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ABSTRACT

The Navier-Stokes equations in the Oberbeck-Boussinesq approach are used for
description convective flows of viscous incompressible fluids in a two-layer systems.
A finite-difference method is utilized to developed the numerical algorithm for
modeling buoyancy driven flow in cavity vertical or horizontal sides which are
differentially heated. The algorithm is based on the method of splitting (O.M.
Belotserkovskii, V.A.Gushin, V.V. Shennikov [1]). The approximation is carried out
on a staggered grid. Critical comparison with benchmark solution [2] confirms the
accuracy of method, and results for the buoyancy-driven flow in square cavity with

vertical sides, which are differently heated, are presented for Rayleigh numbers of

10 ®. The results of two-dimensional (2-D) numerical simulations of thermal
convection in two-layer system are compared with the experimental data of N.L.
Dobretsov and A.G. Kirdyashkin [3]. The dependence of two-layer convection for
wide range of relation of the viscosity, the thermal diffusivity and layer thickness was

made.
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1. Intreduction

1.1 Background , ‘
Buoyancy-driven flow in a cavity has a wide variety of practical problems such
as nuclear reactor insulation, ventilation of rooms, solar energy collection,
solar-chimneys power-generators, and crystal growth in liquids. The two-layer
convection problem is an extension of the broadly studied problem of natural
convection in a differently heated cavity with a single liquid.

The study of thermal convection in a two-layer system of immiscible liquids is
inspired by the development of liquid encapsulated crystal growth techniques.
Thermal convection in two horizontal layers of immiscible liquids are
differently heated from the side was studied analytically, numerically and
experimentally A. Prakash and J.N.Koster, 1997 [4]. Flow in the two-layer
system was numerically simulated using the commercial finite element
computer code FIDAP. The interface and the free surface are both considered
to be deformable. An early study Villers and Platten 1988, 1990 {5,6]
performed 2 one-dimensional (1-D) analysis of convective flow in a two layer
system. They assumed that the temperature gradient across the cavity is
constant, and a parallel flow with negligible vertical velocity develops in both
layers. In these works the problem of fluid differentially heated from up to
down doesn’t considerate.

Mantle convection is now a generally accepted principle of geodynamics.
There are several models of mantle convection. One of these models implies
that convection takes place in two discrete layers, of the upper and the lower
mantle and there is no significant mass transfer across the boundary between
them. For instance, this problem was studied by F.M.Richer (1979) [7], F.M.
Richer and D.P. McKenzie (1981) [8], N.L. Dobretsov and A. G. Kirdyashkin
(1993) [3], L. Gserpes and M. Rabinovicz (1985) [9], and L.Gserpes, M.
Rabinovicz, and C. Rosemberg-Borot (1988) [10]. However, the results of
numerical modeling (experiments) depend on many general assumptions and
realizations of boundary conditions. Therefore, there is a need for numerical
methods that establish a link between numerical simulation and laboratory
experiment. It is the purpose of the present article to study a finite- difference
method which matches experimental data. Here, we present a numerical
model for the study of thermal convection in two-layers. The results of two-
dimensional (2-D) numerical simulations are compared with the experimental
data of N.L.Dobretsov and A.G.Kyrdyashkin [3].



1.2 Objectives

The objectives of the project was:

1) To developed the numerical algorithm for modeling buoyancy-driven
flow in cavity vertical or horizontal sides, which are differentially heated.

2) To made compare of experimental data (Dobretsov and Kirdyashkin,
1993, [3])) with data of numerical simulation.

3) To investigate the dependence two-layer convection for wide range of
relation of the viscosity, the thermal diffusivity and layer thickness.

1.3 Hypothesis

The main hypothesis in such kind of an investigation 1s that fluid is viscous
incompressible and effect of buoyancy account as Bousinesq approximation.
We used the Navier-Stokes equations with Bousinesq approximation. Next
important hypothesis of our research is that boundary separated two fluids is
horizontal line. This assumption is well supported experimentally for two-
layer model of mantle convection [3]

1.4 Usefuln'ess and benefits

The numerical model which give a good agreement with experimental data
would be useful in numerical simulation of practical problems such as nuclear
reactor insulation, ventilation of rooms, solar energy collection, solar-
chimneys power-generators, simulation of mantle convection, and crystal
growth in liquids. _

The usefulness of numerical code for simulation of convection in a two-layer
system is to provide the cheap tool for study in detail the problem of two-layer
convection which so reach by different phenomena’s.

1.5 Scope and limitations.

The present research attempts to describe basis two-dimensional models of
two-layer convection in a rectangular box, with constant viscosity fluids in
each layer. The viscosity ratio and Prandtl number be taken as the main
quantities varied in the models. This research concentrate on the structure of
the flow verse of parameters.

