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CHAPTER I 

INTRODUCTION 

 

Volatility, the most extensively used measure of uncertainty, is fundamental in 

modern finance theory. Quantifying and forecasting volatility are essential to financial 

asset pricing, portfolio optimization and risk management. Many models of volatility are 

applied in forecasting stock market movement and evaluating the performance of the 

stock market. Ability to predict volatility accurately is a crucial job for stock market 

researchers and practitioners. 

In finance, the term volatility is used to denote a measure of the variation of a 

particular asset. Mathematically it is often defined as standard deviation of asset return 

(Ramey, 1995; Huang, 2005). Many studies (Day and Lewis, 1992; Liu et al., 1999; 

Jondeau and Rockinger, 2003) have shown that volatility has wealth statistical properties 

such as clustering, persistence, long memory and so on. Mandelbrot (1967) and Fama 

(1965) find that volatility exists in clusters, that is, large changes tend to be followed by 

large changes and small changes tend to be followed by small changes. Baillie et al. 

(1996) analyze US Dollar foreign exchange rates and get that volatility possesses long 

memory and persistence, i.e., there is a long lag linear autocorrelation. 

There are two popular classes of widely used models for volatility of the observed 

time series for capturing the stylized features of volatilities in financial data. One is the 

class of Autoregressive Conditional Heteroskedasticity (ARCH) models (Engle, 1982)  
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and their various extensions (Bollerslev, 1986), formulating the serial dependence of 

volatility and incorporating the past observations into the future volatility. Another one is 

the class of stochastic volatility (SV) models which have also been well studied in 

financial econometrics. 

After introduction of ARCH and GARCH models (Bollerslev, 1986), many 

researchers have proposed extensions and alternative specifications on the models such 

as Exponential GARCH (Nelson, 1991), GARCH-M (Hamilton, 1994), Threshold 

GARCH (Glosten et al., 1993). Because of the increasingly important demand to explain 

and to model risk and uncertainty in financial time series, GARCH-type models have 

been the main tool for volatility forecasting. 

In earlier research, Engle (2001) points that the analysis of ARCH and GARCH 

models and their many extensions provide a statistical stage on which many theories of 

asset pricing and portfolio analysis can be exhibited and tested. Basel (2005) examines 

the relative out of sample predictive ability of different GARCH models, with particular 

emphasis on the predictive content of the asymmetric component. Cathy et al. (2006) 

introduce a four-regime Double Threshold GARCH (DTGARCH) model, which allows 

asymmetry in both the conditional mean and variance equations simultaneously by 

employing two threshold variables, to analyze the stock markets’ reactions to different 

types of information (good/bad news) generated from the domestic markets and the US 

stock market. Hung (2011) use a fuzzy system method to analyze clustering in GARCH 

models. Liu and Chiang (2012) employ four GARCH-type models, incorporating the 

skewed generalized t errors into log returns of Standard and Poor's Depositary Receipts 
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exhibiting fat-tails, leptokurtosis and skewness to forecast both volatility and 

value-at-risk. Li et al. (2013) propose the Mixture Memory GARCH volatility model 

which involves a short memory GARCH and a long memory FIGARCH, using the daily 

S&P 500 index to illustrate volatility’s capabilities. 

More recently, Werner et al. (2014) perform a hybrid Neural Networks-GARCH 

model for volatility forecast in three Latin-American stock exchange indexes from Brazil, 

Chile and Mexico, and demonstrated that the Artificial Neural Networks models can 

improve the forecasting performance of the GARCH models when studied in the three 

Latin-American markets. Peter et al. (2014) introduce a multivariate GARCH model that 

incorporates realized measures of variances and covariance. Realized measures extract 

information about the current levels of volatilities and correlations from high-frequency 

data, which is particularly useful for modeling financial returns during periods of rapid 

changes in the underlying covariance structure. Mutunga et al. (2015) implement an 

estimating functions approach combining with the first order EGARCH and 

GJR-GARCH models to forecast the volatility of two market indices from the USA and 

Japanese stock markets. 

Stochastic Volatility (SV) models which were first introduced by Taylor (1986) 

concentrate on the time-varying and persistent volatility, as well as on the leptokurtosis 

in financial return series. Many extensions to the basic SV models have been proposed in 

the literature (Heston, 1993; Sadorsky, 2005; Vo, 2009). In particular, the Markov 

Switching Stochastic Volatility models (MSSV) were studied in Diebold (1986) and 

Mike and So (1998). 
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In earlier research, Smith (2002) presents the MSSV diffusion model to analyze the 

short rate volatility and proposes quasi-maximum likelihood estimation techniques to 

calculate the volatility parameters. Shibata and Watanabe (2005) use the MSSV model to 

accommodate the shift in the mean of log volatility of the TOPIX index and use the 

Bayesian Markov Chain Monte Carlo (MCMC) approach to estimate the parameters in 

the model, which provide evidence that the MSSV model is favored over the standard SV. 

Carvalho and Hopes (2007) propose a simulation-based algorithm for inference in 

stochastic volatility models with possible regime switching and develop auxiliary 

particle filters strategy to sequentially learn about states and parameters of the model 

in the IBOVESPA stock index. Valle et al. (2010) introduce the modified mixture model 

with Markov switching volatility specification to analyze the relationship between 

British Petroleum stock return volatility and trading volume and construct an algorithm 

based on Markov Chain Monte Carlo simulation methods to estimate all the parameters 

in the model using a Bayesian approach. Du et al. (2011) assess factors that potentially 

influence the volatility of crude oil prices and the possible linkage between this volatility 

and agricultural commodity markets. They apply stochastic volatility models to weekly 

crude oil, corn, and wheat futures prices from November 1998 to January 2009, and then 

use Bayesian MCMC methods to estimate the model parameters.  Rios and Lopes (2013) 

explore kernel smoothing and conditional sufficient statistics extensions of the auxiliary 

particle (Pitt and Shephard, 1999) and bootstrap filters (Gordon et al., 1993) and use 

simulated data following MSSV models. They show that the LW particle filter 

degenerates and has the largest Monte Carlo error, while the auxiliary particle filter is 
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better than it. 

More recently, Kastner and Schnatter (2014) represent Bayesian inference for 

stochastic volatility models. An MCMC method which depends on actual parameter 

values in terms of sampling efficiency is used to evaluate volatility parameters. The 

volatility in the latent state equation is small which shows deficiencies for highly 

persistent latent variable series. Clark and Ravazzolo (2015) compare alternative models 

of time-varying volatility on the basis of the accuracy of real-time point and density 

forecasts of key macroeconomic time series for the USA stock. The results show that the 

AR and VAR specifications with conventional stochastic volatility dominate other 

volatility specifications, in terms of point forecasting to some degree. Bonfil et al. (2015) 

present a new method called Support Vector Regression Boltzmann selection for the 

financial volatility forecasting problem which selects simultaneously the proper kernel 

and its parameter values.  Joshua and Angelia (2016) compare a number of GARCH and 

SV models using nine series of oil, petroleum product and natural gas prices. The 

competing models include the standard models of GARCH(1,1) and SV with an AR(1) 

log-volatility process, as well as more flexible models with jumps, volatility in mean, 

leverage effects, and t distributed and moving average innovations. Using the marginal 

likelihood, the result shows that the SV model with moving average innovations is the 

best model for all nine series. 

In this thesis, we mainly focus on two parts. Firstly, the Model Confidence Set 

(MSC) test is introduced to describe the best GARCH-type model which is used to 

estimate the volatilities. Secondly, Expectation Maximization and Sequential Monte 
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Carlo (SMC) filter which is based on the Extended Markov Regime Switching Stochastic 

Volatility Model are proposed to evaluate the parameters. 

The remaining parts are organized as follows: In Chapter II, the mathematics 

preliminaries of GARCH models and Bayesian statistics are introduced. In Chapter III, 

we seek to identify the superior model in capturing the characteristics of the SSE380 

index and use symmetric GARCH and asymmetric GARCH (EGARCH and TGARCH) 

with normal innovation and student’s t innovation models to forecast volatility. Then we 

use the MCS test based on the bootstrap simulation to choose the best model. In Chapter 

IV, two novel models, i.e., E-MSSV-I model and E-MSSV-II model, are built to estimate 

parameters and volatilities. The E-MSSV-I model is proposed to consider the discrete 

random variables by employing advanced probabilistic modeling methodology called 

“Directed Graphical model”, and then using Bayesian inference to derive filtering, 

smoothing distribution function and Expectation-Maximization method to jointly 

estimate the variables and parameters. The E-MSSV-II model is studied to analyze a 

non-stationary time series, and then a SMC filter is presented to evaluate parameters and 

latent variables. In Chapter V, the conclusion is presented. 

The thesis employs the following symbols: small letters denote random variables or 

parameter indices; capital letters denote sets or constants; 
ja denotes the thj observation; 

1

ty  denotes the set of  1,..., ty y ;  
i

y


 denotes the set of  y except the thi element; 

( )p x  denotes the probability distribution function of random variable x ; ( , )p x y  

denotes the joint probability distribution function of random variable x and y ; ( )p x y  

denotes the conditional probability distribution of x given y ; ( , )p x y z  denotes the 
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conditional probability distribution of x given y and z , and   denotes the set of 

parameters. 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER II 

MATHEMATIC PRELIMINARIES  

 

2.1 Autoregressive conditional heteroskedasticity volatility models 

   While conventional time series and econometric models operate under an 

assumption of constant variance, the autoregressive conditional heteroskedasticity 

(ARCH) process introduced in Engle (1982) allows the conditional variance to change 

over time as a function of past errors leaving the unconditional variance constant. In fact, 

ARCH models are discrete time models which structure one step ahead forecasting and 

carry out n-step ahead prediction. 

    According to Brooks (2002), the following sub-sections define and describe several 

important concepts in time series analysis. In order to better understand those concepts, 

we define  t as a set of random variables, and  th as a sequence of variables.  

    A white noise process: Roughly speaking, a white noise process is one with no 

discernible structure. A definition of a white noise process is ( ) 0tE   , 2var( )t  . 

Thus, a white noise process has constant mean and variance, and zero autocovariance, 

except at lag zero. 

If it is assumed that t  is distributed normally, then the sample autocorrelation 

coefficients are approximately normally distributed.  

This result can be used to conduct significance tests for the autocorrelation  

coefficients by constructing a non-rejection region (like a confidence interval) to 
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determine whether it is significantly different from zero. For example, a 95% 

non-rejection region would be given as
1

1.96
T

  , where T is the sample size. 

    Moving average processes: The simplest class of time series model that one could 

entertain is that of the moving average process. Let t  be a white noise process with

( ) 0tE   , variance, i.e. 2var( )t  and   be constant parameters. Then  

1 1 ...t t t q t qh            

is a q-th order moving average mode, denoted MA(q). This can be expressed using sigma 

notation as 

1

q

t j t j

j

h    



  . 

    A moving average model is simply a linear combination of white noise processes, 

so that t  depends on the current and previous values of a white noise disturbance 

term. 

Autoregressive processes: An autoregressive model is one where the current value 

of a variable, th , depends upon only the values that the variable has taken in previous 

periods plus an error term. An autoregressive model of order p, denoted as AR(p), can be 

expressed as  

1 1 2 2 ...t t t p t p th h h h            , 

where t is a white noise disturbance term, and   a constant parameter. A 

manipulation of the expression will be required to demonstrate the properties of an 

autoregressive model. Hence the expression can be written more compactly using sigma 

notation 
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1

p

t i t i t

i

h h  



   . 

The autoregressive conditional heteroskedasticity (ARCH) model was introduced 

by Engle (1982). The ARCH model can model the conditional variance th as a function 

of the lagged 's . That is, the predictable volatility is dependent on past news. A more 

detailed model is the p-th order ARCH model, i.e. ARCH(q), which is presented as  

2 2

1

q

t j t j

j

h    



  , 

where 
j and  are constant parameters. The effect of a return shock i periods ago 

( )i q  on current volatility is governed by the parameter i . That is, in the ARCH(q) 

model, old news which arrived at the market more than p periods ago have no effect at 

all on current volatility. 

A more generalized ARCH model was developed by Bollerslev (1986) for 

modelling conditional variance. It is denoted GARCH(p,q) where p is the ARCH term 

specifying the number of autoregressive lags and q is the GARCH term specifying the 

number of moving average lags. 

The GARCH(p, q) model is given by 

                      2 2 2

1 1

q p

t j t j i t i
j i

h h    
 

    ,                  (2.1) 

with the following restrictions 0  , 0j  , 0i   and 
1 1

1
q p

j i

j i

 
 

   . 

Despite the apparent success of these simple parameterizations, the ARCH and 

GARCH models cannot capture some important features of the data. The most 

interesting feature not addressed by these models is the leverage or asymmetric effect 

discovered by French et al. (1987) and Nelson (1991). One method proposed to capture 
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such asymmetric effects in Nelson (1991) is the exponential GARCH (EGARCH) model. 

The EGARCH is obtained as 

       

2 2

1
1 1 1

log log ( ) ( )
p q q

t j t j t j

t i t j j
i j j

t j t j t j

h h E
h h h

  
   

  


  

  

 
       

  

.      (2.2) 

Here the parameter
j captures the volatility clustering effect and the j measures the 

leverage effect. The conditional variance is in logarithmic form, which implies that the 

model has the following features: Firstly, 2

th will always be positive regardless of the 

sign of the parameters, therefore no constraints of non-negativity are needed. Secondly, 

the asymmetrical effect is not quadratic but exponential, if 0j  , it indicates a leverage 

effect. The EGARCH model allows good news and bad news to have different impacts 

on volatility because the level of t j t jh   is included with a coefficient
j . 

The TGARCH model of Glosten et al. (1993) allow for asymmetric effects by 

augmenting a dichotomous dummy variable into the standard GARCH model. The 

parameterization of Threshold GARCH (TGARCH) model is obtained as  

2 2 2 2

1 1 1

p q q

t i t i j t j i t j t j
i j j

h h        
  

       ,                (2.3) 

where 
1 0

0 0

t j

t j

t j

if

if












  

  

. 
 

The dummy variable ( )  stands for the indicator function. If 0t j   , a negative 

surprise implies the coefficient of 2

t j 
is 

j j  . Therefore, a leverage effect exists if 

0j  . Similar to the standard GARCH model, 0  , , 0j i   and 0j j   are 

required. 
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2.2 Stochastic volatility models 

Stochastic volatility (SV) models provide a natural alternative to the ARCH family 

models. The challenge of the SV models is that the volatility is not directly observable. 

Instead, it is driven by a different unobservable random process (Heston, 1993; Shephard, 

2005).  

    The first SV model was proposed by Taylor (1986). The simplest formulation of the 

SV model is as follows: 

exp( 2)t t ty h   

1( )t t th h          

with 2 2

0 ( , 1 )h N    , t and t are independent and identically distributed 

standard normal random variables, th is unobserved log volatility, ty is the log return of 

a stock at time t , defined as  1logt t ty p p   with tp as the observed stock market 

price at time t . The parameters  can be thought of as the volatility of th . 1  is a 

parameter that measures the persistence of th , and  is the mean of th . 

