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Center domains are structures based on spontaneous breakdown of center sym-

metry as expected in quark-gluon plasma (QGP) from lattice QCD calculations. Each

domain is characterized by a finite value of the Polyakov loop, which here serves as an

order parameter to distinguish between confined and deconfined phase. Center domains

might possibly occur in heavy-ion collision and may have influence on observable like

viscosity or elliptic flow. In this work, we develop a fully dynamical model for the

Polyakov loop based on an effective potential and a phenomenological kinetic term.

Studying the time evolution of the Polyakov loop allows us to study formation and de-

cay of center domains in the QGP. The results of this simulation give us insight into the

formation procedure during a heavy-ion collision and help us understand how the do-

main size is influenced by temperature and the kinetic coefficient in our model. We find

that the domain size grows with this coefficient, together with recent data from lattice

QCD, where the domain size was calculated as a function of temperature, we can fix the

value of the kinetic coefficient as a function of temperature. Finally, we determine the

formation time of domains and find it within the lifetime of a QGP at LHC energies,
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therefore making the formation of center domains a relevant effect that needs to be

considered in future calculations.
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CHAPTER I

INTRODUCTION

In the past, people believed that all elements in nature were composed of indivis-

ible particles called atoms. The first group of people who considered the concept of an

atom were ancient Greek and Indian philosophers, studying so-called Atomism. Atom-

ism comprises the idea that all elements in nature consist of atoms and voids. However,

the crucial problem of Atomism was the lack of experimental evidence. Note that, in

modern science, any theory requires experimental support to be verified. In the 19th

century, the study of atoms became famous again under the name of Atomic Theory.

This Atomic Theory was developed by John Dalton, an English chemist, physicist and

meteorologist, see figure 1.1. The origin of the theory was not well understood. How-

ever, the theory was later verified by many experimental results from other works. The

idea of his theory can be summarized in four statements:

1. All elements in nature are made of atoms where one atom is indivisible and

indestructible,

2. Any single element is composed of atoms which are identical in size, mass

and other properties, different elements have different types of atoms,

3. Any two or more elements can form chemical compounds with an integer

ratio,

4. A chemical reaction is a rearrangement of atoms.
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Figure 1.1 Illustrations of atoms and molecules from John Dalton’s book, “A New Sys-

tem of Chemical Philosophy (1808)”.

This was the first time when scientists had gained an empirical understanding about

matter. So, with this success, the Atomic Theory of Dalton is considered as a foundation

of particle physics and another related fields in a few centuries later.

Later, contrary to some ideas of the Atomic Theory of Dalton, physicists found

that atoms are not indivisible, but contain smaller particles such as electrons, protons

and neutrons. Moreover, from modern particle physics, we know that even protons and

neutrons are composed of smaller particles called quarks, see figure 1.2 for a table of

elementary particles as they are known today.

After the Big Bang, our universe started to expand and cool, resulting in sev-

eral phases and phase changes to the contained matter. All those phases have different

thermodynamic properties. In this work, we focus on one of the early phases called

quark-gluon plasma (QGP). The QGP is a primordial state of matter created at about
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Figure 1.2 Standard model of elementary particles shows various particles that have

been observed so far, figure by MissMJ, used under CC BY 3.0.

10−5 s after the Big Bang, The term of QGP denotes matter composed of two elementary

particles:

Quarks, which are considered as fundamental constituents of matter.

Gluons, which act as carriers of the strong nuclear force between quarks.

From the QGP phase, hadrons emerged after further cooling, later atomic nuclei, atoms,

and finally gravitating large-scale structures such as stars and galaxies. In the QGP

phase, quarks and gluons are in no bound state under the extremely hot and dense con-

ditions. The theory describing the interaction of quarks and gluons due to so called

color charges (red (R), green (G) and blue (B)) is Quantum Chromodynamics (QCD)

which was first proposed by Nambu in 1966. One remarkable feature of QCD which

distinguishes hadronic matter from aQGP is called confinement. In confinement, quarks

are bound together in color-neutral particles such as baryons and mesons. Baryons are

composite particles made up of three quarks e.g. protons (p), neutrons (n). Mesons are
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composite particles made up of one quark and one antiquark e.g. pions (π), kaons (K).

In contrast to that, in QGP the relevant degrees of freedom carry color charge, matter is

deconfined. Nevertheless, isolated color charges have never been observed experimen-

tally. Another characteristic property that distinguishes the QGP from the hadron gas

is the restoration of chiral symmetry at high temperatures. The QGP can be found or

created in 1) The early universe at about 10−5 s after the Big Bang, 2) Superdense stars

such as neutron stars or quark stars, 3) Heavy-ion collisions.

Nowadays, heavy-ion collisions are done by colliding two heavy nuclei at ultra-

relativistic energies using large accelerator facilities. At the moment such experiments

are performed at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National

Laboratory and the Large Hadron Collider (LHC) at CERN. At RHIC, scientists found

evidence for the formation of a strongly interacting quark-gluon plasma (sQGP) (Arsene

et al., 2005; Adcox et al., 2005; Back et al., 2005; Adams et al., 2005; Gyulassy and

McLerran, 2005; Müller and Nagle, 2006), based on the discoveries of 1) Elliptic Flow

2) Low ratio of shear viscosity to entropy density η/s 3) Jet quenching. These evidences

show that the sQGP behaves rather like an ideal fluid than a gas of non-interacting

particles.

From lattice QCD studies (Danzer et al., 2010; Borsanyi et al., 2011), the ex-

istence of so called center domains was confirmed. Center domains are structures that

have recently claimed to be responsible for some crucial properties of QGP (Asakawa

et al., 2013). In (Asakawa et al., 2013), the authors argue that two important properties

of QGP, low shear viscosity and jet quenching can be explained by the formation of cen-

ter domains in the QGP. This was our motivation to study the behavior and dynamics
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Figure 1.3 Schematic of center domains where ν = 0, ν = 1 and ν = 2 are different in

types of domains, from (Asakawa et al., 2013).

of center domains in QGP. In (Asakawa et al., 2013), it is argued that domain walls act

as potential barriers for in-medium particles, thus limiting their free wavelength, which

accounts for a small value of η/s. On the other hand, jets may rapidly lose their energy

in the medium via interaction with the walls and subsequent radiation of soft gluons, see

figure 1.3.

