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บทคดัย่อ 
 

งานวจิยัช้ินน้ี ไดพ้ฒันาแบบจ าลองทางคณิตศาสตร์แบบการแปรผนัส าหรับการลดสัญญาณรบกวน
แบบสเปกเคิลในภาพถ่ายคล่ืนเสียงความถ่ีสูง โดยมีสมมติฐานวา่สัญญาณรบกวนแบบสเปกเคิลมี
รูปแบบการแจกแจงแบบเรยลี์ แบบจ าลองทางคณิตศาสตร์ดงักล่าวน าไปสู่การหาค่านอ้ยสุดของ
ฟังกช์นันลับนปริภูมิของฟังกช์นัของการแปรผนัอยา่งมีขอบเขต ฟังกช์นันลัดงักล่าวประกอบดว้ย
พจน์ของพลงังานและพจน์ของความถูกตอ้งของขอ้มูล ซ่ึงไดม้าจากการแจกแจงแบบเรยลี์ งานวจิยั
ช้ินน้ีแสดงใหเ้ห็นวา่ค่านอ้ยสุดของฟังกช์นันลัมีอยูจ่ริง และมีอยูเ่พียงหน่ึงเดียวภายใตเ้ง่ือนไขเพิ่มเติม
บางประการ ผลเฉลยของสมการออยเลอร์-ลากรานจข์องแบบจ าลองทางคณิตศาสตร์ท่ีได ้ ถูก
ประมาณโดยวธีิเกรเดียนตเ์ดสเซนต ์

ในส่วนของการทวนสอบความถูกตอ้งของแบบจ าลอง ภาพท่ีมีลกัษณะเป็นแบบรูปและภาพ

ของเลนนาไดถู้กน ามาใชเ้ป็นตวัอยา่งการทดสอบ และผลการท าสอบไดท้ าการเปรียบเทียบ

สหสัมพนัธ์ระหวา่งภาพท่ีมีสัญญาณรบกวนกบัภาพตน้แบบ  และภาพท่ีถูกบรูณะโดยวธีิต่าง ๆ กบั

ภาพตน้แบบ ผลการศึกษาพบวา่แบบจ าลองท่ีไดส้ามารถลดสัญญาณรบกวนจากภาพท่ีใชท้  าการ

ทดสอบและวดิีทศัน์ของภาพถ่ายคล่ืนเสียงความถ่ีสูง นอกจากน้ีไดเ้ปรียบเทียบสมรรถนะของการลด

สัญญาณรบกวนโดยแบบจ าลองท่ีไดก้บัการลดสัญญาณรบกวนโดยแบบจ าลองทางคณิตศาสตร์แบบ

การแปรผนัอ่ืน ๆ อีกดว้ย 
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Abstract

A variational model for the reduction of speckle noise in ultrasound images is developed, which

assumes that speckle noise follows a Rayleigh distribution. The model leads to a functional on the

space of functions of bounded variation to be minimized. This functional consists of an energy term

and a data-fidelity term derived from the Rayleigh distribution. It is shown that minimizers of the

functional exist and, under some additional assumptions, are unique. The solution of the resulting

Euler-Lagrange equation is then approximated by the gradient descent method.

For the purpose of verification of the model, a pattern image as well as the Lenna image are used

as sample images, and the correlations between the noisy, respectively the reconstructed images

and the original ones are compared. It is found that the model can be used successfully to remove

noise from images and ultrasound videos. Finally, the performance of this new model is compared

with that of some of the variational denoising models described in the literature, by means of the

sample images.
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Chapter 1

Introduction

1.1 Background and Rationale

Ultrasound imaging is a widely used tool in the practice of medicine, as it provides low cost, non-

invasive and real-time images which may help in diagnosis and therapy. However, the raw images

are severely degraded by noise, mainly in the form of speckle noise, and substantial processing is

required to remove the noise. Thus, image denoising is an important topic in ultrasound imaging

which continues to attract broad research interest in the image processing community at large.

Since speckle noise is of high-frequency nature, low-pass filters may be employed for noise

reduction. By their nature, however, such filters tend to blur the images. Better outcomes can be

obtained with a class of denoising methods which involve the smoothing of an image by employing

local averages. These include the Lee filter [17], the Frost filter [8] and the Kuan filter [15]. More

recently, a variety of wavelet-based methods has been used to remove the high-frequency speckle

noise [6, 11, 21]. In [18], an enhanced image was obtained as the steady-state solution of a diffusion

equation, with the noisy image as its initial condition. Several publications, including [14] have

improved on this method, by adding a data-fidelity term to the equation.

In the variational model of [19], the image denoising problem was cast in the form of a convex

optimization problem: Find the minimizer u of the functional

E(u) =

∫

Ω

|∇u|+ J(u, f)

where f is the noisy image, u the desired denoised image, ∇u denotes the gradient, and J(u, f) is

a data-fidelity term. The particular fidelity term chosen in [19] is simply the mean-square norm,

J(u, f) =

∫

Ω

(u− f)2

which is a reasonable choice for additive Gaussian noise. By the method of calculus of variations,

the minimizer u can be found as the solution of an Euler-Lagrange equation. In [16] this fidelity

term was modified to account for additive noise of Poisson type.
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Most models in the literature represent speckle noise as multiplicative noise. The data fidelity

term chosen in the variational model of [1] corresponds to speckle noise appearing in small aperture

radio (SAR) radar imaging, involving an exponential distribution. In contrast, noise in ultrasound

imaging usually involves the Rayleigh distribution [3].

1.2 Research Objectives

The objective of this project was as follows:

1. Develop a mathematical model for image denoising using the variational method introduced

in [19], under the specific assumption that pixel brightness involves the Rayleigh distribution.

2. Derive the data-fidelity term which corresponds to this distribution and prove the existence

and uniqueness of minimizers.

3. Formulate and solve the corresponding Euler-Lagrange equation numerically, and show by

means of standard sample images that this method can be used for image denoising.

1.3 Scope and Limitations

There are a great variety of ultrasound imaging noise reduction techniques available in the literature,

most of which do not employ the variational method. Furthermore, even though it is commonly

assumed [3] that ultrasound image noise involves the Rayleigh distribution, it is nevertheless rea-

sonable to speculate that other distributions might be better suited for modeling such noise. This

research is limited to considering only the variational method and the Rayleigh distribution.

1.4 Benefits from the Research

While focused on ultrasound imaging, this project adds to the general knowledge of image en-

hancement techniques. It thus may be of use to the community of engineers and scientists who are

working with the implementation of noise reduction technologies.

1.5 Outline

This report is organized as follows. In Chapter 2 the model of ultrasound speckle noise used herein

and the various denoising models based on [19] are reviewed, and then the proposed variational

denoising model for ultrasound speckle noise is developed. Chapter 3 is used to discuss this model

mathematically, and to prove the existence and uniqueness of minimizers for this model in the space

of functions of bounded variation. Chapter 4 discusses the numerical solution of some samples

images, and compares them with the solutions obtained by some other data-fidelity terms.
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Chapter 2

Development of the Model

In this chapter we review the derivation of two models for ultrasound speckle noise, one which

yields the Rayleigh distribution, and another one which yields the Rician distribution. We then

review the variational models for noise reduction in images available in the literature. Finally, we

develop our variational model for speckle noise reduction in ultrasound images which employs the

Rayleigh probability distribution.

2.1 Speckle Noise

We begin with a brief review of the representation of signals by phasors.