Many extensions to the basic SV models have been proposed in the literature 

(Heston, 1993; Sadorsky, 2005; Shibata and Watanabe, 2005; Vo, 2009). In particular, the 

Markov Switching Stochastic Volatility model (MSSV) was studied in Diebold (1986), 

Mike and So (1998). The MSSV model is represented as 

exp( 2)t t ty h   

1tt s t th h                            (2.4) 

ts ts     

  1( )t t ijP s i s j p    
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where ty is the log return of a stock at time t , th is unobserved log volatility, 

. . . (0,1)t i i d N 
 

. . . (0,1)t i i d N  , 0ijp  , R , persistence parameter 1  , 0   

and 
ts and 2

 denote the mean and variance of th respectively, ,i j N . We note that 

equation (2.4) can be made more general to be 
1

1
t

t

t s i t i t

i

h h    






   to better capture 

data complexity. Nevertheless, many authors (Yu and Zhang, 2011; Pan and Li, 2013; 

Goutte, 2013) use equation (2.4) for simplicity. 

 

2.3 Bayesian inference approaches 

An advanced statistical model named “Directed Graphical Model” (DGM) will be 

employed to model volatility and related variables. Theorems on statistical inference of 

these variables and on estimation of model’s parameters will be derived using Bayesian 

methods. 

2.3.1 Elementary Bayesian probability and statistics 

 This sub-section is a very brief review of the basics of Bayesian probability 

and statistical theory. More details can be found in Gelman et al. (2003), Bishop (2006) 

and Murphy (2012). In the Bayesian viewpoint, unlike the conventional viewpoint, 

probability and statistics are treated as the same subject, i.e. the fundamentals of 

Bayesian probability and statistics are explained by product, sum and Bayesian rules. 

         In this thesis, we follow the notations and definitions from Gelman et al. 

(2003) which is a standard reference on Bayesian statistics. We note that a few notations 

are different from some textbooks. For example, we use the terms “distribution” and 

“density” interchangeably. Since the main contribution of this thesis is to develop a 
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forecasting system which is naturally discrete, we mainly focus on discrete random 

variables. 

Product and Sum Rules: Suppose x  and y  are random variables, and 

( , )p x y defines the joint probability distribution function (pdf) of x and y , then 

( , ) ( ) ( ) ( ) ( )p x y p x y p y p y x p x   

is called the product rule. Given a joint probability on two random variables ( , )p x y  and 

assuming y is a discrete random variable, we define the marginal probability 

distribution function as follows: 

( ) ( , ) ( ) ( )
b b

p x p x y b p x y b p y b      , 

here we sum over all possible states b . We can define ( )p y similarly. This is sometimes 

called the sum rule. Supposing a set of random variables 1,..., Dx x , then the product rule 

can be applied multiple times to yield the chain rule of probability: 

1 1 2 1 3 2 1 1 1( ,..., ) ( ) ( ) ( , )... ( ,..., )D D Dp x x p x p x x p x x x p x x x  . 

Bayesian rule: For discrete random variables, combining the definitions of 

conditional pdf with the product and sum rules yields Bayesian rule, also called Bayesian 

Theorem. According to the definition, the Bayesian rule of the conditional probability 

mass function of x given y can be written as: 

( ) ( )( , )
( )

( ) ( ) ( )
d

p x p y xp x y
p x y

p y p x d p y x d
 

  
. 

Philosophy of Bayesian inference: According to Beal (2003), Gelman et al. 

(2003) and Bishop (2006), a Bayesian approach starts with some prior knowledge or 

assumptions about the model structure. This initial knowledge is represented in the form 

of a prior probability distribution over model structures. In the light of observed data, 
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these are updated to obtain a posterior distribution over models and parameters. 

         Denote the data set byY , which may be made up of several variables indexed 

by t :  1,..., tY y y . The Bayesian approach defines a generative model ( )p Y  of the 

data Y through a set of parameters  , where the data Y is called observed data. 

Moreover, the prior distribution is defined by ( )p  which models the prior beliefs on the 

parameter and the probability posterior distribution is defined by ( )p Y which models 

the posterior beliefs on the data. 

 The philosophy of a Bayesian inference is to calculate the posterior 

distribution over a set of models given a priori knowledge   and observed dataY . By 

Bayes’ rule, the posterior distribution over parameters having observed data Y is given 

by: 

( ) ( )
( )

( )

p Y p
p Y

p Y

 
  . 

 In some applications, some latent or hidden variables which are unobserved 

data yet interact through the parameters to generate the data are included in the 

generative model, here we denote unobserved data by X . Given a generating model or a 

joint likelihood ( , )p Y X  , the posterior probability distribution function is 

( , ) ( )
( , )

( , )

p Y X p
p Y X

p Y X

 
  . 

We are also interested in calculating other related quantities, such as the 

predictive density of a new datum y  given observedY , the probability of the data can 

be written by summing over the possible settings of the hidden states: 

( , ) ( , , ) ( , )
X

p y Y p y X Y p X Y    . 
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2.3.2 Directed graphical model 

A graphical model is a probabilistic model for which a graph expresses the 

conditional dependence structure between random variables. Graphical models are 

commonly used in Bayesian probability theory, Bayesian statistics and machine learning. 

The class of directed graphical models (DGM) is those graphical models in which all the 

inter-node connections have a direction, indicated visually by an arrowhead. DGM is 

also widely called a “Bayesian Network”. 

2.3.2.1 Difficulty of chain rule in applications From the chain rule of 

probability, we can always represent a joint distribution as follows, using any ordering of 

the variables:  

1 1 2 1 1 1( ,..., ) ( ) ( )... ( ,..., )D D Dp x x p x p x x p x x x  , 

where we have dropped the conditioning on the fixed parameters   for brevity. The 

problem with this expression is that it becomes more and more complicated to represent 

the conditional distributions 1 1( ,..., )D Dp x x x  as D gets large. 

2.3.2.2 Conditional independence The key to efficiently representing large 

joint distributions is to make some assumptions about conditional independence (CI). We 

say x and z are conditionally independent given y  if and only if their conditional 

joint distributions can be written as a product of the conditional marginals,  

( , ) ( ) ( )x z y p x z y p x y p z y   . 

CI assumption is widely applied in many situations. For example, given a set of 

observations  1,..., Dx x , if we assume ix , (1,..., )i D is discrete, it is appropriate to 

suppose that the future 1Dx   is independent of the past given the present, i.e. 
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1 1 1,...,D D Dx x x x  . This CI example is called the first-order Markov assumption 

widely applied in time-series analysis. Using this assumption, plus the chain rule, we can 

write the joint distribution as follows: 

1 1 1

2

( ,..., ) ( ) ( )
D

D i i

i

p x x p x p x x 



  , 

this is called the first-order Markov chain. They can be characterized by an initial 

distribution over states and a state transition matrix.  

Although the first-order Markov assumption is useful for defining distributions 

on one-dimensional sequences, how can we define distributions on two-dimensional 

images, or three-dimensional videos, or, in general, arbitrary collections of variables? 

This is where graphical models come in. 

        A graphical model (GM) (Bishop, 2006) is a way to represent a joint 

distribution by explicitly making CI assumptions. Several kinds of graphical models 

depend on whether the graph is directed, or undirected. In this thesis, we are only 

interested in DGM which is also called a Bayesian Network. 

2.3.2.3 Graph terminology Here, we give basic definitions on graph theory 

(Barber, 2012). A graph ( , )G V E consists of a set of nodes or vertices,  1,...,V v , and 

a set of edges,  ( , ) : ,E x y x y V  . We can represent the graph by its adjacency matrix, 

in which we write ( , ) 1G x y  to denote ( , )x y E , that is, x y is an edge in the graph. 

If ( , ) 1G x y   whenever ( , ) 1G y x  , we say the graph is undirected, otherwise it is 

directed. We usually assume ( , ) 0G x x  which means there are no self loops. Here are 

terms we will commonly use: 

Parent: For a directed graph, the parents of a node are the set of all nodes that 
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feed into it: 

 ( ) : ( , ) 1pa x y G y x  . 

      Child: For a directed graph, the children of a node are the set of all nodes that 

feed out of it:  

 ( ) : ( , ) 1ch x y G x y  . 

      Descendants: For a directed graph, the descendants are the children, 

grand-children, etc of a node. 

      Cycle or loop: For any graph, we define a cycle or loop to be a series of nodes 

such that we can get back to where we started by following edges, 

1 2 1... , 2nx x x x n    . If the graph is directed, we may speak of a directed cycle. 

      DAG : A directed acyclic graph ( DAG) is a directed graph with no directed 

cycles. 

        Directed path: In DAG, a directed path is a path (a sequence of nodes) in 

which the edges are all oriented in the same direction. 

        Undirected path: In DAG, ( , )G V E , an undirected path is an acyclic path of 

the augmented undirected graph ( , )G V E  , where E is defined as follows: 

,x y V  , if ( , ) 1E x y  , we can get ( , ) 1E x y   and ( , ) 1E y x  . 

Topological ordering: For a DAG, a topological ordering or total ordering is 

a numbering of the nodes such that parents have lower numbers than their children. It 

can be shown that every DAG has at least one topological order. 

         2.3.2.4 Directed graphical models According to Murphy (2012), directed 

graphical models are represented by a directed acyclic graph (DAG). Each node of the 

DAG represents a random variable of the model. The nodes are connected by directed 
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links to describe dependencies. 

Definition 1. A Directed Graphical model (DGM) consists of three components. Firstly, 

a DAG, ( , )G V E . Secondly, a set of conditional probability distribution function 

( ( ))p x pa x , x V . Thirdly, for any , ,X Y Z V , DGM encodes the following CI:

X Z Y X  is d-separated from Z givenY , where the definition of “d-separation” 

will be given below. 

Definition 2. Let , ,X Y Z be three sets of nodes in DAG, ( , )G V E , where Y is the 

evidence set or the set of observed nodes. We say that X and Z are d-separated given 

Y if and only if every undirected path P of G between any node x X and z Z given 

Y is “blocked”. 

        Here, the term “blocked” means that there is an intermediate variable y

satisfying at least one of the following conditions P with respect to the original edges 

E: 

P contains a chain, x y z  or z y x  , where y Y ; 

P contains or fork, x y z  , where y Y ; 

P contains a v-structure, x y z  , where y is not in Y  and nor is any 

descendant of y . 

Example: consider the DGM, as shown in Figure 2.1 

 

Figure 2.1 The example of DGM. 

Here  ,Y b c is a set of observed nodes. From the graph, Definition 1 and 
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Definition 2, there are many CI encoded by the given DGM. We only state two examples 

here. 

I. d a Y  

Proof. According to the Definition 2,  X d ，  Z a ，  ,Y b c . From the given 

graph G, there are two undirected path from d to a, which are path 1: d b a  ; path 

2: d c a  .  

        In path 1, d b a  is chain path, since b Y . In path 2, d c a  is also 

a chain path, since c Y . By Definition 2, every undirected path from d to a is blocked, 

so d  and a  d-separated given Y . Hence by Definition 1, d a Y . 

 

         II. d f Y  

Proof. According to the Definition 2,  X d ，  Z f ，  ,Y b c . From the given 

graph G, there are two undirected path from d to f , which are path 1: d c e f   , 

path 2: d b a c e f     . 

        In path 1, d c e  is fork path, since c Y . In path 2, d b a  is chain 

path, b Y . By Definition 2, every undirected path from d to f is blocked, so d and f

are d-separated given Y . Hence by Definition 1, d f Y . 

                                                                    

        According to the definition of d-separation, a joint probability distribution 

( )p V  satisfy Local Markov Property with respect to a graph ( , )G V E . 

Proposition 1. (Local Markov Property) Given a DGM, a probability distribution 

function p over a set of nodes V satisfies the local Markov property with respect to a 
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graph G  i.e. 

x V  , ( ( ) \ ( )) ( )x non desc x pa x pa x   

where ( )non desc x are the non-descendants of x . 

Proof. see Cowell et al. (1999).  

        From the standard chain rule, topological ordering and Local Markov property, 

setting ( )p V the joint distribution of all nodes of a DAG can be expressed by the 

following simple form: 

( ) ( ( ))
x V

p V p x pa x


 .                       (2.5) 

The product decomposition in equation (2.5) is called “DGM chain rule” which will be 

proved shortly. Here, we emphasize that this result is very important as it effectively 

simplifies the standard chain rule, so the difficulty mentioned in this sub-section is 

solved. In fact, this result of equation (2.5) is the main reason of employing DGM since 

in real-world applications it is common to have hundreds or thousands of random 

variables, so we need a practical method to define their joint distributions. The following 

proposition formally states this result. 

Proposition 2. (DGM chain rule) Given DGM, setting ( )p V the joint distribution of all 

nodes of a DAG , then ( )p V can be expressed by: 

( ) ( ( ))
x V

p V p x pa x


  

Proof. Suppose 1,..., Dx x V  , and 1 2 ... Dx x x    according to topological ordering.  

By the chain rule  

1 1 2 1 3 2 1 1 1( ,..., ) ( ) ( ) ( , )... ( ,..., )D D Dp x x p x p x x p x x x p x x x  

By topological ordering, 1 2 1, ,...,i ix x x   are non-descendants of ix , so we can 
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rewrite 1( ,..., )Dp x x  as  

1 1 2 2 3 3 3( ,..., ) ( ) ( ( )) ( ( ), )... ( ( ), )D D D Dp x x p x p x pa x p x pa x A p x pa x A  

where ( ) \ ( )i i iA non descendants x pa x  . 

By Local Markov property, ( ) \ ( ) ( )i i i ix non descendants x pa x pa x  , hence  

1 1 2 2 3 3( ,..., ) ( ) ( ( )) ( ( ))... ( ( ))D D Dp x x p x p x pa x p x pa x p x pa x  

2

( ) ( ( ))
D

i i i

i

p x p x pa x


   

( ( ))
x V

p x pa x


                                    

                                                  

2.3.3 Bayesian parameter estimation 

Up until now, when we have spoken of “probabilistic inference”, we have 

assumed that we completely know everything about the mentioned distributions, i.e. its 

functional form and parameters. Nevertheless, in real-world applications, we are given 

only the data, not the distributions. It is common to assume that the functional forms are 

known and to learn the parameters from data. Suppose that, for each observation in 

 1,..., tY y y , denoting the parameter by  , in Bayesian statistics, parameter 

estimation is simply to compute the following posterior distribution 

                        ( ) ( ) ( )p Y p Y p                          (2.6) 

where ( )p  is the prior distribution which models the prior beliefs on the parameter 

before we have seen any data. 

However, for most probabilistic models of practical interest, exact inference 

like equation (6) is intractable, and so we have to resort to some form of approximation. 

We discuss inference algorithms based on deterministic approximations, which include 
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methods such as Maximum Likelihood. In particular, we focus on the EM Algorithm to 

calculate the Maximum Likelihood. 

2.3.3.1 Maximum Likelihood Recall the definition of the maximum 

likelihood (ML) estimation problem. We have a density function ( )p Y  that is 

governed by the set of parameters . We also have a data set of size t , denoted

 1,..., tY y y . We define the ML by reversing the roles of the data Y and the 

parameters   in ( )p Y  , i.e. 

( ) ( )L Y p Y  , 

This function ( )L Y  is called the likelihood of the parameters   given the dataY , or 

just the likelihood function. The likelihood is thought of as a function of the parameters 

  where the data Y is fixed, i.e.Y is observed. In the maximum likelihood problem, our 

goal is to find   that maximizes L . That is, we wish to find   where 

arg max ( )L Y


   . 

Often we maximize log ( )p Y   instead because it is analytically easier. 

The likelihood function is simplified if we make a standard independent and 

identically distributed (i.i.d.) assumption : 
1

( ) ( )
t

i

i

p Y p y 


 . 

