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ABSTRACT

In the project group classification of steady viscous gas dynamics equations in
the two-dimensional case (for plane and cylindrical symmetries) with
arbitrary state equations is done. The group classification includes finding an
equivalence group, kernel of all admitted groups and its extensions. After
obtaining the admitted group an optimal system of subalgebras are

constructed. For every subalgebra a representation of invariant solution is
given.
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1 Introduction

1.1 Background

One of the important and difficult problems of computational aerodynamics is investi-
gation of flows near the bodies. For obtaining complete information about a structure
of flows under usual temperature and pressure one can use the viscous gas dynamics
equations. Alongside with the complete viscous gas dynamics equations, the simplified
equations are widely used. The simplified equations are obtained from complete by
using various assumptions about character of flows for eliminating some terms (see, for
example, [10, 19, 13]). The simplest of such models is the boundary layer model. Other
approaches are based on the parabolized Navier-Stokes equations. For the parabolized
Navier-Stokes equations it is assumed that they are valid in a wide range of flow pa-
rameters. Defining this range of applicability remains a unsolved theoretical problem.

While a multitude of numerical methods has been deveioped for constructing ap-
proximate solutions, there remains intense interest in finding exact solutions. Each
exact solution has large value, first, as the exact description of a real process in frame-
works of the given model, second, as a test for approvals and comparisons of various
numerical methods, third, as a theoretical fact assisting to improve the used models.
One of methods for constructing exact solutions is group analysis of differential equa-
tions. Group analysis side by side with constructing exact solutions provides a regular
procedure for mathematical modelling by classifying differential equations with respect
to arbitrary elements. At present, numerous differential equations are being studied
by this method (see [11]).

[t should be noted here that many of invariant solutions of the viscous gas dynamics
equations have also been obtained by other methods {1, 2, 5, 6, 7, 8, 21, 20, 22]. The
group classification of the viscous gas dynamics’ equations was done in [4]. The group
classification of two-dimensional steady viscous gas dynamics equations for an ideal gas
was done in [14]. For some models of viscous gas dynamics equations, group analysis
was used in [3].

This research project is devoted to application of group analysis for studying the
two-dimensional steady viscous gas dynamics equations with arbitrary state equations:

urr+vryfr(ur+vy+v-z-):0, (1)

u . u

Ul + Uly + TPz = T (()\ + ju')(uI + Uy + V':;)z + /\x(u:c + Uy + U;)+
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u u
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T I
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'Where the first A = A(T) and the second g = u(T) coefficients of viscosity are related by the
equation A = —2u/3, and x = &{T").
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where v = () corresponds to the plane flows and v = 1 to the axi-symmetrical flows.
The case of ideal gas 1" = R™'pr where the first A = M7') and the second x = u(7)
cocfficients of viscosity are related by the equation A = —2u/3. and & = &(T)) has

been studied in [14]. Here we study the gas dynamics equations with arbitrary state
eguations.

1.2 Objectives
The objectives of the project are:

e To find admitted group of the two-dimensional steady viscous gas dynamies equa-
tions.

e To do group ciassification of these equations.
e To construct optimal system of subalgebras.

* To construct invariani exact solutions of the complete Navier-Stokes equations

and simphied equations of viscous gas in order to compare solutions of these
models.

1.3 Benefits

Expected benefits of this research project include the following. Exact solutions are
good tests for comparisons of various numerical methods. By comparison of solutions
of different simplifications with solutions of complete the Navier-Stokes equations can
be useful for a determination of scopes of simplifications of complete equations.

The immediate beneficiaries of this project will be to those who use the Navier-
Stokes equations for modelling of processes in different kind of techrology: supercon-
ductor, aerodynamics and geodynamics. Longer term, results of this project will be
used by researchers doing theoretical investigations of the Navier-Stokes equations and
other scientific studies.

1.4 Scope and limitations

The present research deals only with the two-dimensional steady viscous gas dynamics
equations.

2 Methodology

Tre application of group analysis implies some steps®. The first step is a group classi-
fication with respect to arbitrary elements. An admitted group is found at this step.
The next step is a construction of an optimal system of subalgebras. Then one can
atiemp: to find an invariant or partially invariant solution for each subalgebra of the
optimal system.

2For more details the reader is referred to the attached article ([16], Appendix B}, section 2.

48]



3 Results

All necessary calculations were carried on a computer using the symbolic manipula-
tion program REDUCE [9]. The calculations showed that the group of equivalence
transformations corresponds to the Lie algebra with the generators

Xi =0, X; =0, X;=2z0:+y0,+ A0\ + pd, + ki,

X5 = x0; + Y0y +uly +v0, + 270, + 20,, X§ = —70, +p0p + A0a + A0y + 0, + k0.

In the case v = 0 there is two more generators
Xg = 0p, X7 = y0; — 28, +v0, — ud,,

which correspond to shift and rotation.
Remavk. If instead of the functions A(p,7), B{(p,T) one considers the internal
energy €(p, 7), then the operators X5. X§, and X¢ are changed to

X5 =0, — 10, X =z, + y0, + ud, + v, + 270, + 20, + 2¢0.,

X = —70; + pd, + A0\ + 0, + KO,.

and there is one more generator X§ = J..
The kernel of the fundamental Lie algebra is made up of the generator

Xlzay
if v =1 and
X1 = 5y, XQ = 61-, Xg =y6,; —Iay+U3u—uav

if v = 0. An extension of the kernel of the principal Lie algebra occurs by specializing
the functions A = A(p,7),B = B(p.7),A = Alp,7)t = p(p,7h,x = s(p,7), T =
T(p,7). There are three types of the generators® admitted by system (1). The final
results of the group classification are presented in the following table

A i T K A B z
a ePA(z) PM(z)  €PO(z) elTirerliPR(z) A(z) B(z) Te™?
b pIAE) PUIM(z) PO()  ptetRK(s) pA(s) B(z) T
c TA(p) TM(p) *O(p) TMHIK(p) Alp) Blp) »p

In this table the first column means the type of the extension of the algebra {X} or
{X,Y}: the types a, b, or ¢, respectively.

Thus, there are three kinds of extensions of the admitted by equations (1) group,
which depend on the specifications of the functions A = A(p,7), B = B(p,7),A =
Ap,7), 0= lu(p'l T)?K = «k(p,7), T = T(p,7).

For all these extensions*:

a) optimal systems of subalgebras are constructed,

b) representations of all invariant solutions are given;

3For more details the reader is referred to the attached article ({16], Appendix B}, section 3.

1For more details the reader is referred to the attached article ([16], Appendix B), sections 4 and
5.



c¢) some invariant solutions are obtained;

Along with the results directly related with the objectives of the project the problem
of compatibility of overdetermined system for double waves where the system consists
of 2n — 1 quasilinear equations was studied®. Here n is the number of the independent

variables. This problem appears if partially invariant solution of the double wave type
is considered.

4 Conclusion

Thermodynamic state equations supplement the basic equations of fluid dynamics and
thermodynamics by characterizing the specific fluid of interest. Many special real gas
equations exist for specific fluids. The most commonly used thermal equation of state
is the thermally perfect gas equation®, where p = RpT. The thermally and calorically
perfect gas (¢ = ¢,T') is a polytropic gas.

The general form of the thermal equation of state for real gases is [12]

pr = RT f(r,T),

where f{7,T) is a gas compressibility factor. The equations of state ( f(,T),e{7,T)),
the coeflicients of viscosity and heat conductivity can be obtained from experimental
data, derived from kinetic theory or from an appropriate real gas equation of state. The
latter approach is usually used in fluid dynamics. In our study the equations of state
are obtained from the requirement to have additional symmetry properties. Additional
symmetries allows constructing more exact solutions.

The obtained in the project results shows that the classification of the function
A(p,7) is similar to the inviscid gas dynamics equations [18] (Table 1). There is only
one difference: the model 7 ({18], Table 1) with the projective generator is absent
in our study. The latter is because of firstly, a presence of viscosity, and secondly,
steadiness of studied flows. Classifications of the first A(p, 7) and the second u(p,7)
coefficients of viscosity, and the coefficient of heat conductivity x(p;7) are ‘related
with the classification of the function A(p,7). If one uses an additional symmetry for
constructing invariant or partially invariant solution, then these coefficients must have
the found special representations.

5For more details the reader is referred to the attached article ([15], Appendix C).
Group classification of equations (1) for gases with € = £(T"} was done in [14].
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Abstract

This paper is devoted to the group classification of steady viscous gas dynamics
equations in the two-dimensional case (with plane or cylindrical symmetry)

with arbitrary state equations. Representations of all invariant solutions are
given.

PACS numbers: 02.20.—a, 02.30.Jr
Mathematics Subject Classification:  58J70, 76M60

1. Introduction

The analytic study of the properties of partial differential equations plays an important role
in applied mathematics and mathematical physics. One of the methods for studying the
properties of differential equations is group analysis. The modem state of group analysis
is reviewed in [1]. Group analysis besides censtructing exact solutions provides a regular
procedure for mathematical modelling by classifying differential equations with respect to
arbitrary elements. The application of group analysis implies some steps. The first step is a
group classification with respect to arbitrary elements. An admitted group is found at this step.
The next step is a construction of an optimal system of subalgebras. Then one can attempt to
find an invariant or partially invariant solution for each subalgebra of the optimal system.

We should note here that many invariant solutions of the viscous gas dynamics equations
have also been obtained by other methods {2-10]. The group classification of the viscous gas
dynamics' equations was done in {}1]. The group classification of two-dimensional steady
viscous gas dynamics equations for an ideal gas was done in [12]. For some models of viscous
gas dynamics equations, group analysis was used in [13]. Unsteady spherically symmetric
viscous gas dynamics equations were studied in [14]. ’

! Here the first, A = A(T), and second. 2 = u(T), coefficients of viscosity are related by the equation A = —~241/3, '
and ¥ = x(T).

(305-4470/02/153515+19%30.00  © 2002 IOP Publishing Ltd Printed in the UK 3515
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3516 $ V Meleshko

This paper is devoted to the application of group analysis for studying the viscous gas
dynarnics equations with arbifrary state equations.

