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CHAPTER I

INTRODUCTION

1.1 Introduction

With the rapid advancement of machine learning technology, recent works

make attempts to incorporate these machine learning techniques to construct

trading systems that support decisions of investors in security markets. For

example, Yeh et al., 2011 developed a two-stage multiple-kernel learning algorithm

applied to stock market forecasting problems. Lu et al., 2009 proposed a two-stage

modeling approach using independent component analysis (ICA) and support

vector regression to alleviate the influence of noise in financial time series. Wen

et al., 2010 proposed an intelligent trading system in the stock market based on

oscillation box prediction by combining stock box theory and the support vector

machine (SVM) algorithm. Hassan, 2009 presented a combination of the hidden

Markov model (HMM) and the fuzzy models for forecasting stock market data.

Kao et al., 2013 proposed a stock price forecasting model which integrates wavelet

transform, multivariate adaptive regression splines, and support vector regression

to improve the forecast accuracy. Kazem et al., 2013 proposed a forecasting

model based on chaotic mapping, firefly algorithm and support vector regression.

These recent works have the following common philosophical theme.

Common Philosophy of Applying Machine Learning to Financial Data:

There exist hidden patterns in financial time series. Complicated techniques (and

their combinations) such as support vector machine (SVM), multiple kernel learn-
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ing, independent component analysis (ICA), hidden Markov models (HMM), fuzzy

modeling and so on, can help investors discover hidden patterns represented by

complicated mathematical formulas. The retrieved formulas can be used as fore-

casting rules to predict the stocks’ directional movements, which in turn can be

incorporated into the investors’ trading strategy (buy low and sell high, as pre-

dicted by the rules) to make an excess return in the market.

Based on the same philosophy mentioned above, existing works, however,

have common limitations. Firstly, the discovered patterns are very complicated

(highly non-linear) and lack financial interpretation. Note that, in general, higher

degree of pattern complexities are more prone to make the training data over-fitting

(Bishop, 2006). Secondly, each financial time-series has to be trained separately,

resulting in one set of distinct patterns for each different security. In other words,

there is no common pattern in the data of securities. Thirdly, because of pattern

complexities, practical trading implementations are not easy for some investors. In

fact, sophisticated trading programs have to be constructed by users themselves.

Lastly, there is no direct way, which is consistent to the probabilistic framework,

to incorporate existing expert information (such as professional security analysts

recommendations) into the learning system. Fairly speaking, although having the

mentioned limitations, the core philosophy of existing research matches the philos-

ophy of one investor group, called technical analysts (J. Murphy, 1999; Shannon,

2008). Technical analysts believe in price patterns and do not pay much attention

to economic interpretation of the patterns. Therefore, this line of existing research

may benefit this group of investors.

On another side of investment practitioners, there is a group named fun-

damentalists whose trading strategies have clear financial interpretations and are

based on well-defined financial information (Mark, 2011; Damodaran, 2012; Lynch
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and Rothchild, 2000). Price Earnings ratio (simply called PE ratio, to be defined

below shortly) and the Gordon Growth model (GGM) (Campbell and Shiller,

1988) are two of the most widely applied valuation toolkits for fundamentalists

to make their investment decisions (Damodaran, 2012; Henry et al., 2010). Also,

investment recommendations by security analysts are often based on PE ratios

(Carvell et al., 1989) or the Gordon Growth model. Nevertheless, it is unfortu-

nate that recent academic advancements in financial econometrics and machine

learning rarely look at these two tools. To our knowledge, there is currently no

formal framework capable of integrating expert knowledge with historical financial

time-series data.

In the thesis, we focus on applying a Bayesian statistical analysis to formal-

ize the process of stock valuation. We apply the powerful framework of dynamic

Bayesian network (DBN) (Bishop, 2006; K. P. Murphy, 2012) to model the valua-

tion process. Among these techniques, SVM is a classifier known for its excellent

discrimination performance in the binary decision problem without a model of

time, whereas HMM owns excellent temporal modeling properties (Valstar and

Pantic, 2007). In contrast to existing machine learning frameworks mentioned

above on price pattern discovery where the discovered patterns have no meaning

in finance, the interpretation of our model is well justified according to behavioral

finance (Szyszka, 2013). In the thesis, we propose to apply the machine learning

framework to formalize the valuation process which somehow rarely gets attention

from academic researchers. Next, unlike existing works where there are different

discovered patterns for different securities, our proposed trading strategy resulting

from the Bayesian framework is unified, i.e. we propose a single trading strategy

which can be applied to every security. The proposed strategy is simple and has a

clear financial interpretation so that it can be easily applied by every practitioner.
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Moreover, expert opinions can be naturally integrated into our Bayesian learning

framework. Finally, as our proposed dynamic Bayesian network has non-standard

structure compared to literatures (Bishop, 2006; K. P. Murphy, 2012), we have

successfully derived a new inference formulas by applying the forward-backward

methodology, and the new parameter estimation algorithm according to the con-

cept of Expectation Maximization (EM) algorithm (Bishop, 2006; K. P. Murphy,

2012).

Note that in this thesis, we focus on investment in individual firm-level

securities which are usually preferred by individual investors; in contrast to in-

vestment institutions whose investment strategy is usually on portfolio level based

on Modern Portfolio Theory (Barber and Odean, 2011).

We make stock trading based on the Price Earning (PE) ratio and the

Gordon Growth model (GGM), respectively. To avoid duplicated writing, here, we

only give diagrams based on PE ratio. (i) We collect historical data and separate

the data into the training data and the testing data as described in Section 4.2.

(ii) Due to behavioral finance and mean reversion, we formalize the stock price

dynamics by the DBN, see Section 3.2. (iii) In the DBN framework, conditional

independent properties are used to simplify the probabilistic inference. Forward-

backward algorithm and EM algorithm are used for the training data to estimate

parameters as explained in Section 3.3. Here, we use Maximum a Posteriori (MAP)

method which can be solved by EM algorithm, so that existing expert information

is incorporated into the framework. (iv) Based on the estimated parameters, we use

forward-backward algorithm again for the testing data and calculate the filtering

formula and smoothing formula to estimate the stock dynamics. (v) Long-term

strategy and medium-term strategy are invented based on the results of our model

in Section 4.2. (vi) Finally, we compare those two strategies with the buy-and-hold
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strategy on individual firm-level, respectively, see Section 4.3. Furthermore, we do

statistical significance in our experiments on portfolio level to make sure that our

model is robust.

1.2 Outline of the thesis

The main purpose of the thesis is to formalize a process of stock valuation

by employing an advanced dynamic Bayesian network (DBN) methodology.

The thesis is divided into 6 chapters and is organized as follows. Chap-

ter II reviews the preliminaries such as fundamental valuation, mean reversion,

Bayesian statistical methods, parameter estimation in which expectation maxi-

mization (EM) algorithm is described, and normality test for a distribution.

Chapter III explains the motivation based on Pricing Earning (PE) ratio

and presents the modeling of stock pricing dynamics based on on behavioral fi-

nance and fundamental investment using PE Ratio. We simplify the model and

derives the inference of our model combined with the expectation maximization

(EM) algorithm for calculating parameters and the forward-backward algorithm

for filtering and smoothing. Moreover, a simple but practical trading strategy is

invented based on the result of our model.

Experiments of our model in Chapter III are described in Chapter IV. We

make stock trading experiments in the markets from different countries, namely

the NYSE and NASDAQ in US and the SET in Thailand. Extensive experiments

show that our trading strategy on individual firm-level equipped with the inferred

PE Ratio outperforms the buy-and-hold strategy. Furthermore, we do statistical

significance in our experiments on portfolio level and our method beats the buy-

and-hold strategy.

Chapter V presents to model stock pricing dynamics based on the Gordon
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Growth model (GGM) to reformulate the stock price dynamics model to reflect

an important variable in corporate finance and valuation, namely equity risk pre-

mium.

The conclusion is presented in Chapter VI.



CHAPTER II

PRELIMINARIES

We formalize the stock price dynamics combing fundamental value with

Bayesian statistical methods. In this chapter, we give the preliminaries. Fun-

damental value theory is described in Section 2.1. Mean reversion is explained

in Section 2.2. For Bayesian statistical methods, basic definitions are given and

Bayesian Network is introduced in Section 2.3. In Bayesian statistical methods, we

meet unknown parameters which can be calculated by expectation maximization

(EM) algorithm, see Section 2.4.

2.1 Fundamental value

Definition 2.1. The fundamental value in any period is the present value of the

expected dividend Dt+1 and the future price Pt+1 over the next period, discounted

at the expected return r. P ∗t denotes the fundamental value of an asset at the end

of period t (Brealey et al., 2012; Bodie, 2009).

P ∗t =
Pt+1 +Dt+1

1 + r
(2.1)

If the fundamental value, or the investor’s estimation for what the stock is

really worth, exceeds the market price, then the stock is considered undervalued.

(Campbell and Shiller, 1988) suggested that the dividend yield has signifi-

cant power for future returns and proved that theoretically, the dividend process

and stock price are cointegrated. The fundamental value is also calculated by the

Dividend Discount model (DDM) (Brealey et al., 2012; Bodie, 2009).
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Theorem 2.1. Dividend Discount model (DDM formula) The fundamental value

of an asset is equal the present value of all expected future dividends, provided that

the discount rate is constant and stock price is equal to its fundamental value.

P ∗0 =
D1

(1 + r)
+

D2

(1 + r)2
+

D3

(1 + r)3
+ ... =

∞∑
t=1

Dt

(1 + r)t
(2.2)

where P ∗0 is the fundamental value of the asset, Dt is the expected dividend in the

tth year, t = 1, 2, ..., and r is the discount rate. The formula is called the dividend

discount model (DDM) formula of the stock prices .

Corollary 2.2. Gordon Growth model (GGM) If the dividends are trending up-

ward at a constant growth rate g , then the expected future dividends are

Dt = D0(1 + g)t, t = 1, 2, ... (2.3)

Then the fundamental value is

P ∗0 =
D1

r − g
(2.4)

The formula is called the constant-growth DDM or the Gordon growth model

(GGM). We can also write GGM in the following formula.

P ∗t =
Dt(1 + g)

r − g
(2.5)

In a simplified market, the Gordon Growth model can be applied to cal-

culate the fundamental value for an individual asset. If the expected return and

growth rate of dividends are constant, we call it the static Gordon Growth Model

(GGM). (Heaton and Lucas, 1999) used static Gordon Growth model to deter-

mine the rational valuation of stock prices. (Fama and French, 2002) used static

Gordon Growth model (GGM) to estimate the risk premium and provide empir-

ical evidence on the decrease of the risk premium. If the expected return and
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growth rate of dividends are time-varying, we call it the dynamic Gordon Growth

Model (GGM). There exist many variables in dynamic GGM to estimate and thus

applying dynamic GGM can result in over-fitting.

2.2 Mean reversion

The mechanism of mean-reversion is a powerful force. For stocks, the stock

price may swing away from its fundamental valuation, but revert back in the long

run. (Poterba and Summers, 1988; Kim et al., 1991; Miller et al., 1994) and Fama

and French (1988) have documented the mean reversion pattern of stock prices.

(Manzan, 2007), Bail, Demirats and Levy (2008) had documented on research in

mean reversion for stock prices.

2.3 Bayesian statistical methods

2.3.1 Product rule, sum rule and Bayes rule

p(.|.) denotes a conditional probability distribution and p(.) denotes a

marginal distribution. The same notation is used for continuous density func-

tions and discrete probability mass functions. Here the terms ’distribution’ and

’density’ can interchange.

We give the three rules which are the basic properties in Bayesian statis-

tics (Bishop, 2006). Given two random variables x, y and the joint probability

distribution p(x, y) on these two variables, the product rule is

p(x, y) = p(x)p(y|x) = p(y)p(x|y), (2.6)

the sum rule is

p(x) =

∫
p(x, y)dy, y is continuous, (2.7)
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p(x) =
∑
y

p(x, y), y is discrete, (2.8)

and the Bayes rule is

p(x|y) =
p(x)p(y|x)

p(y)
. (2.9)

Note, Bayes rule describes the relationship between the conditional probability

p(y|x) and the conditional probability p(x|y).

Given a set of random variables x1, x2, ..., xn, the product rule can be applied

consectively and we can yield

p(x1, x2, ..., xn) = p(x1)
n∏
i=2

p(xi|xi−1, ..., x1). (2.10)

By the product rule, the joint probability distribution for parameters θ

and observed data X can be written as a product of two distributions that are

the prior distribution p(θ) , which is not conditioned on the observations and is

subjective uncertainty from the beliefs, and the likelihood function p(X|θ) , which

is evaluated for the observed data X and can be viewed as a function of the

parameters θ respectively. That is,

p(X, θ) = p(θ)p(X|θ). (2.11)

By Bayes rule, we can yield the posterior distribution, which is commonly defined

as the probability distribution function (pdf) of parameters θ conditioned on the

observed data X,

p(θ|X) =
p(X, θ)

p(X)
=
p(θ)p(X|θ)
p(X)

. (2.12)

Since the factor p(X) which does not depend on parameters θ, with fixed X, can

be considered a constant, then we can omit it and yield the unnormalized posterior

distribution.

p(θ|X) ∝ p(θ)p(X|θ). (2.13)
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2.3.2 Bayesian framework

(Ellison, 2004) presents that Bayesians and frequentists differ in their defini-

tion of probability and in their treatment of model parameters as random variables

or estimates of true value.

Bayesian data analysis is to make inferences from data using probability

models for all related variables which are observed, unobserved, parameters, etc.

The essential characteristic of Bayesian methods is the explicit use of probability of

quantifying uncertainty. The process of Bayesian data analysis can be simplified to

three steps. The first step is to construct a full probability model which should be

consistent with practical problems. Normally, we need to give some assumptions

to simplify the practical problems in order to construct a reasonable, but not very

complicated model.

The second step is to calculate the posterior distribution which is the con-

ditional probability distribution of the unobserved data, given the observed data.

In this step, we always meet two practical difficulties in implementation. One is

how to choose a prior which is largely application-specific. There are four kinds

of priors which are uninformative priors, Jeffreys priors, informative priors and

conjugate priors. It is common to use uninformative priors as part of any analysis

to provide a kind of baseline. Another question is how to simplify the calculation

of the posterior distribution. It is difficult to compute the posterior distribution,

except for few special cases, e.g., Gaussian likelihood priors. We can simplify the

calculation by a tool called conditional independence (CI), see Subsection 2.3.3 .

The final step is to evaluate whether the model fits the data or not, is

reasonable or not etc. If necessary, we can improve the model and repeat the

three steps.
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2.3.3 Conditional independence, Graph and Bayesian Net-

work

Conditional independence (CI) (Dawid,1980) is an important concept and

plays an important role for probabilistic models by simplifying the structure of a

model and the computations to perform inference.

Definition 2.2 (Conditional Independence, CI). Given three variables x, y, z, if

learning the values of the variable y does not provide additional information about

the variable x, given the variable z, then the conditional distribution of x, given

y and z is

p(x|y, z) = p(x|z). (2.14)

The variables x and y are called conditionally independent given z, which

is written

x ⊥ y|z. (2.15)

Note that Eq.(2.14) must hold for all possible values of the variables, not

just for some values. By the definition of conditional independence, it is difficult to

find potential conditional independence properties. However, we can read directly

from a graph to find the existing conditional independence. We introduce the

graph (Bishop, 2006) as follows.