Our research here focuses on developing a dynamical model for an effective

Polyakov loop field in a QGP. We use a phenomenological Lagrangian from a Polyakov

loop potential and a phenomenological kinetic term. Then we study the evolution of

the Polyakov loop field in (3+1) dimensions. We hereby restrict ourselves to the case

of a medium with a homogeneous temperature. We expect to be able to observe the

formation of center domains after changing the global temperature from below to above

the critical temperature Tc. Our goal is to give estimates for the formation and decay

time of domains to better understand their possible role in heavy-ion collisions.



CHAPTER II

POLYAKOV LOOP POTENTIAL

Center domains occur due to the spontaneous breakdown of center symmetry

Z(3) ⊂ SU(3) at high temperatures. Therefore, the existence of center domains is

expected in a QGP phase. In QCD, one way to distinguish between QGP phase and

hadronic phase is using confinement. Confinement can be mathematically described by

the Polykov loop potential. The Polyakov loop arises from pure SU(3) gauge theory,

where it serves as an order parameter which distinguishes between a center symmetric

confined phase and a deconfined phase where this symmetry is broken.

2.1 Polyakov loop potential

The fundamental Polyakov loop is defined as

L(x⃗) =
1

3
tr P exp

[
ig

∫ 1/T

0

A4(τ, ⃗x)dτ

]
, (2.1)

where P denotes the path-ordering operator, g is the strong coupling constant, T is the

temperature and A4 is the temporal component of a static gluon background field in

Euclidean space-time. From fits of lattice QCD data (Boyd et al., 1996) in the pure

gluon sector, we obtain a potential for the Polyakov loop (Roessner et al., 2007)

U(L) = −bT [54e−a/T |L|2 + lnP (L,L†)], (2.2)

where L is the Polyakov loop, T is the temperature, a = 0.664 GeV, b = 0.0075 GeV3

andP (z, z̄)= 1−6 |z|2−3 |z|4+4(z3+z̄3). Figures 2.1 to 2.3 show plots of the Polyakov
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loop potential in the complex plane L = l1 + il2 with temperatures T = 100MeV,

T = 300MeV and T = 500MeV respectively. The equilibrium point of the potential

is shifted from one point in figure 2.1 to three points in figure 2.3, due to the spontaneous

breakdown of center symmetry Z(3) at the critical temperature of T = Tc = 270MeV.

Effective potentials for the Polyakov loop are often used in low-energy models such

as the Polyakov loop Nambu-Jona-Lasinio (PNJL) model (Fukushima, 2004) or the

Polyakov-Quark-Meson (PQM) model (Schaefer et al., 2007; Herbst et al., 2011). In

pure gauge theory, the Polyakov loop is related to the free energy of an infinitely heavy

static quark FQ(T ) by

FQ(x⃗, T ) = −T ln |⟨L(x⃗, T )⟩| , (2.3)

where

In confinement: FQ is infinite, ⟨L⟩ = 0,

In deconfinement: FQ is finite, ⟨L⟩ > 0.

T = 100 MeV
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Figure 2.1 Contour plot of Polyakov loop potential at T = 100MeV.
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T = 300 MeV
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Figure 2.2 Contour plot of Polyakov loop potential at T = 300MeV.

T = 500 MeV
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Figure 2.3 Contour plot of Polyakov loop potential at T = 500MeV.

2.2 Thermodynamic properties

From equations (2.2) and (2.3), we can study thermodynamic properties of pure

gluon QCD, such as pressure, energy density, entropy density and free energy density of
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test quarks as a function of temperature. By this, we can understand the consistency of

the Polyakov loop potential with pure gauge QCD. We will therefore also see that there

is a first-order phase transition from the Polyakov loop potential. However, from lattice

QCD we know that there is no phase transition for zero chemical potential, but rather

an analytic crossover (Aoki et al., 2006). We might expect a first-order phase transition

for high density or chemical potential (Scavenius et al., 2001; Schaefer and Wambach,

2005).

In figure 2.4, we track a minimum point of the Polyakov loop potential under

the transition from T = 0MeV to T = 500MeV. Above the critical temperature Tc,

there are three degenerate ground states according to three minima in the potential. The

absolute value of the Polyakov loop in figure 2.5 is able to identify the phase of our

system, where in the confined phase L equals 0 and in the deconfined phase ranges from

about 0.5 to 1.0. From the data in figures 2.4 and 2.5, we can further find the pressure

as the negative value of the potential, see figure 2.6, the entropy density which is the

derivative of the pressure with respect to temperature, see figure 2.7, the free energy of

a heavy static quark according to equation (2.3), see figure 2.8 and finally, the energy

density which can be found from the relation e = Ts− p, see figure 2.9.

From these plots we can clearly identify Tc at 270 MeV from the kink in the

pressure and the discontinuity in L, s and e as functions of T .
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Figure 2.4Minimum point of the Polyakov loop potential as a function of T .
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Figure 2.5 Absolute value of the Polyakov loop in the equilibrium as a function of T .
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Figure 2.6 Pressure of the Polyakov loop potential as a function of T .
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Figure 2.8 Free energy of a heavy static quark as a function of T .
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Figure 2.9 Energy density of the Polyakov loop potential as a function of T .



CHAPTER III

EQUATIONS OF MOTION

Our goal is to study the dynamics of center domains in QGP via the Polyakov

loop. As the Polyakov loop has no explicit time dependence, we have to pursue a phe-

nomenological ansatz similar to what has been proposed in (Dumitru and Pisarski, 2001;

Herold et al., 2013; Fraga et al., 2007) to study its dynamics. We write down the La-

grangian density as

L =
σ

2
T 2∂µL∂

µL̄− U(L, L̄), (3.1)

where σ is a dimensionless parameter playing the role of a surface tension that we have

to determine later by comparison with the domain size from lattice QCD data (Borsanyi

et al., 2011). Splitting the complex-valued Polyakov loop into its imaginary and real

part L = l1 + il2 and L̄ = l1 − il2, equation (2.2) becomes

U(l1 + il2) = − bT [54e−a/T |l1 + il2|2 + lnP (l1 + il2, (l1 + il2)
†)]

= − bT [54e−a/T (l21 + il22) + lnP (l1 + il2, l1 − il2)]. (3.2)

For the polynomial function P we obtain

P (l1 + il2, l1 − il2) = 1− 6 |l1 + il2|2 − 3 |l1 + il2|4 + 4((l1 + il2)
3 + (l1 − il2)

3)

= 1− 6(l21 + il22)− 3(l21 + il22)
2 + 4(l31 + 3il21l2 − 3l1l

2
2 + l32)

+ 4(l31 − 3il21l2 − 3l1l
2
2 − l32)

= 1− 6(l21 + l22)− 3(l21 + l22)
2 + 4(2l31 − 6l1l

2
2).
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In equation (3.1) ∂µL∂µL can be written as