2.1.1 Signals and Phasors

Addition of signals

Let

fk(t) = ak cos (ωt− θk)

(ω = 2πFo, 0 ≤ θk < 2π, ak ≥ 0, k = 1, . . . , N) be a finite collection of signals of identical frequency

Fo with phase shifts θk each. By a trigonometric identity each signal can be expressed as a linear

combination,

fk(t) = ak [ cos θk cos (ωt) + sin θk sin (ωt) ] .

Thus, the sum of the N signals is

N∑

k=1

fk(t) =

[
N∑

k=1

ak cos θk

]

cos (ωt) +

[
N∑

k=1

ak sin θk

]

sin (ωt). (2.1)

This linear combination is easily expressed as a single signal,

a cos (ωt− θ), (2.2)
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that is, as
N∑

k=1

fk(t) = a [ cos θ cos (ωt) + sin θ sin (ωt) ] . (2.3)

In fact, comparing (2.1) with (2.3) we obtain

a cos θ =
N∑

k=1

ak cos θk (2.4)

a sin θ =

N∑

k=1

ak sin θk. (2.5)

Squaring and adding both equations gives

a2 =

N∑

k=1

a2k + 2

N∑

i=1

∑

k<i

aiak [cos θi cos θk + sin θi sin θk ]

=

N∑

k=1

a2k + 2

N∑

i=1

∑

k<i

aiak cos (θk − θi)

so that

a =

√
√
√
√

N∑

k=1

a2k + 2
N∑

i=1

∑

k<i

aiak cos (θk − θi).

On the other hand, dividing the two equations yields

tan θ =

∑N
k=1 ak sin θk

∑N
k=1 ak cos θk

which, together with the signs of the right-hand sides of (2.4) and (2.5), uniquely determines the

value of θ.

The exponential representation

It is standard practice to express signals of form (2.2) in complex exponential form: Given a fixed

frequency Fo, let us set

X =
{
f(t) = a cos (ωt− θ) : a ≥ 0, 0 ≤ θ < 2π

}

=
{
f(t) = a cos (ωt− θ) : a ∈ R, 0 ≤ θ < π

}

(ω = 2πFo), the vector space of all periodic signals of frequency Fo, and

Y =
{
g(t) = ce−jωt : c ∈ C

}
,

the space of all complex signals of frequency Fo. Clearly, the map

Φ : f(t) = a cos (ωt− θ) 7→ g(t) = ae−j(ωt−θ) (a ≥ 0, 0 ≤ θ < 2π)

is a bijection of X onto Y . In fact, surjectivity follows from the polar representation of every

complex number c, c = aejθ where a ≥ 0 and 0 ≤ θ < 2π. On the other hand, injectivity follows

from the fact that f(t) = Re(g(t)).
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We observe that Φ is linear: Homogeneity of Φ is obvious. On the other hand, applying (2.1)–

(2.5) with N = 2 we obtain

Φ
(
f1(t) + f2(t)

)
= Φ

(
a cos (ωt− θ)

)
= aejθe−jωt

= [ a cos θ + ja sin θ ] e−jωt

= [ (a1 cos θ1 + a2 cos θ2) + j(a1 sin θ1 + a2 sin θ2) ] e
−jωt

= a1 [ cos θ1 + j sin θ1 ] e
−jωt + a2 [ cos θ2 + j sin θ2 ] e

−jωt

= a1e
jθ1e−jωt + a2e

jθ2e−jωt = Φ( f1(t) ) + Φ ( f2(t) )

which shows that Φ is additive.

Since all signals f(t) ∈ X have the same frequency, the factor aejθ (determined by the amplitude

a and the phase shift θ) uniquely determines f(t); it is called a phasor. By linearity of Φ, forming

linear combinations of signals in X corresponds to forming linear combinations of their phasors.

Thus, one may work with phasors instead of the signals themselves.

2.1.2 Models for Ultrasound Images and Speckle Noise

Let us first give a brief and simplified overview over the principles of ultrasound imaging. A

transmitter (called a transducer as it converts an electric wave to a sound wave) emits a short

pulse of a unidirectional ultrasound wave. Whenever the pulse encounters a change of acoustic

impedance due to a boundary (also called an interface) between two objects, a small fraction of the

pulse is reflected back to the transducer, which now acts as a detector and converts the sound wave

back to an electric wave. (which is also called a transducer as it converts sound waves to electric

waves). A single emitted pulse may result in several returning pulses, depending on the number

of interfaces along its path. The time-delay between the emission of a pulse and the arrival of a

reflection corresponds to the distance of the corresponding interface from the transducer, while the

amplitude of each reflected pulse corresponds to the change of acoustic impedance at that interface.

One distinguishes between two type of reflections. Specular reflection occurs at interfaces which

are smooth and significantly larger than the wavelength of the ultrasound. Here, a fraction of the

wave is reflected back at an angle opposite to the incident angle (with respect to the normal to the

interface). Thus, if the incident angle is sufficiently small, then the reflected wave will appear at the

detector. Nonspecular reflection occurs when the interface is rough and/or has diameter smaller

than the wavelength. Here the wave is reflected into all directions, and thus only a small fraction of

the reflected wave will arrive at the detector, resulting in low amplitudes. It has been reported that

nonspecular reflection carries more weight in medical ultrasound imaging than specular reflection

[12].

In order to be able to distinguish between different returning pulses, the line along which the

signal travels is modeled to be split into small resolution cells, which must be considered long
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enough so that the returning pulses from two adjacent cells don’t overlap, and which have the

cross-sectional width and height of the ultrasound beam. The result of the ultrasound scan can

now be represented graphically in several ways, the most common of which is a B-scan which will

be used here. In a B-scan the pulse returning from each resolution cell is represented as a pixel in

a one-dimensional image whose brightness is determined by the amplitude of the return pulse.

Based on these concepts, we now review the derivation of two models for noise in ultrasound

images. While there are a variety of additional phenomena which may affect the signal at the

detector and lead to noise, such as refraction, diffraction, attenuation by absorption and beam-

widening, we will only consider the above two types of reflections in the construction of the models.

Model I: Random reflections leading to the Rayleigh distribution

This is the model presented in [3] and assumes that reflections are non specular. Consider one

resolution cell of the ultrasound scanner. Since the dimensions of this cell are assumed to be by

orders of magnitude larger than the reflecting interfaces, in this model we think of the cell as

composed of a very large number of very small scatterers of equal size. Since different scatterers

have different distances from the transmitter/detector, the reflections from the various scatterers

will then arrive back at the detector with different phase shifts. Thus, the reflections are best

expressed as phasors, in the form ake
jθk , k = 1, . . . , N .

Now suppose a signal of amplitude a is emitted from the transmitter, and reaches a resolution

cell. Since the energy of this signal is proportional to a2 (to be precise, the energy over one period

T is

E =

∫ T

0

∣
∣f(t)

∣
∣
2
dt = ca2 where c =

∫ T

0

cos2 (ωt) dt =
T

2

with T = 1/Fo), then each scatterer will receive a signal of energy ca2/N , that is of amplitude

a/
√
N . The scatterer now reflects a fraction of this signal in form of a phasor

ak√
N

ejθk ,

where the ratio ak/a signifies what fraction of the incoming wave, in terms of amplitude, is being

reflected by the scatterer. Furthermore, the angle θk denotes the phase shift with which the reflected

wave arrives at the detector. The return signals from all the scatterers will thus combine to a phasor

ãejθ =
1√
N

N∑

k=1

ake
jθk (2.6)

at the detector.

