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1 Introduction

Modern technology requires a deeper knowledge of the behavior of real physical phenomena.
Today the main way of studying physical processes and obtaining new knowledge is by mathe-
matical modelling: using efficient mathematical modelling allows us to reduce the time used in
investigation and obtaining of new results.

Mathematical models of real world phenomenon are formulated as algebraic, partial differ-
ential or integral equations (or a combination of them). These equations are constructed on
the basis of our knowledge of physical phenomena. After the construction of equations the
study of their properties is necessary. At this stage symmetry analysis plays a significant role.
In parallel with group analysis a method known as a method of degenerate hodograph was
developed. Firstly degenerate hodograph solutions were applied to problems of gas dynamics.
Examples of this include as the problem of gas motions behind two semiinfinite pistons which
move at an angle to each other in a plane; flows in two-sided angles; gas effusion into a vacuum
on a tilt wall; and the cumulation of energy under nonshock compression of gas.

Here we discuss multiple waves and their connections with symmetry properties. Applica-
tions are considered in terms of gas dynamics equations 2.

2 (Gas dynamics equations

In a three-dimensional isentropic case the gas dynamics equations are

EjL@xz _07 (1_17273)7 (1)
df

7 + kOdiv u = 0.

Here (uy,us,u3) is a velocity vector, = ¢*/k,k = v —1, ¢ = A(Sg)va_1 is a sound speed, =y
is a polytropic gas exponent and d/dt = 0/0t + u,0/0x, (summation with respect to repeat
Greece index is assumed
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2Review of works in this area done before 1983 can be found in [1]. Here only references having direct
relation to the discussing subject are given.



Let us consider an infinitely long tube extending along the z—axis. We assume that gas fills
the half tube z > 0 with a piston situated at = 0, and that the gas is in motionless state
with a constant density py. At t = 0, we start pulling the piston to the left so that the piston
follows a path & = x(¢) for ¢ > 0 in the z, ¢ plane (fig. 1). As a result the gas is set into motion.

The solution of this problem can be considered as the continuous one—dimensional motion
of gas. In this case gas dynamics equations can be reduced to the equations written in the
Riemann invariants

or or ol o

o tutda =0 =4 (u—c)7- =0
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where r=u— 250 l:u+%c.
Since the gas is originally motionless with uniform density pg, there is a constant state I in
the z,t plane where the ‘Z—f = u + ¢ characteristics have a constant slope 4cq = ¢(pp)-

The Riemann invariants in adjoint to axis z domain are r = —%co and [ = +%

Co-
Because the [-invariant is constant along characteristics ‘Z—’t” = u — ¢, then it is constant into the
adjoining region AOB. It allows us to construct the solution of the piston problem. Application
of the Riemann waves can be found in modern supersonic wind tunnels.

Definition. A solution with a constant Riemann invariant is called a simple (Riemann)
wave.

Another representation for the simple wave is [ = [(r). A generalization of this case for

three—dimensional gas dynamics equations is

So, a simple wave is a solution in which all dependent functions are functions only one unknown
function. A generalization from the simple wave is a multiple wave. A multiple wave is such
solution in which finite relationships between dependent variables are assumed.

3 Multiple waves (definitions and basic facts)

A multiple wave of rank r in the field G of the space x1, x5, ..., x, for a homogeneous system
of quasilinear differential equations

" ou
> Aalu)5—=0 (2)
a=1 8.%'(1
is called a solution u* = u'(x1,2s,...,2,), (i = 1,2,...,m) such that a rank of the Jacobi
matrix on it
a(ul, U2,y ..., Um)
a(l‘l,l'Q, e ,xn)
is equal to r [1]. Here A, are N xm matrixes of elements af;(u), (i =1,2,...,N;j =1,2,...,m;
a=1,2,...,n).
Depending on the value of 7 a multiple wave is named simple (r = 1), double (r = 2) or triple
(r = 3) wave. The value r = 0 corresponds to uniform flow with constant u;, (i =1,2,...,m),

and r = n corresponds to a general case of nondegenerate solutions. Multiple waves of all ranks
compose a class of degenerate hodograph solutions.



