need to study the following cases: a. ϕ′ = 0,

and b. ϕ′ ̸= 0.

4c.1.a Case ϕ′ = 0.

If ϕ′ = 0, we obtain that ζ1 = a21 − αζ2 and a11 =
1

4
((2(2α − γ))a21 −

(α2+1)(κ+3)ζ2). Consequently, ξ1 =
1

4
(2γa21+(α2+1)(κ− 1)ζ2) and
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a12 = −a21. Aside from the studied subalgebra, we obtain the extension

1− κ

2
X2 +X5 +X6 + χ1X3 − χ2X4.

4c.1.b Case ϕ′ ̸= 0.

If ϕ′ ̸= 0, there are no extensions obtained.

4c.2 Case
(
g′v

g

)′

̸= 0.

If
(
g′v

g

)′

̸= 0, then we get that a11 = αa21− ξ1 and a22 = (α− 2γ)a21+3ξ1.

Substituting these and analyzing the determining equations, it gives us that

ξ =
γa21
2

and a12 = −a21. Consequently, ζ2 = 0 and ζ1 = a21. No additional

extensions are obtained other than the studied subalgebra.

Subalgebra 5. with generator γX2 +X7.

For this case, the determining equations (5.14) become

zFy + 2γF −G = 0,

zGy + 2γG = 0

for which the general solution is

F (y, z) = (ug(z) + f(z))e−2γu, G(y, z) = g(z)e−2γu, (A.15)

where u = y/z and γg ̸= 0 (γg = 0 makes system (5.1) equivalent to a reducible

case). These functions are substituted into the determining equations (5.2) and

are split with respect to y. Initial analysis results to a21 = 0, ζ2 = 0 and a11 = a22.

The remaining determining equations become

f ′z2(ξ1 + a22)− f((2γa12 + a22 − 3ξ1)z + 2γζ1) + gζ1 = 0, (A.16a)

g′z2(ξ1 + a22)− g((2γa12 + a22 − 3ξ1)z + 2γζ1) = 0. (A.16b)
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Now suppose f(z) = g(z)ϕ(z) (since g is nonzero) where ϕ′ ̸= 0. If ϕ′ = 0, using

equivalence transformation, system (5.1) is equivalent to a reducible system. Sub-

stituting f into equation (A.16a) and obtaining linear combinations with (A.16b),

equation (A.16a) is reduced to

ϕ′z2(ξ1 + a22) + ζ1 = 0. (A.17)

Looking closely at equations (A.16b) and (A.17), there is a need to study the

following 2 cases: 1. there exist at least one generator where ξ1 + a22 ̸= 0, and 2.

all generators have ξ1 + a22 = 0.

5a.1 Case there exist at least one generator where ξ1 + a22 ̸= 0.

For this case, we obtain the general solution ϕ = ϕ0+
α

2γz
and g = g0z

βe−α/z.

Substituting these functions to equations (A.16b) and (A.17), we obtain that

a12 =
βa22 + βξ1 − a22 + 3ξ1

2γ
and ζ1 =

α(a22 + ξ1)

2γ
. One extension of the

generator is found,i.e.,

X5 + 2γX6 + (β − 1)X7.

5a.2 Case all generators have ξ1 + a22 = 0.

For this case, we have ξ1 = −a22. Consequently, ζ1 = 0 and a12 =
2ξ1
γ
. No

extensions of the studied subalgebra were found for this case.

Subalgebra 5. with generator γX2 +X4 +X7.