Definition 2.3. A graph comprises nodes connected by edges. A directed graph

comprises nodes connected by directed links. If we walk through the directed

graph by following the arrows and we never walk in a circle, then the graph is

called a directed acyclic graph (DAG). For a directed graph, if a directed link is

from node x to node y, then node x is called a parent of node y and node y is

called a child of node x, and if there is a directed path from node x to node y on

which each step follows the arrows, then node y is called a descendant of node x.
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We denote the parents of node x, the children of node x, and the descendant of

node x by pa(x), ch(x), and desc(x), respectively.

Note that a graphical model (GM) is a way to represent a joint distribution.

In a graphical model, each node represents a random variable and the edges rep-

resent probabilistic relationships between variables. The terms node and variable

can interchange.

For a directed graph, there exist three structures which we are interested in:

chain structures, fork structures and collider structures. These three structures

are used to discuss conditional independences. To easily illustrate these three

structures, we only consider three variables x, y and z.

A chain structure is shown byx → z → y , which satisfies x ⊥ y|z, and

node z is called head-to-tail, a fork structure is shown by x ← z → y , which

satisfies x ⊥ y|z, and node z is called tail-to-tail, and a collider structure is shown

by x→ z ← y ,which satisfies x ⊥ y|∅ , and node z is called head-to-head.

In a graph with multiple nodes, we use the concept of d-separation (Lau-

ritzen, 1996) to find potential conditional independences. In the thesis, we only

focus on the directed acyclic graph (DAG).

Definition 2.4 (D-separation). In a directed acyclic graph, X, Y and Z are ar-

bitrary nonintersecting sets of nodes. For all possible paths from any node in X

to any node in Y , the path is said to be blocked if the path includes a node such

that either

(a) the node is either tail-to-tail or head-to-tail , and the node is in the set

Z, or

(b) the node is head-to-head, and both the node and all of its descendants

are not in the set Z.
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If all paths are blocked, then X is said to be d-separated from Y by Z, and the

distribution over all variables in the graph satisfy X ⊥ Y |Z.

Definition 2.5 (Directed graphical model, DGM). A directed graphical model

(DGM) is a GM whose graph is a DAG. In DGM, each node represents a random

variable, the arrows represent a set of conditional probability distributions, and

for any nonintersecting sets X, Y, Z, X ⊥ Y |Z ⇔ X is d-separated from Y given

Z. DGM is also known as Bayesian Network (BN).

Bayesian Network is the integration of probability with graph theory.

Bayesian Network is efficient in representing and evaluating complex probabilistic

dependence structures. (Khakzad et al., 2011) present that a Bayesian Network

has the ability to update probabilities and is helpful to incorporate variables and

expert opinion in analysis.

Theorem 2.3 (Local Markov condition). In a DGM, each variable is independent

of all its non-descendants except for its parents, conditional on its parents. That

is, for an arbitrary variable x in DGM,

x ⊥ (non− desc(x) \ pa(x)|pa(x)) (2.16)

Proof. See (Cowell et al., 1999).

Combing the product rule and Theorem 2.3, Corollary 2.4 follows.

Corollary 2.4. In a DGM, there exist n variables x1, x2, ..., xn. The joint proba-

bility distribution over all variables can be expressed by

p(x1, x2, ..., xn) =
n∏
i=1

p(xi|pa(xi)). (2.17)

To understand the relationship between a directed graph model and the

joint probability distribution, we give an example. We consider a joint probability
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distribution p(x, y, z) over three variables x, y and z which is

p(x, y, z) = p(z|x, y)p(y)p(x). (2.18)

Next, we express the joint probability distribution in a graphical model. First,

we introduce three nodes which represent three variables x, y and z. Second, we

draw the arrows for each conditional distribution. For the term p(z|x, y), we draw

two directed links from nodes x and y to node z, respectively. For the two terms

p(x), p(y), there are no incoming links. The result is the graph shown in Figure

2.1.

Figure 2.1 An example to express the joint probability distribution in a graphical

model

Finally, by Corollary 2.4 and Figure 2.1, we write the joint probability

distribution

p(x, y, z) = p(z|pa(z))p(y|pa(y))p(x|pa(x))

= p(z|x, y)p(y)p(z),

(2.19)

which is the equivalent to Eq.(2.18).

2.4 Parameter estimation

In Bayesian Network, as in other standard statistical models, there is a set

of parameters which are conditional probabilities whose values may be known or

unknown. To calculate the posterior distribution, we need to estimate unknown

parameters first.
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To estimate the parameters, there are three common statistical approaches:

Maximum likelihood (ML), Maximum a Posteriori (MAP) and Exact Bayesian In-

ference. Exact Bayesian Inference is to calculate the posterior distribution exactly

and is using the observations to update a prior distribution. It provides a good way

to implement Ockhams razor, but it is normally intractable. Maximum a posteriori

estimation is to maximize the posterior distribution which is related to likelihood

and priors to estimate parameters. It is often more tractable than Exact Bayesian

Inference. Maximum likelihood estimation is to maximize the likelihood function

to estimate parameters. It is equivalent to MAP estimation with a uniform prior.

The expectation maximization (EM) algorithm is a general technique to

find maximum likelihood solutions for probabilistic models with latent variables

(Dempster et al., 1977). Maximum a Posteriori (MAP) solutions can also be solved

by expectation maximization (EM) algorithm. In the thesis, we focus on the model

with latent variables.

Definition 2.6. For a probabilistic model, we denote the set of all observed data,

the set of all latent variables and the set of parameters by X,Z and θ, respectively.

We call X the incomplete data set, the likelihood function for which is p(X|θ) ,

whereas we call X,Z the complete data set, the likelihood function for which is

the joint distribution p(X,Z|θ).

In practice, we are normally given the incomplete data X, not the complete

data set X,Z and then we cannot use the complete data likelihood. Thus, our goal

is to maximize the likelihood function p(X|θ) and we shall use the maximization

of this log likelihood ln p(X|θ).

Proposition 2.5. p(X|θ) =
p(X,Z|θ)
p(Z|X, θ)

.

We introduce a distribution q(Z) which is defined over the latent variables

and satisfies 0 < q(Z) ≤ 1,
∑

Z q(Z) = 1 . The knowledge for the latent variables Z
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is given only by the posterior distribution p(Z|X, θ). We consider the log likelihood

expected value under the posterior distribution of the latent variables. That is,

ln p(X|θ) =
∑
Z

q(Z) ln p(X|θ). (2.20)

By Proposition 2.5,

ln p(X|θ)) =
∑
Z

q(Z) ln
p(X,Z|θ)
q(Z)

−
∑
Z

q(Z) ln
p(Z|X, θ)
q(Z)

. (2.21)

Definition 2.7. We set

ι(q, θ) =
∑

Z q(Z)ln
p(X,Z|θ)
q(Z)

,

KL(q||p) = −
∑

Z q(Z)ln
p(Z|X, θ)
q(Z)

,

where q = q(Z), p = p(X,Z|θ).

By Definition 2.7, the following decomposition holds.

ln p(X|θ)) = ι(q, θ) +KL(q||p). (2.22)

Theorem 2.6. The Kullback-Leibler divergence satisfies KL(q||p) ≥ 0, with equal-

ity if and only if q = p .

Proposition 2.7. ln p(X|θ)) ≥ ι(q, θ).

Definition 2.8 (E-step). We set

q(j) = p(j−1) , p(Z|X, θ(j−1)), j = 2, 3, ..., J (2.23)

This is called E-step.

Definition 2.9 (M-step). We set

θ(j) = arg max
θ∈Θ

(ι(θ, q(j))), j = 2, 3, ..., J (2.24)

where Θ is a pre-defined parameter space. This is called M-step.
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Theorem 2.8. There exist two sequences
{
q(j)
}∞
j=1

,
{
θ(j)
}∞
j=1

such that

ln p(X|θ(j)) ≥ ln p(X|θ(j−1)), j = 2, 3, ..., J (2.25)

By Theorem 2.8, the sequence
{

ln p(X|θ(j))
}∞
j=1

is an increasing sequence

and since ln p(X|θ(j)) ≤ 0, then the sequence
{

ln p(X|θ(j))
}∞
j=1

converges. We can

prove that the EM algorithm which does indeed maximize the likelihood. Note

that, in the M-step, we can simplify the equation as follows:

max
θ

(ι(θ, qj)) = max
θ

(
∑
Z

q(j)(Z) ln p(X,Z|θ)) (2.26)

Definition 2.10. We set

Q(θ; θ(j−1)) =
∑
Z

q(j)(Z) ln p(X,Z|θ), j = 2, 3, ..., J (2.27)

where q(j)(Z) = p(Z|X, θ(j−1)). Then, in the M-step,

θ(j) = arg max
θ∈Θ

(Q(θ; θ(j−1)), j = 2, 3, ..., J (2.28)

The general EM algorithm in MAP case

Input: model assumption, X,Θ, θ(1), q(1)

Repeat:

θ(j) = arg maxθ∈Θ(Q(θ; θ(j−1) + ln(p(θ))), j = 2, 3, ..., J

j → j + 1

Until converges.

Output: θMAP .

2.5 Normality test for a distribution

For fitting the model or analyzing the model, data testing is necessary. We

often assume that the data is to fit a normal distribution. In fact, the most widely
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data testing is normality test which is used to determine if a data set is well-

modeled by a normal distribution and to compute how likely it is for a random

variable underlying the data set to be normally distributed.

Normality tests are essentially a form of model selection and analysis, and

can be interpreted by descriptive statistics, frequent statistics. These test require

a relatively large sample size. If the sample size is not enough, bootstrap is useful,

developed in (Efron, 1979). The key idea is that the observed data set is a random

sample drawn from the actual probability distribution. The random variables are

drawn from their observed distribution, which is the best estimate of the actual

distribution, see (Walter, 2004). Additionally, the bootstrap is used in Subsection

4.3.

In descriptive statistics, one informal approach to testing normality is to

compare a histogram of the sample data to a normal probability curve. The em-

pirical distribution of the data (the histogram) should be bell-shaped and resemble

the normal distribution.

In frequentist statistics, we have two hypotheses as follows for the normal

distribution. We use statistical hypothesis testing to determine data are tested

against the null hypothesis..

The two hypotheses for the frequentist statistics test for the normal distri-

bution are given below:

• H0: The data follows the normal distribution,

• H1: The data does not follow the normal distribution.

There are several approaches to normality test, which are Anderson Darling

Test, Kolmogorov-Smirnov Test, etc.
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The Anderson-Darling statistic is given by the following formula:

AD = −n− 1

n

n∑
i=1

(2i− 1)[lnF (Xi) + ln(1− F (Xn−i+1))], (2.29)

where n is sample size, F (X) is the cumulative distribution function for the spec-

ified distribution and i is the ith sample when the data is sorted in rising order.

The K-S statistic quantifies the distance between the empirical distribution

function of the sample and the cumulative distribution function of the reference

distribution, or between the empirical distribution functions of two samples. This

test can be modified to serve as a goodness of fit test. In this case, samples are

compared with a standard normal distribution by setting the mean and variance

of the reference distribution equal to the sample estimates.



CHAPTER III

MODELING STOCK PRICING DYNAMICS

BASED ON PRICE EARNING RATIO

On a daily investment decision in a security market, the price earnings (PE)

ratio is one of the most widely applied methods being used as a firm valuation

tool by investment experts. In this chapter, we focus on applying a Bayesian

statical analysis to formalize the process of stock valuation using the PE ratio.

We apply the powerful framework of dynamic Bayesian network to model the

valuation process.

3.1 Background of fundamental investment based on Price

Earning (PE) Ratio

The core idea of the PE ratio valuation method is simply that the value of

the firm (and hence the value of its stock) is directly proportional to the annual

earnings of the company, i.e. for each firm i,

P ∗i = PE∗i × Ei (3.1)

where P ∗i denotes the value of firm i , Ei denotes the firm’s current annual earnings

and PE∗i is the firm’s appropriate PE ratio, usually assumed to be a constant

(at least for some period of time). Here, the annual earning is defined by the

summation of the latest four quarterly earnings. The earnings information of each

firm listed in the stock market is normally available to all investors, i.e., it is

observable.
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The PE ratio, intuitively, can be thought of as a premium of an individual

firm, i.e., given the same earning for two firms, the firm with higher PE ratio

is considered to be of higher value. Conceptually, the appropriate PE ratio of

each firm is usually determined by experts using business and financial accounting

factors such as debt burden, cash flow, growth rate, business risk, etc. There

exists an alternative approach to estimate the PE ratio called the relative approach

(Damodaran, 2012) which still requires experts to select a group of similar firms

altogether, and the ratio is heuristically calculated from this group. To summarize,

the current best practice for PE ratio estimation is to be heuristically calculated

by experts or experienced investors.

Once we get the PE ratio, we can simply calculate the firm value, often

called intrinsic value, by Eq.(3.1). A simple trading strategy is to compare the

firm value with a market price of the firm.

Strategy A: if the firm’s value is higher than its market price by some

threshold, it is considered to be at low price, so that we can buy the firm’s stock.

We expect to sell it later when its market price is higher than the firm’s intrinsic

value by some threshold.

It is important to note that the philosophy of this trading strategy is that

the market price is not always equal to the value of the firm. We can observe that

the price of the firm’s stock changes almost every working day in a stock market.

In contrast, by Eq.(3.1), the firm’s value will not change in a short time period

provided that there is no new announcement on annual earnings in that period.

There has been a long controversy about this price vs. value issue (Mark, 2011),

but it is beyond the scope of this thesis. In any cases, it is a fact that there exists

a large group of individual investors namely fundamentalists employing the PE

ratio as their main tool. Instead of solely relying on expert opinions, the goal
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of this part is to support that group of investors to systematically determine the

appropriate PE ratio, by the method of Bayesian statistical analysis which is able

to formally combine information from historical data with expert beliefs.

Finally, we emphasize that there is another quantity called an observed PE

calculated from firm’s current market price divided by its earnings (note again

difference between value P ∗i and price Pi), that is,

observed PEi = Pi/Ei, (3.2)

where Pi is the current market price of a firm i. In Bayesian analysis of the PE

ratio, it is important to distinguish between the observed PEi (changing everyday

due to changes of Pi) and PE∗i . Here we will call PE∗i as the fundamental PE

ratio. The reason behind this name is the following: only the group of fundamen-

talists believe that the quantity P ∗i , or firm value, can be calculated by Eq.(3.1).

Therefore, they usually call P ∗i as the fundamental price or fundamental value,

and so PE∗i as fundamental PE. To them, there exist various kinds of investors in

the market: some are rational and some are irrational. The current market price

Pi and hence, too, the observed PEi can fluctuate from the fundamental price P ∗i

by actions of those irrational investors. We shall formally model this argument in

Section 3.2.

3.2 Statistical model of stock price dynamics

3.2.1 Motivation of statistical modelling: behavioral

volatility

In Section 3.1, we mentioned about the fundamentalists’ belief that market

price of a security may not equal to its fundamental value. Why does a stock
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price deviate from its fundamental price? Works on behavioral finance (Szyszka,

2013) found much evidence to this question. For example, researchers argue that

there are noise traders in the market who tend to make irrational actions so that

the price moves away from its value (Black, 1986; De Long et al., 1990; Hommes,

2013). (Bondt and Thaler, 1985) found that some investors cannot process new

information correctly and so overreact to new information. What is worse, in-

formation which investors overreact to is unconfirmed (Bloomfield et al., 2000)

or unreliable (Pound and Zeckhauser, 1990; Tumarkin and Whitelaw, 2001) or

even unimportant (Rashes, 2001; Cooper et al., 2001). Also, investors who con-

sult experts may not get much helpful advice since security analysts tend to be

overoptimistic (Dechow, Hutton, and Sloan, 2000) and have conflict of interest

(Cowen, Groysberg, and Healy, 2006). Finally, it is well known that even rational

investors in the market cannot immediately eliminate this irrational pricing due

to limit of arbitrage (Shleifer and Vishny, 1997). All the effects mentioned here

are able to temporarily move a stock price away from its value for a period of

time. This is what we call behavioral volatility. The effects continue until either

they are cancelled out, or rational investors finally eliminate this mispricing. This

reversion phenomena is called mean reversion in the literature.

