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QUARK-GLUON PLASMA/CENTER DOMAINS/HEAVY-ION COLLISIONS/ DY-

NAMIC SYMMETRY BREAKING

Center domains are structures based on spontaneous breakdown of center sym-
metry as expected in quark-gluon plasma (QGP) from lattice QCD calculations. Each
domain is characterized by a finite value of the Polyakov loop, which here serves as an
order parameter to distinguish between confined and deconfined phase. Center domains
might possibly occur in heavy-ion collision and may have influence on observable like
viscosity or elliptic flow. In this work, we develop a fully dynamical model for the
Polyakov loop based on an effective potential and a phenomenological kinetic term.
Studying the time evolution of the Polyakov loop allows us to study formation and de-
cay of center domains in the QGP. The results of this simulation give us insight into the
formation procedure during a heavy-ion collision and help us understand how the do-
main size is influenced by temperature and the kinetic coefficient in our model. We find
that the domain size grows with this coefficient, together with recent data from lattice
QCD, where the domain size was calculated as a function of temperature, we can fix the
value of the kinetic coefficient as a function of temperature. Finally, we determine the

formation time of domains and find it within the lifetime of a QGP at LHC energies,
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therefore making the formation of center domains a relevant effect that needs to be

considered in future calculations.

School of Physics Student’s Signature

Academic Year 2014 Advisor’s Signature

Co-Advisor’s Signature



ACKNOWLEDGEMENTS

Firstly, I would like to express my gratitude to all people who have supported,
assisted and tought me which later influenced me to complete my thesis.

I would like to thank Prof. Dr. Yupeng Yan for giving me a chance to join the
Nuclear and Particle Physics group and teaching me several courses involving particle
physics. And I would like to thank Asst. Prof. Dr. Chinorat Kobdaj for encouraging
me to keep studying and doing research in the field of particle physics, without you, I
would not have finished my master degree in physics. Thank you Asst. Prof. Dr. Ayut
Limpirat for suppporting me all along and for being my thesis advisor who always gave
me very useful advice. And thank you Dr. Christoph Herold for teaching me physics
and training me to do research.

Finally, I would like to express my deepest gratitude to my parents for giving

me the freedom to think, to work and even to play.

Jakapat Kannika



CONTENTS

Page

ABSTRACT INTHAIL . ... . . . e I

ABSTRACTINENGLISH . . ... .. ... . . . . . II

ACKNOWLEDGEMENTS . . . ... .. . v

CONTENTS . . . \Y%

LISTOF TABLES . . . . . . . . e VII

LISTOF FIGURES . . . . .. . e VIII
CHAPTER

I INTRODUCTION . . . . . . o e 1

11 POLYAKOV LOOP POTENTIAL . . . . . ... ... ......... 6

2.1 Polyakovlooppotential . ... ... ... ... .. ......... 6

2.2 Thermodynamic properties . . . . . . . . . .. v . oo vt 8

11 EQUATIONS OF MOTION . . . . .. .. ... .. .. 13

v SIMULATIONMETHOD . ... ... ... ... ... . ....... 18

4.1 Numerical implementation . . . . . .. ... ... ... .. ..... 18

4.2 Numerical parameters . . . . . . . .. .. .. ... ... ... .. 20

4.3 Initial conditions . . . . . . ... ..o 20

4.4 FIXINgSIZMA . . . . . . v v vt e e e e e e e e 21

4.5 Tracking evolution of center domains . . . . . . . ... ... .... 24



VI

CONTENTS (Continued)

Page

\Y% RESULTS . . . . . . . e 25

5.1 Sigmacoefficient. . . . . .. ... ... 25

5.2 Formation of center domains . . . . . . . ... ... ... ... .. 28

5.3 Decayofcenterdomains . . . . . ... ... ... .. ........ 34

VI CONCLUSIONS AND DICUSSIONS . . . . ... ... ... ... 43

REFERENCES . . . . . 45
APPENDICES

APPENDIX A RESEARCH WORKFLOW . ... .. ........... 51

APPENDIX B NATURAL UNITS . . ... ... .. ... ......... 52

APPENDIX C CODE IMPLEMENTATIONS . ... ... ... ...... 54

CURRICULUM VITAE . . . . .. oo e 64



Table

4.1

B.1

LIST OF TABLES

Numerical parameters. . . . . . . . . . ... ... ... .

Natural units in particle physics. . . . . . . .. ... ... ... .....



Figure

1.1

1.2

1.3

2.1

2.2

23

24

2.5

2.6

2.7

2.8

2.9

4.1

4.2

LIST OF FIGURES

Page
Illustrations of atoms and molecules from John Dalton’s book, “A New
System of Chemical Philosophy (1808)”.. . . . . . .. ... ... .... 2
Standard model of elementary particles shows various particles that have
been observed so far, figure by MissMJ, used under CC BY 3.0. . . . .. 3
Schematic of center domains where v = 0, v = 1 and v = 2 are different
in types of domains, from (Asakawa et al., 2013). . . . ... ... .. .. 5
Contour plot of Polyakov loop potential at 7" = 100 MeV. . . . ... .. 7
Contour plot of Polyakov loop potential at 7" = 300 MeV. . . .. .. .. 8
Contour plot of Polyakov loop potential at 7' = 500 MeV. . . . ... .. 8
Minimum point of the Polyakov loop potential as a function of 7. 10
Absolute value of the Polyakov loop in the equilibrium as a function of 7. 10
Pressure of the Polyakov loop potential as a functionof 7°. . . . .. . .. 11
Entropy of the Polyakov loop potential as a functionof 7".. . . . . . . .. 11
Free energy of a heavy static quark as a functionof 7°. . . . . . . ... .. 12
Energy density of the Polyakov loop potential as a functionof 7. . . . . . 12
Small fluctuations in Polyakov loop at z = 0 fm and time ¢ = 0.005 fm/c. 21
Space-time lattices with a different sigma values. . . . . ... ... ... 22



Figure

4.3

5.1

5.2

53

54

5.5

5.6

5.7

5.8

59

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

IX

LIST OF FIGURES (Continued)

