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Abstract

In this report we consider the interpolation by classical Lagrange polynomials
and by their piecewise generalizations which are usually called Lagrange splines.
We study in details such common in practice Lagrange splines as piecewise lin-
ear, piecewise quadratic and piecewise cubic Lagrange polynomials. It is shown as
using simple technique one can obtain smooth analogs of Lagrange splines known
as local approximating splines. Although the local approximating splines do not
have the interpolation property but they provide practically the same accuracy of
approximation as the Lagrange splines. One central point in the report is also the
generalization of Horner’s rule for a simultaneous evaluation of Lagrange interpola-
tion polynomial and its derivatives. Such algorithm is usually lacking in standard
textbooks on numerical analysis. The presentation is illustrated by examples.
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1. Introduction

Polynomials and their smooth piecewise analogues known as splines are used
as the basic means of approximation in nearly all areas of numerical analysis. For
this reason, the representation and evaluation of polynomials and splines is a fun-
damental topic in numerical analysis. We discuss this topic in the context of local
spline interpolation, the simplest and certainly the most widely used technique for
obtaining spline approximation. One central point of this research is a generaliza-
tion of Horner’s rule for the simultaneous evaluation of the Newton interpolating
polynomial and its derivatives. Such an algorithm is usually not found in standard
textbooks on numerical analysis.

We study the simplest piecewise polynomial approximations known as La-
grange interpolating splines in detail. Using a very simple approach we show how
to obtain smooth analogues of Lagrange splines which only approximate the data
while still providing the same order of approximation as Lagrange interpolating
splines. Such splines are usually called quasi-interpolants. We study the commonly
used Lagrange splines, such as piecewise cubic and piecewise quadratic Lagrange
polynomials in detail. Relations between discrete polynomial splines and Lagrange
splines are investigated.

2. Polynomial Interpolation Problem

Let a real-valued function f defined on some interval [a, b] be stored in tabular form
(25, fi), 1 = 0,...,N, where f; = f(z;) and where the points z; form an ordered
sequence a = zg < 71 < - < TN = b.

A typical interpolation problem consists of the selection of a function Py from
a given class of functions in a way such that the graph of Py passes through the
given set of data points, that is, Py(zi) = fi, ¢ = 0,..., N, where the points z; are
called the interpolation nodes.

The traditional and simplest method for solving the interpolation problem is
the construction of an interpolating polynomial Py. The interpolation conditions

N
PN(:c,-)=Zaj$g:fi, 1=0,...,N (1)

are equivalent to the system of linear algebraic equations

1 =z mg xév aog fo
1z 22 o oz ai f

S =\ . (2)
1 zy 2% - 2N lan fn

The matrix of system (2) is called the Vandermonde matrix and its determinant
is the Vandermonde determinant. In our case the Vandermonde determinant D =
H0§i<j§N(xJ' — z;) is nonzero, so that system (2) has a uniq1.1e solution. This
proves the existence and uniqueness of an interpolating polynomial of degree < N.
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However a direct solution of system (2) can in general not be recommended as
its matrix (with “almost” linearly dependent rows) is often ill-conditioned. The
evaluation of the interpolating polynomial can be performed very efficiently by using
the Lagrange interpolation formula which permits us to write down the solution of
system (2) explicitly.

3. Lagrange Interpolation Formula

Let us consider the Lagrange formula for the interpolating polynomial

N
Ly(z) =) fili(e), (3)
Jj=0
where the Lagrange coefficient polynomaal [; with the property

1 ifi=j,
lj(m,-)::{o J

otherwise

has the explicit form

Z(ZII): (.’L‘—J,‘Q)"'(LIJ—Ij_l)($—$j+1)-"(1}—IN) ]:O N
’ (zj —z0) - (zj — zjm1)(2j — Tjg1) - (zj = TN)’ T
and can be written in short as
Loy = —2¥&) g N, (4)

(z —2j)wi(z;)’
wn(z)=(z—zo)(z —21) - (z —zN).

-

The graph of the Lagrange coefficient polynomial /5 with V = 10 and nodes z; =1,
i =0,...,10 is given in Figure 1.
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Figure 1. The graph of the Lagrange coefficient polynomial
s with N = 10 and nodes z; = 1,1 =0,...,10.




One can easily verify that
Ly(z:i)=fi, ¢=0,...,N.

According to (3) and (4) the number of arithmetic operations necessary to compute
the value of the interpolating polynomial in Lagrange form (or Lagrange interpo-
lating polynomial for short) is proportional to N2.

Lemma 1. The Lagrange interpolating polynomial is exact for polynomials of
degree < N, that is, for any polynomial Py of degree k < N the following identity
is valid,

N
Py(z) ZZPk(xj)l]‘(a:), 0<k<N.

Proof: It is sufficient to verify the validity of the above formula for monomials,
that is, to prove the identity

xk

z5li(z), k=0,...,N.

Jj=0
Now the polynomial of the degree N,

N
Fin(z)=2* =) afli(z), 0<k<N,

j=0

has N + 1 zeros: Fx n(z;) = 0,7 =0,...,N. So by the Fundamental Theorem of
Algebra, Fj n must be identically equal to zero. This proves the lemma. O

Let us estimate the error in polynomial interpolation. For an integer k > 0,
we denote by C* = CF¥[a,b] the set of functions on [a,b] which have k continuous
derivatives.

Theorem 1. Let f be a function in CN*1[a,b], and let Ly be the polynomial of
degree < N which interpolates the function f at N +1 distinct points 2o, 21, ...,ZN
in the interval [a,b]. Then, for each z in [a,b], there exists a number &, in [a,b]
such that 4

oo v 5
Proof: If z is one of the nodes of interpolation z;, the assertion is obviously true
since both sides of (5) reduce to 0. So let z be any point other than a node, and
consider the function

f(z) = Ln(z) =

¢(z) = f(z) — Ln(z) — Cwn(z),

where C is the real number that makes ®(z) = 0, that is,

C = (f(z) - Ln(z))/wn (2)-
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Now & € CN*![a,b] and ® vanishes at N + 2 points z,zo,z1,...,zxN. By
Rolle’s theorem, @ has at least N + 1 distinct ze ros in (a,b). Similarly, " has at
“least- N distinct zeros in (a,b). Repeating this argument, we conclude eventually
that ®(M+1 has at least one zero, say &z, in (a,b). Now

V() = FHI(E) - C(N + 1)

— f(N+1)(§z) (N + 1),f($) — Ly(z)

wn(z) =0,

and upon solving for f, we have the equality (5). This proves the theorem. O

Example 1. If the function f(z) = sinz is approximated by a polynomial of degree
9 which interpolates f at ten points in the interval [0, 1], how large is the error on
this interval?