2. The group analysis algorithm

Let us first review the notations and techniques used in group analysis.
Let an /th-order system of differential equations

(S): F¥(x,u,p) =0 k=1,2,...,5)

be given. Here x = (x;), (( = 1,2,...,n), are the independent variables, « = (u’)
(j = 1,2,...,m) are the dependent variables, p = (pf) are the derivatives up to /th-order
and o = (a1, a3, ..., &) is a multi-index with el = o) +a2 + - -+, <[

2.1. Admitred Lie group of transformations

One of the main objects in group analysis is the local one-parameter Lie group G' of the
transformations:

x; = f*(x,u;a) w’' = fx, ua) i=12,...,nj=1.2 m). (H

RS

There is a ane-to-one correspondence between groups G and infinitesimal generators

X = EN(x, )8, + 87 (x, u)By

) ) df,tg i dfuj
E'x,u)y= (-———) T (x.u) = ( ) .
pa L‘:O da Ia:(]

— Fa

}1( =X+ Z Sa Pl
ja

with coefficients

the=Dugd - Zpa,uke- 2)

where

The operator

is called the /th prolongation of a generator X. Here
;3
e By 3pa

are the operators of total differentiation with respectto xx (k = 1,2, ...,n).

The algorithm for finding a local one-parameter Lie group (1) admitted by the system of
differential equations (S) consists of the following four steps.
In the first step, the form of the generator

X =E(x, )8 + 7 (x, )y

is given, with unknown coefficients £/(x, u), {/(x, ). In the second step the prolonged
operator X is applied to every equation of the system (S). In the next step the coefficients of
the prolonged operator are substituted by using formulae (2). The equations obtained must be
considered on the manifold (5). As a result one obtains the system of differential equations

DS: XF¥(x,u, p)is =0 k=1,2,...,5). : 3)

12



Group classification of two-dimensional steady viscous gas dynamics equations 3517

This system of equations is called the system of determining equations and is an
overdetermined system of linear homogeneous differential equations in the unknown
coordinates & (x,u), ¢/(x,u). The general solution of the determining equations DS
generates a full group GS of the system (S). The feature of the admitted group is that
under the action of any transformation of this group, every solution # = U(x) of the system
(S) is transformed into a solution 4 = U, (x) of the same system (S). Therefore, the admitted
group allows construction of new solutions from known solutions. Note that the set of admitted
generators generate a Lie algebra, which is called admitted by the system (S).

2.2. Equivalence transformations

Most systems of partially differential equations have arbitrary elements: arbitrary functions
or arbitrary constants. These arbitrary elements can be separated into classes with respect to
a group of equivalence transformations. An equivalence transformation is a nondegenerate
change of dependent and independent variables and arbitrary elements, which transforms any
system of differential equations of a given class to a system of equations of the same class.
These transformations allow us to use the simplest representation of the given equations.
Note that the admitted group depends on specialization of the arbitrary elements. The group
classification problem consists in searching for an admitted group of transformations, which
is admitted for all arbitrary elements of the system and all specializations of the arbitrary
elements. The specialization of the arbitrary elements can extend the admitted group. For

the calculation of equivalence transformations, we follow the approach developed in [13, 16],
which consists of the following.

Suppose, the system of differential equation
Fix,u,p,¢)=0  (k=12,...,5) @

has arbitrary elements ¢ = (¢!, @7, ..., ¢'), which are functions (or constants) ¢ = ¢(x, u).
A specific value of the arbitrary elements represents a concrete system of differential equations.

The problem of finding an equivalent transformation consists of constructing a
transformation of the space R™*™* (x, u, ¢) which preserves the equations by only changing

their representative ¢ = ¢ (x, u). For thispurpose, we-consider the one-parameter group of
transformations of the space R**™*':

x'= fYx,u, ¢ a) u' = f4x,u, ¢;a) ¢ = fox,u ¢ia) (5
A generator of this group has the form
X =50, + 048, + %0, (6)

with the coordinates?:

E=t@ue) ¢ =t"xud ="

(i=1....m;j=1....mk=1,...,1).

We use the main feature of the Lie group tliat any solution ug(x) of system (4) with
functions ¢ (x, u) is transformed by (5) into another solution u = u,(x") of system (4),

but with different (transformed) functions ¢, (x, #), which are defined in the following way.
Solving the relations

x'= ffx,u, p(x,u); a) u' = f*(x,u, p(x, u); a)

2 Later the author discovered that similar assumptions about the coefficients of the operator were used in {17] for
one class of ordinary differential equations with one nonesseatial restriction ;’*ﬁ = ;‘* (x. ¢).
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with respect to (x, u), we abtain
x=g"(x',u';a) u=g"(x'.u';a). (7)

Then the transformed function is
ba(x', 1) = £2(x, u, (x, u); @) (8)

where instead of (x, u) we have to substitute their expressions (7). The transformed solution
u{x} is obtained by solving the relations

x' = f5(x, up(x), ¢(x, upix)): @)
with respect to {x):

x =¥ (x";a)
and substituting into
ug(x'y = fAx, up(x), p{x, up(x)); a). 9)

The formulae for the transformations of the partial derivatives p, and the derivatives. of the
functions ¢ are obtained by differentiating (8) and (9) with respect to x” and «’.

The method for finding a group of equivalence transformations is similar to the algorithm
for finding an admitted group of transformations. The difference only consists of the
prolongation of the infinitesimal generator X¢. In agreement with the construction of the
functions u,(x") and ¢, (x’, «'), the prolonged operator

X = X400, + 0% 8, + 0™, +

has the following coordinates

(" =Dt —u D" (A =1, %2, ..., %)
with Di = gy +uydy + {Quux +¢5;L)3¢, and
gm—ﬁi{‘p_‘ﬁxéis!“ﬁvuﬁigu (;":“]vuzt--'fuma-xl,XZv--.‘!xrt)

with D¢ = 3, + ¢, 0,.
An equivalence group G 5°¢ of transformations is generatcd by GH(X*).

Remark 1. In some cases one may have additional requirements for the arbitrary elements.
For example, the arbitrary elernents ¢~ may be supposed to be independent of the independent
variables %"i‘:: = 0. When studying the equivalence group, such conditions have to be added to
the original system of differential equations (4), leading to additional determining equations.

Remark 2. Note that in the case of the Navier—Stokes equations, kinematic viscosity is the
arbitrary element and these equations can be transformed to equations (14) by scaling the
independent and dependent variables.

2.3. Invariant and partially invariant solutions

For each subgroup of the admitted group G S, one can try to find an invariant or partially
invariant solution. Let H C G S be a group admitted by the system of equations ($). Assume
that X, ..., X, isabasis of the Lie algebra L” which corresponds to the group H. An invariant
or partially invariant solution with respect to the group # is called an H-solution. The method
[18] for constructing H-solutions with respect to the group H requires us to find a universal
invariant of this group: a set of all functionally independent invariants. For this purpose one
needs to solve the overdetermined linear system of differential equations:

X (x.u) =0 (i=1,2,...,r). (10)

14
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Because X1, ..., X, generate a Lie algebra, system (10) is complete. Its general solution can
be expressed through the m + n — r, invariants

J = xow), JEx ). L T (x, w)

where r, is the total rank of the matrix composed of the coefficients of the generators

Xi( = 1,2,...,r). If the rank of the Jacobi matrix 2" is cqual to g, then

without loss of generality, one can choose the first ¢ < m Invariants J L. ..., J4 such that

q

. R [ A LA ini — -y =
the rank of the Jacobi matrix FZ===2—1s equal to ¢ and the remainingk =m+n —r. — g

invariants J9*', J9*2 .., J™7"=" only depend on the independent variables x. H-solutions
are characterized by two integers: the rank ¢ = & +n — r, 2 0 and the defect § = O: thus one
pses the notation H (o, 8)-solution. The rank and defect must satisfy the inequalities

k€<Lo<n max{r, —n,m —q,0} <& < min{r, — 1.m — 1}.

To construct a representation of H (. §)-solutions. one needs to separate the universal
invariant into two parts: J = (J, J), where! = m — $ and

J_ =S (jl . Jf) J= — (J!+l, Jl+2 ..... Jm-v—n—r_).

This means that one can choose the number { such that | </ < ¢ < m . The rank and defect
of the H(z, §)-solutionare § =m —l,g =m+n —r, —1 =5 +n — r.. A solutions called
invariant if § = 0, otherwise it is called a partially invariant solution. From the first { invariants

J'.J%. ..., J! one can define the / dependent functions
w = @' (J, u* W um x) (i=1.....0. (0
The functions u*!, u!*2 .. u™ are called superflucus. The representation of the H(a. §)-

solution is obtained by assuming that the first part of the universal invariant is a tunction of
the second part:

J=w(D (12)

and substituting (12) into (11). Thus, the representation of an invariant or partially invariant
solution is

W o= ST ut Wt w0 G=1,....0 (13)

where & = ¢l (W(J), u"*!, u™*?, .. 0™, x).

If § £ 0, then either 0 = k or ¢ > k. In the first case (o = k) the partially invanant
solution is called regular, otherwise it is called irregular {19]. The number o — k is called the
measure of irregularity.

After constructing the representation of an invariant or partially invariant solution one
needs to substitute it into the original system of equations. The system of equations in the
functions W' and the superfluous functions thus obtained is called the reduced system. This
system is overdetermined and requires analysis of compatibility. Usually the compatibility
analysis is easier for invariant solutions than for the partially invariant ones.

If H' is a subgroup of H, then it may be possible that a partially invariant H (o, §)-solution
is a partially invariant H'(o”’, §")-solution. In this case &' < 8,0’ 2 o [18]. A solution is
called reducible to a H'(c’, 8’)-solution if there exists H' C H such that §' < 8,0’ = 0.
In particular, a solution is called reducible to an invariant solution if there exists H "C H

with 8’ = 0. Thus, a natural problem is to reduce a partially invariant H (o, 4)-solution to an
invariant H'(o, 0)-solution.