Page
Average diameter of domains for two resolution scales, (Borsanyi et al.,
2011). o e 23
Exponential fit of the correlation function for 7" = 283.5 MeV. . . . . . . 25
Exponential fit of the correlation function for 7" = 297.0 MeV. . . . . . . 26
Exponential fit of the correlation function for 7' = 310.5 MeV. . . . . . . 27
Sigma as a function of temperature. . . . . . ... ... L 27
Evolution of standard deviation from time 0 - 25 fm/c with 77. . . . . . . 28
Evolution of standard deviation from time O - 25 fm/c with 75. . . . . . . 29
Evolution of standard deviation from time O - 25 fm/c with 73. . . . . . . 29

Evolution of standard deviation from time O - 25 fm/c with T}, T, and 75. 30

Plan plot of [ from time 0 - 25 fm/cwith 7. . . . . . . .. ... .. ... 31
Plan plot of [; from time 0 - 25 fm/cwith 75.. . . ... . .. .. ... ... 32
Plan plot of [ from time 0 - 25 fm/cwith 75.. .. . . . . ... ... ... 33
Evolution of standard deviation from time 26 - 50 fm/c with 77. . . . . . 34
Evolution of standard deviation from time 26 - 50 fm/c with 75. . . . . . 35
Evolution of standard deviation from time 26 - 50 fm/c with 73. . . . . . 35

Evolution of standard deviation from time 26 - 50 fm/c with T3, T, and 15 36
Plan plot of /5 from time 26 - 50 fm/cwith7%. . . . . . . ... ... ... 37
Plan plot of /5 from time 26 - 50 fm/cwith 73y, . . . . . . ... ... ... 38

Plan plot of /5 from time 26 - 50 fm/cwith 75, . . . . . .. ... .. ... 39



Figure

5.19

5.20

5.21

6.1

LIST OF FIGURES (Continued)

Page
Plan plot of /5 from time 26 - 50 fm/cwith 75, . . . . . . ... ... ... 40
Plan plot of /5 from time 26 - 50 fm/cwith 75. . . . . . .. ... .. ... 41
Plan plot of [ from time 26 - 50 fm/c with 75. . . . . . . . ... .. ... 42
Heavy-ion collision rates at LHC energy. . . . . . . . . . ... ... ... 44



CHAPTER 1

INTRODUCTION

In the past, people believed that all elements in nature were composed of indivis-
ible particles called atoms. The first group of people who considered the concept of an
atom were ancient Greek and Indian philosophers, studying so-called Afomism. Atom-
ism comprises the idea that all elements in nature consist of atoms and voids. However,
the crucial problem of Atomism was the lack of experimental evidence. Note that, in
modern science, any theory requires experimental support to be verified. In the 19"
century, the study of atoms became famous again under the name of Afomic Theory.
This Atomic Theory was developed by John Dalton, an English chemist, physicist and
meteorologist, see figure 1.1. The origin of the theory was not well understood. How-
ever, the theory was later verified by many experimental results from other works. The

idea of his theory can be summarized in four statements:

1. All elements in nature are made of atoms where one atom is indivisible and
indestructible,

2. Any single element is composed of atoms which are identical in size, mass
and other properties, different elements have different types of atoms,

3. Any two or more elements can form chemical compounds with an integer
ratio,

4. A chemical reaction is a rearrangement of atoms.
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Figure 1.1 Illustrations of atoms and molecules from John Dalton’s book, “A New Sys-

tem of Chemical Philosophy (1808)”.

This was the first time when scientists had gained an empirical understanding about
matter. So, with this success, the Atomic Theory of Dalton is considered as a foundation

of particle physics and another related fields in a few centuries later.

Later, contrary to some ideas of the Atomic Theory of Dalton, physicists found
that atoms are not indivisible, but contain smaller particles such as electrons, protons
and neutrons. Moreover, from modern particle physics, we know that even protons and
neutrons are composed of smaller particles called quarks, see figure 1.2 for a table of

elementary particles as they are known today.

After the Big Bang, our universe started to expand and cool, resulting in sev-
eral phases and phase changes to the contained matter. All those phases have different
thermodynamic properties. In this work, we focus on one of the early phases called

quark-gluon plasma (QGP). The QGP is a primordial state of matter created at about
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Figure 1.2 Standard model of elementary particles shows various particles that have

been observed so far, figure by MissMJ, used under CC BY 3.0.

1077 s after the Big Bang, The term of QGP denotes matter composed of two elementary

particles:

Quarks, which are considered as fundamental constituents of matter.

Gluons, which act as carriers of the strong nuclear force between quarks.

From the QGP phase, hadrons emerged after further cooling, later atomic nuclei, atoms,
and finally gravitating large-scale structures such as stars and galaxies. In the QGP
phase, quarks and gluons are in no bound state under the extremely hot and dense con-
ditions. The theory describing the interaction of quarks and gluons due to so called
color charges (red (R), green (G) and blue (B)) is Quantum Chromodynamics (QCD)
which was first proposed by Nambu in 1966. One remarkable feature of QCD which
distinguishes hadronic matter from a QGP is called confinement. In confinement, quarks
are bound together in color-neutral particles such as baryons and mesons. Baryons are

composite particles made up of three quarks e.g. protons (p), neutrons (n). Mesons are



composite particles made up of one quark and one antiquark e.g. pions (7), kaons (K).
In contrast to that, in QGP the relevant degrees of freedom carry color charge, matter is
deconfined. Nevertheless, isolated color charges have never been observed experimen-
tally. Another characteristic property that distinguishes the QGP from the hadron gas
is the restoration of chiral symmetry at high temperatures. The QGP can be found or
created in 1) The early universe at about 10~° s after the Big Bang, 2) Superdense stars

such as neutron stars or quark stars, 3) Heavy-ion collisions.

Nowadays, heavy-ion collisions are done by colliding two heavy nuclei at ultra-
relativistic energies using large accelerator facilities. At the moment such experiments
are performed at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National
Laboratory and the Large Hadron Collider (LHC) at CERN. At RHIC, scientists found
evidence for the formation of a strongly interacting quark-gluon plasma (sQGP) (Arsene
et al., 2005; Adcox et al., 2005; Back et al., 2005; Adams et al., 2005; Gyulassy and
McLerran, 2005; Miiller and Nagle, 2006), based on the discoveries of 1) Elliptic Flow
2) Low ratio of shear viscosity to entropy density 77/s 3) Jet quenching. These evidences
show that the sQGP behaves rather like an ideal fluid than a gas of non-interacting

particles.