According to the form of ( )ip y  , if it is simply a single Gaussian distribution where 

2( , )   , then we can set the derivative of log ( )p Y  to zero, and solve directly for 

 and 2 . For many problems, however, it is not possible to find such analytical 

expressions, and we must resort to more elaborate techniques. The EM algorithm is one 

important example of such elaborate techniques.  

2.3.3.2 Expectation Maximization algorithm The expectation maximization 
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(EM) algorithm (Dempster et al., 1977; Redner and Walker, 1984; Jordan and Jacobs, 

1994; Bishop, 1995) is a general method of finding the ML estimate of the parameters of 

an underlying distribution from a given data set. As mentioned in subsection 2.3.1, in the 

general setting, data is organized into two different categories, observed data and 

unobserved data. In some literature, “incomplete data” denotes only the set of observed 

data, and “complete data” means denotes the set of both observed data and unobserved 

data. 

        The EM algorithm is an iterative algorithm, often with closed-form updates at 

each step. Furthermore, the algorithm automatically enforces the required constraints. 

Recently, two main applications of EM algorithm have been obtained. The first occurs 

when the data indeed has missing values, due to problems with or limitations of the 

observation process. The second occurs when optimizing the likelihood function is 

analytically intractable. The latter application is more common in machine learning and 

statistics. 

For this discussion, let us suppose that a set of all concerned variables Z  can 

be divided into subsets,  ,Z X Y , where Y is the set of variables which we can 

observe, but X  is the set of variables that we cannot observe in the interested 

application. The set of unobserved variables X is also usually called the set of latent or 

the set of hidden variables. Therefore, as mentioned earlier, we will refer Z as a 

complete data set, and Y as an incomplete data set. A joint density function can be 

obtained as : 

( ) ( , ) ( , ) ( )p Z p X Y p X Y p Y      
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with this probability distribution function, we can define a new likelihood function 

( ) ( , ) ( , )L Z L X Y p X Y    , 

this is called the complete-data likelihood. Note that this function is in fact a random 

variable since the missing information X is unknown, random, and presumably 

governed by an underlying distribution. We think of ( , )L X Y as a function where Y

and   are constant, and X is a random variable. The original likelihood ( )L Y  is 

referred to as the incomplete-data likelihood function. 

The EM algorithm first finds the expected value of the complete-data 

log-likelihood log ( , )p X Y   with respect to the unknown data X  given the observed 

data Y  and the current parameter estimates. We define: 

( 1) ( 1)( , ) [log( ( , ) , )]w wQ E p X Y Y      

where ( 1)w   are the current parameter estimates that we have used to evaluate the 

expectation and   are the new parameters that we optimize to increase Q . 

The evaluation of this expectation is called the E-step of the algorithm. Notice 

the meaning of the two arguments in the function ( 1)( , )wQ    . The first argument   

corresponds to the parameters that ultimately will be optimized in an attempt to 

maximize the likelihood. The second argument 
( 1)w 

 corresponds to the parameters that 

we use to evaluate the expectation. 

The evaluation of this maximization is called the M-step of the EM algorithm 

and it is to maximize the expectation we computed in the first step. That is, we find: 

( ) ( 1)arg max ( , )w wQ


    . 

These two steps are repeated as necessary. Each iteration is guaranteed to 
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increase the log-likelihood and the algorithm is guaranteed to converge to a local 

maximum of the likelihood function reference. In the chapter IV, we will exploit the EM 

algorithm under the Bayesian framework. 

 

 

 

 

 

 

 

 



 

 

CHAPTER III 

GARCH-TYPE FORECASTING MODELS FOR 

VOLATILITY OF STOCK MARKET AND MCS TEST 

 

3.1 Introduction 

    A large number of time series based volatility models have been developed since 

the introduction of the autoregressive conditional heteroskedasticity (ARCH) model of 

Engle (1982) and generalized ARCH model proposed by Bollerslev (1986).  

But which is the best forecasting model? It is difficult to answer this question 

because asset returns often do not contain sufficient information to identify a single 

volatility model as ―best‖. Hansen and Lunde (2005) offer some resolution of this 

quandary, The metric for assessing the forecasts of volatility models is the bootstrap 

method of superior predictive ability (SPA) test. But to use the SPA test, we need to 

carefully choose the basic model, as its choice can affect the result. In order to overcome 

the defects of the SPA test, this thesis uses the model confidence set (MCS) test which is 

a modified version of the SPA test. The MCS approach has three advantages over tests 

for SPA.  

Firstly, the MCS procedure is independent of any benchmark model, while the SPA 

tests are not. Secondly, the MCS method characterizes the entire set of models that are 

not significantly out-performed by other models, while a test for SPA only 
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provides evidence about the relative performance of a particular model. 

Thirdly, the MCS method relies on tests of simple hypotheses. Thus, it avoids the 

potential problem of SPA tests in which composite hypotheses are examined by Hansen 

et al. (2005). 

In this chapter, we seek to identify the superior model in capturing the 

characteristics of the SSE380 index. We use the symmetric GARCH and asymmetric 

GARCH (EGARCH and TGARCH) models with normal innovation and student’s t 

innovation to forecast volatility. Then we use the MCS test based on the bootstrap 

simulation to choose the best model. 

 

3.2 GARCH-type forecasting models for volatility  

The volatility of a stock price can be used as an indicator of the uncertainty of stock 

returns. In a financial market, volatility is measured in terms of standard deviation  or 

2 . Ser and Clive (2003) compute variance from a set of observations as follows: 

2 2

1

1
( )

1

n

t
t

y y
n




 


, 

where y and ty are the mean return and return respectively. Return is defined to be the 

total gain or loss from an investment over a given period of time. In this part, we 

compute the daily closing prices as 

110log( )t t ty p p  , 

where tp is stock closing price at time t . Then prices are converted into logarithmic 

returns, ty denotes the continuously compounded daily returns of the underlying assets 

at time t .  
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In the part, we assume that the conditional mean equation of stock return is 

constructed as the constant term
1
 plus a residual term,   

t ty    ,
 t t th z 

 

where
  tz is a sequence of independent identically distributed random variables  with 

zero-mean and unit variance, 2

th is the conditional variance of t derived from mean 

equation, it is also known as current day’s variance or volatility. Larger 2

th implies higher 

volatility and higher risk. 

3.2.1 GARCH (1,1) model  

The standard variance model for financial data is GARCH. According to the 

equation (2.1), the GARCH(1,1) is defined as  

2 2 2

1 1t t th h      , 

where 0  , 0  , 0  , 1   . There are also some meanings about the parameters. 

Firstly, 0  means that volatility cannot have a zero or negative mean. Secondly, the 

positive parameters ,  show that the conditional variance forecasts will increase if there 

is a large fluctuation in returns, the model thus capturing the stylized feature of volatility 

clustering. Finally, 1    indicates the persistence of shocks to volatility will 

eventually fade away, which depicts another stylized characteristic of volatility, mean 

reversion.  

 

                                                           
1
 As discussed by Engle and Patton (2001), the specification of the mean equation is not important for 

forecasting studies, without significantly degrading the performance of the proposed model. In the part, the 

results of the model estimations are not presented when the study concentrates on forecasting performance, 

but the model is available from the author’s request. 
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3.2.2 Exponential-GARCH (1,1) model  

A more flexible and often cited GARCH extension is Exponential GARCH 

(EGARCH) (Hamilton, 1994). According to equation (2.2), EGARCH(1,1) can be 

defined as the following: 

1 12 2 1
1

1 1 1

log( ) log( ) ( ) ( )
t t t

t t

t t t

h h E r
h h h

  
     



  

 
     

 
, 

where captures the volatility clustering effect,   is constant and the r measures the 

leverage effect.  

    3.2.3 Threshold-GARCH (1,1)  

         According to Glosten et al. (1993) and from the equation (2.3), we can get 

TGARCH(1,1) as the following: 

2 2 2 2

1 1 1 1t t t t th h           , 

where 
1

1

1

1 0

0 0

t

t

t

if

if












  

  

.

  

where 0,  , 0 and + 0       . 

 

3.3 Experiments with real data 

In this part, we analyzes SSE380 index tp , which was first downloaded from 

HuaChuang securities and then transformed into log returns. The SSE 380 index consists 

of the 380 stocks with midcap, high growth and good earning records, which aims to 

comprehensively reflect the performance of the Shanghai new blue chip stocks. So it is 

useful to analyse SSE 380 index in the Shanghai stock market. The constituents selection 

space of SSE 380 Index is all the Shanghai Stocks except the following stocks (come 
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from China Securities Index Co): SSE 180 index constituents, the stocks with negative 

retained earnings in latest financial report, the stocks over more than five years haven’t 

distributed cash dividends or stock dividends in latest five years. 

3.3.1 The descriptive statistics of data 

The whole sample consists of 1258 daily data spanning from 4 Jan. 2010 to 

16 Mar.2015. We select a subsample of size 1000, dated from 4 Jan. 2010 to 24 Feb. 

2014, as the training set for the parameters estimation for models and the remaining 

sample of size 258 daily data, from 25 Feb. 2014 to 16 Mar.2015 is used as the test set or 

for out of sample forecasting.  

Then we need to calculate the log return 110log( )t t ty p p  . Table 1 

summarizes the descriptive statistics of SSE380 index along the whole period. 

Table 3.1 The summary statistic of the SSE380. 

    Sample 1258       Kurtosis 4.4124 

    Mean  0.00321      Skewness  -0.54089 

Std. Dev  0.15331    JB test 165.771 

 

The Table 3.1 remarks that these facts suggest a highly competitive and volatile 

market. The skewness is -0.540886<0, the negative skewness indicates that there is a 

high probability of loss in the market. The value of the Kurtosis is 4.412388>3, it 

suggests that the market is volatile with high probability of extreme event occurrences. 

The Jarque-Bera (JB) test is 165.7707 which shows that the returns deviate from the 

normal distribution significantly and exhibit leptokurtic. Hence the distribution of the 

index series is not the normal distributed, and it has the feature of asymmetry, zero mean 
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and left side. Using the Augmented Dickey-Fuller (ADF) Unit Root Tests, the value of 

ADF test statistic in the log returns of SSE380 is -43.89175 less than 1% level of the 

critical value -3.435344, it means that the series of ty is stationary time series. 

3.3.2 Detecting ARCH effects of data returns  

       From the Figure 3.1, we can see that the returns appear to fluctuate around a 

constant level but exhibit volatility clustering. Large changes in the returns tend to 

cluster together, and small changes tend to cluster together. So the preliminary judgment 

shows that the series exhibits the conditional heteroscedasticity. Now we use ARCH-LM 

to detect whether SSE380 returns have ARCH effects.  

 

Figure 3.1 The daily return of the SSE380. 

According to the heteroskedasticity test ARCH, the value of F-statistic is 

9.810969 and the probability is 0.0018<0.05, 2 9.750333R  , the probability is 

0.0018<0.05, and the number of lags is 1, the test of residuals for ARCH(1) rejects the 

null hypothesis of no conditional heteroskedasticity, so it is clear that SSE380 returns 

have ARCH effects. Then we can use GARCH-type models to forecast the volatility. 

 

3.4 Estimation result of models 

    We apply the return series to the GARCH, EGARCH and TGARCH models with  
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Normal innovation and Student’s innovation, and then we get their parameters. The 

estimation results and diagnosis are shown in Table 3.2. 

Table 3.2 The estimation results of models. 

statistics GARCH-N EGARCH-N TGARCH-N 

  -0.08998(0.0062) -0.064876(0.0299) -0.03359(0.2706) 

  0.00156(0.0032) -0.440637(0.0001) 0.002476(0.0007) 

  0.07287(0.0001) 0.152545(0.0001) -0.006121(0.00) 

  0.865212(0.00) 0.913790(0.00) 0.126291(0.00) 

  —— -0.077690(0.00) 0.022767(0.0907) 

LL 448.1405 452.7252 454.1026 

AIC -0.887168 -0.894345 -0.897102 

BIC -0.862610 -0.864875 -0.885901 

 

statistics GARCH-T EGARCH-T TGARCH-T 

  -0.096163(0.0042) -0.079875(0.0113) -0.012500(0.6615) 

  0.001588 (0.0312) -0.408222(0.0014) 0.002820 (0.0026) 

  0.065790(0.0019) 0.139411(0.0019) -0.035497(0.1979) 

  0.870771(0.00) -0.063736(0.0084) 0.829293(0.00) 

  —— -0.026175(0.0718) 0.161594(0.0002) 

LL 

AIC 

BIC 

458.1541 

-0.905213 

-0.875743 

461.1307 

-0.909171 

-0.874789 

462.9269 

-0.912767 

-0.878385 
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Among the parametric models, with normal innovation and student’s t innovation, 

in GARCH-N, the value of Log Likelihood (LL) is 448.1405, Akaike Information 

Criterion (AIC) is -0.887168 and Bayesian Information Criterion (BIC) is -0.862610, 

each parameter is significant. In EGARCH-N, the value of LL is 452.7252, AIC is 

-0.894345 and BIC is -0.864875, each parameter is significant. In TGARCH-N, the 

parameters ,  , the respective value of the probability is more than 0.05. In GARCH-T, 

t the value of LL is 458.1541, AIC is -0.905213 and BIC is -0.4875743, each parameter 

is significant. In EGARCH-T, the value of  is not significant. In TGARCH-T, the 

values of ,  also are not significantly. Hence according to highest value of LL and 

smallest value of AIC and BIC, GARCH-T is the best series fit.  

In fact, the GARCH-T model has been applied in many financial fields. Dumitru 

and Cristiana (2010) focus on the US and Romanian stock markets, and find that 

GARCH-T errors provide a better description for the conditional volatility. Rakesh et al. 

(2010) apply GARCH-T to examine the asymmetric nature of the US stock market 

returns. Hence the GARCH-T model can be used to describe properties of volatility in 

different stock markets and also can be used to forecast the volatility in the future. Lee 

and Su (2012) use the GARCH-T model to analyse the thirteen stock indices in North 

America, Europe and Asia to provide data for examining the one-day-ahead VaR 

forecasting. Furthermore Heitham et al. (2015) examine GARCH with different 

distributions, as normal, student’s t and generalized error distribution (GED), to analyze 

the Jordanian stock market returns over the period January 2000 – November 2014. 
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3.5 Model confidence set (MCS) test method 

When obtaining the predicted values, we can compare with the real proxy variables 

of a volatility deviation size. However, there is no consensus on the loss functions which 

are used to measure the prediction error. In the part, we only use two loss functions: 

mean square error and mean absolute deviation to measure the forecasting error. It is not 

easy to choose the best model which is always the best under all choices of loss functions 

or all data samples. Hansen (2003) offers some resolution of this quandary, the metric for 

assessing the forecasts of volatility models is the Bootstrap method of superior predictive 

ability (SPA) test. But to use the SPA test, we must need to choose the basic model; it is 

very vital to choose it which can affect the result. In order to overcome the defects of the 

SPA test, we use the MCS test which is a modified version of the SPA test. 

3.5.1 The MCS test procedure  

         We define a set of models which are denoted by  0 1,...,M m , the models 

are indexed by 1,...,i m , and model ,i s forecasts of 2

th is denoted by 2

,i th , We rank the 

models according to their expected losses using one of two loss functions: MSE, 

2 2 2 2 2

, ,( , ) ( )i t t i t tL h h h h  ,and MAD, 2 2 2 2

, ,( , )i t t i t tL h h h h  . The loss differential between models 

i and j  is given by  

2 2 2 2

, , ,( , ) ( , )ij t i t t j t td L h h L h h   , 1,...,i j m , 1,...,t n . 