15



3520 S V Meleshka

3. Viscous gas dynamics equations

The viscous gas dynamics equations govern the three-dimensional motion of a compressible,
thermal conductive, Newtonian viscous gas flow

d dr d
D _rdiv(P) S —rdivie) =0 — = tPiD + rdiv(k VT).
dz ds _ dr

Here T = 1/p is the specific volume, p is the density, v is the velocity, P is the stress tensor,

D = 1(22 +(22)") is the rate-of-strain tensor, ¢ is the internal energy, T is the temperature

and « is the coefficient of heat conductivity. The Stokes axioms for a viscous gas give
P=(—p+idiviv)}I +2uD

where p is the pressure, A and u are the first and second coefficients of viscosity, respectively.

These coefficients of viscosity are related to the coefficient of bulk viscosity & by the expression
k=Xi+ %LL.

In general, it is believed that k is negligible except in the study of the structure of shock waves

and in the absorption and attenuation of acoustic waves.

A viscous gas is a two-parametric mediom. As the main thermodynamic variables, we
choose pressure p and specific volume t: entropy 7, internal energy ¢ and temperature T are
tupctions of pressure and specific volume

n=n{p.1) ¢ =&{p, 1) T =T(p.7).
The first and second thermodynamic laws require these functions to satisfy the equations

b\.lu
3 g+ P
"P:"TE Te = ‘T 3442020 =20 «20

For simplicity of classification we study the case which comresponds to an essentially viscous
and heat conductive gas

nw#0 x 7#= 0.
Thus, the viscous gas dynamics equations we study are

%It—) +1Vp = t((A + n)V{div(»)) + (div(v))VA + pAv + 2D(V )

‘ diviv) =0 {(14)
— - v —
ar T QY ( )

f’&? + Alp, D)div(v) = B(p, T)A(dv(v))? + 2 DD + (Fx)(VT) + K AT)
with functions

A= ——— B=—.
Note that the internal energy and entropy can be expressed through the functions A =
A(p, 1), B = B(p, 1) by the formulae

T A _ T _ A
=3 TP WTpr THT
The conditions e,: = &y, Npr = 7:p lead to the restrictions
tB,+BA,~AB,=B*+B 1T, = AT, — TB. (15)

In the case of an ideal gas (i.e. the gas that obeys the Clapeyron equation T = R~!p1)

B = B{tp), A = p(l + B(zp)) with an arbitrary function B(rp). For a polytropic gas
= (y — 1)~ !tp and once more this simplifies the functions Aand B: B = (y ~ 1), A = yp.

Here R is the gas constant and y is a polytropic exponent. If  and u are constants, then

systern (14) is split into two parts: the Navier-Stokes equations and energy equation®.

3 Sometimes in the literature equations (14) are called the full Navier-Stokes equations.

16
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3.1. Two-dimensional steady viscous gas dynamics equations
In this paper we study the two-dimensional steady viscous gas dynamics equations

i
HT, +UT, — T (m_t + v, + u—) =0
’ : X

i u
UL, + Ve + TP =T ((». + ) (u_,. + v, + v—) + Ay (ux + v, + v—)
: ’ Xy ’ X
Uy u
+ 20ty + (i U )+ i (u,u gyt UT) - ,Lw?

: ' I iU
U + VU, + TPy =T ((A + 1) (u_t + U, ¥ v-) + Ay (u_r + v, + v—) (1)
: : x/y . : X

. v,
ety v} + 200y + (U.rx + Uyyp + ")_r) )
) ¥ ¥ v

I,
upx + vpy + A(p. p) (u.r +ve + vi) = B(p. p) (x (T + Ty + v—) +uce T+ 6, Ty
X o B T

X
s
N 2
+ui2 e VTV + {1ty + )7

where v = 0 corresponds to the plane tlows and v = | to the axisymmetrical flows. The case
of ideal gas T = R~!pt where the first. A = A(7"), and second, . = u(T), coefficients of
viscosity are related by the equation A = —2p/3 and & = «(T) has been studied in [12]. Here
we study the gas dynamics equations with arbitrary state equations.

Since the arbitrary elements satisfy restrictions (15} and A = A(p.1). B = B(p, 1),
A=xp. 1), u=pu(p.1),c =k(p.t). T =T(p, t), hence for calculating the equivalence
group of transformations we have to append the equations

A, =0 A, =0 A, =0 A, =0
B, =0 B, =0 B, =0 B, =0
A, =0 Ay=0 by =0 Ay, =10 (7
uy =0 wmy =0 ty =0 py =0
ke =0 ke =0 Ko =0 K, =0
T.=0 T, =0 T.,=0 T,=0

to equations (16). All coefficients of the infinitesimal generator of the equivalence group are
dependent on all independent, dependent variables and arbitrary elements

oy, uuvt,.p, A B A ok T.

All necessary calculations were carried out on a computer using the symbolic
manipulation program REDUCE [20]. The calculations showed that the group of equivalence
transformations of equations (16), (17) corresponds to the Lie algebra with generators

X¢ =0, XS=0, . X§=xd +yd +Ady+udy, +xd

X§ = x8: + yOy + udy +v3, + 273, + 2k 9y XS =108 +pd, + Adq + 20y + po, + K.
In the case v = 0 there are two more generators
X¢ =0, X5 = yd; —x0, +vd, — ud,

which correspond to shift and rotation.
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Remark. If instead of the functions A(p, t) and B(p, t), one considers the internal energy
e(p, t), then the operators X5, X§ and X5 are changed to

XS =20,— 70 X{=x8+ v +ud, +vdy, +270; + 2k, + 20,

XS = —10: + pOp + A0, + i, + 10

and there is one more generator Xg = d,.

3.2. Admirnted group
For finding the admitted group we look for the generator
X=8%3, 678, + "0, "3, + {70, + {8,

with the coefficients depending on x., y. «, v. T, p. Calculations lead to the foliowing resuit.
The kernel of the fundamental Lie algebra is made up of the generator

Xy =0,
ifv=1and
X =8 X, =0, X3 = yd¢ —~ xd, +vd, — ud,

if v = 0. An extension of the kernel of the principal Lie algebra occurs by specializing
the functions 4 = A(p, 1), B = B(p.1),A = AMp.t), it = pu(p, ) = k(p. 7). T =

T(p, r). Note that the functions A = A{p.71), B = B(p, 1}, T = T(p, t) have to sausty

equations (15). There are three types of generators admitted by system (16). Further, o, 8 and
& are arbitrary constants.

Type (a). If the functions A(z, p), B(z, p). A(t, p), iz, p), (7, p). T (1, p) satisty the
equations ‘

atA.+A, =0 atBy + B, =0
QT+ i, = Bu aThe + A, = BA {12y
atl, + T, = 8T ATK, + 4, = (=S +a+ Bk

then there is one more admitted generator:

Yo = a(ud, +v3,) + 2079, + 20, + (¢ +28)(xd, + v3,).
The general solution of equations (18) is -
A= A(te™*P) B = B(re™®?) 1 = ePP M (re™2P) (19
X = efPA(Te™P) T =¥ 0(re™P) x = elHBIP K (yemar)
where the functions A(z), B(z) and ©(z) satisfy the equations (z = re™""):

—0zBA +zB'(1+aA) = B*+B (1+xA)z® = (A - B)@. (20)
The internal energy is represented by the formula

& =e"(p(2) — ) + ¥ (p) ¥'(p) = Ce™”

where the function ¢(z) and constant C can be accounted arbitrarily and they are related to
the functions A(z) and B(z) by the formulae

_ Al

¢ (2) = 30 C=z+—§——+azqo (z) — ap(z).

Z
(z)

18
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In this case the function ©(z) has to satisfy the equation
(C —z+ap(2)) ©'(2) = 6¢'(2) — DO().

Type (b). If the functions A(z, p), B(z, p), A(z, p), u(z, p),k(zx, p), T (z, p) sausty the
equations

aATA +pA, = A atB; +pB, =0
@t +pup =(B+Hu athr +prp, = (f+ 1A (21
atl: + pT, =0T atk: +plT, = (=8 +2+a+ Bk

then there 1s an extension by the generator

Yo = (1 +a)(ud, +vdy) + 2013, +2pd, + (@ +28 + 1){x0, + y3,).
The general solution of equations (21} is
A=pAGzp ™) B = B(zp™) po=pP I M(p™) o
A= pPHUA(Tp) T = p*O(zp™) K = preHBR K (1p)
where the functions A(z), B(z) and ©(z) satisfy the equations (z = tp™*):
—azBA' +7B'(1+aA) = B>+ B — BA (1+aA)z® = (A ~ B)O. (23)
The internal energy is represented by the formula
e=p @ - +¥(p)  ¥(p)=Cp

where the function ¢(z) and constant C are arbitrary and they are related to the functions A(2)
and B(z) by the formulae

oy = AQ) bt ard (2 — .
tp(.-.)—B(Z) C_-~+B(Z)+az<p(g) (@ + De(2).

The function ©(z) is represented through the function ¢(z) by the formula
(C - z+(a+ e(2)) ©'(2) = (5¢'(2) — NO(2).

Note that an ideal gas belongs to this type if § = @ + | and the function ¢(z) satisfies the
equation

8(z¢' — ) =C.

Type (c). If the functions A(t, p), B(z, p), Az, p), u(z, p), k (v, p), T (z, p) sausfy the
equations

A, =0 B, =0 . tu.,=p8u th = BA 24)
1T, =6T Tk, =(—8+1+ B
then there is one more admitted generator:
Yo =ud, +v8, + 23 + (1 +28)(x0; + ydy).
The general solution of equations (24) is
A=A(p) B=B(p) w=t'M@p)  r=1PAp)
T =1°0(p) k=1 K (p) (25)
where the functions A(p), B(p) and @(p) satisfy the equations
BA'— AB'=B*+B A® = 5+ B)O. (26)

The internal energy is represented by the formula

e=tp(p)—1p

19
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A I T I's A B z Condition
a PP AL efP M) PO I R () A(D) B(z) e~ (20
b pPYIAGY  pPHIMG) PO pTRERR() pAn)  BR) T (2D
¢ P A (p) M (p) ©ap TP (p) A(p) B(py p (26)

where @(p) is an arbitrary function and is related to the functions A{p) and B(p) by the
formula '

e(p) = Alp)
B(p)

In this case the function ©(p) is related to the function ¢(z) by the formula
P(P)O'(p) = (1 =3 +3¢"(p)B(p).