Solution. Let us apply theorem 1. It is clear that [f(19(£,)] < 1 and |(z —
zo) - (z — zg)| < 1. Thus, for all z in [0, 1], according to (5)

1
|sinz — Lg(z)| < o1 <28 x 1077,

If one does not need the interpolating polynomial Ly itself but only its value
Ln(z) at z, then one can use the Aitken interpolation scheme. Let Lo x—; and
Ly k-1 be the Lagrange interpolating polynomials associated with the data (z;, f;)
fort =0,...,k—1and ¢=1,...,k correspondingly.

Lemma 2. Let f be defined at zg,z1,...,2; and zo and z; be two distinct num-
bers in this set. Then the Aitken interpolation formula

- Ty — I T — To

Lo Ly
AT 0,k 1($)+xk_$0 1k—1(2), (6)

k=1,...,N,

Loyk(d)) =

describes the Lagrange interpolating polynomial of degree < k which interpolates
f at the k + 1 points zq,z1,...,Tk.

Proof: The polynomial on the right side of (6) has degree < k and interpolates
the data (z;, fi), t = 0,...,k. As the difference of two interpolating polynomials of
degree k would have k + 1 zeros and therefore would be equal identically to zero,
such an interpolating polynomial is unique and thus coincides with the Lagrange
interpolating polynomial Ly = Lg . This proves the lemma. O

4. Newton Interpolating Polynomial

Let us consider the recurrence relation for Lagrange interpolating polynomials

of a different kind

Le(z) = Liy(z) + cx(z — 70) -+ (& — zk-1)y k=1,...,N.
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By the interpolation condition L(zx) = fir we have here

fx — Le—1(zx)
(xk - l‘o) cae (Ik — $k—1)

Cr = ::f[a:o,...,xk].

This notation is usually called a divided difference of order k. In particular, if k = 0
then one sets co = f[zo] = fo. Therefore,

Li(z) = Li—1(z) + flzo,.. ., zk)(z = 20) - (z — Tk—1)- (7)

As according to (3) and (4),

Li(x)

il wk(x)
ij (z —z;) (8)

wi(z5)’
then by looking at each kth degree term in (8) and comparing with the coefficient

of z¥ in (7) we obtain

[

wi(z;

M)~

f[xo,...,:z:k] =

;- (9)

=0

)

From this formula, we obtain an important property of the divided difference. Let
(0, ...,1k) be some permutation of (0,...,k). Then it is easily seen that

k ) k )
f[xioy-..,xik]zz flj =Z f] :f[fIIo,...,.’Ek].

wi(zi;) —0 wi (z5)

Thus, the divided difference is invariant under any permutation of its arguments.
The formula (6) can be rewritten in the form

-

Li(e) = Li-1(2) + ———rL142(2) = Lo (2)] (10)
As
Lo x-1(z) = fi + flz1,z2)(z —21) + - -
+ flz1, .-y zk-1,20)(z — 1) - (2 — Tk—1),
Lik-a1(z) = fi + flzr, z2)(z — 1) + -
+ fler, ks, wk)(e —21) - (2 — 2k-1),

using the property of invariance of the divided difference under permutation of its
arguments, one obtains

Ly k-1(z) ~ Lo k-1(z) = (flz1, ..., zk] = flzo,. ., zpa])(z —21) -+ (2 — zk—1).

Substituting this expression into (10) and comparing with (7) one arrives at the
recurrence formula

f[iﬂh---,xk]—f[xo,---,zk-ll

f[.’l?o,.~..,$k]=  Zr — %o .
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Summing up the equalities (7) for k ranging from 1 to N, we obtain Newton’s
divided difference formula for the interpolating polynomial or a formula for the
Newton interpolating polynomial

N
Ln(z) = Lo(z) + Zf[xo, oo Th|wi—1(T)
k=1
which can be rewritten as
Ly(z) =cot+c(z —z0)+ - +en(z —z0) -+ (2 — TN-1), (11)
where
co = f[wo] = fo,
ck:f[xlw")mk]_f[wa'-axk—l], k:—l,,N (12)
Tk — X0

Let us consider the Newton polynomial interpolating a function f at points
Zo,...,TN,t, wheret # z;, 1 =0,...,N. Then according to (11),

Lyti(z) = Ln(z) + flzo,. .., zN,tlwn (). (13)
As Ly4+1(t) = f(t), then by setting z = ¢ in (13) we obtain
f(t) ‘”LN(t) :f[SCo,..;,:L'N,t]WN(t)- (14)

Comparing this formula with (5) we conclude that

FAT(E,).

1
f[xo,---,wN,$]=m

If we set * = 41 and N = n — 1 then this formula can be rewritten in symmetric

£8) 5)

n!

form,

f[xoa"'axn] =

for some ¢ € [z0,z,]. Let us note that if f is a polynomial of the degree N and of
the form (1) then

polynomial of degree N —n —1, ifn< N —1,
f[;co,...,xn,x]:{aN, fn=N-1,
0, ifn>N-1.

The proof of this equality can easily be obtained by induction. The description of
further valuable properties of divided differences can be found in [2,4,5,12].
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5. Evaluation of the Newton Interpolating Polynomial and Its
Derivatives by a Generalized Horner’s Rule

Formally, to find the value of the [-th derivative of the Newton interpolating
polynomial LS\I,), 0 <1< N at z = z for some given real number z, one may replace
the variable z by the expression & = y + z in (11), where y is a new variable. After
this substitution and after collecting similar terms one obtains

Ln(y+2)= Ao+ Ayy+ -+ Any",
where A; = LS\I,)(Z)/Z!, l=0,...,N.
After the reverse substitution y = z — z one finds that
Ly(z) = Ao+ Ai(z —2) + -+ Ax(z — 2)V. (16)

We are interested, however, in a more efficient method for evaluating the New-
ton interpolating polynomial and its derivatives which generalizes the well-known
algorithm of nested multiplication or Horner’s rule.