2. Methodology

The method of study of the boundary value problem for the Navier-Stokes
equations in Bousinesq approach (see APPENDIX-C, pp. 7.3-7.4) is that of
numerical simulation. The numerical scheme use to solve the system of
incompressible Navier-Stokes equations. It is a finite difference algorithm for
primitive variable formulation. The methods for solving the time-dependent
Navier-Stokes equations base on discretization in time of fractional-step type
and characterized by the orthogonal projection onto the space of the solenoidal
vector fields, in order to satisfy the incompressibility condition (see -
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APPENDIX-B, pp. 6.6-6.7, and APPENDIX-C, pp. 7.5-7.7). We verify
numerical algorithm by compared with data of laboratory physical modeling,
and benchmark solutions (see APPENDIX-C, pp. 7.7-7.9)

3. Results

The numerical model which give a good agreement with experimental data
would be useful in numerical simulation of practical problems such as nuclear
reactor insulation, ventilation of rooms, solar energy collection, solar-
chimneys™ power-generators, simulation of mantle convection, and crystal
growth in liquids. '

The main results of present project are the finite-difference method for
simulation of convection flow in two-layer system of immiscible fluids.
Considered finite-difference method matches experimental data and can be
used to numerical modeling of thermal convection in two-layer system.

The results of project was presented at the Third Annual National Symposium
on Computational Science and Engineering - ANSCSE’99. This forum
organized by Faculty of Science, Chulalongkorn University, and
NSTDA/GREC/CSEP on March 24-26, 1999 ( see Appendix B). And in
more detail the results was published in the Thailand Journal of Mathematics,
Vol.1, No. 1 (1999), pp. 47-60. (see Appendix C)

4. Summary and conclusions

Thermal convection in a two-layer system of immiscible liquids is
distinguished from its single layer counterpart by the interface. Across the
interface, the two liquids are mechanically and thermally coupled. In addition
to buoyancy, along the interface tangent stress provides a driving force for
flow. From the interface tangent stress and from viscous and thermal coupling
a cell structure develops within the layers. The cell structure depends on the
viscosity contrast between the layers, on the layer depths and on the Rayleigh
number. The increase of the viscosity contrast change the flow structure from
the dominating viscous coupling towards thermal coupling.

Ifit is assumed that mantle convection occurs in separate layers above and
below the 700-km discontinuity, this two-layer model can fit the observation
within certain limits. ¢
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Numerical Simulation of Free Convection Flows in a Two-Layer System of
Immiscible Fluids.

N.P. Moshkin'
Suranaree University of Technology,
Institute of Science, School of Mathematics,
111 University Ave., Nakhon Ratchasima 30000, Thailand,
e-mail: moshkin@math.sut.ac.th

Two-dimensional model of convection in superimposed horizontal layers of two
immiscible liquids that are heated from below and cooled from above have been solved
numerically. The usual Boissinesq approximation of the Navier-Stokes equations was used. In
the models to be considered, the two plane horizontal layers have constant viscosity, their
viscosity ratio and depths are varied. The upper and lower surfaces are no-slip boundaries
with no vertical motion. The boundary conditions at the interface between the layers prescribe
the continuity of the horizontal velocity and the tangent stress, together with no fluid motion
across the interface surface.

The method for solving the time-dependent Navier-Stokes equations is written by
using the primitive variables of velocity and pressure. This method is based on discretization
in time of fractional-step type and characterized by the orthogonal projection onto the space of
the solenoidal vector fields in order to satisfy the incompressibility condition.

To verify our algorithm we made the comparison with the experimental data of N.L.
Dobretsov and A.G. Kirdyashkin [1]. They studied the free convection flows in two horizontal
liquid which were heated from beneath and cooled from above. The data of aumerical
simulation are in satisfactory agreement with these experimental data.

1. Introduction

Numerical convection in enclosures has recently been receiving increased attentions.
This attention is due in part to recognition of the importance of this process in many diverse
applications such as home heating, solar collection, crystal growth, nuclear reactor design as
well as dramatically increasing number of research publications about convection in the
earth’s mantle. It is now generally accepted that the earth’s surface consists of plates in
relative motion. The movement of plates is presumably associated with convection in the
mantle [2]. There are several models of mantle convection. One of these models implies that
convection takes place in two discrete layers of the upper and lower mantle and there is no
significant mass transfer across the boundary between them [1].

Numerical studies of convection (particularly mantle convection) have made a great
contribution towards understanding the nature of convectiv flows (particularly in the
understanding of mantle convection problems). However, the resuits of numerical modeling
(experiments) depend on many general assumption and realization of boundary conditions.
Therefore, there is a need for numerical methods that establish a link between numerical

"The author is on leave from Insttute of Computational Technologies, Russian Academy of Sciences, Novosibirsk, Russia..
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-6.4-
simulation and laboratory experiment. It is the intent of this research to study the finite-
difference method which has to be successful in comparison with experimental data.

Here, we present a numerical model for a study of thermal convection in two-layers.
The results of two-dimensional (2-D) numerical simulations are compared w.i,;h' the
experimental data N.L. Dobretsov and A.G. Kyrdyashkin [1]. ’

2. Mathematical Formulation

We consider a rectangular, two-dimensional cavity of aspect ratio H /'L see Fig. 1.

The two layered heights are not necessary equal. Each layer consists of constant viscosity
fluids. The way in which the two layers may differ is in their viscosity. Mechanically the
box’s boundaries may be free-slip or no-slip boundaries. The upper and lower horizontal
boundaries are isothermal surfaces. The vertical walls are insulated. The interface between the
layers is fixed at the depth z =4 .