From lattice QCD studies (Danzer et al., 2010; Borsanyi et al., 2011), the ex-
istence of so called center domains was confirmed. Center domains are structures that
have recently claimed to be responsible for some crucial properties of QGP (Asakawa
et al., 2013). In (Asakawa et al., 2013), the authors argue that two important properties
of QGP, low shear viscosity and jet quenching can be explained by the formation of cen-

ter domains in the QGP. This was our motivation to study the behavior and dynamics



Figure 1.3 Schematic of center domains where v = 0, v = 1 and v = 2 are different in

types of domains, from (Asakawa et al., 2013).

of center domains in QGP. In (Asakawa et al., 2013), it is argued that domain walls act
as potential barriers for in-medium particles, thus limiting their free wavelength, which
accounts for a small value of 7/s. On the other hand, jets may rapidly lose their energy
in the medium via interaction with the walls and subsequent radiation of soft gluons, see

figure 1.3.

Our research here focuses on developing a dynamical model for an effective
Polyakov loop field in a QGP. We use a phenomenological Lagrangian from a Polyakov
loop potential and a phenomenological kinetic term. Then we study the evolution of
the Polyakov loop field in (3+1) dimensions. We hereby restrict ourselves to the case
of a medium with a homogeneous temperature. We expect to be able to observe the
formation of center domains after changing the global temperature from below to above
the critical temperature 7. Our goal is to give estimates for the formation and decay

time of domains to better understand their possible role in heavy-ion collisions.



CHAPTER 11

POLYAKOV LOOP POTENTIAL

Center domains occur due to the spontaneous breakdown of center symmetry
Z(3) C SU(3) at high temperatures. Therefore, the existence of center domains is
expected in a QGP phase. In QCD, one way to distinguish between QGP phase and
hadronic phase is using confinement. Confinement can be mathematically described by
the Polykov loop potential. The Polyakov loop arises from pure SU(3) gauge theory,
where it serves as an order parameter which distinguishes between a center symmetric

confined phase and a deconfined phase where this symmetry is broken.

2.1 Polyakov loop potential

The fundamental Polyakov loop is defined as

1 1/T
L(7) = gtrP exp [ig/ Ay(, Hj:dr], (2.1
0
where P denotes the path-ordering operator, ¢ is the strong coupling constant, 7" is the
temperature and A, is the temporal component of a static gluon background field in
Euclidean space-time. From fits of lattice QCD data (Boyd et al., 1996) in the pure

gluon sector, we obtain a potential for the Polyakov loop (Roessner et al., 2007)
U(L) = —bT[54e~ T |L|* + In P(L, L1)], (2.2)

where L is the Polyakov loop, T is the temperature, a = 0.664 GeV, b = 0.0075 GeV?

and P(z,%) = 1—6 |2|>=3 |2|*+4(23+7%). Figures 2.1 to 2.3 show plots of the Polyakov



loop potential in the complex plane L. = [; + il with temperatures 7' = 100 MeV,

T = 300 MeV and T' = 500 MeV respectively. The equilibrium point of the potential

is shifted from one point in figure 2.1 to three points in figure 2.3, due to the spontaneous

breakdown of center symmetry Z(3) at the critical temperature of 7' = T, = 270 MeV.

Effective potentials for the Polyakov loop are often used in low-energy models such

as the Polyakov loop Nambu-Jona-Lasinio (PNJL) model (Fukushima, 2004) or the

Polyakov-Quark-Meson (PQM) model (Schaefer et al., 2007; Herbst et al., 2011). In

pure gauge theory, the Polyakov loop is related to the free energy of an infinitely heavy

static quark F(7") by

where

In confinement: F, is infinite, (L)

FQ(fv T) — —Tln|<L(f, T)>| )

=0,

In deconfinement: [, is finite, (L) > 0.

0.8
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Figure 2.1 Contour plot of Polyakov loop potential at 7" = 100 MeV.
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Figure 2.2 Contour plot of Polyakov loop potential at 7" = 300 MeV.
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Figure 2.3 Contour plot of Polyakov loop potential at 7" = 500 MeV.

2.2 Thermodynamic properties

From equations (2.2) and (2.3), we can study thermodynamic properties of pure

gluon QCD, such as pressure, energy density, entropy density and free energy density of



test quarks as a function of temperature. By this, we can understand the consistency of
the Polyakov loop potential with pure gauge QCD. We will therefore also see that there
is a first-order phase transition from the Polyakov loop potential. However, from lattice
QCD we know that there is no phase transition for zero chemical potential, but rather
an analytic crossover (Aoki et al., 2006). We might expect a first-order phase transition
for high density or chemical potential (Scavenius et al., 2001; Schaefer and Wambach,

2005).

In figure 2.4, we track a minimum point of the Polyakov loop potential under
the transition from 7' = 0 MeV to T" = 500 MeV. Above the critical temperature 7.,
there are three degenerate ground states according to three minima in the potential. The
absolute value of the Polyakov loop in figure 2.5 is able to identify the phase of our
system, where in the confined phase L equals 0 and in the deconfined phase ranges from
about 0.5 to 1.0. From the data in figures 2.4 and 2.5, we can further find the pressure
as the negative value of the potential, see figure 2.6, the entropy density which is the
derivative of the pressure with respect to temperature, see figure 2.7, the free energy of
a heavy static quark according to equation (2.3), see figure 2.8 and finally, the energy

density which can be found from the relation e = T's — p, see figure 2.9.