3.2.2 Dynamic Bayesian Network (DBN) of stock price

movement

Our model simplifies and formalizes the observations described in Subsec-

tion 3.2.1. We divide the temporary effects which cause mispricing into two cat-

egories: (1) short-term effects: mispricing effects which last about a few days,

e.g. effects caused by noise trading or overreaction to unreliable information and

(2) medium-term effects : mispricing effects which last several weeks or months,
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e.g. effects caused by reaction to unconfirmed information which may take time

to confirm, or overoptimistic prediction of analysts which may take time to prove.

Mathematically, the relation between market price and its fundamental value can

be described as the following equation. To simplify the equation, since we con-

sider only one firm at a time, we now replace the firm-index subscript i with a

time-index subscript t to emphasize the dynamic relationship between price and

its fundamental value.

Pt = P ∗t (1 + zt)(1 + εt) (3.3)

where

(a) zt is a random variable modeling the medium-term noisy effects. To

make its effects persist for a period of time, we model zt as a Markov chain.

(b) εt is a random variable for the short-term noisy effects which is modeled

by a Gaussian random noise, εt ∼ N(0, σ2).

Assuming PE∗ as a constant for the period which we observed, and follow-

ing Eq.(3.1) of Section 3.1, we have

Pt = PE∗Et(1 + zt)(1 + εt) (3.4)

and, therefore, we get the relationship between the fundamental PE and the ob-

served PE:

Pt/Et = PE∗(1 + zt)(1 + εt) (3.5)

Note that our model is suitable only for a firm with positive earnings Et > 0.

Fortunately, most firms satisfy this criterion. Eq.(3.5) is central to our idea and

can be visualized as shown in Figure 3.1. In Figure 3.1, the plot is the observed

PE in time series. The red dashed line shows PE∗ of the firm, while the green line

illustrates the effect of medium-term effect zt to PE∗. The blue line illustrates the

observed PE which is affected by both the medium-term and short-term mispricing
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effects.
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Figure 3.1 Illustration of our main idea described by Eq. (3.5).

We can mathematically simplify Eq.(3.5) further

ln(Pt/Et) = ln(PE∗(1 + zt)) + ln(1 + εt) (3.6)

Since εt is usually small, it can be approximated by ln(1 + εt) ≈ εt, and

denote yt = ln(Pt/Et), we then have

yt = ln(PE∗(1 + zt)) + εt (3.7)

Note that as explained in Section 3.1, yt is an observable quantity, whereas PE∗

and zt are unobservable, i.e. they are hidden state or latent variables. Note that

these are two different types of latent variables, i.e. PE∗ is constant and zt is

time-varying. Thus, Eq.(3.7) is different from standard state-space and graphi-

cal models such as Hidden Markov Models or Linear State Space Model (Bishop,

2006). The graphical model of our proposed stock price dynamic has three layers

as represented in Figure 3.2. In our case, where the model is temporal, the graph-

ical model framework is also called dynamic Bayesian network (DBN). The main
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advantage of DBN is its ability to encode conditional independent properties, and

hence to simplify probabilistic inference (K. P. Murphy, 2012). Another advan-

tage of this framework is that expert knowledge can be integrated in the model

naturally as shown in the next section.

Figure 3.2 The proposed model represented by dynamic Bayesian network

(DBN). yt is an observable quantity, while PE∗ and {zt} are unobservable.

To derive mathematical equations for inference and parameter estimation in

the DBN framework, we shall assume that all latent random variables are discrete:

zt ∈ {a1, ..., aM}, PE∗ ∈ {b1, ..., bN}. There are 4 main conditional independence

properties of our model.

(CI1) For each t ∈ 1, 2, ..., zt ⊥ PE∗|∅.

(CI2) For all i, j, k ∈ 1, 2, ..., if there exist k, i < k < j, then zi ⊥ zj|zk.

(CI3) For each i, j, k ∈ 1, 2, ..., if there exist k, i ≤ k < j or j < k ≤ j then

yi ⊥ zj|zk, PE∗.

(CI4) For all i, j, k ∈ 1, 2, ..., if there exist k, i < j, i ≤ k ≤ j, then yi ⊥

yj|zk, PE∗.
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Furthermore, we have to set up the conditional probability distribution

function for each node given its parents. We define the conditional probability

distribution functions of all nodes as follows:

The transition probability distribution function:

Let i,m ∈ {1, ...,M}, t ∈ {2, 3, ...}

p(zt = ai | zt−1 = am) , wim. (3.8)

Note that 0 ≤ wim ≤ 1,
∑M

m=1wim = 1 . The matrix W = (wim)M×M is called a

transition matrix, i.e. {zt} is a Markov chain.

The emission probability distribution function (pdf):

For all m ∈ {1, ...,M}, n ∈ {1, ..., N},t ∈ {1, 2, ...}

p(yt|zt = am, PE
∗ = bn) , φmn(yt). (3.9)

By Eq.(3.6), φmn(yt) = N (ln(bn(1 + am)), σ2). The matrix Φt = (φmn)M×N is

called an emission matrix at period t.

The inital probability distribution functions:

For each m ∈ {1, ...,M},

um , p(z1 = am) (3.10)

where 0 ≤ um ≤ 1 and
∑M

m=1 um = 1.

For each n ∈ {1, ..., N},

vn , p(PE∗ = bn) (3.11)

where 0 ≤ vn ≤ 1 and
∑N

n=1 vn = 1. The vectors u = (um)M and v = (vn)N are

called initial vectors.

Therefore, in this Bayesian framework, the set of model parameters is θ =

{W,u,v, σ2} and our parameters space is
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Θ = {θ|0 ≤ um ≤ 1,
M∑
m=1

um = 1, 0 ≤ vn ≤ 1,
N∑
n=1

vn = 1,

0 ≤ wim ≤ 1,
M∑
m=1

wim = 1, σ > 0}.

(3.12)

If we know all parameters, we can make an inference by deriving infer-

ence equations based on the forward-backward algorithm. If the parameters are

unknown, we have to estimate them first. In the next section, we derive the

estimation procedures based on Maximum a Posteriori (MAP) and Expectation-

Maximization (EM) algorithms and we show how to derive both the inference and

parameter estimation algorithms.

3.3 Bayesian inference on the DBN of stock price dynamic

As explained in the previous sections, our goal is to make an inference on

PE* so that we can estimate the fundamental price of a stock. In Chapter IV, we

will show that estimations of {zt} are also useful in investment. To infer the values

of these two latent variables, similar to Hidden Markov Models (HMM) and Linear

State Space Model (LSSM)(Bishop, 2006; K. P. Murphy, 2012), we need to derive

equations in two steps. First, the inference algorithms with known parameters;

second, the parameter estimation algorithms given that parameters are unknown.

However, because there are two types of latent states as explained in the previous

section, our graphical model shown in Figure 3.2 is more sophisticated than HMM

and LSSM. In this section, we show the new equations for both inference tasks.

To simplify the notation, we use notation xT1 to denote{x1, ..., xT} .
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3.3.1 Inference with known parameters

Suppose θ is known, together with the observed data yT1 . Similar to HMM,

in order to estimate the latent states of zT1 and PE∗, we need to find recurrent

formulas to calculate two quantities: the filtering probabilities p(zT , PE
∗|yT1 , θ)

and the smoothing probabilities p(zt, PE
∗|yT1 , θ), t ∈ {1, ..., T − 1} . To keep our

formulas simple, we will omit writing θ in the probability notations, e.g., we simply

write p(zT , PE
∗|yT1 ) for filtering.

3.3.1.1 Filtering probability distribution function

The filtering formula is to estimate conditional joint probabilities of the

most recent medium-term effect zT = am and PE∗ = bn given all the observed

variables. For all t ∈ {1, ..., T},m ∈ {1, ...,M}, n ∈ {1, ..., N}, let

αtmn , p(zt = am, PE
∗ = bn|yt1). (3.13)

First, for all m ∈ {1, ...,M}, n ∈ {1, ..., N}, we calculate α1mn,

α1mn , p(zt = am, PE
∗ = bn|y1)

=
p(y1|z1 = am, PE

∗ = bn)p(z1 = am, PE
∗ = bn)

p(y1)

∝ p(y1|z1 = am, PE
∗ = bn)p(z1 = am, PE

∗ = bn)

= p(y1|z1 = am, PE
∗ = bn)p(z1 = am)p(PE∗ = bn)

= φmn(y1)umvn.

(3.14)

Then, the initial equation of the recurrent formula can be derived: α1mn ∝

φmn(y1)umvn. For all m ∈ {1, ...,M}, n ∈ {1, ..., N}, let

α
′

1mn = φmn(y1)umvn. (3.15)
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By Eq.(3.13), for all t ∈ {1, ..., T},

M∑
m=1

N∑
n=1

αtmn = 1. (3.16)

By Eq.(3.16), for all m ∈ {1, ...,M}, n ∈ {1, ..., N},

α1mn =
α
′
1mn∑M

m′=1

∑N
n′=1 α

′
1m′n′

. (3.17)

Therefore, for all m ∈ {1, ...,M}, n ∈ {1, ..., N},

α1mn =
φmn(y1)umvn∑M

m′=1

∑N
n′=1 φm′n′(y1)um′vn′

. (3.18)

Second, for all t ∈ {2, ..., T},m ∈ {1, ...,M}, n ∈ {1, ..., N}, we give the

following recurrent formula.

p(zt = am, PE
∗ = bn|yt1)

= p(zt = am, PE
∗ = bn|yt−1

1 , yt)

∝ p(yt|yt−1
1 , zt = am, PE

∗ = bn)p(zt = am, PE
∗ = bn|yt−1

1 )

= φmn(yt)
∑M

i=1 p(zt = am, zt−1 = ai, PE
∗ = bn|yt−1

1 )

= φmn(yt)
∑M

i=1 p(zt−1 = ai, PE
∗ = bn|yt−1

1 )p(zt = am|zt−1 = ai)

= φmn(yt)
∑M

i=1 p(zt−1 = ai, PE
∗ = bn|yt−1

1 )wmi

(3.19)

Then for all t ∈ {2, ..., T},m ∈ {1, ...,M}, n ∈ {1, ..., N},

αtmn ∝ φmn(yt)
M∑
i=1

p(zt−1 = ai, PE
∗ = bn|yt−1

1 )wmi. (3.20)

For all t ∈ {2, ..., T},m ∈ {1, ...,M}, n ∈ {1, ..., N}, let

α
′

tmn = φmn(yt)
M∑
i=1

p(zt−1 = ai, PE
∗ = bn|yt−1

1 )wmi. (3.21)
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Then, for all t ∈ {2, ..., T}, we have

αtmn ∝ α
′

tmn. (3.22)

By Eq.(3.16), for all t ∈ {2, ..., T},

αtmn = α
′

tmn/

M∑
m=1

N∑
n=1

α
′

tmn. (3.23)

According to Eq.(3.19) and Eq.(3.23), we can continue to calculate

(α2mn), ..., (αTmn) as follows and finally we can get the filtering formula αTmn.


α111 · · · α11N

· · · · · · · · ·

α1M1 · · · α1MN

→

α211 · · · α21N

· · · · · · · · ·

α2M1 · · · α2MN

→ · · · →

αT11 · · · αT1N

· · · · · · · · ·

αTM1 · · · αTMN


(3.24)

Note that, for all t ∈ {1, ..., T}, we denote

ct =
M∑
m=1

N∑
n=1

α
′

tmn. (3.25)

In the above derivation, Bayes’s rule, conditional independent properties

(K. P. Murphy, 2012) with respect to DBN shown in Figure 3.2 and sum rule are

applied consecutively to get the above result, similar to the filtering equation of

HMM.

3.3.1.2 Smoothing probability distribution function

Next, the smoothing formula is to estimate conditional joint probabilities

of the any-date t < T medium-term noisy effect zt = am and PE∗ = bn given all

the observed variables.

For all t ∈ {1, ..., T − 1},m ∈ {1, ...,M}, n ∈ {1, ..., N}, let

γtmn , p(zt = am, PE
∗ = bn|yT1 ). (3.26)
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For all t ∈ {1, ..., T − 1},m ∈ {1, ...,M}, n ∈ {1, ..., N},

p(zt = am, PE
∗ = bn|yt1, yTt+1)

=
p(yTt+1|yt1, zt = am, PE

∗ = bn)

p(yTt+1|yt1)
p(zt = am, PE

∗ = bn|yt1)

=
p(yTt+1|zt = am, PE

∗ = bn)

p(yTt+1|yt1)
αtmn.

(3.27)

For each t ∈ {1, ..., T − 1}, by chain rule,

p(yTt+1|yt1) =
T∏

t′=t+1

ct′ . (3.28)

For all t ∈ {1, ..., T − 1},m ∈ {1, ...,M}, n ∈ {1, ..., N}, let

βtmn ,
p(yTt+1|zt = am, PE

∗ = bn)

p(yTt+1|yt1)
, (3.29)

and

β
′

tmn , p(yTt+1|zt = am, PE
∗ = bn). (3.30)

Then, for all t ∈ {1, ..., T − 1},m ∈ {1, ...,M}, n ∈ {1, ..., N},

βtmn =
β
′
tmn∏T

t′=t+1 ct′
, (3.31)

and

γtmn = αtmnβtmn. (3.32)

First, we calculate βT−1,mn for all m ∈ {1, ...,M}, n ∈ {1, ..., N}.
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β
′
T−1,mn = p(yT |zT−1 = am, PE

∗ = bn)

=
∑M

i=1 p(yT , zT = ai|zT−1 = am, PE
∗ = bn)

=
∑M

i=1 p(yT |zT = ai, zT−1 = am, PE
∗ = bn)p(zT = ai|zT−1 = am, PE

∗ = bn)

=
∑M

i=1 p(yT |zT = ai, PE
∗ = bn)p(zT = ai|zT−1 = am)

=
∑M

i=1 φin(yT )wim.

(3.33)

Then, for all m ∈ {1, ...,M}, n ∈ {1, ..., N},

β
′

T−1,mn =
M∑
i=1

φin(yT )wim. (3.34)

By Eq.(3.25), Eq.(3.28), Eq.(3.31) and Eq.(3.34),

βT−1,mn =
β
′
T−1,mn

cT
=

∑M
i=1 φin(yT )wim∑M
m=1

∑N
n=1 α

′
Tmn

. (3.35)

Second, for all t ∈ {1, ..., T − 2},m ∈ {1, ...,M}, n ∈ {1, ..., N}, we give the

following recurrent relation.
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β
′
tmn = p(yTt+1|zt = am, PE

∗ = bn)

=
∑M

i=1 p(y
T
t+1, zt+1 = ai|zt = am, PE

∗ = bn)

=
∑M

i=1 p(y
T
t+1|zt+1 = ai, zt = am, PE

∗ = bn)p(zt+1 = ai|zt = am, PE
∗ = bn)

=
∑M

i=1 p(y
T
t+1|zt+1 = ai, PE

∗ = bn)p(zt+1 = ai|zt = am)

=
∑M

i=1 p(y
T
t+1|zt+1 = ai, PE

∗ = bn)wim

=
∑M

i=1 p(yt+1, y
T
t+2|zt+1 = ai, PE

∗ = bn)wim

=
∑M

i=1 p(y
T
t+2|yt+1, zt+1 = ai, PE

∗ = bn)p(yt+1|zt+1 = ai, PE
∗ = bn)wim

=
∑M

i=1 p(y
T
t+2|zt+1 = ai, PE

∗ = bn)φin(yt+1)wim

=
∑M

i=1 β
′
t+1,inφin(yt+1)wim.