Since reflection is nonspecular and caused by rough surfaces, it is reasonable to assume that

the values of ak and θk at each cell are actually random variables, which we denote by Ak and Θk,

respectively. Hence, ã and θ are also assumed to be random variables A and Θ, respectively, so
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that (2.6) becomes

AejΘ =
1√
N

N∑

k=1

Ake
jΘk . (2.7)

Following [9], we make the following assumptions:

1. The amplitude Ak and phase Θk of the k-th phasor are independent of each other, and

independent of the amplitudes Ai and Θi of the other phasors. (That is, A1, . . . , An and

Θ1, . . . ,Θn are all independent random variables.)

2. The amplitudes Ak are all identically distributed with mean µ and second moment ρ. This

is a reasonable assumption, because all scatterers in the resolution cell are assumed to be of

equal size.

3. The phases Θk are uniformly distributed in [0, 2π). This again is a reasonable assumption as

the scatterers in the resolution cell are assumed to be uniformly distributed over the cell.

Let us split the phasor of the return signal into real and imaginary parts,

r := Re(AejΘ) =
1√
N

N∑

k=1

Ak cosΘk

i := ℑ(AejΘ) = 1√
N

N∑

k=1

Ak sinΘk.

It is shown in [9] that, by means of the Central Limit Theorem, r and i will approach independent

Gaussian random variables with means zero and common second moment ρ/2 as N → ∞. We may

thus assume that the phasor of reflected signal is a random variable of the form

AejΘ = [A cosΘ + jA sinΘ] = [r+ j i]

where r and i are independent N (0, σ2) random variables, that is, they have density functions

pr(x) =
1√
2πσ

e−x2/2σ2

and pi(y) =
1√
2πσ

e−y2/2σ2

,

respectively, with σ2 = ρ/2. Since the two random variables are independent, their joint distribution

is the product of their individual distributions,

pr,i(x, y) = pr(x)pi(y) =
1

2πσ2
e−(x2+y2)/2σ2

.

Now as signals are expressed as phasors, we switch back to polar coordinates, (x, y) = x+jy = rejϕ

and obtain the probability density function of the phasor AejΘ,

pA,Θ(r, ϕ) =
r

2πσ2
e−r2/2σ2

(r ≥ 0, 0 ≤ ϕ < 2π).

That is, the probability that a1 ≤ A ≤ a2 and θ1 ≤ Θ ≤ θ2 is
∫ a2

a1

∫ θ2

θ1

r

2πσ2
e−r2/2σ2

dϕdr.
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Now the detector measures the amplitude A only, which has the marginal probability density

pA(r) =

∫ 2π

0

pA,Θ(r, ϕ) dϕ =
r

σ2
e−r2/2σ2

(r ≥ 0),

Note that pA(r) = 0 for r < 0, so that

pA(r) =
r

σ2
e−r2/2σ2

1[0,∞)(r),

which is the Rayleigh density function. (Random variables having the Rayleigh distribution will be

denoted asR(σ) random variables.) Since the brightness of a pixel in a B-scan image is proportional

to the amplitude A, we may think of

P (A ≤ s) =

∫ s

0

r

σ2
e−r2/2σ2

dr

as the probability that a given pixel will have brightness ≤ s, for all s ≥ 0.

It is well known and can easily be established that pA(r) has mean σ
√

π/2 and second moment

2σ2. Thus, variance is proportional to the square of the mean.

Remark 2.2. Let u denote the ’real’ return signal amplitude, assuming the various phasors would

all be deterministic and identical. The power of this signal would then be cu2 for some constant c.

Thus in the probabilistic model, the mean powers of the reflections from all small scatterers should

combine to this value, that is,

cu2 =

N∑

k=1

E

[

c

(
Ak√
N

)2
]

.

Hence,

u2 =
1

N

N∑

k=1

E
[
A2

k

]
=

1

N

N∑

k=1

ρ = ρ,

so that

σ =

√
ρ

2
=

u√
2
.

We emphasize that in this model, noise essentially arises from the fact that the signals returning

from the various scatterers within a resolution cell have different phases.

Model II: One preferred reflection leading to the Rician distribution

This model mixes specular with nonspecular reflections. On assumes that within a resolution cell

there is first of all one well defined main scatterer of specular type, but that there is also a large

number of very small nonspecular scatterers which contribute to noise as in the previous model.

The signal from the main scatterer is deterministic, and for simplicity we may assume that it has

zero phase and amplitude ao,

ao cosωt.
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On the other hand, the signals from the remaining scatterers are probabilistic, following the as-

sumptions of the previous model. Thus, the sum of all returning signals results in a random signal

A cos (ωt−Θ) = ao cos (ωt) +
1√
N

N∑

k=1

Ak cos (ωt−Θk),

or expressed by phasors,

AejΘ = ao +
1√
N

N∑

k=1

Ake
jΘk .

The real and imaginary parts are

r := Re(AejΘ) = ao +
1√
N

N∑

k=1

Ak cosΘk

i := ℑ(AejΘ) = 1√
N

N∑

k=1

Ak sinΘk.

As N → ∞, the two sums over k become again independent and normally distributed random

variables, and because of the deterministic term ao, r becomes N (ao, σ
2), while i remains N (0, σ2).

That is, their probability density functions are

pr(x) =
1√
2πσ

e−(x−ao)
2/2σ2

and pi(y) =
1√
2πσ

e−y2/2σ2

.

Thus, the joint probability function becomes

pr,j(x, y) = pr(x)pi(y) =
1

2πσ2
e−[(x−ao)

2+y2]/2σ2

.

Changing to polar coordinates,

pA,Θ(r, ϕ) =
r

2πσ2
e−(r2+a2

o)/2σ
2

eaor cosϕ/σ2

.

Hence the amplitude A of the return signal has the probability density function

pA(r) =

∫ 2π

0

pA,Θ(r, ϕ) dϕ =
r

2πσ2
e−(r2+a2

o)/2σ
2

∫ 2π

0

e(aor/σ
2) cosϕ dϕ

for r ≥ 0, while pA(r) = 0 for r < 0. We here recall the modified Bessel functions of the first kind,

of zero and first orders,

I0(s) =
1

π

∫ π

0

es cosϕ dϕ and I1(s) =
1

π

∫ π

0

es cosϕ cosϕdϕ

Thus,

pA(r) =
r

σ2
e−(a2

o+r2)/2σ2

I0

(aor

σ2

)

1[0,∞)(r).

This is called a Rician density function. Its mean is known to be
√

π

2
σe−k

[
(1 + 2k) I0(k) + 2kI1(k)

]

where k = a2o/4σ
2, and its second moment is

2σ2 + a2o.
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2.3 Variational Noise Reduction Models

2.3.1 Calculus of Variations

Calculus of Variations is a field of mathematics that deals with functionals. Such functionals may

be formed as integrals involving an unknown function together with some of its derivatives. The

interest is then in finding extremal functions which make the functional attain a maximum or a

minimum value. There are numerous monographs establishing the existence and characterization

of extrema available in the literature. In many cases, extremal functions or curves can be expressed

as solutions to differential equations, and we will only review the most classical of these results:

Theorem 1. Let Ω ⊂ Rn be a bounded, open set with Lipschitz boundary1 ∂Ω. Let F = F (x, u, ξ) ∈
C2(Ω× R× Rn) and consider the functional

I(u) =

∫

Ω

F (x, u(x),∇u(x)) dx, u ∈ C1(Ω), u = uo on ∂Ω.