∂µL∂
µL = ∂µ(l1 + il2)∂

µ(l1 − il2)

= (∂µl1 + i∂µl2)(∂
µl1 − i∂µl2)

= ∂µl1∂
µl1 + ∂µl2∂

µl2. (3.3)

From the general Euler–Lagrange equation:

∂µ

(
∂L

∂(∂µφ)

)
− ∂L

∂φ
= 0, (3.4)

and equation (3.3), we have the first Euler–Lagrange equation for the real part of the

Polyakov loop

∂

∂xµ

∂L
∂(∂µl1)

=
∂L
∂l1

, (3.5)

and the second Euler–Lagrange equation for the imaginary-part of the Polyakov loop

∂

∂xµ

∂L
∂(∂µl2)

=
∂L
∂l2

. (3.6)

From the Euler-Lagrange equations (3.5) and (3.6), the phenomenological La-

grangian (3.1) and the complex valued Polyakov loop potential (3.2), we can now find

the equations of motion. We begin with the equation of motion for the real part of the

Polyakov loop l1
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∂L
∂l1

=
∂

∂l1

[
σ

2
T 2(∂µl1∂

µl1 + ∂µl2∂
µl2)− U(l1, l2)

]

=
∂

∂l1
U(l1, l2)

=
∂

∂l1

[
− bT [54e−a/T (l21 + il22) + lnP (l1 + il2, l1 − il2)

]

= − 108bTe−a/T l1 +
[ 1

P (l1 + il2, l1 − il2)

∂

∂l1
P (l1 + il2, l1 − il2)

]

= − 108bTe−a/T l1 +
[ 1

P (l1 + il2, l1 − il2)

∂

∂l1
(1− 6(l21 + l22)

− 3(l21 + l22)
2 + 4(2l31 − 6l1l

2
2))

]

= − 108bTe−a/T l1 +
(−12l1 − 12l1(l21 + l22) + 24l21 − 24l22)

P (l1 + il2, l1 − il2)

= − 108bTe−a/T l1 +
(−12l1 + 24l21 − 12l31 − 12l1l22 − 24l22)

P (l1 + il2, l1 − il2)
,

∂

∂xµ

∂L
∂(∂µl1)

=
∂

∂xµ

∂

∂(∂µl1)

[
σ

2
T 2(∂µl1∂

µl1 + ∂µl2∂
µl2)− U(l1, l2)

]

=
∂

∂xµ
σT 2∂µl1.

From ∂l1
∂xµ = ∂µl1 and assuming that T does not depend on xµ, we get

∂

∂xµ

∂L
∂(∂µl1)

= σT 2∂µ∂µl1.

Thus, for the equation of motion for the real part of the Polyakov loop we get

σT 2∂µ∂
µl1 +

∂

∂l1
U(l1, l2) = 0. (3.7)

The equation of motion for the imaginary part of the Polyakov loop l2 can be derived in

the same way as for l1
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∂L
∂l2

=
∂

∂l2

[
σ

2
T 2(∂µl1∂

µl1 + ∂µl2∂
µl2)− U(l1, l2)

]

=
∂

∂l2
U(l1, l2)

=
∂

∂l2

[
− bT [54e−a/T (l21 + il22) + lnP (l1 + il2, l1 − il2)

]

= − 108bTe−a/T l2 +
[ 1

P (l1 + il2, l1 − il2)

∂

∂l2
P (l1 + il2, l1 − il2)

]

= − 108bTe−a/T l2 +
[ 1

P (l1 + il2, l1 − il2)

∂

∂l2
(1− 6(l21 + l22)− 3(l21 + l22)

2

+ 4(2l31 − 6l1l
2
2))

]

= − 108bTe−a/T l2 +
(−12l2 − 12(l21 + l22)l2 − 48l1l2)

P (l1 + il2, l1 − il2)

= − 108bTe−a/T l2 +
(−12l2 − 12l21l2 + 12l1l22 − 48l1l2)

P (l1 + il2, l1 − il2)
,

∂

∂xµ

∂L
∂(∂µl2)

=
∂

∂xµ

∂

∂(∂µl2)

[
σ

2
T 2(∂µl1∂

µl1 + ∂µl2∂
µl2)− U(l1, l2)

]

=
∂

∂xµ
σT 2∂µl2.

From ∂l2
∂xµ = ∂µl2 where T again does not depend on xµ, we get

∂

∂xµ

∂L
∂(∂µl2)

= σT 2∂µ∂µl2.

Thus, for the equation of motion for the real part of the Polyakov loop we get

σT 2∂µ∂
µl2 +

∂

∂l2
U(l1, l2) = 0. (3.8)

Equations (3.7) and (3.8), will later be used to simulate the dynamics of the

Polyakov loop solved by some numerical method in chapter IV. Note that, consider-

ing figures 2.1 to 2.3, we can see that l1 is fit for distinguishing between confined and
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deconfined phase similar to |< L >|, whereas l2 is fit for distinguishing between three

types of center domains in the deconfined phase.



CHAPTER IV

SIMULATION METHOD

Studying the evolution of the center domains can be done by a time-dependent

Polyakov loop simulation which numerically solves the equations of motion (3.7) and

(3.8) in (3+1)-dimensions. The given space-time lattices are 1) space-time lattice for

the real part of the Polyakov loop l1, 2) space-time lattice for the imaginary part of

the Polyakov loop l2. Note again, confined and deconfined state of the system can

be distinguished by |< L >|, on the other hand types of the center domains cannot be

distinguished by |< L >| but rather l2, see section 2.1.

4.1 Numerical implementation

Solving equations (3.7) and (3.8) requires some numerical method. In (Cassol-

Seewald et al., 2012), a useful method for solving partial differential equations is pro-

vided, to apply that method to our problem, we start from writing equations (3.7) and

(3.8) into a discrete form

σT 2

(
∂2ln−1

∂t2
− ∇⃗2ln−1

)
+

∂

∂ln−1
U(l1, l2) = 0, (4.1)

ln here corresponds to either the real part of the Polyakov loop l1 or the imaginary part

of the Polyakov loop l2 at time interval n where time t = n∆t with n = 1, 2, 3, ... We
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can write the time derivatives as

∂ln−1

∂t
= l̇n−1 =

1

2
(l̇n−1/2 + l̇n−3/2),

l̇n−1/2 =
1

∆t
(ln − ln−1),

l̇n−3/2 =
1

∆t
(ln−1 − ln−2),

∂2ln−1

∂t2
= l̈n−1 =

1

∆t
(l̇n−1/2 − l̇n−3/2).

