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Abstract

First step of Lie group analysis application to the non-
linear optics three-wave equations is a group classifica-
tion: the finding of an admissible group and equivalence
group, construction of an optimal system of subalgebras.
We completed these operations. One of the interesting
result is that nontrivial equivalence group allows to sim-
plify these equations.

1. Introduction

The study of the light evolution in quadratic nonlinear media are
strongly stimulated by many physical fascinating phenomena:
selffocusing and self-trapping of light beams, soliton forma-
tion, optical-vortex solitons, parametric frequency conversation,
pulse compression. Their straight applications are very impor-
tant in laser related technology: long-distance optical net, all-
optical switching and signal processing, laser power systems [1].
Analytical investigations of the light evolution are usually re-
stricted by particular representations of solutions: for example,
one dimensional three waves interactions and two-dimensional
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but two waves interaction process. It has been shown that
one (14+1) and two (241) dimensional solitary waves involving
quadratic nonlinearities can be formed under variety of exper-
imental conditions and combination of equation’s parameters
(for example, [2-4]). Usually in real situations with arbitrary
boundary conditions the equations describing the process were
integrated numerically. However in this time the element of
generality is lost and despite on achieved progress in the devel-
opment of numerical methods, the calculation of complex flows
is remained hard to come by a problem.

We would like to apply the power of the classical group analysis
to an investigation of system of differential equations describing
three-wave interaction in approach of slowly varying complex
amplitudes. In this report we made the first step of application
of group analysis: we found admissible group, equivalence group
and we constructed self-normalized optimal system of subalge-
bras.

2. Governing equations

We consider two beams of fundamental frequency and different
polarizations that propagate through the quadratic nonlinear
media and generate a third beam of second harmonic frequency.
In the slowly varying envelope approximation the beam evolu-
tion of three—wave interaction is described by the reduced system
of equations

MIAI == i01A3A;6iAkZ, M2A2 = ZIO'QAgATGiAkZ, (21)
M3A3 = iUgAlAge_iAkz.

Here
Al = u + iUQ, AQ = us + iU4, A3 = us + iUG;

are complex-valued amplitudes, A, » are amplitudes of two fun-
damental harmonic fields of different polarizations and A3 is an
amplitude of the second—harmonic field,
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z is coordinate along the propagation direction, (z,y) is the
transverse coordinate, ¢ is time, k;o are the linear wavenum-
bers at fundamental frequencies, k3 is the linear wavenumber at
second-harmonic frequency, Ak = k3 — (ki +k») is a wavevector—
mismatch, a symbol * denotes the complex conjugation, [3; are
walkoff angles of the fundamental and second harmonics, w is
a light frequency, o; are nonlinear coupling coeflicients, Ak =
ks — (k1 + k2). We consider a case of exact phase-matched con-
dition: Ak = k3 — (ky + ko) = 0.

3. The equivalence transformations

The first step of group classification is the seeking of group equiv-
alence. Here we explain new approach to the construction of
group equivalence *

Almost all systems of differential equations have arbitrary el-
ements: arbitrary functions or arbitrary constants. The no-
tion of the arbitrary element is related to the fact that a lot
of particular problems of mathematical physics contain a set of
experimentally determined parameters or functions. These pa-
rameters and functions play role of an arbitrary elements. For
example, for the gas dynamic equations such arbitrary element
is the state equation. In our equations such parameters are
ki, ke, w, B, Ba, B3, 01, 02, 03.

The nondegenerate change of dependent and independent vari-
ables, which transfers a system of differential equations of given
class to the system of equations of the same class is called the
transformation of equivalence for the given class of equations.
Search and determination of these transformations are the basic
stage in group classification.