Let us rename aro = cx, k = 0,..., N and rewrite the polynomial Ly in the
form
N k—1
Ly(z) = Pyo(z) = ao0 + Zakp wi—1(z), wr_1(z) = H(m — ;). (17)
k=1 1=0

By using parentheses we transform the representation (17) into the form
Pno(z) =a0,0 + (z — zo)(@1,0+
o (r—zn_z)(an-10+(z —zN-1)anp) ). (18)
To evaluate the polynomial Py at z = z we form the sequence of numbers
aN1 = an.o,
N1 N,0 (19)
ag,1 Zak,o-}-(z—xk)ak_}lyl, kzN—l,...,O,

starting with the innermost parentheses in (18). It follows from (18) and (19) that
Ln(z) = Pno(2) = ag. To find the value of the polynomial Py o one needs to
perform N multiplications and N additions only.

To evaluate the Ith (0 < ! < N) derivative of the Newton interpolating poly-
nomial, let us consider the polynomial

N
Pn(z) =ai; + Z ak wWk-1—1(x)

k=141
=ar; + (¢ — zo)(a141,1+
o (z —znoi—2)(av-—10+ (T - aNo-1)ang) ) (20)

and set
aN,i+1 = aN,I,

Qg 14+1 = Gkl + (Z - :L'k_l)ak+1’1+1, k=N-— 1, e ,l.
It follows from (20) and (21) that Py i(2z) = ai41 (0 <1 < N), and to evaluate the
polynomial Py ; at z = z, one needs to perform N — [ multiplications and N —1{
additions only.

(21)
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Lemma 3. Let Py n41 =0. The following equalities are valid
Py i(z) = Pna(2) + (z — 2)PNit1(z), 1=0,...,N. (22)
Proof: If Kk = N — [ = 0 then equality (22) is evident as in this case we have
Py n(z) = Py n(2) = an,n by (20). Now suppose the equality (22) is satisfied for

allk =0,...,N—1I' (I <l' < N). We show that it is also fulfilled for k = N — [.
Using formulae (21) one obtains '

PN,I(Z) + (CE - Z)PN,I—H(J:)

N k—1—2
=ay 141+ (¢ — 2o + 2o — 2) (al+1,z+1 + Z Ak, 1+1 H (x — xz)>
k=1+2 i=0
N k—1-2
=a;1 + (z — wo)(al+1,z+1 +(z —z1 + 71— 2) Z ak,I+1 H (x — wz‘))
k=1+2 i=1

=ai1+ (z — zo) a1+ + (2 — an—i—2)(an—-1,1+1

+(z —2N—1—1 + TN-1—1 —2)aN41) ) = Py ().
This proves the lemma. O
By repeated differentiation of equality (22) and setting | = 0 and z = z we

obtain
P{)(2) = Pual2), a=0,...,N.

As Ly = Py, we now can rewrite the representation (16) in the form
Ly(z) = Pno(2) + (2 = 2)Pya(2) + -+ + (¢ — 2)Y Py n(2),
where Py (z) = a1141, 1 =0,...,N and any N+1 = ano-
Thus, the following result is valid.

Theorem 2. Let Ly be a polynomial of the form (11), where one needs to evaluate
the derivatives LS\I,), 0<I<N atz =z
Set ako =ck, k=0,...,N, and an,+1 = ano, | =0,..., N, and evaluate

ak,1+1=ak,1+(z—xk_.1)ak+1,1+1; k=N-1,...,1, [=0,...,N.
If

N
Py u(z) = a1 + E aggwg—1-1(z), 1=0,...,N,
k=1+1

then ,
LQ(2)/1' = Py y(2) = 141, 0<I<N.

Let us note that if z; = 0 for all 7, then the polynomial Ly in (11) takes the
form Ly(z) =co+crz+---+ cnzN and the algorithm described above is reduced
to the well-known synthetic division algorithm, also called the algorithm of nested
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multiplication or Horner’s rule, which can be found in many textbooks on numerical
analysis, see e.g. [3,5,9,10,11].

The algorithm above can be easily coded. Let us assume that we have two
arrays of the data t[1 : n + 1] and f[1 : n + 1]. First, by using formula (12) one
computes the divided differences.

for : ;=1 to n+1 do at] := f[i];
for i :=1 to n do
for j:=n+1 downto : + 1 do

alj] := (als] — aly — 1])/(t5] =t —1]);

The computation of the divided differences can also be performed by a different
algorithm [13]:

aln + 1] := f[n + 1];
for i := n downto 1 do
begin
aft] :== fli);
for j:=i+1ton+1do
a[j] := (a[j] — a[j — 1])/(t[5] — ¢[:]);

end

Now in order to evaluate LS\I,), 0 <I< N, at z = z one can use the following
loops.

for i := 1 to n+ 1 do d[i] := a[1];

k=1,
fori:=1tol+1do

begin

if i > 1 then k:=kx*(¢—1);

if : <n+1 then

for j := n downto i do
dlj] := dlj]+ (2 —tls —i+1]) *d[j + 1]

end;

vnewn := k * d[l + 1];

Example 2. Four values of the function f(z) = 1/(1 + z?) are given in table
1. Form a cubic Newton interpolating polynomial L3 from the data of this table.
Then evaluate L3(1.5) and Lj(1.5) using the generalization of Horner’s rule. Finally,
estimate the error of the approximation thus obtained.
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Table 1. The initial data

| oz | fi
0] -1 105
1 0 1.0
2 1 0.5
31 2 0.2

Solution. By the data of the table 1, using formulae (12), we first form the table
of divided differences.

Table 2. Divided differences values.

Z; fi f[xi,$i+1] f[wi,$i+1,wi+2] f[xz', <o ,$i+3]
-1 105

0 (1.0 0.5

1105 -0.5 -0.5

2 10.2 -0.3 0.1 0.2

According to (11), the cubic Newton interpolating polynomial L3 takes the
form

L3(.’L’) =cg + Cl(.CC — .TL‘Q) + C2(.’B u xo)(.’I) — :Ul)
+ c3(z — zo0)(z — 1) (2 — z2)
=0.5+0.5(z +1) = 0.5(z + 1)z + 0.2(z + 1)z(z — 1).