The singularity of the Jacobi matrix means that the functions u;(z) (1 = 1,2,...,m) are
functionally dependent (hodograph is degenerated), with m —r number of functional constraints

u; = ®; (AL NN, (i =1,2,...,m). (3)

The variables A\'(u), A2(u), ..., \"(u) are called parameters of the wave. The solutions with
degenerate hodograph are a generalization of the travelling waves: the wave parameters of the
travelling waves are linear forms of independent variables. To find the r—multiple wave it is
necessary to substitute the representation ( 3) into the system ( 2). We get an overdetermined
system of differential equations for the wave parameters \'(z), (i = 1,2,...,r) which should
be studied for compatibility.

The main problem of the theory of solutions with degenerate hodograph is getting a closed
system of equations in the space of dependent variables (hodograph), establishing the arbitrari-
ness of the general solution and determining flow in the physical space.

Equations of the system ( 2) are not changed under transformations?.

ri=ar;+b;, (i=1,2,...,n), (4)

which compose a group of transformations G"**.

From a group analysis point of view a r—multiple wave is a partially invariant solution [2]
with respect to G"*!' . Among partially invariant solutions, those irreducible to invariant take
a special place. They are connected with the problem of constructing invariant multiple waves
which is easier than the problem for constructing partially invariant solutions. That is, for an
invariant ~—multiple wave the wave parameters can be chosen from two types up to equivalence
transformations: the first kind of waves are waves with parameters

1 __ 2 __ ro__
A= Tp—rt1, A= Tp—r42; -+ AT = Tns
the second kind has wave parameters
1 _ 2 __ ro__
A —l‘n—r/l‘na A _l‘n—r-i-l/l‘na ) A —l‘n—l/l‘n-

The equivalence transformations consist of linear replacement of the independent variables
' = Vx with nondegenerate n x n square matrix V. Moreover, more difficult analysis of
compatibility of obtained overdetermined systems is required for partially invariant solutions
than for invariant solutions. Therefore it is worthwhile to ascertain a form of an irreducible
wave a priori. In common cases this problem is difficult and unsolved. Only some sufficient
conditions of reducibility are known [2, 3]. The practical significance of these conditions is based
on the fact that during the process of formation of compatibility conditions for the multiple
wave parameters it is necessary to veto reduction.

In the studying of solutions with degenerate hodograph, the question of compatibility of
overdetermined system is very important. Since a general analysis of compatibility of occurred
systems is difficult, it was made under additional assumptions about multiple waves. Originally
there were geometric and kinematic conditions: either potential flows [4] or rectilinearity of level
lines [5]. Other confinements were constructed on the basis of the algebraic structure of the

3The widest admissible Lie group of the system ( 2) can be wider than the group G***.



system ( 2), connected with so—called simple integral elements of the system ( 2) (see, for
example, [6]).

Because in any case the analysis of compatibility of overdetermined system have to be done,
then a classification of solutions according to availability of function arbitrariness in the Cauchy
problem is more natural from a compatibility theory point of view. A study of solutions, having
functional arbitrariness, is based on the property of compatible systems of equations that after
a finite number of extensions they comes to involution. If a system of differential equations is in
involution, then a functional arbitrariness of solution is determined by the Cartan characters,
which are connected by definite way with higher parametric derivatives. For an existence of
solutions, having functional arbitrariness, it is required that the rank of the matrix composed
from coefficients of high derivatives is not equal to the number of all high derivatives (in any
extension). This approach has been developed in [7, 8, 9].

4 Simple waves
According to the definition of the simple wave such solution has a representation
u'=u'(N), (i=1,2,...,m), (5)

where A\ = A(z1,za,...,2,) is a wave parameter.
Substituting ( 5) into the original system ( 2), we have overdetermined homogeneous system
of quasilinear differential equations for the function A:

cm()\)% =0, (1=1,2,...,m). (6)
Here ¢;, = afﬁu/’g and prime means derivative with respect to the wave parameter A.

The structure of the solution of system ( 6) depends on the matrix C', which is composed
from the coefficients ¢;x(\). Equations on function u(A) when there exists a nontrivial simple
wave are called by equations of simple waves. The system ( 6) admits nontrivial solution if
only if

r =rang C < min(n,m).