If û ∈ C2(Ω) is a minimizer of I, i.e. I(û) ≤ I(u) ∀u ∈ C1(Ω), then û satisfies the Euler Lagrange

equation
n∑

i=1

∂

∂xi
[Fξi(x, u,∇u)]− Fu(x, u,∇u) = 0, x ∈ Ω. (2.8)

Conversely, if (u, ξ) 7→ F (x, u, ξ) is convex for every x ∈ Ω, and if û ∈ C2(Ω) is a solution of (2.8),

then it is a minimizer of I.

This theorem is available for larger classes of functions, for example for functions u in the

Sobolev space W 1,p(Ω); however, minimizers û which are not twice differentiable will then be only

weak solutions to the Euler-Lagrange equation, see Theorem 3.11 in [5].

2.3.2 Review of Existing Variational Models

Throughout, let Ω denote an open, bounded subset of the plane representing the image area. The

function uo(x, y), (x, y) ∈ Ω, will represent the original, noiseless image. The noise is represented

by the function n(x, y), the noisy image by f(x, y), and the desired denoised image by u(x, y). The

Euclidean norm is denoted by | · |.
One essentially distinguishes between two types of noise: Additive noise

f(x, y) = uo(x, y) + n(x, y)

is used, for example, to model white noise. Multiplicative noise

f(x, y) = uo(x, y)n(x, y)

is used when the image noise is proportional to the amplitude of the signal.

The following variational approaches for image noise reduction have appeared in the literature.

1The definition of Lipschitz boundary is given in Chapter 3.
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1. The ROF model

In 1992, Rudin, Osher, and Fatemi (ROF) [19] presented this mathematical denoising model

which is based on the additive noise model, employing the functional

F (u) = β

∫

Ω

|∇u|+
∫

Ω

(u− f)2.

Here, as throughout, all integrals are with regards to the Lebesgue measure. The functional

F to be minimized thus consists of two components: The first component is to minimize the

average gradient within the denoised image, while the second term is a data-fidelity term

used to minimize the mean square difference between the noisy and the denoised image. The

coefficient β assigns weights to each of the two components.

By calculus of variations, the solution of this problem is obtained when its Euler-Lagrange

differential equation is satisfied,

∂

∂x




ux

√

u2
x + u2

y



+
∂

∂y




uy

√

u2
x + u2

y



+
2

β
(f − u) = 0,

where
∂u

∂N
= 0 on ∂Ω and N is the vector normal to the boundary ∂Ω. This equation may

be written in the form

div

( ∇u

|∇u|

)

+
2

β
(f − u) = 0.

2. A variational approach for Poisson noise – The Le Model

Le, Chatrand and Asaki [16] modified the ROF model to present a data-fidelity term which

is suitable for Poisson noise. The model is to minimize the functional

G(u) = β

∫

Ω

|∇u|+
∫

Ω

(u− f lnu).

The Euler-Lagrange differential equation for solving this problem is

div

( ∇u

|∇u|

)

+
1

βu
(f − u) = 0,

where
∂u

∂N
= 0 on ∂Ω.

3. A variational approach to remove multiplicative SAR speckle noise – The AA

model

Aubert and Aujol [1] focus on the problem of multiplicative noise removal for SAR radar

images. The noise is modeled by an exponential distribution, which results in the functional

H(u) = β

∫

Ω

|∇u|+
∫

Ω

(lnu+
f

u
)
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to be minimized by solving the Euler-Lagrange differential equation

div

( ∇u

|∇u|

)

+
1

βu2
(f − u) = 0

where
∂u

∂N
= 0 on ∂Ω.

2.3.3 The Proposed Model

We are now ready to present our proposed model for the removal of ultrasound speckle noise. We

will employ Model I of speckle noise: the brightness or intensity of a pixel in the noisy ultrasound

image is a Rayleigh random variable and thus has density function

pσ(r) =
r

σ2
e−

r2

2σ2 (r ≥ 0), (2.9)

where σ is a parameter which may vary from pixel to pixel. The variance of pσ is a measure of

noise, and since the variance is proportional to the square of the mean, noise in this model may be

considered to be of multiplicative type.

The model for noise removal is being developed in a way which is similar to the AA model [1].

The difference is that the AA model assumes that the signal receiver measures the energy of the

signal, which results in the noisy pixel intensity to possess an exponential distribution. In our model

on the other hand, as we are dealing with ultrasound images, the receiver of the ultrasound signal

measures the signal’s amplitude, which results in the noisy pixel intensity to possess a Rayleigh

distribution.

To begin with, we assume that the image takes the form of a square of size (N − 1)× (N − 1).

This is not really a restriction, as any image of square shape can be scaled to this size. The values

uo(x, y), f(x, y) and u(x, y) represent the intensities of the unknown noiseless image, the given noisy

image and the desired denoised image, respectively, at location (x, y), and may also be denoted by

subscripts, for example fx,y instead of f(x, y). Thus, these functions all take on positive values

only on Ω. The noiseless image is unknown, the noisy image is being measured, while the denoised

image u to be found should be a good approximation to uo.

Throughout, we will switch freely between this continuous and a discrete model: In the discrete

model, the image is pixellated as

Ω = {(x, y) : x, y = 0, . . . , N − 1},

so that uo(x, y), f(x, y) and u(x, y) represent the image intensities at pixel (x, y). For a large

number of pixels of small size, after rescaling Ω to its original size, the discrete model can be

considered a good approximation to the continuous model.

We let X denote the space of all possible images. Thus, elements of X are functions u : Ω →
(0,∞). This is a probability space with unknown probability measure. From the probabilistic point
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of view, the noiseless image and the noisy image are random variables U and F on X , respectively,

and we are going to find an image u to which U is the most likely, given the observed noisy image

f . That is, we must find u which maximizes

P (U = u|F = f).

This image u will then be considered as the denoised image. The distributions of U and F will be

discussed below. It turns out that the distribution of F is known at the pixel level only, thus we

now proceed to consider each pixel individually.

Given any random variable V on X , Vx,y will denote the corresponding random variable of pixel

intensity at pixel (x, y). Note that Vx,y is a random variable on R. Here we make an important

assumption: We assume that the image intensities Ux,y (and similarly the image intensities Fx,y)

at different pixels are independent. Thus,

P (U = u|F = f) =
∏

(x,y)∈Ω

P (Ux,y = ux,y|Fx,y = fx,y),

where ux,y = u(x, y) and fx,y = f(x, y). Bayes’ Rule says that

P (Ux,y = ux,y|Fx,y = fx,y) =
P (Fx,y = fx,y|Ux,y = ux,y)P (Ux,y = ux,y)

P (Fx,y = fx,y)
,

hence we need to maximize
∏

(x,y)∈Ω

P (Fx,y = fx,y|Ux,y = ux,y)P (Ux,y = ux,y)

∏

(x,y)∈Ω

P (Fx,y = fx,y)
.

Since the denominator does not depend on u, it suffices to maximize

∏

(x,y)∈Ω

P (Fx,y = fx,y|Ux,y = ux,y)P (Ux,y = ux,y) . (2.10)

Now by assumption, each Fx,y is a Rayleigh random variable with probability density

P (Fx,y = fx,y) = pσ(fx,y) =
fx,y
σ2

e−
[fx,y ]2

2σ2

where as outlined in Remark 2.2, σ = σ(x, y) = u(x, y)/
√
2 = ux,y/

√
2. Then

P (Fx,y = fx,y|Ux,y = ux,y) = pσ(fx,y) =
2fx,y

[ux,y]
2 e

−
[

fx,y
ux,y

]

2

.