By setting a;0 = ¢;, 1 = 0,...,3, let us rewrite the polynomial L3 in the form

Ls(z) = Pso(z) = aogpo -l-km —zo)(a1,0 + (z — z1)(az,0 + (z — 22)a30))
=0.5+ (z +1)(0.5 4+ 2z(—0.5 + (z — 1)0.2)).

The value of the function P3 o at z = 1.5 can be found by Horner’s rule

az =azo = 0.2,

az1 =az0 + (2 —x2)az1 = -0.5+0.5-02=-0.4,
a1 =a10+ (2 —z1)az = 0.5+ 1.5(—0.4) = —0.1,
ao1 = o0 + (2 — z0)ary = 0.5+ 2.5(—0.1) = 0.25.

Thus, L3(15) = P3,0(1.5) = 0.25.
In order to evaluate the derivative L§(1.5), let us write down the polynomial

P3,1($) =a11+ (z — zo)(az,1 + (z — r1)asz,1)
=—0.14+(z+1)(-04+=2-0.2).

Computations are again performed by Horner’s rule,
ago = as1 = 02,

g2 = a1 + (2 — 21)azy = —0.4+1.5-0.2 = —0.1,
ar2 = a1 + (Z — xo)az’z =-0.1 + 25(—01) = —0.35.
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Therefore, L5(1.5) = P31(1.5) = —0.35.
Using the explicit formula for the function f we find a bound for the error of
approximation,

F(1.5) — L3(1.5) = 0.30769 — 0.25 = 0.05769,
F/(1.5) — L}(1.5) = —0.28402 + 0.35 = 0.06598.

6. Convergence of the Interpolating Polynomials

The choice of polynomials as a tool for approximation of functions is usually
motivated by the following well-known theorem by Weierstrass.

Theorem 3. Let f be a function which is continuous on the interval [a,b] and let
€ > 0. Then there exists a polynomial Py of degree N = N(¢) for which

Jax, |f(z) — Pn(z)| <e.

However, we are interested in the interpolation problem and in particular in the
convergence of the interpolation process. That is, if f is a continuous function on
[a,b] and Pn(z;) = f(z), 1 =0,..., N, will the quantity max,<z<s |f(z) — Pn(z)|
tend to zero as N — oo?

One can give examples where one does not have convergence. The most fa-
mous one was given by Runge in 1901. Let the function f(z) = 1/(1 + 252?) be
interpolated on the interval [—1, 1] by using equally spaced nodes z; = —1 + 2i/N,
i=0,...,N. Then one can show (see [7]) that

J\}I—I>nooo.7zsr.r.l%}}(z|<1 |f(#) = Ln(z)} = oo.

Figure 2 illustrates the divergence of the interpolation process for Runge’s exam-
ple. In Figure 2, the interpolating polynomial Lyo deviates substantially from the
interpolated function near the ends of the interval [—1,1]. The oscillations tend to
infinity with growing of N.

Even more, the following result by Faber (see [9]) is valid.

Theorem 4. For any prescribed system of nodes
a<ziM <™ <. <2V <b (N>0) (23)

there exists a continuous function f on [a, b} such that the interpolating polynomials
for f using these nodes fail to converge uniformly to f.

However, convergence of the interpolation process can be ensured by a special
choice of the interpolation nodes (see [9]).

Theorem 5. If f is a continuous function on [a,b], then there exists a system of
nodes as in equation (23) such that the polynomials Py which interpolate f at
these nodes converge to f, that is,

Nim | max, |Pn(z) — f(z)] = 0.

In practice one often chooses the roots of the Chebyshev polynomials as a
system of interpolation nodes which guarantee the convergence (see [2]). As a rule,
the problem of convergence disappears if one turns to interpolation by piecewise
Lagrange polynomials which are also called Lagrange splines [1].
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1.00
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Sth degree
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-0.75 -1

Figure 2. Runge’s function interpolated by 5th-degree and 20th-degree
interpolating polynomials using equidistant data.

7. Piecewise Linear Interpolation

The simplest example of Lagrange splines which guarantee the convergence of
the interpolation process to the interpolated function is piecewise linear interpola-
tion. In this case, one has a Lagrange interpolating polynomial of first degree on
each interval [z;,z;41],0=0,...,N —1

r — T

hi

.SIZ,‘+1 — T

Li,l(m) =~ fz e

+ figa hi = ziy1 — z;. (24)
Thus, on the whole interval [a,b] one has a set of N Lagrange interpolating poly-
nomials of first degree forming a linear Lagrange spline or, what is the same, a
Lagrange spline of the first degree.

Setting z_; < a and b < zxn41, let us define linear basis splines (B-splines for
short)
aN - 1>

Bj,l (I) = (.Z'j+2 - wj)@[x,xj,xj_*.l,l'j_*.z], ] = —‘]-7 cee

where ¢(z,y) = (z — y)+ = max(0,z — y), or according to formula (9)

Jt2

Bju(z) =(zj42 — 25) Y C=eee 5y

k=j

wi 2 (k)

wja(z) =(z — z;)(z — $j+1)(9§ —Tjt2).

7N_1a
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The functions B;; can be written in the form

T—x;
h,-]’ r; <z < Tjyq,
B.(z) = Tijpo — T 2
]’1( ) %7 Tji+1 S T < Tj+2, ( 5)
0, otherwise.

It is easy to show (e.g., see [14]) that the functions Bj,, 7 = —1,...,N —1 are
linearly independent on the interval [a,b]. Every Lagrange spline of first degree ST
can be uniquely represented in the form

N-1
St(z) =Y fit1Bija(z), @€ la,b]. (26)

j==1

On the interval [z;, z;41] only the basis splines B, 1, j =1 — 1,1 are different from

zero in this sum and by formula (25), the representation (26) takes the form (24).
Let us also note that linear Lagrange splines are exact for polynomials of first

degree, that is, every polynomial of first degree P; can be written in the form

N-1
Pi(z) = Y Pi(ej+1)Bja(z), = € la,b].

j=—1

It is sufficient to verify this equality for the monomials 1 and z, that is, to show
the validity of the identities

N-1
Z x?—}-lBjyl(x) = xa, o= 07 1’ S [aa b}

j=—1

This can be easily done by using formula (25).