There is no mass flux across it,

but tangent velocities and z
tangential stresses are continuous.
Then, utilizing the primitive v=0, {uj=0, | dw/dz{=0 | '
variable formulation of the 7=~d
Bousiinesq approximation to the 1
Navier-Stokes equations, the no-
dimensional governing equations
of fluid flow and equation
satisfied by temperature in each
liquid layer are:

ou Jdu dp Prdg, Ra.pr ¥ o 1
dt axk &x C at, C’.’ i L= xl’x).)“(xm), ()

du, Bu{ &e
dx, 8x1 ox,

= (1) = (148, @

ar I _1 &T
ot % Jx, coxdx,’

3
s =n( o o ) @

where u=u, or v=u, are horizontal and vertical velocities, respectively, and ¢ is the
time; 2=1(g,,g,)=(0~g) is the acceleration of gravity; T is the fluid temperature. The

©)
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dimensionless viscosities y,, [ =12 , of equation (4) are defined as y, = ! o [=12, ie.
- l

‘ v, . . .. .
v, 2l 7, = % , and v, ,v, are the kinematic viscosities of the layers. The governing
1. R
equations have been scaled using thermophysical properties of layers. the container’s height
H, and the applied temperature difference AT =T_,-T._,. The following time, length,
velocity, temperature and pressure scales are used:

H . . ck . pki
t':*—/;, x =H, === T'=AT, p :P ‘
C-

Here k is coefficient of the thermal diffusivity, p is the density of the fluids, ¢ is non-

dimensional multiple which was chosen as° ¢=1 or c¢=Pr etc. Non-dimensional
parameters appearing in the above mentioned problem are

v gCATH®
=Yy = Ra=="m0""
|

aspect ratio, the Prandtl number and the Rayleigh number respectively (¢ is the coefficient of
thermal expansion). These equations (1)-(4) must be completed with the boundary conditions.
The upper and the lower boundaries are isothermal surfaces

=0, | (5)
1 (6)

Mechanically the top and bottom horizontal boundaries may be free-slip or no-slip boundaries
with ) /

v=0, .ayfo, at z=0 or z=1, (7

for free-slip and

v=0, u=0 a z=0 o z=1 )

for no-slip. The vertical sides of the box are insulated

a%x=0, a x=0 or- x=x,, 8

and mechanically they may be free-slip or no-slip boundaries

eT he 3 ANSCSE
12
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u:O, 8%‘x_=0, a x=0 or X=X, (9)

for free-slip and
u=0, v=0 a@ x=0or =x=x, 9)

for no-slip. The boundary conditions at the interface boundary prescribe the continuity of the
horizontal velocity and tangential stresses as well as with reqirement ni fluid motion across
interface. :

v=0, a@ z=d,

-4/, aI —'d
v—. —— .

Numerical simulation

When one use the equation of fluid dynamics in primitive (velocity-pressure)
variables, one of the main ideas in the construction of a numerical method is that the pressure
in a subsequent time level may be determined by the condition of vanishing of the divergence
of the velocity vector (MAC method F.Harlow and J Welch [ 3 ]). The same idea was also
realized in the splitting methed (O.M.Belotserkovskii, V.A.Gushchin, V.V .Shennikov [ 4 ]) in
which the computation process is divided into three stage.

Now we describe an algorithm for direct numerical solution of the equations (1)-(4)
with boundary conditions (5)-(10). The algorithm is based on the method of splitting
(O.M.Belotserkovskii, V.A.Gushchin, V.V.Shennikov [ 4 ]). The approximation is carried out
on staggered grids, 1.e. the pressure is specified at the centers of the cells and the velocity
components are specified at the centers of the corresponding cell’s surfaces. The solution is

divided into four stages. For given u",v", p",T" these steps are:

1. An intermediate velocity field « , not satisfying thg condition of incompressibility, is
calculated as solution of discretized version of the momentum equation

:
w —u' ,0u’  dp" Proo Ra-Pr
= - - —— +
+uk 8 a T a 2
T X, x, ¢ Ox, c

T g, i=12.

Here 7 is step in time and equation {1) descretized only with respect to time. An explicit and
implicit finite-difference approximation for convective and diffusive terms was used. The

- -
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boundary, which separate the two fluids, passed through the grid line where the vertical
component of velocity vector was defined. Boundary conditions on the interface boundary
(10) are realized at this stage.

2. The Poisson equation for the pressure correction is solved

*

A(I)n-rl ﬁ_i_(_?[i, (Dm—l - "
7 ox] =P (D

The boundary conditions for the pressure correction can be reduced o the finite-difference
analogue of the homogeneous conditions of the Neuman type

b’ a(pn?-'l ~ O ' lf)
an — Uy < -)
Y
The Neuman problem obtained in this way has a solution only if the total fluid flux across all
outer boundaries is equal to zero. The solution of this boundary value problem (1 11-(12) was

obtained by means of an iterative scheme of stabilizing corrections.

3. Preliminary values of the velocity components are corrected with the allowance for the
pressure found so that for each cell responded with a difference analog of discontinuity
equation be realized.