From these plots we can clearly identify 7, at 270 MeV from the kink in the

pressure and the discontinuity in L, s and e as functions of 7'.
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Figure 2.4 Minimum point of the Polyakov loop potential as a function of 7.
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Figure 2.5 Absolute value of the Polyakov loop in the equilibrium as a function of 7.
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Figure 2.6 Pressure of the Polyakov loop potential as a function of 7.
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Figure 2.7 Entropy of the Polyakov loop potential as a function of 7.
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Figure 2.8 Free energy of a heavy static quark as a function of 7'.
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CHAPTER III

EQUATIONS OF MOTION

Our goal is to study the dynamics of center domains in QGP via the Polyakov
loop. As the Polyakov loop has no explicit time dependence, we have to pursue a phe-
nomenological ansatz similar to what has been proposed in (Dumitru and Pisarski, 2001;
Herold et al., 2013; Fraga et al., 2007) to study its dynamics. We write down the La-
grangian density as

ag a —
I F §T28NL6“L ~U(L, L), (3.1)

where o is a dimensionless parameter playing the role of a surface tension that we have
to determine later by comparison with the domain size from lattice QCD data (Borsanyi
et al., 2011). Splitting the complex-valued Polyakov loop into its imaginary and real

part L = [, +ilyand L = [; — ily, equation (2.2) becomes

U(ly +ily) = = bTBde™ VT Iy +ily)* +InP(ly + ily, (Iy +ily)1)]

= — bT[Bde” YT (1§ +il3) + In P(ly + ily, Iy — ily)]. (3.2)
For the polynomial function P we obtain
P(ly +ily, Iy —ily) =1 — 6]y + ils|* — 3 |ly 4+ ilo|* 4+ 4((Iy + ils)® + (Iy — ily)?)
=1—6(1 +il3) — 3(1F +il3)* + 4(F3 + 3ilily — 3115 + 13)
+ 413 — 3il3ly — 3115 — 13)

=1—6(7+13) — 3(IF + 15)* + 4(20} — 61,13).
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In equation (3.1) 9, LO" L can be written as

0, LO"L = (11 + ily) 0" (I — ily)
== (aull + iaﬂlg)(a#ll - Za“lg)

= 0,110"]; + 9,1,0"1,. (3.3)

From the general Euler—Lagrange equation:

oL oL
aﬂ(m) ~3 =0 G4

and equation (3.3), we have the first Euler—Lagrange equation for the real part of the
Polyakov loop
o oL oL

Ozt A(0,l,) — Oly’ )

and the second Euler-Lagrange equation for the imaginary-part of the Polyakov loop

o_oc o
Oxt 8(8#12) ’ 8[2

(3.6)

From the Euler-Lagrange equations (3.5) and (3.6), the phenomenological La-
grangian (3.1) and the complex valued Polyakov loop potential (3.2), we can now find
the equations of motion. We begin with the equation of motion for the real part of the

Polyakov loop [,
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0L 0 [0, 001 )
o azl{ T(8,10", + 0,120"12) — (11,52)]
B
= 5 U0 b)
9 —a/T (72 2
[— BT [5de= T (12 +il2) + In P(ly + ils, Iy —zzz)]
~ oL
1 )
_ —a/T b+ ila, 1y — il
108bTe™ "1y + [ P+ i L — ) ol P(ly +ily, 1y —i 2)]
1 9

— 108bTe /T, + [ 1—6(12 +12)

P(ly +ily, Iy — ily) a_zl(
— 3(8 + 13) + 421} — 6L13))|

(=120 — 120 (12 + I2) + 2412 — 2412)
P(ly + ily, 1y — ily)

(=120 + 2412 — 1213 — 120412 — 2412)
P(ly + ily, Iy — ily) ’

= — 108bTe Tl +

= — 108bTe Tl +

o oL 0 0
0zt 0(9ply) Ot 0(0,h) | 2
)

== %UTza‘ull.

T2(8 LOML + 0,050") — ULy, by)

From g h 7 = 0,1y and assuming that 7" does not depend on x#, we get

0 oL

I or20r,,.
oz 0(0,1) 0 o

Thus, for the equation of motion for the real part of the Polyakov loop we get

oT?0,0"l, + (,%U(zl, l) = 0. (3.7)
1

The equation of motion for the imaginary part of the Polyakov loop /5 can be derived in

the same way as for [,
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R
o %[ T2(,1,0"1; + 0,0,0"1y) — U(zl,z2)]
)
0 [ BT [54e YT (2 +il2) + In P(ly + iy, Iy — ZJQ)]
~ o,
1 )
_ ~a/T _
108bTe=/T1, + [P(llﬂl%ll_%) g P tila. b 112)]
1 B

(1 —6(3413) —3(12 +13)*

= —108hT e~ "] —
et [p(z1 iy, Iy — ily) Dl

428 - 61113))}
(=125 — 12(12 + 2)ls — 481,1y)
P, + ila, I, —ily)

(—121y — 12021y + 121412 — 481,1)
P(ll + ilg, ll - Zlg)

= — 108bTe T, +

= —108bTe“Tl, +

I

0 0L 0 0
oxH 8(8ul2) 813” 8(0 lg)
0

= @UTQ({?MZQ

T2(8 10M1y + 0,1,0"1,) — U(ly, 1)

From (973 = 0,1, where T again does not depend on z*, we get

0 0L

— = oT%0"0,l5.
D7 D) al=0"0,ly

Thus, for the equation of motion for the real part of the Polyakov loop we get

oT?0,0"ly + aiU(zl,zg) 0. (3.8)
2

Equations (3.7) and (3.8), will later be used to simulate the dynamics of the
Polyakov loop solved by some numerical method in chapter IV. Note that, consider-

ing figures 2.1 to 2.3, we can see that [; is fit for distinguishing between confined and
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deconfined phase similar to |< L >|, whereas [, is fit for distinguishing between three

types of center domains in the deconfined phase.



CHAPTER 1V

SIMULATION METHOD

Studying the evolution of the center domains can be done by a time-dependent
Polyakov loop simulation which numerically solves the equations of motion (3.7) and
(3.8) in (3+1)-dimensions. The given space-time lattices are 1) space-time lattice for
the real part of the Polyakov loop [;, 2) space-time lattice for the imaginary part of
the Polyakov loop ;. Note again, confined and deconfined state of the system can
be distinguished by |< L >|, on the other hand types of the center domains cannot be

distinguished by |< L >| but rather [, see section 2.1.