Expression (2.10) becomes



∏

(x,y)∈Ω

2fx,y

[ux,y]
2 e

−
[

fx,y
ux,y

]

2








∏

(x,y)∈Ω

P (Ux,y = ux,y)





that is,



∏

(x,y)∈Ω

2fx,y

[ux,y]
2 e

−
[

fx,y
ux,y

]

2



P (U = u). (2.11)
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Since the function ln(x) is increasing, maximizing (2.11) is equivalent to minimizing

− ln
[
P (U = u)

]
+

∑

(x,y)∈Ω

([
fx,y
ux,y

]2

+ 2 lnux,y − ln fx,y − ln 2

)

.

We regard this as a discrete approximation of the functional

E(u) = − lnΦ(u) +

∫

Ω

(
f2

u2
+ 2 lnu− ln f − ln 2

)

,

where Φ(u) is the density function of the random variable U .

Now Green [10] has shown that for the model of a variational approach, this density function is

Φ(u) = e−β
∫

Ω
|∇u|

where β is a positive parameter. Hence, functional E(u) becomes

E(u) = β

∫

Ω

|∇u|+
∫

Ω

(
f2

u2
+ 2 lnu− ln f − ln 2

)

.

Since the last two terms independent of u, it suffices to minimize the functional

E(u) =

∫

Ω

|∇u|+ 1

β

∫

Ω

(

2 lnu+
f2

u2

)

. (2.12)

The formal Euler-Lagrange equation for minimizing E(u) is then

div

( ∇u

|∇u|

)

+
2

βu3

(
f2 − u2

)
= 0. (2.13)

Note that Theorem 1 does not apply here. In fact, in the notation of that theorem,

F (x, u, ξ) = |ξ|+ 1

β

(

2 lnu+
f(x)2

u2

)

,

which is defined for u > 0 only. If we change variables, u = ez in (2.12), then we obtain

F (x, z, ξ) = ez|ξ|+ 1

β

(
2z + f(x)2e−2z

)
,

which is defined for all z ∈ R. However, both functions F are still not differentiable at ξ = 0, and

the validity of the Euler-Lagrange equation must be justified differently. This problem is discussed

in the next chapter.
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Chapter 3

Mathematical Treatment of the Model

Consider the problem of existence and uniqueness of solutions of our model: find a minimizer of

the functional (2.12),

E(u) =

∫

Ω

|∇u|
︸ ︷︷ ︸

φ(u)

+λ

∫

Ω

[

2 lnu+
f2

u2

]

︸ ︷︷ ︸

J(u)

(3.1)

where we have set λ = β−1. We will shortly see that the set BV (Ω) of functions of bounded

variation is the largest class of functions for which the functional φ can be defined, and simple

compactness arguments are available for this class which yield the existence of minimizers. Unique-

ness of minimizers will only be obtained after mildly restricting the class of functions u allowed, to

guarantee that the functional J is convex. Our exposition parallels that of [1], but with a different

data-fidelity term J(u). First we review the concepts and properties to be used, most of which are

assembled from [7].

3.1 Preliminaries

Throughout, Ω will denote an open and bounded subset of Rn. Unless specified otherwise, integrals

will be with respect to the Lebesgue measure µ on Rn.

1. Let C1
c (Ω,R

n) denote the set of continuously differentiable vector valued functions which are

defined on Ω and have compact support. This is a normed linear space in the norm

‖ϕ‖∞ = max
ω∈Ω

|ϕ(ω)|

where |x| denotes the Euclidean norm in Rn, |x| = (x2
1 + . . . x2

n)
1/2 for x = (x1, . . . , xn).

2. A function u ∈ L1(Ω) is said to be of bounded variation in Ω, if

‖Du‖(Ω) = sup

{∫

Ω

u divϕ : ϕ ∈ C1
c (Ω,R

n), ‖ϕ‖∞ ≤ 1

}

< ∞.
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‖Du‖(Ω) is called the total variation of u on Ω. We set

BV (Ω) = {u ∈ L1(Ω) : ‖Du‖(Ω) < ∞}.

Clearly, BV (Ω) is a linear subspace of L1(Ω), and ‖Du‖(Ω) is a seminorm on BV (Ω). Con-

sequently,

‖u‖BV (Ω) := ‖Du‖(Ω) + ‖u‖L1(Ω)

is a norm, and it turns out that BV (Ω) is a Banach space in this latter norm.

3. Let u ∈ L1(Ω) ∩ C1(Ω). Since the functions ϕ ∈ C1
c (Ω,R

n) are compactly supported, one

may integrate by parts to obtain

∫

Ω

u divϕ = −
∫

Ω

ϕ · ∇u ≤
∣
∣
∣
∣

∫

Ω

ϕ · ∇u

∣
∣
∣
∣
≤
∫

Ω

|ϕ · ∇u| ≤
∫

Ω

|ϕ| |∇u| < ∞,

which shows that u ∈ BV (Ω) and ‖Du‖(Ω) ≤
∫

Ω
|∇u|.

Conversely, set

g(ω) =







∇u(ω)

|∇u(ω)| if ∇u(ω) 6= 0

0 if ∇u(ω) = 0.

By density of C1
c (Ω,R) in L2(Ω), there exists a sequence {ϕk} in C1

c (Ω,R
n) with |ϕk| ≤ 1

converging to g in the norm of L2(Ω,Rn). Hence

∫

Ω

|∇u| =
∫

Ω

g · ∇u =

∫

Ω

( lim
k→∞

ϕk) · ∇u = lim
k→∞

∫

Ω

ϕk · ∇u = − lim
k→∞

∫

Ω

(−ϕk) · ∇u

≤ sup

{

−
∫

Ω

ϕ · u : ϕ ∈ C1
c (Ω,R

n), ‖ϕ‖∞ ≤ 1

}

= ‖Du‖(Ω).

We thus have shown that L1(Ω) ∩ C1(Ω) ⊂ BV (Ω) ⊂ L1(Ω), and that

∫

Ω

|∇u| = ‖Du‖(Ω) ∀u ∈ L1(Ω) ∩C1(Ω).

This allows us to extend the functional φ in (3.1) to all of BV (Ω) by setting

φ(u) = ‖Du‖(Ω) ∀u ∈ BV (Ω). (3.2)

4. Some properties of functions of bounded variation:

Theorem 2. (see [7]). Let u ∈ BV (Ω). Then there exist a finite Radon measure ν on Ω and

a measurable function σ : Ω → R
n satisfying

(a) |σ(ω)| = 1 a.e. ω ∈ Ω,

(b)

∫

Ω

u divϕ = −
∫

Ω

ϕ · σ dν for all ϕ ∈ C1
c (Ω,R

n).

 

 

 

 

 

 

 

 



17

Theorem 3. (see [7]). Let {uk} ⊂ BV (Ω) and suppose that uk → u in the norm of L1(Ω).

Then

‖Du‖(Ω) ≤ lim inf
k

‖Duk‖(Ω).

5. The next theorem requires that the boundary ∂Ω of Ω be sufficiently regular. A frequently

used condition is that ∂Ω be Lipschitz. Loosely speaking, this means that locally, ∂Ω is the

graph of a Lipschitz continuous function.

To be precise, we say that Ω has Lipschitz boundary, if for every ω ∈ ∂Ω there exist ǫ > 0

and a Lipschitz function H : Rn−1 → R so that – after rotating and relabeling the coordinate

axes if necessary –

Ω ∩Q(ω, ǫ) = { y ∈ R
n : H(y1, . . . , yn−1) < yn } ∩Q(ω, ǫ)

where Q(ω, ǫ) is the open n-cube {y ∈ R
n : |yj − ωj | < ǫ, j = 1, . . . , n}. Recall here that H

is Lipschitz if there exists a constant K > 0 so that

|H(x)−H(y)| ≤ K|x− y| ∀x, y ∈ R
n−1.

