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 In this thesis, the gas diffusion properties of porous graphene (PG) membrane 

on SiO2 substrate were investigated by using first-principles calculations based on the 

density functional theory (DFT). The gas molecules used in this study were H2, O2, 

and CO2. The influence of the van der Waals interactions between membrane and 

substrate was described by using Grimme’s force field. The purposes of this study 

include; structural distortion of PG membrane on SiO2 substrate under pressure 

difference, diffusion rate of gas molecules through deformed PG membranes under 

pressure difference, and selectivity of PG membrane as a function of pressure 

difference. For the clamped circular membrane subjected to a pressure difference 

across the membrane, the deformation of the membrane can be described by using 

Hencky’s solution. At a given pressure, the pressure difference across the membrane 

causes it to bulging. The deformation expands surface area causing the strain on the 

membrane. Thus, the strain is related to the applied pressure. The diffusion rate of gas 

molecules passing through membrane on SiO2 is a function of the diffusion barrier 

and can be estimated by using Arrhenius equation. The diffusion barriers for each 

molecule were calculated at different strain configurations. The diffusion barriers for 

H2, O2, and CO2 at zero strain are 0.41, 0.95 and 1.61 eV, respectively. The pressure 
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can effectively increase strain and deform the membrane. In the pressure range of 0-3 

MPa, the diffusion rate of H2, O2 and CO2 gas molecule can be increased by up to 4, 

8, and 12 orders of magnitude, respectively. The selectivity of H2, O2, and CO2 gas 

molecules is defined as the diffusion rates of gas molecules at p = 3 MPa relative to 

CO2 diffusion rate at p = 0 MPa with the membrane radius of 5 µm. The selectivity 

of H2 and O2 over CO2 at 3 MPa are 10
12

 and 10
7
, respectively, indicating an 

extremely high selectivity. Our results provide the first theoretical framework to study 

the diffusion of gas molecules passing through membrane subjected to a pressure 

difference. The results suggest that the gas separation properties of PG membrane are 

controllable by applying a pressure difference across the membrane. 

 

  

 

 

School of Physics Student’s Signature____________________ 

Academic Year 2015 Advisor’s Signature____________________ 

 Co-advisor’s Signature__________________ 



V 

ACKNOWLEDGEMENTS 

 

 This thesis could not be completed without the support of many people. I 

would like to express my sincere thanks to my advisor, Assoc. Prof. Dr. Sirichok 

Jungthawan for selecting me for the research assistantship, his effective scientific 

supervision, his invaluable help, instructive guidance, generosity personal 

encouragement, and his kind support. I am most grateful for his teaching and advice, 

not only the research methodologies but also many other methodologies in life. I 

would not have achieved this far and this thesis would not have been completed 

without all the support that I have always received from him. 

 I would like to thank Asst. Prof. Dr. Panomsak Meemon, Assoc. Prof. Dr. 

Rattikorn Yimnirun, and Dr. Suwit Suthirakun for serving as the thesis–examining 

committee. In addition, they took effort in reading and providing me with valuable 

comments. I would like to express many thanks to my school director, Mr. Oun Sala-

ngam and Changboonwittaya School for giving me the chance to study master’s 

degree program in physics.  

 I would like to thank the Thailand Center of Excellence in Physics (ThEP) and 

NANOTEC-SUT Center of Excellence on Advanced Functional Nanomaterials for 

financial support and I would like to thank Synchrotron Light Research Institute 

(Public Organization) for resources. 

 In addition, this work would not be completed without the contributions and 

helpful discussions from the faculties at the School of Physics, Suranaree University 

of Technology and the members of the condensed matters physics group. I would like 



VI 

to give a very special thanks to Dr. Sukanya Nlimoung and Dr. Pristanuch Kasian for 

all their help. A special thank also goes to the teachers and students at 

Changboonwittaya School for their encouragement. 

 Finally, I most gratefully acknowledge my parents and my friends for their 

encouragement, all their support throughout the period of this research. 

 

Yuwadee  Suwan 



CONTENTS 

 

Page 

ABSTRACT IN THAI ................................................................................................ I 

ABSTRACT IN ENGLISH ..................................................................................... III 

ACKNOWLEDGEMENTS .......................................................................................V 

CONTENTS ........................................................................................................... VII 

LIST OF TABLES .................................................................................................. IX 

LIST OF FIGURES ...................................................................................................X 

LIST OF ABBREVIATIONS ................................................................................. XV 

CHAPTER  

I INTRODUCTION ........................................................................................ 1 

 1.1 Introduction .............................................................................................. 1 

 1.2 Research objective ................................................................................... 6 

 1.3 Scope and limitation of the study .............................................................. 6 

II COMPUTATIONAL METHOD ................................................................. 8 

 2.1 Density functional theory (DFT)............................................................... 9 

 2.2 The Kohn-Sham equations ..................................................................... 10 

 2.3 The exchange correlation term: PBE+D2 ................................................ 12 

III GRAPHENE, POROUS GRAPHENE AND SiO2 PROPERTIES ........... 17 

 3.1 The graphene properties ......................................................................... 17 

  3.1.1 Structural properties of graphene ................................................... 19 

  3.1.2 Electronic properties of graphene ................................................... 21 



VIII 

 

CONTENTS (Continued) 

 

Page 

 3.2 The porous graphene properties .............................................................. 24 

  3.2.1 Preparation of porous graphene ...................................................... 24 

  3.2.2 Structural properties of porous graphene ........................................ 25 

  3.2.3 The electronic properties of porous graphene ................................. 29 

  3.2.4 Potential application of porous graphene ........................................ 29 

 3.3 The silicon dioxide properties ................................................................. 31 

  3.3.1 Structure of silicon dioxide ............................................................ 31 

IV DEFORMATION OF MEMBRANE ........................................................ 37 

 4.1 Hencky’s solution................................................................................... 38 

 4.2 Approximation of derivatives ................................................................. 45 

 4.3 Simpson’s rule ....................................................................................... 47 

V ADHESION ENERGY AND DIFFUSION PROPERTIES...................... 52 

 5.1 The adhesion energy of graphene/silicon dioxide (SiO2) and  

  porous graphene/silicon dioxide (SiO2)……... ........................................ 53 

 5.2 The diffusion properties ......................................................................... 59 

VI CONCLUSION AND FUTURE WORK ................................................... 67 

REFERENCES ........................................................................................................ 71 

APPENDIX ............................................................................................................. 82 

CURRICULUM VITAE .......................................................................................... 87 



LIST OF TABLES 

 

Table  Page 

2.1 Parameters 
6

iC  and van der Waals radii iR  used in the empirical  

 force-field of Grimme (PBE-D2) for elements H-Xe that have been  

 used in this work .............................................................................................. 16 

3.1 Summarized some of important graphene properties ...................................... 24 

3.2 Calculated lattice parameter of graphene and PG. The associated  

 experimental values are also given .................................................................. 28 

3.3  Structural parameters of SiO2 polycrystals (average bond length  

 and bond angle in parenthesis) ......................................................................... 33 

3.4  The calculated lattice parameter of SiO2. The associated experimental 

 values are also given ........................................................................................ 34 

4.1 List of calculated surface area and strain at various pressures and 

 dimensionless loading parameters (q) for the membrane radius of 5 µm ........ 49 

4.2 The calculated strain and pressure for PG and graphene ................................. 51 

5.1  The calculated diffusion barrier and diffusion rate at room temperature  

 for H2, O2 and CO2 molecules at pressure difference with the membrane 

 radius of 5 µm .................................................................................................. 63 

5.2 The calculated selectivity at room temperature for H2, O2 and CO2  

 molecules at various pressure relative to the diffusion rate of CO2  

 at p = 0 for the membrane radius of 5 µm. .................................................... 65 



LIST OF FIGURES 

 

Figure Page 

1.1 The structure of porous graphene (PG). ............................................................. 3 

1.2 Pressurizing graphene membranes. (a) Two optical images show graphene 

 flakes with regions of one to five suspended layers (top), and one and three 

 suspended layers (bottom). (b) Schematic of a graphene-sealed microcavity  

 before it is placed in the pressure chamber. (c) When the microcavity is 

 removed from the pressure chamber, the pressure difference across the 

 membrane causes it to bulge upward and eventually delaminate from the 

 substrate, causing the cavity radius a to increase. (d) Three-dimensional 

 rendering of an atomic force microscope (AFM) image showing the  

 deformed shape of a monolayer graphene membrane with  

 
int extp p p     1.25 MPa. (e) Deflection versus position for five 

 different values of p  between 0.145 MPa (black) and 1.25 MPa (cyan). 

 The dashed black line is obtained from Hencky’s solution for  

 p  0.41 MPa. The deflection is measured by AFM along a line that 

 passes through the centre of the membrane ....................................................... 4 

2.1 The procedure for solving of Kohn-Sham equation by self-consistent  

 method.............................................................................................................. 12 

 



XI 

LIST OF FIGURES (Continued) 

 

Figure Page 

3.1 Graphene (top) is a honeycomb lattice of carbon atoms. Bottom right 

 figure shows graphite structure which is stacks of graphene layers. 

 Bottom middle figure shows carbon nanotube as rolled-up cylinder of 

 graphene. Bottom left figure shows fullerene (C60) structure, the  

 molecules consisting of wrapped graphene by the introduction of  

 pentagons on the hexagonal lattice (buckyballs) ............................................. 18 

3.2 Honeycomb lattice and its Brillouin zone. Left figure shows lattice  

 structure of graphene which made from two triangular lattices (a1 and a2  

 are the lattice vectors, and triangular , 1,2,3i i   are the nearest-neighbor 

vectors). Right figure shows the corresponding Brillouin zone. The Dirac 

cones are located at the K  and K   points ........................................................ 20 

3.3 Shows the calculated graphene structure by using first-principles density 

 functional theory (DFT) with Perdew–Burke–Ernzerhof (PBE) functional .... 21 

3.4 (a) The   and 


 band of graphene derived by using simple nearest 

 neighbor tight-binding method. (b) The energy dispersions near the Fermi 

 level showing conic dispersion in the proximity of the K  and K   points ....... 23 

3.5 The structure of 2D polyphenylene. (a) STM image of the polyphenylene 

 superhoneycomb network on Ag (111) formed after polymerization of 

 cyclohexa-m-phenylene (CHP) precursors at 805 K. (b) STM image of 

 polyphenylene-type PG .................................................................................... 26 



XII 

LIST OF FIGURES (Continued) 

 

Figure Page 

3.6 (a) and (b) TEM image of some nanopores drilled into multilayer 

 graphene in the resolution 5 nm and 10 nm, respectively. (b) TEM image 

 of a 22 nm diameter pore in monolayer graphene ........................................... 26 

3.7 The structure of porous graphene (PG) in our calculation. .............................. 28 

3.8 Structure of graphene and porous graphene membrane proposed by 

 Jiang et al. (a) Pristine graphene sheet, the carbon atoms in the dotted  

 circle are removed, and four dangling bonds are saturated by hydrogen  

 atom (blue), while the other four dangling bonds together with their  

 partner carbon atoms are replaced by nitrogen atoms (green). (b) The  

 structure of porous membrane. The dotted line indicates the unit cell  

 of the membrane .............................................................................................. 30 

3.9 Structural model of the PG membrane. The black lines indicate the  

 unit cell. The inset shows the diffusion barrier for H2 ..................................... 31 

3.10 The structure of SiO2 (a) primitive unit cell of SiO2, (b) the unit cell  

 of SiO2 used to model porous graphene membrane on SiO2 substrate ............ 34 

3.11 The structural model of PG membrane on SiO2 substrate. (a) Top view  

 of PG membrane on SiO2 substrate. (b) Side view of PG membrane  

 on SiO2 substrate. Color code: C, brown; Si, blue; O, red; H, light pink......... 36 

 

 



XIII 

LIST OF FIGURES (Continued) 

 

Figure Page 

4.1 Deformation of membrane derived by Hencky’s solution. (a) Calculated 

 lateral deflection of membrane for  = 0.3 where q = 0.001, 0.005, 0.01, 

 0.02, 0.03, 0.04, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, and 1.00, respectively. 

 (b) Three-dimensional rendering of an atomic force microscope (AFM)  

 image showing the deformed shape of a monolayer graphene membrane 

 subjected to pressure difference ( )p across the membrane........................... 44 

4.2 The lateral surface area of circular cylinder with radius r and height h .......... 45 

4.3 The area of surface (a), the strain (b), and the dimensionless loading 

 parameter (c) as a function of pressure for graphene and porous graphene .... 50 

5.1 Top view of the structure of graphene on SiO2 used for adhesion energy 

 calculation. Color code: C, brown; O, red; Si, blue ......................................... 55 

5.2 The structure of graphene on SiO2 interface. Top view (a), and side view 

 (b) of graphene on SiO2 -cristobalite with (111)-surface. H atoms are  

 in light pink, Si in blue, O in red, and C in brown. The O atoms at the  

 bottom layer of substrate are saturated by H atoms ......................................... 57 

5.3 The structural model of porous graphene on SiO2 used to estimate adhesion 

 energy between porous graphene and SiO2 substrate. Top view (a) and side 

 view (b) of porous graphene on SiO2 -cristobalite with (111)-surface. 