4.1 Numerical implementation

Solving equations (3.7) and (3.8) requires some numerical method. In (Cassol-
Seewald et al., 2012), a useful method for solving partial differential equations is pro-
vided, to apply that method to our problem, we start from writing equations (3.7) and

(3.8) into a discrete form

Pl = 0
T* 5= — V- — = 4.1
o (Tt - P ) 4 Ul =0 @

l,, here corresponds to either the real part of the Polyakov loop /; or the imaginary part

of the Polyakov loop [ at time interval n where time ¢ = nAt withn = 1,2,3,... We
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can write the time derivatives as

Ol L. ;
ot L. ln,1 = §(ln_1/2 + ln—3/2)7
. 1
ln71/2 = E(Zn - ln—1)7
. 1
ln—3/2 = Kt(ln_l — ln-2),
aZln_l i 1 . .

atQ - ln—l — At (ln—l/Q - ln—3/2)-

Equation (4.1) becomes

| ) 9
oT? (A_ﬂ(ln — 21+ lp2) — Van—1) + mU(lla L) = 0,

= 1 0
2 2
ln = 2ln,1 - lnfg + At (V ln,1 — ﬁm[]([l, lg)) . (42)

Consider the Laplacian operator

n—1 n—1 21m—1
621@‘71 _ 82lijkz a2lijk a lijk:
ik 0%x 0%y 0%z

_ 1 [(EEREE  (  E
Ax Ax Ax
+ l?jjrllk_l?jil _ l?j;l_l?jv—llk
Ax Ax
e AN L T
Ax Ax

n—1 n—1 n—1 n—1 n—1 n—1 n—1
N (e + b + s — 605 + 0 + 050 + Ui,

where i, j and k are positions on the Cartesian grid and Az is the lattice spacing. We

apply periodic boundary conditions for the spatial coordinates

(

N+, ifi<1.

1=4i—N, ifi>N. (4.3)

i otherwise.
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where ¢ is a position on the x—, y— or z—axis and NV is the maximum size of the space-
time lattice in one dimension. In the equations of motion (4.2), the value of the Polyakov

loop at any time ¢ can be calculated from its previous values at times n — 1 and n — 2.

4.2 Numerical parameters

Table 4.1 Numerical parameters.

Variable Meaning Value
At time step 0.005 (fm/c)
Ax lattice spacing 0.5 (fm)
N size of lattice in one 100

dimension

Note that the values of At and Az are determined according to the Courant—
Friedrichs—Lewy condition where the ratio of A¢/Ax is supposed to be small enough
to ensure numerical stability. /N has to be chosen large enough for the lattice to be able
to contain several larger domains. However, our choice of these numerical parameters

1s also based on several test runs.

4.3 Initial conditions

At times t = 0.005 fm/c and ¢ = 0.01 fm/c, both real and imaginary part of the
Polyakov loop are initialized with Gaussian distributions of mean zero, corresponding to
their vacuum expectation value, and standard deviation 0.1. From figure 4.1, we can see

small fluctuations of the Polyakov loop correlated over a typical hadron-sized volume of
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1 fm3. This corresponds to the initial state in a heavy-ion collision before the creation of
the QGP. We can then change the temperature on our lattice to some value above 7, and
follow the evolution of the system in the deconfined phase, where the initial fluctuations

can amplify and form center domains.

-0.5

5 10 15 20 25 30 35 40 45 50
x (fm)

Figure 4.1 Small fluctuations in Polyakov loop at z = 0 fm and time ¢ = 0.005 fm/c.

4.4 Fixing sigma

According to the equations of motion (3.7) and (3.8), there is one unknown vari-
able called sigma (o), a coefficient playing the role of a surface tension which influences
the domain size, a large value of sigma gives a large domain size, by contrast, a small
value of sigma gives a small domain size, see figure 4.2. In order to develop a realistic
model, we need to fix the value of sigma. In figure 4.3 from (Borsanyi et al., 2011),
some useful information about the domain size as function of 7" is provided.  The

domain size is defined as a physical diameter D,,, which is obtained from fitting the
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two-point correlation function C'(Z — ¢) of [5 to the exponential function

C(7 — ) o< exp (= [T — ¥| / Dphy)- (4.4)

Unfortunately, (Borsanyi et al., 2011) does not give us more data for higher tempera-
tures, so we can only make predictions for these given values and give a rough estimate
for sigma as a function of temperature in the regime near 7. Thus in this work we con-
sider only the temperatures 7} = 1.05 7T, = 283.5 MeV, T, = 1.1 T, = 297.0 MeV and
T3 =1.157T,. = 310.5 MeV.

We fix the coefficient o using the following procedure:
1. Fix value of 7" according to information in figure 4.3,
2. Heuristically fix value of o,
3. Run a simulation,
4. Calculate Dy,
5. Compare given Dy, to figure 4.3,

6. If D,,, does not equal its value in figure 4.3, go back to step 2.

sigma =0.15 sigma = 0.29

Figure 4.2 Space-time lattices with a different sigma values.
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10.0 -

dphyS [fm]

8.0 -

6.0 -

4.0

20

00} a2 40%x8 -

0.6 0.7 0.8 0.9 1.0 1.1 1.2 T

Figure 4.3 Average diameter of domains for two resolution scales, (Borsanyi et al.,

2011).

Fast fixing of sigma can be done by a following binary search strategy

Searching procedure:

1. Find value of middle from list /,

2. Compare target to middle,

3. If target less than middle then:

remove middle and its right-hand side values from list / then go to 1;

else if target greater than middle then:

remove middle and its left-hand side values from list / then go to 1;

else: stop.

where [ is list of values, middle is a value at middle of list /, target is a value that we
want to find.

Example:
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Problem: find a target value target = 8 in a sorted list /=0, 1,2, 3,4, 5,6, 7,8, 9, 10].

Define middle as a value at middle of /, middle = 5. (1% procedure)
Is target = 8 equal to middle = 5? (2" procedure)
False, then let / =[6, 7, 8, 9, 10]. (3" procedure)
Define middle as a value at middle of /, middle = 8. (1% procedure)
Is target = 8 equal to middle = 8? (2" procedure)
True, stop. (3" procedure)

After finishing the iterative process of fixing sigma, we will obtain a reliable coefficient

to study the dynamics of domain formation in the range from 1 7, to 1.2 T...

4.5 Tracking evolution of center domains

Since [, distinguishes between confined and deconfined phase, [, identifies the
type of minimum points in center domains. Both /; and [, are evolve from confined to
deconfined phase. In the deconfined phase, the existence of center domains is expected.
This leads to the question how to determine the time when center domains are formed.
Our solution proposes to solve this problem by using the standard deviation (SD).

The standard deviation at time ¢ is defined as

1 _
SD = |53 > ik — 12)?, (4.5)

igk

where [, is volume-averaged value of /5. If SD has reached a stable maximum value
as a function of time, we can conclude that the domain formation process is finished.
Note that, in our research, the standard deviation is then averaged over 100 events with

different initial conditions for each time ¢ to ensure reliable results.