The next theorem says that subsets of BV (Ω) which take the form of closed, bounded balls

under ‖ · ‖BV (Ω) are even compact in the L1-norm. It will be used to prove the existence of

minimizers.

Theorem 4. Let Ω be an open bounded subset of Rn with Lipschitz boundary. Let {uk} be a

sequence in BV (Ω) satisfying

‖uk‖BV (Ω) ≤ M, ∀k.

Then there exist a subsequence {ukj
} and a function u ∈ BV (Ω) such that

ukj
→ u

in the norm of L1(Ω).

6. Convexity arguments will be employed for proving the uniqueness of minimizers.

Recall that a subset S of a vector space X is said to be convex if y, z ∈ S implies that the

line segment

L = {αy + (1− α)z : 0 ≤ α ≤ 1 }

is a subset of S.

Next let S be a convex set. A real functional E on S is said to be convex if for every y, z ∈ S,

E
(
αy + (1 − α)z

)
≤ αE(y) + (1− α)E(z),
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where 0 ≤ α ≤ 1. In addition, if for every y, z ∈ S, y 6= z,

E
(
αy + (1 − α)z

)
< αE(y) + (1− α)E(z),

where 0 < α < 1, then E is said to be a strictly convex.

Theorem 5. Let E be a real valued functional on a set S. Let Q ⊆ S be convex, and suppose,

there exists a minimizer û ∈ Q of E, that is,

E(û) ≤ E(u) ∀u ∈ S.

If E is strictly convex, then û is the unique minimizer of E in Q.

Proof. Suppose to the contrary that there exists another minimizer ũ of E in Q, that is,

ũ ∈ Q, ũ 6= û, and

E(ũ) ≤ E(u) ∀u ∈ S.

Then in particular,

E(ũ) = E(û) =: b.

Set

v =
1

2
û+

1

2
ũ ∈ Q.

As û 6= ũ, we have by strict convexity of E on Q that

E(v) <
1

2
E(û) +

1

2
E(ũ) = b

contradicting the fact that û minimizes E.

Proposition 6. If F : (a, b) → R is continuously twice differentiable and F ′′(u) > 0, for

every u ∈ (a, b) then, F is strictly convex.

Proof. This is a standard result from calculus, see [20] for example.

3.2 Existence and Uniqueness of Minimizers

From here on, we will employ the following assumptions:

(A1) Ω is a bounded, open subset of R2 with Lipschitz boundary,

(A2) S(Ω) = {u ∈ BV (Ω) : u > 0 a.e.}. The denoised image u is an element of S(Ω).

(A3) The noisy image f is an element of L∞(Ω) and is essentially bounded below away from zero,

i.e. there exist real numbers m and M so that 0 < m ≤ f(ω) ≤ M a.e.

 

 

 

 

 

 

 

 



19

Furthermore, µ will denote the Lebesgue measure on R2.

Motivated by (3.1) and (3.2), we want to find minimizers u ∈ BV (Ω) for the functional

E(u) = φ(u) + J(u) = ‖Du‖(Ω) + λ

∫

Ω

[

2 lnu+
f2

u2

]

. (3.3)

It is not clear from the outset that J(u) should be defined for all u ∈ S(Ω). Let us verify that

this is indeed true. Given γ > 0, consider the function

h(x) = 2 lnx+
γ2

x2
(x > 0). (3.4)

Its derivative is

h′(x) =
2

x

[

1− γ2

x2

]

.

Thus, h(x) is strictly decreasing on (0, γ) and strictly increasing on (γ,∞), and takes the absolute

minimum value at x = γ,

h(γ) = 2 ln γ + 1 ≤ h(x) = 2 lnx+
γ2

x2
∀x > 0.

Thus if u ∈ S(Ω), then for every ω ∈ Ω,

2 ln f(ω) + 1 ≤ 2 lnu(ω) +
f(ω)2

u(ω)2
.

Since f is essentially bounded below, this implies that J(u) is defined (it may take the value ∞),

and

J(u) ≥ (2 lnm+ 1)µ(Ω) ∀u ∈ S(Ω). (3.5)

Since φ(u) ≥ 0, it follows that

b := inf{ E(u) : u ∈ S(Ω) } ≥ (2 lnm+ 1)µ(Ω). (3.6)

We first prove the existence of minimizers.

Theorem 7. Let Ω and f satisfy (A1) and (A3), respectively. Then there exists û ∈ S(Ω) satisfying

1. m ≤ û(ω) ≤ M a.e.

2. E(û) ≤ E(u) for all u ∈ S(Ω).

Proof. Let {un} be any minimizing sequence in S(Ω), that is,

lim
n→∞

E(un) = b,

where b is as in (3.6). We begin by modifying this sequence so that m ≤ un(ω) ≤ M .

Since the function h(x) in (3.4) is increasing on [γ,∞), it follows that for all Mo ≥ γ,

2 ln [min(x,Mo)] +
γ2

min(x,Mo)2
≤ 2 lnx+

γ2

x2
, x > 0.
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Thus for any u ∈ S(Ω),

2 ln [min(u(ω),M)] +
f(ω)2

min(u(ω),M)2
≤ 2 lnu(ω) +

f(ω)2

u(ω)2
∀ω ∈ Ω

which implies that

J
(
min(u,M)

)
≤ J(u).

Now it is known that min(u,M) ∈ BV (Ω) and

φ
(
min(u,M)

)
≤ φ(u),

(see for example the proof of Lemma 1 in [13]), and hence E
(
min(u,M)

)
≤ E(u). It follows that

we may replace each un with min(un,M); the sequence {un} will remain minimizing.

In a similar way, since the function h(x) in (3.4) is decreasing on (0, γ], it follows that for all

Mo ≤ γ,

2 ln [max(x,Mo)] +
γ2

max(x,Mo)2
≤ 2 lnx+

γ2

x2
, x > 0.

Thus for any u ∈ S(Ω),

2 ln [max(u(ω),m)] +
f(ω)2

max(u(ω),m)2
≤ 2 lnu(ω) +

f(ω)2

u(ω)2
∀ω ∈ Ω

which implies that

J
(
max(u,m)

)
≤ J(u).

Since (again using the arguments in the proof of Lemma 1 of [13]) max(u,m) ∈ BV (Ω) and

φ
(
max(u,m)

)
≤ φ(u),

then E
(
max(u,m)

)
≤ E(u). It follows that we may replace each un with max(un,m); the sequence

{un} will remain minimizing. We thus have shown that we may assume that

m ≤ un(ω) ≤ M (3.7)

for all ω ∈ Ω.

We next employ this sequence to prove the existence of the minimizer û. The argument is

standard. As {un}minimizes E, the sequence {E(un)} is bounded, hence the sequence {‖Dun‖(Ω)}
is bounded. Furthermore, by (3.7), the sequence {un} is bounded in the norm of L1(Ω). Hence,

{un} is a bounded sequence in the norm of BV (Ω). Thus by Theorem 4, after having replaced un

with a suitable subsequence, there exists û ∈ BV (Ω) such that un → û in the norm ‖ ·‖L1(Ω). Since

every convergent sequence in L1(Ω) possesses a subsequence {unk
} converging pointwise a.e. to the

same limit, then assertion 1. follows.