Example 3. Let the function f be interpolated on the interval [a,b] by a linear
Lagrange spline on the set of equally spaced nodes z; = a + i(b — a)/N, i =
0,...,N, and suppose that in the evaluation of f, round-off errors do not exceed
¢ > 0. How many interpolation nodes have to be chosen to provide an exactness of
approximation F (¢ < E)?
Solution. Let f(z;) = fi+¢€i,¢=0,...,N, where ¢; is a round-off error. Let us
set h = (b — a)/N. Using equality (5), on the interval [z;,z;+1], ¢ =0,...,N — 1,
we have

Tip1— T T —z;

|f(z) = Li(z)| =‘f(w) - sz + fi+1T

Z; — X r — T
=‘f(m)—f($i)+lT—f(wi+1) 5
R R

h h

1> éﬁ quiusInmasiensinn

& aminndomabiladgrind
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1
§§($i+1 —z)(z — xi)|f”(fz)| + max(|e;|, [eit1])

< max |f"(z)]+e<E.

2
8 zilz<zipa

Let maxo<z<p |f"(z)| = M. As in our case h = (b — a)/N, we have the estimate

1/b—a\? (b—a)M*/?
= M<E- >
8( N ) <E-e or N2 [8(E — ¢)]1/2

Example 4. Under the conditions of example 3, what number of interpolation
nodes provides the minimal error of approximation for f’ on [a,b]?
Solution. On the interval [z;,z;+1],:=0,..., N — 1, one has

f1(e) = Liy(@) = f/(@) - L2
=f’(x) L | f($l+1)’“f($z) Eit1 ~5,-.

3 T

Using the Taylor expansion we obtain

fa) = f@) + P -+ @B e,
f(ziv1) = f(z) + f'(2)(zit1 — @) + f"(ﬁz)@ﬂa:x—y, €2 € (2, Tit1)-
Hence
fz 1) — f(-Tz) Y, 1" (Tiy: — m)z " (wi - x)2
* A = fi(z)+f (52)—‘+T* —~ f (51)—“'“% :

This gives us the estimate

f(@ipr) = fzi) ) (2~ £i)’ + (g1 — z)°

, - "
f'(z) 5 = oh X | (z)].
Then
h 1, i
If'(z) = Liy(2)] < 5 max |f"(z)| + leil + leia]
, 2 £;<z<zip1 h

h 2¢

< - = — o(h

= 2M+ A 90( ,5)

The function ¢ takes a minimal value with respect to h if ¢'(h,e) = M/2—2e/h?* =0
or h = 2(e/M)'/?. As h = (b—a)/N then we have to choose N > (M/e)1/?(b—a)/2.
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8. Interpolation by Cubic Lagrange Splines

The approximation can be improved by replacing piecewise linear interpo-
lation by piecewise cubic Lagrange polynomials. Suppose we have data (z;, f;),
1= — ,IN 4+ 1. To obtain a cubic Lagrange sphne one takes the cubic Lagrange
polynomlal on every interval [z;,z;41],7=0,...,N —1,

42 i+2

= 5 i@ @)= [] @) @)

j=i1 x—:cj)wl-_l’?,(xj)

j=i—1

On the whole interval [a, b}, we have a set of N cubic Lagrange polynomials forming
a continuous function which is called a cubic Lagrange spline. If the endpoint data
(zj,fi); 3 = —1,N +1, is not given, then we can extend the polynomial L; 3 to the
interval [z, z2] and the polynomial Ly_; 3 to the interval [zy_s,zn]. However,
in this case the goodness of approximation on the intervals [zo, z1] and [zn_1, z ]
will be lower (see [14]).

Using formula (5) on the interval [z;, z;11] one has the estimate

1

£0) = Lia(@)] € grloi-ra(@)l | max  [FV@)] < oD llon,  (29)

where h = max; h; and ||f||c[a5 = maxa<z<s | f(2)].
Setting z_3 < z_3 < z_1 <aand b < zy41 < Tnt2 < TN+3, let us consider
the cubic Lagrange B-splines

wi—1,3(2) "
’ ) S y L R
B (g) = d @~ i)Wy g 4(2i42)"  ° [k, Thy1] ”
0, otherwise,

J=-3,...,N — 1. The graph of the spline B ‘s with equally spaced nodes xT; =1,
1=1,... ,5 is shown on Figure 3.

0 0 \-/ 1 v I6 v

Figure 3. Cubic Lagrange B-spline with equally spaced nodes z; =+¢,¢=1,...,5.
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It is easy to show (e.g., see [14]) that the functions B]L3> j=-3,...,N—1are
linearly independent. Every cubic Lagrange spline S¥ can be uniquely written in
the form

N-1
Sy(z) = ) fi+2Bjs(e), = €[a,b]. (30)
j=—3
In this sum only the B-splines BjL,g, 7 =1—3,...,t will be different from zero on

the interval [z;,zi+1]. Using formula (29) we verify that the representation (30)
coincides with formula (27) on the interval [z;, ;1]

142

N-1 %
SH@) = Y firnBh@ = Y fmBh@E) = Yy, 2l g

1 (z — zj)wi_y 5(2;)

j=-3 j=i—3 j=i—

Cubic Lagrange splines are exact on cubic polynomials, that is, every cubic
polynomial P3 can be uniquely represented in the form

N -1
P3(z) = Z Ps(zj42)Bls(z), € [a,b].

To prove this formula we verify it on the monomials %, o = 0,1, 2,3, that is, we
show that the following equalities are valid

N-1
% = Z m?_,_szL,s(m), a=0,1,2,3, z¢€]a,bl], (32)
j=-3
or in equivalent form
N-1
(y—2)* = Y (y—z;42)°Bis(z), =z ¢cla,b].
j=—3

As in (31) we have on the interval [z;,ziy1],7=0,..., N — 1, that

N~—1 i+2

2§ wi-1,3(z)
02,y By (2) = IS, a=0,1,2,3
Z +253 Zl (z —zj)wi_y 3(z;5)

j=—3 ]:z—

This proves the equalities (32).