For this case, the determining equations (5.14) become

zFy + Fz + 2γF −G = 0,

zGy +Gz + 2γG = 0

for which the general solution is

F (y, z) = (zg(u) + f(u))e(−2γz)), G(y, z) = g(u)e(−2γz), (A.18)
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where u = z2 − 2y and g′ ̸= 0 (g′ = 0 is equivalent to a degenerate case). These

functions are substituted into the determining equations (5.2), which is split with

respect to z after substitution of 2y = z2 − u. Initial analysis of the determining

equations yields a21 = 0, and a11 = 2a22+ξ1. The remaining determining equations

are

2f ′((a22 + ξ1)u− ζ1)− 2f(γζ2 + a22 − ξ1)− g(a12 − ζ2) = 0, (A.19a)

2f ′(a12 − ζ2)+2fγ(a22+ξ1)−2g′((a22+ξ1)u−ζ1)+g(2γζ2+a22−3ξ1) = 0, (A.19b)

g′(a12 − ζ2) + gγ(a22 + ξ1) = 0, (A.19c)

2g′((a22 + ξ1)u− ζ1)− g(2γζ2 + a22 − 3ξ1) = 0. (A.19d)

Dividing equation (A.19d) with g′ and differentiating with respect to u two times,

one is left to study the following 2 cases: 1.
(
g

g′

)′′

̸= 0, and 2.
(
g

g′

)′′

= 0.

5b.1 Case
(
g

g′

)′′

̸= 0.

For this case, it follows from equation (A.19d) that a22 = 3ξ1 − 2γζ2. Con-

sequently, from equation (A.19d), ξ1 =
1

2
γζ2 and ζ1 = 0. Substituting these

into determining equations (A.19c), we get that a12 = ζ2. These conditions

also satisfy equations (A.19a) and (A.19b). No other extensions were ob-

tained in this case.

5b.2 Case
(
g

g′

)′′

= 0.

For the second case, the form of g satisfies g = g′(κu + β) for which the

general solution will depend on κ, i.e., i. κ ̸= 0 or ii. κ = 0.

5b.2.i Case κ ̸= 0.

For κ ̸= 0 (with possible shifting leads to β = 0), the general solution of

g is g0uκ. Substituting this function into determining equations (A.19c)
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and (A.19d), one obtains a12 = ζ2 and ζ1 = 0, respectively. Con-

sequently from equation (A.19c), there is a need to study 2 separate

cases of γ, i.e., A. γ ̸= 0, or B. γ = 0.

5b.2.i.A Case γ ̸= 0.

For this case, one has a22 = −ξ1. Consequently from equation

(A.19d), one obtains ξ1 =
γζ2
2
. This condition satisfies equation

(A.19b). Also, since γ ̸= 0, from equation (A.19a), one obtains

ζ2 = 0. From here, no extensions are obtained.

5b.2.i.B Case γ = 0.

For this case, as a consequence of equation (A.19d), either κ =
1

2

or κ ̸= 1

2
. (Observe later that these 2 cases can be generalized.)

If κ =
1

2
, it follows that ξ1 = 0. This also satisfies equation (A.19b).

From equation (A.19a), either f satisfies f ′u−f ̸= 0 or f ′u−f = 0.

For f ′u − f ̸= 0, it follows that a22 = 0 and hence, no extensions

are obtained. For f ′u − f = 0, the general solution is f = f0u.

Another extension of the generator is obtained here:

2X5 +X6.

If κ ̸= 1

2
, it follows that a22 = −(2κ+ 3) ξ1

2κ− 1
. This also satis-

fies equation (A.19b). Moreover, from equation (A.19a), either

f satisfies f ′u − f

(
κ+

1

2

)
̸= 0 or f ′u − f

(
κ+

1

2

)
= 0. For

f ′u − f

(
κ+

1

2

)
̸= 0, it follows that ξ1 = 0 and hence, no exten-

sions are obtained. For f ′u−f
(
κ+

1

2

)
= 0, the general solution is

f = f0u
κ+

1

2 . Another extension of the generator is obtained here:(
1

2
− κ

)
+ 2X5 +X6.
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5b.2.ii Case κ = 0.

When κ = 0, then β ̸= 0 and the general solution for g is g0eβu. Sub-

stituting this into the determining equations (A.19d), one obtains that

ζ1 =
1

2
(2ξ1 − γζ2) and a22 = −ξ1. From equation (A.19c), one has

a12 = ζ2. These conditions also satisfy equation (A.19b). From (A.19a),

one needs to study if f ′ ̸= βf or f ′ = βf.

For f ′ ̸= βf, one obtains ξ1 =
γζ2
2
. No extensions were found.