In this case without a loss of generality the system ( 6) can be written in a form

o\ " orx .
al‘i —aglbia(A)E, (Z—].,2,...,T). (7)

The description of all solutions of ( 7) is in the following theorem.
Theorem. A solution of system ( 7) is implicitly given by formula

A= f(errl + Z xabar+la sy T + Z xaban)a (8)
a=1 a=1

where f is arbitrary mapping from R"™" in R.
Proof of this theorem consists of in consecutive finding of the general solution of system ( 7).
The surfaces in R™ on which A\ = const, called level surfaces, compose r—dimensional planes.

4



The most often encountered case in applications is 7 = n — 1. In this case the representation
of the solution of the system ( 6) can be reduced to

> wala(A) = F(N), 9)
a=1
where F'(\) is an arbitrary function, A;, (i = 1,2,...,n) are known (n — 1) — order minors of

the matrix C, which is a function of \.
Let us consider the simple wave of equations described an isentropic movement of polytropic
gas (1) [10]. We can choose # as a wave parameter. Then the equations ( 1) accept a form

do 00
— =0, (1=1,2.3 10
U; dt + 8xz ) (Z ) & )7 ( )
dp o0
— + kbu, = 0.
dt + 01,
and the matrix C'is (x4 = t):
uguy + 1 (X ugu) u)y
Uy uh uguy + 1 U3l ub
C= ! ! ’ /
UpUsy UgUsy usus +1 g

uy + KkOu) us + kOuy ug + Kkbuly 1
For an existence of a nontrivial simple wave it is necessary to require that det (C') = 0, that
is
(uh)? + (u)* + (uy)® = 1/(x0).
Because rang C' = 3, then the system ( 10) becomes

00/0x,  00/ox, 00/0xs  00/ot

u) b uh (1 + uqu’)

with the general integral
zoup, — t(1 + ugul) = F(6).

Changing the wave parameter 0 on 7 = 2,/0/k, we get
ui(r) = [sine(r) coso(r) dr, us(r) = [ sinip(r)sin o(7) dr,

uz(7) = /COS W(r) dr,

where (1), ¢(7) are arbitrary functions of 7.
Special cases of simple waves are obtained under additional assumptions. In particular, for
the stationary simple wave (00/0t = 0) we have

1 + uqu,, = 0.
It corresponds to the Bernoulli integral

Ul + 20 = M? = const.



And level surfaces of functions u; and 6 are planes in the space of the independent variable
X1, T2, T3:
zou,, = F(6).

Applications of simple waves are well known in the classical gas dynamics. They are:
unsteady motion of a plane piston in gas (Riemann wave) and steady flow past a smooth
profile (Prandtl-Mayer wave). More general problems about flow past some surfaces by simple
waves are valid. For example, steady flow past unwrapped surfaces can be described by a simple
wave. Parametrically these surfaces I' in the space R3(x) are given by

x; = qi(s) + vpi(s), (i=1,2,3),
where ¢;(s), pi(s) are functions satisfying to equations

P1 D2 P3
pll pIQ pé - 0; (p17p27p3) X (qlla q;; Q:,’,) 7& 0
@ a0

Theorem [11]. An arbitrary, sufficiently smooth expanding surface I, which is not a plane,
can be passed over by a simple wave.

5 Double waves
For the double wave the parametric representation of solution has a form
w =ui(Ap), (i=1,2,...,m) (11)

with wave parameters A\ = A(z), p = pu(x). In the result of substitution the representation
( 11) into the system ( 1) we get an overdetermined system

A (upAg + uppia) = 0. (12)

where (\; = ON/0x;, p; = 0u/0x;, i =1,2,...,n).

The system ( 12) must be studied for compatibility. In the general case, it is difficult to
analyze its compatibility. As already mentioned above, because it is easier to solve the problem
of compatibility for invariant double waves, therefore it is helpful to ascertain a form of double
waves, which are not reducible to invariant double waves. Only sufficient conditions providing
the reduction of a double wave to an invariant solution are known. These conditions can be
formulated as following.

Theorem [2]. If in the homogeneous system of quasilinear equations ( 1), which is a result
of formation of compatibility conditions, the number of the independent equations N = 2n — 1,
then a double wave is the invariant double wave. The wave parameters of the double wave can
be chosen one of two types (up to the equivalence transformations): either A = xy, p = xy;
or A =1xy/x3, 1= I3/ 13.



We demonstrate a practical application of the theorem on the plane irrotational isentropic
4
gas flow":

df . . 8u1 a’LLQ .
%—!—/ﬁeleU—O, 6—352_8—%_0

Here we assume that wave parameters are u; and us.