 H atoms are in light pink, Si in blue, O in red, and C in brown. The O  

 atoms at the bottom layer of substrate are saturated by H atom ...................... 58 



XIV 

LIST OF FIGURES (Continued) 

 

Figure Page 

5.4 The diffusion barrier of H2 (a), O2 (b) and CO2 (c) molecules with 

 the unstrained of porous graphene ................................................................... 60 

5.5 The diffusion barrier (a), diffusion rate (b) of H2, O2, and CO2 molecules 

 at pressures difference with the membrane radius of 5 µm ............................. 62 

5.6  The selectivity of H2, O2, and CO2 molecules as a function of pressure 

 difference across the membrane with the radius of 5 µm ................................ 66 



LIST OF ABBREVIATIONS 

 

vdW  van der Waals 

PG  Porous Graphene 

DFT  Density Functional Theory 

SiO2   Silicon Dioxide 

2D  Two Dimensional  

PAW  Projector Augmented-Wave  

VASP  Vienna Ab-initio Simulation Package  

PBE  Perdew–Burke–Ernzerhof  

BZ  Brillouin Zone  

CHP  Cyclohexa-m-Phenylene  

n(r)  Electron Density 

H-K  Hohenberg–Kohn  

KS  Kohn-Sham  

PP  Pseudo Potential  

LDA  Local Density Approximation  

GGA  Generalized Gradient Approximation  

LAPW  Linearized Augmented-Plane-Wave 

US-PP  Ultra-Soft Pseudo Potentials 

PW91 Perdew-Wang Function 

ES  Electrostatic 

ER  Exchange Repulsion Interaction 



XVI 

 

LIST OF ABBREVIATIONS (Continued) 

 

LCAO  Linear Combination of Atomic Orbitals 

TB  Tight-Binding  

 XC  Exchange-Correlation 

AFM  Atomic Force Microscope 

STM  Scanning Tunneling Microscopy  

TEM  Transmission Electron Microscopy  



 

 

CHAPTER I 

INTRODUCTION 

 

1.1 Introduction 

 Graphene, which was discovered in 2004, is one of the most recent two 

dimensional (2D) nanomaterials. Graphene is a building block of graphite that 

contains many layers of graphene. The interactions between each layer of graphene 

are dominated by van der Waals (vdW) forces (Allen et al., 2010), such that it is 

possible to extract a layer of graphene by mechanical exfoliation so called the “sticky-

tape method” (Novoselov et al., 2004). Graphene is an allotrope of carbon, whose 

structure is a regular hexagonal pattern of carbon atoms similar to honeycomb lattice 

with thickness of only one atom layer (Geim and Novoselov, 2007). The carbon 

atoms are covalently bonded and in the sp
2 

hybridization state (Allen et al., 2010). 

Graphene is the strongest material than ever measured such as diamonds. The 

Young’s modulus of graphene is about 2 TPa (Dragoman and Dragoman, 2009). 

 Graphene-based materials attract numerous attentions from the researchers 

because of its fascinating physics and application capability arising from its unusual 

mechanical, optical, chemical, and electronic properties. The properties of graphene 

can be modified by introducing some defects to graphene sheet. One of interesting 

defects is vacancies in graphene. The porous form of graphene is graphene-based 

materials with pore in the sheet. Porous form of graphene has been proposed for many 

applications, such as gas separation (Blankenburg et al., 2010; Du et al., 2011),



2 

electronic devices (Xiao et al., 2011; Zhang et al., 2012), optical devices (Du et al., 

2010), etc. The recent progress on properties, preparation, and potential applications 

of porous form of graphene are summarized by Xu et al. (Xu et al., 2012). Porous 

form of graphene can be achieved by several techniques such as ultraviolet-induced 

oxidative etching (Liu et al., 2008; Koenig et al., 2012), and lithographic techniques 

(Fischbein and Drndić, 2008; Teweldebrhan and Balandin, 2009) which are generally 

referred to as top-down approaches. These techniques can be effectively produce 

pores down to a microscopic scale in which the pore size depends on the production 

techniques. In fabrication process, such techniques have limitations on the precision 

and resolution at the nanoscale. A promising way to produce nanostructures is 

bottom-up approaches based on molecular self-assembly from chemical building 

blocks (Barth, 2007; Schlickum et al., 2007). The porous graphene (PG) with a 

regular pore-size distribution was successfully synthesized by chemical building 

blocks of functionalized phenyl rings (Bieri et al., 2009). The synthesized PG has 

regular 2D polyphenylene networks with single atom wide pores in nanometer scales, 

as shown in Figure 1.1 which was the first example of an sp
2
-bonded hydrocarbon 

super-honeycomb networks (Bieri et al., 2009). 

 The properties of PG have been extensively studied by many theoretical and 

experimental groups. Based on the density functional theory (DFT) calculations 

(Kohn and Sham, 1965; Kohn, 1999), PG can exhibit high selectivity for H2 

permeability relative to CO2, CO and CH4 (Jiang et al., 2009; Li et al., 2010). The 

diffusion properties of other molecules were studied by Blankenburg and co-workers. 

They found that PG also exhibits an extremely high selectivity in favor of H2 and He 

among other atmospheric gases, such as Ne, O2, N2, CO, CO2 and NH3 (Blankenburg 
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et al., 2010). The selectivity of different gas molecules depends on diffusion barrier 

which is highly related to the size of molecule and characteristic of the pore (Li et al., 

2010). Theoretically, PG has high potential to be utilized as membrane for gas 

separation. 

 

 
 

Figure 1.1 The structure of porous graphene (PG). 

 

 Recently, the adhesion properties of graphene membranes on silicon dioxide 

(SiO2) substrate with microcavities were studied by Koenig and co-workers (Koenig 

et al., 2011). Graphene flakes are placed over the microcavities and held to the SiO2 

substrate by vdW force arising between the two materials. By creating pressure 

difference across the graphene membrane, the pressure difference causes the 

membrane to bulge. The shape of the bulging membrane can provide the information 

about adhesion energy, strain, and pressure difference across the membrane. With 

high adhesion energy, graphene can hold to the substrate with approximated cavity 
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diameter of 5 μm  under pressure difference up to 2 MPa without delamination 

(Koenig et al., 2011). The deformation of the membrane is well described by 

Hencky’s solution (Hencky, 1915) for the clamped circular membrane subjected to a 

pressure difference across the membrane as shown in Figure 1.2. 

 

 

Figure 1.2 Pressurizing graphene membranes. (a) Two optical images show graphene 

flakes with regions of one to five suspended layers (top), and one and three suspended 

layers (bottom). (b) Schematic of a graphene-sealed microcavity before it is placed in 

the pressure chamber. (c) When the microcavity is removed from the pressure 

chamber, the pressure difference across the membrane causes it to bulge upward and 

eventually delaminate from the substrate, causing the cavity radius a to increase. (d) 

Three-dimensional rendering of an atomic force microscope (AFM) image showing 

the deformed shape of a monolayer graphene membrane with 
int extp p p     1.25 

MPa. (e) Deflection versus position for five different values of p  between 0.145 

MPa (black) and 1.25 MPa (cyan). The dashed black line is obtained from Hencky’s 
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solution for p  0.41 MPa. The deflection is measured by AFM along a line that 

passes through the centre of the membrane (Koenig et al., 2011). 

 

 Later on, a similar experiment has been carried out using porous graphene 

instead of graphene (Koenig et al., 2012). Ultraviolet-induced oxidative etching was 

used to create micrometer-sized pores into the graphene membranes. The leak rate 

and separation factors were extracted by measuring the changes in the mechanical 

resonant frequency of the membrane from Raman spectrum versus time (Koenig et 

al., 2012). The resonant frequency method can detect the leak rate of system in the 

time scale of seconds to minutes. The stretched membrane will have high pressure-

induced tension which increases resonant frequency. If the gas can pass through the 

membrane, the pressure difference will be decreased which reduces the tension on the 

membrane. It has been found that the selectivity of H2 is qualitatively in agreement 

with the calculated results (Blankenburg et al., 2010). It has been shown that the 

membranes from porous form of graphene can be used as molecular sieves. In this 

work, we have proposed to study gas separation properties of PG under pressure 

difference by using first-principles calculations. Our main focus is the gas diffusion 

properties of PG on SiO2 subsstrate that subjected to pressure difference. For practical 

applications, it is interesting to investigate how gas selectivity change with pressure 

difference, or in other word, how the diffusion properties change with the deformation 

of the membrane on particular substrate.  
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1.2 Research objective 

Based on first-principles calculations, we have studied diffusion properties of 

gas molecules under pressure difference through PG and substrate (i.e., SiO2) system 

based on the density functional theory (DFT). The main purposes of this study 

include: 

1.2.1 To study structural distortion of PG membranes on SiO2 substrate 

under pressure difference.  

 1.2.2 To study diffusion rate of gas molecules (e.g., H2, O2, CO2, etc.) 

through deformed PG membranes. 

 1.2.3 To study relative diffusion rate or selectivity of PG membrane as a 

function of the pressure difference. 

 

1.3 Scope and limitation of the study 

The computations have been carried out using first-principles calculations 

based on the density functional theory (DFT) (Kohn and Sham, 1965; Parr and 

Weitao, 1994; Kohn, 1999) with the projector augmented-wave (PAW) (Blöchl, 1994; 

Kresse and Joubert, 1999) method as implemented in the Vienna ab-initio Simulation 

Package (VASP) (Kresse and Hafner, 1993; Kresse and Hafner, 1994; Kresse and 

Furthmüller, 1996; Kresse and Joubert, 1999; Kresse et al., 2012). The form of 

exchange correlation energy in Kohn-Sham equation is treated according to Perdew–

Burke–Ernzerhof (PBE) approach (Perdew et al., 1996; Perdew et al., 1998; Xu and 

Goddard, 2004). The van der Waals (vdW) interactions were described by the method 

of Grimme (PBE-D2) (Grimme, 2004; Bučko et al., 2010). The gas separation 

properties of PG membrane on SiO2 substrate were investigated. In real system, 
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amorphous SiO2 was used as a substrate. In our case, we simplified the problem by 

using crystalline SiO2 in the β-cristobalite with (111)-surface as substrate (Wehling et 

al., ). The diffusion of various gas molecules including, but not limited to, H2, O2 

and CO2 has been studied. A clamped circular membrane subjected to a pressure 

difference across the membrane was used to model the PG membrane on SiO2 

substrate. The deformation of the membrane was described by Hencky’s solution 

(Hencky, 1915; Fichter, 1997). 

 

 

 

 

 

 

 

 



CHAPTER II 

COMPUTATIONAL METHOD 

 

This work has been carried out by using first-principles calculations based on 

the density functional theory (DFT) (Kohn and Sham, 1965; Parr and Weitao, 1994; 

Kohn, 1999) with the projector augmented-wave (PAW) (Blöchl, 1994; Kresse and 

Joubert, 1999) method as implemented in the Vienna ab-initio Simulation Package 

(VASP) (Kresse and Hafner, 1993; Kresse and Hafner, 1994; Kresse and Furthmüller, 

1996; Kresse and Joubert, 1999; Kresse et al., 2012). The VASP is a complex 

package for performing ab-initio quantum-mechanical simulations by using 

pseudopotentials (PP) or the projector-augmented wave (PAW) method. The wave 

functions are described by plane wave basis set. The Perdew–Burke–Ernzerhof (PBE) 

approach (Perdew et al., 1996; Perdew et al., 1998; Xu and Goddard, 2004) has been 

used to describe the exchange-correlation functional in Kohn-Sham equations. In 

order to take the influence of the van der Waals (vdW) interactions into account, the 

parameterizations according to Grimme’s method (PBE-D2) (Grimme, 2004; 

Grimme, 2006; Bučko et al., 2010) have been used in all calculations. 
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2.1 Density functional theory (DFT) 

Many fields in the physical sciences and engineering concentrate on 

understanding and controlling the properties of matter at the level of individual atoms 

and molecules. DFT is one of the successfully computational methods for uncovering 

the solution of the many-body systems. DFT can provide an insight information of the 

quantum behavior of atoms and molecules. The initial work of DFT has been 

established by Pierre Hohenberg (Hohenberg and Kohn, 1964), and Kohn and Sham 

(Kohn and Sham, 1965). It is an alternative approach to study the electronic structures 

in which the electron density distribution n(r) is solved instead of the wave function. 

The foundations of DFT are based on the two Hohenberg–Kohn (H-K) theorems 

(Hohenberg and Kohn, 1964). The first theorem demonstrates that the ground state 

properties of a many-electron system are uniquely determined by an electron density 

n(r) depending on 3 spatial coordinates. The second theorem defines energy 

functional for the system and proves that the correct ground state electron density n(r) 

minimizes this energy functional. The fundamental understanding follows the path of 

the Schödinger equation. Moreover, DFT provides a complementary perspective. It 

focuses on quantities in three-dimensional coordinate space and principally on the 

electron density n(r). The density of electron at a particular position in space is 

defined as, 

 *( ) 2 ( ) ( ).i i

i

n r r r    (2.1) 

The H-K theorem in term of the single-electron wave function ( )i r  in Equation (2.1) 

can be written in term of energy function as, 

 know[{ }] [{ }] [{ }].i i XC iE E E     (2.2) 
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Here [{ }]XC iE   is the exchange-correlation function. It is defined to include all the 

quantum mechanical effects that are not included in the “known” term. Equation (2.2) 

is the central equation that is used in order to solve the Kohn-Sham (KS) equations. 

 

2.2 The Kohn-Sham equations 

 The Kohn–Sham (KS) equation is the Schrödinger’s equation of a simplified 

system. Typically, the electronic structure of matters is covered by Schrödinger’s 

equation as a function of time. Material properties can be obtained from the wave 

function of electrons. In the procedure, the set of wave functions i  that minimizes 

the Kohn–Sham energy functional is necessary to determine and it is acquired by the 

self-consistent solution of the Kohn-Sham equation (Kohn and Sham, 1965). In 

theory, the wave functions can be solved from the N electrons Schrödinger’s equation. 