The MCS (Hansen, 2003; Jeff and Chris, 2011) is determined after sequentially trimming 

the set of candidate models, 0M . At each step, we impose the hypothesis  

0 ,: ( ) 0ij tH E d  , for all 0,i j M M  . 

The hypothesis, 0H , is a test for Equal Predictive Ability (EPA) over the models in M  
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and if 0H  is rejected, the worst performing model is eliminated from M . The 

trimming ends when the first non-rejection occurs. The set of surviving models is the 

model confidence set M




. By holding the significance level, , fixed at each step of the 

MCS procedure, we construct a (1 ) confidence set, M




for the best models in 0M . 

However, the trimming model which is mentioned in the sequential inspection has a 

drawback. At each step in the test, we need to test the predictive power of any two 

prediction models and calculate a test statistic. To overcome this drawback, our tests for 

the EPA employ the rang statistic RT , and the semi-quadratic statistic 
SQT , given by  

,
max

var( )

ij

R
i j M

ij

d
T

d


 ,   

2( )

var( )

ij

SQ
i j ij

d
T

d

   

where the sum is taken over the models in M , and var( )ijd is an estimate of var( )ijd , 

see Dumitru and Cristiana (2010). If the test statistic value of RT and 
SQT are larger, then 

it means rejecting the null hypothesis. In fact, their distribution is very complicated, and 

the covariance structure depends on the predictive value of each prediction model. So we 

use a bootstrap simulation study to find the p-value of the two statistics. 

3.5.2 The result of MCS test 

     Table 3.3 shows the MCS test results by using bootstrap simulation at 1000 

times. The values in the table represent MCS test p-values. According to Hansen et al. 

(2011), the part sets a basis p-value which is p=0.1. If the p-value is less than 0.1, then 

the volatility forecasting model is not good, and the model will be removed in the MCS 

inspection process. Otherwise, the model will survive. 

According to the Table 3.3, when the loss function is the MSE, the p-values 

of in the GARCH-N and GARCH-T models are more than 0.1. But the p-values of the 
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other 4 models are less than 0.01. This means that EGARCH-N, EGARCH-T, 

TGARCH-N and TGARCH-T volatility forecasting models will be removed in the MCS 

inspection process. Considering the loss function for MAD, we find that only the p-value 

of the GARCH-T model is more than 0.1. Hence using the loss functions of MSE and 

MAD, we find that the values of 
RTp and 

SQTp in the GARCH-T model are more than 0.1. 

Therefore, the GARCH-T model is the best one. 

Table 3.3 The MCS test results of the models. 

No. Model MSE MAD 

RTp  
SQTp  

RTp  
SQTp  

1 GARCH-N 0.133 0.164 0.112 0.041 

2 

3 

4 

5 

6 

GARCH-T 

EGARCH-N 

EGARCH-T 

TGARCH-N 

TGARCH-G 

0.211 

0.061 

0.054 

0.061 

0.073 

0.232 

0.054 

0.044 

0.072 

0.024 

0.191 

0.097 

0.063 

0.033 

0.081 

0.154 

0.056 

0.041 

0.042 

0.053 

 

From the empirical results, the GARCH-T model is the best model for 

forecasting volatility. Now, it is important to verify the conclusions from the simulation 

experiment by repeating the analysis for the actual data.  

3.5.3 The result of prediction 

The GARCH-T model is determined to forecast the weekly step ahead 

volatility in the SSE380. Since the daily return is defined as 110log( )t t ty p p  , hence  
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the k−period continuously compounded return is defined as 

1 110log( ) 10log( )k

m m m t k tY p p p p    . 

It follows that
1

k
k

m t j

j

Y y 



 , in the expression, there are two indexes, one counting the 

days (t) and the other keeping track of the non-overlapping k periods. In this chapter, we 

use weekly (i.e. 5 days) return which is denoted by
5

5

1

m t j

j

Y y 



 , and then forecast the 5 

steps ahead volatility in the out of samples from 25 Feb. 2014 to 16 Mar. 2015 of the 

SSE380, i.e.258 daily datum. The result is shown in the Figure 3.2. 

 

Figure 3.2 The full line shows weekly step ahead volatility, while the dotted line shows 

the realized volatility of the out of samples in SSE380. 

We obtain that most of the forecasts seem inefficient. Because in the 

GARCH-T model, the volatility is only a deterministic function of the squares of past 

returns, while in the real word, many more factors connect with volatility. Then even the 

GARCH-T model is incomplete. For example, Jeff and Chris (2011) find a positive 

correlation between trading volume and volatility. Another thing is that in the recent year 

China’s stock market structure had seriously imbalances which caused huge fluctuations 

in the Shanghai Stock Exchange 380 index. Hence the GARCH-T model is not so good 

for forecasting, we need to improve it in the future.  

 

 

 

 

 

 

 

 



 
 

 

CHAPTER IV 

BAYESIAN INFERENCE FOR AN EXTENDED 

MARKOV REGIME SWITCHING STOCHASTIC 

 VOLATILITY MODEL 

 

As implied by the title, the mathematical treatment of the models and algorithms in 

the thesis is Bayesian, which means that all the results are treated as being 

approximations to certain probability distributions or their parameters. Probability 

distributions are used both to represent uncertainties in the models and for modeling the 

physical randomness. The theories of filtering, smoothing, and parameter estimation are 

formulated in terms of Bayesian inference, and EM algorithms are derived using the 

same Bayesian notation and formalism. 

 

4.1 Introduction  

 The Stochastic Volatility (SV) (Taylor, 1986) model concentrates on the 

time-varying and volatility persistence, as well as on the leptokurtosis in financial return 

series. Many extensions to the basic SV models have been proposed in the literature 

(Heston, 1993; Sadorsky, 2005; Vo, 2009). In particular, the Markov Switching 

Stochastic Volatility model (MSSV), was studied in Diebold (1986) and Mike et al. 

(1998).
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But on the basis of Mike and So (1998), there are some disadvantages to the  

MSSV model as set out in chapter II , when the model is used to forecast volatility.  

Firstly, the MSSV model cannot be accurately described as some true values can be 

missed in an extreme financial event, such as abnormal changes. Secondly, using the 

MSSV model to estimate the volatility often implies a persistent default assumption. In 

fact, the traditional risk measurement model generally considers the volatility of 

financial assets as a single state. However, in some cases, the volatility of financial assets 

can be caused by the dynamic transformation or structural changes of different risk states. 

Hence the model may get “down fitting”. Finally, in the existing literature, researchers 

often use stochastic algorithms to infer about model parameters. But when the number of 

generations is prespecified, a particular run of genetic programming is not successful.  

Fortunately, the dynamics of the relationship between stock return volatility and 

trading volume has a long history in the finance literature. Karpoff (1987) provides a 

good survey of this literature, discussing the return–volume relation in various financial 

markets. Andersen (1996) presents the intuitively appealing mixture of distributions 

hypothesis (MDH). According to the MDH, return and trading volume are driven by the 

same underlying latent information flow variable, i.e., price movements. The trading 

volume changes are caused primarily by the arrival of the volatility process. Grouard et 

al. (2003) find that persistence decreased when trading volume was used in the 

conditional variance equation. Alsubaie and Najand (2009) test the effect of trading 

volume on the persistence of the conditional volatility of returns in the Saudi stock 

market. Mahajan and Singh (2009) find a positive correlation between trading volume 
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and volatility, i.e. large change in trading volume means large change in volatility. Hence 

we can see that volatility not only correlates with stock return data but also correlates 

with stock volume data. 

In order to improve the weakness of the MSSV model, in this section, we propose 

the Extended Markov Regime Switching Stochastic Volatility Model (E-MSSV) 

including E-MSSV-I and E-MSSV-II models. Our model is superior to the previous 

models in two ways. First, avoiding “under fitting”, we must increase the model 

complexity. So the “volume” information is naturally incorporated into a model in order 

to improve the predictive power of the model. Second, a non-stochastic inference 

algorithm is derived to guarantee a local maximum of the estimated parameters, to 

improve the predictive power of the E-MSSV-I model. 

 

4.2 Bayesian inference of the E-MSSV-I model  

In this section, we consider the discrete random variables in the E-MSSV-I model, 

details are stated as follows. 

4.2.1 The directed graphical model of the E-MSSV-I 

From the MSSV model and the connection between volatility and volume, 

recall the terminology in chapter II, we represent the directed graphical model (DGM) of 

the E-MSSV-I model as: 

 

Figure 4.1 The DGM of the E-MSSV-I. 
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From the Figure 4.1, the set of random variable is , , ,t t t ty h s v , t N  and the input set 

is 1 1,T Ty v , where  1 1,...,
T

Ty y y , and the output is the prediction 
1Th 
.  

the set of parents of ty is,  ( )t tpa y h , and  

the set of parents of th is,
 

 1( ) , , 2t t tpa h s h t 
  

 1 1( )pa h s , and 

the set of parents of ts is,  1( ) , 2t tpa s s t  1( )pa s  , and 
 

the set of parents of tv is  ( )t tpa v h . 

The conditional probability distribution function for each child and parent 

node is defined as follows: 

 
1 2

2( ) (2 exp( )) exp( ) ( )
2 i

t
t t i i i ta

y
p y h a a g y

e




             (4.1) 

                   
1( , )t i t j t m ijmp h a h a s b f    , 2t                (4.2) 

                       ( )t l t i lip v c h a    , 1t                    (4.3) 

                    1( )t m t n mnp s b s b p   , 2t                     (4.4) 

where  , 1,...,i j I ,  , 1,...,m n M , {1,..., }l L . This is the E-MSSV-I model. 

The initial probability distribution function is 

                         1 1( )i m imp h a s b f                        (4.5) 

                            
1( )m mp s b p                         (4.6) 

where  1,...,i I ,  1,...,m M .
 

Hence the set of parameters   is            mn ijm li i im mp f g f p         .  

4.2.2 Model inference with known parameters 

       In order to simplify the technical details behind a Bayesian inference, we start 

with the assumption that   is known. 

In this thesis, there are three main inference problems present in Bayesian 
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inference, including prediction probability distribution function, filtering probability 

distribution function, and smoothing probability distribution function. Prediction 

probability distribution function, i.e.
1 1 1 1( , , , )T T

T Tp h s y v  
,

1 1 1( , , )T T

Tp y y v 
 and 

1 1 1( , , )T T

Tp v y v 
, which can be computed with the prediction step of the Bayesian filter 

is the marginal distributions of the future state 1 1,T Th s   and the future value of 

observed values, with one step after the current time step. Filtering probability 

distribution function, i.e. 
1 1( , , , )T T

T Tp h s y v   computed by the Bayesian filter is the 

marginal probability distribution function of the current state ,T Th s given the current and 

previous of observed variables 
1

Ty and 
1

Tv . Smoothing probability distribution function, 

i.e. 
1 1( , , , )T T

t tp h s y v  , 1,..., 1t T  , computed by the Bayesian smoother is the 

marginal probability distribution function of the state ,t th s  given a certain interval of 

observed variables 
1

Ty and 
1

Tv . 

Bayesian smoothing is often considered to be a class of methods within the 

field of a Bayesian filtering. While the Bayesian filters in their basic form only compute 

estimates of the current state of the system given the history of observed values, 

Bayesian smoothers can be used to reconstruct states that happened before the current 

time.  

4.2.2.1 Prediction probability distribution functions In the tackle of 

prediction probability distribution function,   1 1,..., ,...,T Ty y v v are observed variables,

1Ty  , 1Tv  , 1Th  and 1Ts  are unobserved variables. With the preceding notations, the model 

describing the unobserved variables satisfies the sufficient conditions for existence of a 

probability distribution function.  
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         When processing data, at each time t, observable variables are used to 

estimate the current hidden state of the system and the prediction on the state of the 

system at time t+1. In order to predict the future value of the state of the system, given 

the information available at time t, we use the Chapman-Kolmogorov equation 

(Chapman, 1928; Kolmogorov, 1931) to characterize the hidden state evolution and give 

us the prediction probability distribution function as follows: 

Proposition 3. The prediction probability distribution function of 1Ty   given  , 
1

Ty

and 
1

Tv has the following expression 

  1 1 1 1 1 1 1 1

1 1

( , , ) ( ) ( , , , )
I M

T T T T

T i T T i T m

i m

p y y v g y p h a s b y v    

 

   .         (4.7) 

Proof. Since 

             
1 1

1 1 1 1 1 1 1 1

,

( , , ) ( , , , , )
T T

T T T T

T T T T

h s

p y y v p y h s y v 
 

     ,         (4.8) 

according to the Chapman-Kolmogorov equation, the equation (4.8) can be given as 

1 1

1 1 1 1 1 1 1 1 1 1 1 1( , , ) ( , , , , ) ( , , , )
T T

T T T T T T

T T T T T T

h s

p y y v p y y v h s p h s y v  
 

       

with the CI rule of 1 1 1 1 1, ,T T

T T Ty s y v h   , hence  

1 1

1 1 1 1 1 1 1 1 1( , , ) ( , ) ( , , , )
T T

T T T T

T T T T T

h s

p y y v p y h p h s y v  
 

     . 

From (4.1),  1 1 1( , ) ( ), 1,...,T T i i Tp y h a g y i I    , the one step ahead predictive 

probability distribution function of 1Ty  can be rewritten as 

1 1 1 1 1 1 1 1

1 1

( , , ) ( ) ( , , , )
I M

T T T T

T i T T i T m

i m

p y y v g y p h a s b y v    

 

   . 

                                                                   

Proposition 4. The prediction probability distribution function of 1Tv   given , 
1

Ty and 

1

Tv has the following expression 
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    1 1 1 1 1 1 1

1 1

( , , ) ( , , , )
I M

T T T T

T l li T i T m

i m

p v c y v p h a s b y v    

 

               (4 .9) 

where l is constant, satisfying 1T lv c  ,  1,...,l L . 

Proof. Since 

            
1 1

1 1 1 1 1 1 1 1( , , ) ( , , , , )
T T

T T T T

T T T T

h s

p v y v p v h s y v 
 

    ,             (4.10) 

according to the Chapman-Kolmogorov equation, the equation (4.10) can be given as 

1 1

1 1 1 1 1 1 1 1 1 1 1 1( , , ) ( , , , , ) ( , , , )
T T

T T T T T T

T T T T T T

h s

p v y v p v y v h s p h s y v  
 

       

with the CI rules, 1 1 1 1 1, ,T T

T T Tv s y v h   , hence  

1 1

1 1 1 1 1 1 1 1 1( , , ) ( ) ( , , , )
T T

T T T T

T T T T T

h s

p v y v p v h p h s y v  
 

     . 

From (4.3) 1 1( , )T l T i lip v c h a      , 1,...,i I , 1,...,l L , the one step ahead 

predictive probability distribution function of 1Tv  can be rewritten as 

1 1 1 1 1 1 1

1 1

( , , ) ( , , , )
I M

T T T T

T l li T i T m

i m

p v c y v p h a s b y v    

 

    .         