CHAPTER V

RESULTS

5.1 Sigma coefficient

Applying the iterative method introduced in section 4.4, we can obtain a reliable
value of sigma. In figure 5.1, we show the result of sigma for temperature 77 where
the dots indicate the two-point correlation function of [, and the solid line is the fitted

exponential function (5.1) which is evaluated as

C(Z —v) x exp (— |¥ — ¥] /2.55 fm). (5.1)

The exponential function for temperature 75 is

0.08

0.07 Correlation Function i

\ Exponéntial Fit ——

0.06 - i
0.05 - i
0.04 - B

0.03 R

Correlation function

002 t \ :
001 1 \ |
0

-0.01 I I I I I I I I I

r (fm)

Figure 5.1 Exponential fit of the correlation function for 7' = 283.5 MeV.

C(Z—7y) xexp(— |7 — y] /3.75 fm), (5.2)
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see figure 5.2 for the corresponding graph. For 75 we obtain

C(Z —y) xexp (— |& — ] /4.75 fm). (5.3)

The fitted correlation function of sigma for temperature 73, is shown in figure 5.3. Fi-
nally, we put all results of sigma to one graph in figure 5.4 and show sigma as function

of T" and fit it to a third order polynomial:

o(T) = (1.37 x 107°(T — T,)*)/ MeV® + 0.10. (5.4)

0.14 ‘ —
Exponential Fit ——
012 7\ Correlation Function

0.1 i
0.08 i
0.06 i
0.04 R

002 / ¥ |
0

Correlation function

-0.02 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50

r (fm)

Figure 5.2 Exponential fit of the correlation function for 7' = 297.0 MeV.
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Figure 5.3 Exponential fit of the correlation function for 7" = 310.5 MeV.
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Figure 5.4 Sigma as a function of temperature.



5.2 Formation of center domains

We study the time evolution of center domains via the average value of the
standard deviation of /5. Note again, in our simulation, there are only three distinct
temperatures that we will consider according to the information in figure 5.4, that are
Ty =1.05T, =283.5MeV, T, = 11T, =297.0 MeVand 75 = 1.157T. = 310.5 MeV.

From the simulation, we obtain three graphs of the standard deviation as a function of

time, see figures 5.5, 5.6 and 5.7.

SDof 1,

Figure 5.5 Evolution of standard deviation from time 0 - 25 fm/c with 7.
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Figure 5.6 Evolution of standard deviation from time 0 - 25 fm/c with 75.
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Figure 5.7 Evolution of standard deviation from time 0 - 25 fm/c with 75.
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Finally, we put those three graphs into a comparing graph

0.4

0.35 | i

03

0.25 | / R

0.2 i

SDof 1,

0.1 T, ——

005 | | | |
0 5 10 15 20 25

t (fm/c)

Figure 5.8 Evolution of standard deviation from time O - 25 tm/c with T3, 75 and T3.

We can clearly identify the center domains by plotting [, as a function of = and
y for a constant z which is shown in figures 5.9 to 5.11. From the plots in figures 5.9
to 5.11, we can follow the formation of the center domains over time starting from small
fluctuations at the initial state to the final state where we can clearly see the pattern of
the center domains at time ¢ = 25 fm/c. When the center domains are fully developed,
the border lines between them are more sharp, the expansion of domains has stopped,
and only very small fluctuations occur. From figures 5.9 to 5.11, we can also see that
size of center domains is influenced by sigma, a higher sigma value of sigma results in

a larger size of center domains.
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Figure 5.9 Plan plot of [, from time 0 - 25 fm/c with 77.
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Figure 5.10 Plan plot of /5 from time 0 - 25 fm/c with 75.
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Figure 5.11 Plan plot of /5 from time 0 - 25 fm/c with 5.
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5.3 Decay of center domains

We now study the decay of center domains via the average value of the standard
deviation of /5. Here, the standard deviation is defined again as in equation (4.5). Af-
ter finishing the formation of center domains at ¢ = 25 fm/c, we suddenly decrease all
temperatures to a new value 77 = T, = T3 = 200 MeV. With this temperature below
T., the center domains will start to decay. Investigation of decay of center domains here
is started from ¢ = 26 to 50 fm/c. Thus, from the simulation we obtain three graphs of

standard deviation versus time, see figures 5.12, 5.13 and 5.14.

0.26

0.24 R

0.22 I i

0.2 H i

SDof1,

0.18 .
0.16 H _
0.14 .

0.12 ‘ ‘ ‘ ‘
30 35 40 45 50

t (fm/c)

Figure 5.12 Evolution of standard deviation from time 26 - 50 fm/c with 7.
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Figure 5.13 Evolution of standard deviation from time 26 - 50 fm/c with 75.
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Figure 5.14 Evolution of standard deviation from time 26 - 50 fm/c with 75.
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Finally, we put those three graphs into a comparing graph
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Figure 5.15 Evolution of standard deviation from time 26 - 50 fm/c with 7}, T5 and T3

We can clearly identify center domains by plotting [, as a function of x and y
for constant z which is shown in figures 5.16 to 5.21. To investigate the decay of center
domains, we focus on times when upper and lower peaks in standard deviations occur.
Considering times at upper peaks, the center domains slowly decay to some small fluc-
tuation state which looks similar to an initial state of our simulation. These final states
have some unique values of the standard deviation depending on temperature. Focusing
on lower peaks, center domains decay extremely fast to a fluctuation state which has a
value of standard deviation lower than the final state. However, these standard deviation

will be increased from peak to peak until the final state is reached.
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Figure 5.16 Plan plot of /5 from time 26 - 50 fm/c with 77.
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Figure 5.17 Plan plot of /5 from time 26 - 50 fm/c with 77.
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Figure 5.18 Plan plot of /5 from time 26 - 50 fm/c with 75.