Equation (4.1) becomes

σT 2

(
1

∆t2
(ln − 2ln−1 + ln−2)− ∇⃗2ln−1

)
+

∂

∂ln−1
U(l1, l2) = 0,

ln = 2ln−1 − ln−2 +∆t2
(
∇⃗2ln−1 −

1

σT 2

∂

∂ln−1
U(l1, l2)

)
. (4.2)

Consider the Laplacian operator

∇⃗2ln−1
ijk =

∂2ln−1
ijk

∂2x
+

∂2ln−1
ijk

∂2y
+

∂2ln−1
ijk

∂2z

=
1

∆x

[(
ln−1
i+1jk − ln−1

ijk

∆x

)
−
(
ln−1
ijk − ln−1

i−1jk

∆x

)

+

(
ln−1
ij+1k − ln−1

ijk

∆x

)
−
(
ln−1
ijk − ln−1

ij−1k

∆x

)

+

(
ln−1
ijk+1 − ln−1

ijk

∆x

)
−
(
ln−1
ijk − ln−1

ijk−1

∆x

)]

=
1

∆x2
[ln−1
i+1jk + ln−1

ij+1k + ln−1
ijk+1 − 6ln−1

ijk + ln−1
i−1jk + ln−1

ij−1k + ln−1
ijk−1],

where i, j and k are positions on the Cartesian grid and ∆x is the lattice spacing. We

apply periodic boundary conditions for the spatial coordinates

i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

N + i, if i < 1.

i−N, if i > N.

i, otherwise.

(4.3)
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where i is a position on the x−, y− or z−axis andN is the maximum size of the space-

time lattice in one dimension. In the equations of motion (4.2), the value of the Polyakov

loop at any time t can be calculated from its previous values at times n− 1 and n− 2.

4.2 Numerical parameters

Table 4.1 Numerical parameters.

Variable Meaning Value

∆t time step 0.005 (fm/c)

∆x lattice spacing 0.5 (fm)

N size of lattice in one

dimension

100

Note that the values of ∆t and ∆x are determined according to the Courant–

Friedrichs–Lewy condition where the ratio of ∆t/∆x is supposed to be small enough

to ensure numerical stability. N has to be chosen large enough for the lattice to be able

to contain several larger domains. However, our choice of these numerical parameters

is also based on several test runs.

4.3 Initial conditions

At times t = 0.005 fm/c and t = 0.01 fm/c, both real and imaginary part of the

Polyakov loop are initialized with Gaussian distributions of mean zero, corresponding to

their vacuum expectation value, and standard deviation 0.1. From figure 4.1, we can see

small fluctuations of the Polyakov loop correlated over a typical hadron-sized volume of
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1 fm3. This corresponds to the initial state in a heavy-ion collision before the creation of

the QGP. We can then change the temperature on our lattice to some value above Tc and

follow the evolution of the system in the deconfined phase, where the initial fluctuations

can amplify and form center domains.
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Figure 4.1 Small fluctuations in Polyakov loop at z = 0 fm and time t = 0.005 fm/c.

4.4 Fixing sigma

According to the equations of motion (3.7) and (3.8), there is one unknown vari-

able called sigma (σ), a coefficient playing the role of a surface tension which influences

the domain size, a large value of sigma gives a large domain size, by contrast, a small

value of sigma gives a small domain size, see figure 4.2. In order to develop a realistic

model, we need to fix the value of sigma. In figure 4.3 from (Borsanyi et al., 2011),

some useful information about the domain size as function of T is provided. The

domain size is defined as a physical diameter Dphy which is obtained from fitting the
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two-point correlation function C(x⃗− y⃗) of l2 to the exponential function

C(x⃗− y⃗) ∝ exp (− |x⃗− y⃗| /Dphy). (4.4)

Unfortunately, (Borsanyi et al., 2011) does not give us more data for higher tempera-

tures, so we can only make predictions for these given values and give a rough estimate

for sigma as a function of temperature in the regime near Tc. Thus in this work we con-

sider only the temperatures T1 = 1.05 Tc = 283.5MeV, T2 = 1.1 Tc = 297.0MeV and

T3 = 1.15 Tc = 310.5MeV.

We fix the coefficient σ using the following procedure:

1. Fix value of T according to information in figure 4.3,

2. Heuristically fix value of σ,

3. Run a simulation,

4. Calculate Dphy,

5. Compare given Dphy to figure 4.3,

6. If Dphy does not equal its value in figure 4.3, go back to step 2.

Figure 4.2 Space-time lattices with a different sigma values.
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Figure 4.3 Average diameter of domains for two resolution scales, (Borsanyi et al.,

2011).

Fast fixing of sigma can be done by a following binary search strategy

Searching procedure:

1. Find value of middle from list l,

2. Compare target to middle,

3. If target less than middle then:

remove middle and its right-hand side values from list l then go to 1;

else if target greater than middle then:

remove middle and its left-hand side values from list l then go to 1;

else: stop.

where l is list of values, middle is a value at middle of list l, target is a value that we

want to find.

Example:
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Problem: find a target value target = 8 in a sorted list l = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

Define middle as a value at middle of l, middle = 5. (1st procedure)

Is target = 8 equal to middle = 5? (2nd procedure)

False, then let l = [6, 7, 8, 9, 10]. (3rd procedure)

Define middle as a value at middle of l, middle = 8. (1st procedure)

Is target = 8 equal to middle = 8? (2nd procedure)

True, stop. (3rd procedure)

After finishing the iterative process of fixing sigma, we will obtain a reliable coefficient

to study the dynamics of domain formation in the range from 1 Tc to 1.2 Tc.

4.5 Tracking evolution of center domains

Since l1 distinguishes between confined and deconfined phase, l2 identifies the

type of minimum points in center domains. Both l1 and l2 are evolve from confined to

deconfined phase. In the deconfined phase, the existence of center domains is expected.

This leads to the question how to determine the time when center domains are formed.

Our solution proposes to solve this problem by using the standard deviation (SD).

The standard deviation at time t is defined as

SD =

√
1

N3

∑

i,j,k

(l2ijk − l̄2)2, (4.5)

where l̄2 is volume-averaged value of l2. If SD has reached a stable maximum value

as a function of time, we can conclude that the domain formation process is finished.

Note that, in our research, the standard deviation is then averaged over 100 events with

different initial conditions for each time t to ensure reliable results.