Let us consider a system of partial differential equations with
arbitrary elements ¢ = (¢',..., ¢"):

Fi(z,u,p,0)=0,(k=1,2,...,s). (3.1)
Here x = (z1,...,2,) € R" are independent variables, u =
(ul,...,u™) € R™ are dependent variables, p are derivatives

*This approach was appeared as a result of work one of coauthor on the
SUBMODELS program [5] (participants: L.V.Ovsiannikov, S.V.Khabirov,
A.A.Talyshev, A.P.Chupahin, A.A.Cherevko, S.V.Golovin).
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of dependent variables u with respect to independent x until
some order r. For the sake of simplicity, below we consider the
first order systems (r = 1). Without the loss of generality we
take that in the system the arbitrary elements depend only from
dependent and independent variables. The system (3.1) is called
the system with arbitrary elements and determines the class of
differential equations which definite representative is determined
by setting the arbitrary elements ¢(z, u).

The problem of the seeking of the equivalent transformations
consists of in the construction of such a transformation of space
R ™+ ( u, ¢) that preserves only the equations that change
their representative ¢ = ¢(z, u). For the purpose we are looking
for an one—parametric group of transformations of the space
R+ with generator T

X¢ = €0, + ("D, + (*0,.

Here the coordinates are:

& =¢&ru ), ¢ =C"(x,u,0), ¢ =" (z,u,0)
(t=1,....m5=1,... o mk=1,...,r),

instead earlier [7] case £ = &'z, u, ¢), ¥ =Y (x,u,¢), (i=
1,...,n;5=1,...,m. Since there are the derivatives p in (3.1),
it is necessary to determine how they are transformed or how
the coordinate of the expended operator

X=X+ ("0,, + %0y, + (04, + ...,

to the generator X ¢ are determined.

Because the functions ¢(x,u) and u(x) act in different spaces,
and hence, the coordinates of the extended operator X¢, con-
nected with them are defined by different formulas

¢" = D§C" — up DSER, DS = 0 + ux0y + (duun + 3)0y

Here X\ takes the values x;. The coordinates of the extended
operator, related to the arbitrary elements, are defined by the
formulas

(P = D5CP = 9 DSE" — ¢uDSCY, DS = s+ 6205 (A =1/, 1))

"Detail description on this approach is in [6]
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To construct an equivalence group we need to obtain the group
admissible by it with the extended operator X¢ constructed
above. Also here we must take into account possible special
previously known properties of the arbitrary elements (for ex-
ample, ¢, = 0).

Thus, the finding of equivalence group is executed with the help
of usual algorithm of a finding of admissible group of contin-
uous transformations, but with a more general kind of coordi-
nates of operator X€¢. The assumption of dependence of all its
coordinates on arbitrary elements, in general case, expand the
equivalence group in comparison with earlier used algorithm [6].

4. Equivalence transformations of (2.1)

As a result of integration of determining equations for the group
equivalence we have got that group equivalence of (2.1) is 18
parametric group. Part of generators in which arbitrary ele-
ments can be transformed consists of nine transformations:

6
X{ =20, +y0y + 20, — Z U Oy, — K10k, — K20k,

a=1

3 3
XE =10, — wiy, XS =wtdy+ Y kalpy, XE=20,+ 3 05,

a=1 a=1

(k1z — (Bs — Bo)wt — (k3P — k233)2)

Xt = o

(u48u3 — u38u4 +

1

1
+u68u5 — u58u6) - k—2852 — k—3853,

X§ = 2010y, — (U304, + w40y, + 50y, + ug0y,)
X = 2090y, — (u10y, + U0y, + U504, + U0y, )
Xg = 20'3803 — (Ulaul + U,28u2 + u38u3 + u48u4)

6 3
X§ =20, + Y0y + 220, + 210, — 2 Z UaOy, — Z Ba0s,, -
a=1

a=1
Due to the structure of generators X§, X7, X¢ it allows to ac-
count

61262263:0-
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Then generators of another part are

X = 8:1:; Xy = aya X3 = 82; Xy = xay - yaxa

Xo =xX19+ 20, X;=yX0+ zay, Xg = 0,

Xg = (kl - kQ)ZXlO + ((kl + kQ)Z - 2wt)X11
Xio = k1 (u20y, —u104,) +ka 140y, —u30y, )+ (k1 +Fk2) (160u; —ts504,)
X1 = ki (u20y, —u10u,) —ko(u40u, —us0u, )+ (k1 —ks ) (us0u; —Us50u),
Remark. In original calculations the coefficients of generators
X4, Xg depend of (3, B, B3 and they have more complex form.
Remark. In the experiments it is very important to have
B? + B2 + 2 # 0. But in this case admissible group is very
cumbersome. Group equivalence gives us the possibility to ac-
count that the coefficients §; = 0 (j = 1,2,3). This fact is
very important with physical point of view because it allows to

understand the reason of existing possible solitary wave at the
walk-off effect.