§ o
W =u —T——[CD" i].

t g x[

e+l

4. The next approximation for temperature filed 7T
difference scheme of stabilizing correction [ 3 |

-

is defined by the implicit finite-

Comparison with laboratory experiment

In the experimental research of N.L. Dobretsov and A.G. Kyrdyashkin [1] a two-layer
model of mantle convection was derived from experimental works on hydrodynamic and heat
exchange within a horizontal two-layer medium consisting of two immiscible liquids of
different densities and viscosities, the upper one cooled and the lower one heated. The
viscosity of the thinner upper layer (model of the asthenosphere) is less than that of the lower
layer (mode! of the lower mantle). ,

Two immiscible liquids, glycerin and hexadecan , were used in the experiments.
Hexadecan has the following properties at T=30°C, density, p. is 766.5kg/m’

thermoconductivity, A4, is 0.147 W/m“’C; dynamic viscosity, g is 2754107 N .s-m™;
kinematic viscosity, v , is 0.359-107m*s™"; thermal diffusivity, a ,is L134.107ms™';

[}

coefficient of thermal expansion, f ,is 0529107 °C™'; Prandti number, Pr = % is31.1

L2

eThe 3 ANSCSE
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Glycerin has the following physical properties at T=40C; p=1250ky3
. o m
A=0283W-m™°C™"; £=330-10"N-s-m*:v=264-10"m*s" 2 =9.18- 10¥m*s™;
B=44-10"°C"; Pr=288-10°. —
Experimental investigations were carried out when the layers had a thickness of
~ V, . .
%<<1 and /"1 =735. Fig. 2-4 reproduced from Ref. (1] for comparison with our

numerical calculations. Fig. 2 shows the lines of points in the two-layer system of liquids
obtained from the videofilm and also cross-sections A-A and B-B, for which velocity profiles
are found that are given in Fig. 3. Fig. 3 shows profiles of horizontal and vertical components
of velocity in the liquid layers of glycerin ([, = 19mm) and hexedecan ([, = 7mm). Fig. 4
shows experimentally measured temperature profiles in different vertical cross-sections
parallel to the roll axis.

A

Lo—1
N Yy I Yy N . YN Y I YN NI N A AN

Y

-
N2t 4
Ik
A «,
y ) 22 44 u, mays
T T IITT T T T 7T TT 77T 77777
¢z A
Fig. 2. Experimental lines of flow. The A-A and Fig.3. Velocity profiles in the horizontal two-
B-B section correspondsto fig.3. (From Ref.[1]) “layer model: glycerin (lower layer) and

hexadecan (upper layer). (From Ref. [1}])

Fig. 4. Temperature profiles in the

horizontal layers of glycerin-hexadecan in

several vertical sections from descending

flow (x=0) up to ascending flow (x=32.5,
% see Fig.2) (From. Ref.[1]).

eThe 3 ANSCSE
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In Fig.5-7 we portray the numerical solutions in the steady state. The aspect ratio of
the domain x, = % corresponds to the size of the experimental box 10945. The non-
dimensional parameters was taken according to the conditions of the experiment and physical

. properties of glycerin and hexadecan.

Ra=384615, Pr=31, v, /v, =735,

The main calculations were carried out on grid which contained 50x200 nodes in z and x
directions respectively.

In Fig.5 we portray the steady state solution in terms. of the stream lines, and
isotherms. It is to be noted that the flow structure in the two-layer system in numerical
simulation is very similar to the flow pattern in the laboratory experiment. Correlation
between descending flows in the upper and .lower layers as well as between ascending flows
was occured both in numerical simulation and experimental data. Fig. 6 shows the protile of
the horizontal components of velocity. This profile is drawn for x =17 section (see Fig. 3).
Near the liquid interface boundary a counter current appears. As it pointed out in [!] the
reason for the counter current is thermal coupling. In Fig. 7 one draws the temperature profiles
in different vertical cross-sections. The profile is marked by a plus symbol (+) this
corresponds to the section x =13 in the region of ascending flows. The profile mark by
cross sign (X) corresponds to the section x =17 in the region closer to the section A-A in

the experimental study see Fig.3. The profile is marked by diamond symbol (9) that

corresponds to the section x =2.14 which located in the region of descending flows. The
counter currents near the interface provide a horizontal temperature gradient.
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Fig. 5. The stream lines and isotherms. Result of
numerical simulation.
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Fig. 6. The profile of horizontal
component of velocity at the section

sacamt x=1.70 x=1.7 (see Fig. 5)
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Fig. 7. Temperature profiles in different
cross-section. Results of numerical
simuiation.
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In conclusion, the results of numerical simulation reported here indicate only qualitative
agreements with experimental data. The developed numerical models can be considered as a
good tools to simulate natural convective flows in many layers system of fluids.

8T he 3 ANSCSE
17




-6.11 -

Ackrowledgment

We thanks Prof. N.L. Dobretsov and Prof. A.G. Kyrdyashkin for their attention and
useful discussions while working with this problem. These discussions stimulated our interest
in the problem of covective flows in two-layers fluids.

This work was supported by the Suranaree University of Technology grant.

References

[1] N.L. Dobretsov and A.G. Kyrdyashkin “Experimental modeling of two-layer mantel
convection”, Otolit, 18(1), 1993, pp.61-81.

[2] D.P. McKenzie, J.M. Roberts, N.O. Weiss Convection in the earth’s mantle: towards a
numerical simulation. J. Fluid Mech.. vol. 63, part 3, 1974, pp. 463-338.