CHAPTER V

RESULTS

5.1 Sigma coefficient

Applying the iterative method introduced in section 4.4, we can obtain a reliable

value of sigma. In figure 5.1, we show the result of sigma for temperature T1 where

the dots indicate the two-point correlation function of l2 and the solid line is the fitted

exponential function (5.1) which is evaluated as

C(x⃗− y⃗) ∝ exp (− |x⃗− y⃗| /2.55 fm). (5.1)

The exponential function for temperature T2 is
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Figure 5.1 Exponential fit of the correlation function for T = 283.5MeV.

C(x⃗− y⃗) ∝ exp (− |x⃗− y⃗| /3.75 fm), (5.2)
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see figure 5.2 for the corresponding graph. For T3 we obtain

C(x⃗− y⃗) ∝ exp (− |x⃗− y⃗| /4.75 fm). (5.3)

The fitted correlation function of sigma for temperature T3, is shown in figure 5.3. Fi-

nally, we put all results of sigma to one graph in figure 5.4 and show sigma as function

of T and fit it to a third order polynomial:

σ(T ) = (1.37× 10−5(T − Tc)
3)/MeV3 + 0.10. (5.4)
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Figure 5.2 Exponential fit of the correlation function for T = 297.0MeV.
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Figure 5.3 Exponential fit of the correlation function for T = 310.5MeV.
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Figure 5.4 Sigma as a function of temperature.
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5.2 Formation of center domains

We study the time evolution of center domains via the average value of the

standard deviation of l2. Note again, in our simulation, there are only three distinct

temperatures that we will consider according to the information in figure 5.4, that are

T1 = 1.05 Tc = 283.5MeV, T2 = 1.1Tc = 297.0MeVandT3 = 1.15Tc = 310.5MeV.

From the simulation, we obtain three graphs of the standard deviation as a function of

time, see figures 5.5, 5.6 and 5.7.
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Figure 5.5 Evolution of standard deviation from time 0 - 25 fm/c with T1.
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Figure 5.6 Evolution of standard deviation from time 0 - 25 fm/c with T2.
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Figure 5.7 Evolution of standard deviation from time 0 - 25 fm/c with T3.
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Finally, we put those three graphs into a comparing graph
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Figure 5.8 Evolution of standard deviation from time 0 - 25 fm/c with T1, T2 and T3.

We can clearly identify the center domains by plotting l2 as a function of x and

y for a constant z which is shown in figures 5.9 to 5.11. From the plots in figures 5.9

to 5.11, we can follow the formation of the center domains over time starting from small

fluctuations at the initial state to the final state where we can clearly see the pattern of

the center domains at time t = 25 fm/c. When the center domains are fully developed,

the border lines between them are more sharp, the expansion of domains has stopped,

and only very small fluctuations occur. From figures 5.9 to 5.11, we can also see that

size of center domains is influenced by sigma, a higher sigma value of sigma results in

a larger size of center domains.
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Figure 5.9 Plan plot of l2 from time 0 - 25 fm/c with T1.
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Figure 5.10 Plan plot of l2 from time 0 - 25 fm/c with T2.
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Figure 5.11 Plan plot of l2 from time 0 - 25 fm/c with T3.
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5.3 Decay of center domains

We now study the decay of center domains via the average value of the standard

deviation of l2. Here, the standard deviation is defined again as in equation (4.5). Af-

ter finishing the formation of center domains at t = 25 fm/c, we suddenly decrease all

temperatures to a new value T1 = T2 = T3 = 200MeV. With this temperature below

Tc, the center domains will start to decay. Investigation of decay of center domains here

is started from t = 26 to 50 fm/c. Thus, from the simulation we obtain three graphs of

standard deviation versus time, see figures 5.12, 5.13 and 5.14.
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Figure 5.12 Evolution of standard deviation from time 26 - 50 fm/c with T1.
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Figure 5.13 Evolution of standard deviation from time 26 - 50 fm/c with T2.
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Figure 5.14 Evolution of standard deviation from time 26 - 50 fm/c with T3.
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Finally, we put those three graphs into a comparing graph
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Figure 5.15 Evolution of standard deviation from time 26 - 50 fm/c with T1, T2 and T3

We can clearly identify center domains by plotting l2 as a function of x and y

for constant z which is shown in figures 5.16 to 5.21. To investigate the decay of center

domains, we focus on times when upper and lower peaks in standard deviations occur.

Considering times at upper peaks, the center domains slowly decay to some small fluc-

tuation state which looks similar to an initial state of our simulation. These final states

have some unique values of the standard deviation depending on temperature. Focusing

on lower peaks, center domains decay extremely fast to a fluctuation state which has a

value of standard deviation lower than the final state. However, these standard deviation

will be increased from peak to peak until the final state is reached.
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Figure 5.16 Plan plot of l2 from time 26 - 50 fm/c with T1.
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Figure 5.17 Plan plot of l2 from time 26 - 50 fm/c with T1.
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Figure 5.18 Plan plot of l2 from time 26 - 50 fm/c with T2.
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Figure 5.19 Plan plot of l2 from time 26 - 50 fm/c with T2.
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Figure 5.20 Plan plot of l2 from time 26 - 50 fm/c with T3.
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Figure 5.21 Plan plot of l2 from time 26 - 50 fm/c with T3.



CHAPTER VI

CONCLUSIONS AND DICUSSIONS

In pure gauge theory, the Polyakov loop has the ability to distinguish between

confined and deconfined phase. By constructing an effective Lagrangian from the

Polyakov loop potential and a phenomenological kinetic term we can obtain equations

of motion (3.7) and (3.8). Studying the evolution of the center domains in QGP can

be done by a time-dependent Polyakov loop simulation which solves the equations of

motion for the Polyakov loop value in (3+1) dimensions. In (Borsanyi et al., 2011),

the domain size is shown to be dependent on temperature, furthermore, in our work,

the domains size is also influenced by the surface tension (σ) which is a coefficient

in the equations of motion (3.7) and (3.8). At high temperature or sigma, the domain

size is big while at low temperature or sigma, the domain size is small, see figures

4.3 and 5.4. From our simulation, the result shows that, during the formation, small

fluctuations around zero in the initial state evolve into domain structures with three

different types of domains according to local breakdown of Z3 symmetry. From our

simulation, the estimated formation time of center domains is about 3− 7 fm/c, see

figure 5.8, significantly smaller than the estimated QGP lifetime in heavy-ion collision

from (Bass and Dumitru, 2000) which is about 13 fm/c, see figure 6.1. The model that

used in (Bass and Dumitru, 2000) is Hydro + UrQMD model. Here, open symbols

show distributions for a purely hydrodynamical calculation, solid symbols show the
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Figure 6.1 Heavy-ion collision rates at LHC energy.

full calculation with hadronic rescattering. The given formation time is short enough

to make center domains possible and necessary to consider in a QGP state. We can

see fluctuations in the deviation during the decay of center domains, which takes about

7− 20 fm/c before returning to a state with small fluctuations at temperatures below Tc.