We are looking for irreducible double wave. The theorem prohibits N = 5 independent
homogeneous quasilinear first order equations.

In the result of substituting 6(u;, us) into ( 13) a system, consisting of from four homoge-
neous quasilinear differential equations is obtained (0; = 90/du;, v; = 07 — k0 (1 =1,2) ):

du; Oy, )
Si=— +9aaxz_ 0, (1=1,2), (14)
- Sua ('MQ . . 8u1 8u2 .
53:%%+291928—$1_0, YT Omy 01

Substituting derivatives du;/0x;, (i =1,2,3;j =0,1,2), found from the system ( 14) through
parametric derivatives du;/0x1, (i =1,2), into expression

DyS5 + (g + 00)DaS3 — 100D Sq — 26102D1.5 = 0,

we get a homogeneous square—law form with respect to parametric derivatives du;/0z, (i =
1,2):

Ouq Oug
ah 81‘1 &rl -

where D;, (i = 0,1,2) is the total differentiation with respect to the independent variables
z; (i=0,1,2,3), o =t and the factors of the form are

Mb

(15)

bis = —1h2, by = byy = (1h1ahy — 20%62),

M = 1po(1 4 011) — 20105619 + 11 (1 + Oa2).

If at least one of the factors b;; (7,7 = 1,2) is not equal to zero, then an equation ( 15) is
the fifth quasilinear homogeneous equation, that is prohibited by the theorem. Therefore for
irreducible double wave it is necessary to consider b;; = 0 (i, j = 1,2), that gives®

M =0.

The condition M = 0 provides a compatibility (moreover, even involution) of system ( 13)
with two arbitrary functions of one argument.

4Full classification of irreducible plane double wave with functional arbitreriness was done in [7].
>This double wave were obtained in [4].



6 Double waves of systems with 2n — 2 quasilinear equa-
tions

We consider double waves with n = 3 independent variables when the wave parameters satisfy
to four homogeneous quasilinear equations of the first order

3
Z Oép] (A, ) +Man (Ap) =0,(j =1,2,3,4). (16)

Such kind of systems often arise in the process of the classification of double waves. We will
classify irreducible double waves of ( 16) having functional arbitrariness [12].

1. Transformation of equivalence. Let u = (A, 1) be the parameters of a double wave
and let \; = O\/Ox;, p; = Op/Ox;, and w; = (N, ;) (1 = 1,2,3). For system ( 16) the
property of being homogeneous and autonomous is invariant under the following equivalence
transformations:

(a) the choice of wave parameters \' = L(A, ), u' = M (X, p);

(b) a non-singular linear transformation of the independent variables.

By virtue of the double wave condition rank O(X, u)/0(x1,x2,23) = 2 it can be shown by
means of equivalence transformation that any system ( 16) of four independent equations can
be reduced to one of the following two types: either

)\1:0, )\2:0, /1,3:0
Ay A a(A, ) + b e =0 (a® + 02 #0) (17)
or
us = Aul, U9 = B’LLl. (18)

, 1)) are 2 X 2 square matrices.
7) having solutions with functional arbitrariness, are equivalent

Here A = (a(\, 1)), B = (b (A
Theorem. All systems ( 1
to the system

A=m3, 1+ g(p)pe =—1.
For the system ( 18) firstly we note that

Dz(Ug — Aul) — D3(U2 — Bul) = GUH -C< U, Uy >= 0.
Here G = AB — BA with elements
g11 = —ga2 = a12ba1 — ag1byo

gi12 = a12(b22 - b11) - 512(6022 - all); go1 = —021(522 - b11) + b21(a22 - 011)

C is a bilinear mapping, whose coordinates are determined by A and B and their derivatives
with respect to A and pu.

If det G # 0, then the solution of system ( 18) can have at most a constant arbitrariness.
So, by virtue of our assumptions det G = 0, i.e.