(3.36)

Then for all t ∈ {1, ..., T − 2},m ∈ {1, ...,M}, n ∈ {1, ..., N},

β
′

tmn =
M∑
i=1

β
′

t+1,inφin(yt+1)wim. (3.37)

By Eq.(3.25), Eq.(3.28), Eq.(3.31) and Eq.(3.37),

(
T∏

t′=t+1

ct′)βtmn =
M∑
i=1

(
T∏

t′′=t+2

ct′′)βt+1,inφin(yt+1)wim, (3.38)

βtmn =
1

ct+1

M∑
i=1

βt+1,mnφin(yt+1)wim. (3.39)

According to Eq.(3.36) and Eq.(3.31), we can continue to calculate

(βT−2,mn), ..., (β1mn) below. Finally, combing the Eq.(3.32), we can get the smooth-

ing formula γtmn, where t ∈ {1, ..., T − 1},m ∈ {1, ...,M}, n ∈ {1, ..., N}.
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
βT−1,11 · · · βT−1,1N

· · · · · · · · ·

βT−1,M1 · · · βT−1,MN

→

βT−2,11 · · · βT−2,1N

· · · · · · · · ·

βT−2,M1 · · · βT−2,MN

→ · · · →

β111 · · · β11N

· · · · · · · · ·

β1M1 · · · β1MN


(3.40)

The process of calculating both filtering and smoothing is shown in Figure

3.3.

Figure 3.3 The process of calculating filtering and smoothing using forward-

backward algorithm

With the derived recurrent formulas, we can get the most probable values

of wanted latent variables PE∗ and each zt by using marginalization, e.g.

PE∗ = arg max
bn

p(PE∗ = bn|yT1 ),

where p(PE∗ = bn|yT1 ) =
∑M

m=1 p(zt = am, PE
∗ = bn|yT1 ). To implement both

filtering and smoothing in computer program, we also need to solve the formulas

for the constants appearing in the above derivations. To fulfil this task, using

matrix reformulation of the above recurrent equations is the most convenient and

efficient way. Below, we give the matrix formulas.
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3.3.1.3 Matrix formulas of filtering and smoothing probability distri-

bution function

To get a matrix formula for a filtering density, for all t ∈ {1, ..., T},m ∈

{1, ...,M}, n ∈ {1, ..., N}, we denote the matrix At = (αtmn)M×N . For the initial

case, by Eq.(3.15), Eq.(3.17) and Eq.(3.25) we can have


α111 · · · α11N

...
. . .

...

α1M1 · · · α1MN

 = 1
c1


φ11(y1) · · · φ11N(y1)

...
. . .

...

φ1M1(y1) · · · φ1MN(y1)

 ◦




u1

u2

...

uM


(
v1 v2 · · · vN

)


(3.41)

Therefore,

A1 =
1

c1

Φ1 ◦ (uvT ) (3.42)

where u and v are as defined in Section 3.2. Φt and W denote the emission matrix

and transition matrix, respectively, as described in Section 3.2.

For t ∈ {2, ..., T}, we have


αt11 · · · αt1N

· · · · · · · · ·

αtM1 · · · αtMN

 =
1

ct


φ11(yt) · · · φ1N(yt)

· · · · · · · · ·

φM1(yt) · · · φMN(yt)

 ◦


w11 · · · w1M

· · · · · · · · ·

wM1 · · · wMM



αt−1,11 · · · αt−1,1N

· · · · · · · · ·

αt−1,M1 · · · αt−1,MN




(3.43)

Therefore,

At =
1

ct
Φt ◦ (WAt−1), t > 2 (3.44)

where ◦ denotes the entrywise (or Hadamard) product of the matrix.

To get a matrix formula for a smoothing density, for all m ∈ {1, ...,M}, n ∈

{1, ..., N}, we denote the matrix Bt = (βtmn)M×N , t < T . For the case t = T − 1,

by Eq.(3.35), we have
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
βT−1,11 · · · βT−1,1N

· · · · · · · · ·

βT−1,M1 · · · βT−1,MN

 =
1

cT


w11 · · · w1M

· · · · · · · · ·

wM1 · · · wMM


T 

φ11(yT ) · · · φ1N(yT )

· · · · · · · · ·

φM1(yT ) · · · φMN(yT )


(3.45)

Therefore,

BT−1 =
1

cT
WTΦT . (3.46)

For t ∈ {1, ..., T − 2}, by Eq.(3.39), we have


βt11 · · · βt1N

· · · · · · · · ·

βtM1 · · · βtMN

 =
1

ct+1


w11 · · · w1M

· · · · · · · · ·

wM1 · · · wMM


T 

φ11(yt + 1)) · · · φ1N(yt + 1)

· · · · · · · · ·

φM1(yt + 1) · · · φMN(yt + 1)

 ◦

βt+1,11 · · · βt+1,1N

· · · · · · · · ·

βt+1,M1 · · · βt+1,MN


 .

(3.47)

Therefore,

Bt =
1

ct+1

WT (Φt+1 ◦Bt+1), t ∈ {1, ..., T − 2}. (3.48)

For t ∈ {1, ..., T − 1}, by Eq.(3.46)and Eq.(3.48), we have

Bt =


1

cT
WTΦT , t = T − 1

1

ct+1

WT (Φt+1 ◦Bt+1), t ∈ {1, · · · , T − 2} .
(3.49)

3.3.2 Inference with unknown parameters

In general situations, θ is unknown, so only the observed data yT1 is available.

In this case, θ must be estimated first. Expectation Maximization (EM) is a

general method capable of estimating the parameters θ in Maximum Likelihood

and Maximum a Posteriori (MAP) problem settings for probabilistic models with

latent variables (Laird et al., 1977). Here, we formulate our parameter estimation

in the MAP setting so that expert’s prior knowledge can be employed into the
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model. Formally, we would like to solve the following problem of maximizing the

posterior probability distribution function of θ.

θMAP = arg max
θ∈Θ

p(θ|yT1 ). (3.50)

EM finds a solution of Eq.(3.50) by iteratively solving the following two

steps with the arbitrary set of initial parameters θ(1) and a prior p(θ). Iterating

from j = 1, 2, ..., do

E-Step: Calculate smoothing probabilities p(zt = am, PE
∗ = bn|yT1 , θ(j)),

∀t,m, n

M-step: Solve the constraint maximization problem,

θ(j+1) = arg max
θ∈Θ

[Q(θ; θ(j)) + ln p(θ)] (3.51)

where

Q(θ; θ(j)) = EzT1 ,PE∗|yT1 ,θ(j) [ln p(y
T
1 , z

T
1 , PE

∗|θ)] (3.52)

3.3.2.1 E-step calculation

EM repeats the two steps until θ(j) converges. Note that EM guarantees to

find a local maxima of Eq.(3.50) (Bishop, 2006). The argument in the expectation

of Eq.(3.52) is simply the log-likelihood of the model:

ln p(yT1 , z
T
1 , PE

∗|θ) =
T∑
t=1

ln p(yt|zt, PE∗, θ) +
T∑
t′=2

ln p(zt′|zt′−1, θ)

+ ln p(z1|θ) + ln p(PE∗|θ).

(3.53)

According to DBN, they are simply the logarithms of the emission pdf,

transition pdf and initial pdf, respectively. By equation manipulations, the ex-

pectation Eq.(3.52) can be calculated by employing the smoothing probabilities

already done in the E-step. As a result, we get a closed form of Eq.(3.52). We

begin to calculate the Q(θ; θ(j)).
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By Eq.(3.52) and Eq.(3.53),

Q(θ; θ(j))

=
∑
zT1

∑
PE∗

qj(zT1 , PE
∗) ln p(yT1 , z

T
1 , PE

∗|θ)

=
∑
zT1

∑
PE∗

qj(zT1 , PE
∗)[

T∑
t=1

ln p(yt|zt, PE∗, θ)

+
T∑
t′=2

ln p(zt′ |zt′−1, θ) + ln p(z1|θ) + ln p(PE∗|θ)]

=
∑
zT1

∑
PE∗

qj(zT1 , PE
∗)

T∑
t=1

ln p(yt|zt, PE∗, θ) +
∑
zT1

∑
PE∗

qj(zT1 , PE
∗)

T∑
t′=2

ln p(zt′ |zt′−1, θ)

+
∑
zT1

∑
PE∗

qj(zT1 , PE
∗) ln p(z1|θ) +

∑
zT1

∑
PE∗

qj(zT1 , PE
∗) ln p(PE∗|θ).

(3.54)

where

qj(zT1 , PE
∗) = p(zT1 , PE

∗|yT1 , θ(j−1)), (3.55)

and

0 ≤ qj(zT1 , PE
∗) ≤ 1,

∑
zT1

∑
PE∗

qj(zT1 , PE
∗) = 1. (3.56)

We consider term by term in Eq.(3.54) to simplify Q(θ; θ(j)). The first term

is

∑
zT1

∑
PE∗

qj(zT1 , PE
∗)

T∑
t=1

ln p(yt|zt, PE∗, θ). (3.57)
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∑
zT1

∑
PE∗

qj(zT1 , PE
∗)

T∑
t=1

ln p(yt|zt, PE∗, θ)

=
T∑
t=1

∑
zT1

∑
PE∗

qj(zT1 , PE
∗) ln p(yt|zt, PE∗, θ)

=
T∑
t=1

∑
z1,...,zT

∑
PE∗

qj(z1, ..., zT , PE
∗) ln p(yt|zt, PE∗, θ)

=
T∑
t=1

∑
zt

∑
PE∗

qj(zt, PE
∗) ln p(yt|zt, PE∗, θ)

=
T∑
t=1

M∑
m=1

N∑
n=1

qj(zt = am, PE
∗ = bn) ln p(yt|zt = am, PE

∗ = bn, θ). (3.58)

For all t ∈ {1, ..., T},m ∈ {1, ...,M}, n ∈ {1, ..., N}, let

q
(j)
tmn , q

(j)
tmn(zt, PE

∗) , qj(zt = am, PE
∗ = bn), (3.59)

where, qj(zt = am, PE
∗ = bn) = p(zt = am, PE

∗ = bn|yT1 , θ(j−1)). Then,∑
zT1

∑
PE∗

qj(zT1 , PE
∗)

T∑
t=1

ln p(yt|zt, PE∗, θ) =
T∑
t=1

M∑
m=1

N∑
n=1

qjtmn lnφmn(yt). (3.60)

Since the definitions of filtering and smoothing Eq.(3.13) and Eq.(3.32) are

described in Subsection 3.3.1, then by Eq.(3.13), Eq.(3.26) and Eq.(3.55),

q
(j)
Tmn = α

(j−1)
Tmn , (3.61)

and

q
(j)
tmn = α

(j−1)
tmn β

(j−1)
tmn , t ∈ {1, ..., T − 1}. (3.62)

Thus, by Eq.(3.60), Eq.(3.61) and Eq.(3.62), the first term is

∑
zT1

∑
PE∗

qj(zT1 , PE
∗)

T∑
t=1

ln p(yt|zt, PE∗, θ)

=
T−1∑
t=1

M∑
m=1

N∑
n=1

α
(j−1)
tmn β

(j−1)
tmn lnφmn(yt) +

M∑
m=1

N∑
n=1

α
(j−1)
Tmn lnφmn(yT ). (3.63)
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The second term is

∑
zT1

∑
PE∗

qj(zT1 , PE
∗)

T∑
t′=2

ln p(zt′ |zt′−1, θ). (3.64)

∑
zT1

∑
PE∗

qj(zT1 , PE
∗)

T∑
t′=2

ln p(zt′|zt′−1, θ)

=
T∑
t′=2

∑
zT1

∑
PE∗

qj(zT1 , PE
∗) ln p(zt′|zt′−1, θ)

=
T∑
t′=2

∑
zt′ ,zt′−1

∑
PE∗

qj(zt′ , zt′−1PE
∗) ln p(zt′|zt′−1, θ)

=
T∑
t′=2

M∑
m,i=1

N∑
n=1

qj(zt′ = am, zt′−1 = ai, PE
∗ = bn) ln p(zt′ = am|zt′−1 = ai, θ).

(3.65)

For all t′ ∈ {2, ..., T},m, i ∈ {1, ...,M}, n ∈ {1, ..., N}, let

q
(j)
t′,m,i,n , q

(j)
t′,m,i,n(zt′ , zt′−1, PE

∗) , qj(zt′ = am, zt′−1 = ai, PE
∗ = bn). (3.66)

Then,

∑
zT1

∑
PE∗

q(j)(zT1 , PE
∗)

T∑
t′=2

ln p(zt′ |zt′−1, θ)

=
T∑
t′=2

M∑
m,i=1

N∑
n=1

q
(j)
t′,m,i,n(zt′ , zt′−1, PE

∗) lnwmi,

(3.67)

where q
(j)
t′,m,i,n(zt′ , zt′−1, PE

∗) = p(zt′ = am, zt′−1 = ai, PE
∗ = bn|yT1 , θ(j−1)).

For the term qjt′,m,i,n(zt′ , zt′−1, PE
∗), we separate into two steps to calculate it.