REFERENCES



46

REFERENCES

Adams, J., Aggarwal, M., Ahammed, Z., Amonett, J., Anderson, B., Arkhipkin, D.,

Averichev, G., Badyal, S., Bai, Y., Balewski, J., Barannikova, O., Barnby, L., Bau-

dot, J., Bekele, S., Belaga, V., Bellingeri-Laurikainen, A., Bellwied, R., Berger, J.,

Bezverkhny, B., Bharadwaj, S., et al. (2005). Experimental and theoretical chal-

lenges in the search for the quark–gluon plasma: The star collaboration’s critical

assessment of the evidence from rhic collisions. Nuclear Physics A. 757(1-2):

102-183. First Three Years of Operation of RHIC.

Adcox, K., Adler, S., Afanasiev, S., Aidala, C., Ajitanand, N., Akiba, Y., Al-Jamel, A.,

Alexander, J., Amirikas, R., Aoki, K., Aphecetche, L., Arai, Y., Armendariz, R.,

Aronson, S., Averbeck, R., Awes, T., Azmoun, R., Babintsev, V., Baldisseri, A.,

Barish, K., et al. (2005). Formation of dense partonic matter in relativistic nucleus–

nucleus collisions at rhic: Experimental evaluation by the phenix collaboration. Nu-

clear Physics A. 757(1-2): 184-283. First Three Years of Operation of RHIC.

Aoki, Y., Endrodi, G., Fodor, Z., Katz, S., and Szabo, K. (2006). The order of the

quantum chromodynamics transition predicted by the standard model of particle

physics. Nature. 443: 675-678.

Arsene, I., Bearden, I., Beavis, D., Besliu, C., Budick, B., Bøggild, H., Chasman, C.,

Christensen, C., Christiansen, P., Cibor, J., Debbe, R., Enger, E., Gaardhøje, J.,

Germinario, M., Hansen, O., Holm, A., Holme, A., Hagel, K., Ito, H., Jakobsen, E.,



47

et al. (2005). Quark–gluon plasma and color glass condensate at rhic the perspective

from the brahms experiment. Nuclear Physics A. 757(1-2): 1-27. First Three Years

of Operation of RHIC.

Asakawa, M., Bass, S., and Müller, B. (2013). Center domains and their phenomeno-

logical consequences. Physical Review Letter. 110(20): 202301.

Back, B., Baker, M., Ballintijn, M., Barton, D., Becker, B., Betts, R., Bickley, A.,

Bindel, R., Budzanowski, A., Busza, W., Carroll, A., Chai, Z., Decowski, M., Gar-

cía, E., Gburek, T., George, N., Gulbrandsen, K., Gushue, S., Halliwell, C., Ham-

blen, J., et al. (2005). The phobos perspective on discoveries at rhic. Nuclear

Physics A. 757(1-2): 28-101. First Three Years of Operation of RHIC.

Bass, S. and Dumitru, A. (2000). Dynamics of hot bulk qcd matter: From the quark-

gluon plasma to hadronic freeze-out. Physical Review C. 61: 064909.

Borsanyi, S., Danzer, J., Fodor, Z., Gattringer, C., and Schmidt, A. (2011). Coherent

center domains from local polyakov loops. Journal of Physics: Conference Series.

312: 012005.

Boyd, G., Engels, J., Karsch, F., Laermann, E., Legeland, C., Lutgemeier, M., and Pe-

tersson, B. (1996). Thermodynamics of su(3) lattice gauge theory. Nuclear Physics.

B469: 419-444.

Cassol-Seewald, N., Farias, R., Fraga, E., Krein, G., and Ramos, R. (2012). Langevin

simulation of scalar fields: Additive and multiplicative noises and lattice renormal-

ization. Physica A: Statistical Mechanics and its Applications. 391(16): 4088-

4099.



48

Danzer, J., Gattringer, C., Borsanyi, S., and Fodor, Z. (2010). Center clusters and their

percolation properties in lattice qcd. Proceedings of Science. LATTICE2010: 176.

Dumitru, A. and Pisarski, R. (2001). Event-by-event fluctuations from decay of a

polyakov loop condensate. Physics Letters. B504: 282-290.

Fraga, E., Krein, G., and Mizher, A. (2007). Langevin dynamics of the pure su(2)

deconfining transition. Physical Review. D76: 034501.

Fukushima, K. (2004). Chiral effective model with the polyakov loop. Physics Letters

B. 591(3-4): 277-284.

Gyulassy, M. and McLerran, L. (2005). New forms of qcd matter discovered at rhic.

Nuclear Physics A. 750(1): 30-63. Quark–Gluon Plasma. New Discoveries at

RHIC: Case for the Strongly Interacting Quark–Gluon Plasma. Contributions from

the RBRC Workshop held May 14–15, 2004.

Herbst, T., Pawlowski, J., and Schaefer, B. (2011). The phase structure of the polyakov-

quark-meson model beyond mean field. Physics Letters. B696: 58-67.

Herold, C., Nahrgang, M., Mishustin, I., and Bleicher, M. (2013). Chiral fluid dynamics

with explicit propagation of the polyakov loop. Physical Review. C87: 014907.

Müller, B. and Nagle, J. L. (2006). Results from the relativistic heavy ion collider.

Annual Review of Nuclear and Particle Science. 56(1): 93-135.

Roessner, S., Ratti, C., and Weise, W. (2007). Polyakov loop, diquarks and the two-

flavour phase diagram. Physics Review. D75: 034007.

Scavenius, O., Mocsy, A., Mishustin, I., and Rischke, D. (2001). Chiral phase transition



49

within effective models with constituent quarks. Physical Review. C64: 045202.

Schaefer, B., Pawlowski, J., and Wambach, J. (2007). The phase structure of the

polyakov-quark-meson model. Physical Review. D76: 074023.

Schaefer, B. and Wambach, J. (2005). The phase diagram of the quark meson model.

Nuclear Physics. A757: 479-492.