Unfortunately, on a coarse mesh the graph of a cubic Lagrange spline can have
corners as the derivatives of consecutive polynomials are not ajusted smoothly. An
exception is the case of equally spaced nodes (h; = h for all i) where the second
derivative of a cubic Lagrange spline turns to be continuous.

Let us use a simple approach to show how we can smoothly adjust consecu-
tive cubic Lagrange polynomials to obtain a smooth function while still providing
practically the same accuracy as with Lagrange interpolating spline.
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9. Local Approximation by Cubic Lagrange Splines

We now discuss a “corrected” cubic Lagrange polynomial on the interval

[2i,2i41],7=0,...,N -1,
Si3(z) = Liz(z) 4+ Cin(z — 2:)* + Cio(zig1 — z)°.
We will assume that
SO 4z —0) = SN2 +0), r=0,1,2, i=1,... N—1. (33)

We write the consecutive cubic Lagrange polynomials on the intervals [@i—1, ;)
and [z;, ;41] in the form

Si-13(2) = fi-1 + flziz1,zi](z — ziz1)
+ flzic1, zi, 2ipa](z — ziz1) (2 — x4)
+ flzice, i1, i, i) (2 — 2ic1)(z — 23) (2 — Tig1)
+Cicia(z — $i—1)3 + Ci—12(zi — 33)3,

Sia(z) = fic1 + flzic1, z(z — zioy)

+ flzio1, 2, ipa (2 — zio1) (@ — z4)
+ flzim1, 26, Tig1, Tiga)(2 — zic1) (2 — zi) (T — Tig1)
+ Cia(z — 2:)* + Cip(zip1 — 7)°.

Subtracting these polynomials we have

5i,3($)—5i—1,3($) = 9i,4($ - xz‘—l)(l‘ 1 xz)(m - $i+1)
+ (Cix + Cic12)(z — 2:)® + Cip(2igr — ) — Cim1a(x — z1)3,
where 9,',4 = (:E,‘_|_2 — :Ei_Q)f[iEi_.z, S ,.Z'H_z].
Hence, using the conditions (33) we obtain the system of equations
R _Cicy1 —Rh3Ci2 =0,
3h?_1Ci—11 +3h2Ci2 = —h;_1hib; 4, (34)
3hi—1Ciz11 — 3hiCia = (hiz1 = hi)0; 4.

The equations in the overdetermined system (34) are linearly dependent. This

system has a unique solution

h26; 4 hi—1\3
Ci—-l,l - _Bhi_l(hz’_l +hz)’ CI,Z - ( hz ) Cl—l,l'

Hence, a smooth cubic Lagrange spline takes the form

_ hiabiva (2 — 2:)° — h?_16;4
3hi(hi + hit1) ! 3hi(hi—1 + hi

Sis(z) = L; 3(z)

1

j (@it = z)*  (35)
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on the interval [z;,z;11]. We loose the property of interpolation. Instead, we have
the property of local approximation. Let us show that nevertheless the accuracy of
approximation will practically be the same as for the cubic Lagrange interpolating
spline.

Using (14) we can rewrite formula (35) in the form

2
hi+19i+1,4 (

f(.z') — Si,g(:c) =f[:v,<_1, vy T4, m]w,-_l,g(m) + 3hz(h, n hi_H) T — mi)S
h?—lei#l 3
+ 3hi(hi—1 + hi)(xi+1 )
h2 Z; — Ti— h?__ z; — Ti—
— [wi—l,B(x) z+1( +3 1)( _ i)3+ 7 1( +2 2)
3hi(hi + hit1) 3hi(hi-1 + hi)
X (Tit1 — x)s]f[xi—lr o Tign, ], €€ [Tig, Tigs].
Hence, one has the estimate for z € [z;, z;41]
£(@) = Sip(@)] <[PA- 12+ 2[R max  [floics...,ziee. €]
) — 3 1 xi—2S£Sxi+3 9’ ) 9
35 -
<—ht i—1y vy Li42,
“48hl xi—;él?%(acﬁa flzia,. o ziva L,
where h; = max|;_j|< hj and t = (z — z;)/h;.
Using equality (15) we can rewrite this estimate in the form
21 hi 35
_ Q. < 2 1 — 2 “1 e < 7 4
1£(2) = Sia(@)] < [0 - 1) + 5| 35M < T=htM, (36)

where M = ||f™)||g[a5)-

Comparing now the estimates (28) and (36) we conclude that when replacing
a cubic Lagrange interpolating spline by a local approximating one, practically the
same accuracy of approximation can be obtained (compared with the estimate (28),
the constant in the estimate (36) is increased only slightly).

Applications of local approximation methods to the problems of computer
alded geometric design (CAGD for short) are described in [6,8].

10. Local Approximation by Cubic B-Splines

Let us discuss one more approach [15] for obtaining a formula of local approx-
imation (35). Consider cubic B-splines

Bj,3($) = ($j+4 - SUj)g03[III,IL‘j,. . a$j+4], (‘03(3},y) = (‘T - y)i—a

j=-3,...,N—1. The graph of the cubic B-spline B; 3 with equally spaced nodes
z; =1,1=1,...,5 is shown on Figure 4.
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0 1 2 3 4 5 6
Figure 4. Cubic B-spline B; 3 with equally spaced nodes z; =¢,i=1,...,5.