In step 1, we calculate qjT,m,i,n(zT , zT−1, PE
∗). For all m, i ∈ {1, ...,M}, n ∈
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{1, ..., N},

qjT,m,i,n(zT , zT−1, PE
∗)

=p(zt′ = am, zt′−1 = ai, PE
∗ = bn|yT1 , θ(j−1))

=p(zt′ = am, zt′−1 = ai, PE
∗ = bn|yT , yT−1

1 , θ(j−1))

=
p(yT |zT = am, PE

∗ = bn, θ
(j−1))p(zT = am, zT−1 = ai, PE

∗ = bn|yT−1
1 , θ(j−1))

p(yT |yT−1
1 , θ(j−1))

=
φ

(j−1)(yT )
mn

c
(j−1)
T

p(zT = am, zT−1 = ai, PE
∗ = bn|yT−1

1 , θ(j−1))

=
φ

(j−1)(yT )
mn

c
(j−1)
T

p(zT = am|zT−1 = ai, PE
∗ = bn, y

T−1
1 , θ(j−1))

p(zT−1 = ai, PE
∗ = bn|yT−1

1 , θ(j−1))

=
φ

(j−1)(yT )
mn

c
(j−1)
T

p(zT = am|zT−1 = ai, θ
(j−1))p(zT−1 = ai, PE

∗ = bn|yT−1
1 , θ(j−1))

=
φ

(j−1)
mn (yT )

c
(j−1)
T

w
(j−1)
mi α

(j−1)
T−1,in. (3.68)

Therefore,

qjT,m,i,n(zT , zT−1, PE
∗) =

φ
(j−1)
mn (yT )

c
(j−1)
T

w
(j−1)
mi α

(j−1)
T−1,in. (3.69)

In step 2, for t ∈ {2, ..., T − 1},we calculate qjt,m,i,n(zt, zt−1, PE
∗).
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qjt,m,i,n(zt, zt−1, PE
∗)

=p(zt = am, zt−1 = ai, PE
∗ = bn|yT1 , θ(j−1))

=p(zt = am, zt−1 = ai, PE
∗ = bn|yt1, yTt+1, θ

(j−1))

=
p(yTt+1|zt = am, zt−1 = ai, PE

∗ = bn, θ
(j−1))p(zt = am, zt−1 = ai, PE

∗ = bn|yt1, θ(j−1))

p(yTt+1|yt1, θ(j−1))

=β
(j−1)
tmn p(zt = am, zt−1 = ai, PE

∗ = bn|yt1, θ(j−1))

=β
(j−1)
tmn p(zt = am, zt−1 = ai, PE

∗ = bn|yt−1
1 , yt, θ

(j−1))

=β
(j−1)
tmn

p(yt|zt = am, zt−1 = ai, PE
∗ = bn, y

t−1
1 , θ(j−1))

p(yt|yt−1
1 , θ(j−1))

p(zt = am, zt−1 = ai, PE
∗ = bn|yt−1

1 , θ(j−1))

=β
(j−1)
tmn

p(yt|zt = am, PE
∗ = bn, θ

(j−1))p(zt = am, zt−1 = ai, PE
∗ = bn|yt−1

1 , θ(j−1))

p(yt|yt−1
1 , θ(j−1))

=β
(j−1)
tmn

φ
(j−1)
mn (yt)

c
(j−1)
t

p(zt = am, zt−1 = ai, PE
∗ = bn|yt−1

1 , θ(j−1))

=β
(j−1)
tmn

φ
(j−1)
mn (yt)

c
(j−1)
t

p(zt = am|zt−1 = ai, PE
∗ = bn, y

t−1
1 , θ(j−1))

p(zt−1 = ai, PE
∗ = bn|yt−1

1 , θ(j−1))

=β
(j−1)
tmn

φ
(j−1)
mn (yt)

c
(j−1)
t

p(zt = am|zt−1 = ai, θ
(j−1))p(zt−1 = ai, PE

∗ = bn|yt−1
1 , θ(j−1))

=β
(j−1)
tmn

φ
(j−1)
mn (yt)

c
(j−1)
t

w
(j−1)
mi α

(j−1)
t−1,in. (3.70)

Therefore, for t ∈ {2, ..., T − 1},

qjt,m,i,n(zt, zt−1, PE
∗) = β

(j−1)
tmn

φ
(j−1)
mn (yt)

c
(j−1)
t

w
(j−1)
mi α

(j−1)
t−1,in. (3.71)

Thus, by Eq.(3.67), Eq.(3.69) and Eq.(3.71), the second term is
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∑
zT1

∑
PE∗

qj(zT1 , PE
∗)

T∑
t′=2

ln p(zt′|zt′−1, θ)

=
T−1∑
t′=2

M∑
i,m=1

N∑
n=1

β
(j−1)
tmn

φ
(j−1)
mn (yt)

c
(j−1)
t

w
(j−1)
mi α

(j−1)
t−1,in lnwmi

+
M∑

i,m=1

N∑
n=1

φ
(j−1)
mn (yT )

c
(j−1)
T

w
(j−1)
mi α

(j−1)
T−1,in lnwmi. (3.72)

The third term is
∑

zT1

∑
PE∗ q

j(zT1 , PE
∗) ln p(z1|θ).

For all m ∈ {1, ...,M}, n ∈ {1, ..., N},

∑
zT1

∑
PE∗

qj(zT1 , PE
∗) ln p(z1|θ)

=
∑
z1

∑
PE∗

qj(zT1 , PE
∗) ln p(z1|θ)

=
M∑
m=1

N∑
n=1

q(j)(z1 = am, PE
∗ = bn) ln p(z1 = am|θ)

=
M∑
m=1

N∑
n=1

q
(j)
1mn(z1, PE

∗) lnum

=
M∑
m=1

N∑
n=1

α
(j−1)
1mn β

(j−1)
1mn lnum. (3.73)

Thus, for all m ∈ {1, ...,M}, n ∈ {1, ..., N}, the third term is

∑
zT1

∑
PE∗

qj(zT1 , PE
∗) ln p(z1|θ) =

M∑
m=1

N∑
n=1

α
(j−1)
1mn β

(j−1)
1mn lnum. (3.74)

Similarly, we can calculate the fourth term. For all m ∈ {1, ...,M}, n ∈

{1, ..., N}, the forth term is

∑
zT1

∑
PE∗

qj(zT1 , PE
∗) ln p(PE∗|θ) =

M∑
m=1

N∑
n=1

α
(j−1)
1mn β

(j−1)
1mn ln vn. (3.75)

Hence, by Eq.(3.60), Eq.(3.67) and Eq.(3.73),
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Q(θ; θ(j))

=
T∑
t=1

M∑
m=1

N∑
n=1

q
(j)
tmn(zt, PE

∗) lnφmn(yt) +
T∑
t′=2

M∑
i,m=1

N∑
n=1

q
(j)
t′,m,i,n(zt′ , zt′−1, PE

∗)

lnwmi +
M∑
m=1

N∑
n=1

q
(j)
1mn(z1, PE

∗)(lnum + ln vn). (3.76)

and by Eq.(3.63),Eq.(3.72), Eq.(3.74)and Eq.(3.75),

Q(θ; θ(j))

=
T−1∑
t=1

M∑
m=1

N∑
n=1

α
(j−1)
tmn β

(j−1)
tmn lnφmn(yt) +

M∑
m=1

N∑
n=1

α
(j−1)
Tmn lnφmn(yT )

+
T−1∑
t′=2

M∑
i,m=1

N∑
n=1

β
(j−1)
tmn

φ
(j−1)
mn (yt)

c
(j−1)
t

w
(j−1)
mi α

(j−1)
t−1,in lnwmi

+
M∑

i,m=1

N∑
n=1

φ
(j−1)
mn (yT )

c
(j−1)
T

w
(j−1)
mi α

(j−1)
T−1,in lnwmi +

M∑
m=1

N∑
n=1

α
(j−1)β

(j−1)
1mn

1mn (lnum + ln vn).

Experts can put their knowledge into the parameter estimation procedure

via p(θ) in Eq.(3.51). Here, we assume that all parameters are independent, p(θ) =

p(σ)p(u)p(v)p(W). In our experience, investment experts usually have two types

of knowledge which are useful to estimate θ. The first type of knowledge is about

PE∗. Often, experts may be able to estimate the range of appropriate PE∗ level

by analyzing a firm’s business strategy together with competitions in its industry.

The second type of knowledge is about the degree of persistence of the medium-

term noisy effect which makes a stock price deviate from its fundamental for a

considerable amount of time as explained in Section 3.2. For some firms, e.g. a firm

with non-existent investor relation department, when there exist some unconfirmed

rumors, its price can deviate from its fundamental for a long period. In contrast,

some firms with both strong public and investor relation departments can clear

up unconfirmed rumors rather quickly, so this rumor effect will not stay long. The
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two types of expert information can be encoded on p(v) and p(W), respectively.

The prior p(v) for the vector v = (vn)N×1 can be represented via the Dirichlet

distribution:

p(v) =
τ(k1 + k2 + ...+ kN)

τ(k1)τ(k2)...τ(kN)

N∏
n=1

vkn−1
n (3.77)

Intuitively, kn, n ∈ {1, ..., N} is a degree of belief for each possible PE∗ value

bn. Experts can employ their believes that some value of PE∗, e.g. bi is relatively

more probable than other values by giving ki relatively higher value than other

kn, n 6= i. See (Gelman et al., 2003) for more details on the Dirichlet prior. The

prior on transition matrix p(W) encoding the average persistence degree of the

medium-term noisy effect can also be described by a product of Dirichlet priors

(Strelioff et al., 2007) : p(W ) =
∏M

m=1 p(wm), where as defined in Section 3.2,

wm = (wim)i=1,...,M denotes a M × 1 vector of a probability p(zt+1 = ai|zt =

am), i = 1, ...,M , and

p(wm) =

τ(
M∑
i=1

kim)

M∏
i=1

τ(kim)

M∏
i=1

wkim−1
im . (3.78)

The persistence degree of the medium-term effect can be set by relatively

increasing the values of kmm compared to other values kim, i 6= m. The relatively

higher of kmm, the more persistence of the medium-term effect. Since medium-

term effect appears at random, other values can symmetrically be set: kim =

(1− kmm)/(M − 1), for i 6= m.

Therefore, the log prior probability ln p(θ) is given by
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ln p(θ)

= ln p(W) + ln p(v) + constant

=
M∑
m=1

M∑
i=1

(kim − 1) lnwim +
N∑
n=1

(kn − 1) ln vn + constant. (3.79)

Combining with the ln p(θ) term described below, the constraint maxi-

mization Eq.(3.52) is well defined and readily to be solved by using the method

of Lagrange multipliers (S. Boyd and Hassibi, 2007). We have two types of con-

straints which are equality constraints and inequality constraints. These equality

constraints are
∑M

m=1 um = 1,
∑N

n=1 vn = 1,and
∑M

m=1wim = 1. The inequality

constraints are 0 ≤ um ≤ 1,0 ≤ vn ≤ 1,0 ≤ wim ≤ 1 and σ > 0. According to the

equality constraints, by Eq.(3.76)and Eq.(3.79), the Lagrange function is given by

f(θ, λ1, λ2, λ3)

=Q(θ; θ(j)) + ln p(θ) + λ1(
∑
m′

um′ − 1) + λ2(
∑
n′

vn′ − 1) + λ3(
∑
m′

wm′i − 1)

+ constant

=
T∑
t=1

M∑
m=1

N∑
n=1

q
(j)
tmn(zt, PE

∗) lnφmn(yt) +
T∑
t′=2

M∑
i,m=1

N∑
n=1

q
(j)
t′,m,i,n(zt′ , zt′−1, PE

∗) lnwmi

+
M∑
m=1

N∑
n=1

q
(j)
1mn(z1, PE

∗)(lnum + ln vn) +
M∑
m=1

M∑
i=1

[kim − 1] lnwim +
N∑
n=1

(kn − 1)

ln vn + λ1(
∑
m′

um′ − 1) + λ2(
∑
n′

vn′ − 1) + λ3(
∑
m′

wm′i − 1) + constant. (3.80)

3.3.2.2 M-step calculation

Next, we calculate the partial derivative related to these four unknown

parameters which are um, vn, wmi, σ
2 and then check these parameters satisfy the

inequality constraints.

(a) Calculate u
(j)
m , j = 2, 3, ....
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For each fixed m ∈ {1, ...,M}and j ∈ {2, 3, ...}, let
∂f

∂um
= 0.

N∑
n=1

q
(j)
1mn(z1, PE

∗)
1

um
+ λ1 = 0

N∑
n=1

q
(j)
1mn(z1, PE

∗) + λ1um = 0

M∑
m=1

N∑
n=1

q
(j)
1mn(z1, PE

∗) +
M∑
m=1

λ1um = 0

M∑
m=1

N∑
n=1

q
(j)
1mn(z1, PE

∗) + λ1

M∑
m=1

um = 0

M∑
m=1

N∑
n=1

q
(j)
1mn(z1, PE

∗) + λ1 = 0

λ1 = −
M∑
m=1

N∑
n=1

q
(j)
1mn(z1, PE

∗) = −1. (3.81)

Then,

u(j)
m =

N∑
n=1

α
(j−1)
1mn β

(j−1)
1mn . (3.82)

and 0 ≤ u
(j)
m ≤ 1 satisfies the inequality constraint 0 ≤ um ≤ 1.

Therefore, for each fixed m ∈ {1, ...,M}and j ∈ {2, 3, ...},

u(j)
m =

N∑
n=1

α
(j−1)
1mn β

(j−1)
1mn .

(b) Calculate v
(j)
n , j = 2, 3, ....

For each fixed n ∈ {1, ..., N} and j ∈ {2, 3, ...}, let
∂f

∂vn
= 0.
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M∑
m=1

q
(j)
1mn(z1, PE

∗)
1

vn
+ (kn − 1)

1

vn
+ λ2 = 0

M∑
m=1

q
(j)
1mn(z1, PE

∗) + (kn − 1) + λ2vn = 0

M∑
m=1

N∑
n=1

q
(j)
1mn(z1, PE

∗) +
N∑
n=1

(kn − 1) +
N∑
n=1

λ2vn = 0

1 +
N∑
n=1

(kn − 1) + λ2 = 0

λ2 = −1−
N∑
n=1

(kn − 1). (3.83)

Then,

v(j)
n

=

M∑
m=1

q
(j)
1mn(z1, PE

∗) + (kn − 1)

1 +
N∑

n′=1

(kn′ − 1)

=

M∑
m=1

α
(j−1)
1mn β

(j−1)
1mn + (kn − 1)

1 +
N∑

n′=1

(kn′ − 1)

, (3.84)

and 0 ≤ v
(j)
n ≤ 1 satisfies the inequality constraint 0 ≤ vn ≤ 1.

Therefore, for each fixed n ∈ {1, ..., N}and j ∈ {2, 3, ...},

v(j)
n =

M∑
m=1

α
(j−1)
1mn β

(j−1)
1mn + (kn − 1)

1 +
N∑

n′=1

(kn′ − 1)

. (3.85)

(c) Calculate w
(j)
mi, j = 2, 3, ....

For all fixed m, i ∈ {1, ...,M},and j ∈ {2, 3, ...}, let
∂f

∂wmi
= 0.
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T∑
t′=2

N∑
n=1

q
(j)
t′,m,i,n(zt′ , zt′−1, PE

∗)
1

wmi
+ (kmi − 1)

1

wmi
+ λ3 = 0

T∑
t′=2

N∑
n=1

q
(j)
t′,m,i,n(zt′ , zt′−1, PE

∗) + (kmi − 1) + λ3wmi = 0

T∑
t′=2

M∑
m=1

N∑
n=1

q
(j)
t′,m,i,n(zt′ , zt′−1, PE

∗) +
M∑
m=1

(kmi − 1) +
M∑
m=1

λ3wmi = 0

T∑
t′=2

M∑
m=1

N∑
n=1

q
(j)
t′,m,i,n(zt′ , zt′−1, PE

∗) +
M∑
m=1

(kmi − 1) + λ3

M∑
m=1

wmi = 0

T∑
t′=2

M∑
m=1

N∑
n=1

q
(j)
t′,m,i,n(zt′ , zt′−1, PE

∗) +
M∑
m=1

(kmi − 1) + λ3 = 0

λ3 = −
T∑
t′=2

M∑
m=1

N∑
n=1

q
(j)
t′,m,i,n(zt′ , zt′−1, PE

∗)−
M∑
m=1

(kmi − 1). (3.86)

Then,

w
(j)
mi

=−
∑T

t′=2

∑N
n=1 q

(j)
t′,m,i,n(zt′ , zt′−1, PE

∗) + (kmi − 1)∑T
t′=2

∑M
m=1

∑N
n=1 q

(j)
t′,m,i,n(zt′ , zt′−1, PE∗) +

∑M
m′=1(km′i − 1)

=
mol

den
. (3.87)

where

mol =
T−1∑
t′=2

N∑
n=1

β
(j−1)
t′mn

φ
(j−1)
mn (yt′)

c
(j−1)
t′

w
(j−1)
mi α

(j−1)
t′−1,i,n+

N∑
n=1

φ
(j−1)
mn (yT )

c
(j−1)
T

w
(j−1)
mi α

(j−1)
T−1,i,n+(kmi−1),

(3.88)

and

den =
M∑

m′=1

molecular. (3.89)

Meanwhile, 0 ≤ w
(j)
mi ≤ 1 satisfies the inequality constraint 0 ≤ wmi ≤ 1.