The Kohn-Sham (KS) equation (Kohn and Sham, 1965) involving a single electron is 

given by 

 ( ) ( ),KS i i iH r E r 


  (2.3) 

 
2

2 ( ) ( ) ( ),
2

eff i i iV r r E r
m

 
 
    
 

 (2.4) 

where E is the electronic energy, 1 2( , ,..., )nx x x   is the wave function, effV  is the 

effective potential energy which consists of ,ionV
 HV , and xcV , m is the electron mass, 

and H


 is the Hamiltonian operator that is defined by 

 
2

2 ( ) V ( ) ( ),
2

ion H XCH V r r V r
m



       (2.5) 



11 

where ionV is the static total electron-ion potential, HV  is the Hartree potential of the 

electron given by, 

 
'

2 3 '

'

( )
( ) .

| |
H

n r
V r e d r

r r


  (2.6) 

Here XCV  is the exchange-correlation potential and can be rewritten in the derivative 

form as, 

 
[ ( )]

( ) .
( )

XC
XC

E n r
V r

n r




  (2.7) 

The Kohn-Sham equation represents a mapping of the interacting of many-electron 

system onto a system of non-interaction electron moving in an effective potential due 

to other entire electrons. If the exchange-correlation energy functional is known 

exactly, the functional derivative with respect to the density would produce an 

exchange-correlation potential that included the effects of exchange and correlation 

exactly. 

 The procedure for solving of Kohn-Sham equation is shown in Figure 2.1. The 

Kohn-Sham equation can be solved by using self-consistent method when the effV , 

which is the function of ( )n r , is known. 
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Figure 2.1 The procedure for solving of Kohn-Sham equation by self-consistent 

method (Payne et al., 1992). 

 

2.3 The exchange correlation term: PBE+D2 

Density functional theory (DFT) is the state of the art for materials simulation 

and studying of the electronic properties of molecules and solids. Despite the 

enormous progress in improving the functional, the current generation is insufficient 

for many important applications. The major problem with DFT is that the exact 

functional for exchange and correlation are not known exactly except for the free 

electron gas. However, the approximation permits the accurate calculation of certain 

Guess a trial density n(r) 

Calculate V
eff 

 (n(r))  

Solve Kohn-Sham equation 

Calculate new n(r) and total energy 

Does total energy of system converge? 

Stop and obtain n(r) with 

minimum total energy 

Generate new density n(r)  

Yes No 
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physical quantities. The ground-state energy of the Schrödinger equation is extremely 

difficult due to many-body problem. The result of Kohn, Hohenberg, and Sham 

showed that the ground state can be found by minimizing the energy of energy 

functional, and achieved by finding a self-consistent solution to a set of single-particle 

equation. To solve the Khon-Sham equation, the exchange-correlation function 

 { }xc iE   must be specified. The exchange-correlation function is guaranteed by the 

Hohenberg–Kohn theorem. This functional can be derived exactly in the uniform 

electron gas. In this situation, the electron density ( )n r  is constant at all points in 

space, so it may appear to be limited value in any materials. The uniform electron gas 

provides a practical way to use the Kohn-Sham equation. The exchange-correlation 

potential as a function of position ( )XCV r  is derived from the exchange-correlation 

potential of the uniform electron gas of electron density at each position 

 ( )electron gas

XCV n r , 

  ( ) ( ) .electron gas

XC XCV r V n r  (2.8) 

This approximation is used for the local density to define the approximate exchange-

correlation function only (called the local density approximation (LDA)). The LDA 

gives a way to completely define the Khon-Sham equation, but the results from these 

equations do not exactly solve the true Schrödinger equation. The moderate accuracy 

for some properties is obtained from LDA. In addition, LDA is not a functional that 

has been tried within DFT calculations. As known that, the LDA cannot provide exact 

result of Khon-Sham equation, so generalized gradient approximation (GGA) has 

been preferably used. The GGA pertains to the local electron density and local 

gradient electron density. It is tempting to think of GGA as the more accurate 



14 

approximation than LDA due to its more physical information. Unfortunately, this is 

not always true because there are several ways to include the gradient of the electron 

density in the GGA functional. The Perdew-Wang function (PW91) and the Perdew-

Burke-Ernzerhof functional (PBE) (Perdew et al., 1996; Perdew et al., 1998; Xu and 

Goddard, 2004) are the most widely used in the calculation involving solids. Each of 

these functional is GGA functional. Several GGA functionals have been proved that it 

is useful in applications of molecules and solids, but Perdew, Burke, and Ernzerhof 

(PBE) (Perdew et al., 1996) have developed a simplified GGA functional that fulfills 

best to many of the physical and mathematical requirements of DFT. In particular, 

PBE is satisfactory to smooth pseudopotentials (Perdew et al., 1996). Xu and 

Goddard reported an extension of the PBE functional by introducing four parameters 

(µ, , , and β) in PBE to optimize for the properties of the van der Waals interactions 

(Xu and Goddard, 2004). In order to include the influence of the van der Waals (vdW) 

interactions, a semi-empirical dispersion potential is taken into conventional Khon-

Sham DFT energy in the DFT-D approach (Wu et al., 2001). In this method the vdW 

interactions are described via a simple pairwise force field optimized for popular DFT 

functional, including PBE (Perdew et al., 1996). The vdW interactions between atoms 

and molecules play an important role in many chemical systems. This interaction 

contains the information about an electrostatic (ES) and an exchange repulsion (ER) 

interaction. Theoretically, the ER and ES effects are accurately described by a mean-

field level of theory, while the dispersive part is a pure electron correlation effect. The 

vdW interactions have been computed by using the semi empirical correction of 

Grimme (Grimme, 2006). In this method, the total energy of the system is defined as a 
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summation of the self-consistent Kohn-Sham energy (EKS-DFT) and a semi-empirical 

correction (Edisp) (Bučko et al., 2010), defined as follow 

 .DFT D KS DFT dispE E E    (2.9) 

The dispersion energy for periodic systems is defined as 

 ' ,0 ,6
6 ,0 , 6

1

(| |),
| |

at atN N ij
i j L

disp i j L
i j i L

C
E s f r r

r r 

  


  (2.10) 

where the summation is taken for all over Nat atoms and all translations of the unit cell 

L = (l1, l2, l3), i  j for L = 0, s6 is a global scaling factor,
 6

ijC  is the dispersion 

coefficient for the atom pair ij, and r
j,L

 is a position vector of atom i after performing 

L translations of the unit cell along lattice vectors. The term of f(r
ij
) is a damping 

function and defined as 

 
(r /R 1)

1
( ) .

1
ij ij

ij

d
f r

e 



 (2.11) 

The combination rules for dispersion coefficients 6

ijC  and vdW radii R
ij
 are wriiten as 

 
6 6 6 ,ij i jC C C  (2.12) 

and 

 .ij i jR R R   (2.13) 

All force field parameters have been proposed by Grimme (Grimme, 2006). In case of 

the PBE functions, s6 = 0.75 and d = 20. The values of 
6

iC , and iR  for some elements 

are listed in Table 2.1. 
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Table 2.1 Parameters 
6

iC  and van der Waals radii iR  used in the empirical force-

field of Grimme (PBE-D2) for elements H-Xe that have been used in this work 

(Grimme, 2006; Bučko et al., 2010; Kresse et al., 2012). 

Element 6

iC
 

iR  (Å) Element 6

iC
 

iR  (Å) 

H 0.14 1.001 K 10.80 1.485 

He 0.08 1.012 Ca 10.80 1.474 

Li 1.61 0.825 Sc-Zn 10.80 1.562 

Be 1.61 1.408 Ga 16.99 1.650 

B 3.13 1.485 Ge 17.10 1.727 

C 1.75 1.452 As 16.37 1.760 

N 1.23 1.397 Sc 12.64 1.771 

O 0.70 1.342 Br 12.47 1.749 

F 0.75 1.287 Kr 12.01 1.727 

Ne 0.63 1.243 Rb 24.67 1.628 

Na 5.71 1.144 Sr 24.67 1.606 

Mg 5.71 1.364 Y-Cd 24.67 1.639 

Al 10.79 1.639 In 37.32 1.672 

Si 9.23 1.716 Sn 38.71 1.804 

P 7.84 1.705 Sb 38.44 1.881 

S 5.57 1.683 Te 31.74 1.892 

Cl 5.07 1.639 I 31.50 1.892 

Ar 4.61 1.595 Xe 29.99 1.881 

 

 PBE-D2 approach has been proven to improve the results from DFT 

calculations in the systems that the van der Waals interactions cannot be neglected. 

The performance of PBE-D2 has been compared with other available methods to deal 

with vdW interactions (Grimme, 2006). 



CHAPTER III 

GRAPHENE, POROUS GRAPHENE AND SiO2 

PROPERTIES 

 

3.1 The graphene properties 

 Graphene is the magic materials in form of the monolayer of carbon atoms and 

packed into a two-dimensional (2D) honeycomb lattice. It was originally observed in 

electron microscopes in 1962 (Boehm et al., 1962), and was later rediscovered and 

characterized in 2004 by Andre Geim and Konstantin Novoselov (Novoselov et al., 

2004). This material has astonishing physical properties (Wallace, 1947; McClure, 

1957; Slonczewski and Weiss, 1958; Boehm et al., 1994; Jiang et al., 2007; Ando, 

2009) and potential applications (Schedin et al., 2007; Lee et al., 2008; Wehling et al., 

2008; Schneider et al., 2010; Koenig et al., 2011). Graphene consists of a 0.34-nm-

thick monolayer sheet of graphite (Dragoman and Dragoman, 2009), which is a 

covalent network of the sp
2
 hybridization state of carbon atoms. Graphene is the basic 

building block of other carbon-based materials. It can be wrapped up into 0D 

buckyballs, rolled into 1D nanotube or stacked into 3D graphite as shown in Figure 

3.1 (Geim and Novoselov, 2007; Castro Neto et al., 2009). Graphene is the strongest 

material, with an elastic stiffness of 340 N/m (Lee et al., 2008) and a Young’s 

modulus of 1.5 TPa (Dragoman and Dragoman, 2009). 
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Figure 3.1 Graphene (top) is a honeycomb lattice of carbon atoms. Bottom right 

figure shows graphite structure which is stacks of graphene layers. Bottom middle 

figure shows carbon nanotube as rolled-up cylinder of graphene. Bottom left figure 

shows fullerene (C60) structure, the molecules consisting of wrapped graphene by the 

introduction of pentagons on the hexagonal lattice (buckyballs) (Geim and 

Novoselov, 2007). 

 

 In 2004, a group of physicists from Manchester University, UK, led by Andre 

Geim and Konstantin Novoselov (Novoselov et al., 2004), use a very simple approach 

to obtain graphene. Single-layer samples were isolated from graphite. This led to an 

explosion of interest. The mechanical exfoliation technique was used to isolate the 

two-dimensional (2D) crystals from three-dimensional graphite. The interactions 

between each layer of graphene are dominated by van der Waals force (Allen et al., 
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2010). The experimental isolation of monolayer of graphene first and importance was 

access to large amount of interesting physics (Geim and Novoselov, 2007). 

 Graphene-based materials are attractive materials that have been studied by 

many research groups. The fascinating physics and potential for technological 

applications arise from its unusual properties including mechanical, optical, chemical 

and electronic properties. There are various studies for graphene applications such as 

ambipolar field effect (Novoselov et al., 2004), quantum Hall effect at room 

temperature (Novoselov et al., 2006; Jiang et al., 2007), measurements of extremely 

high carrier mobility (Novoselov et al., 2005; Morozov et al., 2008), and adhesion 

properties of graphene membrane on SiO2 substrate (Koenig et al., 2011). 

3.1.1 Structural properties of grapheme 

Graphene is made from carbon atoms arranged in hexagonal structure, 

as shown in Figure 3.2. The structure can be seen as a triangular lattice with a basis of 

two atoms per unit cell. The lattice vectors can be written as (Castro Neto et al., 

2009), 

 1 23 , 3 ,
2 2

a a
a x y a x y

      
      

   
 (3.1) 

where 1 1.424a   Å is the C-C distance. The reciprocal-lattice vectors are given by 

 1 2

2 2
3 , 3

3 3
b x y b x y

a a

       
      

   
. (3.2) 

The interesting physics of electronic structure of graphene are the two points ( K and 

K  ) at the corners of the graphene's Brillouin zone (BZ) where the energy depends 

linearly on the momentum, similar to a relativistic particle. These points are called 

Dirac points. Their positions in momentum space are given by  
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2 1 2 1

, .
3 33 3

K x y K x y
a a

       
      

   
 (3.3) 

The three nearest-neighbor vectors in real space are given by 

 1 2 33 , 3 , ,
2 2

a a
x y x y a x  
       

        
   

 (3.4) 

while, the six second-nearest neighbors are located at 
' ' '

1 1 2 2 3 2 1, , ( )a a a a         . 

 

Figure 3.2 Honeycomb lattice and its Brillouin zone. Left figure shows lattice 

structure of graphene which made from two triangular lattices (a1 and a2 are the lattice 

vectors, and triangular , 1,2,3i i   are the nearest-neighbor vectors). Right figure 

shows the corresponding Brillouin zone. The Dirac cones are located at the K  and K   

points (Castro Neto et al., 2009). 

 

  The structure of graphene was investigated by using the first-principles 

density functional theory (DFT) (Kohn and Sham, 1965; Parr and Weitao, 1994; 

Kohn, 1999) with Perdew–Burke–Ernzerhof (PBE) functional (Blöchl, 1994; Kresse 

and Joubert, 1999) for the exchange-correlation energy in the Kohn-Sham (KS) 

equations. The calculations were performed by Vienna ab-initio Simulation Package 

(VASP) (Kresse, 1996; Kresse and Joubert, 1999; Kresse et al., 2012) with the 
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projector augmented-wave (PAW) method (Perdew et al., 1998; Xu and Goddard, 

2004). The cut off energy of the plane wave expansion is 500 eV. The -centered 

Monkhorst-Pack k-mesh of 771 is used for BZ integrations. 

 

Figure 3.3 Shows the calculated graphene structure by using first-principles density 

functional theory (DFT) with Perdew–Burke–Ernzerhof (PBE) functional. 