5. The admissible group

By virtue of equivalence group we account that g, = fy = 3 =
0. After direct integration of determining equations we get that
an admissible algebra

Lll - {X17X27 s 7X11}7
where

6
X5 = 20, + y0, + 220, + 2t0;, — 2 Z U Oy, -

a=1

Generator X5 can be obtained from X§ by assuming of 3; =
Py = B3 = 0. The table of commutators is

Xy Xy X5 Xy X5 X¢ Xr Xg Xy
X1 0 0 0 -X» Xi Xy 0 0 0
X5 0 0 X1 Xo 0 Xio 0 0
X3 0 0 2X3 X1 X2 0 O[Xl()-i-ﬂXll
Xy 0 0 X7 -Xs 0 0
X5 0 X¢ X; -2Xg 2X,
Xs 0 0 0 0
X7 0 0 0
Xg 0 —LUXll
Xy 0
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Here a = (ky — k1)/2, B = (k1 + k1)/2. Two generators Xy
and Xi; compose the center of algebra. Inner automorphisms
are constructed immediately with help of table of commutators

. r I [ .
Al . 1‘1 =T + a1Ts, 1‘2 = T2 — A1y, 1‘10 = T10 + a1Tg,

. I I A .

Ag DT =1 + A2T4, Ty = T2 + 225, L9 = T10 —+ o7,
/ / /

As: 2] =21+ azxg, Ty = o + azry, Ty = T3 + 20375,

! ! .

Ay 2 =z cos(ay) — xasin(ay), 25 = 2y sin(ay) + 29 cos(ay),

xg = xgcos(as) — x7sin(as), 25 = xgsin(aq) + x7 cos(ay),

. P -1 P -1 r =2 1
As: 2y =a; x1, Ty, = a5 T, T3 = a5 T3, Tz = A5Tp,

1o 1 =2 r_ 2.

. , J— , _
Ag 1 o] =21 — agx3, Ty = Tg — A5,

2
%

! !
Ty = X7 — Aex4, L9 = T10 — ATy + 5

T3,

. , —_ I —_
A7 1 my = X9 — 73, Ty = Tg + 774,
2
r o a? .
Ty = X7 — Q7T5, Tig = T1g — A7T2 + 5353,

. , _ I J— .
Ag 1 xg = xg + 20575, Ty = T11 — WaAgTo;

. —
Ag . Tyg = T10 — QXA9T3,

! !
'y = x1 — ag(wxg — Br3), To = T9 — 209T5.
Also we have one involution
. I I I !
E: 2, =—2, 15 =—x9, vy = —xg, T3 = —T7.

We constructed the self-normalized optimal system of subal-
gebras of algebra L;; with the using a method which is being
developed by L.V.Ovsiannikov in program SUBMODELS [5].

By two—steps algorithm [5] for the construction of optimal sys-
tem of subalgebras on the first step we constructed optimal
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systern of Lg = {Xl, XQ, X3, X4, X5, XG, X7, Xg, Xg} which con-
sists of generators of L; without center {Xjo, X11}. Because
Ly = J' @& N, where J' = {X|, Xy, X3} is ideal and N! =
{ Xy, X5, X¢, X7, Xg, Xo} is subalgebra then we can construct
optimal system for subalgebra N' = J2 ® N? with ideal J? =
{Xe, X7} and subalgebra N% = { X, X5, Xg, Xg}. Because opti-
mal system is very cumbersome then we can not write it here.

This research was partially financial supported by Russian Fund
for Fundamental Researches (96-01-01780) and National Re-
search Council of Thailand (2308).
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