APPENDICES



APPENDIX A

RESEARCHWORKFLOW



APPENDIX B

NATURAL UNITS

In natural units ! = c = kB = 1, we have

! =
h

2π
= 6.5821× 10−25 GeV · s = 1, (0.1)

and

c = 2.9979× 108 m · s−1 = 1, (0.2)

where h is the Planck constant, ! is the reduced Planck constant, c is the speed of light,

kB is the Boltzmann constant. From equations 0.1 and 0.2 , we obtain a useful relation

!c = 1 = (6.5821× 10−22 MeV · s)(2.9979× 1023 fm · s−1) = 197.3MeV · fm (0.3)

where 1 fm (femtometer or fermi) = 1× 10−15 m. In high energy physics, energy and

mass are frequently measured in a unit of GeV (giga electronvolt), meanwhile length

and time are measured in a GeV−1 or fm. Note that to make a difference between units

of length and time, we can write unit of time as fm/c. Due to the relation in equation 0.3,

we can easily convert between GeV−1 and fm. In high energy physics, electromagnetic

unit can be measured either in Lorentz–Heaviside units or Gaussian units, see table B.1.
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Table B.1 Natural units in particle physics.

Unit Metric value

Length 1 eV−1 1.97× 10−7 m

Time 1 eV−1 6.58× 10−16 s

Mass 1 eV 1.78× 10−36 kg

Temperature 1 eV 1.16× 104 K

Electric charge

(L-H unit)

1 unit of electric charge 5.29× 10−19 C

Electric charge

(Gaussian unit)

1 unit of electric charge 1.88× 10−18 C



APPENDIX C

CODE IMPLEMENTATIONS

Code: Global variables

1 module global_vars

2 use , intrinsic :: iso_fortran_env

3 implicit none

4

5 ! variables for Polyakov loop potential

6 real , parameter , public :: a = 664.0 ! [MeV]

7 real , parameter , public :: b = 0.0075e9 ! [MeV^3]

8 real , parameter , public :: hc = 197.3 ! [MeV*fm]

9

10 ! sigma and temperatures

11 real , public :: Temp = 283.5 ! [MeV]

12 real , public :: sigma = 0.08 ! []

13 !−−−−−−−−−−−−−−−−−−−−−−−−−−−

14 ! real , public :: Temp = 297 ! [MeV]

15 ! real , public :: sigma = 0.3 ! []

16 !−−−−−−−−−−−−−−−−−−−−−−−−−−−

17 ! real , public :: Temp = 310.5 ! [MeV]

18 ! real , public :: sigma = 0.7 ! []

19

20 ! variables for time−dependent Polyakov loop simulation

21 integer , parameter , public :: t_size = 10000 ! [] number of time step

22 integer , parameter , public :: lattice_size = 101 ! [] size of lattice

23 real , parameter , public :: delta_t = 0.005 ! [fm] time interval

24 real , parameter , public :: delta_lattice = 0.5 ! [fm]

25 integer , parameter , public :: x_size = lattice_size ! [] size of x

26 integer , parameter , public :: y_size = lattice_size ! [] size of y
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27 integer , parameter , public :: z_size = lattice_size ! [] size of z

28

29 ! constants representing time at 1st , 2nd and 3rd time step

30 integer , parameter , public :: t_at_3 = 3 ! [] constant

31 integer , parameter , public :: t_at_2 = 2 ! [] constant

32 integer , parameter , public :: t_at_1 = 1 ! [] constant

33

34 ! declare array l1 which contains real part Polyakov loop values

35 ! and array l2 contains imaginary part Polyakov loop values

36 real , dimension (:,:,:,:) , allocatable , public :: l1 , l2

37

38 ! array of standard deviations

39 real , dimension( t_size ) , public :: deviation

40

41 ! output array of correlation function

42 real , dimension( t_size , int ( lattice_size − 1)/2) , public :: r_list

43

44 ! dummy variables for handling index shifting

45 integer , public :: x_plus_1, y_plus_1, z_plus_1

46 integer , public :: x_min_1, y_min_1, z_min_1

47

48 end module global_vars

Code (Cont.): Global variables

Code: Differentiating Potential Function

1 module misc_func

2 use global_vars

3 implicit none

4

5 contains

6 ! periodic boundary conditions

7 integer function period_bound_conds(n)

8 implicit none
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9 integer , intent ( in ) :: n

10

11 if (n < 1) then

12 period_bound_conds = lattice_size + n

13 else if (n > lattice_size ) then

14 period_bound_conds = n − lattice_size

15 else

16 period_bound_conds = n

17 end if

18

19 return

20 end function period_bound_conds

21

22 ! apply PBCs

23 subroutine apply_period_bound_conds(z, y, x)

24 implicit none

25 integer , intent ( in ) :: z , y, x

26

27 x_min_1 = period_bound_conds(x − 1)

28 y_min_1 = period_bound_conds(y − 1)

29 z_min_1 = period_bound_conds(z − 1)

30 x_plus_1 = period_bound_conds(x + 1)

31 y_plus_1 = period_bound_conds(y + 1)

32 z_plus_1 = period_bound_conds(z + 1)

33

34 end subroutine apply_period_bound_conds

35

36 ! function for finding standard deviation

37 real function find_deviation ( l )

38 implicit none

39 real , dimension(z_size , y_size , x_size ) , intent ( in ) :: l

40 integer :: z , y, x

41 real :: l_avg

Code (Cont.): Differentiating potential function
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42 real :: sum_val

43

44 l_avg = 0.0

45 sum_val = 0.0

46

47 do z = 1, z_size

48 do y = 1, y_size

49 do x = 1, x_size

50 l_avg = l_avg + l (z , y, x)

51 end do

52 end do

53 end do

54

55 l_avg = l_avg /( real ( z_size*y_size*x_size) )

56

57 do z = 1, z_size

58 do y = 1, y_size

59 do x = 1, x_size

60 sum_val = sum_val + ( l (z , y, x) − l_avg)**2

61 end do

62 end do

63 end do

64

65 find_deviation = sqrt (sum_val/ real (( z_size*y_size*x_size) ) )

66

67 return

68 end function find_deviation

69

70 end module misc_func

Code (Cont.): Differentiating potential function

Code: Differentiating Potential Function
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1 module diff_U

2 use global_vars

3 implicit none

4

5 contains

6 ! function for differentiating ln (P) by l1 or l2

7 real function diff_ln_P_func ( diff_by , l1 , l2 )

8 implicit none

9 character ( len=2), intent ( in ) :: diff_by

10 real , intent ( in ) :: l1 , l2

11 real :: P, diff_P , diff_ln_P

12

13 P = (1.0 − 6.0*(l1**2 + l2**2) &

14 − 3.0*(l1**2 + l2**2)**2 &

15 + 4.0*(2.0* l1**3 − 6.0*l1*l2**2))

16

17 diff_ln_P = 1.0/P

18

19 if ( diff_by .eq. ”l1”) then

20 diff_P = (−12.0*l1 − 12.0*(l1**2 + l2**2)*l1 &

21 + 24.0*l1**2 − 24.0*l2**2)