 

  The optimized graphene lattice parameter is 2.467 Å which is in good 

agreement with the experimental value of 2.461 Å (Reich et al., 2002) and the 

calculated value of 2.450 Å (Jiang et al., 2009). The length of carbon bond (C-C 

distance or c-ca ) is 1.424 Å. The optimized lattice parameter of graphene and PG is 

summarized in Table 3.2. The crystal structure of graphene is shown in Figure 3.3. 

 3.1.2 Electronic properties of graphene 

  Band structure of graphene is one of the topics that have received 

many interests from scientists and technologists. Basically, a good approximation to 

the band structure of mono-layer graphene can be obtained from a simple nearest-

neighbor tight binding calculation. Graphene exhibits three significant properties; i) 
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the vanishing carrier density at the Dirac point, ii) the existence of pseudo-spin, and 

iii) the relativistic nature of carriers. 

  The electronic transport properties of graphene are considered by 

examining the band structure of graphene. Each carbon atom in the graphene lattices 

is connected to its three nearest neighboring by strong in-plane covalent bonds. The 

2s, 2px, and 2py atomic orbitals on each carbon hybridized to form strong covalent sp
2 

bonds giving rise to 120
°
 C-C-C bond angles. These are known as   bonds. The 

fourth valence electron occupies the 2pz orbital. The 2pz orbitals from neighboring 

atoms overlap each other resulting to delocalized   (occupied or valence state) and 

*  (unoccupied or conduction state) band. The electronic properties of graphene can 

be understood in terms of these   bands. 

  The band structure of graphene can be described by using a simple 

nearest neighbor tight-binding approach considering a single   electron per atom 

(Charlier et al., 2007; Castro Neto et al., 2009). The resultant dispersion relation can 

be written as (Warner et al., 2013), 

 
2

0

3
( , ) 1 4cos cos 4cos ,

2 2 2

y yx

x y

k a k ak a
E k k       (3.5) 

where C-C3 ,a a  and 0  is the nearest neighbor overlap integral which take a value 

between 2.5 and 3.0 eV (Reich et al., 2002). The band structure of graphene 

calculated by using Equation (3.5) is shown in Figure 3.4. The valence and 

conduction bands were observed at high symmetry K  and K   point. 
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Figure 3.4 (a) The   and 


 band of graphene derived by using simple nearest 

neighbor tight-binding method. (b) The energy dispersions near the Fermi level 

showing conic dispersion in the proximity of the K  and K   points (Ando, 2009). 

 

  In the framework of simple nearest-neighbor “tight-binding” 

approximation (Wallace, 1947), graphene has two atoms per unit cell which results in 

two “conical” points per BZ with the band crossing at K  and K  . As a result, 

graphene is gapless semiconductor. Near these crossing points, the electron energy is 

linearly dependent on the wave vector. This behavior follows from symmetry 

considerations (Slonczewski and Weiss, 1958). Graphene shows a unique nature of 

charge carriers. The unusual properties of graphene have attracted numerous 

attentions from the researchers. The important properties of graphene are summarized 

in Table 3.1. These properties make graphene a prime candidate for an application on 

electronic devices such as ballistic and single electron transistors (Nilsson et al., 2006; 

Oostinga et al., 2008), spin-valve (Hill et al., 2006), and ultra-sensitive gas sensors 

(Berger et al., 2004; Schedin et al., 2007; Gautam and Jayatissa, 2011). 
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Table 3.1 Summarized some of important graphene properties (Dragoman and 

Dragoman, 2009). 

Parameter Value and units Observations 

Mobility 40,000 cm
2
V

-1
s

-1
 At room temperature (intrinsic 

mobility 200,000 cm
2
V

-1
s

-1
) 

Mean free path (ballistic transport) 400 nm At room temperature 

Fermi velocity c/300=1,000,000 m/s At room temperature 

Electron effective mass 0.06m0 At room temperature 

Hole effective mass 0.03m0 At room temperature 

Thermal conductivity 5,000 W/mK Better thermal conductivity than 

in most crystals 

Young modulus 1.5 TPa Ten times greater than in steel 

 

3.2 The porous graphene properties 

Porous graphene (PG) is a collection of graphene-related materials with 

nanopores in the plane. The pore size that ranges from atomic precision to nanoscale 

strongly depends on the production techniques used. As a result of the nanopores in 

the graphene plane, PG exhibits distinct properties from those of pristine graphene, 

leading to its potential applications in numerous fields such as energy storage (Du et 

al., 2010), gas purification (Jiang et al., 2009; Blankenburg et al., 2010; Koenig et al., 

2012), and DNA sequencing (Postma, 2010). 

 3.2.1 Preparation of porous graphene 

Porous graphene (PG) can be prepared by chemical and/or physical 

methods. The different methods provide PG with different structural properties. For 

example, i) the 2D porous hydrocarbon network is obtained by using surface-assisted 

aryl-aryl coupling of cyclohexa-m-phenylene (CHP) method (Li et al., 2010). PG is 

constructed by removing periodic phenyl ring of graphene. ii) The bottom-up surface-

promoted aryl-aryl coupling reaction gives a covalently linked hydrocarbon super-

honeycomb network with high precision and high resolution (Bieri et al., 2009). iii) 

Electron beam irradiation of suspended graphene sheets method is a typical way of 
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producing PG (Fischbein and Drndić, 2008). The electron beam irradiation in 

transmission electron microscopy (TEM) device can also be used for this method. 

Therefore, the nanopores and other nanoscale patterns on graphene sheet can be 

designed (Schneider et al., 2010). iv) Helium ion bombardment of suspended 

graphene method was studied by Bell et al. (Bell et al., 2009). They can precisely cut 

and pattern graphene with helium ions by using modified helium ion microscope for 

lithography. 

Technically, the chemical methods give PGs that have orderly pore 

distribution with atomic precision, while the pore size of PGs prepared via physical 

approaches is ranging from nanometer to sub-nanometer. 

3.2.2 Structural properties of porous grapheme 

The structure, pore size and pore distribution, of PG strongly depends 

on the production technique. Two-dimensional (2D) polyphenylene was first 

successfully fabricated as PG by using the coupling of well-designed molecular 

building blocks on a metal surface (Bieri et al., 2009). It is a PG material with single-

atom-wide pore and sub-nanometer periodicity. The scanning tunneling microscopy 

(STM) images of PG are shown in Figure 3.5. 

  Fischbein and Drndić reported nanopores of graphene sheet by using 

electron beam irradiation of transmission electron microscopy (TEM) (Fischbein and 

Drndić, 2008) and demonstrated a closely packed nanopores array. Next, Schneider 

and co-workers reported the drilling holes using TEM (Schneider et al., 2010). The 

nanopores are drilled into the graphene monolayer by using the highly focused 

electron beam of TEM. The holes with diameters ranging from 2 to 40 nm were 
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drilled in monolayer as well as in multilayer of graphene. Some examples of pores are 

shown in Figure 3.6. 

 

Figure 3.5 The structure of 2D polyphenylene. (a) STM image of the polyphenylene 

superhoneycomb network on Ag (111) formed after polymerization of cyclohexa-m-

phenylene (CHP) precursors at 805 K. (b) STM image of polyphenylene-type PG 

(Bieri et al., 2009). 

 

 

Figure 3.6 (a) and (b) TEM image of some nanopores drilled into multilayer graphene 

in the resolution 5 nm and 10 nm, respectively. (b) TEM image of a 22 nm diameter 

pore in monolayer graphene (Schneider et al., 2010). 
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In this work, the computations have been carried out using first-

principles calculations based on the density functional theory (DFT) (Kohn and Sham, 

1965; Kohn, 1999) with the projector augmented-wave (PAW) method (Kresse and 

Hafner, 1994; Kresse and Furthmüller, 1996) as implemented in Vienna ab-initio 

Simulation Package (VASP) (Kresse and Hafner, 1993; Kresse and Hafner, 1994; 

Kresse and Furthmüller, 1996; Kresse et al., 2012). The form of exchange correlation 

energy in Kohn-Sham (KS) equation is treated according to Perdew–Burke–Ernzerhof 

(PBE) approach (Perdew et al., 1998; Xu and Goddard, 2004). The cut off energy of 

the plane wave expansion is 500 eV. The unit cell of PG is constructed from primitive 

unit cell of graphene. The primitive unit cell of graphene is expanded to 33 cell. 

Then, a six carbon-atoms ring is removed to create a pore and the pore edges are 

decorated by six hydrogen atoms as shown in Figure 3.7. The -centered Monkhorst-

Pack k-mesh of 661 is used for BZ integrations. 

  The optimized lattice parameter of PG of 7.517 Å is obtained. The 

result is in good agreement with the experimental value of 7.400 Å (Bieri et al., 2009) 

and the other calculated values of 7.455 Å (Li et al., 2010). There are two non-

equivalent C–C bonds, the calculated bond distances of 1.404 Å and 1.497 Å were 

observed. The longer bond is the bond connecting two hexagons. The calculated value 

of C–H bond is 1.086 Å. All structural parameters are summarized and labeled in 

Figure 3.7. The elastic properties of PG were studied by applying symmetrical strain 

in the x and y direction (defined along Lx and Ly as shown in Figure 3.7). The strain is 

defined as the ratio of deformation L  to the initial length L. In our calculation, the 

strains have been applied symmetrically in the x and y direction. The unit cell is 

extended in the range of 0% to 15% strain. The optimized unstrained cell parameters 
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of PG are Lx = 7.517 Å and Ly = 13.019 Å. The optimized lattice parameters of 

graphene and PG are listed in Table 3.2 and the crystal structure of PG is shown in 

Figure 3.7. 

 

Table 3.2 Calculated lattice parameter of graphene and PG. The associated 

experimental values are also given. 

 

a
 (Jiang et al., 2009), 

b 
(Reich et al., 2002), 

c
 (Li et al., 2010), 

d
 (Bieri et al., 2009) 

 

 

Figure 3.7 The structure of porous graphene (PG) in our calculation. 

Compound Crystal structure 

Lattice parameters (Å) 

Calculation Expt. 

PAW-PBE Other cal. 

Graphene Hexagonal 2.467 2.450
a
 2.461

b
 

PG Hexagonal 7.517 7.455
c
 7.400

d
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 3.2.3 The electronic properties of porous graphene 

  The electronic properties of 2D polyphenylene-type PG have been 

investigated by using density functional theory (DFT) (Li et al., 2010; Du et al., 2010) 

and crystal orbital methods (Hatanaka, 2010). It has been shown that the PG is 

semiconductor with the direct band gap and the values of the band gap vary widely by 

different computational approaches. The crystal orbital method gives a band gap of 

3.7 eV, while the DFT computation gives values of 3.2 eV (Du et al., 2010) and 2.48 

eV (Li et al., 2010). The hybrid function of DFT can be used to estimate the band gap 

and given more accurate results (Du et al., 2010). Li and co-workers shown 2D 

polyphenylene is a typical semiconductor with a wide band gap (Li et al., 2010). 

 3.2.4 Potential application of porous graphene 

  PGs have been extensively investigated. This material has shown great 

potential for application in many fields such as gas purification (Blankenburg et al., 

2010; Du et al., 2011), DNA sequencing (Schneider et al., 2010), and hydrogen 

storage (Du et al., 2010), because of its distinct structural and electronic properties. 

  For gas separation and purification, theoretical investigations based on 

first-principles calculations have been used to study PG. Jiang and co-workers (Jiang 

et al., 2009) have designed two-dimensional (2D) one-atom-thick porous membrane 

for gas separation and found that the membrane is highly selective and highly 

efficient for gas separation. The pores in graphene were designed as shown in Figure 

3.8. The 2D polyphenylene-type PG was synthesized successfully by Bieri and co-

workers (Bieri et al., 2009) by using the coupling of well-designed molecular building 

blocks. The regular 2D polyphenylene networks with single-atom pores and sub-

nanometer periodicity were obtained. Based on the DFT calculations, Li and co-
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workers found that the diffusion barriers of H2, CO2, CO and CH4 are 0.61, 2.21, 2.35 

and 5.19 eV, respectively. 

 

Figure 3.8 Structure of graphene and porous graphene membrane proposed by Jiang 

et al. (Jiang et al., 2009). (a) Pristine graphene sheet, the carbon atoms in the dotted 

circle are removed, and four dangling bonds are saturated by hydrogen atom (blue), 

while the other four dangling bonds together with their partner carbon atoms are 

replaced by nitrogen atoms (green). (b) The structure of porous membrane. The dotted 

line indicates the unit cell of the membrane. 

 

  The selectivity of H2/CO2, H2/CO and H2/CH4 were calculated by using 

the Arrhenius equation at 300 K and the values were 10
26

, 10
29

, 10
76

, respectively (Li 

et al., 2010). Blankenburg and co-workers (Blankenburg et al., 2010) have proposed 

PG for atmospheric gas separation based on their calculated results. The PG sheet 
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produced by self-assembly of CHP molecules has been considered in their paper. PG 

exhibits an extremely high selectivity in favor of H2 and He among other atmospheric 

gases, which, for example, could be useful for membranes in fuel cells or gas sensors. 

The structural model of the PG membrane is shown in Figure 3.9. 

 

 

Figure 3.9 Structural model of the PG membrane. The black lines indicate the unit 

cell. The inset shows the diffusion barrier for H2 (Blankenburg et al., 2010). 

 

3.3 The silicon dioxide properties 

 Silicon dioxide (SiO2), also known as silica, is a chemical compound that 

found in nature as sand or quartz, various living things and also in the earth’s crust. It 

is one of the most common minerals in the earth and exists in various forms such as 

amorphous (vitreous silica) and crystalline forms.  

 3.3.1 Structure of silicon dioxide 

  SiO2 has many different crystalline forms, such as - and -quartz, - 

and -cristobalite, stishovite, etc. (Li and Ching, 1985). These structures are 

composed of corner-sharing tetrahedral unit with a silicon atom at the center and four 
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oxygen atoms at the corners. The structural parameters of SiO2 are summarized in 

Table 3.3 (Li and Ching, 1985). All of these polycrystals and amorphous phase have 

local structures of four-fold tetrahedral bonding for silicon and two-fold bridging 

bonding of oxygen (David and Martin, 1999). The Si-O bond lengths and the Si-O-Si 

bridging angles exhibit a wide range of distribution in these polymorphs. The bond 

lengths and bond angles in the amorphous state are about 1.61 Å and 147

, 

respectively (Li and Ching, 1985). 