For f ′ = βf, the general solution for is f = f0e
βu. The extension

βX2 +X3

is obtained.

Subalgebra 6. with generator γX2 +X5 +X6 +X7.

For this case, the determining equations (5.14) become

(y + z)Fy + zFz + (2γ − 1)F −G = 0,

(y + z)Gy + zGz + 2γG−G = 0

for which the general solution is

F (y, z) = ((y/z)g(u) + f(u))e((1−2γ)(y/z)), G(y, z) = g(u)e((1−2γ)(y/z)), (A.20)

where u = ze−y/z and g ̸= 0. These functions are again substituted into the

determining equations (5.2), which is split with respect to z after substitution of

y = z (ln z − lnu) . Initial analysis of the determining equations yields a21 = 0,

ζ2 = 0, ζ1 = 0, and a11 = a22. The remaining determining equations are

f ′u(−a12 + a22 + ξ1)− f(2γa12 − a12 + a22 − 3ξ1)

−g′ log(u)u(−a12 + a22 + ξ1) + g log(u)(2γa12 − a12 + a22 − 3ξ1) = 0,
(A.21a)

g′u(−a12 + a22 + ξ1)− g(2γa12 − a12 + a22 − 3ξ1) = 0. (A.21b)

From here, we study 2 cases: 1.
(
ug′

g

)′

̸= 0 and 2.
(
ug′

g

)′

= 0.
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6.1 Case
(
ug′

g

)′

̸= 0.

For this case, equation (A.21b) gives a12 = a22 + ξ1. Consequently, we need

to study 2 cases of γ, i.e., γ = 0 or γ ̸= 0. If γ = 0, then ξ1 = 0. If γ ̸= 0,

then a22 =
(2− γ)ξ1

γ
. These conditions also satisfy equation (A.21a). Both

cases of γ result to having no extension of the generator.

6.2 Case
(
ug′

g

)′

= 0.

For this case, the general solution of g is g = g0u
k. Substituting to equation

(A.21b), one needs to separate 2 cases of κ, i.e., i. κ = 1 and ii. κ ̸= 1.

(Observe later that these 2 cases can be generalized.)

6.2.i Case κ = 1.

From equation (A.21b), then it follows that a12 =
2ξ1
γ

(notice that γ ̸= 0

or else system (5.1) is equivalent to a degenerate case). Substituting this

into equation (A.21a), f is again separated into 2 cases, A. uf ′−f ̸= 0,

or B. uf ′ − f = 0.

6.2.i.A Case uf ′ − f ̸= 0.

For this case, a22 =
(2− γ)ξ1

γ
. No extensions were found.

6.2.i.B Case uf ′ − f = 0.

For this case, the general solution for f is f = f0u. The extension

of the generator

γX2 +X7

is obtained.

6.2.ii Case κ ̸= 1.

For this case, from equation (A.21b),

a22
1

κ− 1
((2γ + κ− 1)a12 − (κ+ 3)ξ1). Substituting this into equation
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(A.21a), f is again separated into 2 cases, A. uf ′ − κf ̸= 0, or B.

uf ′ − κf = 0.

6.2.ii.A Case uf ′ − κf ̸= 0.

For this case, ξ1 =
γa12
2
. No extensions were found.

6.2.ii.B Case uf ′ − κf = 0.

For this case, the general solution for f is f = f0u
k. The extension

of the generator

γ̃X2 +X7,

where γ̃ = 2γ + κ− 1, is obtained.

Subalgebra 7. with generator γX2 +X3.