Using formula (9) one can also rewrite the spline Bj 3 in the form

4 x _xk j+a
Bj,B( )= $J+4 Z wj,4(:v) = H(x — Tk).
k=; wja(Zk) k=j

It is easy to show (see [14]) that the functions B;s, 7 = —=3,...,N — 1 are
linearly independent on [a, b] and have the properties

Bjs(z) { >0, i 2 € (zj,244),

0, otherwise,

N-1
(y—2)* = > (y—2+1)(y = Tj12)(y — zj43)Bja(z), @ €[a,b]. (37)

j=—3
Equality (37) can also be rewritten in the equivalent form

1 N-1

% = 73 Z symme(Tt1,2j+2,2j+3)Bj3(z), = € [a,b], (38)

j=—3

where C§ = (2) is the usual binomial coefficient and

symmo(z,y, 2) =1,
symmy(z,y,2) =z +y + 2,
symma(z,y,2) = 2y + ¢z + yz,
symms(z,y,2z) = zyz

Let us consider the following formula of local approximation by cubic B-splines

N-1
z) = ) bis2Bs (o), (39)

i=—3
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where b]‘ = bj’_lfj_l + bj,ij + bj’lfj+1. If we set bj,o =1- bj’_l — bj,l,

X h2
bj,—l = - ? ’ bj 1= = = ’
8hj-1(hj-1+hj)" 7 3hj(hj-1 + h;)

then formula (39) will be exact for cubic polynomials. To verify this property, one
can use the monomials 2%, o = 0,1,2,3. Substituting these monomials into (39)
we obtain the equalities (38).

According to formula (14) we have

f(z) = Lis(z) + Ris(z),

where R; 3(z) = flzi—1,...,Tit2, ¢|wi—1,3(z).
As the spline Sy is exact for cubic polynomials, then

Si(2) = Lia(z) + SR, q(2)-
Using formula (39) one has on the interval [z;, z;41]

SRis(x) =bi—1 1 Ris(zi—2)Bi_33(z) + bigo 1 Ri3(ziys)Bis(z)
i+2
+ Y ¢i(z)Ris(z)),
j=i—1
where t; are some cubic polynomials. As R;3(z;) =0for j=¢—1,...,7+ 2 then

S¢(z) = L;s(z) + bi—l,—lRi,3($i—2)Bi—3,3(33) + biy2,1Ri3(zit3)Bis(z).

Substituting here the expressions for B-splines and for the remainder we again
obtain the formula (35).

11. Interpolation by Quadratic Lagrange Splines

One can also perform the interpolation by piecewise quadratic Lagrange poly-
nomials. Suppose one has data (z;, f;) with¢=~1,...,N or :=0,...,N+1and
considers quadratic Lagrange polynomials on the intervals [z;, z;41],2=0,...,N —
1

Lia(z) =) f E wj,2(z) (40)

— zk) wj o (Tk)

for j =1 —1 or j = i correspondingly. This gives us a set of N quadratic Lagrange
polynomials forming a continuous function on [a, b} which is also called a quadratic
Lagrange spline. If we have only the data (z;, fi),2 = 0,..., N, then one can extend
the polynomial Lg ; to the interval [0, z2] or the polynomial Ly _3 2 to the interval
[£N_2,2N]. Let us assume that we have the data (z;, fi), i =0,...,N + 1.
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Using formula (5) one has on the interval [z;, z;11]

£0) = Liale)| < mpboia(o)_ mox  1FO@)] < LR O (@)

z;<z<Tit2

Setting z_3 < 2_; < aand b < zN41 < Ty+2 let us define quadratic Lagrange
B-splines

o1.4(2) |
3 f
BL (o) — ) @—T2)wp (@) 0 T € [z, Thy1],
() = ’ kgl (42)
=27+1,5+2,
0, otherwise,

J=-2,...,N — 1. The graph of a quadratic Lagrange B-spline B;  with equally
spaced nodes z; =1, ¢ =1,...,4 is given on Figure 5.

&

14+

0 { f } t b

o \/ 3 5

Figure 5. Quadratic Lagrange B-spline B; ; with nodes z; =1i,i=1,...,4.
It is easy to show (see [14]) that the functions BjL,za Jj=-2,...,N —1 are
linearly independent. Any quadratic Lagrange spline S§ can be uniquely written
in the form

N-1
S§(z) =Y fisaBla(e), @€la,b]. (43)

j==2

In this sum only the B-splines Bﬁz, J =1—2,1— 1,1 will be different from zero
on the interval [z;, z;y1]. Using formula (42) we verify that the representation (43)
coincides with formula (40) on the interval [z;, z;41]-

Quadratic Lagrange splines are exact for quadratic polynomials, that is, for
any quadratic polynomial P, the following representation is valid

j=—2

N—-1
Py(z) = Y Py(zj42)Bla(z), @€ [a,b].
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Again, we prove this formula by showing that it is valid on the monomials 22,
a =0,1,2, that is,

Z z2,,BF, a=0,1,2, € la,b (44)

1=—2
or in the equivalent form

N-1
(y—2)" = Y (y—242)°Bfa(z), @€ a,b].

i=—2

The equalities (44) can be verified directly by using formula (42). For z € [z;, i11],
1=0,...,N — 1, one has

]Vz_:l 02 BL( ) g% x wlz(x) 0] 0 1 2
$.+2 2 Tr) = =T, a=U,1,2.
2 i) = 2 ey )

12. Local Approximation by Quadratic Lagrange Splines

The derivative of a quadratic Lagrange spline is a discontinuous function. To
obtain a smooth quadratic spline let us apply the same approach as used in section
9 for cubic Lagrange splines.

Let us consider a “corrected” quadratic Lagrange polynomial on the interval

wizina], i =0,..., N —1,
Sia(z) = Liz(z) + Cia(z — ) + Cia(zip1 — z)2.
We will assume that
SO y(@i = 0) = S (@i+0), r=01, i=1,..,N—1 (45)

Let us write the polynomials belonging to the consecutive intervals [z;_;,z;] and
[, Ti41] in the form
Si—12(2) = fi + flzi, zig1](z — 24)
+ flzict, ziy i )(z = 20)(z — zi1)
+ Ci_11(z — zim1)? + Cic12(zi — 2)2,
Sip(z) = fi+ flzi,zipa](z — 24)
+ flzi, Tit1, Tira](z — 2i)(z — Tig1)
+ Cia(z — 2:)? + Cio(zig1 — 7)°

Subtracting these polynomials one obtains

Sia(z) — Sic1,2(z) = Ois(z — zi)(z — Tiy1) + (Cin — Ciz12)(z — z;)?
+ Cia(ziv1 — ) = Cic1a(z — 2im1)?,
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where 0;3 = (ziy2 — zio1) flzio1,. .., Tival.
Hence, using the condition (45) one has the system of equations

h?_,Ci—11 —h2Ci2 =0,
2h;1Ci—1,1 +2h;Ci 0 = —h;b; 3,

from which
h;
hi—y

Cis hi—16; 3

2
: ='-m, ) Cis.