  Silicon dioxide exists in many different crystalline forms, but most of 

them formed by fourfold-coordinated silicon and twofold-coordinated oxygen atoms 

(David and Martin, 1999). The structural and electronic properties of these 

polymorphs have been studied both theoretically and experimentally (Li and Ching, 

1985; Xu and Ching, 1991; Carrier et al., 2001; Carrier et al., 2002; Jiang and Carter, 

2005). In experiments (Schedin et al., 2007; Moser et al., 2008; Koenig et al., 2011), 

amorphous SiO2 has been used as substrate. It is not straightforward to model the 

surface of substrate. In this case, the problem can be simplified by using crystalline 

SiO2 in the -cristobalite with (111)-surface as substrate (Ramos et al., 2004; Wehling 

et al., ). In practice, the -cristobalite structure with space group Fd3m (face-

centered cubic) has been chosen to model theoretically SiO2, due to its structural 

simplicity (Capron et al., 2002; Wehling et al., ). 

 

 

 

 

 



33 

Table 3.3 Structural parameters of SiO2 polycrystals (average bond length and bond 

angle in parenthesis) (Li and Ching, 1985; Xu and Ching, 1991). 

 Crystal 

structure 

Lattice 

parameter 

(Å) 

Molecule/ 

cell 

Density 

(g/cm
3
) 

Si-O 

bonds 

average 

(Å) 

Si-O-Si angle 

average 

(deg) 

A -quartz Hexagonal a = 4.913 

c = 5.405 

3 2.649  1.610 144.0 

B -quartz Hexagonal a = 5.01 

c = 5.47 

3 2.520 1.616 146.9 

C -tridymite Hexagonal a = 5.03 

c = 8.22 

4 2.216 1.541 180.0 

D -cristobalite Tetragonal a = 4.973 

c = 6.926 

4 2.344 1.594 148.9 

E -cristobalite Cubic a = 7.16 8 2.174  1.550 147.9 

F keatite Tetragonal a = 7.456 

c = 8.604 

12 2.506  1.595 152.6 

G coesite Monoclinic a = 7.17 

c = 12.38 

16 2.899 1.613 148.4 

H stishovite Tetragonal a = 4.179 

c = 2.665 

2 4.287 1.775 - 

 

  In this work, the properties of PG membrane on SiO2 substrate have 

been studied by using density functional theory (DFT) (Kohn and Sham, 1965; Kohn, 

1999). The structural properties and gas separation properties of the PG membrane on 

SiO2 substrate are obtained by using projector augmented-wave (PAW) method 

(Blöchl, 1994; Kresse and Furthmüller, 1996) as implemented in the Vienna ab-initio 

Simulation Package (VASP) (Kresse and Hafner, 1993; Kresse and Hafner, 1994; 

Kresse and Furthmüller, 1996; Kresse and Joubert, 1999; Kresse et al., 2012). The 

form of exchange correlation energy in Kohn-Sham equation is treated according to 

Perdew–Burke–Ernzerhof (PBE) approach (Perdew et al., 1998; Xu and Goddard, 

2004). The cut off energy of the plane wave expansion is 400 eV and the -centered 

Monkhorst-Pack k-mesh of 111111 is used for BZ integrations. The optimized 

lattice parameters of SiO2 are 7.461 Å as listed in Table 3.4. The crystal structure of 

SiO2 in the -cristobalite with (111)-surface is shown in Figure 3.10.  
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Table 3.4 The calculated lattice parameter of SiO2. The associated experimental 

values are also given. 

a
 (Ramos et al., 2004),

 b
 (Wright and Leadbetter, 1975)

 

 

 

Figure 3.10 The structure of SiO2 (a) primitive unit cell of SiO2, (b) the unit cell of 

SiO2 used to model porous graphene membrane on SiO2 substrate. 

 

  
The (111)-surface of SiO2 was selected to model the membranes on 

SiO2 substrate system. The positions of all atoms in the primitive unit cell are rotated 

by using basic rotation. A basic rotation or elemental rotation is a rotation around axes 

of a coordinate system. That follows from three basic rotation matrices which rotate 

Compound Crystal structure 

Lattice parameters (Å) 

Calculation Expt. 

PAW-PBE Other cal. 

SiO2 -cristobalite 7.461 7.391
a

 7.130
b
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vectors by an angle θ about the x, y, or z axis in three dimensions. Three basic rotation 

matrices are 

      

1 0 0 cos 0 sin cos sin 0

0 cos sin , 0 1 0 , sin cos 0 .

0 cos sin sin 0 cos 0 0 1

x y zR R R

   

      

   

     
     

   
     
          

 (3.6) 

  Firstly, the z-axis of a coordinate system is rotated by 45
°
 and followed 

by rotating the x-axis by 55
°
. Finally, the z axis of a coordinate system was re-rotated 

by 120
°
, due to some atoms of SiO2 has been chosen to fixing in positive axis of a 

coordinate system. After that, the structure of SiO2 in the -cristobalite with (111)-

surface was modified for used as a substrate in the system. The crystal system of SiO2 

in the -cristobalite with (111)-surface is modified from cubic to tetragonal system. 

The volume of the modified cell is three times larger than the original unit cell. The 

modified SiO2 substrate is required to allow a proper matching between PG 

membrane and the substrate as illustrated in Figure 3.11. The structural parameters of 

the modified SiO2 substrate have been taken from the optimized primitive unit cell. 

The calculated bond distance of Si-O, bond angle of O-Si-O, and bond angle of Si-O-

Si are 1.615 Å, 109.471

 and 180


, respectively. These values are in good agreement 

with other calculation (Ramos et al., 2004). The primitive unit cell of SiO2 contains 2 

silicon atoms and 4 oxygen atoms. The unit cell of SiO2 that was used in this work 

contains 6 silicon atoms and 12 oxygen atoms as shown in Figure 3.10(b). For 

membrane-on-substrate system, the 332 SiO2 supercell (108 silicon atoms and 207 

oxygen atoms) is used as the substrate. The 221 PG supercell is used as the 

membrane. The silicon atoms at the bottom layer of SiO2 (9 silicon atoms per surface) 

are passivated by hydrogen atom. In the adhesion energy calculations, a 34 Å vacuum 
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layer is used to separate the slab of membrane-on-substrate system. This vacuum 

layer is large enough to avoid the interactions between the adjacent slabs. The 

adhesion energy of graphene/SiO2 system can be obtained from the membrane-on-

substrate as described above. However, the adhesion energy of PG/SiO2 system is a 

computation consuming task and rather complicated because a large number of atoms 

in the system so that the atoms take a long time to relax. For that reason, the adhesion 

energy between PG/SiO2 is obtained by calculating from the adhesion energy between 

graphene/SiO2. The structural model of PG membrane on SiO2 substrate is shown in 

Figure 3.11. 

 

Figure 3.11 The structural model of PG membrane on SiO2 substrate. (a) Top view of 

PG membrane on SiO2 substrate. (b) Side view of PG membrane on SiO2 substrate. 

Color code: C, brown; Si, blue; O, red; H, light pink. 



CHAPTER IV 

DEFORMATION OF MEMBRANE 

 

The shape of bulging membrane is concerned with various parameters such as 

adhesion energy, strain and pressure difference across the membranes. Recently, the 

adhesion properties of graphene membranes on silicon dioxide (SiO2) substrate with 

microcavities were studied by Koenig and co-workers (Koenig et al., 2011). Graphene 

flakes are placed over the microcavities and held to the SiO2 substrate by vdW force 

arising between the two materials. By creating pressure difference across the graphene 

membrane, the pressure difference causes the membrane to bulge. The shape of the 

bulging membrane can provide the information about adhesion energy, strain, and 

pressure difference across the membrane. With high adhesion energy, graphene can 

hold to the substrate with approximated cavity diameter of 5 μm  under pressure 

difference up to 2 MPa without delamination (Koenig et al., 2011). The deformation 

of the membrane is well described by Hencky’s solution (Hencky, 1915) for the 

clamped circular membrane subjected to a pressure difference across the membrane. 

 In this work, Hencky’s solution was used to describe the deformation of 

membrane. The geometrically nonlinear response of a clamped isotropic circular 

elastic membrane under pressures difference (p) was studied.  
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4.1 Hencky’s solution 

 Hencky’s solution involves uniform lateral loading (i.e., the radial component 

of pressure on the deformed membrane is neglected). This solution is appropriate to 

describe a large defection uniform-thickness and circular isotropic elastic membrane. 

In this work, the uniform lateral loading (Hencky’s solution) is used according to the 

work by Fichter (Fichter, 1997). The radial and lateral equilibrium, respectively, are 

given by 

   ,r

d
N rN

dr
   (4.1) 

 .
2

r

dw pr
N

dr
   (4.2) 

where rN  and N  
are meridional and circumferential stress resultants, respectively. r 

is the radial coordinate, w is the lateral deflection, and p  is uniform lateral loading. 

The stress and strain are defined as 
 

 ,rN N Eh     (4.3) 

 ,r rN N Eh    (4.4) 

while, the strain-displacement is 

 
,

u

r
   (4.5) 

 

2
1

,
2

r

du dw

dr dr


 
   

 
 (4.6) 

where u and µ are the radial displacement and Poisson’s ratio, respectively. Equation 

(4.2) is obtained from the integration of the original lateral equilibrium equation, 

using the symmetry condition / (0) 0dw dr   along with the regularity of rN  at r = 0  
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is 0. The boundary conditions at the clamped edge are definded as followed 

 ( ) 0,w a   (4.7) 

 ( ) 0.u a   (4.8) 

By combining Equations (4.1) and (4.3) through (4.6), and defining the dimensionless 

quantities /W w a , /( ),rN N Eh  /r a  , and /( )q pa Eh . Therefore, 

 

2

1
( ) 0,

2

d d dW
N N

d d d
 

  

   
    

   
 (4.9) 

 
1

.
2

dW
N q

d



   (4.10) 

By substitution Equation (4.10) into Equation (4.9) yields 

 2 21
( ) 0.

8

d d
N N N q

d d
 

 

 
   

 
 (4.11) 

The following forms for ( )N   and ( )W   are assumed as 

 2 3 2

2

0

1
( ) ,

4

n

nN q b 


   (4.12) 

 1 3 2 2

2

0

( ) (1 ),n

nW q a 


   (4.13) 

where N  is the dimensionless meridional stress resultant in Hencky’s problem, W  is 

the dimensionless lateral deflection ( )W w a , w  is the lateral deflection,   is the 

dimensionless radial coordinate ( )r a  , r  is the plane polar coordinate, q is the 

dimensionless loading parameter ( q pa Eh ), a is the radius of membrane, 2na , and 

2nb  are the coefficients in power series. The blister area of membrane can be 

estimated by Hencky’s solution for uniform lateral loading (Equations (4.12) and 

(4.13)). The power series in Equations (4.12) and (4.13) are obtained for all q at the 
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specific value of µ. By substituting Equation (4.12) into the radial equilibrium, the 

dimensionless circumferential stress resultant is given by 

 2 3 2

2

0

1
(2 1) .

4

n

n

N
q n b

Eh

 


   (4.14) 

According to the boundary condition in Equation (4.7). Then Equation (4.11) 

becomes 

 
 

 

2
2 4 6

0 2 4 6

3 5 7

2 4 6 8

.......

4(2) 6(4) 8(6) 10(8) ..... 8 .

b b b b

b b b b

  

    

   

     
 (4.15) 

By expanding the first term of Equation (4.15) and equating coefficients of the powers 

of  , the relations between 
0 2 6 2, , ,..., nb b b b  are as followed 

 2

0 2 1,b b    (4.16) 

 2 2

0 4 0 23 2 0,b b b b   (4.17) 

 2 2

0 6 0 2 4 2 2 0 46 6 ( 2 ) 0,b b b b b b b b b     (4.18) 

 2 2

0 8 0 2 6 4 2 0 4 2 0 6 2 410 12 3 ( 2 ) (2 2 ) 0,b b b b b b b b b b b b b b       (4.19) 

 

2 2

0 10 0 2 8 6 2 0 4 4 0 6 2 4

2

2 4 0 8 2 6

15 20 6 ( 2 ) 3 (2 2 )

( 2 2 ) 0,

b b b b b b b b b b b b b b

b b b b b b

    

   
 (4.20) 

 

2 2

0 12 0 2 10 8 2 0 4 6 0 6 2 4

2

4 4 0 8 2 6 2 0 10 2 8 4 6

21 30 10 ( 2 ) 6 (2 2 )

3 ( 2 2 ) (2 2 2 ) 0,

b b b b b b b b b b b b b b

b b b b b b b b b b b b b

    

      
 (4.21) 

 .  

By solving these equations, the power series coefficients are 

 
2 2

0

1
,b

b
   (4.22) 

 
4 5

0

2
,

3
b

b
   (4.23) 
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6 8

0

13
,

18
b

b
   (4.24) 

 
8 11

0

17
,

18
b

b
   (4.25) 

 
10 14

0

37
,

27
b

b
   (4.26) 

 
12 17

0

1205
,

567
b

b
   (4.27) 

 
14 20

0

219241
,

63504
b

b
   (4.28) 

 
16 23

0

6634069
,

1143072
b

b
   (4.29) 

 
18 26

0

51523763
,

5143824
b

b
   (4.30) 

 
20 29

0

998796305
.