                                                                        

Proposition 5. The joint prediction probability distribution function of hidden state 

1 1,T Th s   given ,
1

Ty and
1

Tv is given by   

1 1 1 1 1 1( , , , ) ( , , , )T T T T

T i T m ijm mn T j T n

j n

p h a s b y v f p p h a s b y v       .      (4.11) 

Proof. Since  

      

     
1 1 1 1 1 1 1 1( , , , ) ( , , , , , )

T T

T T T T

T T T T T T

h s

p h s y v p h s h s y v     ,         (4.12) 

according to the Chapman-Kolmogorov equation, the equation (4.12) can be given as 

1 1 1 1( , , , )T T

T Tp h s y v    

1 1 1 1 1 1( , , , , , ) ( , , , )
T T

T T T T

T T T T T T

h s

p h s y v h s p h s y v    

1 1 1 1 1 1 1 1 1

,

( , , , , , ) ( , , , , ) ( , , , )
T T

T T T T T T

T T T T T T T T T

h s

p h y v h s s p s y v h s p h s y v       
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since 1 1 1 1, , ,T T

T T T Th y v s s h  and 1 1 1, ,T T

T T Ts h y v s  . The equation (4.12) can be 

rewritten as 

1 1 1 1 1 1 1 1 1( , , , ) ( , , ) ( , ) ( , , , )
T T

T T T T

T T T T T T T T T

h s

p h s y v p h h s p s s p h s y v        . 

By applying equations (4.2) and (4.4) , we can get 

1 1( , , )T i T j T m ijmp h a h a s b f     ,  1( , )T m T n mnp s b s b p     

where  , 1,...,i j I ,  , 1,...,m n M , so we can get 

1 1 1 1 1 1( , , , ) ( , , , )T T T T

T i T m ijm mn T j T n

j n

p h a s b y v f p p h a s b y v       . 

Here 
1 1( , , , )T T

T j T np h a s b y v   is the filtering probability distribution function 

described in the next subsection.  

4.2.2.2 Filtering probability distribution function The most important 

problem in the Extended MSSV model is to estimate latent variables, i.e. th and ts , 

given the data and the model. Filtering is to estimate the joint probability distribution 

function of latent variables at time T given the data throughout the all t , where 

 1,...,t T , i.e. 
1 1( , , , )T T

T Tp h s y v  . 

Proposition 6. Set
1 1( , , , )T T

Tim T i T mp h a s b y v   . Then the filter posterior 

probability distribution function Tim is given by 

( 1)

1 1

( )
I M

Tim i T li ijm mn T jn

j n

g y f p   

 

                    (4.13) 

where 

( ) ( , )i T T T ig y p y h a   , ( , )li T l T ip v c h a    , 1( , )mn T m T np p s b s b    , 

1( , , )ijm T i T j T mf p h a h a s b     ,  , 1,...,i j I ,  , 1,...,m n M and l is constant, 

satisfying T lv c . 

        When 1t   
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                         1 1( )im i li im mg y f p                           (4.14) 

where 1 1 1( ) ( , )i ig y p y h a   , 1 1( , )li l ip v c h a    , 1 1( )im i mf p h a s b    ,

1( )m mp p s b   ,  1,...,i I ,  1,...,m M and l is constant, satisfying 1 lv c . 

         Now we can use recursion to calculate filtering and continue the process, this 

is the forward method to solve filtering. Details are shown in Appendix A. 

4.2.2.3 Smoothing probability distribution function
 
Bayesian smoothing is 

often considered to be a class of methods within the field of Bayesian filtering. While 

Bayesian filters in their basic form only compute estimates of the current state of the 

system given the history of observations, Bayesian smoothers can be used to reconstruct 

states that happened before the current time. That is, smoothing is to estimate the joint 

probability distribution function of latent variables at time t given the whole dataset

   t ty v , i.e. 1 1( , , , )T T

t tp h s y v  , where  1,..., 1t T  . We have following results: 

Proposition 7. The smoothing probability distribution function

1 1( , , , )T T

t i t mp h a s b y v    is given by  

          when 1 1t T    

                   
1 1( , , , )T T

t i t m tim timp h a s b y v                        (4.15) 

where 

( 1) 1

1 1

1

1 1 1 1

( )

( )

I M

t jn j t lj jin nm

j n

tim I M I M

i t l i j i n n m tj n

i m j n

g y f p

g y f p

 



 

 

 

         
      





 
, 1 1( , , , )t t

tim t i t mp h a s b v y    

 

1 1 1( ) ( , )i t t t ig y p y h a     , 1 1( , , )jim t j t i t mf p h a h a s b      , 

1 1( , )li t l t ip v c h a     , 1( , )nm t n t mp p s b s b    ,  , 1,...,i j I , 

 , 1,...,m n M and l is constant, satisfying 1 lv c . 
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         when 1t T   

1 1 1 1 ( 1) ( 1)( , , , )T T

T i T m T im T imp h a s b y v                           (4.16) 

where 
1 1

( 1)

( 1)

1 1 1 1

( )

( )

I M

j T lj jin nm

j n

T im I M I M

i T l i j i n n m T j n

i m j n

g y f p

g y f p





 

 



         
      





 
, ( ) ( , )j T T T jg y p y h a   , 

( 1) 1 1 1 1( , , , )t t

T im T i T mp h a s b v y      , 1( , , )jin T j T i T nf p h a h a s b     , 

( , )lj T l T jp v c h a    , 1( , )nm T n T mp p s b s b    , l is constant, satisfying 1 lv c  

and
 

 , 1,...,i j I ,  , 1,...,m n M . 

This is backward method to solve smoothing probability distribution function. 

Details are presented in Appendix B.  

4.2.3 Model inference with unknown parameters: EM algorithm  

If  is unknown, we have only the observed data. We will apply the 

Expectation-Maximization (EM) algorithm to find the maximum likelihood solutions for 

models having latent variables. The EM algorithm alternates between an E step and an M 

step. In the E step, we infer posterior distributions over hidden variables given a current 

parameter setting, and then we use this posterior distribution to find the expectation of 

the complete-data log likelihood evaluated for some general parameter value. In the M 

step, we determine the revised parameter estimate   by maximizing the function 

gathered from the E step.  

4.2.3.1 Model assumptions From Figure 4.1, we denote the set of all 

observed data by   
1

, ,
T

t t t
V Y v y


 , and similarly we denote the set of all latent variables 

by    
1

, ,
T

t t t
H S h s


 . The set of all model parameters is denoted by . We shall call 

 , , ,V Y H S the complete data set, and we shall consider the actual observed data  ,V Y  
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as incomplete. The joint probability distribution function of every concerned variable is 

the same as in equations (4.1), (4.2), (4.3) and (4.4). The initial probability distribution 

function is the same with equation (4.5) and (4.6). The parameters set is 

           ( )mn ijm li i t im mp f g y f p         . 

The parameters space is  

1 1

1 1

0 1,0 1,0 1, 1, 1,

1,0 1, 1,0 1, 1

I M

im m mn im m

i m

M L I

mn li li ijm ijm

m l i

f p p f p

p f f



 

 

 

 
           

 
   

       
  

 

  
 

We set the initial parameter (0)   to 

           (0) (0) (0) (0) (0) (0) (0)

1( )mn ijm li i im mp f g y f p         . 

4.2.3.2 The view of EM for the E-MSSV-I According to the E-MSSV-I 

model, in the E step, we use the current parameter values ( 1)w   to find the posterior 

probability distribution function of the latent variables given by ( 1)( , , , )wp H S V Y   , 

where 1w . Then we use the posterior probability distribution function to find the 

expectation of the complete-data log likelihood evaluated for some general parameter 

value . This expectation, denoted ( 1)( , )wQ    , is represented as 

( 1) ( )( , ) ( , ) log ( , , , )w w

H S

Q q H S p V Y H S                (4.17) 

( ) ( 1)( , ) ( , , , )w wq H S p H S V Y   . 

In the M step, we decide the revised parameter estimate ( )w by maximizing 

this function ( ) ( 1)arg max ( , )w wQ


   



 . The EM algorithm can be shown as follows: 
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Table 4.1 The EM algorithm.  

Step 1.  Start with an initial setting for the parameters (0) . 

Step 2.  E-step : Evaluate
( ) ( , )wq H S . 

Step 3.  M-step: Evaluate 
( )w obtained by ( ) ( 1)arg max ( , )w wQ



   



 . 

where ( 1) ( )

,

( , ) ( , ) log ( , , , )w w

H S

Q q H S p V Y H S     

Step 4.  Iterate steps 2 and 3 until convergence. If the convergence criterion is not 

satisfied, then let ( 1) ( )w w    and return to step 2. 

 

4.2.3.3 Expectation step Now the important way is that we must simplify 

( 1)( , )wQ     by two tricks as follows: First, we must explain the marginalized

( ) ( , )wq H S .Second, we need to calculate the factorized log ( , , , )p V Y H S  . 

Marginalize: since ( ) ( 1)( , ) ( , , , )w wq H S p H S V Y   ，it can be simplified in 

the different situation. 
 

Factorize: set
 

 1 1,..., T

TH h h h  ,  1 1,..., T

TV v v v  , 

 1 1,..., T

TS s s s  , then we can get as follows: 

log ( , , , )p V Y H S  log[ ( , , , ) ( , )]p V Y H S p H S   

1 1

1 1 1 1 1 1

2

log{[ ( , , , , , )] ( , , , )
T

t t

t t t t

t

p v y v y h s p v y h s  



   

1 1

1 1 1 1

2

[ ( , , , )] ( , )}
T

t t

t t

t

p h s h s p h s 
  

 



  

1 1 1 1

1 1 1 1

2

log{[ ( , , , , , ) ( , , , , )]
T

t t t t

t t t t t t t

t

p v v y y h s p y v y h s    



    

1 1 1 1 1 1 1( , , , ) ( , , )p v h s y p y h s    
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1 1 1 1

1 1 1 1 1 1 1

2

[ ( , , , ) ( , , )] ( , ) ( )}
T

t t t t

t t t

t

p h h s s p s h s p h s p s   
      

  



 .  

This complexity can be reduced by exploiting the conditional independence structure in 

the graph. So we can get 

1 1 1 1

2

log ( , , , ) log{[ ( , ) ( , )] ( , ) ( , )}
T

t t t t

t

p V Y H S p v h p y h p v h p y h    


   

1 1 1 1 1

2

[ ( , , ) ( , )] ( , ) ( )
T

t t t t t

t

p h h s p s s p h s p s        



  

1

log{[ ( , ) ( , )]
T

t t t t

t

p v h p y h 


   

1 1 1 1 1

2

[ ( , , ) ( , )] ( , ) ( )}
T

t t t t t

t

p h h s p s s p h s p s        



  

                1

1 1 2

log ( , ) log ( , ) log ( , , )
T T T

t t t t t t t

t t t

p v h p y h p h s h    

  

       

                 
1 1 1 1

2

log ( , ) log ( , ) log ( )
T

t t

t

p s s p h s p s   



  ,

 

hence  

1 1

log ( , , , ) log ( , ) log ( , )
T T

t t t t

t t

p V Y H S p v h p y h  
 

     

1 1

2 2

log ( , , ) log ( , )
T T

t t t t t

t t

p h s h p s s      

  

              

1 1 1log ( , ) log ( )p h s p s  .                           (4.18) 

Substituting (4.18) into (4.17), the expectation can be obtained as 

( ) ( )

1 1

( , ) ( , )[ log ( , ) log ( , )
T T

w w

t t t t

H S t t

Q q H S p v h p y h   
 

      

1 1 1 1 1

2 2

log ( , , ) log ( , ) log ( , ) log ( )]
T T

t t t t t

t t

p h s h p s s p h s p s        

  

    . 

Then we can get  
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( ) ( )

1

( , ) ( , ) log ( , )
T

w w

t t

H S t

Q q H S p v h  


    

( )

1

( , ) log ( , )
T

w

t t

H S t

q H S p y h 


   

( )

1

2

( , ) log ( , , )
T

w

t t t

H S t

q H S p h s h   



   

( )

1

2

( , ) log ( , )
T

w

t t

H S t

q H S p s s  



   

( ) ( )

1 1 1( , ) log ( , ) ( , ) log ( )w w

H S H S

q H S p h s q H S p s   .       (4.19) 

In the equation (4.19), the first term can be obtained as follows: 

( ) ( )

1 1 ,

( , ) log ( , ) ( , ) log ( , )
T T

w w

t t t t

H S t t H S

q H S p v h q H S p v h 
 

    
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   

( )
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log ( , ) ( , )
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T
w

t t t t

t h s
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

  

( 1)
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log ( , ) ( , , , )
t t

T
T T w

t t t t

t h s

p v h p h s v y  



 .     (4.20) 

When 1 1t T   , ( ) ( 1)

1 1( , ) ( , , , )w T T w

t t t tq h s p h s v y   is the smoothing probability 

density function, hence by (4.3), equation (4.20) can be rewritten as 

1
( 1)

1 1

1 1 1

( , , , ) log ( , )
T I M

T T w

t i t m t l t i

t i m
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1
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  


 

  

 .                                           (4.21) 

When t T , ( ) ( 1)

1 1( , ) ( , , , )w T T w

T T T Tq h s p h s v y    is the filtering posterior probability 

density function, so by (4.3), equation (4.20) can be rewritten as 

( 1)

1 1
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( 1)

1 1

log
I M

w

Tim li

i m

 

 

 .                                                (4.22) 

Hence , when 1 t T  , (4.20) can be obtained as  
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1
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( ) logw

tim li
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q  .                                              (4.23) 

In equation (4.19), the second term can be obtained as follows: 
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1
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w
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
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According to equation (4.1) and the same analysis process with the first term,  

when 1 t T  , equation (4.24) can be obtained as 
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1
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In equation (4.19), the third term can be obtained as follows: 
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So when 2 t T  ,  
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Further details are shown in Appendix C. 

In equation (4.19), the fourth term can be obtained as follows: 
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The detailed process is the same as the third term, when 2 t T  , so (4.27) 

can be obtained as   
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In equation (4.19), the fifth term can be obtained as follows 

  1 1 1 1

( ) ( )

1 1 1 1( , ) log ( , ) ( , ) log ( , )w w
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1 1
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1 1
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1 1 1 1 1 1( , , , ) log ( , )T T w

h s

p h s v y p h s        (4.29) 

and by the equation (4.5), (4.29) can be obtained as 
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In equation (4.19), the sixth term can be obtained as follows: 
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and by the equation (4.6), (4.31) can be obtained as 
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( 1)
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1 logw
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q p .                                                (4.32) 

         According to (4.23), (4.25), (4.26), (4.28), (4.30) and (4.32), ( 1)( , )wQ    can 

be rewritten as  

( ) ( ) ( ) ( )( , ) log log ( ) logw w w w

tim li tim i t t ijmn ijm

t i m t i m t i j m n

Q q q g y q f   
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q p q f q p



      . 

4.2.3.4 Maximization step The aim of M-step is to establish the Lagrange 

function and then derivation of each parameter in the function. The Lagrange function is 

given as follows: 
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f p                               (4.33) 

1. In equation (4.33), calculating 1 2 3 4 5( , , , , , )
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H      






, and then setting

1 2 3 4 5( , , , , , )
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H      
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
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
, where i is fixed, it is easy get as  
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Since 1li

l
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                        ( )
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and putting (4.35) into (4.34), then 
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( )
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q
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
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 
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.                          (4.36)                         

By (4.23) 
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and putting (4.38) into (4.37), then 
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by (4.26), where 
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3. In equation (4.33), calculating 1 2 3 4 5( , , , , , )
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Putting (4.41) into (4.40), then we can get 
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1 2 3 4 5( , , , , , )
0

im

H

f

     



, where ,i m are fixed, we can obtain as  

                   
( )

( )1
4 1 40  0

w
wim
im im

im

q
q f

f
      


.                    (4.43) 

Since 1im

i

f   , then ( )

1 4 0w

im im

i i

q f    , so  

                           ( )

4 1

w

im

i

q                               (4.44) 

and putting (4.44) into (4.43), then we can get 

                          
( )

( ) 1

( )

1

w
w im

im w

i m

i

q
f

q 



 


                            (4.45) 

by (4.30), where 

( ) ( 1) ( 1)

1 1 1

w w w

im im imq    . 
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5.  In equation (4.33), calculating 1 2 3 4 5( , , , , , )

m

H

p

     


 and then setting

1 2 3 4 5( , , , , , )
0

m

H

p

     



, where m is fixed, we can obtain as 

                  

( )

1
( )

5 1 50  0

w

im
wi
im m

im

q

q p
p

      



 .                (4.46) 

Since 1m

m

p  , then ( )

1 5 0w

im m

m i m

q p    , so  

                         ( )

5 1

w

im

m i

q                              (4.47) 

and putting (4.47) into (4.46), then we can get 

                       

( )

1
( )

( )

1

w

im
w i

m w

i m

m i

q

p
q 



 



                            (4.48) 

by (4.32), where ( ) ( 1) ( 1)

1 1 1

1

I
w w w

im im im

i i

q   



  . 