Therefore, for all fixed m, i ∈ {1, ...,M},and j ∈ {2, 3, ...},

w
(j−1)
mi =

mol

den
. (3.90)
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(d) Calculate (σ2)(j), j = 2, 3, ....

For all m ∈ {1, ...,M},and n ∈ {1, ..., N},

φ(yt) =
1√
2πσ

exp(−(yt − ln(bn(1 + am)))2

2σ2
). (3.91)

∂φmn(yt)

∂σ

=− 1√
2π

1

σ2
exp(−(yt − ln(bn(1 + am)))2

2σ2
)

+
1√
2πσ

exp(−(yt − ln(bn(1 + am)))2

2σ2
)(yt − ln(bn(1 + am))2)

1

σ3

=
1√
2πσ

exp(−(yt − ln(bn(1 + am)))2

2σ2
)(− 1

σ
+

(yt − ln(bn(1 + am)))2

σ3
)

=φmn(yt)(−
1

σ
+

(yt − ln(bn(1 + am)))2

σ3
). (3.92)

Let
∂f

∂σ
= 0, then

T∑
t=1

M∑
m=1

N∑
n=1

q
(j)
tmn(zt, PE

∗)
1

φmn(yt)
φmn(yt)(−

1

σ
+

(yt − ln(bn(1 + am)))2

σ3
) = 0

T∑
t=1

M∑
m=1

N∑
n=1

q
(j)
tmn(zt, PE

∗)(− 1

σ
+

(yt − ln(bn(1 + am)))2

σ3
) = 0

T∑
t=1

M∑
m=1

N∑
n=1

q
(j)
tmn(zt, PE

∗)(−σ2 + (yt − ln(bn(1 + am)))2) = 0

σ2 =

∑T
t=1

M∑
m=1

N∑
n=1

q
(j)
tmn(zt, PE

∗)(yt − ln(bn(1 + am)))2

T∑
t=1

M∑
m=1

N∑
n=1

q
(j)
tmn(zt, PE∗)

=

T−1∑
t=1

M∑
m=1

N∑
n=1

α
(j−1)
tmn β

(j−1)
tmn (yt − ln(bn(1 + am)))2

T−1∑
t=1

M∑
m=1

N∑
n=1

α
(j−1)
tmn β

(j−1)
tmn +

M∑
m=1

N∑
n=1

α
(j−1)
Tmn

+

M∑
m=1

N∑
n=1

α
(j−1)
Tmn (yT − ln(bn(1 + am)))2

T−1∑
t=1

M∑
m=1

N∑
n=1

α
(j−1)
tmn β

(j−1)
tmn +

M∑
m=1

N∑
n=1

α
(j−1)
Tmn

. (3.93)
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Therefore,

(σ2)(j−1)

=

T−1∑
t=1

M∑
m=1

N∑
n=1

α
(j−1)
tmn β

(j−1)
tmn (yt − ln(bn(1 + am)))2

T−1∑
t=1

M∑
m=1

N∑
n=1

α
(j−1)
tmn β

(j−1)
tmn +

M∑
m=1

N∑
n=1

α
(j−1)
Tmn

+

M∑
m=1

N∑
n=1

α
(j−1)
Tmn (yT − ln(bn(1 + am)))2

T−1∑
t=1

M∑
m=1

N∑
n=1

α
(j−1)
tmn β

(j−1)
tmn +

M∑
m=1

N∑
n=1

α
(j−1)
Tmn

. (3.94)

Note that, for all m, i ∈ {1, ...,M}, Eq.(3.90) is complicated and

T−1∑
t′=2

N∑
n=1

β
(j−1)
t′mn

φ
(j−1)
mn (yt′)

c
(j−1)
t′

w
(j−1)
mi α

(j−1)
t′−1,i,n +

N∑
n=1

φ
(j−1)
mn (yT )

c
(j−1)
T

w
(j−1)
mi α

(j−1)
T−1,i,n, (3.95)

a part of w
(j)
mi in Eq.(3.90) and we write it in a matrix form below, so that we can

write a computer program. Let W̃j = (w̃jmn)M×N .



w̃j11 w̃j12 · · · w̃j1M

w̃j21 w̃j22 · · · w̃j2M

· · · · · · · · · · · ·

w̃jM1 w̃jM2 · · · w̃jMM


=



wj−1
11 wj−1

12 · · · wj−1
1M

wj−1
21 wj−1

22 · · · wj−1
2M

· · · · · · · · · · · ·

wj−1
M1 wj−1

M2 · · · wj−1
MM


◦


1

cj−1
2



βj−1
211 βj−1

212 · · · βj−1
21N

βj−1
221 βj−1

222 · · · βj−1
22N

· · · · · · · · · · · ·

βj−1
2M1 βj−1

2M2 · · · βj−1
2MN


◦



φj−1
11 (y2) φj−1

12 (y2) · · · φj−1
1N (y2)

φj−1
21 (y2) φj−1

22 (y2) · · · φj−1
2N (y2)

· · · · · · · · · · · ·

φj−1
M1 (y2) φj−1

M2 (y2) · · · φj−1
MN(y2)


◦



αj−1
111 αj−1

112 · · · αj−1
11N

αj−1
121 αj−1

122 · · · αj−1
12N

· · · · · · · · · · · ·

αj−1
1M1 αj−1

1M2 · · · αj−1
1MN



T

+
1

cj−1
3



βj−1
311 βj−1

312 · · · βj−1
31N

βj−1
321 βj−1

322 · · · βj−1
32N

· · · · · · · · · · · ·

βj−1
3M1 βj−1

3M2 · · · βj−1
3MN


◦



φj−1
11 (y3) φj−1

12 (y3) · · · φj−1
1N (y3)

φj−1
21 (y3) φj−1

22 (y3) · · · φj−1
2N (y3)

· · · · · · · · · · · ·

φj−1
M1 (y3) φj−1

M2 (y3) · · · φj−1
MN(y3)


◦



αj−1
211 αj−1

212 · · · αj−1
21N

αj−1
221 αj−1

222 · · · αj−1
22N

· · · · · · · · · · · ·

αj−1
2M1 αj−1

2M2 · · · αj−1
2MN



T

+ · · ·

+
1

cj−1
T−1



βj−1
T−1,11 βj−1

T−1,12 · · · βj−1
T−1,1N

βj−1
T−1,21 βj−1

T−1,22 · · · βj−1
T−1,2N

· · · · · · · · · · · ·

βj−1
T−1,M1 βj−1

T−1,M2 · · · βj−1
T−1,MN


◦



φj−1
11 (yT−1) φj−1

12 (yT−1) · · · φj−1
1N (yT−1)

φj−1
21 (yT−1) φj−1

22 (yT−1) · · · φj−1
2N (yT−1)

· · · · · · · · · · · ·

φj−1
M1 (yT−1) φj−1

M2 (yT−1) · · · φj−1
MN(yT−1)


◦



αj−1
T−2,11 αj−1

T−2,12 · · · αj−1
T−2,1N

αj−1
T−2,21 αj−1

T−2,22 · · · αj−1
T−2,2N

· · · · · · · · · · · ·

αj−1
T−2,M1 αj−1

T−2,M2 · · · αj−1
T−2,MN



T

+
1

cj−1
T



φj−1
11 (yT ) φj−1

12 (yT ) · · · φj−1
1N (yT )

φj−1
21 (yT ) φj−1

22 (yT ) · · · φj−1
2N (yT )

· · · · · · · · · · · ·

φj−1
M1 (yT ) φj−1

M2 (yT ) · · · φj−1
MN(yT )


◦



αj−1
T−1,11 αj−1

T−1,12 · · · αj−1
T−1,1N

αj−1
T−1,21 αj−1

T−1,22 · · · αj−1
T−1,2N

· · · · · · · · · · · ·

αj−1
T−1,M1 αj−1

T−1,M2 · · · αj−1
T−1,MN



T


(3.96)



54

Therefore,

W̃(j)

=W(j−1) ◦
[

1

cj−1
2

B
(j−1)
2 ◦Φ

(j−1)
2 A

(j−1)T
1 +

1

cj−1
3

B
(j−1)
3 ◦Φ

(j−1)
3 A

(j−1)T
2

]
+ ...

+W(j−1) ◦

[
1

cj−1
T−1

B
(j−1)
T−1 ◦Φ

(j−1)
T−1 A

(j−1)T
T−1 +

1

cj−1
T

Φ
(j−1)
T A

(j−1)T
T−1

]
. (3.97)



CHAPTER IV

EXPERIMENT BASED ON PE RATIO

In this section, we illustrate benefits of our methodology in real-world ap-

plications. To do this, we will conduct comprehensive trading simulations to show

consistent superior performances of our method over standard benchmark. In lit-

eratures of finance, according to the Efficient Market Hypothesis (Fama, 1976,

1991; Mark, 2011) which is widely accepted by mainstream researchers, the gold

standard benchmark is, surprisingly, the simple buy-and-hold method which em-

pirically proves to be efficient in the long run. Astonishingly, much evidence

clearly indicates that most mutual fund managers who apply complex active port-

folio management techniques cannot beat the simple buy-and-hold strategy of the

market portfolio (Malkiel, 2016; Carhart, 1997). In this section, we will test our

method against this gold standard buy-and-hold strategy both on individual stock

level and on portfolio level.

4.1 The data

We collected the data sets from SET in Thailand, NYSE and NASDAQ

in US. In the thesis, the data sets are daily stock prices, quarterly earnings to

calculate the yearly earning. The data sets are over a 5-year period from Jan 1,

2012 to Sep 30, 2016. Public holidays, Saturday and Sunday prices were removed

to avoid any bias in the results from weekend market closures. The historical prices

and the historical earnings are adjusted according to stock splits. The criterion

for our model is that the historical earnings are positive. Most firms satisfy this
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criterion. All data are adjusted for stock splitting if occuring during this 5-year

period.

In this section, we will make stock trading in the markets of two different

countries where we can access historical data: NYSE (New York Stock Exchange)

and NASDAQ in US and SET (Stock Exchange of Thailand) in Thailand. While

NYSE and NASDAQ represent mature stock markets, SET represents an emerging

market, so that we are able to test our methodology to firms in both market phases.

For each country, we collected data of 10 firms from various industries to ensure

that our methodology is not just limited to one specific industry. Each selected

firm is well established and has at least 5 year historical trading data. The names

of selected companies with their respective sectors for Thai stocks and US stocks

are shown in Table 4.1 and Table 4.2, respectively.

We collected daily 5-year historical closing-price data for each firm from

Jan 1, 2012 to Sep 30, 2016 consisting of 1160 closing prices for stocks in SET and

1195 closing prices for stocks in NYSE and NASDAQ, respectively. The difference

in the number of data is due to different working days in the two countries.

4.2 Experiment setting

To avoid duplicated writing, here, we shall explain only experiment settings

for stocks in SET with historical price P1, ..., P1160. The experiment settings for

stocks in NYSE and NASDAQ are done similarly.

For each firm, the corresponding yearly earnings data in those years are

also collected. E1, ..., E1160 are defined as the summation of the most recent 4

quarterly earnings on each data t. The first 3-year historical data (Jan 1,2012

to Dec 31,2014) P1, ..., P735 and E1, ..., E735 will be used as a training data for

our Bayesian methodology to learn the appropriate parameters θ = {W,u,v, σ2}
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Table 4.1 Stock symbols of selected firms from Thailand, including their indus-

tries. BigCap, MidCap and SmallCap are defined according to market sizes (in

THB) which are greater than 100 billions, 10 billions and 1 billions, respectively.

Symbol Industry Size

CPALL Retailing-Food and Staples BigCap

CPN Developer-Department Stores BigCap

EASTW Utilities-Water Resources MidCap

GLOW Utilities-Power Plant BigCap

HMPRO Retailing-Household Products BigCap

QH Developer-Housing MidCap

ROBINS Retailing-General MidCap

SCB Banking BigCap

SNC Electrical Equipments SamllCap

TTW Utilities-Tap Water MidCap

using the EM algorithm as well as estimate the most probable values of PE∗

and {z1, ..., z735} by the method of smoothing as explained in Section 3.3. The

constants {a1, ..., aM} and {b1, ..., bN} are set by experts. Since the constant M

determines the size of the transition matrix W = (wim)M×M , we make a constraint

M < 10 so that the model is not over-parameterized and that 3-year historical

data is enough to learn W. For all prior distributions, we employ non-informative

priors with the exception of p(W) where our “security experts” emphasize the

prior knowledge of zt persistency as described in Subsection 3.3.2.

Each trading simulation is conducted for each individual stock with the

remaining 2-year historical data P736, ..., P1160 to measure the performance of both
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Table 4.2 Stock symbols of selected firms from US, including their industries and

market sizes in USD. B denotes billion dollars (Data retrieved on Dec 7, 2016).

Symbol Industry Size

WMT Services-Discount and Variety stores 218.48B

HD Services-Home improvement stores 157.86B

KO Consumer Good-Beverages soft drinks 173.51B

G Services-Business services 4.925B

AAPL Consumer Goods-Electronic equipment 584.37B

NKE Consumer Goods-Textile-Apparel Footwear and Accessories 84.35B

BK Financial-Asset Management 51.89B

CF Basic Materials-Agricultural Chemicals 6.695B

CSCO Technology- Networking and Communication Devices 147.88B

DIS Services-Entertainment Diversified 157.41B

our method and the benchmark. The performance measurement metric is, as

used by practitioners, a profit generated by each method. The profit calculation

is straightforward: for each trading simulation, each method is equally given an

initial amount of cash I to make a trade (which taken into account a commission

fee), and the profit are simply all the asset values at the end of a simulation minus

I. For simplicity, we assume that each stock can be bought with all the money we

have, e.g. supposing we have 100$ and a stock’s price is 12$, then we are able to

buy 100/12 = 8.33 stocks.
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4.2.1 Buy-and-hold strategy

Buy-and-hold strategy is very simple and it is widely used. (Preis et al.,

2013; Enke and Thawornwong, 2005; Chen et al., 2003; Agarwal and Naik, 2004)

use this strategy as the benchmark. We use buy-and-hold strategy for comparison

in the thesis. This benchmark is to buy the stock with all the cash at the beginning

and then do nothing until the end. Initially, this method will get C.I/P736 shares

where C ≈ 0.9987 represents the value of assets after taking SET’s commission

fee into account. At the end of the simulation this asset will have a value of

P1160.C.I/P736, so the profit can be calculated easily.

4.2.2 Long-term strategy and medium-term strategy

For a trading strategy employed by our method, there are two possible

versions inspired by our model’s main idea (see Figure 3.1) and Strategy A (buy

low, sell high) described in Section 3.1. The first version called long-term strategy

is simply to “buy low, sell high” with respect to the static value of PE∗, and the

second version called medium-term strategy is to “buy low, sell high” with respect

to the dynamic values of PE∗(1+zt) where each zt is dynamically estimated by the

method of filtering described in Subsection 3.3.2. Both versions can be formally

described as follows.

Let It and Nt be available cash and total shares at date t, respectively.

Initially, I736 = I and N736 = 0. Now, both trading versions can be defined simply

by the following procedure: for each date t, exactly one of the following cases

holds:

(i) Pt/Et ≤ At(1 − Tr) and It > 0 (buy-low case) where Tr ∈ (0, 1) is

a threshold, At = PE∗ for the long-term strategy and At = PE∗(1 + zt) for

the medium-term strategy. In this case, buy the stock with all cash, so that



60

Nt+1 = C.It/PT and It+1 = 0.