56582064
b

b
   (4.31) 

According to Equations (4.16) to (4.31), the power series coefficients (b2n) are 

obtained by using the coefficients b0, and the boundary condition in Equation (4.8), 

where the dimensionless is in the form of 

  
1

0,
d

N N
dp



  



  
   

  
 (4.32) 

or, equivalently, 

 
0 2 4 6(1 ) (3 ) (5 ) (7 ) 0.b b b b             (4.33) 

By substituting b2n (n = 0, 1, 2, …) into Equation (4.33). The power series coefficients 

(b2n) are obtained by using the coefficients b0 by seting the boundary condition in 

Equation (4.8), 
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0 2 5 8 11

0 0 0 0

14 17 20

0 0 0

23 26

0 0

29

0

1 2 13 17
(1 ) (3 ) (5 ) (7 ) (9 )

3 18 18

37 1205 219241
(11 ) (13 ) (15 )

27 567 63504

6634069 51523763
(17 ) (19 )

1143072 5143824

998796305
(21 ) 0.

56582064

b
b b b b

b b b

b b

b

    

  

 



        

     

   

   

 (4.34) 

For each specified value of µ, the coefficients b0 is calculated, where the convergence 

of b0 is investigated by number of retained terms. A sequence value of b0 can be 

solved from a sequence truncated version of Equation (4.34) , which contains only the 

2
nd

 to 11
th

 term. The value of b0 for µ = 0.2, 0.3 and 0.4 are 1.6827, 1.7244 and 

1.7769, respectively. These values are in good agreement with the work by Fichter 

(Fichter, 1997). From the derived value of b0, the parameter  N   can be obtained as 

well as the coefficients  W  . By inserting Equations (4.12) and (4.13) into Equation 

(4.10), this gives  

   2 4 6 2 4 6

0 2 4 6 0 2 4 62 3 4 1,b b b b a a a a               (4.35) 

where

  

 

 

0 0

0 2 2 0

0 4 2 2 4 0

0 6 2 4 4 2 6 0

0 8 2 6 4 4 6 2 8 0

1,

2 0,

3 2 0,

4 3 2 0,

5 4 3 2 0,

,

b a

b a b a

b a b a b a

b a b a b a b a

b a b a b a b a b a

 


 

   


    
    



 (4.36) 

and 
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0 2 4

0 0

4 67 10

0 0

8 1013 16

0 0

12 1419 22

0 0

16 1825 28

0 0

20 31

0

1 1
, ,

2

5 55
, ,

9 72

7 205
, ,

6 108

17051 2864485
, ,

5292 508032

103863265 27047983
, ,

10287648 1469664

42367613873
.

1244805408

a a
b b

a a
b b

a a
b b

a a
b b

a a
b b

a
b


  




  



  


 


 






 (4.37) 

The coefficients b0 is used to calculate the parameter b2n and a2n. After that, the 

parameter  N   and  W   are obtained. The power series in Equations (4.12) and 

(4.13) are determined for the specified value of   which are valid for all q . For PG, 

the Poisson’s ratio (  ) is set to 0.3. The dimensionless loading parameter as a 

function of pressure (q(p)) is given by 

 ( ) ,q p pa Eh  (4.38) 

where p is uniform loading pressure, a is radius of membrane (a = 5 m ), E is 

modulus of elasticity, and h is thickness of membrane. The calculated in-plane 

stiffness (Eh) of PG is 120 N/m (Jungthawan et al., 2013) which is lower than 

graphene (335 N/m (Şahin et al., 2009), 340  40 N/m (Lee et al., 2008)). 

Figure 4.1(a) shows plot of the dimensionless lateral deflection for Hencky’s 

problem as a function of the dimensionless radial coordinate ( r a  ) at 0.3  . The 

parameter q is converted to pressure by using Equation (4.38), then the deformation of 

the membrane as a function of pressure is obtained. The area of deformed membrane 

is calculated from a surface of revolution which is a surface generated by rotating a 
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curve about the vertical axis. In case of circular cylinder, the lateral surface area with 

radius r and height h is 2A rh . A rectangle with width 2 r  and height h is obtained 

by cutting and unrolling the cylinder, as shown in Figure 4.2. 

 

Figure 4.1 Deformation of membrane derived by Hencky’s solution. (a) Calculated 

lateral deflection of membrane for  = 0.3 where q = 0.001, 0.005, 0.01, 0.02, 0.03, 

0.04, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, and 1.00, respectively. (b) Three-dimensional 

rendering of an atomic force microscope (AFM) image showing the deformed shape 

of a monolayer graphene membrane subjected to pressure difference ( )p  across the 

membrane (Koenig et al., 2011). 

 

In this work, we are interested in the rotation around the vertical axis (y-axis). 

The formula of surface area is defined as, 

 2 ,S xds   (4.39) 

where 

2

1
dx

ds dy
dy

 
   

 
. 
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Figure 4.2 The lateral surface area of circular cylinder with radius r and height h. 

 

4.2 Approximation of derivatives 

 The definition of the first derivative is obtained from the differential calculus 

 
0

( ) ( ) ( )
( ) lim .

h

df x f x h f x
f x

dx h

 
    (4.40) 

A simple approximation of the first derivative is 

 
( ) ( )

( ) .h

f x h f x
f x

h

 
   (4.41) 

( )hf x  approaches the value of the exact ( )f x  in the limit of 0h , but h has to be 

finite and cannot be zero in the difference equation. For linear function, the Equation 

(4.41) is the exact expression for the derivative but not for other functions. In general, 

this expression is in appropriate and other expression is needed to be consider for a 

better approximation. In this work, the derivative is approximated by using finite 

difference method. Starting from a Taylor’s series expansion of ( )f x h , 

 
2

( ) ( ) ( ) ( ) ...,
2!

h
f x h f x hf x f x       (4.42) 
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21
( ) ( ) ( ) ( ) .

2!

h
f x f x h f x f x

h

 
      

 
 (4.43) 

For simple approximation, Equation (4.43) becomes 

  
1

( ) ( ) ( ) .f x f x h f x
h

     (4.44) 

The error incurred using in this approximation is 

 ( ) ( ) .
2!

h
E h f x   (4.45) 

Meanwhile, the approximation of the derivative x based on the values of function at 

x−h and x is called a backward differencing approximation to the derivative, as shown 

in Equation (4.46). The Equation (4.44) is called forward difference formula because 

the value of the function at x  and x h  are considered. It is possible to write more 

accurate formula. If we consider the approximation of the derivative by using the 

value of the function at x h  and x . The backward difference formula can be written 

as 

 
( ) ( )

( ) ( ).
f x f x h

f x O h
h

 
    (4.46) 

By combining the Equation (4.44) and the Equation (4.46), the better approximation 

for the first derivative is obtained which is central difference formula, 

 
2( ) ( )

( ) ( ).
2

f x h f x h
f x O h

h

  
    (4.47) 

The error term is defined as 

 
2 4

( ) ( ) ( ) .
3! 5!

vh h
E h f x f x     (4.48) 

In this work, the derivative ( )dx dy  of ds is calculated by the central difference 

formula for the calculations of surface area. 
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4.3 Simpson’s rule 

 The surface area is 2S xds   where  
2

1 /ds dx dy dy   which is calculated 

by central difference formula and multiply by x value. Then, the integration is 

calculated by using Simpson’s rule, a numerical method that used to approximate 

value of a definite integral by using quadratic polynomials. The definite integral is 

given by 

 ( ) .
b

a
f x dx  (4.49) 

Assuming that ( )f x  is continuous on [a, b] which is divided into an even number of 

n  subintervals of equal length 

 .
b a

h
n


  (4.50) 

The discrete values of x  are denoted by 

 0 1 2, , 2 , , .nx a x a h x a h x a nh b         (4.51) 

The values of ( )f x  at these points are given as 

 0 0 1 1 2 2( ), ( ), ( ), , ( ).n ny f x y f x y f x y f x     (4.52) 

The integration is done by summing all the area under the parabolic arc passing 

through three successive points, 

 

2 3 4

( 2) ( 1)

1 2

1 2

( ) ( 4 2 4 2
3

2 4 ),

( ) 4 2 .
3

b

a a h a h a h a h
a

a n h a n h b

n n

s a b a jh a jh

j j
odd even

h
f x dx f f f f f

f f f

h
I f f f f

   

   

 

 

 

    

  

 
    
 
  



 

 (4.53) 

This formula is known as the Simpson’s rule which gives adequate accuracy required 

for integration in most of the physical problems. Then, the surface area of deformed 
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membrane can be directly obtained. The strain on the membrane is calculated from the 

ratio of deformed membrane to undeformed membrane. The calculated surface area 

and strain as a function of q and pressure for graphene and PG are listed in Table 4.1. 

Table 4.1 shows calculation results of surface area and strain for graphene and 

PG at various pressures. From the table, it was found that the surface area increases 

with increasing of q, pressure, and strain. From Figure 4.3, the expansion rate of 

surface area decreases with increasing of pressure. The expansion generates strain on 

the membrane. Thus, the pressure can be converted to strain and vice versa. 

Theoretically, it is not straightforward to apply the pressure to the system within the 

density functional theory (DFT) framwork. To study the diffusion properties as a 

function of pressure, the diffusion properties are calculated at various symmetrical 

strains. The relationship between pressure and strain is used to convert strain to 

pressure by using Equation (4.38) and the membrane profile as shown in Figure 4.1. 

The relationship between q and pressure, the surface area and strain as a function of 

pressure for PG and graphene are shown in Figure 4.3. 
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Table 4.1 List of calculated surface area and strain at various pressures and 

dimensionless loading parameters (q) for the membrane radius of 5 µm. 

q 
Pressure 

for PG (Pa) 

Pressure 

for G (Pa) 
Area (µm

2
) Strain 

1.000 10
-3

 2.400 10
4
 6.700 10

4
 7.891  10

1
 2.336  10

-3
 

2.000  10
-3

 4.800  10
4
 1.340  10

5
 7.912  10

1
 3.689  10

-3
 

3.000 10
-3

 7.200  10
4
 2.010  10

5
 7.930  10

1
 4.818  10

-3
 

4.000  10
-3

 9.600 10
4
 2.680  10

5
 7.946  10

1
 5.822 10

-3
 

5.000  10
-3

 1.200 10
5
 3.350  10

5
 7.960  10

1
 6.741  10

-3
 

6.000  10
-3

 1.440  10
5
 4.020 10

5
 7.974  10

1
 7.598  10

-3
 

7.000  10
-3

 1.680  10
5
 4.690 10

5
 7.987  10

1
 8.405  10

-3
 

8.000  10
-3

 1.920  10
5
 5.360  10

5
 7.999  10

1
 9.173  10

-3
 

9.000 10
-3

 2.160  10
5
 6.030  10

5
 8.010  10

1
 9.907 10

-3
 

1.000  10
-2

 2.400  10
5
 6.700  10

5
 8.022  10

1
 1.061  10

-2
 

2.000  10
-2

 4.800 10
5
 1.340  10

6
 8.118  10

1
 1.664  10

-2
 

3.000  10
-2

 7.200 10
5
 2.010  10

6
 8.197  10

1
 2.159  10

-2
 

4.000  10
-2

 9.600  10
5
 2.680  10

6
 8.267  10

1
 2.594 10

-2
 

5.000  10
-2

 1.200  10
6
 3.350 10

6
 8.330  10

1
 2.987 10

-2
 

6.000  10
-2

 1.440  10
6
 4.020  10

6
 8.389  10

1
 3.350  10

-2
 

7.000 10
-2

 1.680  10
6
 4.690  10

6
 8.444  10

1
 3.689  10

-2
 

8.000  10
-2

 1.920  10
6
 5.360  10

6
 8.496  10

1
 4.008  10

-2
 

9.000  10
-2

 2.160  10
6
 6.030  10

6
 8.546  10

1
 4.310  10

-2
 

1.000  10
-1

 2.400  10
6
 6.700  10

6
 8.593  10

1
 4.599  10

-2
 

2.000  10
-1

 4.800  10
6
 1.340  10

7
 8.989  10

1
 6.984  10

-2
 

3.000  10
-1

 7.200  10
6
 2.010  10

7
 9.305  10

1
 8.847  10

-2
 

4.000 10
-1

 9.600  10
6
 2.680  10

7
 9.576  10

1
 1.042  10

-1
 

5.000  10
-1

 1.200  10
7
 3.350 10

7
 9.817  10

1
 1.180  10

-1
 

6.000  10
-1

 1.440  10
7
 4.020  10

7
 1.004  10

2
 1.304  10

-1
 

7.000  10
-1

 1.680  10
7
 4.690  10

7
 1.024  10

2
 1.417  10

-1
 

8.000  10
-1

 1.920  10
7
 5.360 10

7
 1.043  10

2
 1.521  10

-1
 

9.000  10
-1

 2.160  10
7
 6.030  10

7
 1.060  10

2
 1.618  10

-1
 

1.000 2.400  10
7
 6.70010

7
 1.077  10

2
 1.709  10

-1
 

 



50 

 

Figure 4.3 The area of surface (a), the strain (b), and the dimensionless loading 

parameter (c) as a function of pressure for graphene and porous graphene. 

 

Table 4.2 shows the calculated strain as a function of pressure for PG and 

graphene membrane. It was found that at the same value of strain, the pressure needed 

to deform graphene membrane is about 4 to 5 times higher than PG indicating that 

graphene is stronger than PG. This is also reflected by the Poisson's ratio. 

 

 

 

 



51 

Table 4.2 The calculated strain and pressure for PG and graphene. 