(3] T.Harlow, and J.E.-Welch  Numerical Calculation of time Dependent Viscous
Incompressible Flow of Fluid with Free Surface. Phys. Fluids. 8 (12), 1963, pp. 2182-2189.

[4] O.M. Belotserkovskii, V.A. Gushin, and V.V. Shennikov Spliting Method Applied to the
Problem of Viscous Incompressible Liquid Dynamics, ZhVMIME, 15 (1), 1973, pp.197-207.

[5] N.N. Yanenko The Method of Fractional Steps. The Sclution of Problems of Mathematical
Physics in Several Variables. Ed. by M.Holt. Springer-Verlag, Berlin, Heidelberg, New York,
1971. '

eThe M ANSCSE
18




APPENDIX-C

Copy of article from Thailand Mathematical Journal,
vol.1, No.1 (1999), pp. 47-60.
(ISSN 0859-5399)



NIEIINMATITAS N
Thailand Journal

of Mathematics

VOLUME 1 NUMBER 1 OCTOBER 1999 ISSN 0859-5399

CONTENTS

Survey Article

R.H. EXELL: Algebra in linear analysis course 1-14
Research articles

P.SATTAYATHAM: A converzence to infinity in Banach Lattices 15-23
MIN AUNG: An alternative definition of steiner centers in trees 235-28

JOYCE VAN DE VEGTE: Detecting the anomaly boundary chain cede

edges detection with fuzzy reseasoning for objective classification 29-338
A. KANANTHAL On the distribution related to the ellipic operator 3945
N.MOSHKIN: On Convection flows in a two-layer of immiscible fluids 47-60
S.TANGMANEE:Finite element method for wave equations 61-74
T. POOMSA-ARD: On k+1 separation of graphs 75-34

Published Under The Support of

The National Research Council, Thailand

-7.1-



Thailand Journal of Mathematics,
Vol. 1, No. 1 (1999), pp.47-60

On Convection Flows in a Two-Layer of
Immiscible Fluids

N.P. Moshkin
School of Mathematics,
Suranaree University of Technology,
Nakhon Ratchasima 30000, Thailand,

1 Introduction

One of the areas of interest in fluid dynamics is the study of the behavior of
a fluid layer. heated from below. in the presence of a gravitational field. H.
Bernard (1900) [1] and Lord Rayleigh (1920) {2] experimentally established
the conditions under which the fluid layers first become unstable. S. Chan-
drasekhar (1961) [3] studied the linear instability of fluid layers of infinite
horizontal extent, both with free and no-slip boundary conditions. Several
thousand articles as well as a lot of handbooks, have been published in this
area of fluid dynamics in resent years. The study of thermal convection in
two-layer systems of immiscible liquids was inspired by the development of
liquid encapsulated crystal growth techniques. D. Villers and J.K. Platten
(1988-1990) [4]-[5] conducted one dimensional analysis of convective flow in a
two-layer system. The numerical simulation of flow in a two-layer system with
a free surface was achieved by ‘N. Ramachandran (1990) [6], T. Doi and J.N.
Koster (1993) [7], and J.P. Fontaine and Sani R.L. (1992) (8]. '

Mantle convection is now a generally accepted principle of geodynam-
ics. There are several models of mantle convection. One of these models
implies that convection takes place in two discrete layers, of the upper and
the lower mantle and there is no significant mass transfer across the bound-
ary between them. For instance, this problem was studied by F.M. Richer
(1979) [9], F.M. Richer and D.P. McKenzie (1981) [10], N.Ly Dobretsov and
A. G. Kirdyashkin (1993) [11]. L. Gserpes and M. Rabinovicz (1985) {12}, and
L.Gserpes. M. Rabinovicz. and C. Roseniberg-Borot (1988) [13]. However,
the results of numerical modeling (experiments) depénd on many general as-
sumptions and realizations of boundary conditions. Therefore, there is a need

47
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for numerical methods that establish a link between numerical simulation and
laboratory experiment. It is the purpose of the present article to study a
finite- difference method which matches experimental data. Here, we present
a numerical model for the study of thermal convection in two-layers. The re-
sults of two-dimensional (2-D} numerical simulations are compared with the
experimental data of N.L. Dobretsov and A.G. Kyrdyashkin [11].

2 Mathematical Formulation

The problem of convection has been thoroughly investigated in a number of
places. We here enumerate the basic equations and the boundary conditions.
The equations of the Boussinesq approximation are treated in terms of velocity
and pressure

Ou; aui / ap Pr c'?oik Ra - Pr
_ P St i rogi i T ) l
ot +uk@:r,z; ¢ Ox; + ¢ Oz T2 gi (1)
Oui . Juy
i = 1(z1, 72,23, T, p) (EI + Zﬁ) :

ar - or 1 T 5
5t " "3x.  cozy Ong 2)
@—& =0, .h=1.2: g=(0.g9). (3)
dzk
where r; = z,: z; = z are standard cartesian coordinates, u = U OF ¥ = Uy
are horizontal and vertical components of velocity vector, respectively, and ¢
18 the time: go is the acceleration of gravity: T is the fuid temperature. 7
is the coefficient of dynamic viseosity, and ¢ is the pressure scaling factor,
The governing equations have been scaled using thermophysical properties of
layers, the container’s height , and the applied temperature difference . The
following time, length, velocity, viscosity, temperature and pressure scales are

used:
H

t = 3 u = c"?u; p =T = T
Here H is scale of length, k is the coefficient of the thermal diffusivity, p
is the density of the fluids, Ty, T} are the temperatures of upper and lower
boundaries, and ¢ is a non-dimensional multiple which was chosen as ¢ = 1 or
¢ = Pr etc. Non-dimensional parameters appearing in the above mentioned
problem are

godV H?