Nute thatif § = | and ¢ = Cp. then the gas is ideal.

The final results of the group classification are presented in tabie 1.
In this table the first column means the type of extension of the algebra {X} or (X, ¥}: the
type a. b, or ¢, respectively. The last column means conditions for the state functions.

Thus, there are three Kinds of extensions of the groups admitted by equations (16}, which
depend on the specifications of the functions A = A(p, 7). B = B{p.t). A =A(p. 1) 1 =

uip.t),« = x(p, 1), T = T(p. 7). These extensions can be one dimensional and two
dimensional®.

The one-dimensional extensions are with the generators {Y,}, {Y,} or {¥.}.
The two-dimensional extensions are with the generators {Y,, Y}, {¥,, Y.} or {Vp, Y.}
The group with the extension {V,, ¥} } is admitted by equations (16) if

A we A0 D _ _1 S, 1 v 1 =Bt
4 a T e Ay bt z M_!J-UL l\"-'a\Ul.
K = koTH T =Tt a # 0.
In this case the internal energy is ¢ = —{tp+ Ap [ t* dr). Instead of the operators ¥, and 1,

one can use their linear combinations:

-~

V=20, Yo = (1 + @) (ud, + vd,) + 218, + (@ + 28 + 1)(x8, + yd,).
The group with the extension of type {¥,, Y.} is admitted by equations (16) if

A= Ay B=—1 w = porhe? L= AgrPe?
0 = Kofﬁ—.-%uae(a«—mp T = Torl+ﬁooeap-
In this case the internal energy is € = —(rp + Ap7) and by taking linear combinations of the

operators Y, and Y, one obtains another basis of the generators:

~

Vi =8p +a(xd, + vd,) Vo= ud, +vd, + 218 + (28 + D (xd, + yd,).
There is a third type of extensions {¥p, Y.} if

A=vyp B=y—-1 p = uotfpt*® A = Agrf p'*®
K = Koty(l—u)+,ﬂpa—5+2 T = Tory(s—l)ﬂpﬁ y ?5 1.
The internal energy in this case is
_ P
= >

4 There is no three-dimensicnal extension because of incompatibility of the system of differential equations for the
functions A = A(p,. t). B = B(p. 1), A =a{p. 1, u=p{p,thxk =x(p. ). T =T{(p, 7).
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and linear combinations of the operators Y, and Y, are
Py = ud, + v, +2pd, + 2 + D(xd, + ydy) Ve =18, — pd,+ (8 — a)(xd, + vd,).

Note that a polytropic gas belongs to the last case of gases, where y is a polytropic exponent.

In the formulae above Ay, g, Ag, %0, Tp, o, B, ¥.8,0 are arbitrary constants: the
comimutators are

- ~

(?,,.7,1=0 [$,.7.]=0 (¥), ¥.1=0.

Remark. By direct checking one can set for the general unsteady three-dimensional gas tiow
the same models of types (a), (b) and (c), described by equations (19), (20), (22 ), (23). (25)
and (26), with the following generalized generators:

Y, = avdy, + 2010, + 20, + (o + 28)xd; + 2810,
Yo = (1 + a)vdy + 2070, +2p0, + (o + 28 + D)xdy + 2810,
Y. = vy + 218 + (1 + 28)xdr + 2814;.

The kernel includes the Galilean group with generators

X; = 8.\',— X3 = tax,- + avf Y!j = xia.rj _xja,r; + U!avj - Ujan
Xiw=20 ((.j=123 {<]j)

It has to be mentioned that the group classification of the viscous gas dynamics equations in the
case of an ideal gas with the first, A = A(T). and second, i = p(T'), coefficients of viscosity
related by the equation A = —24¢/3, and « = «(T) was done in {11]. Two-dimensional steady
viscous gac dvnamics equations and their simgplifications (parabolized models) for ideal gas
were studied in [12]. The group classification of spherically symmetric flows with arbitrary
state equations was considered in {14].

4. Optimal system of subalgebras

In this section two groups are studied. One is the group with generators
Li={X, X:. X3, Y}

The other is the group with generators
L, ={X,, Y}

Here Y is one of the generators: ¥ = Y, (with the parameter z, which is used later z = @ +28),
Y=Y,z =a+28+1)orY =Y. (z = 28+1). These groups correspond to the plane (v = 0}
case and axisymmetrical (v = 1) case with one extension, respectively. The classifications of
subalgebras of the algebras L4 and L, are given in this section.

The classification subdivides a set of H-solutions into equivalent (similar) classes.
Any two H-solutions fi and f> are elements of the same equivalence class if there exists
a transformation 7, € G S such that f; = T, fi. Otherwise f}, f2 belong to different classes
and they are called essentially different H-solutions. The classification of H-solutions is related
to the optimal system of subalgebras © of the admitted algebra L. To obtain the optimal system
of subalgebras ©, we use the algorithm developed in [21, 22]. Let us consider the algebra

21
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La = {X|, X3, X3, Y}. The table of commutators is

Xi X X3 ¥
X, 0 0 X2 X,
Xa 0 0 =X, X2
X3 —X3 Xy ] 0
Y Xy =z2X> 0 0

Automorphisms are recovered by the table of commutators and consist of the
automorphisms

Ay x)=x+na X5 = X2 — Xadj

Ay x| =x +x300 X5 = X3+ 2)14z

A3l x|, = x cosa; — x2§inaz X5 = Xj $inaj + Xz COS a3
Ay xp = xe™ x5 = xae™,

Here x; (i = 1,2, 3) and y, are coordinates of the operator Z = x| X| + x2X + x3X3 + V| ¥
before the transformation and x/ (/ = 1,2, 3) and y; are coordinates of the operator Z’ after
action of the automorphism, a; are parameters of the automorphisms. In the expressions for
automorphisms only transformed coordinates are presented. There is also one involution

E: x; = —x X

E— —_tz

(R

which corresponds to the change of variables x — —x,y = —y,u - —uand v — —v
without change of equations (16). :
The Lie algebra L, has the following decomposition: Ly = Ny ® J», where Na = (X3, Y)

is a subalgebra and J» = {X, X3} is an ideal. The Lie algebra N, is Abelian. Hence, its
classification is trivial and consists of the subalgebras

(X3 +hY}, {r}, {3, ¥).

The optimal system of subalgebras of the algebra L4 is obtained by gluing the ideal J;, to the
constructed subalgebras of the optimal system of subalgebras of the algebra N».
Because the number of independent variabtes is two, invanant solutions can be constructed

only with respect to one- and two-dimensional subalgebras. These subalgebras of the optimal
system are

{X3, Y}, (X1, ¥ +hX5), {X1. Xa}, {X3+47Y], {Y +hXa}, {X1}
where zh = 0, and g and 4 are arbitrary constants.
The optimal system of subalgebras of the algebra L, = { X3, Y} consists of the subalgebras
(X2, Y}, (Y+hXa),  (X3)
where zh = 0 and 4 is an arbitrary constant.

4.1. Representations of invariant solutions

'The next step in the construction of invariant solutions consists of finding universal invariants.
Note that the subalgebras from the optimal system of the algebra L, are those from the
optimal system of the algebra L4. Thus, it is enough to consider representations of invariant
solutions of the algebra L4. Before presenting the results, we give some remarks. In the case
of two-dimensional subalgebras, the representations of invariant solutions are obtained by
assuming that all invariants are constants. The subalgebra { X;, X3) has no invariant solutions.

22
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The invariant solution with respect to the subalgebra {X,} is a trivial one-dimensional steady
solution of the viscous gas dynamics equations.
According to the theory of group analysis [18], after constructing the representations of

invariant solutions one needs to substitute the representations of solutions into the original
system of equations.

4.1.1. Subalgebra {X5.Y}. For the operator X1 it is convenient to use the cylindrical
coordinates
x = rcosf y =rsinfd = cosf — Vsing v=1{_Ucosf + Vcosd.
In these coordinates there are the following relations:
X3 =20 Xd, + vo, =ro, uod, +vdy = Udy + Viy.

Note that if 7 = 0. then there are no invariant soluttons. Hence, we have only to study
the case 7 = 0.

In case (a) - = o + 28 =* 0 and the universal invariant consists of the invariants

Ur™@ vy op= 5 p =27y,

Incase(b)yz = a + 28 + | # 0 and the umiversal invariant consists of the invariants

-

— i) o —tlsuy o —luez -2/t
Ur (e} . [vrr ), LTF (14 . pr )

Incase (c) 2 =28+ 1 £ 0 and the umiversal invariant consists of the invariants

Ur™lz ypVe gpmoe, .

4.1.2. Subalgebra {X .Y + hX>} (ch =0). Itz =0and &2 = 0. then there are no invariant
solutions.

Incase(a) c = e+ 273, Ir 2 % Q. then i = 0 and the universal invariant consists ot the
invariants

vy i A T =
uy ™y ey g — 227 iy

Iz = a+28 = 0, then there is an invariant solution only if # # 0 and the universal
invariant is

— \ — y, _’ g —_—
ue M yeTav/h pemaxih o _op~hy
Incase (byz = a +28 + . If - = 0. then £z = 0 and the universal invanant consists of
the invariants
uy—(im)/:‘ uy‘“*‘”/:. 1.'\.—20/:. py_zk.

If z = ¢ +28 = 0, then there is an invariant solution only if # 7 0 and the universal
invariant is

— t —_ . =7 ] 2
ue (lm))/h‘ve ”M"\/h.tﬁ _a_»/h' __\/h_

pe
Incase (c) z = 28 + 1. If z # 0. then & = 0 and the universal invariant consists of the
invariants

—1/z ¥

3/z

uy CLuy T Ty T, p.

If z = ¢ +28 = 0, then there is an invariant solution only if # % 0O and the universal
invariant is

ue Mt yem¥h pe/h

p.