12091 (bag — b11)2 — (a12b21 + a21b12)(baz — b11) (a2 — a1y) +
biabay (ag2 — a11)® — A* =0



(A = a12021 — 512b21)

Theorem. Apart from equivalence transformations, system ( 18) has solutions with an
arbitrary function that cannot be reduced to invariant ones only if matrix A has real eigenvalues
or conditions

ao1b Qoo — @
by — 21 12’ bos = €+ by (€ (ase 11))
a2 12

3512 3b11 bio 3011 3@12

O op | an o )=

0byq az1 Obyo 0byq 4 bﬁ @aalz dayy dayy

aA_a_uau +58,u Q12 Q12 au_ oA —<

are satisfied.

Remark. The classification of double waves considered in all papers known for us can be
reduced to analyzing the solutions of system ( 18) when a matrix A has real eigenvalues. In
many of these publications this property is not pointed out explicitly. It is a consequence of
the following. The classification of double waves involves transferring to the hodograph space
x1 = P(\, pu,x3), 23 = Q(\, p,x3), followed by obtaining a second—order degenerate algebraic
equation in OP/0x3 and 0Q)/0x3, which splits into the product of two linear forms. It can be
shown that this is only possible if matrix A has real eigenvalues.

Theorem. Let a matrix A in ( 18) has real eigenvalues. Then systems of the form ( 18),
having solutions with an arbitrary function that are irreducible to invariant ones are equivalent
to one of the following systems

a) with coefficients (b1 (0b21/ON) # 0)

air = —=A, bi1 =0, azn = -\ — bZI(W)_Ia bao = bz1w(

8[)21 )_1
ox’ 7
and the general solution

A=wx1/x3, P(p— baxa/x3,b21/23) =0

a1 =0, by = =X, a2 =1/, bay =1, bag = =X+ (¢, +V'e™") /)
and the general solution
A =x1/x9, ((23/72 + )" + 1, w2e™") =0
c¢) with coefficients
a1 =0, by =0, axp = 1/¢A, bor =1, boy = ¢u/¢/\
and the general solution
)\:Xla (P(/'L_l‘Qa .'L'3+¢):0
d) with coefficients, satisfying to conditions

ob da
(Cl22 - 6111)8—;1 - (b22 - bn)a—;1 =0
31)22 8&22

ﬁ - (b22 - bu)ﬁ = 07

(022 - 011)



and the general solution having two arbitrary functions of one argument.

Here ® = ®(&,&), ¢ = ¢(A, 1), ¥ = (p) are arbitrary functions and ®¢, # 0. In case (d)
system ( 18) is said to be written in terms of Riemann invariants.

Remark. The wide application of multiple waves in multi-dimensional gas dynamics allows
us to suppose a successful application of the degenerate hodograph method to obtaining of the
exact solutions in the theory of plasticity, where from the solutions with degenerate hodograph
only simple waves for hyperbolic systems with two independent variables were used. If number
of independent variables more than two, it is known only separate examples of simple [13] and
double waves [14] plasticity theory. In [15, 16] double waves with functional arbitrariness for
Prandtl-Reis equations of rigid—plastic body

a?}a a?}i . do 8Sz -
or, E‘axﬁ axa’(l_1’2’3)’
O 0% _ogg, (i=1,2,3),

ij &rz
SusSap = 2k,

were constructed. Here (S;;) is a deviator of strength tensor, v = (vy,vq,v3) the vector of
displacement speed.

7 Triple wave of isentropic potential gas flows

Let us consider isentropic potential gas flows

gy,

o -~ kOdiv u =0, rotu=0. (19)

For the triple waves in which 8 = 6(uq, us, u3) it is necessary and sufficient that the condition
— 1035 — 1hab7y — V307, + 20105013053 + 20103012023 + 20505012615 —

—20192012(1 + 933) — 20103913(1 + 022) — 29203923(1 + 011)+
F1 (1 + O2) (1 + O53) + 1oo(1 + 611) (1 + O53) + 15(1 + 611) (1 + Oa2) )

=0
are fulfilled [17]. Here 6; = 00/0u;, 0;; = 0°0/0u;0u;, ; = 02 — k0. If ug = ®(uy,us), then
necessary and sufficient conditions of existence of the triple wave are

@?2 - q)llq)22 = 07

where @;; = 0°®/9u;0u;. These triple waves are solutions with one function of three arguments
arbitrariness. The necessity of these conditions has been revealed in [18]. For the first case for
k(k—1) < 0 he has also found particular solution [19]: § = (ag+asue)?. Here a;, (i =0,1,2,3)
are constants and aya, = —3k/(4(k — 1)).
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