z1=L/H, Ra= Pr ==

A%

i

the aspect ratio. the Prandtl number and the Rayleigh number respectively
(v is the coefficient of thermal expansion).
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We consider a rectangular. two-dimensional cavity of aspect ratio H/L.
The two layered heights are not necessary equal. Each layer consists of con-
stant viscosity fluid. The way in which the two layers may differ is in their
viscosity. We denoted these viscosities as vy and v» . 11 and 1» are kine-
matic viscosities of the upper and lower layers correspondingly. Mechanically
the box’s boundaries may be free-slip or no-slip boundaries. The upper and
lower horizontal boundaries are isothermal surfaces. The vertical walls are
insulated. The interface between the layers is fixed at the depth z = d . There
is no mass flux across it, but tangent velocities and tangential stresses are
continuous. ,

The governing equations (1)-(3) must be completed with the boundary
conditions. The upper and the lower boundaries are isothermal surfaces.

; T=0atz=0. T=1at z=1.

Mechanically the top and bottom horizontal boundaries mayv be free-slip or
no-slip boundaries with

18
Il
—

v=0.0u/dz=0. at z=0and
for free-slip and
v=0.u=0. at z=0and z=1.
for no-slip. The vertical sides of the box are insulated
oT
— =0, atz=00rz =u
dr

and mechanically they may be free-slip or no-slip boundaries

Jv

u=0, — =0, atz=0 and z = zy,
T
for free-slip and
wu=0. v=0. atz=0 and z =z,

for no-slip. The boundary conditions at the interface boundary prescribe the

continuity of the horizontal velocity and of the tangential stresses as well as

excluding fluid motion across interface . f

v=0, [u =u(x.d=0) —u(z.,d+0) =0, [ug—ﬂ =0,
at z=d. 0<z < x.
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3 Numerical Simulation

When using the equations of fluid dynamics in primitive (velocity-pressure)
variables the main idea in the construction of a numerical method is that the
pressure in a subsequent time level may ’t?e determined by the condition of
vanishing of the divergence of the velocity vector (MAC method F.Harlow
and J.Welch [14]). The same idea was also realized in the splitting method
(O.M.Belotserkovskii, V.A.Gushchin, V.V.Shennikov {15]) in which the com-
putation process is divided into three stages. An implicit method of the same
class with pressure correction was studied by A.I Tolstykh (1987) [16].

Now we describe an algorithm for direct numerical solution of the equations
(1)-(3) with boundary conditions presented above. The algorithm is based on
the method of splitting (O.M.Belotserkovskii, V.A.Gushchin, V.V.Shennikov
(15] ). The approximation is carried out on a staggered grid wp, i.e. the
pressure and temperature is specified at the centers of the cells and the velocity
components are specified at the centers of the corresponding cell’s surfaces.

The boundary, which separate the two fluids, passed through the grid line
where the vertical component of velocity vector was defined. Let j; be the
number on the horizontal grid line corresponding to this boundary. It is easy
to see that v, ,, = 0 on this boundary. Let us introduce u™ = u(zx.d + 0) and
u” = uf{r.d - 0) two tangent components of the velocity vector from different
sides of the = = d boundary. One can express some approximation of boundary

dul _ 0.

condition {u g

3= () = 0in the form

idd

.
N | N 7

4! [ ZL C';v,ui+l/2.,u+m + C*“q‘_; = | > Crus o —m+C u™,
m= .

m=( ji
0T o= 'II—.
where

/é?u\ N7

E =Y Chuiiija—m+C u™ +O(F).
\dz ) i, mz=:0 mUis1/2,54—-m ( )

Ju N7 o

3z = 2 Crtlizijgjem + CTu™ +0(%).
(8:/::@% mZZX m+1/2,54+m )

Here N*, N~ are number of arid points used to approximate the partial
derivatives by one side difference. These two equations can be solved with
respect to uT = uT = u.

N NT
vy Z Cr,;u:-l/").jd-é-m — V2 Z C%“H—l/‘z.jd—m
e = m=1 m=0
S .
! mCT —mC-
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These are reduced boundary conditions on the boundary which separate two
fluids and we can consider each domain as independent.