23
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4.1.3. Subalgebra {X;+qY)}. The operators X3 +4Y in ¢cylindrical coordinates are
X3+gY, =3 +q({a +28)rd, + a(Udy + Vay) + 2atd; +28,)

X3+ qYpy =0 +qle+28+ Dro, + (1 +a){(Udy + Vay) + 2019, +2pd,)

Xa+qYe =0 +q((2B+ Nra. + Udy + Vay +213,).
In case (a) the universal invariant consists of the invariants

J= (Ue—aqh‘! Ve—aqd’ rp—l29? p —2g0) j" s
In case {b) the universal invariant consists of the invariants

J = (Ue—(l+a)q9 Ve-tteigd Lo-2aqd pe'”"g) J = ro—t@+28+1196
In case {c¢) the universal invariant consists of the invariants

J=(Ue™® Ve e % p) J = pa—28+0g¢

4.1.4. Subalgebra {Y + hX-}(ch = 0). Note that if - = 0 and 2 = 0, then there are no
invariant solutions. '

Incase (a) z = a +28. If z £ 0, then /s = 0 and the universal invariant consists of the
invariants

If : = a+ 28 = 0, then there is an tnvariant solution only if # & 0 and the universal
invariant is

—Juvih

J

ft

—ay/h

(e pe 0N ye

.p—2h7"y) 7/ =x.

Incase (b)z=a +28+ 1. Ifz # 0, then i = 0 and the vniversal invariant consists of
the invariants

J= (uy_“”"/:, U_V_(Hm/:. ry—ja,:‘ py—.’./:) S x/v.

If : = 28+ 1 = 0, then there is an invariant s~aution only if £ % 0 and the universal
invariant is

J

i

(ue‘“*‘”—""", Ue—(lﬁ»a},\'/h. te—l‘af}'/h! pe-z_v/h) j -1
Incase (c)z =28+ 1. If £ £ 0, then &# = 0 and the universal invariant consists of the
invariants

j -H/z

(uy

If z = a+28 = 0, then there is an invanant solution only if 2 % 0 and the universal
invariant is

Loy ey Py T =xy.

J= (ue’-)’/k‘ Ueh'v/h, I'C__Z'v/h, P) j = x.

5. Invariant solutions

In this section we demonstrate the construction of reduced systems for invariant solutions. As
an example the subalgebra {¥ +/X;) for an ideal gas (T = R™! pt) of type (c) is taken. Note
that in the case of an ideal gas 8 = y — 1, A = yp, where y is a constant. The obtained
reduced systems are systems of ordinary differential equations. For solving the ordinary
differential equations, one can use well-developed numerical methods.
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51 . Thecase28+1#0

At first, let us consider z = 28 + 1 # 0. In this case the representation of the invariant
solution is

u=UEY  v=VEY  r=GEYY  p=PE) s=§

where ¢ = z7!. The next step in obtaining the reduced system is the substitution of
the representation of the invariant solution into the initial system of viscous gas dynamics

equations. For exampie the equation of mass conservation becomes

du
_f,:(U 34 )—GE(U—EV)+(q— DGV =0.

If g = 1 (or 8 = 0), then the last equation can be integrated:
U=§&V+cG
where ¢y is an arbitrary constant. For the sake of simplicity, we present the reduced system for

this case (8 = 0) and also assume that the functions A(p). M (p), K(p) are constants. The
remaining equations in this case are

dG . g2 —1,3 &G 42 a6 4o _ldv)_
dECl+Cl (ZV (- + 1) Re 2 di;'z) (f;' l)( dE 2(h+2)Re i =0

d’G . dv dv .
. —t -1 | W,
cl(Re i +l)+——ds)+2Re xig(x 1) dg&

2

dg?

{_dG dG
2y — )"'Re P A i+2 -
(y — ev+cksg($)(++5)

—Re™!

=0

27)

\ de dt dt
iy (4G

TL](}/"‘“‘[) c\df;’
AT IR dG gf_*)
(&) envegon G Greeges -or

dz d2p
— €2+ D) (zﬁd—P+—GP G)) =0.

1%
+cl(d-?(ReP 4V(A+1))+2d—G(’g‘ —1)—2£d—5($' )

dP -
EG) +2V{(Re P —2V(A+ 1))

d¢ d§  d¢? dg?
Here Re is the Reynolds number and Pr is the Prandtl number. The nondimensional dependent
variables G, V, P, & are related to the dimensional variables G, V, P, ¢, by the formulae

G =L %5,G V =LyV P=pyP = uA c| = voLrO_lc":'l
¥R
«(y —1) _
where L is the reference length, vp is the reference velocity and 1g is the reference specific
volume. In system (27) the wave ‘~’ is dropped. The system of equations (27) is invariant
with respect to the transformation
5’ = —{;_ Cfl = —C].

Therefore, it is enough to study this system for ¢; = 0. If ¢; % 0, then the system can be
solved with respect to the second derivatives of the functions G, V and P. If ¢; = 0, then from

1 _—1

Do = US'CO—I Pr = Re = Lugu™ "1
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Figure 1. The functions V(&) for oy = G und ¢y == 0.5,

0.2 (] 02 0.4 0.6

Figure 2. The functions t(§) tor ¢y = 0 and ¢y = 0.5,

the first equation one can find the first derivative of the function £ and the remaining equations
can be sotved with respect to the second derivatives of the functions V and G. In this case if
V(0) = G'(0) = P(0) = 0, then the functions V{£), G(§), P(&) are symmetric. Note also
thatif ¢; = 0, then there is the particular solution
V=0 P=C G = C3+Ca(* ~ 1),

In the figures two solutions with ¢; = 0 and ¢; = 0.5 are given. The functions for V (¢) are
shown in figure 1. Note that for ¢; = 0 the function V (£} = Q. The functions for t(§)
are shown in tigure 2. The function t(¢) for ¢, = 0 is symmetric. The functions for P(§)
are shown in figure 3. The initial values for these solutions are

V) =0 Vi) =0 G(0) = 1.0
GOy =0 POOY=10 P{Oy=9Q

and Pr = 0.72, Re = 10.0, y = 1.4. Note that increasing Re narrows the domain of validity -
of the solution,
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g2 LE g 02 0.4 0.6

Figure 3. The functions P(§) for ¢y = Oand ¢; = 0.3.

52. Thecase28+1 =10
[f 28 + 1 = 0, then the representation of the invariant solution is
u=U(x)e? y = V(x)e? T = G(x)e™ p = Px)

where g = h~!. Substituting the representation of the invariant solution into the initial system
of viscous gas dynamics equations gives the equations

dG /_dU dpP d dPr
G' = (2 M+AW )| —2— 2M—U AW ) +2—G
dx \ dx dx dx

dx
d?U dw

-4 M —2—A+2G7VPUW =0
dx? dx

dG /dV dv 3
MG—lE (E +QU) +2G—1/2 (d__U +QV")
X

dP . [dV U v
2 (S ) oM (a2 0
dx (d.x T4 ) ( dx de)
4G dU

-] — G—+ GV =10
dx q

- LLAANNEUAY W /G _ﬂ)z
B \/E(PW+de) (dx) (A+2M)+dx(J5P 2AqV) (dx M

dv 1 /dG\* 3dGdP  d:G
—2EMqU+KR-‘ (- (“) PGl - —— - —P

2 \dx 2dx dx  dx?
dzP dp dG dP
—G —2P g} - ——R-'K’ P-—G
1 ) dx (dx dx )

+q(«/—PV —qViA +2M) — MqU?) =

where W = ¥ 4 qV. Note that from the equation of mass conservanon one can find the

denvatwe The remaining equations are second-order ordinary differential equations with
respect to G vV, P.
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6. Conclusion

Thermodynamic state equations supplement the basic equations of tluid dynamics and
thermodynamics by characterizing the specific fluid of interest. Many speciai real gas
equations exist for specific fluids. The most commonly used thermal equation of state is
the thermally perfect gas equation®, where p = RpT. The thermally and calorically perfect
gas (¢ = ¢, T) is 2 polytropic gas.

The general form of the thermal equation of state for real gases 1s [23]

pr=RTf(r,T)

where f(z, T) is the gas compressibility factor. The equations of state (f(r. T), e(r. T)),
coefficients of viscosity and heat conductivity can be obtained from experimental data, derived
from the kinetic theory or from an appropriate real gas equation of state. The latter approach
is usually used in fluid dynamics. In our study the equations of state are obtained from the
requirement of additional symmetry properties. Additional symmetries allow the construction
of more exact solutions.

The results obtained in this paper show that the classification of the function A{p. ) is
similar to the inviscid gas dynamics equations ([22], table 1). There is only one difference:
the model 7 ([22], table 1) with the projective generator is absent in our study. The latter is
because of (1) the presence of viscosity and (ii) steadiness of studied fiows. Classifications
of the first A(p, v) and second w(p, ) coefficients of viscosity and the coefficient of heat
conductivity k{p, ) are related to the classification of the funcuon A(p, t). If one uses an

additional symmetry for constructing an invanant or a partially invariant sclution, then these
coefficients must have special representations.
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Abstract. Obtaining equartions for double waves in the case of a general quasilinear system of partial differential
equations poses some difficulties. Thev are connected with the complexity and awkwardness of the study of
overdetermined systems. describing solutions of this class. However, there are general statements about double
waves of autonomous quasilinear sysiems of equations. This article is devoted to the classification of irreducible

double waves of autonomous nonhomogeneous systems.

Keywords: Partially invariant solutions. degenerate hodograph. multiple waves. double waves.

1. Introduction

A solution u; = w; (x|, xa. .. ... vy (i =1.2..... m), of the autonomous quasilinear system
of equations
n
du
ZA“(L')' = flu) (1
dx,
==l
15 called a multiple wave of rank r if a rank of the Jacobi matrix 3w, ua. ..., o}/ X, X2:
., X,) 18 equal to r in a domain G of the independent vanables xy, xa, ... .. x,,. Here A, are
rectangular N x m matnces with elements aj(uyand f = (filu), ..., fy)).
Depending on the value of r, a multiple wave is called a simple { = 1), double {r = 2}
or triple (r = 3) wave. The value r = 0 corresponds to uniform flow with constant u;,
(t = 1,2,...,m), and r = n corresponds to the general case of nondegenerate solutions.
Multiple waves of all ranks compose a class of degenerate hodograph solutions.
The singularity of the Jacobi matrix means that the functions «; (x) (i = 1,2...., m) are
functionally dependent (hodograph is degenerate), with m —r number of functional constraints
=0, A% A, =12, m). ' (2)
The variables A'(x), A*(x). ..., A"(x) are called parameters of the wave. The solutions with

a degenerate hodograph are a generalization of travelling waves: the wave parameters of the
travelling waves are linear forms of independent variables. To find the r-muitiple wave, it
13 necessary to substitute the representation (2) into system (1). We get an overdetermined

* On leave from the Institute of Theoretical and Applied Mechanics, Russia.
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86 S V. Meleshko

system of differential equations for the wave parameters A’ (x) (i = 1.2, ..., r), which should
be studied for compatibility. A review of applications of multiple waves in gas dynamics can
be found in [1].