Cicip = (

Thus, on the interval [z;, z;41] the smooth quadratic Lagrange spline takes the
form

(:E _ xi)z _ hi—lei,S

hzz+19i+l,3

Siale) = Lin o) = o ¥ Ry

—*——2(}“_1 n h,) (.’L‘H_l — ;[;)2, (46)

Let us estimate the error of approximation by formula (46). Using (14) one

has

h? .6,
f(a:) - Si,Z(w) :f[il?i, Tit1yTi+42, x]wi,2($) + th(l;il ++hlii1) (:c - yc,)

hi—lai,s 2

+ 2(hi—1 + hi) (Bi1 —2)

h,2'+1(xi+3 = sz) hi—1($i+2 - xz‘—1)
2hi(hi + hit1) 2(hi—1 + hy)

X (Tig1 — w)z]f[$i7$i+1,$i+2,§], €€ lrim1,Tips)

2

(z —2:)* +

= |wiz(z) +

From here, for = € [z;,z;4+1] we have the estimate

37-
£(@) = Sip(@) <[t )@ =)+ 7B max |flwi, e, i ]

9+ 8v3
,___h? max |flzi, ziv1, ziv2, &,

<
- 12 z;—1<€LTi4s

where h; = max;j h;, 1 —1<j<i+2andt=(z—zi)/hi
Using equality (15) one can rewrite this estimate in the form

h3 _
10)  Sua(o)] < [t -2 — 1)+ 2] B ar < 2SRy

where M = ||f®]|c(a
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1978-1985 NSU, Assistant Professor of CM

1983 (2 mo.) Grodno State University, Visiting Assistant Professor of CM

1976-1978 Gomel State University, Senior Lecturer

1974-1976 NSU, Lecturer

Graduate/Postgraduate students: I supervised 15 M.Sc. and 2 Ph.D. in CM.

PRINCIPAL RESEARCH INTERESTS:

Numerical Analysis, Mathematical Methods in CAGD, Approximation Theory,
Spline Based Curve and Surface Approximation, Scientific Visualization

CURRENT RESEARCH INTERESTS:

Shape Preserving Approximation, Subdivisions, Difference Methods for Constructing Splines,
Tension and Discrete Splines and GB-splines, Curve and Surface Parametrization

RESEARCH GRANTS:

Difference Method for Constructing Shape Presefving Splines / Principal Investigator, The Thailand
Research Fund, Thailand, November 1, 1999 to October 31, 2001 (code BRG/16/2542)
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Shape Preserving Parametrization for Spline Interpolation / Principal Investigator, Suranaree University
of Technology, Thailand, October 1, 1999 September 30, 2000

Discrete B-Spline Approzimation through Lagrange-Newton Polynomials / Principal Investigator, Sura-
naree University of Technology, Thailand, October 1, 1998 December 31, 1999

Algorithms of Shape Preserving Spline Approzimation | Coinvestigator, The Thailand Research Fund,
Thailand, July 1, 1997 to June 30, 1999 (code BRG/16/2540) v

Difference Method for Construction Tension Splines / Principal investigator, MURST, Universita Degli
Studi di Firenze, Italy, 20 November to 20 December 1996

Geometric Splines for Curves and Surfaces Design / Principal Investigator, State Committee on Higher
Education, Saint-Petersburg Technical University, January 1994 to December 1995 (code PG-13)

Shape Preserving Approzimation for Curves and Surfaces / Principal Investigator, The Russian Foun-
dation for Basic Research, RAS, Moscow, January 1993 to December 1995 (code 93-012-495)

PROFESSIONAL ACTIVITIES:

Thailand Research Fund’s Royal Golden Jubilee Ph.D. Grantee, 1998

Organizer, Third All-union Conference on Approximation Theory and Problems of CM, Novosibirsk,
January 28 - February 1, 1991

Guest Editor, Aprozimation Theory and Problems of CM, Modelirovanie v Mekh., 5(22) (1991) No. 5

The USSR Government State Prize in Science and Technology Semifinalist, 1986

Referee for Zh. Vychisl. Mat. i Mat. Fiz., Moscow

Reviewer for Mathematical Reviews (in the field of Numerical Analysis, 1975-1985)

CONFERENCE PRESENTATIONS: (recent years)

On generalized discrete tension splines, Computational Techniques and Applications, Canberra, ANU,
September 20-24, 1999

A General Approach to Discrete Splines, Third Annual National Symposium on Computational Science
and Engineering, Chulalongkorn University, March 24-26, 1999

A General Approach to Discrete Splines, Conference on Surface Approximation and Visualization, Uni-
versity of Canterbury, New Zealand, February 15-18, 1999

On Tension Spline Construction by Difference Method, Int. Conference on Computational Mathematics,
Chulalongkorn University, Bangkok, December 8-10, 1997

Splines in CAGD, Int. Workshop on Algebraic Analysis, Nakhon-Ratchasima, Thailand, 19th-25th
January, 1997 (invited lecturer)

INVITED LECTURES:

— National University of Singapore, Singapore, 1998

~ Suranaree University of Technology, Nakhon Ratchasima, Thailand, 1995, 1997
— Universita degli Studi di Firenze, Ttaly, 1995, 1996

— Universitad di Milano, Italy, 1996

— Universita di Siena, Italy, 1996

— Institutt for Informatikk, Universitetet i Oslo, Norway, 1991

LANGUAGE PROFICIENCY:

Fluent in English and Russian. Read, understand and can translate from German and French into
English and Russian. I translated from English and French into Russian four books on splines and the finite
element method: (Publ. House “Mir”, Moscow)

1. Laurent, P. J., Approximation et Optimisation, 1975, 496 pp.

2. Descloux, J., Methode des Elements Finis, 1976, 96 pp.

3. Ciarlet, Ph., The Finite Element Method for Elliptic Problems, 1980, 512 pp.

4. Zienkiewicz, O. C. and K. Morgan, Finite Elements and Approzimation, 1986, 320 pp.

SCIENTIFIC PUBLICATIONS: More than 70.