3" upper peak (L¢27.390 fm/c);

40 45 50

39



{'. t=25.0fm/ic i 1% jower peak (t = 25.265 fm/c)
;.
= i 'l
= W,
wh L] ‘

Y (fm)

e o

L
W 4
3 &

2" jower peak (t =26.050 fm/c) 3" lower peak (t'=26.810 fm/c)

Y (fm)

4" lower peak (t=27.560 fm/¢) /'= 50.0 fm/c

Y (fm)

5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
X (fm) X (fm)

Figure 5.19 Plan plot of /5 from time 26 - 50 fm/c with 75.
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Figure 5.20 Plan plot of /5 from time 26 - 50 fm/c with 5.
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Figure 5.21 Plan plot of /5 from time 26 - 50 fm/c with 5.
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CHAPTER VI

CONCLUSIONS AND DICUSSIONS

In pure gauge theory, the Polyakov loop has the ability to distinguish between
confined and deconfined phase. By constructing an effective Lagrangian from the
Polyakov loop potential and a phenomenological kinetic term we can obtain equations
of motion (3.7) and (3.8). Studying the evolution of the center domains in QGP can
be done by a time-dependent Polyakov loop simulation which solves the equations of
motion for the Polyakov loop value in (3+1) dimensions. In (Borsanyi et al., 2011),
the domain size is shown to be dependent on temperature, furthermore, in our work,
the domains size is also influenced by the surface tension (o) which is a coefficient
in the equations of motion (3.7) and (3.8). At high temperature or sigma, the domain
size is big while at low temperature or sigma, the domain size is small, see figures
4.3 and 5.4. From our simulation, the result shows that, during the formation, small
fluctuations around zero in the initial state evolve into domain structures with three
different types of domains according to local breakdown of Z35 symmetry. From our
simulation, the estimated formation time of center domains is about 3 — 7 fm/c, see
figure 5.8, significantly smaller than the estimated QGP lifetime in heavy-ion collision
from (Bass and Dumitru, 2000) which is about 13 fm/c, see figure 6.1. The model that
used in (Bass and Dumitru, 2000) is Hydro + UrQMD model. Here, open symbols

show distributions for a purely hydrodynamical calculation, solid symbols show the
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Figure 6.1 Heavy-ion collision rates at LHC energy.

full calculation with hadronic rescattering. The given formation time is short enough
to make center domains possible and necessary to consider in a QGP state. We can
see fluctuations in the deviation during the decay of center domains, which takes about

7 — 20 fm/c before returning to a state with small fluctuations at temperatures below 7.
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APPENDIX B

NATURAL UNITS

In natural units 2 = ¢ = kg = 1, we have

h
h = 5 = 6:5821 x 107% GeV -s =1, (0.1)
m

and

c=29979 x 10°m-s~ ! =1, (0.2)

where h is the Planck constant, & is the reduced Planck constant, ¢ is the speed of light,

kp is the Boltzmann constant. From equations 0.1 and 0.2 , we obtain a useful relation
hic =1 = (6.5821 x 10”** MeV -)(2.9979 x 10* fm-s™ ') = 197.3 MeV - fm (0.3)

where 1 fm (femtometer or fermi) = 1x 107'° m. In high energy physics, energy and
mass are frequently measured in a unit of GeV (giga electronvolt), meanwhile length
and time are measured in a GeV~! or fm. Note that to make a difference between units
of length and time, we can write unit of time as fm/c. Due to the relation in equation 0.3,
we can easily convert between GeV~! and fm. In high energy physics, electromagnetic

unit can be measured either in Lorentz—Heaviside units or Gaussian units, see table B.1.



Table B.1 Natural units in particle physics.

53

Unit Metric value
Length lev! 1.97 x 107" m
Time lev! 6.58 x 10716 s
Mass leV 1.78 x 10730 kg
Temperature 1eV 1.16 x 10* K
Electric charge 1 unit of electric charge 5.29 x 10719 C
(L-H unit)
Electric charge 1 unit of electric charge 1.88 x 107¥ C

(Gaussian unit)
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APPENDIX C

CODE IMPLEMENTATIONS

Code: Global variables

module global vars
use, intrinsic :: iso fortran env

implicit none

! variables for Polyakov loop potential

real , parameter, public :: a =664.0 | [MeV]
real , parameter, public :: b = 0.0075¢9 ! [MeV"3]
real , parameter, public :: hc =197.3 | [MeV*fm]

! sigma and temperatures
real , public :: Temp=283.5! [MeV]

real, public :: sigma=0.08 ! []

'real, public' :: Temp=297! [MeV]

'real, public :: sigma=0.3 ! []

P £ 1 o VAR S P

I'teal, public :: Temp=310.5"! [MeV]

'real, public :: sigma= 0.7 ! []

! variables for time—dependent Polyakov loop simulation

integer , parameter, public :: t size = 10000 ! [] number of time step
integer , parameter, public :: lattice size = 101! [] size of lattice
real , parameter, public :: delta t =0.005 ! [fm] time interval

real , parameter, public :: delta lattice = 0.5 ! [fm]

integer , parameter, public :: x size = lattice size ! [] size of x

integer , parameter, public :: y size = lattice size ! [] size of y
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Code (Cont.): Global variables

integer , parameter, public :: z size = lattice size ! [] size of z

! constants representing time at 1st, 2nd and 3rd time step
integer , parameter, public :: t at 3 =3 ! [] constant
integer , parameter, public :: t at 2 =2 ! [] constant

integer , parameter, public :: tat 1 =1 ! [] constant

! declare array 11 which contains real part Polyakov loop values
! and array 12 contains imaginary part Polyakov loop values

real , dimension (:,:,:,:) , allocatable , public :: 11, 12

! array of standard deviations

real , dimension(t size ), public :: deviation

! output array of correlation function

real , dimension(t size, int( lattice size — 1)/2), public :: r_list

! dummy variables for handling index shifting
integer , public :: x plus 1, y plus 1, z plus 1

integer , public :: x min 1,y min 1,z min 1

end module global vars

55

Code: Differentiating Potential Function

module misc_func
use global vars

implicit none

contains
! periodic boundary conditions
integer function period bound conds(n)

implicit none
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Code (Cont.): Differentiating potential function

integer , intent (in) :: n

if (n < 1) then

period bound conds = lattice size + n
else if(n > lattice size ) then

period bound conds= n — lattice size
else

period bound conds =n

end if

return

end function period bound conds

! apply PBCs
subroutine apply period bound conds(z, y, x)
implicit none

integer , intent (in) : z, y, X

x_min_1 = period bound conds(x — 1)
y_min_1 = period_bound conds(y — 1)
z min 1| = period bound conds(z — 1)
x_plus 1 = period bound conds(x + 1)
y_plus_1 = period bound conds(y + 1)
z plus_1 = period bound conds(z + 1)

end subroutine apply period bound conds

! function for finding standard deviation

real function find deviation (1)
implicit none
real , dimension(z size, y size, x size), intent(in) :: 1
integer :: z, y, X