The main problem of the theory of solutions with a degenerate hodograph is getting a
closed system of equations in the space of dependent variables (hodograph), establishing the
arbutrariness of the general solution and determining flow in the physical space.

An arbitrary nonhomogeneous system (1) does not change under the transformations

.\.’;:.‘C,"}-bj. (l=12.ﬂ)

that compose a group G". For homogeneous systems (1) (f = 0}, there is one more scale
transformation’ x; = ax; (i = 1,2,....n). From the group analysis point of view. an r-
multiple wave is a partiaily invariant solution with respect to G" (or G"*') [2]. A class of
partially invariant soiuiions of some group H is characterized by rank o and defect §: class
H{o, 8)-solutions. If some class H (0. §)-solutions are class H{c. §;)-solutions with fewer
defects 8; < &, then it is said that the class H (o, §)-solutions are reduced 1o having fewer
defects. For example. if §; = 0, then such a solution is reducible to an invariant solution with
respect to the subgroup H;.

A study of partially invariant solutions shows that classes of solutions of a given rank
with fewer defects are easier to obtain. This is connected with the idea that the analysis of
compatibility for the solutions with greater defects is more difficult. Therefore, 1t is useful to
a priori clanfy the structure properties of the overdetermined system.

There are onlv a few sufficient conditions of the reducibility [2] that aow us to predict a
reduction on the basis of the structure properties of an overdetermined system. One of these
counditions is a restriction on the ability to define all first derivatives of a solution (otherwise
the solution 1s reduced to an invariant solution). Others are concemed with double waves.
If in the process of obtaining compatibility conditions for the wave parameters of a double
wave, we obtain vV = 2n — 1 homogeneous equations of type (1), then this double wave
is an invariant solution. In particular, plane nonisobaric double waves with the general state
equation which has a defect of invariance § = 2 are isoentropic [2]. Another application of
these conditions to double waves of gas dynamics equations leads to the result [3] that the
class of irreducible to invariant solutions of plane isoentropic irrotational double waves is
described by the flows obtained in [4]. For homogeneous systems of type (1) with N = 2Zn —2
and n = 3, a full classification of double waves with the additional assumption about having
tunctional arbitrariness of the solution was carried out in [5].

This article is devoted to the study of nonhomogeneous systems of type (1) with N = 2n—1
equations, the solutions of which are not reducible to invariant,

2. Nonhomogeneous Systems (N =2n — 1)

Let a system of N = 2n — | independent autonomous quasilinear equations on the wave
parameters A and p¢ of a double wave be of type (1). It can be obtained as a result of substitution
of the representation of a double wave:

= (A, 0y, (i =1,2...,m

I The full Lie group admissible by system (1) can be wider than G" (or G" 1),
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into the initial system and some analysis of compatibility.> Without loss of generality equa-
tions, for the wave parameters can be rewritien as

A = pih, A + fi(h, @),
M = qj(k,u)kl—%—gj(l.,u). (i:l....,n:j:l,...,n). (3)

Here A; = 8A/3x;, u; = du/3x; and, for the sake of simplicity, weset py = 1. fi =0.

The problem is to classify systems of type (3), the solutions of which are irreducible to
invariant solutions.

A classification is derived with respect to equivalence transformations, admitted by system

(3

(a) linear nondegenerate replacement of independent variables;
{b) replacement of wave parameters: A’ = L(A, w), ' = M, ).

In the last case, the coefficients p;. g; and the functions f;. g; are transformed by formulae:

. c_pilitaql,  ,_ piMi+qiM,
pp=L p=— q; = 5l i
Li+aqiL, Li+aq:iL,

fi=0 fl=FfLi+gLl,—ailup. g =fiM+gM,~aL.q;.

I~
-

(i =

As a result of such transformations (as in the homogeneous case {2]), it is possible to let gy =

0. For this purpose, it is enough to choose a function L(A, i}, which satisties the equation
L',‘ + q) LH = 0.

Ify, qf =£ (), then the coefficients of system (3) can be transformed to

g =0 g=1 (4
Simultaneous to the equalities g = 0, g» = | under replacement of the wave parameters. iff

M, =0, L,=M_,,

results in
L=xM(p)+w(p), M=M(u). (3)
Another case corresponds to system (3) with
=0 (=12 .. n). 6)

There is no case (6) for homogeneous systems, because conditions (6) contradict the definition
of a double wave for such a kind of systems: rank of the Jacobi matrix is less than two.

A study of the compatibility of system (3) consists of the following. As a result of a
reduction of the overdetermined system (3) to an involutive system, we get equations with
a structure of nonhomogeneous quadratic forms with respect to the derivative 4. If at least

2 A case of homogeneous N = 2n — | equations was studied by Ovsiannikov {2].
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one of the coefficients of these forms is not equal to zero, then it means that a solution of
the system satisfies the overdetermined system of equations from which all first derivatives
can be found. By virtue of the reduction theorem [2], it gives the reduction of this solution
to an invariant solution. Therefore. these forms are decomposed on subsystems on functions
Pi,4;. fi- g, quadratic, linear and “zero™ terms with respect to power of the derivative A,. Fur-
ther simplifications are connected with more the detailed study of the companbility conditions
of systems of types (4} and (6).

3. Systems of Type (4)

The value of Ay = ai + b can be defined from the expression Dy{py — A\ — g2) — Da(py —
g1) = 0, where D; is a tota] derivative with respect to x;, @ = pgii + 81, — g, b =
f221x + 2281, — 8182, It can be noted that all second derivatives A;; and u;; can be found.
Therefore arbitrariness of the general solution of system of type (4) is only constant. For
example. the derivadves

. 2 . ‘ . -

At = P Alaps S g Fhpi g fine =230 "
can be found from the expressions D (i; — p;a) — f;) = 0. After substituting them into
Fi=Dypy — Djppy = 0.0 = 2.3.....n). we obtain nonhomogeneous quadratic forms with
respect (o the derivative A;. By virtue of the prohibition of reduction of the solution of system
(3) to an invariant. the coefficients of these quadratic forms F; have to be equal to zero:

Gin = . (M
qi{p2gin — 8n) + 818iu + &in — pig1 = 0. (%)
qib+ ggip — figu.— gig =0, =23 ..., "ny. (9)

In the same way from the quadratic forms D;i; — DA, =0, we get

4jPin = QP ju: (10)

fipin +8iPip + 4 fin ¥ 0igPjj = [iPin £ &iPju i fin + P81 Pin-
fifis +8ifin ¥+ pigi fin = fifijn + & fin T Pi81 finn (L J=2.3..... noi#E ) (1)
And from the equalities D;ju; — D;u; = 0. we find

i (pix — Gju) = qi(pjn — qju): (12)

~

8iqiy T qilpja+ fin +210u) + Pi&in +4;8iu
=giqjp +qj(pia+ fix + g1pip) + Pigjn T 4i&ju, (13)

qi(pib + g fiu) + figix + 8j8iu
=qj(pib+gi1fi )+ figh + &g G Jj=23....ni#j. (14)
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On the Compatibility of Overdetermined Svstems of Double Waves 39

We note that the expressions DhA;; — D;A; = 0 are cubic polynomials with respect to the
derivative A;: p,-u)ﬁ + .- - = 0. Therefore,

poa=0, (=273 ....n).

With the help of equivalence transformations (5} that leave the conditions ¢; = 0. g» = 1
unchanged, because of the choice of functions e () and (i), we can assume that pa = 0.
Then from (6), (10}, (12), we get

g =0, p.=0, pi=¢q,. (=23 ...,n). (15)
By using (15) in the expressions Dy A;y — DiA; =0 =2,3..... 1), we find

giay =2ap;; + fia, (16)
fiai + giay + qib, = 3bpis + gi(pia, +2fi,) + 8ix fin- (i
agy fig +ba fi + 8iby = bfis + g1(piby + 81 fipw + 10 fi)- ()

The functions p;, ;. fi. g; must satisfy (8). (9). (11), (14). (13). (15-18) for the irreducibility
of solutions of system (3) to invariant solutions.
We note that

pi=AA+ B g =pA+C, (=23 ny.

are the general solutions of Equations (13). where

A| =0 B;il C|=0 A::O B"ZO C?

and A;, B, . Ci (i = 3... .. n) are arbitrary constants. Further simplifications of equations of
system (3) are connected with an application of equivalence transformations, which corres-
pond to a replacement of the independent variables. By means of the replacement

Xy = Bexg, Xo=Cale. X =X, (I=3.4...., n)

i

wecanobtain B; =0,C; =0,{i =3,4,...,n).

Further, we have to consider two cases: (a)all A; =0¢ = 3,4, ..., n) and{b) Z; A;- ; 0.
In the first case (a), system (3) has the form

Ay = fo, A= fi.

M =g, Hr=A+g. =g [=3. (19)

In the second case (b), without loss of generality, we can regard A3 % 0. Then as a result
of one more linear transformation of the independent variables

Xy =X, Xy =Xi, X3 = Agka, X =X, {(i=4.5,.... n),
system (3) becomes
A’Z = fz, A.3=A.)L|+f3» )\'f:fi’

my =g, pr=Atgn MI=upa g3, Hi=g, {24 (20)
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Further successive simplifications of systems (19) and (20) are connected with the analysis
of the constants C;.

3.1. SYSTEM (19)
In this case. Equations (8). (9). (11). {14) are reduced to

g=Cu+ K. fi=CA+R.

CitAgi +ugiu — &) + Rigin ~ Kigi, = 0.

Cildga + 1gry — g2) + Riges + Kigay = 0.

Ci(Afu + pfou — )+ Rifor + K, fo, = 0.