For this case, the determining equations (5.14) become

Fy + 2γF = 0,

Gy + 2γG = 0

for which the general solution is

F (y, z) = f(z)e−2γy G(y, z) = g(z)e−2γy, (A.22)

where gf ′ ̸= 0 and γ ̸= 0. If one of them is zero, then system (5.1) is equivalent

to a degenerate case. These functions are again substituted into the determining

equations (5.2) and are split with respect to y. The determining equations after

splitting with respect to y become

f ′(ζ2 + (ξ1 + a22)z)− f(2γa12z + 2γζ1 + a11 − 3ξ1)− ga12 = 0, (A.23a)

g′(ζ2 + (ξ1 + a22)z)− g(2γa12z + 2γζ1 + a22 − 3ξ1)− fa21 = 0, (A.23b)

f ′a21 − 2fγ(a11 + ξ1) = 0, (A.23c)
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g′a21 − 2gγ(a11 + ξ1) = 0. (A.23d)

From equations (A.23c) and (A.23c), there is a need to study if f ′g − g′f = 0 or

f ′g − g′f ̸= 0. If f ′g − g′f = 0 one has f = f0g, where f0 is constant. Notice

that this is equivalent to a degenerate case and hence, this case is omitted. Hence,

f ′g − g′f ̸= 0. From equations (A.23c) and (A.23c), one gets that a21 = 0 and

a11 = −ξ1. Substituting this into equations (A.23a) and (A.23b), one obtains

f ′(ζ2 + (ξ1 + a22)z)− 2f(γa12z + γζ1 − 2ξ1)− ga12 = 0, (A.24a)

g′(ζ2 + (ξ1 + a22)z)− g(2γa12z + 2γζ1 + a22 − 3ξ1) = 0. (A.24b)

We can suppose that f(z) = g(z)ϕ(z), where ϕ′ ̸= 0 (as g is nonzero). Substituting

this into equation (A.24a) and taking linear combinations with equation (A.24b),

equation (A.24a) is transformed into

ϕ′(ζ2 + (ξ1 + a22)z) + (ξ1 + a22)ϕ− a12 = 0, (A.25)

From here, there is a need to study the following 3 cases: 1. there exist at

least one generator where ξ1 + a22 ̸= 0, 2. all generators have ξ1 + a22 = 0 but

ζ2 ̸= 0 for at least one generator, and 3. all generators have ξ1 + a22 = 0 and

ζ2 = 0.

7.1 Case there exist at least one generator where ξ1 + a22 ̸= 0.

For this case, we obtain ζ2 = 0 (after possible shifting of z). Moreover, one

obtains that the forms of ϕ and g satisfy the equations

zϕ′ + ϕ = ϕ0 and

zg′ − (2γϕ0z + β)g = 0.

The general solution of this is ϕ = ϕ0 +
ϕ1

z
and g = g0z

βe2γϕ0z. Substituting

these functions into equation (A.24b), we obtain that a12 = ϕ0(ξ1+a22), and
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ζ1 =
1

2γ
(β(ξ1 + a22)− (a22 − 3ξ1)) . This gives one additional extension of

the generator, (β − 1)X3 + 2γX6 + 2γϕ0X7 or simply

(β − 1)X3 + γ̃X6 + κX7,

where γ̃ = 2γ ̸= 0 and κ = 2γϕ0 are constant.

7.2 Case all generators have ξ1 + a22 = 0 but ζ2 ̸= 0 for at least one

generator.

For this case, it follows that a22 = −ξ1. Moreover, the forms of ϕ and g

satisfy the following equations

ϕ′ = ϕ0,

g′ − (2γϕ0z + β)g = 0,

for which the general solution is ϕ = ϕ0z + ϕ1 and g = g0e
βz+γϕ0z2 , where

ϕ0 ̸= 0 (else, system (5.1) is equivalent to a degenerate case). Substituting

these functions into equation (A.24b), one obtains that a12 = ϕ0ζ2 and ζ1 =
1

2γ
(βζ2 + 4ξ1) . It yields an additional extension of the generator,

βX3 + 2γX4 + 2γϕ0X5

or simply

βX3 + γ̃X4 + 2κX7,

where γ̃ = 2γ ̸= 0 and κ = γϕ0 are constant.

7.3 Case all generators have ξ1 + a22 = 0 and ζ2 = 0.

For this case, it follows that a22 = −ξ1 and ζ2 = 0. Consequently, from equa-

tion (A.24b), a12 = 0 and ζ1 =
2ξ1
γ
. These conditions also satisfy equation

(A.25). No extensions were found here.
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