In order to describe the numerical methods it is convenient to present the
momentum equation in the vector form

1
— +Lu=--Vp. )
5 u oV P (4)

diva = 0. (5)

Here. the operator L contains convective terms and also diffusive terms
in the viscous case. Introducing the difference analogues Ly, divy, and V,
of the operators L, div, and V on the grid wy we can write out the following
approximation of (4), (5):

(1) Splitting method:

u* —-u”
— +Lpu" =0

n+1

1 —_— -
nl = w* — r—grady p" divy, u*Tl =0

u
1 1
—divy grad, p"Tt = Zdiv, u”
0 T

(2) Implicit method with pressure correction of second order O(7%) with
respect to time approximation:

w-vu .1
——— -+ Lpu = ——grad, p,
0.57 Jo]
n-+1 n 1
u —u 1 1 |
+ Lpu" = —O—QT(ld}L (p"7" +p"),

i

divy, u*Tl = divy, u™ = 0,
g - 20 = —T—grad/ ()’p. (5:0 = pn~l-1 I/ pn
2p 1 N -

1 4
~divp, grady §p = —div, u*.
0 T

(3) Implicit method with pressure correction of first order O(7) with re-
spect to time approximation :

1
u* —u+ 71 Lyu* = —7- =grad, p".
utl = u* — r=grad, dp, divy u*T = 0.
1 . 1. . -
~divy grady, 6p = ~divyu”, dp =p"7' - p".
o) T
The order of spatial approximation of these schemes depends on the choice

of operator L. We have the Poisson equation for the pressure p™*! in case
1 and for the pressure correction Jp in cases 2,3. The boundary conditions
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for the pressure or for the pressure correction can be reduced to the finite-
difference analogue of homogeneous conditions of the Neuman type. The Neu-
man problem obtained in this way has a solution only it the total fuid flux
across all outer boundaries is equal to zero. The solution of the boundary value
problem for Poisson equation was obtained by means of an iterative scheme
of stabilizing corrections {17]. The temperature field T™"1 is defined by the
implicit finite difference scheme of stabilizing correction or by the predictor
corrector scheme [17]. The method of stabilizing correction can be presented
in the following form:

fi,j - Ttnj . _('“T)?+1/2,j - (“T)?—l/'z.j _ (UT)ZJ_‘.‘]_/Q - ('UT)Z‘”“,‘_L/Q;
At Rz ~ hy '
TR, ;- 2I0 + T + Tijor — 215 + Tij—1

i 7
hs hz

1
+—
C

n+1 ol nrl n-r-l 41 n n L Tmn
Ti,j -"TLJ _E T _{)T + Tz ly Ti+l.j —2Tl._7 B 3—1,_]}

At B c{ h; hi

The predictor corrector (Yanenko N.N., 1968 [17]) in our case has the form:

i i i J=U oyl

0.5 &t Jz /u ¢ hs o

Tn_ﬁ-l./ﬁ —T-n. ( dTn-'_l“\ lTnn-L,L _ana-l 3 . Tinaj-l/’.'i o

Ti’,ljt;)/:S ~ ﬂanl/g Th < ¢ 1 TM-O/B OTH*)/S + T )J” n=+2/3
05-at  \" oz [ i h;c _ = Al
T:jﬂ-l - Tznj n+2/3
T = (A:: + \II) T. i .

4  Solution of Bench Mark Problem

The mechanism of buoyancy-driven flow in a square cavity can be applied
for investigation of processes such as nuclear reactor insulation. cooling of ra-
dioactive waste containers. ventilation of rooms. solar energy collection. crystal
growth in liquids and processes in the Earth’s mantle. A common practice in
computational fluid dynamics to compare and test numerical codes is the use
of benchmark solutions. In [18], [19] it was proposed that buoyancy-driven
flow in a square cavity with vertical sides which are differently heated would
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[S]]
(93]

be a suitable benchmark solution for testing and validating computer codes.
The benchmark comparison for mantle convection codes is presented in [20].

The problem being considered in [18] is that of the two-dimensional flow of
a Boussinesq fluid of Prandt]l number 0.71 in an upright square cavity of side
L. Both velocity components are zero on boundaries. The horizontal walls are
insulated. and the vertical sides are at different temperatures. The solution
of this problem ( velocities, temperature and rates of heat transfer) has been
obtained at Rayleigh numbers of Ra = 103, 10%, 103, 10°.

The benchmark values and results of our numerical experiments appear in

Table 1.
Table 1.

Ra 100 10t 10 10°
Numax 1.505 3.5328 7.717 17.925 Benchmark
Numax 1.515 3.620 8.920 19.200 21 x 21
Numgax 1.510 7.530 41 x 41

Nu 1.118 2.243 4.519 8.800 Benchmark
Nu  1.111 2222 5150 10.900 21 x 21

Ny 1.113 4,420 41 x 41
Umax  3.649 16.178 34.73. 64.65 Benchmark
Umax  3.494  17.07 42,59 39.13 21 x 21
Umax  3.650 37.75 11 x 41

08

086

04r

02¢

0 02. 04 06 08 1
{a) (b

Figure 1. Contour maps of stream functiox%

Where Numax is the maximum value of the local Nusekt number on the
boundary at z = 0, Nu = fo1 %gdz lz=0 is average Nuselt number, and umax is
the maximum horizontal velocity on the vertical mid-plane of the cavity.

Figures 1-3 show the streamlines. isotherms and vorticity contours for the
benchmark solution and the similar data from recent work computed at the

.78-
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11 x 41 grid for the Ra = 10%. Figures 1(a),2(a), 3(a) are results of our calcu-
lations and figures 1(b),2(b), 3(b) are benchmark solutions.

| | bl
L | . 1
O .