 

4.3 Bayesian inference of the E-MSSV-II model 

   In this section, we consider stochastic inference algorithm to estimate parameters in 

the E-MSSV-II model.  

    4.3.1 The description of the E-MSSV-II  

In order to avoid over complexity, we start with a simple E-MSSV-II model. 

Firstly, by analyzing the relationship between return and volume, the new log return can 

be shown as a function of the volume and the fluctuation range of volume in a stock. 

Secondly, we define regime variables ts following a two-state first order Markov process, 

i.e. high-volatility and low-volatility states, and we can assume that only the mean of 

volatility shifts depending on the state, i.e. 
ts ts    . Finally, the transition 
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probability matrix of first order Markov process is presented as a dimensional matrix. So 

the E-MSSV-II model can be summarized as follows: 

 
(y , ) exp( 2)t t t t ty f v h                            (4.49) 

 1t t t th s h        
                         (4.50) 

 

11 22

11 22

1

1

p p
p

p p

 
  

 
                            (4.51) 

where ty explains the return data of a stock, tv is the state of volume of a stock,
 ty  is

                                                                              

the function of the volume and log return of price. th is the unobserved log volatility of a 

stock,  1,2ts  , , . . . (0,1)t t i i d N   , 2 2

0 1( , (1 ))h N s      . The transition 

probabilities are defined by 11 1( 1 1)t tp p s s    an 22 1( 2 2)t tp p s s    . 11p and 22p  

represent the probabilities of the keeping in the low-volatility regime and high-volatility 

regime respectively. Hence in the E-MSSV model, the set of parameters is denoted as

 2

11 22, , , , ,p p     .
 

In the E-MSSV-II model, let  1 1,...,
t

ty y y   ,  ,t t tx h s plays the role of the 

latent state vector. Moreover, in order to simplify the inference process of parameters and 

latent variables, we make the following independence assumptions: (i) 1ty 
  is 

conditionally independent from
1

ty given 1tx  ; (ii) 1tx   is conditionally independent from 

tx given
1

ty . 

According to Bayesian rule, the conditional probability density function of 

1tx  is given by                  

               
1 1 1 11

1 1

1 1

( , ) ( , )
( , )

( )

t

t t tt

t t

t

p y x p x y
p x y

p y y

 


  





 
 

 
              (4.52) 

in the equation (4.52), the distribution for 1tx  over 
1

ty is given by 
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1 1 1 1( , ) ( , ) ( )t t

t t t t tp x y p x x p x y dx  
                     (4.53) 

and the distribution for 1ty  over 
1

ty  is given by 

1 1 1 1 1 1 1( ) ( ) ( )t t

t t t t tp y y p y x p x y dx    
   . 

Hence, the posterior distribution for 1tx  over 1

1

ty   is proportional of the numerator 

of the right hand side of the equation (4.52), i.e., 

         1

1 1 1 1 1 1( , ) ( , ) ( , ) ( )t t

t t t t t t tp x y p y x p x x p x y dx  

   
               (4.54) 

4.3.2 Auxiliary particle filter with known parameters 

       Particle filters (Pitt and Shephard, 1999) are the class of simulation filters that 

recursively approximate the posterior distribution of tx , i.e., 
1( )t

tp x y  by particles 

(1) ( ),..., N

t tx x  with discrete probability mass of (1) ( ),..., N

t t  , and the relation about them 

will be denoted by 

 ( ) ( ) ( j) ( )

11
1

, ( ) ( )
N

N
j j t j

t t t t t tj
j

x p x y x x  




   ,
 

where ( )j

t are suitable weights and ( )  is an Dirac function  . 

In this section, we assume the parameter vector   is known, and we will omit 

the   in all probability distributions for ease of understanding. In some literatures, 

( )j

t  are assumed to equal 1 N . Throughout, N is taken to be very large. If N  , 

then the particles can be considered to better approximate the density distribution 

function
1( )t

tp x y . 

Particle filters treat the discrete variables generated by the particles as the true 

filtering density. This allows us to introduce an approximation to the posterior 

distribution 1 1( )t

tp x y
  in equation (4.53) given by 
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 ( ) ( )

1 1 1

1

( ) ( )
N

t j j

t t t t

j

p x y p x x  



                         (4.55) 

which is called “empirical prediction density”. Combining (4.55) with (4.54), by 

applying the Chapman-Kolmogorov equation it is also possible to obtain an 

approximation of the posterior distribution of 1tx  at time t+1 given by 

                  1 ( ) ( )

1 1 1 1 1

1

( ) ( ) ( )
N

t j j

t t t t t t

j

p x y p y x p x x 

   



               (4.56)

     

 

which is called “empirical filtering density” as an approximation to the true filtering 

density, that is equation (4.55). 

In order to complete the filtering process, generically, particle filters sample 

from this density to produce new particles (1) ( )

1 1,..., N

t tx x 
with weight (1) ( )

1 1,..., N

t t  
, i.e. 

  ( ) ( ) 1

1 1 1 11
, ( )

N
j j t

t t tj
x p x y 

  
 . This procedure can then be iterated through the data. Smith 

and Gelfand (1992) suggest a sampling importance resample filter by using the 

approximate prior distribution of equation (4.52) as the importance function. 

Since Pitt and Shephard (1999) develop the auxiliary particle filter, it looks at 

the empirical filtering density, i.e. equation 4.56, as a mixture of N distributions and 

introduces a latent indicator for the mixture components, 

( ) ( )

1 1 1 1( , ) ( ) ( )k k

t t t t t tp x k p y x p x x    
 , leading to a sequential plan that first samples lk

from ( ) ( )

1 1( )j j

t t tp y e  
, with ( )

1

j

te 
representing a guess, such as the mean or some other 

likely value associated with ( )

1( )j

t tp x x
, and then samples ( )

1

l

tx 
 from ( )

1( )
lk

t tp x x . 

Hence the important function is  

( ) ( )

1 1 1 1( , ) ( ) ( )k k

t t t t t tg x k p y e p x x    
 , 

these weights ( ) ( ) ( )

1 1 1 1 1( ) / ( )
ll l k

t t t t tp y x p y e     
  and  ( ) ( ) 1

1 1 1 11
, ( )

N
l l t

t t tl
x p x y 

  
 . 
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4.3.3 Auxiliary particle filters with unknown parameters 

In addition to tracking the unobserved state variables, Liu and West (2001) 

propose to approximate the posterior distribution 
1( )tp y  with a particle set 

 ( ) ( ) ( ), ,j j j

t t tx    and to reconstruct the parameter posterior distribution at time t+1 

through a Gaussian kernel density estimation.  

So when we update , the problem can be seen as a Bayesian sequential 

learning process where the goal is to update the following posterior density: 

1

1 1 1 1 1 1 1 1 1 1 1( , ) ( , ) ( , ) ( )t t t

t t t t t t t tp x y p y x p x y p y   

       
     

where ( ) ( ) 2

1 1

1

( ) ( , )
N

t j j

t t t t t

j

p y N m b V   



  . Combining with West (1993) mixture 

modeling ideas, we get ( ) ( ) (1 )j j

t t tm a a    , where
3 1

2
a






 , 2 1b a  , (0,1]  . 

t and tV are the mean and variance of the Monte Carlo approximation to 
1( )t

tp y  , 

( ) ( )

1

N
j j

t t t

j

  


  and ( ) ( ) ( )

1

( )( )
N

j j j

t t t t t t

j

V     


   . In order to get the Sequential 

Monte Carlo (SMC) filter for the E-MSSV-II model, we combine the auxiliary particle 

filters with the Kernel smoothing approximation. 

Table 4.2 The SMC filter for the E-MSSV-II model. 

Given an initial set of particles  ( ) ( ) ( ) ( )

11
, , , ( , , )

N
j j j j t

t t t t t tj
h s p h s y  


  

Step 1: for 1,...,j N , update 

      1. 
( ) ( )

1 1
1,...,

arg max ( )
j j

t t t t
l k

s p s l s s 


    

      2. ( )
1

( ) ( ) ( )

1 j
t

j j j

t t t
s

e h 


  


 

Step 2: for 1,...,l N  

      1. Sample 
lk from 1,...,k , with ( ) ( ) ( ) ( )

1 1( ) ( , )l l l l

t t t tp k p y e m  
  
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Table 4.2 (Continued) The SMC filter for the E-MSSV-II model. 

      2. Sample ( )

1

l

t 
 from ( ) 2( , )

lk

t tN m b V  

      3. Sample ( )

1

l

ts 
 from  1,...,k with ( ) ( ) ( )

1 1( ) ( )
ll l k

t t tp s p s s  ) 

      4. Sample ( )

1

l

th 
 from ( ) ( ) ( )

1 1 1( , , )
lk l l

t t t tp h h s   
 

Step 3: for 1,...,l N , compute new weights 

( ) ( ) ( )

1 1 1 1 1( ) / ( )
ll l k

t t t t tp y h p y e     
   

Step 4:  ( ) ( ) ( ) ( ) 1

1 1 1 1 +1 +1 11
, , , ( , , )

N
j j j j t

t t t t t tj
h s p h s y   

    
  

 

4.4 Application 

In this chapter, about the E-MSSV-I model, we use the EM algorithm to calculate 

the parameters, but it is more difficult to implement the algorithm by computer 

programming. According to Bishop (2006), if the non-stochastic inference algorithm 

cannot be used in experiment, we can choose stochastic inference algorithm directly. So 

in my research, we mainly analyze the E-MSSV-II model in the process of application. A 

sequential Monte Carlo (SMC) filter is applied in the E-MSSV-II model of one synthetic 

time series and one real dataset. The simulated examples are based on examples from 

Raggi (2005) and the real data obtained comes from the Dow Jones Industrial Average 

Index, i.e. DJI30. 

4.4.1 Simulation study 

         To analyze the SMC filter performance, first we simulated 1000 observations 

from the E-MSSV model with two states in which the parameters are the following: 

Volatility process: 2.5   , 2  , 0.2  , 2 0.1  ; 
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Markov process: 11 0.99p  , 22 0.97p  . 

 

Figure 4.2 The first graph exhibits the evolution of the true regime variables ts , the 

second graph presents log-volatility th , the third graph shows simulated value of 

log-return ty . 

In this part, for verifying consistency of the parameters with the empirical 

findings, we define the prior distribution of parameter following Eraker et al (2003). 

We hypothesize the prior distributions as (0,3)N  , (20,1.5)Beta  , 

(25,2.5)Beta  , 2 (2,0.02)IG  , where IG indicate the inverse of a Gamma 

distribution. 11p and 22p  is diagnosed by the transition probability matrix. The values of 

a  and b are determined by a discount factor =0.86  which implies 0.9186a  and 

0.2853b  . For this experiment, basing on SMC filters algorithm, we use 25000 

particles to approximate the parameters distribution in E-MSSV model. The results are 

reported on Figure 4.3. 

 

Figure 4.3 The estimated parameters. 
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From Figure 4.3, we notice that the filter provides stable estimates for the 

parameters and the estimates are consistent with the true parameters. So we can use the 

filter algorithm in the real data. 

4.4.2 Experiments with real data 

We now apply the proposed algorithm to the DJI30 from 03/01/2007 to 

09/12/2014 (2000 observations).  

The data set has been downloaded from https://www.google.com/finance. tp

be the DJI30 closed price, 1log( )t t ty p p  , tv  be as the trading volume (10000 unit)  

       In the interest of understanding the relation of the closing price and volume, 

we have drawn Figures from 4.4 to 4.6. From Figure 4.4, we see that in the vicinity of 

500, a large amplitude of closing price appears. In fact, the phenomenon also happens to 

the volume as shown in Figure 4.5. In Figure 4.6, the lower the closing price, the smaller 

the negative values of the volume. The higher the closing price, the bigger the negative 

values of the volume. So we can obtain the relationship of volume and closing price, in 

the part, since 1log( )t t ty p p  , we can define 

3 3

1 1log[( 5*10 ) ( 5*10 )]t t t ty p v p v 

 
     . 

And the new log return is shown in Figure 4.7. 

 

Figure 4.4 The closed price of the DJI30 and the log return.  
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Figure 4.5 The volumes of the DJI30. 

   

Figure 4.6 The big line shows the negative values of the volume of the DJI30 and the 

small line is the closing price of the DJI30. 

 

Figure 4.7 The log return ty . 

        According to French et al. (1987), following the SMC filter algorithm and 

using MATLAB software, we estimate the E-MSSV-II model approximating the 

distribution through a cloud of 50,000 particles. The results of the parameter estimation 

in the E-MSSV-II model are summarized in Figure 4.8.  

From the Mean Absolute Deviation (MAD), Mean Squared Error (MSE) 

and Mean Absolute Percentage Error (MAPE), which are shown in Table 4.3, about the 

E-MSSV-II model, MAD is 0.005679<0.006399, MSE is 0.000068<0.000113 and 

MAPE is 5.56796<6.47236, for the smaller the prediction error, the better the effect. The 
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result suggests that the E-MSSV-II model is more accurate in forecasting than the MSSV 

model. The real volatilities and estimated volatilities are shown in Figure 4.9. 

 

Figure 4.8 The estimated parameters in the E-MSSV-II model. 

 

Figure 4.9 The above picture represents the real volatilities and the volatilities estimated 

by the E-MSSV-II model. The below picture shows the real volatilities and volatilities 

estimated by the MSSV model (real volatilities are shown in red). 

Table 4.3 The estimated results by models. 

Model MAD  MSE MAPE 

MSSV 0.006399 0.000113 6.47236 

E-MSSV-II 0.005679 0.000068 5.56796 

 

 

 

 

 

 

 

 

 



 

CHAPTER V 

CONCLUSION 

 

    This thesis mainly focuses on the analysis of volatility in the stock market. There 

are two classes of widely used models for capturing the stylized feature of volatility. 

    In chapter III, the study uses SSE380 prices to predict daily volatility changes in the 

stock market. Firstly, we use descriptive statistics to show that the index series has the 

feature of asymmetric zero mean and left side, which means it is not normally distributed. 

Secondly, we consider Augmented Dickey-Fuller Unit Root Tests to find that the series is 

a stationary time series. And then we use ARCH-Lagrange multiplier to detect SSE380 

returns have ARCH effects. 

    Then the SSE380 index volatility is forecasted with the GARCH, EGARCH and 

TGARCH models. The volatility models are estimated with normal innovation and 

Student’s t innovation distributions to find the effect of distribution selection on 

forecasting performance of the models. According to highest value of Log likelihood (LL) 

and smallest value of AIC and BIC, the results suggest that the GARCH with Student’s t 

innovation model enables more accurate in forecasting than the EGARCH and TGARCH 

model. Under the evaluation criteria of the less functions of MSE and MAD, using the 

MCS test, the empirical results also show that the GARCH with Student’s t innovation 

model is the best model.  