Strain 
Pressure 

for PG (Pa) 

Pressure 

for G (Pa) 

1.000 10
-2

 2.200 10
5
 1.040 10

6
 

2.000 10
-2

 6.400 10
5
 3.030 10

6
 

3.000 10
-2

 1.210 10
6
 5.720 10

6
 

4.000 10
-2

 1.910 10
6
 9.060 10

6
 

5.000 10
-2

 2.750 10
6
 1.303 10

7
 

6.000 10
-2

 3.720 10
6
 1.762 10

7
 

7.000 10
-2

 4.820 10
6
 2.282 10

7
 

8.000 10
-2

 6.050 10
6
 2.866 10

7
 

9.000 10
-2

 7.420 10
6
 3.514 10

7
 

1.000 10
-1

 8.930 10
6
 4.230 10

7
 

1.100 10
-1

 1.058 10
7
 5.012 10

7
 

1.200 10
-1

 1.237 10
7
 5.864 10

7
 

1.300 10
-1

 1.432 10
7
 6.790 10

7
 

1.400 10
-1

 1.643 10
7
 7.791 10

7
 

1.500 10
-1

 1.870 10
7
 8.868 10

7
 

 



CHAPTER V 

ADHESION ENERGY AND DIFFUSION PROPERTIES 

 

 The structural distortions of PG membrane on SiO2 substrate under pressure 

difference were studied. The pressure difference causes the membrane to bulge and 

increases the surface area which generates strain on the membrane. Thus, the pressure 

and strain are associated as described in the previous chapter. Adhesion energy can be 

measured experimentally by applying pressure difference across the membrane. At a 

certain pressure, the membrane will delaminate and the radius of the blister will 

increase. Graphene is attractive material for nanomechanical system due to its high 

Young’s modulus and strength. The mechanical behavior of graphene is also strongly 

influenced by the van der Waals force (Bunch et al., 2008; Rasool et al., 2013). This 

force clamps membrane to substrate. This chapter will focus on i) the adhesion energy 

between membrane and substrate that affects on the deformation of membrane, and ii) 

the diffusion properties of PG membrane on SiO2 substrate.  

 The deformation of membrane strongly depends on pressure difference and 

adhesion energy. The pressures difference also affects on the diffusion properties of 

gas molecules passing through membrane. The pressure difference across the 

membrane causes it to bulge upward and increases the size of the pores. The 

increasing of the pore size is directly related to the surface area of the bulging 

membrane that is equivalent to the extensive strain. 
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5.1 The adhesion energy of graphene/silicon dioxide (SiO2) and 

porous graphene/silicon dioxide (SiO2) 

 Graphene can be deposited on SiO2 substrate. The interfacial properties 

between graphene and the supporting substrate are of great importance. Interfacial 

adhesion energies have been measured for graphene on various substrate materials 

such as silicon dioxide (SiO2) (Zong et al., 2010; Koenig et al., 2011; Gao et al., 

2014). In 2007, Ishigami and co-workers (Ishigami et al., 2007) used a combined 

scanning electron microscopy/atomic force microscopy/scanning tunneling 

microscopy technique to study atomic structure of graphene on SiO2 and reported that 

the monolayer graphene largely follows the underlying morphology of SiO2. The 

adhesion energy of 0.096 J/m
2
 between graphene and SiO2 was estimated based on the 

interlayer van der Waals (vdW) interactions in bulk graphite. Koenig et al. reported a 

strong adhesion between graphene and SiO2 substrate of 0.45 J/m
2
 by using a 

pressurized blister test to directly measure it (Koenig et al., 2011). Gao and co-

workers studied the interfacial adhesion between graphene and SiO2 substrate by 

using density functional theory (DFT) with vdW interactions. It has been suggested 

that the interaction between graphene and SiO2 is dominated by dispersion forces. 

Moreover, the adhesion energy is reduced by surface hydroxylation and further 

reduced by adsorption of water molecules (Gao et al., 2014). In this work, first-

principles calculations based on the density functional theory (DFT) (Kohn and Sham, 

1965; Parr and Weitao, 1994; Kohn, 1999) are used to calculate adhesion energy of 

graphene/SiO2 and porous graphene/SiO2 interface. The projector augmented-wave 

(PAW) method (Blöchl, 1994; Kresse and Joubert, 1999) was used in the Vienna ab-

initio Simulation Package (VASP) (Kresse and Hafner, 1993; Kresse and Hafner, 
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1994; Kresse and Furthmüller, 1996). The exchange correlation energy is described 

based on Perdew–Burke–Ernzerhof (PBE) approach (Perdew et al., 1996; Perdew et 

al., 1998; Xu and Goddard, 2004) for solving the Kohn-Sham equations. A semi 

empirical scheme in the form of C6/R
6
 proposed by Grimme (PBE-D2) was used to 

take the influence of the van der Waals (vdW) interactions into account (Grimme, 

2006; Bučko et al., 2010). Many experiments suggested that the interaction between 

graphene and SiO2 is physical adsorption in nature, dominated by vdW interactions 

rather than covalent bonds (Ishigami et al., 2007; Koenig et al., 2011). The cut off 

energy of the plane wave expansion is 500 eV. The -centered Monkhorst-Pack k-

mesh of 12121 is used for Brillouin zone (BZ) integrations. The structural 

relaxation was performed until the force on each atom is less than 0.01 eV/Å. The 

crystalline SiO2 in the -cristobalite phase with (111)-surface in space group Fd3m 

was used as a substrate. The Fd3m phase is commonly thought of as an average 

phase, because it has an angle of Si-O-Si at 180. This simplification provides the 

relative adhesion energy between graphene/SiO2 and PG/SiO2 systems which can be 

used to estimate the adhesion energy in the case of PG on amorphous SiO2. The 

adhesion energy of membrane/substrate system can be defined as the required energy 

(per unit area) to vertically separate the membrane from the substrate. This amount of 

energy is equivalent to the formation energy of membrane and substrate system. The 

adhesion energy is proportional to the formation energy of membrane (graphene or 

PG) on the substrate which is defined as (Jiang and Carter, 2005), 

 adh 1 2 12[( ) ] / ,E E E E A  (5.1) 

where E1, E2, and E12 are the total energy of the isolated substrate, the isolated 

membrane, and the interface, respectively. A is the interfacial area. To study the 
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graphene/SiO2 and PG/SiO2 interface, we must choose the appropriate surfaces of 

SiO2 and membrane to interact. The model of graphene membrane on SiO2 substrate 

is shown in Figure 5.1. 

 

Figure 5.1 Top view of the structure of graphene on SiO2 used for adhesion energy 

calculation. Color code: C, brown; O, red; Si, blue. 

 

 In practice, membrane is placed on gas carrying channel which is porous 

substrate. The pressure difference causes the membrane to bulge and increases the 

pore size. The adhesion energy and curvature of bulging graphene on amorphous SiO2 

have been studied by Koenig et al. (Koenig et al., 2011). It has been proposed that the 

curvature of membrane relates to the applied pressure and the maximum pressure that 

causes membrane delamination can determine the adhesion energy. The information 

of adhesion energy is important to estimate the curvature of the membrane under 

maximum loading. The supercell used for adhesion energy calculation consists of a 

22 graphene sheet on a 112 SiO2 unit cell with a vacuum layer of 34 Å. The in-

plane dimension of the supercell is set to an equilibrium lattice constant of SiO2, 
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which includes 12 silicon atoms, 23 oxygen atoms, 1 hydrogen atom, and 8 carbon 

atoms as shown in Figure 5.2. The structure of PG on SiO2 as shown in Figure 5.3 is 

used to estimate adhesion energy. Each oxygen atom on the bottom layer of the SiO2 

(111) slab is passivated by a hydrogen atom. In practice, the direct calculation of 

adhesion energy between PG membrane and SiO2 substrate is rather complicated due 

to a large number of atoms in the system. The structural relaxation is computationally 

infeasible. Therefore, the adhesion energy between PG/SiO2 was calculated by 

adhesion energy between graphene/SiO2. In our calculation, the adhesion energy 

between graphene and SiO2 of 1.919 eV/Si-C was found by calculating from system 

in Figure 5.2. The adhesion energy between PG and SiO2 was calculated by 

comparing with an adhesion energy of graphene/SiO2 in the supercell with the same 

surface area. The structural model of PG on SiO2 used to estimate adhesion energy 

between PG/SiO2 consists of a 22 PG sheet on a 332 SiO2 unit cell with a vacuum 

layer of 34 Å containing 108 silicon atoms, 207 oxygen atoms, 33 hydrogen atoms, 

and 48 carbon atoms as shown in Figure 5.3. With the same surface area, the number 

of Si-C bond in graphene/SiO2 and PG/SiO2 system are 9 and 6 bonds, respectively. 

Thus, the adhesion energy between PG and SiO2 is about 2/3 time of adhesion energy 

of graphene/SiO2. 
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Figure 5.2 The structure of graphene on SiO2 interface. Top view (a), and side view 

(b) of graphene on SiO2 -cristobalite with (111)-surface. H atoms are in light pink, Si 

in blue, O in red, and C in brown. The O atoms at the bottom layer of substrate are 

saturated by H atoms. 

 

 The calculated adhesion energy of 1.28 J/m
2
 for the graphene/SiO2 and 0.85 

J/m
2 for the PG/SiO2 interface were obtained. The results can be considered as an 

upper bound of adhesion energy between graphene and PG on SiO2 crystal because 

our structural models assume the highest possible number of the Si-C bonds for each 

system. So that, our values of graphene/SiO2 are higher than previous experimental 

value (0.45 J/m
2
 (Koenig et al., 2011)) and computational value (0.229 J/m

2
 (Gao et 

al., 2014), 0.096 J/m
2
 (Ishigami et al., 2007)).  
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Figure 5.3 The structural model of porous graphene on SiO2 used to estimate 

adhesion energy between porous graphene and SiO2 substrate. Top view (a) and side 

view (b) of porous graphene on SiO2 -cristobalite with (111)-surface. H atoms are in 

light pink, Si in blue, O in red, and C in brown. The O atoms at the bottom layer of 

substrate are saturated by H atoms. 

 

 Our results from the vdW corrected DFT calculations could provide a 

guidance to determine an appropriate force field for studying the graphene/SiO2 

interface. Many previous studies have shown the importance of vdW corrections to 

tradition DFT for describing the interface in graphene-based systems such as graphite 

(Rydberg et al., 2003), graphene on metal substrates (Vanin et al., 2010) and 

graphene on SiC (Nemec et al., 2013). According to the results from our calculations, 

the adhesion energy of graphene/SiO2 is larger than that of the PG/SiO2. It is 

speculated from the assumption that graphene is better attached to the SiO2 substrate 
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than PG. This is due to the number of Si-C bonds between membrane and substrate. 

PG structure is more porosity than graphene so that PG has lower number of Si-C 

bonds. This result can be used as a guidance for the developments of graphene-based 

electrical and mechanical devices, where adhesive forces are known to have an 

important role. Moreover, the calculated results can provide the opportunities for 

fundamental study of surface forces (Gao et al., 2014). 

 

5.2  The diffusion properties 

 The applied symmetrical strains are related to the pressure difference across 

the membrane. Normally, applying the pressure directly to the system is impossible. 

In this work, an approach to incorporate pressure difference to the system has been 

performed by applying symmetrical strain which can be converted to pressure by 

using Hencky's solution. The pressure difference causes the membrane to bulge and 

increase the size of the pores. In the calculations, pore size can be controlled by 

symmetrical strain. The diffusion properties studied in this work are diffusion barrier, 

diffusion rate, and selectivity. The diffusion barriers of gas molecules were calculated 

by applying symmetrical strain which correspond to the pore size. The diffusion 

barrier is defined as the difference in total energy when the molecule is at the center 

of the pore and at the energetically favorable distance from the pore (Jungthawan et 

al., 2013). The diffusion barriers were investigated for various symmetrical strains 

and were calculated according to the variation of energy as a function of distance as 

shown in Figure 5.4. The diffusion barriers were calculated according to the 

procedure described by Blankenburg et al. (Blankenburg et al., 2010). The structural 
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model of the PG membrane and the variation of energy as a function of distance for 

determining the diffusion barrier are shown in Figure 3.9. 

The diffusion barriers were calculated according to the variation of energy as a 

function of distance as shown in Figure 5.4. The diffusion barriers were calculated at 

various symmetrical strains. For the unstrained PG ( = 0), the calculated diffusion 

barrier of H2, O2 and CO2 molecules are 0.41, 0.95 and 1.61 eV, respectively. These 

values agree well with the previous reports (Li et al., 2010; Blankenburg et al., 2010; 

Jungthawan et al., 2013).  

 

Figure 5.4 The diffusion barrier of H2 (a), O2 (b) and CO2 (c) molecules with the 

unstrained of porous graphene. 

 

 The plots of diffusion barrier as a function of pressure difference for H2, O2 

and CO2 molecules are shown in Figure 5.5. The diffusion barrier was decreased 
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when increase pressure because the pore is symmetrically expanded. However, at a 

certain pressure, the diffusion barrier is slowly decreased and barely reduced with the 

increasing pressure. This is because the pore is large enough to accommodate the gas 

molecule. The diffusion barrier of H2, O2, and CO2 gas molecules at p = 6 MPa are 

reduced to 0.043, 0.242, and 0.564 eV, respectively. The calculated results are shown 

in Table 5.1. Interestingly, the diffusion barrier of O2 and CO2 molecules reduce faster 

than the H2 gas molecule because the pore of PG is sufficiently large to accommodate 

the diffusion of H2 molecule. The diffusion barrier of PG can be tuned by applying a 

pressure. The diffusion barrier of H2, O2 and CO2 molecules on PG membrane under 

tensile strain were calculated by Jungthawan and co-workers (Jungthawan et al., 

2013). They reported that the diffusion barrier for unstrained PG are 0.54, 1.05, and 

1.85 eV for H2, O2 and CO2, respectively (Jungthawan et al., 2013). Blankenburg and 

co-workers also reported the diffusion barrier of H2, O2 and CO2 with the value of 

0.37, 1.10, and 1.20 eV, respectively (Blankenburg et al., 2010). Li and co-workers 

reported the diffusion barrier of 0.61 and 2.35 eV for H2 and CO2, respectively (Li et 

al., 2010). In our calculations, the values of diffusion barrier for H2, O2 and CO2 

molecules are lower than those reported by Jungthawan et al. and Li et al. due to the 

inclusion of the vdW interactions in our calculations. However, all values are closed 

to those reported by Blankenburg et al.. It is speculated from the results that the van 

der Waals interactions affected the calculations. Many researchers presented the 

importance of vdW correction to the traditional DFT (Blankenburg et al., 2010; Gao 

et al., 2014). Many schemes have been proposed for correcting DFT calculations with 

dispersion effects for vdW interactions. The DFT-D2 (Grimme, 2006) method was 

choosen for the calculations in this work. Gao and co-workers found that the 



62 

interaction between membrane and substrate is dominated by vdW forces (Gao et al., 

2014). Therefore, the influence of the vdW interactions is important for the 

calculations. 