0 02 04 08 0.8 1
(a)

Figure 2. Contour maps of temperature T

08

06

04

02

0 P ‘
0 62 04 0.6 0.8 1
(2) {b)

Figure 3. Contour maps of vorticity.

5 Comparison with laboratory experiment

In the experimental research of N.L. Dobretsov and A.G. Kyrdyashkin [11]
a two-layer model of mantle convection was derived from experimental work
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on hydrodynamic and heat exchange within a horizontal two-layer medium
consisting of two immiscible liquids of different densities and viscosities. the
upper one cooled and the lower one heated. The viscosity of the thinner upper
layer (model of the asthenosphere) is less than that of the lower layer (model
of the lower mantle). Two immiscible liquids. glycerin and hexadecan . were |
used in the experiments. Hexadecan has the following properties at T = 30°C.
density, p , is 766.5kg/m3 ; thermoconductivity, A , is 0.147 W/m -° [oht:
: dynamic viscosity, u is 2.754x1073N - s - m?® ; kinematic viscosity. v, is
0.359 x 10™3m?2s™!; thermal diffusivity, a, is 1.154 x 10™"m2s~!; coefficient of
thermal expansion, 3, is 0.529x 103 °C~1; Prandtl number, Pr = v/ais 31.13.
Glycerin has the following physical properties at T = 40°C ; p = 1259 kg/m?;
A=0283W -m™°C7l =330 x 107N - s-m?; v = 2.64 x 107 *ms L
a=9.18 x 1078m3s™l; B =44 x107*°C~1: Pr=2.88 x 10%.

Experimental investigations were carried out when the layers had a thick-
ness of {)/l; «'1 and vy/rva = 73.5. Fig. 4-6 reproduced from Ref. {11]
for comparison with our numerical calculations. Fig. 4 shows the lines of
points in the two-layer system of liquids obtained from the videofilm and also
cross-sections A — A and B — B. for which velocity profiles are found that
are given in Iig. 3. Fig. 5 shows profiles of horizontal and vertical compo-
nents of velocity in the liquid layers of glycerin (l» = 19 mm) and hexedecan
(I, = Tmm). Fig. 6 shows experimentally measured temperature profiles in
different vertical cross-sections parallel to the roll axis.

A .
] Ay.mm
u, mm/s as

{ L !
Ty N Yy T IN T NYYN Y I VI N3]

77////7///7//////l/////////////////
0 I

A
Figure 4. Experimental lines of flow. The  Figure 5. Velocity profiles in the
A — A and B — B section corresponds horizontal two- laver model: glycerin
to fig. 4. (From Ref.[11]) . (lower layer) and hexadecan (upper

layer). (From Ref. [11])
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oAl
¢ 2 4 § - d w %
Figure 6. Temperature profiles i the horizontal layers of glycerin-hexadecan in

several vertical sections from descending fow {x = 0) up to ascending flow
{z = 32,5, see Figd) (From. Ref.{11}).

In Fig.7-9 we portray the mumerical solutions in the steady state. The
aspect ratio of the domain ry = L/H corresponds to the size of the experi-
mental box 100/25. The non-~ dimensional parameters are taken according to
the conditions of the experiment and the physical properties of glycerin and
hexadecan,

Ra = 38461.5, Pr =31, ;mfr =735,

oaCD -
f”"”\

[
1

a8

0 0.8 1 1.5 2 28 3 35
Figure 7. The stream lines and isotherms. Result of numerical simulation.
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~1

wt

The main calculations were carried cut on a grid which contained 50 x 200
nodes in = and z directions respectively. In Fig.T we portray the steady state
solution in terms of the stream lines, and isotherms. It is to be noted that
the flow structure in the two-layer system in numerical simulation is very
similar to the flow pattern in the laboratory experiment. Correlation betweer
descending flows in the upper and lower layers as well as between ascending
flows occurred in both numerical simulation and experimental data. Fig. 8
shows the profile of the herizontal components of velocity. This profile is drawn
for £ = 1.7 section (see Fig. 7). Near the liquid interface boundary a counter
current appears. As pointed out in [11] the reason for the counter current is
thermal coupling. In Fig. 9 the temperature profiles are drawn in different
vertical cross-sections. The profile marked by a plus symbol (+) corresponds
to the section z = 1.3 in the region of ascending flows. The profile marked by a
cross (x) corresponds to the section z = 1.7 in the region closer to the section
A—A in the experimental study (see Fig.4). The profile marked by a diamond
() corresponds to the section located in the region of descending flows. The
counter currents near the interface provide a horizontal temperature gradient. -

i
N'j“
:

B
i
’

sacant x=1[.70

u
“iafbblid.bbs10.b%2l5.08i'd?éfo S 7501 o002 6.0 aaee

o

N'—
<

Figure 8. The profile of horizontal component of
velocity at the section r = 1.7 (see Fig. 7)
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,_.
(93]
[wn)
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Figure 8. Temperature profiies in different
cross-sections. Results of numerical simulation.

In conclusion, the results of the numerical siraulation reported here indicate
only qualitative agreements with experimental data. The developed numerical
models can be considered as a good tools to simulate natural convective Hows
n a many—layered system of fluids.
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