    In chapter IV, we use DJI30 prices to predict daily volatility changes in the stock 
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market. Firstly, we present two novel approaches, namely the E-MSSV model, including 

E-MSSV-I and E-MSSV-II model, based on adding volume to DJI30 prices to estimate 

volatilities. Secondly, in the E-MSSV-I model, Bayesian inference has been used to 

derive prediction, filtering and smoothing probability distribution function. Then the 

Expectation-Maximization method is used to estimate the variables and parameters. In 

the E-MSSV-II model, the Sequential Monte Carlo filter method is used to estimate the 

parameters. According to the value of MAD, MSE and MAPE, we can see that the 

E-MSSV-II model is more accurate in forecasting than the MSSV model. 

    The study can be used as an assistant tool in financial applications, such as 

describing the risk management and option pricing. Many significant meanings shown in 

the process of investing: firstly, it can help investors to make rational investment 

decisions before investing. Secondly, it can improve risk management of institutional and 

individual investors. Finally, it can assist with the development of relevant policies and 

help regulatory authorities to improve supervision. 

But there are some restrictions on the GARCH-type models and the E-MSSV model. 

Since GARCH-type models are not novel models, so in the future work, we can structure 

other models to combine with them. It seems that hybrid models are more useful in 

extreme event forecasting as the structure of the volatility process becomes more 

complex. As far the E-MSSV models, in the E-MSSV-I model, the process of the 

Bayesian inference makes it very difficult to realize the algorithm because there are two 

discrete random variables in the input. Hence in the future work, we need to find a new 

way to deal with the case. In the E-MSSV-II model, only one dataset (DJI30) may be not 
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enough to prove that the new method is really better than existing methods, so in the 

future work, more datasets should be used in the model. 

Moreover, it would also be worthwhile to compare multivariate GARCH-type 

models and stochastic volatility models in fitting volatility in the stock market. 

    

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

REFERENCES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

REFERENCES 

 

Alsubaie, A. and Najand, M. (2009). Trading volume timevarying conditional volatility 

and asymmetric volatility spillover in the Saudi stock market. Journal of 

Multinational Financial Management. 19: 139–159. 

Andersen, T. (1996). Return volatility and trading volume: an information flow 

interpretation of stochastic volatility. Journal of Finance. 51: 69–204. 

Baillie R. , Chung C. and Tieslau M. (1996). Analysing inflation by the fractionally 

integrated ARFIMA-GARCH Model. Journal of Applied Econometrics. 74: 

23–40. 

Barber, D. (2012). Bayesian Reasoning and Machine Learning. Cambridge University 

Press, New York. 

Basel, M. A. (2005). Predicting the volatility of the S&P-500 stock index via GARCH 

models: the role of asymmetries. International Journal of Forecasting. 21:  

167–183. 

Beal, M. J. (2003). Variational Algorithms for Approximate Bayesian Inference. PhD 

thesis, the University of London, UK. 

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University 

Press, New York. 

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer 

    Science Press, New York. 

 

 

 

 

 

 

 

 



 

74 

 

Bollerslev, T. (1986). Generalised Autoregressive Conditional Heteroscedasticity. 

Journal of Econometrics. 31: 307–327. 

Bonfil, G. S., Solis, J. F. and Rodarte, L. V. (2015). Volatility forecasting using support 

vector regression and a hybrid genetic algorithm, Computational Economics. 45: 

111–133. 

Brooks, C. (2002). Introductory Econometrics for Finance. Cambridge University 

Press, New York. 

Carvalhoand, C. M. and Lopes, H. F. (2007). Simulation-based sequential analysis of 

Markov switching stochastic volatility models. Computational Statistics and Data 

Analysis. 51: 4526–4542. 

Cathy, W. S. and Yang, M. J. (2006). The asymmetric reactions of mean and volatility of 

stock returns to domestic and international information based on a four-regime 

double-threshold GARCH model. Physica. A366: 401–418. 

Chapman, S. (1928). On the Brownian displacements and thermal diffusion of grains 

suspended in a non uniform fluid. Proceedings of the Royal Society of London. 

Series A. 119: 34–60. 

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from 

incomplete data via the EM algorithm. Journal of the Royal Statistical Society. 34: 

1–38. 

Clark, T. E. and Ravazzolo, F. (2015). Macroeconomic forecasting performance under 

alternative specifications of time-varying volatility. Journal of Applied 

Econometrics. 30: 551–575. 

 

 

 

 

 

 

 

 



 

75 

 

Diebold, F. X. (1986). Modeling the persistence of conditional variances: A comment. 

Econometric Reviews. 5: 51–56. 

Du, X. D., Yu, C. L. and Hayes, D. J. (2011). Speculation and volatility spillover in the 

crude oil and agricultural commodity markets: A Bayesian analysis. Energy 

Economics. 33: 497–503. 

Dumitru, M. and Cristiana, T. (2010). Asymmetric conditional volatility models: 

empirical estimation and comparison of forecasting accuracy. Romanian Journal 

of Economic Forecasting. 3: 74–92. 

Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of 

variance of UK inflation. Econometrica. 50: 987–1008. 

Engle, R. F. (2001). GARCH 101: The use of ARCH/GARCH models in applied 

econometrics. Journal of Economic Perspectives. 15: 157–168. 

Engle, R. F. and Patton, A. J. (2001). What good is a volatility model? Quantitative 

Finance. 1: 237–245. 

Eraker, B. (2001). Mcmc analysis of diffusion models with application to finance. 

Journal of Business and Economic Statistics. 19: 177–197. 

Eraker, B., Johannes, M. and Polson, N. (2003). The impact of jumps in volatility and 

returns. Journal of Finance. 58: 1269–1300. 

Fama, E. (1965). The behavior of stock market prices. Journal of Business. 38: 34–105. 

Franses, P. H. and Van, D. (1996). Forecasting stock market volatility using (nonlinear) 

GARCH models. Journal of Forecast. 15: 229–235.  

French, K. R., Schwert, G. W. and Stambaugh, R. F. (1987). Expected stock returns and 

 

 

 

 

 

 

 

 

http://www.tandfonline.com/author/Engle%2C+R
http://www.tandfonline.com/author/Patton%2C+A


 

76 

 

volatility. Journal of Financial Economics. 19: 3–29. 

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2003). Bayesian Data Analysis. 

CRC Press, New York. 

Glosten, L., Jagannathan, R. and Runkle, D. (1993). Relationship between the expected 

value and volatility of the nominal excess returns on stocks. The Journal of 

Finance. 48: 1779–1801. 

Gordon, N. J., Salmond, D. J. and Smith, A. F. (1993). Novel approach to nonlinear/ non- 

Gaussian Bayesian state estimation. IEEE Proceedings F - Radar and Signal 

Processing. 140: 107–113. 

Goutte, S. (2013). Pricing and hedging in stochastic volatility regime switching models. 

Journal of Mathematical Finance. 3: 70–80. 

Grouard, M. D., Levy, S. and Lubochinsky, C. (2003). Stock market volatility from 

empirical data to their interpretation. France Stability Review. 2: 57–74. 

Hamilton, J. D. (1994). Time Series Analysis. Pinceton University Press, New Jersey. 

Hansen, P. R. (2003). Asymptotic Tests of Composite Hypotheses. Working Paper,     

Brown University Economics, No. 2003.  

Hansen, P. R. and Lunde, A. (2005). A forecast comparison of volatility models: does  

    anything beat a GARCH(1,1). Journal of Applied Econometrics. 20: 873–889. 

Hansen, P. R. and Lunde, A. (2005). A test for superior predictive ability. Journal of  

    Business and Economic Statistics. 23: 365–380. 

Hansen, P. R., Luder, A. and James, M. N. (2011). The model confidence set. 

Econometrica. 79: 453–479. 

 

 

 

 

 

 

 

 

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2209
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2209


 

77 

 

Heitham, A. H, Hashem, A., Timothy, R. and Jacek, N. (2015). Forecasting the   

Jordanian stock index: modeling asymmetric volatility and distribution effects with 

in a GARCH framework. Copernican Journal of Finance and Accounting. 4: 

9–26.  

Hentsche, L. (1995). All in the family nesting symmetric andasymmetric GARCH 

models. Journal of Financial Economics. 39: 71–104. 

Henton, S. L. (1993). A closed-form solution for options with stochastic volatility with 

applications to bond and currency options. Review of Financial Studies. 6: 

327–343. 

Hung, J. C. (2011). Applying a combined fuzzy systems and GARCH model to 

adaptively forecast stock market volatility. Applied Soft Computing, 11: 

3938–3945. 

Jeff, F. and Chris, K. (2011). Long memory in volatility and trading volume. Journal of 

Banking and Finance. 35: 1714–1726. 

Jordan, M. and Jacobs, R. (1994). Hierarchical mixtures of experts and the EM algorithm. 

Neural Computation. 6: 181–214. 

Joshua, C. C. and Angelia L. G. (2016). Modeling energy price dynamics: GARCH 

versus stochastic volatility. Energy Economics. 54: 182-189. 

Karpoff, J. M. (1987). The relation between price changes and trading volume: a survey. 

The Journal of Financial and Quantitative Analysis. 22: 109–126.  

Kastner, G. and Schnatter, S. F. (2014). Ancillarity-sufficiency interweaving strategy 

(ASIS) for boosting MCMC estimation of stochastic volatility models. 

 

 

 

 

 

 

 

 



 

78 

 

Computational Statistics and Data Analysis. 76: 408–423. 

Kim, S., Shephard, N. and Chib, S. (1998). Stochastic Volatility: Likelihood Inference 

and Comparison with ARCH Models. Review of Economic Studies. 65: 361-393. 

Kolmogorov, A. N. (1931). Ueber die analytischen Methoden in der 

Wahrscheinlichkeitsrechnung. Mathematische Annalen. 104: 415–458. 

Lee, C. F. and Su, J. B. (2012). Alternative statistical distributions for estimating value at 

risk: theory and evidence. Review of Quantitative Finance and Accounting. 39: 

309-331. 

Li, M., Li, W. K. and Li, G. (2013). On mixture memory GARCH models. Journal of 

Time Series Analysis. 34: 606–624. 

Liu, H. C. and Chiang, S. M. (2012). Forecasting the volatility of S&P depositary 

receipts using GARCH-type models under intraday range-based and return-based 

proxy measures, International Review of Economics and Finance. 22: 78–91. 

Liu, J. and West, M. (2001). Combined Parameter and State Estimation in 

Simulation based Filtering. Springer, Berlin. 

Mahajan, S. and Singh, B. (2009). The empirical investigation of relationship between 

return volume and volatility dynamics in Indian stock markets. Eurasian Journal 

of Business and Economics. 2: 113–137. 

Mandelbrot, B. (1967). The valuation of some other speculative prices. Journal of 

Business. 40: 393–413. 

Mike, K. P. and So, L. K. (1998). A stochastic volatility model with Markov switching. 

Journal of Business and Economic Statistic. 16: 244–253. 

 

 

 

 

 

 

 

 



 

79 

 

Mincer, J. and Zarnowitz, V. (1969). The Evaluation of Economic Forecasts. Columbia 

University Press, New York. 

Murphy, K. P. (2012). Machine Learning: a Probabilistic Perspective. MIT Press, 

Cambridge. 

Mutunga, T. N., Islam, A. S. and Orawo, L. A. (2015). Implementation of the estimating 

functions approach in asset returns volatility forecasting using first order 

asymmetric GARCH models. Open Journal of Statistics. 5: 455–463. 

Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach, 

Econometrica. 59: 347–370. 

Pan, Q. and Li, Y. (2013). Testing volatility persistence on Markov switching stochastic 

volatility models. Economic Modelling. 35: 45–50. 

Peter, R. H., Asger, L. and Valerl, V. (2014). Realized beta GARCH: a multivariate 

GARCH model with realized measures of volatility. Journal of Applied 

Econometrics. 29: 774–799. 

Pitt, M. and Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters. 

Journal of the American Statistical Association. 94: 590–599. 

Raggi, D. (2005). Adaptive MCMC methods for inference on affine stochastic volatility 

models with jumps. Econometrics Journal. 8: 235–250. 

Rakesh, K. and Raj, S. D. (2010). Empirical analysis of conditional heteroskedasticity in 

time series of stock returns and asymmetric effect on volatility. Global Business 

Review. 11: 21–33. 

Redner, R. and Walker, H. (1984). Mixture densities maximum likelihood and the em 

 

 

 

 

 

 

 

 



 

80 

 

algorithm. Journal of Society for Industrial and Applied Mathematics. 26: 

195–235. 

Rios, M. P. and Lopes, H. F. (2013). The Extended Liu and West Filter: Parameter 

Learning in Markov Switching Stochastic Volatility Models. State-Space Models: 

Applications in Economics and Finance. 1: 23–61. 

Sadorsky, P. (2005). Stochastic volatility forecasting and risk management. Applied 

Financial Economics. 15: 121–135. 

Ser, H. and Clive, W. J. (2003). Forecasting volatility in financial markets: a review. 

Journal of Economic Literature. 5: 478–539. 

Shephard, N. (2005). Stochastic Volatility: Selected Readings. Oxford University Press, 

Oxford. 

Shibata, M. and Watanabe, T. (2005). Bayesian analysis of a Markov switching 

stochastic volatility model. Journal of the Japan Statistical Society. 35: 205–219. 

Smith, A. F. and Gelfand, A. E. (1992). Bayesian statistics without tears: A sampling 

resampling perspective. The American Statistician. 46: 84–88. 

Smith, D. R. (2002). Markov switching and stochastic volatility diffusion models of 

short-term interest rates. Journal of Business and Economic Statistics. 20: 

183–197. 

Taylor, S. J. (1986). Modelling Financial Time Series. Wiley Press, New York. 

Valle, C. A., Migonand, H. S. and Lopes, H. F. (2010). Bayesian modeling of  

financial returns: a relationship between volatility and trading volume. Applied 

Stochastic Models in Business and Industry. 26: 172–193. 

 

 

 

 

 

 

 

 



 

81 

 

Vo, M. T. (2009). Regime-switching stochastic volatility: evidence from the crude oil 

market. Energy Economics. 31: 779–788. 

Werner, K., Anton F. and Marcel C. M. (2014). Volatility forecast using hybrid neural    

Network models. Expert Systems with Applications. 41: 2437–2442. 

West, M. (1993). Approximating posterior distributions by mixture. Journal of the 

Royal Statistical Society: Series B. 55: 409–422. 

Yu, C. and Zhang, J. (2011). Bayesian approach to Markov switching stochastic volatility 

model with jumps. Communications in Statistics - Simulation and Computation. 

40: 1613–1626. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES 

 

 

 

 

 

 

                  

                     

 

 

 

 

 

 

 

 



 

APPENDIX A 

THE PROOF OF FILTERING PROBABILITY 

DISTRIBUTION FUNCTION 

  

Proof of proposition 6. Since  

1 1

1 1 1 1( , , , ) ( , , , , , )T T T T

T i T m T i T m T T lp h a s b y v p h a s b y y v v c         

by Bayesian rules , we can get   

1 1( , , , )T T

T i T mp h a s b y v    

1 1 1 1

1 1 1 1

1 1

1 1

( , , , , , ) ( , , , )

( , , , )

T T T T

T T l T i T m T i T m

T T

T T l

p y v c h a s b y v p h a s b y v

p y v c y v

 



   

 

    



 

1 1 1 1

1 1 1 1( , , , , , ) ( , , , )T T T T

T T l T i T m T i T mp y v c h a s b y v p h a s b y v           

1 1 1 1

1 1 1 1( , , , , , ) ( , , , , )T T T T

T T i T m T l T l T i T mp y h a s b y v c v p v c h a s b y v             

1 1

1 1( , , , )T T

T i T mp h a s b y v    . 