CiR,=CjRi. CK;=C/K,. (i.j=34 . .n, 21
where C,. R;, K, are arbitrary consiants.

311, Case Cy #0

If at least one of the constants C; is not equai to zero (without loss of generality. we can take
C3 # ). then with the help of transformations

R . . K
M=at+ 2 ow=up+

C3 Cs :

X=X, X4 = X, \fzg CoXy. X =2x,. (=41 .. .. n).

a=3
system (19) becomes
}\.3 = A. Ly = L, )\.,‘ = 0. g =0. (l =45 ..., n).
Ar = AF(u/A). py =AW (/A). poo= A 4+ AWa(u/R). (22)

The functions F. W, W, must satisfy a system of three ordinary differential equations of the
second order. This system is obtained afier substitution of

fo=AF(p/A). g =AW (/). g2 = AWa(u/A).
into Equations (16-18):

Wy — v FT = 0.

(V' F =y — U)F" =0, (yF — y¥ — W)W =0,

where y = p/A.

It can be noted that system (22) is invariant with respect to the transformation: A’ = —A,
1’ = —u. Therefore, we can consider that A > 0. It allows one more simplification by
transformation:

N o= % w=Mh@), x=x, x=x, x=x (=34...n).
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System (22} is reduced to
M4k =91, A=0 (=34 ..n).
wi=FR), wa=k+¥Q). ps=L =0 (=4....n. (23)

Here W\ (A) = Wi (A) + AWa(A) — 2 F (). Ba(h) = —=Wa(3) + AF ().
Let us make some remarks about solutions of svstem (23). A solution of (23) has the form

A=Alxy, ) p=x3+ Gx). x).

where the function G(x,, x:) can be found from the totally integrable compatible system of

differential equations. These solutions are invariant solutions of Equations (23) with respect
to algebra with generators:

B+ 0y By (=4, ... n). (24)

Assume that the functions A(x;..x2) and G({x,.x») are functionally dependent. then the
Jacobian
d{A, )

W(.t’]..\':) = d—(-t—T_).
X, X2

=2+ (U + AF) = FU, =0.
This equation supplies the sufficient conditions tor the reducibility of the solution of system
(23) to an invariant solution with respect to H < G". Therefore. for irreducibie solutions. the
functions A(x;. x2) and G({x,. x2) are functionally independent or Wix,. x-) & 0.

We note that if 'tif[ # 0, then functions F. W;. ¥, are linear: £ = KA + k», ¥h =
kad + ky, W2 = ksh + ke with arbitrary constants &; (¢ = 1.2.....6). If \il; = Q. then
@2_(2«.) + AF(A)y = 0and A = x/x2 up to shifts of the independent variables and because of

W = ,rz‘:(l + X3 \flg + xy ) 3= 0, then the solution is not reducible to an invariant solution of
H C Grl'

31.2. CaseC, =0(i =3,4....,n)
Let us consider the case with all constants zero. C; = 0.

Firstly, assume that at least one of the constants K, is not equal to zero (without loss of
generality, we can consider that K3 # 0). Then from (21) we get

gr=g (k= Ru), gr=g((—Ru). fr= fala— Rp).

where R = R3/K; If g| = g} = f; = 0. then the solution of system (23) is linear with
respect to the independent variables, i.e. it is invariant with respect to some subgroup H C G".
Therefore a prohibition of reducibility 10 an invariant solution leads to conditions (g})* +
(&) +( f )2 2 O or from (21) we have R, = RK,. After the transformation

xé:Z K,‘X,‘, .‘C;:,‘{,', 17,{-‘3
-
weobtain fi =R, g3 =1, 2 =0, fi =0,{ =4,5.....n). In addition we can reckon that
R = 0. Really, if it 15 not 50, then after cne more transformation
AM=A-=-Ru. u =Ru,

xXi=R'x —x x3=0x3, x}=Rxs,
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the same system can be obtained. but with R = 0. Irreducibility conditions (t6-18) in this
case become

f: = k[)\. -+ kg. g’;f: = D_ n'__: f._, =0

with arbitrary constants &), k:. We note that it f» = 0 (k; = 0.k~ = 0). then a soiution of
(19 1s A = @(x1). 1 = x3+cxa =W (x)). which is invariant with respect to some subalgebra
H C G". Here ¢ is a constant. Therefore. for systems irreducible to invariant solutions. we
have to consider only the case when f- % 0. In this case. functions ¢, and g¢. are linear
g1 = k3h + ks, g = ksh + kg and system (19 1y

e o= KAk =00 =34, .
py = kA Fhy g =h Fksk ke pa=1 py =00 =450 00 (25
It k& # 0, then by equivalence transtormations we can consider that 4, = 1. & = 0. In

this case
A=plre™. 1= (g = hsee’t = hexy + vl
where the function ¢ = pix)) satisties the homogeneous hinear ordimary differeniial equation

9" — k' + ks =0,

If &y = 0. but &> # . then. as in previous case, via equivalence transformations we can
put £y = 0. k> = 1. And then

ks
A=x2r+ (). W= x3 4 4 ((,[J R '_’;.\‘: 4 ks + kh) 4

where the functions ¢ = @(v)) and ¢ = W(x,) saisty the ordinary ditferential equations
@+ ksp — ks =0, l;’fi:k;(p + k.

Now let all constamts K; = (0. I at least one of the constants R, is not equal to zero (without
loss of generality. we can account that R: = 0}, then by ranstformation

M=p, p=i xi=xn x=x. y=ux. (=34...n.

the same system is obtained as was considered in the previous case. If all R, = (. then for
such a solution

A=Al x), uw =Gl xs)

and it is invariant with respect to the subalgebra A C G". which corresponds to the subalgebra
{05, 3eyy oo O, )
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3.2, SYSTEM (20)

A study of compatibility of system (20) is more cumbersome. In this case, Equations (8). (9).
(1) (1) (16—18) can be reduced to

83 = Agn t g — g

$:2=pub+ 183~ 381, — g3g1 =0,

fse = wfr — fr

fafs + 82F + A8 fr = fifu + 83 .

g+ pefr + g3 = Agyn 4 pgay, + fus

So = HE S+ a8 + 8283, — (figan + 8382 + A+ g1 fr).

fi=0. g =0 (=45 ... ). (26)

a, — flm\

ma, = 2a + f};_;_.

fl“l = gad, + b,‘l =& tz,flh,u) + giif];v

,ff\”'f. = Sy, + Jub,‘i =3h + ."1)1(’:\'(1[( + zf_“ﬁu() + fs’l).ji"\,(n

ag .f‘lu -+ !)pfl + .'3’2[7,'4 = bfb + 51 (gl f?,u;t + S f:u)
UV S+ 0ifs A gaby = Bfs + Q1O+ g fayge + 1 fan)- (27)

The problem is to find a general solution (up to equivalence transformation) of system -
(26). (27). Because Equations (26) and (27) are not sufficient for irceducibility of a solution of
system (20) to invariant solution. then the next problem is to try to analyze a solution of (20)
with the found functions f;. 2; and coefficients p;. ¢, . ‘

Al further intermediate calculations in the study of the compatibility of system (26) were
made on a computer using the systern REDUCE [6]. Here we give the method of computations
and final resuls, ~

Let us input the new function Gy = g3 — pg instead of £23. From (26), and (26);5, we
find G, Gs,. and from (27} fo, and f3;;. After substitution of the found expressions into
G 3. /0p~3Gy, /90X = 0. we get the equation (A(gy,,— g+)):. = 0. Without loss of generality,
the last equation can be integrated:

1=y g =9, + ¥ logi. ] (28)

where ¢ = @{(A. 1) and ¥, == y(p) are arbitrary functions. After substitution of (28) into
expressions for fy;; and f5;,. we get

vy 2y — uyy
S = '—‘.—]- fraa = ek 4 .
A A

Integration of the last expressions allows us to find the functions

fa=ag (b —log Ay + Avn + ¥a, fy = Auy — 2¢)(1 - log A) + Ayry + Vs
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with arbitrary functions o = o5 () (§ = 2.3. 4. 5). From (26)};. we have
A + ) — i) + s+ s — u = 0.

Atter splitting with respect to i, we get
Y= — Y Y= uy — s

or. if we input a new tunction s = We (1) by ¥y = ¥ + s — Wi then ¥y = () — ) /2.
In this case,

dGs . 4G .
= = =@, A0, —— = =g A+ Y
dA BT
which can be integrated as G = —2p + Ay + Ve,
A composition of differentiating {26, with respect to A and subtracting it by ditferentiating
{26)> with respect to z and adding it t0 (27)3 is

, Wy
Y@, — ¥+ — =0
A
If ¥y # 0. then we can get a contradiction. Really. tet ¥, = 0. then the last equation can

be integrated

¢ = (G — ploga) + -,

where G = G{A) and

¥
form

U ETAY
— A ’

vy re

arbitrary tunctions. In this case. Equation (26, has the

Gl A og A + ari + a3) + ashlog™ A + asi 10 & + agh + wy log A + ay = (). (20

where a;, (i = 1.2..... 8) ure polynomials of functions W, ¥rs, ¥s. Y. 7 and their deriv-
atives. [t can be shown that {29) is possible only if ¥ = 0. But it contradicts the original
assumption about ;. Therefore, we have 10 consider | = (.

Further consideration is based on the analysis of the compartibility of Egquations (26), and
ds>/0p — dsq /0 A = O, which have the forms:

@uh — 200" 4 Yroh' — Yl = 200) + Wsd, = 0. (30)
_3505\501(;1 & 2 w(’)’ + 390;(43};;( a (plkh = 0. (31)

where i = Ay — 2.