22 else ! or else if ( diff_by .eq. ”l2”) then

23 diff_P = (−12.0*l2 − 12.0*(l1**2 + l2**2)*l2 − 48.0*l1*l2)

24 end if

25

26 diff_ln_P_func = diff_ln_P*diff_P

27

28 return

29 end function diff_ln_P_func

30

31 ! function for differentiating potential by l1 or l2

32 real function diff_U_func( diff_by , l , l1 , l2 )

33 implicit none

34 character ( len=2), intent ( in ) :: diff_by

35 real , intent ( in ) :: l , l1 , l2

36
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37 diff_U_func = &

38 −b*Temp*(2.0*54.0*exp(−a/Temp)*l & ! [MeV^3][MeV]

39 + diff_ln_P_func ( diff_by , l1 , l2 ) ) & ! [MeV^4]

40 /hc**3 ! [MeV^3*fm^3]

41

42 return

43 end function diff_U_func

44

45 end module diff_U

Code (Cont.): Differentiating potential function

Code: Finding Polyakov loop

1 module solve_partial_diff

2 use global_vars

3 use misc_func

4 use diff_U

5 implicit none

6

7 contains

8 ! function for solving Laplace function

9 real function laplace_l ( l , t , z , y, x)

10 implicit none

11 real , dimension(t_at_3 , z_size , y_size , x_size ) , intent ( in ) :: l

12 integer , intent ( in ) :: t , z , y, x

13

14 call apply_period_bound_conds(z, y, x)

15

16 ! operate laplace operator on l

17 laplace_l = ( &

18 l ( t , z , y, x_plus_1) &

19 + l ( t , z , y_plus_1, x) &

20 + l ( t , z_plus_1, y, x) &

21 − 6.0*l( t , z , y, x) &
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22 + l ( t , z , y, x_min_1) &

23 + l ( t , z , y_min_1, x) &

24 + l ( t , z_min_1, y, x) &

25 ) / delta_lattice **2 ! [1/ fm^2]

26

27 return

28 end function laplace_l

29

30 ! function for solving diff equation to find Polyakov loop value

31 real function find_l ( diff_by , l , t , z , y, x)

32 implicit none

33 character ( len=2), intent ( in ) :: diff_by

34 real , dimension(t_at_3 , z_size , y_size , x_size ) , intent ( in ) :: l

35 integer , intent ( in ) :: t , z , y, x

36

37 find_l = ( &

38 2.0*l ( t−1, z , y, x) − l( t−2, z , y, x) &

39 + laplace_l ( l , t−1, z , y, x) & ! [1/ fm^2]

40 * delta_t **2 & ! [fm^2]

41 ) &

42 − ( &

43 diff_U_func( diff_by , l ( t−1, z , y, x) , & ! [MeV/fm^3]

44 l1 ( t−1, z , y, x) , &

45 l2 ( t−1, z , y, x)) &

46 *hc & ! [MeV*fm]

47 * delta_t **2 & ! [fm^2]

48 ) /( sigma*270.0**2) ! [MeV^2]

49

50 return

51 end function find_l

52

53 end module solve_partial_diff

Code (Cont.): Finding Polyakov loop

Code: Two-point correlation function
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1 module two_point_corr

2 use global_vars

3 use misc_func

4 implicit none

5 integer , parameter :: num_round = 1000

6 integer :: center_x , center_y , center_z

7 integer :: start_z , start_y , start_x

8

9 contains

10 ! function for generating arbitrary center points .

11 subroutine rand_center ( t )

12 implicit none

13 integer , intent ( in ) :: t

14 real :: rand_z, rand_y, rand_x

15 integer , dimension(12) :: date_time

16 integer , dimension(12) :: seed

17

18 call date_and_time(values=date_time)

19 call random_seed

20 seed = date_time (6) * date_time (7) + date_time (8)

21 call random_seed(put = seed)

22

23 call random_number(rand_z)

24 center_z = int ( ceiling (rand_z* lattice_size ) )

25 call random_number(rand_y)

26 center_y = int ( ceiling (rand_y* lattice_size ) )

27 call random_number(rand_x)

28 center_x = int ( ceiling (rand_x* lattice_size ) )

29

30 return

31 end subroutine rand_center

32

33 ! function for finding output of correlation function

34 function find_r ( t )

35 implicit none
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36 integer , intent ( in ) :: t

37 integer :: x, y, z , x_index, y_index, z_index

38 integer :: start_x , start_y , start_z

39 integer :: end_x, end_y, end_z

40 integer :: r , i , j , k, round_loop

41 integer :: count_num

42 real , dimension(num_round, int ( lattice_size − 1)/2) :: r_list

43 real , dimension( int ( lattice_size − 1)/2) :: find_r

44

45

46 do round_loop = 1, num_round

47 call rand_center ( t )

48 do r = 1, ( lattice_size − 1)/2

49

50 count_num = 0

51 r_list (round_loop, r ) = 0

52

53 start_z = center_z − r

54 start_y = center_y − r

55 start_x = center_x − r

56 end_z = center_z + r

57 end_y = center_y + r

58 end_x = center_x + r

59

60 do z = start_z , end_z

61 do y = start_y , end_y

62 do x = start_x , end_x

63

64 if ((x − center_x)**2 + (y − center_y)**2 + &

65 (z − center_z)**2 >= (r − 0.5)**2 .and. &

66 (x − center_x)**2 + (y − center_y)**2 + &

67 (z − center_z)**2 < ( r + 0.5)**2) then

68

Code (Cont.): Two-point correlation function
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69 z_index = period_bound_conds(z)

70 y_index = period_bound_conds(y)

71 x_index = period_bound_conds(x)

72

73 r_list (round_loop, r ) = r_list (round_loop, r ) +&

74 ( l2 ( t , center_z , center_y , center_x ) &

75 *l2( t , z_index, y_index, x_index))

76 count_num = count_num + 1

77

78 end if

79 end do

80 end do

81 end do

82 r_list (round_loop, r ) = r_list (round_loop, r ) /count_num

83 end do

84 end do

85

86 do r = 1, ( lattice_size − 1)/2

87 find_r ( r ) = 0

88 do round_loop = 1, num_round

89 find_r ( r ) = find_r ( r ) + r_list (round_loop, r )

90 end do

91 find_r ( r ) = find_r ( r ) /num_round

92 end do

93

94 return

95 end function find_r

96

97 end module two_point_corr

Code (Cont.): Two-point correlation function
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