(ii) Pt/Et ≥ At(1 + Tr) and It = 0 (sell-high case). In this case, sell all the

holding stock to get cash It+1 = Pt.Nt.C and Nt+1 = 0.

(iii) If case (i) and case (ii) are not satisfied, do nothing. So, It+1 = It and

Nt+1 = Nt. At the end of a trading simulation t = 1160, the total profit is simply

I1160 + P1160.N1160 − I736, so that we can compare with the buy-and-hold strategy

profit.

We give some illustrations of our trading in actions which are shown in

Figure 4.1 and Figure 4.2. Figure 4.1 is an example of long-term trading of

CPALL with threshold 0.05 and Figure 4.2 is an example of medium-term trading

of CPALL with threshold 0.05. In Figure 4.1 “Green circle” denotes “buy” and

“Black cross” denotes “sell”. Top and bottom figures show the same trading in

different perspectives The top figure shows trading with respect to the “PE” per-

spective where Red line denotes PE∗. Here, it is easy to see our strategy in action:

when the observed PE is lower or higher than the threshold level, buy or sell is

triggered, respectively. The bottom figure shows trading in the “price” perspective

when Red line denotes P ∗ = EtPE
∗. Since the earnings continue to increase, P ∗

also increase accordingly. In Figure 4.2, in addition to those explained in Figure

4.1, in the top figure, the purple dashed line denotes PE∗(1+zt), and becomes the

base line of this trading strategy. Note that our Bayesian method estimates the

purple line by the method of “filtering” which tracks the observed PE movements

with some delay. The bottom figure is the “price” perspective where the purple

line shows P ∗(1 + zt). In this example, buy-and-hold strategy beats ours by small

margin because of the commission fees caused by our frequent trading.
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Figure 4.1 Example of Long-term strategy trading of CPALL with threshold 5%

where our model’s profit is 58.43% while buy-and-hold strategy profit is 44.46%.

4.2.3 The diagram

Before stock trading simulations, the process is seen in Figure 4.3 .
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Figure 4.2 Example of Medium-term strategy trading of CPALL with threshold

Tr = 5%.

Step 1: Collect the historical data (5-year data) as described in Section 4.2.

The first 3-year data is considered as a training data and the following 2-year data
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Figure 4.3 The diagram of stock trading based on PE ratio

is considered as a testing data.

Step 2: Based on mean reversion and behavioral volatility, we construct

our model combining fundamental valuation with the DBN, see Chapter III.

Step 3: For the training data, calculate the parameters by forward-

backward algorithm and EM-MAP algorithm and more details can be found in

Section 3.3. For the training data, we use forward-backward algorithm again and

estimate latent variables PE∗ and the medium-effect zt by smoothing. For the

testing data, we estimate the medium-effect zt by filtering.

Note that small probability events appear and we modify them before next

step. The small probability events are explained in Figure 4.4. In Figure 4.4,the

red circle includes small probability events which continue for a very short period.

We modify the values of zt to be the same as the values of zt before the period.

Step 4: Long-term stock trading strategy and medium-term strategy are

given, as described in Section 4.1. We compare those two versions of stock trading

strategy with buy-and-hold strategy, respectively.

Step 5: The long-term strategy and the medium-term strategy outperform

the buy-and-hold strategy.
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Figure 4.4 Example of small probability events of TTW .

4.3 Experimental results and discussions

4.3.1 Individual firm-level experiments

To ensure that our experimental results are not biased because of a thresh-

old choice, we test 4 different thresholds for each trading strategy. Note that the

thresholds in the medium-term trading are relatively smaller than those in the long-

term. This is due to the nature of medium-term strategy where PEt has a smaller

deviation from its base line PE∗(1+zt) compared to the long-term strategy’s base

line, not containing the effect of zt. The experimental results with respect to Thai

stocks and US stocks are shown in Table 4.3 and Table 4.4, respectively.
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From Tables 4.3 and 4.4, we can see that in the SET market, the average

profit percentages are 10.86%, 10.20%, 12.19%, 9.62%, 12.92%, 12.67%, 16.55%,

12.90% for different thresholds in long-term strategy and medium-term strategy

which are more than 9.14% from the buy-and-hold strategy. In the US market,

the average profit percentages are 11.23%, 15.56%, 7.12%, 4.82%, 17.88%, 15.43%,

10.02%, 6.37% for different thresholds in long-term strategy and medium-term

strategy which are more than 3.78% from the buy-and-hold strategy.

In the total of 80 trading simulations on SET firms, our method results in

greater performance 41 times, while the results based on buy-and-hold strategy in

better performance 19 times (the remaining 20 times are draws). Similarly, in the

total of 80 trading simulations on NYSE and NASDAQ firms, our method results

in greater performance 36 times, while the results based on buy-and-hold strategy

in better comparison 20 times (the remaining 24 times are draws). Summing up

results of markets in the two countries, our method outperforms the benchmark

77 times, yet underperforms only 39 times. These are promising results where

we shall analyze statistically significance of the results more formally in the next

subsection. Here, we shall firstly interpret and discuss the experimental results in

Tables 4.3 and 4.4 in detail.

From those two tables, it can be seen that there are 44 draws, which occur

only in the cases of the long-term trading strategy. All 44 draws happen because

of the exact same reason: our model predicts undervaluation at the beginning of

the testing period. i.e. the first observed PE falls deeply below the base line PE∗

(exceeding the specified threshold). After that, the observed PE is never once able

to overly exceed PE∗ with respect to the given threshold, i.e. PE∗(1 + Tr) is

quite high in the test set so that no selling is possible. Therefore, in this case,

our trading behaves exactly just like the benchmark buy-and-hold strategy. Note
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that there is no draw in the results of the medium-term trading strategy. The

reason is because the estimated medium-term noisy effect zt makes the base line

PE∗(1 + zt) move near to the observed PE which results in more frequent trading.

Disregarding the draws, our long-term trading strategy still beats the

benchmark with 22 wins versus 14 loses. This is mainly due to the volatility

of the observed PE in most stocks so that our strategy of buying in an under-

valued price and selling in an overvalued price with respect to PE∗ is possible.

However, it is not the case that trading induced from our model constantly out-

performs the benchmark. For the case of the so-called growth stocks (Lynch and

Rothchild, 2000), i.e. stocks with consistently increasing earnings and price, it is

not so easy for our model to beat the benchmark. If the threshold is set too low,

our method will lead to buying and selling early, and thus results in less profit.

See Figure 4.5 for example. If the threshold is set too high, our method may lead

to buying when the price is already high or lead to doing nothing at all because

it is never undervalued with respect to the specified threshold. Another special

case where our method fails to beat the benchmark is when there are the so-called

non-recurring earnings, i.e. extra incomes which occur only once and should not

be taken into account in the calculation of fundamental value. In this case, the

market knows that these extra earnings are temporary and do not give it credit, i.e.

the price does not go up according to this profit. Our method has not taken this

information into account and thus is fooled to believe that a stock is undervalued.

See Figure 4.6.

On the other hand, the results of our method equipped with medium-term

trading strategy show impressive superiority, 55 wins versus 25 loses to the bench-

mark. The key factor of success is its tracking ability of the medium-term noisy

effect zt by our filtering algorithm presented in Section 3.3. When the new base
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Figure 4.5 Example of a a Growth stock (Lynch and Rothchild, 2000) where its

earnings are consistently increasing. For a growth stock, if the threshold size is

non-optimal, we may buy and sell too early (and do not make trading frequently

enough) which results in less profit.

line PE∗(1+zt) is predicted accurately, undervalued and overvalued prices are also

accurately detected and so the probability of our profitable trading is increasing.

Nevertheless, with more frequent trading, commission fees increase substantially

and sometimes can significantly reduce our performance as shown in Figure 4.2.

Figure 4.7 and Figure 4.8 show an example of long-term trading strategy

and medium-term trading strategy of WMT, respectively. In Figure 4.7, The

red line denotes the profit of buy-and-hold strategy, while the blue line denotes

the profit of the long-term strategy based on our Bayesian inference results. We
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Figure 4.6 Example of Non-recurring earnings and Non-recurring profit. Since

our fundamental price calculation is naive and does not take into account the fact

that these earnings are temporary, it estimates a too-high fundamental price due

to this extra earnings.

use the stock of WMT as an example with 4 different thresholds 0.05, 0.1, 0.15

and 0.2. In Figure 4.8, the red line denotes the profit of buy-and-hold strategy,

while the blue line denotes the profit of the medium-term strategy based on our

Bayesian inference results. We use the stock of WMT as an example with 4

different thresholds 0.03, 0.05, 0.07 and 0.1. From these two figures, we can see

that our strategy can beat buy-and-hold strategy in most of the 2-year testing set.

For the stock WMT, in the 2-year testing set, the average profit percentage

of the long-term strategy are 6.35%, 8.99%, 13.92%, 0% for different thresholds, re-

spectively. The average profit percentage of the medium-term strategy are 5.5%,
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Experimental results using the proposed strategy (long version) compared to the benchmark

Figure 4.7 Experimental results using the long-term strategy comparing to the

benchmark buy-and-hold strategy.
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Experimental results using the proposed strategy (medium−term version) compared to the benchmark

Figure 4.8 Experimental results using the medium-term strategy comparing to

the benchmark buy-and-hold strategy.

5.24%, 6.9%, 0% for different thresholds, respectively. The average profit per-

centage of the buy-and-hold strategy is −15.41%. This shows that our trading

strategy for WMT consistently outperforms the buy-and-hold strategy on aver-

age, see Figure 4.9. In Figure 4.9, “bh” represents “the buy-and-hold strategy”,
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Figure 4.9 The average profit percentage of WMT, using the buy-and-hold strat-

egy, the medium-term strategy and the long-term strategy with different thresh-

olds.

“M” represents “the medium-term strategy” and “L” represents “the long-term

strategy”.
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4.3.2 Portfolio level experiments

In this subsection, to more realistically simulate a real-world individual

investor, we construct a portfolio of stocks and test its performance against the

benchmark. Here, we use a rule-of-thumb commonly employed in practice saying

that a good portfolio should consists of around 15 stocks (which contradicts the

mainstream theory (D. Domian, 2007)). For individual value investors who be-

lieve they can beat the market by analyzing each firm carefully, usually, they do

not feel comfortable to hold too many stocks (like 100 stocks recommended by

academic financial literature) because investors need time to update and analyze

the information of all their stock holdings.

To test the performance of a 15-stock portfolio of our method against the

benchmark, we employ the method of bootstrap resampling (Horowitz, 1997). For

each boostrap sample, a set of 15 stocks are selected randomly from Tables 4.3

and 4.4 to form an equally-weighted portfolio. We are interested in the difference

in performance between our method and the benchmark on each boostrap sample.

After all bootstrap samples are drawn, we can also estimate the average difference

in performance between the two methods. More precisely, let X be a random

variable representing difference in % profit between our model and the benchmark

(our % profit minus the benchmark’s % profit). By repeating the bootstrap resam-

pling 10,000 times, we are able to construct an empirical distribution of X. This

empirical distribution allows us to calculate E[X], the average % profit difference

between the two methods, and Pr(X ≥ 0), the probability that our method has

superior or equal performance to the benchmark. In addition to a portfolio con-

sisting of stocks from the two markets, we also test portfolio performance from

SET or US alone. Since the number of stocks considered in this work shown in

Tables 4.3 and 4.4 is 10, a 7-stock portfolio is constructed for these cases instead
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of a 15-stock portfolio. The results are shown in Table 4.5.

From Table 4.5, our method beats the benchmark on every case on average

(since E[X] > 0 for all cases). However, on a single-country portfolio, about half of

the cases have the confidence levels of superiority Pr(X ≥ 0) less than 80%. Most

of them have satisfactory confidence levels greater than 70% though. On the other

hand, on a two-country 15-stock portfolio, although E[X] is roughly an average

of the two single-country portfolios, Pr(X ≥ 0) is significantly increasing so that

most cases have the confidence levels of superiority greater than 80%, half of them

is greater than 90%. This statistically confirms the superiority of our method over

the benchmark on selected stocks. This phenomenon of confidence-level increasing

is due to the diversification effect on portfolio with a higher number of stocks.

Finally, we note that the empirical distribution of X is usually skewed and long-

tail as illustrated in Figure 4.10. In this non-simple probability distribution case,

bootstrap empirical-distribution estimation employed in the present thesis usually

provides more accurate result than traditional analytical asymptotic estimations

(Horowitz, 1997).
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Figure 4.10 A histogram illustrated common empirical distributions of X with

right-skewed and long-tail. In this specifical illustration, our method is equipped

with the long-term trading strategy with 10% threshold.



CHAPTER V

STOCK TRADING BASED ON THE

GORDON GROWTH MODEL

We formally reformulate the stock price dynamics model to reflect an impor-

tant variable which is equity risk premium. Equity risk premium is an important

input in corporate finance and valuation. We present stock trading using PE ratio

in Chapter III and Chapter IV. Some researchers use the earnings to price ratio

related to equity risk premium, see (Zarowin, 1990; Ball, 1992; Jaffe, Keim, and

Westerfield, 1989). However, it is not a good proxy for equity risk premium. In

this chapter, we focus on estimating equity risk premium on firm-level stocks based

on Gordon Growth model as explained in Section 2.1.

5.1 Background of fundamental investment based on the

Gordon Growth model

As explained in Section 2.1, the Gordon Growth model is described as

follows,

P ∗t =
Dt(1 + g)

rf + π − g
, (5.1)

whereP ∗t denotes the value of stock at the end of period t, Dt is the yearly dividend

in the tth year, t = 1, 2, ..., rf is risk free rate, g is a constant growth rate and π

is equity risk premium which is normally assumed to be a constant in a period.

For a risk free security, there are two kinds of security, one is short-term

government security which is called treasury bill. Another is long-term government
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security which is called treasury bonds. Some practitioners and a surprising num-

ber of academics and textbooks have a logic that there is no risk in the treasury

bill and they use the treasury bill rate as the risk free rate. Whereas, in corporate

finance and valuation, people use the long-term government bond rate as the risk

free rate not the short-term rate.

The equity risk premium reflects risk in an economy. When the equity risk

premium rises, investors charge a higher price for risk and will pay lower prices

for the stock. There are three broad approaches to estimating the equity risk

premium.

One is the survey approach. In this approach, a group of investors and

managers are investigated to get the equity risk premium. The challenge of this

approach is to find a subset of investors and managers who best represent the

stock market. For different subsets, the equity risk premium seems to be different.

(Kaustia, etc. 2011) surveyed 1465 investors and the estimated equity risk pre-

miums from male advisors are lower than those from female advisors. With the

development of stock market and technology, investors can do various surveys and

then give their estimations of equity risk premiums. However, these estimations

for equity risk premiums are not best reflections of good forecasts in the future.

(Bartholdy and Peare, 2005) present that the performance of Capital Asset Pricing

Model (CAPM) and three-factor model (3FM) is poor: they explain on average

0.03, 0.05 of differences in returns, respectively. They are even in the wrong direc-

tion. (Fisher and Statman, 2000) prove the negative relationship between investor

sentiment and stock returns.

Nevertheless, it is important that these estimations from experienced in-

vestors and managers can be considered partly or completely in our DBN model.

The second is historical approach which is the most widely used approach.
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In this approach, we estimate historical returns on stocks over long periods. The

equity risk premium is the difference between the historical return on stocks and

actual return on bonds (usually government security). To estimate historical re-

turns on stocks, there are two averaging approaches which are the arithmetic

average and the geometric average. The arithmetic average return is the mean of

the series of annual returns, whereas the geometric average return is calculated by

Eq.(5.2).

geometricaverage = (
valueT
value1

)1/T − 1 (5.2)

where value1 is the value at the start of the period, valueT is the value at the

end of the period. (Indro and Lee 1997) compare these two historical returns, and

find them both wanting. Many estimation services and academics argue that the

arithmetic average is the best estimate of the equity risk premium. However, in

corporate finance and valuation, more people use geometric average as the estimate

of the equity risk premium.