Now by Theorem 3,

‖Dû‖(Ω) ≤ lim inf
k

‖Dunk
‖(Ω). (3.8)
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On the other hand, by (3.7) we can apply the Dominated Convergence Theorem to obtain

J(û) =

∫

Ω

lim
k→∞

(

2 lnunk
+

f2

u2
nk

)

dµ

= lim
k→∞

∫

Ω

(

2 lnunk
+

f2

u2
nk

)

dµ = lim
k→∞

J(unk
).

(3.9)

Combining expressions (3.8) and (3.9) then

E(û) = ‖Dû‖(Ω) + J(û)

≤ lim inf
k

‖Dunk
‖(Ω) + lim

k→∞
J(unk

)

≤ lim inf
k

[
‖Dunk

‖(Ω) + J(unk
)
]

= lim inf
k

E(unk
) = b

since the sequence {un} minimizes E. This proves the existence of a minimizer û.

There is only a partial result on the uniqueness of the minimizer. The reason is that J is strictly

convex only on Q(Ω) = { u ∈ S(Ω) : u(w) ≤
√
3f(ω) a.e. }. In fact, as

h′′(x) =
2

x2

[
3γ2

x2
− 1

]

then h is strictly convex if and only if 0 < x <
√
3γ. It follows that whenever 0 < u1, u2 <

√
3f

a.e., then for all 0 < λ < 1,

F
(
λu1 + (1− λ)u2

)
< λF (u1) + (1− λ)F (u2) a.e.

where F (u) = 2 ln(u) + f2

u2 , and hence

J
(
λu1 + (1− λ)u2

)
< λJ(u1) + (1− λ)J(u2).

We also observe that Q(Ω) is convex and non-empty, as f is essentially bounded below by m > 0.

We thus have the following existence and uniqueness result.

Theorem 8. Let Ω and f satisfy (A1) and (A3), respectively. Then there exists at most one

û ∈ Q(Ω) satisfying

E(û) ≤ E(u) for all u ∈ S(Ω).

Proof. By convexity of the norm ‖Du‖(Ω) and strict convexity of J on Q(Ω), it follows that E is

strictly convex on Q(Ω). Thus, Theorem 5 guarantees uniqueness of the minimizer û ∈ Q(Ω) of

E.

We note that the proof of Theorem 7 shows that m ≤ û(ω) ≤ M a.e.
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Corollary 9. Let Ω and f satisfy (A1) and (A3), respectively. Then there exists a unique û ∈ Q(Ω)

satisfying

E(û) ≤ E(u) for all u ∈ Q(Ω).

Furthermore, m ≤ û(ω) ≤ M a.e.

Proof. Existence of û can be derived from the proof of Theorem 7, now choosing {un} to be a

minimizing sequence in Q(Ω). Uniqueness of û follows from Theorem 5.

While uniqueness of minimizers û ∈ S(Ω) cannot be proved in general, there is a monotonicity

result, which is the analogue of Proposition 4.3 in [1] adapted to our choice of the functional J .

Theorem 10. Let f1 and f2 satisfy condition (A3) with f1 ≤ f2, and let u1 and u2 denote

minimizers of E on S(Ω), corresponding to f = f1 and f = f2, respectively. Set

A =
{
w ∈ Ω : f1(ω) < f2(ω)

}
.

Then u1(ω) ≤ u2(ω) a.e. ω ∈ A. In particular, if f1 < f2 a.e., then u1 ≤ u2 a.e.

Proof. Set u1∧u2 = min(u1, u2) ∈ S(Ω) and u1∨u2 = max(u1, u2) ∈ S(Ω). Since ui is a minimizer

of E for fi (i = 1, 2) we obtain

φ(u1 ∧ u2) +

∫

Ω

(

2 ln (u1 ∧ u2) +
f2
1

(u1 ∧ u2)2

)

dµ ≥ φ(u1) +

∫

Ω

(

2 lnu1 +
f2
1

u2
1

)

dµ (3.10)

and

φ(u1 ∨ u2) +

∫

Ω

(

2 ln (u1 ∨ u2) +
f2
1

(u1 ∨ u2)2

)

dµ ≥ φ(u2) +

∫

Ω

(

2 lnu2 +
f2
2

u2
2

)

dµ. (3.11)

Adding both inequalities and employing the fact that φ(u1 ∧ u2) + φ(u1 ∨ u2) ≤ φ(u1) + φ(u2) (see

[4]), we obtain that

∫

Ω

(

2 ln (u1 ∧ u2) +
f2
1

(u1 ∧ u2)2
− 2 lnu1 −

f2
1

u2
1

+ 2 ln (u1 ∨ u2) +
f2
2

(u1 ∨ u2)2
− 2 lnu2 −

f2
2

u2
2

)

dµ ≥ 0. (3.12)

Note that the above integral, when integrated over the set B = {w ∈ Ω : u1(ω) ≤ u2(ω) }
only, equals zero. Thus, the integral over Bc is also non-negative. Now the integrand simplifies

substantially when integrating over Bc, and we obtain

∫

Bc

(
f2
1

u2
2

− f2
1

u2
1

+
f2
2

u2
1

− f2
2

u2
2

)

dµ ≥ 0,

or equivalently,
∫

Bc

(
f2
1 − f2

2

)
(

1

u2
2

− 1

u2
1

)

dµ ≥ 0.
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Since
∫

Ac∩Bc

(
f2
1 − f2

2

)
(

1

u2
2

− 1

u2
1

)

dµ =

∫

Ac∩Bc

0 dµ = 0

this implies that
∫

A∩Bc

(
f2
1 − f2

2

)
(

1

u2
2

− 1

u2
1

)

dµ ≥ 0.

Now as 1
u2

2

− 1
u2

1

> 0 on Bc while f2
1 − f2

2 < 0 on A, this implies that A∩Bc is a null set, and proves

the theorem.
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Chapter 4

Numerical Treatment of the Model

4.1 Numerical Scheme

We consider the solution of the Euler-Lagrange equation (2.13) as the steady state solution of the

parabolic partial differential equation

ut =
∂

∂x




ux

√

u2
x + u2

y



+
∂

∂y




uy

√

u2
x + u2

y



+
2

βu3
(f2 − u2), (4.1)

with initial condition u(x, y, 0) = f(x, y) on Ω and the boundary condition u(x, y, t) = f(x, y) on

the boundary ∂Ω of the square Ω. In order to solve problem (4.1) numerically, the images are again

pixellated, so that the spatial domain space is considered as an N ×N square grid. The grid point

(i, j) corresponds to location (xi, yj), i = 0 . . .N − 1, j = 0 . . .N − 1, where xi = ih, yj = jh and

Nh = 1.

Denote un
ij = u(xi, yj , tn) where tn = n∆t, n = 0, 1, 2, ... and ∆t is step size, and set u0

ij = fij ,

Following [19], the numerical scheme of problem (4.1) is

un+1
ij = un

ij

∆t

h



∆x
−




∆x

+u
n
ij

√

(∆x
+u

n
ij)

2 + (m(∆y
+u

n
ij ,∆

y
−u

n
ij))

2









+
∆t

h



∆y
−




∆y

+u
n
ij

√

(∆y
+u

n
ij)

2 + (m(∆x
+u

n
ij ,∆

x
−u

n
ij))

2









+∆t

[

2

β(un
ij)

3

(
fij)

2 − (un
ij)

2
)

]

, (4.2)
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with boundary conditions

un
0j = f0j

un
(N−1)j = f(N−1)j

un
i0 = fi0

un
i(N−1) = fi(N−1)

where ∆x
±Θij = ±(Θ(i±1)j −Θij) and similarly for ∆y

±Θij . The step size ∆t and h are chosen for

stability such that
∆t

h
≤ 1.