Assume that . = 0.s0 3 = 0, ¥y = 12 + 2, where ¢| and ¢ are constants. We note
that in this case ; = 0. Analysis of {31) requires that we need to study two cases: (a) ¢, =0
and (b) ¢, # 0. '

Let ¢, = 0. then from {31) we get

(CLA + Ys)in — i =0,

If ¢, # 0, then without loss of generality, system (20) can be wriiten as

>

2 =0, As=Ak+Ar. A =0,

E

= 2cA. =X, M3 = A +u+cy, LL,'=0. i =4, (32)
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A solution of this system is
A= —q@ln). p= (e +xataet)gs),

where ¢ (x3) ="/ (e — 1),
[f ¢, = 0 and 5 # 0. then without loss of generality. system (20) can be written as

}\.1 :O ;\.3$A.)\.i+l. ;k,:{)

M=o Ma=m AL Uz=pAy—ch o =00 Q=4 {

(%)
1.2
—

A solution of this system is

. X3 + X3 .l'% X
A= —— - gM=cly —— | — —.
Xz 2 6 A3

where ¢ is an arbitrary constant.
If ¢; = U and s = 0. then without loss of generality. system (20) can be written as

}L: = . /'\37—':1/.\4. f\.,:0

Hio= ¢, pa=hi. pa=ph+he' =20 w4 =0 i>4 {34

where ¢ = @(A) is an arbitrary function of &. A solution of this system is

X Xa .
A= ——. M= -——— 1)
X3 AW

Let ¢, = O. then from (31) we get ¢ = F(&). where & = u + W (i). The functions ()
and F(£) are functions of one argument (£ # 0). which have 1o satisty the equations

Vicia+Ys) =0 F'OF - ~cy)+0 F —(F) =0.

Here. by virtue of the first equation. ¢3 = ¢’ (¢4 + ¥5) — ¢ ¥ is a constant.
If ¢y 7 0. then as a result of equivalence transformations, we can set ¢; = 1. -
¥ = 0. and system (20) can be written as

A: =00 As=Aa +A. A =0

my =00 pa=h+F, my=pri+pu+pF —-2F u, =0, >4, (35)
where the function F = F{u) satisfies

(W=2FVF' =F{d=F) (F £0.
A solutton of this svstem is

) X ev
A= —.
] —ew

po= plxa, x3).

where the function p(x,. x3) satisfies a compatible overdetermined sysiem of equations.

If ¢ = Oand ¥s # 0, then without loss of generality and because of equivalence
transformations. system (20) can be written as '

)\.2 = 0, X3=)\)\.|+i, A.,=0

1 =0, pwr=A+2cp. py=ph, u; =0 =4, (36)
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where ¢ # 0 15 a constant. The solution of this system (up to scaling x. vy, x3 and p) is

X 1
l:-——-‘n&-:{_x. = —f{ye + 1.
X3 X3

where y = Qor y = 1. If y = (. then the solution is invariant with respect to the subalyebra
e dyn (=405, ... ).

If ¢y = O and ¥r5 = 0. then without loss of generahity, system (20) can be written as
da o= 0. As =aa. A =0

o= ¥F. ui=x+F

s = pihl Fpu+ g AF =2F u; =0 i>4, (37)
where ¥ = ¥ () is an arbitrarv function, F = ¢(& + c3)' £ = g 4 via) and ¢,y oare

constants (¢ 7 0). With the help of equivakence transtormation. this system can be simphitied
to

;\.3 = 0 ;L_“\ = )\.}L|¢ /\., = .
foo= P A e =R+ A
My = [t +(}\1£I,ﬁ§ﬁ){/.l+.:‘\.i). =0, >4, {38

The general solution of this svstem is (up to equivilence teanstormation)

X ] y o4
A= = —(p e N g,
j‘; R

where y =0 or y = 1. If ¥y = 0. then the solution is invariant with respect 10 the subalgebra
e 8 . (E=4.5..... ny.

Now we consider the case i = Ay, — 23 5

Let 4, # (. then system (30). (3 l) s Lompatlble {up to equivalence tmnsfornmtmns) only

if system (20) has the form
:‘LJ = (;\.-{—O{),LL A.T,=t’\./\.i }\.,:O

¢4 — 0N = §

[l S ] [’ A A+ '(#'}'ﬁ) [,L_‘,:[.l}\.i. i = 0. f:i“t

—~
()
D

——

where @. B are constants. A solution of this system depends on S.
If B # 0. then the solution is (up to equivalence transformation)

A=

Xy —ayes L+ Blyem
T e M= e
ye' — iy ye't —x3
where y = 0or y = L. If y = 0. then the solution is invariant with respect to the subalgebra

O O (F = 45,01, nd.
[f B = 0, then the solution is (up to equivalence transformation)

-
X1 +oaxs X2
A= ——— = —

=, U :
X3+ X3 x3+x§
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Let ¥, = 0 or o = ¢t + c2 and 3 # 0. Changing the function ¢ to Q(h. p) =
(¢ — We/2)/ h” simplifies Equations (30) and (27);. further. Equation (27); can be integrated:

0Q WYY — (DT et
_(3")1—“6Q ¥ —3Q2w3+1,[/\

3

where ¥y = (). Then from these two equations by cross-differentiating, we get

AQ°+BO+C =0,

where A = 6YH(WTWY — 2wl + 1w )Y. B = 3e g (¢3)7 /2. C = yipd — 3ciwi/ 16,
Further analysis depends on the value of Q;. There are only two possibilities: (a) A = 0.
8=0.C=0and(b) Q; =0.
In case (a). because B = 0. we need (0 consider two cases. In the first case vy = 0. and
then. without loss of generality, svstem (20) can be reduced to

Ar o= L. A;:J“u(}kl-i-(.'!.)—‘LL‘*C:.

pmy = ko pa=aydon pa=pn = ki k. (40)

where & and &, are constants and ¢, attains two values: either ¢; = 1 or ¢y = 0. In the second
case. ¢; = 0. and without loss of generality. the svstem (20) can be reduced to

. 1 -
A= —=( = kv Av=aAa — =i+ 2k — Ry
2 f
= ky? . Qi — kY
Ly = = I = Ay — T -
M 6(A — k)~ 2 i RIPAEN

(i — k) (A 4+ kA — 2k = 2kk))

s o= A — - (41)
23 e 6k — k)"

where & and & are constants,
Let us now consider case (b) 0, = 0. From s, = 0 we get Qy; = 0. lf ¢, = 0. then
system (20) can be reduced to

Ax = 3. Ay = Ak + s,
i o= 0. w2 =+ kysyy, px = pay + ks, (42)

where % is a constant and 5 is an arbitrary function of one argument and the function s is
connected with ¥ by: ¥, = p; — ¥ [f¢) & 0. then system (20) can be reduced to

wr = 0 pa=Ai+ b us=us L (43)

where k and k, are constants.
We can thus formulate the following theorem:

THEOREM. System (19) can have solutions irreducible to invariant solutions only if it is
equivalent to one of the systems: (23), (23), (32-36), (37) {or (38)).
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4. Systems of Type (6}

Systems of the type (6) have the form
A= pilh i + ity e =g;00m. =1 .. o jo= 1., . (41)

As with systems of type (4). we can obtain the necessary irreducibility conditons trom ex-
pressions D ; — Dy = (O

Sin = Pifts S = L%+ gigy pifi—pifgn g, — ik =00 (43)

and

(PiPj = PP + pinfi + Py — Piati — Pin&i = .

(pf'fj;z - !:)_,;ﬁ;:)!:r)! + fmf, + f:‘ugf - f)Afr - .)F_f[lg.; =0. 10)
from expressions D;a;, — DA, = 0. Hered, j =2.3..... n.

Assume that g, # 0.1f g); = (. then without loss of zenerality. we can consider gy = 1.
In this case. from (43) we can conclude that ¢ (7. j = 2.3..... 1Y are Constants, even up o
equivalence transtormations we can regard them as g; = 0. (/. f = 2.3, ... n} Solution of

such a system is i = xy. which is partially invariant with defect § < 1. [t is possible to obtain
a further simplification of system (441

If g1 = 0. then without loss of generality we ¢an consider gy = 4. Because in this cuase,
trom (43) we have

Pi = Kix- fi = 513’;';4- =23 ... nj.

It gives that the fArst n — 1 equations &; = pid; + fi- 0. (4. = 2.3 ... are con-
sequences of the other equations. But we have assumed that the equations of system 34) ware
not dependent. '

If g/ = 0. then without loss of generality we can consider that ¢» = 1. From (43} and
changing the independent variables. we can obtain g; = 0. (j = 3.4... .. ). The solution

of such a system is g = x-. which is partially invariant with defect § < 1. As before. il is
pussible for a further simplification of system (44).

5. Conclusion

In this paper. the classification of systems of type (3) with N = 22 — 1 for double waves of
nonhomogeneous quasilinear equations is performed.

Acknowledgements
It 1s my pleasure to thank Professor Nail H. Ibragimov for the invitation to visit the “instnute

for Symmetry Analysis and Mathematical Modelling’ in the University of the North-West,

South Africa. It stimulated me to finish this work. The research was supported in part by a
SUT Research Fund.

References

t.  Sidorov. A. F., Shapeev, V. P,, and Yanenko. N. N.. The Method of Differential Constraints and fis Applicoiions
in Gas Dvnamices. Nauka, Novosibirsk, 1984,

45



tn

On the Compatibility of Overdetermined S_\‘stem..v of Double Waves 99

Ovsiannikov. L. V.. Group Analvsis of Differential Equations, Nauka, Moscow, 1978 (English ransiation.
Ames, W_ F. (ed.), published by Academic Press. New York, 1982).

Meleshko, S. V., *A classification of plane isvenuropic gas fow of double wave type’. Prikladnya Matemarika
{ Mekhanika 49(3), 1985, 306410 {English ranstation in Jouwrnal of Applied Mathematics and Mechanics
49(3), 1983.)

Posodin. Yu. Ya.. Suchkov. V. A and Yanenke. N. N.. "On wavelling waves of gas dynamics equations’,
Doklady Akademii Nauk SSSR 11913, 1958, 443345,

Meleshko. S. V.. "Homogeneous autonomous systems with three tndependent varizbles™, Prikladnya Mateni-
atika | Mekhanika 58(3), 1994, 97102 (English translation in Jowrnal of Applied Mathemeics and Mechanics
38(35). 1994, 857-863.).

Hearn, AL C.. REDUCE 3.3 User's Manual. Rand Corp.. Santa Monica, CA. 1987,

Stdorov. A. F. and Yanenko, N. N.. *To the question about nonsteady plane flows of polytropic gas with straight
characteristies”, Doklady Akademii Nawk SSSR 123(5). 1958, 837-434.

4h