The consensus for estimating for future risk premiums is that historical

approach is the best way (Damodaran, 2016). However, since we need enough

long historical data in this approach, the approach is not feasible in emerging

markets. Using historical approach, if we use a shorter and more recent time

period on firm-level stocks to get more updated estimate, the cost is the great

standard error for the equity risk premium. If we use the entire data on firm-level

stocks, the equity risk premiums may have little relevance to today’s firm. In

fact, even with some modifications, the historical approach is a backward looking

premium.

The third is the implied approach, which is used to estimate a forward-

looking equity risk premium. We can illustrate the implied equity risk premium

with the dividend discount model (DDM) as explained in Section 2.1. The Gordon
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Growth model is simple version of DDM. (Claus and Thomas, 2001) argue that

the expected return estimates from fundamentals (the implied approach) are more

precise than returns which are from the survey approach. (Fama and French,

2002) support this conclusion with their new results. The goal is to support that

fundamentalists determine the equity risk premium by Bayesian analysis. We also

combine historical data with expert beliefs, such as the beliefs using the survey

approach. In the next section, we will formalize the stock price dynamics to

estimate the equity risk premium for the future based on Gordon Growth model.

5.2 Model the stock price dynamics

Due to behavioral volatility, the stock price deviates from its value. We

formalize the process and divide the temporary effects into two categories as ex-

plained in Chapter III. Based on Gordon Growth model and the phenomenaon

called mean reversion, we have

Pt =
Dt(1 + g)

rf + π − g
(1 + zt)(1 + εt) (5.3)

where

(a) Pt is the stock price and Dt is dividend at the end of period t;

(b) rf is risk free rate which is constant;

(c) π is the variable for equity risk premium which is assumed to be con-

stant;

(d) g is a dividend growth rate which is constant;

(e) zt is the variable for medium-term effect, which persist for a period and

we model zt as a Markov chain;

(f) εt is the variable for short-term effect and εt ∼ N(0, σ2).
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Mathematically,

ln(Pt/Dt) = ln
(1 + g)

rf + π − g
(1 + zt) + ln(1 + εt) (5.4)

Let yt = ln(Pt/Dt). Since εt is usually small, it can be approximated by ln(1+εt) ≈

εt. Then we then have the model

yt = ln
(1 + g)

rf + π − g
(1 + zt) + εt (5.5)

Note that the historical data for stock price and dividend are available from

stock market and thus yt is observable. π and zt are hidden variables. π is constant

and zt is time-varying. We assume that π and zt are discrete. We represent the

model using Bayesian network, see Figure 5.1.

Figure 5.1 The proposed model represented by the DBN. yt is an observable

quantity, while π and {zt} are unobservable.

The structure of the model based on Gordon Growth model is the same

to the structure based on PE ratio as explained in Chapter III. To derive math-

ematical equations for inference and parameter estimation in our model, we also

first define the probability distribution functions as in Section 3.2, which are the

transition probability distribution function, the emission probability distribution

function and the initial probability distribution function. For the transition prob-

ability distribution function (pdf), it is the same as in Section 3.2. Next, we
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define the emission probability distribution function by Eq.(5.6) and the initial

probability distribution function by Eq.(5.7) and Eq.(5.8) as follows.

For all m ∈ {1, ...,M}, n ∈ {1, ..., N},t ∈ {1, 2, ...}

p(yt|zt = am, π = bn) , φmn(yt). (5.6)

By Eq.(5.4), φmn(yt) = N (ln(
(1 + g)(1 + am)

rf + π − g
), σ2). The matrix Φt = (φmn)M×N

is the emission matrix at period t.

For each m ∈ {1, ...,M},

um , p(z1 = am), (5.7)

where 0 ≤ um ≤ 1 and
∑M

m=1 um = 1.

For each n ∈ {1, ..., N},

vn , p(π = bn), (5.8)

where 0 ≤ vn ≤ 1 and
∑N

n=1 vn = 1. The vectors u = (um)M and v = (vn)N are

the initial vectors.

Therefore, the set of model parameters is θ = {W,u,v, σ2} which is similar

to the set in Section 3.2. Derivation of Bayesian inference and parameter estima-

tion based on GGM are similar to the derivation based on PE ratio as explained

in Section 3.2.

5.3 Experiment based on the Gordon Growth model

In this section, we make stock trading simulations in US (NYSE and NAS-

DAQ) market which represent matured stock markets. We select firms from US

market which own at least 5 years historical trading data including stock price and

stock dividend. We collect daily 5-year (Mar 13, 2012 to Sep 30, 2016) historical

data for each firm consisting of 1147 data for stocks.
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The historical price and dividend are denoted by P1, ..., P1147 and

D1, ..., D1147, respectively. Stock prices are adjusted for stock splitting and stock

dividending. The yearly dividend is defined by the summation of the latest four

quarterly dividends. The first 3-year historical data (Mar 13, 2012 to Dec 31,2014)

P1, ..., P706 and D1, ..., D706 are used as a training data to learn parameters using

EM algorithm and get z1, ..., z706 by the method of smoothing. Here, we use gov-

ernment bond as our risk free rate. The variables g, the possible values a1, ..., aM

of zt and the possible values b1, ..., bN of π are set by experts.

Each trading simulation is conducted for each individual stock with the

remaining 2-year historical data (Jan 1, 2015 to Sep 30, 2016) P707, ..., P1147 and

D707, ..., D1147 to measure the performance of both our model and the benchmark.

There are two versions which are long-term strategy and medium-term strategy.

Details for strategies can be found in Section 4.1. The main idea for the trading

strategy is similar to the strategy in Section 4.1. The medium-term strategy is

emphasized here. The reason is that the results of our method based on PE ratio

equipped with medium-term strategy show impressive superiority. The strategy is

described in the following.

Let It and Nt be available cash and total shares at date t, respectively.

Initially, I706 = I and N706 = 0. The trading strategy can be defined now. For

each date t, exactly one of the following cases holds:

(i) Pt/Dt ≤ At(1 − Tr) and It > 0 (buy-low case) where Tr ∈ (0, 1) is

a threshold, At = 1+g
rf+π−g for the long-term strategy and At = 1+g

rf+π−g (1 + zt)

for the medium-term strategy. In this case, buy the stock with all cash, so that

Nt+1 = C.It/PT and It+1 = 0.

(ii) Pt/Dt ≥ At(1 +Tr) and It = 0 (sell-high case). In this case, sell all the

holding stock to get cash It+1 = Pt.Nt.C and Nt+1 = 0.
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(iii) If case (i) and case (ii) are not satisfied, do nothing. So, It+1 = It

and Nt+1 = Nt. At the end of a trading simulation t = 1147, the total profit is

I1147 + P1147.N1147 − I706, so that we can compare with the buy-and-hold strategy

profit.

We test 6 (more than 4) different thresholds for medium-term trading strat-

egy. The experimental results with respect to US stocks using medium-term strat-

egy are shown in Table 5.1.
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From Table 5.1, we can see that in the total of 24 trading simulations on

US stocks, our methods results in greater performance 13 times, while buy-and-

hold strategy results in better 6 times. The remaining 5 times are draws. It can

be seen that these 5 draws occur only in the cases that the threshold is 12% or

15%. These two thresholds are bigger than other thresholds. The threshold which

is not over 10% is better for medium-term strategy. Disregarding the draws, our

medium-term trading strategy beats the benchmark with 13 wins versus 6 loses.
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Experimental results using the proposed strategy (medium−term version) compared to the benchmark

Figure 5.2 Experimental results using the medium-term strategy comparing to

the benchmark buy-and-hold strategy.

We also use WMT as an example, see Figure 5.2. In Figure 5.2, the red

line denotes the profit of buy-and-hold strategy, while the blue line denotes the

profit of the proposed strategy based on our Bayesian inference results. We use

the stock of WMT as an example with 6 different thresholds 0.03, 0.05, 0.07, 0.09,

0.12, 0.15. We can see that we can beat the buy-and-hold strategy. Here we use

medium-term trading strategy with 6 different thresholds. From the figure, we

can see that the propose strategy (medium-term version) can beat buy-and-hold

strategy.



CHAPTER VI

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, we propose to apply the advanced Dynamic Bayesian Network

(DBN) methodology on firm-level stocks. Fundamentalists have clear financial

interpretations. In the stock market, there is a phenomenon called mean rever-

sion. Based on this phenomenon and fundamental value, we model stock price

dynamics based on PE ratio and the Gordon Growth model, respectively. In the

framework, we also combine the expert information with the historical data. We

use Bayesian network to simplify the calculation of our model and we have derived

both Bayesian inference (forward-backward algorithm) and parameter estimation

(EM-MAP) algorithms.

Based on the results of our model, a simple but practical strategy is in-

vented. Next, we do experiments based on PE ratio and Gordon Growth model,

respectively. We make stock trading simulations based on PE ratio on Thailand

stocks and US stocks. We collect 5 years daily data for 20 firms from various

industries. We consider two versions of our strategy: long-term strategy and

medium-term strategy. For each trading strategy, we choose 4 different thresh-

olds. For those two versions of trading strategy, our method always beats the

gold buy-and-hold strategy. The results with medium-term strategy show more

superiority. Experiments in both individual firm-level and portfolio level show

statistically significant superiority of our method.

Also, we make stock trading simulations based on Gordon Growth model
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on US stocks. Based on the results using PE ratio, we only use medium-term

trading strategy to do experiments. For medium-term trading strategy, we choose

6 different thresholds and our method also beats the gold buy-and-hold strategy.

The study can be used as a decision support system to investment experts,

or used to construct a trading strategy directly as illustrated in Chapter IV. This

model is most suitable for one majority category of practitioners, namely, value

investors in a security market (our model is not suitable for technical investors and

mainstream academic investors). However, there exists a limitation in our model.

If the earnings are negative, our model cannot work.

6.2 Future work

There are many possible future directions for the present work. The first

direction is to more formally reformulate the stock price dynamics model to reflect

other important economic and financial variables, e.g. interest rate, return of

equity. It is possible to make our DBN model more realistic by allowing time-

varying short-term noisy effect, the so-called dynamic volatility (Wu et al., 2013)

or allowing dynamic volume (Llorente et al., 2002). Another promising direction

in behavioral finance which can be taken into account in our model is the topic

of heterogeneous agents (Hommes, 2013). To improve our inference procedure,

approximate inference such as Variational Bayes (Murphy, 2012), or stochastic

inference such as Markov chain Monte Carlo (Bishop, 2006) are very promising

future directions.

We use experiments to show that our trading strategy based on our model

outperforms the buy-and-hold strategy. The core of the trading strategy is to

sell the overvalued security and buy the undervalued one. We have proposed the

strategy based on calculating the fundamental value of a security. Whereas pairs
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trading strategy is to use relative pricing to determine that a security is overvalued

or undervalued. Thus, those two strategies are well compared.
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% Note that this program is about the historical data. p=load(’cpall 5.txt’);

p=p(1160:-1:1);

p(1:80)=p(1:80)/2;

ee=load(’cpall earnings.txt’);

ee=ee(22:-1:1);

ee(1:5)=ee(1:5)/2;

for i=1:19

eee(i)=ee(i)+ee(i+1)+ee(i+2)+ee(i+3);

end

nn=[62 58 63 62 62 59 63 61 62 59 62 62 61 57 63 62 63 57 62];

T=sum(nn);

for i=1:19

nnn(i)=sum(nn(1:i));

end

e(1:nnn(1))=eee(1);

for i=2:19

e(nnn(i-1)+1:nnn(i))=eee(i);

end

e=e’;

for t=1:T

pe(t)=p(t)/e(t);

y(t)=log(p(t)/e(t));

end
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p=y’;

a=[-0.2 -0.1 0.1 0.2];

M=4;

b=[27:44];

N=18;

% Note that this program is the function which is to use EM algorithm to

estimate the parameter u.

function yu=emu(sigma,y,M,N,a,b,u,v,W,T)

for m=1:M

for n=1:N

Mean(m,n)=log(b(n)*(1+a(m)));

py(m,n)=normpdf(y(1),Mean(m,n),sigma);

al(m,n)=py(m,n)*u(m)*v(n);

end

end

ppy1=py;

AA1=al;

c(1)=sum(sum(al));

alpha1=al./c(1);

for t=2:T

for m=1:M

for n=1:N

py(m,n)=normpdf(y(t),Mean(m,n),sigma);

end

end

ppyt=py;
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A=py.*(W*alphat-1);

AAt=A;

c(t)=sum(sum(A));

alphat=A./c(t);

end

betaT-1=W’*ppyT./c(T);

for t=T-2:-1:1

betat=W’*(ppyt+1.*betat+1)./c(t+1);

end

for t=1:T-1

altat=alphat.*betat;

end

yu=sum(alta1’);

% Note that this program is the function which is to use EM algorithm to

estimate the parameter v.

function yv=emv(sigma,y,M,N,a,b,u,v,W,T)

for m=1:M

for n=1:N

Mean(m,n)=log(b(n)*(1+a(m)));

py(m,n)=normpdf(y(1),Mean(m,n),sigma);

al(m,n)=py(m,n).*u(m)*v(n);

end

end

ppy1=py;

c(1)=sum(sum(al));

alpha1=al./c(1);
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for t=2:T

for m=1:M

for n=1:N

Mean(m,n)=log(b(n)*(1+a(m)));

py(m,n)=normpdf(y(t),Mean(m,n),sigma);

end

end

ppyt=py;

A=py.*(W*alphat-1);

c(t)=sum(sum(A));

alphat=A./c(t);

end

betaT-1=W’*ppyT./c(T);

for t=T-2:-1:1

betat=W’*(ppyt+1.*betat+1)./c(t+1);

end

for t=1:T-1

altat=alphat.*betat;

end

k=zeros(1,N)+1;

yv=(sum(alta1)+(k-1))./(1+sum(k-1));

% Note that this program is the function which is to use EM algorithm to

estimate the parameter W.

function yW=emW(sigma,y,M,N,a,b,u,v,W,T)

for m=1:M

for n=1:N
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Mean(m,n)=log(b(n)*(1+a(m)));

py(m,n)=normpdf(y(1),Mean(m,n),sigma);

al(m,n)=py(m,n).*u(m)*v(n);

end

end

ppy1=py;

c(1)=sum(sum(al));

alpha1=al./c(1);

for t=2:T

for m=1:M

for n=1:N

Mean(m,n)=log(b(n)*(1+a(m)));

py(m,n)=normpdf(y(t),Mean(m,n),sigma);

end

end

ppyt=py;

A=py.*(W*alphat-1);

c(t)=sum(sum(A));

alphat=A./c(t);

end

betaT-1=W’*ppyT./c(T);

for t=T-2:-1:1

betat=W’*(ppyt+1.*betat+1)./c(t+1);

end

D1=zeros(M,M);

for t=2:T-1
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Dt=Dt-1+betat.*ppyt*alphat-1’./c(t);

end

DT=DT-1+ppyT*alphaT-1’./c(T);

W=W.*DT;

for m=1:M

for mm=1:M

if m==mm

PW(m,mm)=0.997;

else

PW(m,mm)=0.001;

end

end

end;

W=(W+1000*PW)./(repmat(sum(W),[M,1])+1000*ones(M,M));

yW=W;
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