Here,

m(a, b) =
sgn(a) + sgn(b)

2
min(|a|, |b|).

Note that if un
ij converges as n → ∞, then

un+1
ij − un

ij

∆t
→ 0 as n → ∞. Thus, the numerical

solution of problem (4.2) will converge to an approximate solution of the equation

∂

∂x




ux

√

u2
x + u2

y



+
∂

∂y




uy

√

u2
x + u2

y



+
2

βu3
(f2 − u2) = 0,

where u = f on ∂Ω, which is the denoised image of our model.

4.2 Numerical Results

To verify the validity of our model, numerical experiments with sample images perturbed by noise

were performed. The correlation coefficients between the original and the noisy images were com-

pared with the correlation coefficients between the original and the reconstructed images. All

experiments were done with MATLAB software version 7.2.

First, speckle noise with 0.02 variance was added to an original pattern image. The denoising

algorithms used are the ROF model, the Le model, the AA model, and our proposed model.

The correlation coefficient between the original image and the noisy image was 0.9678 while the

correlation coefficients between the original image and the reconstructed images increased with an

increasing number of iterative loops as shown in Table 4.1, and were higher than 0.9678 throughout.

Next, the Lenna image which is a well-known image in the field of image processing was used

in our experiments. Speckle noise with 0.02 variance was added to the original image. Similarly,

correlation coefficients were compared and they are shown in Table 4.2. The correlation coefficient

between the original image and the noisy image is 0.9444, while the correlation coefficients between

the original image and reconstructed images are all higher.
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# of iterative ROF Le AA Proposed
loops Model Model Model Model

0 0.9678 0.9678 0.9678 0.9678

200 0.9882 0.9960 0.9963 0.9963

250 0.9889 0.9971 0.9974 0.9974

300 0.9893 0.9978 0.9980 0.9980

350 0.9895 0.9981 0.9982 0.9982

Table 4.1: Correlation coefficients of reconstructed pattern images.

# of iterative ROF Le AA Proposed
loops Model Model Model Model

0 0.9444 0.9444 0.9444 0.9444

80 0.9663 0.9725 0.9730 0.9730

120 0.9704 0.9798 0.9804 0.9804

160 0.9728 0.9843 0.9848 0.9848

200 0.9743 0.9868 0.9870 0.9871

Table 4.2: Correlation coefficients of reconstructed Lenna images.

Overall, the results indicate that all four denoising models can enhance an image to better

correlate with the true, noiseless image. The performance increases with the number of iterations

but begins to plateau at about 300 iterations.

The two tables show differences in performance. The ROF produces noticeably lower correlation

coefficients. The Le model is marginally behind the AA model and the proposed model, in fact,

the latter two models show practically the same performance.

Figures 4.1–4.4 give visual presentation of the enhanced pattern images, at varying number of

iterations and using the different models. Figures 4.5–4.8 do the same for the Lenna image. Finally,

Figures 4.9–4.13 present an actual ultrasound image and the enhanced images processed by each

of the four variational models, at 100 iterations.
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(a) Original pattern image. (b) Speckle noisy pattern image.

(c) image reconstructed by an 80-loops

iterative process.

(d) image reconstructed by a 120-loops

iterative process.

(e) image reconstructed by a 160-loops

iterative process.

(f) image reconstructed by a 200-loops

iterative process.

Figure 4.1: The pattern image enhanced by the ROF model.
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(a) Original pattern image. (b) Speckle noisy pattern image.

(c) image reconstructed by an 80-loops

iterative process.

(d) image reconstructed by a 120-loops

iterative process.

(e) image reconstructed by a 160-loops

iterative process.

(f) image reconstructed by a 200-loops

iterative process.

Figure 4.2: The pattern images enhanced by the Le model.
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(a) Original pattern image. (b) Speckle noisy pattern image.

(c) image reconstructed by an 80-loops

iterative process.

(d) image reconstructed by a 120-loops

iterative process.

(e) image reconstructed by a 160-loops

iterative process.

(f) image reconstructed by a 200-loops

iterative process.

Figure 4.3: The pattern image enhanced by the AA model.

 

 

 

 

 

 

 

 



30

(a) Original pattern image. (b) Speckle noisy pattern image.

(c) image reconstructed by an 80-loops

iterative process.

(d) image reconstructed by a 120-loops

iterative process.

(e) image reconstructed by a 160-loops

iterative process.

(f) image reconstructed by a 200-loops

iterative process.

Figure 4.4: The pattern image enhanced by the proposed model.
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(a) Original Lenna image. (b) Speckle noisy Lenna image.

(c) image reconstructed by a 40-loops it-

erative process.

(d) image reconstructed by a 60-loops it-

erative process.

(e) image reconstructed by an 80-loops

iterative process.

(f) image reconstructed by a 100-loops

iterative process.

Figure 4.5: The Lenna image enhanced by the ROF model.
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(a) Original Lenna image. (b) Speckle noisy Lenna image.

(c) image reconstructed by a 40-loops it-

erative process.

(d) image reconstructed by a 60-loops it-

erative process.

(e) image reconstructed by an 80-loops

iterative process.

(f) image reconstructed by a 100-loops

iterative process.

Figure 4.6: The Lenna image enhanced by the Le model.
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(a) Original Lenna image. (b) Speckle noisy Lenna image.

(c) image reconstructed by a 40-loops it-

erative process.

(d) image reconstructed by a 60-loops it-

erative process.

(e) image reconstructed by an 80-loops

iterative process.

(f) image reconstructed by a 100-loops

iterative process.

Figure 4.7: The Lenna image enhanced by the AA model.
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(a) Original Lenna image. (b) Speckle noisy Lenna image.

(c) image reconstructed by a 40-loops it-

erative process.

(d) image reconstructed by a 60-loops it-

erative process.

(e) image reconstructed by an 80-loops

iterative process.

(f) image reconstructed by a 100-loops

iterative process.

Figure 4.8: The Lenna image enhanced by the proposed model.
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Figure 4.9: Original ultrasound image (Provided by Dr.Chumrus Sakulpaisarn).

Figure 4.10: Enhanced ultrasound image (ROF Model, 100 loops).
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Figure 4.11: Enhanced ultrasound image (Le model, 100 loops).

Figure 4.12: Enhanced ultrasound image (AA model, 100 loops).
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Figure 4.13: Enhanced ultrasound image (proposed model, 100 loops).
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Chapter 5

Concluding Remarks

In this research work, a variational model for the reduction of ultrasound speckle noise was devel-

oped. The model is based on the assumption that the pixel intensity in an ultrasound image is

Rayleigh distributed, caused by the uniformly distributed phases of the backscattered ultrasound

waves and leading to significant image noise of multiplicative type. Then the existence and unique-

ness of minimizers for the variational functional was discussed. Because of the multiplicative nature

of the noise, the data fidelity term in the variational functional is no longer convex in general. Thus,

while the existence of minimizers could be proved by applying compactness arguments, uniqueness

required the additional assumption that brightness of the enhanced image at each pixel does not

exceed that of the noisy image by a factor of
√
3. Finally, it was shown by means of numerical

experiments that the proposed model can be applied to enhance image quality, and that it performs

similarly or even better than some of the other variational models discussed in the literature.

The modeling of ultrasound speckle by the Rayleigh distribution is, however, relatively coarse.

It is well conceivable that the Rician or the K-distributions should better match the appearance

of speckle in ultrasound images. It therefore would be worthwhile to refine and adapt the model

proposed here to these distributions in future work.
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