 

Figure 5.5 The diffusion barrier (a), diffusion rate (b) of H2, O2, and CO2 molecules at 

pressures difference with the membrane radius of 5 µm. 

 

 The diffusion rate of a molecule passing through membrane is a function of 

the diffusion barrier. The diffusion rate can be calculated by using Arrhenius 

equation, 

 
0 exp( ),BA A E k T   (5.2) 

where A  is diffusion rate, 
0A  is diffusion prefactor, 

Bk

 

is the Boltzmann constant, 

E  is the diffusion barrier, and T is temperature which set at 300 K. In this work, the 

pre-factor 
0A  = 10

11
 s

-1
 as reported by Blankenburg et al. was set for all species 

(Blankenburg et al., 2010). The calculated diffusion barrier and diffusion rate of gas 

molecules as a function of pressure are listed in Table 5.1. 
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Table 5.1 The calculated diffusion barrier and diffusion rate at room temperature for 

H2, O2 and CO2 molecules at pressure difference with the membrane radius of 5 µm.  

Pressure 

(MPa) 

Diffusion barrier (eV) Diffusion rate (s
-1

) 

H2 O2 CO2 H2 O2 CO2 

0.000 0.409 0.946 1.607 1.356 × 10
-7

 1.307 × 10
-16

 1.009 × 10
-27

 

0.219 0.333 0.819 1.417 2.566 × 10
-6

 1.768 × 10
-14

 1.560 × 10
-24

 

0.639 0.270 0.710 1.253 2.878 × 10
-5

 1.204 × 10
-12

 8.988 × 10
-22

 

1.208 0.209 0.601 1.093 3.132 × 10
-4

 7.983 × 10
-11

 4.374 × 10
-19

 

1.914 0.162 0.509 0.961 1.882 × 10
-3

 2.809 × 10
-9

 7.276 × 10
-17

 

2.752 0.124 0.435 0.843 8.345 × 10
-3

 4.845 × 10
-8

 6.926 × 10
-15

 

3.720 0.093 0.365 0.744 2.688 × 10
-2

 7.399 × 10
-7

 3.116 × 10
-13

 

4.819 0.064 0.302 0.655 8.272 × 10
-2

 8.545 × 10
-6

 9.814 × 10
-12

 

6.050 0.043 0.242 0.564 1.869 × 10
-1

 8.532 × 10
-5

 3.352 × 10
-10

 

7.419 0.031 0.197 0.494 3.026 × 10
-1

 4.971 × 10
-4

 4.999 × 10
-9

 

8.925 0.019 0.157 0.435 4.780 × 10
-1

 2.270 × 10
-3

 4.902 × 10
-8

 

 

It was found that the diffusion barrier decreases with increasing pressure. In 

the pressure range of 0-3 MPa, the diffusion rate increases up to 4, 8, and 12 orders of 

magnitude for H2, O2, and CO2 molecules, respectively. The diffusion rate of O2 and 

CO2 increase faster than the rate of H2. The pressure affects the diffusion barrier of 

CO2 molecule more than H2 molecule because the electron distributions of H2 are 

localized around the molecule (Jungthawan et al., 2013). The PG membrane at p = 0 

MPa is sufficiently large to accommodate the diffusion of H2 molecule. It was found 

that the barrier is reduced with the increasing pore size and also pressure. On the other 

hand, the CO2 molecule largely affects the dangling H atoms around the pore. The 

dangling H atoms are pushed away from their original locations (Jungthawan et al., 
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2013). As the pore size increased or distorted by applying pressure the surrounding H 

atoms are moved away from the pore center. This reduces the interactions between the 

CO2 and the surrounding H atoms so that the diffusion barrier is significantly reduced. 

The symmetrical strain can effectively increases the diffusion rate of H2, O2 and CO2 

molecules by up to 6, 13, and 19 orders of magnitude, respectively (in the range of 

0% to 10% strain). These values are comparable to the values obtained by Jungthawan 

et al. (Jungthawan et al., 2013). 

The diffusion rate of a gas passing through PG is a function of the diffusion 

barrier. In this work, the selectivity of membrane (with the radius of 5 µm) for H2, O2, 

and CO2 molecules at a pressure difference (p) is define as the diffusion rate of those 

molecules at a pressure difference (p) relative to the diffusion rate of CO2 at p = 0. 

According to the Arrhenius equation, 

 
 
 2 2 2

0, ( ) ( )( )

co ( 0) 0,co ( 0) co ( 0)

exp
,

exp

X p X p BX p

p p p B

A E k TA
S

A A E k T

 

     


 


 (5.3) 

where S is the selectivity, A is the diffusion rate, A0 is the interaction (diffusion) pre-

factor, 
Bk

 

 is the Boltzmann constant, and E  is the diffusion barrier. The pre-factor 

of the three gases was assumed to be identical 
2CO( 1)XA A  , and the room 

temperature T  is 300 K. The selectivity is significantly dropped by several orders of 

magnitude with increasing pressure. At zero pressure, the selectivity of H2 and O2 

molecules over CO2 molecules are 10
20 

and 10
11

, respectively. At 3 MPa, the 

selectivity of H2 and O2 molecules over CO2 molecules are 10
12 

and 10
7
, respectively. 

Pressure can improve the diffusion yield but the main drawback is the dropping of the 

selectivity. This is because the diffusion rate of the larger molecules (CO2 and O2) are 
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significantly increased compared to that of the smaller molecule (H2). However, such 

values of selectivity are still more than sufficient for most filtering applications. Our 

results suggest that the gas separation properties of PG membrane are controllable by 

applying a pressure difference across the membrane. The calculated selectivity of H2, 

O2, and CO2 molecules at various pressures are listed in Table 5.2 which are also 

plotted in Figure 5.6. 

Table 5.2 The calculated selectivity at room temperature for H2, O2 and CO2 

molecules at various pressure relative to the diffusion rate of CO2 at p = 0 for the 

membrane radius of 5 µm. 

Pressure 

(MPa) 

Selectivity 

H2/CO2 O2/CO2  CO2/CO2  

0.000 1.344 × 10
20

 1.296 × 10
11

 1.000 × 10
0
 

0.219 2.544 × 10
21

 1.752 × 10
13

 1.546 × 10
3
 

0.639 2.853 × 10
22

 1.193 × 10
15

 8.911 × 10
5
 

1.208 3.105 × 10
23

 7.915 × 10
16

 4.336 × 10
8
 

1.914 1.866 × 10
24

 2.785 × 10
18

 7.213 × 10
10

 

2.752 8.274 × 10
24

 4.804 × 10
19

 6.867 × 10
12

 

3.720 2.665 × 10
25

 7.335 × 10
20

 3.089 × 10
14

 

4.819 8.201 × 10
25

 8.471 × 10
21

 9.730 × 10
15

 

6.050 1.853 × 10
26

 8.459 × 10
22

 3.323 × 10
17

 

7.419 3.000 × 10
26

 4.928 × 10
23

 4.956 × 10
18

 

8.925 4.739 × 10
26

 2.250 × 10
24

 4.860 × 10
19
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Figure 5.6 The selectivity of H2, O2, and CO2 molecules as a function of pressure 

difference across the membrane with the radius of 5 µm. 

 

In comparison with other calculations, Blankenburg and co-workers reported 

the selectivity of H2/CO2 of 10
17

 for PG membrane and found that the PG exhibited an 

extremely high selectivity in favor of H2 and He among other atmospheric gases. This 

observation could be useful for membranes in fuel cell or gas sensors (Blankenburg et 

al., 2010). In addition, Li et al. proposed the selectivity of H2/CO2 of about 10
26

 for 

2D polyphenylene. Polyphenylene exhibits high selectivity for H2 separation from 

CO2, CO and CH4. PG is expected to find applications in hydrogen energy society (Li 

et al., 2010).  

 



CHAPTER VI 

CONCLUSION AND FUTURE WORK 

 

 The thesis focused on i) the structural distortion of PG membrane on SiO2 

substrate under pressure difference, ii) the diffusion rate of gas molecules (e.g., H2, 

O2, CO2, etc.) through deformed PG membranes, and iii) relative diffusion rate or 

selectivity of PG membrane as a function of pressure difference. The diffusion 

properties of gas molecules under pressure difference are studied. The results can 

provide a guidance for studying of gas diffusion and gas separation. This can be very 

useful for designing of gas filter devices. 

 The structural distortion of porous graphene membranes on SiO2 substrate 

under pressure difference depends on various parameters such as adhesion energy, 

strain, and pressure difference across the membranes. In practice, a membrane is 

placed on a gas carrying channel or porous substrate. The pressure difference across 

the membrane causes it to bulge and affects the pore size. The adhesion energy and 

curvature of bulging graphene on amorphous SiO2 have been studied by Koenig et al. 

and reported that the curvature of membrane relates to the adhesion energy (Koenig et 

al., 2011). The information of adhesion energy is important to estimate the curvature 

of the membrane. In pressurized blister test, the blister area can be estimated by 

Hencky’s solution for uniform lateral loading (Hencky, 1915). The results are shown 

in chapter IV. The adhesion energy between graphene and SiO2 are presented in 

chapter V. It was found that the adhesion energy of graphene/SiO2 and PG/SiO2 
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interface are 1.28 J/m
2
 and 0.85 J/m

2
, respectively. The adhesion energy of 

graphene/SiO2 is higher than the adhesion energy of PG/SiO2 due to PG has been 

constructed by removing some carbon atoms to create pore on graphene. Graphene 

has higher Young’s modulus (Dragoman and Dragoman, 2009) than PG.  

 The Hencky’s solution for uniform lateral loading was used to calculate the 

structural distortion of PG membranes on the SiO2 substrate (Hencky, 1915). The 

calculation method is addressed in chapter IV. The calculated results are shown in 

Figure 4.1, a plot of the dimensionless lateral deflection for Hencky’s problem as a 

function of the dimensionless radial coordinate ( = r/a) for the Poisson’s ratio of PG 

( = 0.3). The parameter q is related to the pressure and can be converted to pressure 

by using Equation 4.38. The deformation of the membrane as a function of pressure is 

obtained. It was found that the dimensionless lateral deflection (W) increases with 

increasing q, indicating that the blister area increases with increasing pressure. The 

blister area is calculated by using a surface of revolution which is used to derive the 

relationship between strain and pressure. The calculated results for surface area and 

strain are listed in Table 4.1. The expansion of surface area is related to pressure 

which generates the strain on the surface. In this work, the symmetrical strain is 

applied to PG structure to investigate the effects of pressure on the diffusion 

properties. The relationship between q and pressure, the surface area and strain of PG 

and graphene as a function of pressure are shown in Figure 4.3. It was found that 

graphene can withstand pressure higher than PG. 

 The diffusion rate of gas molecules passes through deformed porous graphene 

membranes. The diffusion barriers were calculated according to the variation of 

energy as a function of distance. The diffusion barriers were calculated at various 
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symmetrical strains. For the unstrained PG ( = 0), the calculated diffusion barrier of 

H2, O2 and CO2 molecules are 0.41, 0.95 and 1.61 eV, respectively. These values 

agree well with the previous reports (Li et al., 2010; Blankenburg et al., 2010; 

Jungthawan et al., 2013). The diffusion barrier was decreased when increase pressure 

because the pore is symmetrically expanded. However, at a certain pressure, the 

diffusion barrier is slowly decreased and barely reduced with the increasing pressure. 

This is because the pore is large enough to accommodate the gas molecule. The 

diffusion barrier of O2 and CO2 molecules reduce faster than the H2 molecule because 

the pore of PG is sufficiently large to accommodate the diffusion of H2 molecule.  

 The diffusion rate of a molecule passing through membrane is a function of 

diffusion barrier and can be calculated by using Arrhenius equation. The diffusion 

rate of PG can be tuned by applying a pressure. In our calculations, the values of 

diffusion barrier for H2, O2 and CO2 molecules are lower than other calculation 

(Jungthawan et al. and Li et al.) due to the inclusion of the vdW interactions. 

However, all values are closed to those reported by Blankenburg and co-workers 

(Blankenburg et al., 2010). It is speculated from the results that the van der Waals 

interactions affected the calculations. Therefore, the influence of the vdW interactions 

is important for the calculations. 

 Relative diffusion rate or selectivity of porous graphene membrane as a 

function of pressure difference, the selectivity is significantly dropped by several 

orders of magnitude with increasing pressure. Pressure can improve the diffusion 

yield but the main drawback is the dropping of the selectivity. This is because the 

diffusion rate of the larger molecules (CO2 and O2) are significantly increased 
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compared to that of the smaller molecule (H2). However, such values of selectivity are 

still more than sufficient for most filtering applications. 

 The study of the diffusion properties of H2, O2, and CO2 molecules under 

pressure difference could provide an information for designing gas filter and 

electronic devices based on PG membrane. Furthermore, it is expected that the 

controllable diffusion rates by applying pressure would be useful in filtration, gas 

separation, and flow control. Our theoretical framework and results can provide an 

information for choosing the optimum pressure that is suitable for different 

applications. 

In the future, we are planning to investigate the diffusion properties of other 

gas molecules (except H2, O2 and CO2) and changing the elements around the pore 

edge for study gas diffusion properties of PG membrane on SiO2 substrate under 

pressure difference. 
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