real :: 1 avg

56




42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

Code (Cont.): Differentiating potential function

real :: sum_val

1 avg = 0.0

sum_val = 0.0

doz =1, z size
doy =1, y size
dox =1, x size
l avg =1 avg + I(z, y, x)
end do
end do
end do

doz =1, z size
doy =1, y size

dox =1, x size
end do

end do
end do

return

end function find deviation

end module misc_func

1 avg =1 avg/( real (z_size*y size*x size))

sum_val =sum_val+ (I(z , y, X) — 1 avg)**2

find deviation = sqrt(sum_val/real ((z size*y size*x size)))
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Code: Differentiating Potential Function
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module diff U
use global vars

implicit none

contains
! function for differentiating In(P) by 11 or 12
real function diff In P func (diff by, 11, 12)
implicit none
character (len=2), intent (in) :: diff by
real , intent (in) :: 11, 12
real :: P, diff P, diff In P

P= (10 — 6.0%(11*%2 + 12#%2) &
— 3.0%(11%%2 + 2**2)**2 &
+ 4.0%(2.0%11%*3 — 6.0%11*12%*2))

diff In P = 1.0/P

if (diff by .eq. ”117”) then
diff P = (—12.0*%11 — 12.0%(11**2 + 12**2)*11 &
+ 24.0%11%*2 — 24.0*12%*2)
else ! or else if(diff by .eq. 7127) then
diff P = (—12.0*%12 — 12.0*%(11**2 + 12**2)*12 — 48.0*11*12)
end if

diff In_P_func = diff In P*diff P

return

end function diff In P_func

! function for differentiating potential by I1 or 12
real function diff U func(diff by, 1, 11, 12)
implicit none
character (len=2), intent (in) :: diff by

real , intent (in) :: 1, 11, 12
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Code (Cont.): Differentiating potential function

diff U func = &
—b*Temp*(2.0*¥54.0*%exp(—a/Temp)*1 & | [MeV"3][MeV]
+ diff In P_func (diff by, 11, 12)) &! [MeV"4]
/hc**3 I [MeV/3*fm"3]
return

end function diff U func

end module diff U

59

Code: Finding Polyakov loop

module solve partial diff
use global vars
use misc_func
use diff U

implicit none

contains
! function for solving Laplace function
real function laplace 1(1, t, z, y, X)

implicit none

integer , intent (in) :: t, z, y, X

call apply period bound conds(z, y, X)

! operate laplace operator on 1
laplace 1 = ( &
I(t, z, y, x plus 1) &
+ 1(t, z, y plus 1, x) &
+1(t, zplus 1, y, x) &
—6.0*1(t, z, y, x) &

real , dimension(t at 3,z size, y size, X size), intent (in) ::
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Code (Cont.): Finding Polyakov loop

+1(t, z, y, x min_1) &
+ 1(t, z, y min 1,x) &
+1(t, zmin 1,y, X) &
)/ delta lattice **2 ! [1/fm"2]

return

end function laplace 1

! function for solving diff equation to find Polyakov loop value
real function find 1(diff by, 1, t, z, y, x)

implicit none

diff U func(diff by, 1(t—1,z, y, x), & ! [MeV/fm"3]
1(t—1,z, vy, x), &

2(t—-1,z, y, X)) &

*he & ! [MeV*fm]
*delta t**2 & I [fm”2]

) /(sigma*270.0**2) I [MeV"2]

return

end function find 1

end module solve partial diff

character (len=2), intent (in) :: diff by
real , dimension(t at 3, z size, y size, x size), intent(in) :: 1
integer , intent (in) :: t, z, y, X
find 1 =( &
2.0%1(t—1,2z, y, x) —1(t—2,z, y, X) &
+ laplace 1(1, t—1,z, y, x) & I [I/fm"2]
*delta t**2 & ! [fm"2]
) &
(&
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Code: Two-point correlation function
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module two_point_corr
use global vars
use misc_func
implicit none
integer , parameter :: num round = 1000
integer :: center x, center y, center z

integer :: start z, start y, start X

contains
! function for generating arbitrary center points .
subroutine rand center (t)

implicit none

integer , intent (in) :: t

real :: rand z, rand y, rand x

integer , dimension(12):: date time

integer , dimension(12):: seed

call date and time(values=date time)
call random_seed
seed = date_time(6) * date time(7) + date time(8)

call random seed(put = seed)

call random number(rand z)
center z = int( ceiling (rand z* lattice size ))
call random number(rand y)
center y = int( ceiling (rand y* lattice size ))
call random number(rand x)

center x = int( ceiling (rand x* lattice size ))

return

end subroutine rand center

! function for finding output of correlation function
function find r(t)

implicit none
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Code (Cont.): Two-point correlation function

integer , intent (in) :: t
integer : X, y, z, x index, y index, z index
integer :: start x, start y, start z

integer :: end X, end y, end z

integer :: r, i, j, k, round loop

integer :: count num

real , dimension(num round, int( lattice size — 1)/2) :: r list
real , dimension(int( lattice size — 1)/2) :: find r

do round loop = 1, num round
call rand center(t)

dor =1, ( lattice size — 1)/2

count_ num =0

r_list (round loop, r) =0

start z center z —r

start y = center y —r
start X = center X —r
end z= center z +r
end y= center y +r

end x = center X +r

do z = start z, end z
doy = start y, end y

do x = start x, end x

if (x — center_x)**2 + (y — center_y)**2 + &
(z — center_z)**2 >=(r — 0.5)**2 .and. &
(x — center_x)**2 + (y — center_y)**2 + &

(z — center_z)**2 < (r + 0.5)**2) then
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Code (Cont.): Two-point correlation function

z_index = period bound conds(z)
y_index = period bound conds(y)

x_index = period bound_ conds(x)

r_list (round loop, r) = r_list (round loop, r) +&
(12(t, center z, center y, center x) &
*12(t, z index, y index, x index))

count_num = count_num + |

end if
end do
end do
end do
r_list (round loop, r) = r_list (round loop, r)/count num
end do
end do

dor =1, ( lattice size — 1)/2
find r(r) =0
do round loop = 1, num_round
find r(r) = find r(r) + r_list (round loop, r)
end do
find r(r) = find r(r)/num round

end do

return

end function find r

end module two_point_corr
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