According to the CI rules, i.e. 1 1

1 1, , ,T T

T T T Ty s y v v h  and 1 1

1 1, ,T T

T T Tv s y v h  , we can 

obtain  

1 1( , , , )T T

T i T mp h a s b y v    

1 1

1 1( , ) ( ) ( , , , )T T

T T i T l T i T i T mp y h a p v c h a p h a s b y v         .         

From equations (4.1) and (4.3), we can get  

1 1( , , , )T T

T i T mp h a s b y v  
 

1 1

1 1( ) ( , , , )T T

i T li T i T mg y p h a s b y v    

 

 

 

 

 

 

 

 



 

84 
 

1 1

1 1 1 1( ) ( , , , , , )T T

i T li T j T n T i T m

j n

g y p h a s b h a s b y v  

       

1 1

1 1 1 1( ) [ ( , , , , , )T T

i T li T i T j T m T n

j n

g y p h a h a s b s b y v  

        

1 1 1 1

1 1 1 1 1 1 1 1( , , , , ) ( , , , )]T T T T

T m T j T n T j T np s b h a s b y v p h a s b y v    

        . 

By using the CI rules, i.e. 1 1

1 1 1 1, , ,T T

T T T Th s y v h s 

 
 
and 1 1

1 1 1 1, ,T T

T T Ts h y v s 

  , we 

can get  

1 1( , , , )T T

T i T mp h a s b y v    

1 1( ) ( , , ) ( , )i T li T i T j T m T m T n

j n

g y p h a h a s b p s b s b           

1 1

1 1 1 1( , , , )T T

T j T np h a s b y v  

    

According to equation (4.2) and (4.4), we can obtain  
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In order to calculate the result, we define 
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From equations (4.1), (4.3), (4.5) and (4.6), we obtain as  
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where l  is constant, satisfying 1 lv c . Hence proposition 6 has been proved. 
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THE PROOF OF SMOOTHING PROBABILITY 

DISTRIBUTION FUNCTION 

 

Proof of proposition 7. Since  
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From equation (B.1) , setting  
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because we know the value of each variable, so tlk is constant. Here 1t  , 

1 1 1( , )l lk p y v c   . by chain rule, The denominator of equation (B.1) can be written as: 

        

1 1

1 1 1 1 1 1

1 1

( , , , ) ( , , , )
T T

T T t t t t

t t t t l t l

t t t t

p y v y v p y v c v y k 
  

   

    

    .          (B.3) 

From equation (A.2), using Bayesian rules, when 1 t T  , we can get as 
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From equations (A.3) and (B.2), (B.4) can be rewritten as 
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tlk





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Comparing equations (B.5) and (A.4), we can get as 
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Here l is constant , satisfying t lv c .  

If we calculate the filtering probability density function of tim , we have to solve 

tim . Then by equation (B.6), we can get tlk . Therefore 
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According to equations (A.2) and (B.7), (B.1) can be rewritten as: 

                  
1 1( , , , )T T

t i t m tim timp h a s b y v      .                  (B.8) 
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1 1 1 1( , , , ) ( , , )]T j T i T m T n T n T i T mp h a h a s b s b p s b h a s b           . 

By using CI rules, 1 1, , ,T T T T Ty h s s h  , 1 1, ,T T T T Tv h s s h   , 1 1 ,T T T Th s h s 
 
and  

1 1T T Ts h s  , so we can obtain  

( 1) 1 1( , , , )T im T T l T i T mp y v c h a s b   
     

[ ( , ) ( , )T T j T l T j

j n

p y h a p v c h a      

1 1( , , ) ( , )]T j T i T n T n T mp h a h a s b p s b s b       . 

By equations (4.1), (4.2), (4.3) and (4.4), we get 

( 1) 1 1( , , , ) ( )T im T T l T i T m j T lj jin nm

j n

p y v c h a s b g y f p    
      

where l  is constant, satisfying, T lv c .  

Hence, when 1t T   

( 1)

( 1)

( )j T lj jin nm

T im j n

T im

Tl Tl

g y f p

k k










 


. 

When 1 1t T   ,  

1 1( , , , )T T

tim t t t i t mp y v h a s b  
    

1 1 1 1( , , , , , )T T

t t t j t n t i t m

j n

p y v h a s b h a s b          

1 1 1 1[ ( , , , , , )T T

t t t j t n t i t m

j n

p y v h a s b h a s b           

    1 1 1( , , , ) ( , , )]t j t i t m t n t n t i t mp h a h a s b s b p s b h a s b           

since 1 1 1 1, , ,T T

t t t t t ty v s h h s    , 1 1,t t t th s h s  and 1t t ts h s  , we can show 

1 1 1 1 1 1[ ( , , , ) ( , , )T T

tim t t t j t n t j t i t n

j n

p y v h a s b p h a h a s b       
        

1( , )]t n t mp s b s b    . 
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From equation (4.2) and (4.4), we can get 
 

1 2 1 2 1 1( , , , , , )T T

tim t t t l t t j t n jin nm

j n

p y y v c v h a s b f p      
      

2 2 1 1 1 1[ ( , , , , , )T T

t t t j t n t t l

j n

p y v h a s b y v c            

1 1 1 1( , , , ) ]t t l t j t n jin nmp y v c h a s b f p       

2 2 1 1 1 1[ ( , , , , , )T T

t t t j t n t t l

j n

p y v h a s b y v c            

1 1 1 1 1 1 1( , , , ) ( , , ) ]t t j t n t l t l t j t n jin nmp y h a s b v c p v c h a s b f p             , 

since 1 1 1 1,t t t ty v s h    , 2 2 1 1 1 1, , ,T T

t t t t t ty v v y h s      and 1 1 1t t tv s h   , according to 

equations (4.1) and (4.3) , so we can get as 

2 2 1 1 1 1 1 1( , , , ) ( , ) ( , )

          

T T

tim t t t j t n t t j t l t j

j n

jin nm

p y v h a s b p y h a p v c h a

f p

          
       

 

2 2 1 1 1( , , , ) ( )T T

t t t j t n j t lj jin nm

j n

p y v h a s b g y f p       
 

( 1) 1( )t jn j t lj jin nm

j n

g y f p  
 . 

Hence  

                  
( 1) 1( )tim t jn j t lj jin nm

j n

g y f p   
  .                  (B.9) 

This is a backward formula to solve for tim  . By equation (B.7) , we can get as  

                       
1

T

tim tim t l

t t

k  

 

                           (B.10) 

submitting (B.10) into (B.9), equation (B.9) can be rewritten as 

( 1) 1

1 2

( ) ( )
T T

tim t l t jn t l j t lj jin nm

j nt t t t

k k g y f p    

    

  . 

Hence, when 1 1t T     
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( 1) 1

( 1)

1
( )tim t jn j t lj jin nm

j nt l

g y f p
k

   



   

where l  is constant, satisfying 1t lv c  . 

Therefore, by equation (B.8), the smoothing probability density function

1 1( , , , )T T

t i t m tim timp h a s b y v       can be obtained as: 

When 1t T   

1 1 1 1 ( 1)

1
( , , , ) [ ( ) ]T T

T i T m j T lj jin nm T im

j nTl

p h a s b y v g y f p
k

         

where 
( 1)( )Tl Ti m i T l i i j m m n T j n

i m i m j n

k g y f p             
     

    . 

     When 1 1t T    

1 1 ( 1) 1

( 1)

1
( , , , ) [ ( ) ]T T

t i t m t jn j t lj jin nm tim

j nt l

p h a s b y v g y f p
k

    



     

( 1) ( 1)( )t l Ti m i t l i i j m m n t j n

i m i m j n

k g y f p                
     

    . 

                                                                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

APPENDIX C 

CALCULATING THE EXPECTATION OF LOG 

LIKELIHOOD FUNCTION 

 

Proof of the third term of equation (4.19). 

( )

1

2

( , ) log ( , , )
T

w

t t t

H S t

q H S p h s h   



   

1 1

( )

1 1 1

2 , , ,

( , , , ) log ( , , )
t t t t

T
w

t t t t t t t

t h s h s

q h s h s p h s h 
    

        



  .                        (C.1) 

Now we only calculate ( )

1 1( , , , )w

t t t tq h s h s    
.  

When 2 t T  , using Bayesian rules, we obtain as 

( )

1 1( , , , )w

t t t tq h s h s    
 

( 1)

1 1( , , , , , )w

t t t tp h s h s V Y  

      

( 1)

1 1 1 1( , , , , , )T T w

t t t tp h s h s v y  

      

( 1)

1 1 1 1 1 1( , , , , , , , )t t T T w

t t t t t tp h s h s v y v y 
  

          

( 1)

1 1 1 1 1 1 ( 1)

1 1 1 1( 1)

1 1 1 1

( , , , , , , , )
( , , , , , )

( , , , )

T T t t w

t t t t t t t t w

t t t tT T t t w

t t

p v y h s h s v y
p h s h s v y

p v y v y






  

           

      

  

  

( 1)

1 1 ( 1)

1 1 1 1( 1)

1 1 1 1

( , , , )
( , , , , , )

( , , , )

T T w

t t t t t t w

t t t tT T t t w

t t

p v y h s
p h s h s v y

p v y v y








       

      

  

 .                    (C.2) 

By equation (B.7), setting  

                   

( 1 )

1 1( 1)

( 1)

1 1 1 1

( , , , )

( , , , )

T T w

t t t tw

t T T t t w

t t

p v y h s

p v y v y








    

   

  

 .                     (C.3)  
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Putting equation (C.3) into (C.2), and using Bayesian rules again, then (C.2) can be 

rewritten as 

( )

1 1( , , , )w

t t t tq h s h s    
 

( 1) ( 1)

1 1 1 1( , , , , , )w t t w

t t t t tp h s h s v y 
  

       

( 1) 1 1 ( 1)

1 1 1 1( , , , , , , , )w t t w

t t t t t t tp h s h s v v y y 
    

         

1 1 ( 1)

1 1 1 1( 1) 1 1 ( 1)

1 1 1 11 1 ( 1)

1 1

( , , , , , , , )
( , , , , , )

( , , , )

t t w

t t t t t tw t t w

t t t t tt t w

t t

p v y h s h s v y
p h s h s v y

p v y v y


 



   

           

        

 

 . 

Since 1 1

1 1 1 1, , , , ,t t

t t t t t tv s h s v y y h
  

        and 1 1

1 1 1 1, , , ,t t

t t t t ty s h s v y h
  

       

1 1

1 1 1 1, , ,t t

t t t th s v y h s
  

     and 1 1

1 1 1 1, ,t t

t t ts h v y s
  

    , we can get as  

( )

1 1( , , , )w

t t t tq h s h s    
 

( 1) ( 1)

( 1) 1 1 ( 1)

1 1 1 11 1 ( 1)

1 1

( , ) ( , )
( , , , , , )

( , , , )

w w

t t t tw t t w

t t t t tt t w

t t

p v h p y h
p h v y h s s

p v y v y

 
 



 

        

        

 

   

1 1 ( 1) 1 1 ( 1)

1 1 1 1 1 1 1 1( , , , , ) ( , , , )t t w t t w

t t t t tp s v y h s p h s v y 
        

       
 

( 1) ( 1)

( 1) ( 1) ( 1)

1 11 1 ( 1)

1 1

( , ) ( , )
( , , ) ( , )

( , , , )

w w

t t t tw w w

t t t t t tt t w

t t

p v h p y h
p h h s p s s

p v y v y

 
  



 

     

         

 

                               

1 1 ( 1)

1 1 1 1( , , , )t t w

t tp h s v y 
   

  
                                           (C.4) 

by equations (4.1), (4.2), (4.3) and (4.4), then (C.4) can be rewritten as 

( )

1 1( , , , )w

t i t m t j t nq h a s b h a s b         

( 1) ( 1)
( 1) ( 1) ( 1) ( 1)

( 1)( 1)

( )w w
w w w wli i t

t im ijm mn t jnw

t l

g y
f p

k


 

 
   

 



 .                                 (C.5) 

Hence when 2 t T  , (C.1) can be obtained as
 

( )

1

2

( , ) log ( , , )
T

w

t i t j t m

H S t

q H S p h a h a s b   



     
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( 1) ( 1)
( 1) ( 1) ( 1) ( 1)

( 1) 1( 1)

( )
log ( , )

w w
w w w wli i t

t im ijm mn t jn t i t j t mw
t i j m n t l

g y
f p p h a h a s b

k


 

 
   

     
 

     

( 1) ( 1)
( 1) ( 1) ( 1) ( 1)

( 1)( 1)

( )
log

w w
w w w wli i t

t im ijm mn t jn ijmw
t i j m n t i m

i m

g y
f p f


 



 
   

 
   

 







.               (C.6) 

When t T  , using the CI rules, that is 1 1

1 1 1 1, , , , ,T T

T T T T T Tv s h s v y y h 

  and 

1 1

1 1 1 1, , , ,T T

T T T T Ty s h s v y h 

   and 1 1

1 1 1 1, , ,T T

T T T Th s v y h s 

  and  

1 1

1 1 1 1, ,T T

T T Ts h v y s 

  , we can get as  

( )

1 1( , , , )w

t t t tq h s h s    
 

( )

1 1( , , , )w

T T T Tq h s h s   

( 1)

1 1 1 1( , , , , , )T T w

T T T TP h s h s v y  

   

1 1 ( 1)

1 1 1 1( , , , , , , , )T T w

T T T T T TP h s h s v y v y   

   

1 1 ( 1)

1 1 1 1 1 1 ( 1)

1 1 1 11 1 ( 1)

1 1

( , , , , , , , )
( , , , , , )

( , , , )

T T w

T T T T T T T T w

T T T TT T w

T T

p v y h h s s v y
p h s h s v y

p v y v y






  

    

   
  

( 1) ( 1)

1 1 ( 1)

1 1 1 11 1 ( 1)

1 1

( , ) ( , )
( , , , , , )

( , , , )

w w

T T T T T T w

T T T TT T w

T T

p v h p y h
p h h s s v y

p v y v y

 




 

  

   
   

1 1 ( 1) 1 1 ( 1)

1 1 1 1 1 1 1 1( , , , , ) ( , , , )T T w T T w

T T T T Tp s h s v y p h s v y      

   
 

( 1) ( 1)

( 1) ( 1)

1 11 1 ( 1)

1 1

( , ) ( , )
( , , ) ( , )

( , , , )

w w

T T T T w w

T T T T TT T w

T T

p v h p y h
p h h s p s s

p v y v y

 
 



 

 

   
 

   

  1 1 ( 1 )

1 1 1 1( , , , )T T w

T Tp h s v y   

  .                                        (C.7) 

By equations (4.1), (4.2), (4.3) and (4.4), then (C.7) can be rewritten as

( 1) ( 1)
( ) ( 1) ( 1) ( 1)

1 1 ( 1)( 1)

( )
( , , , )

w w
w w w wli i T

T i T m T j T n ijm mn T jnw

Tl

g y
q h a s b h a s b f p

k




 
  

  
      

                                     (C.8) 
( 1) ( 1)

( 1) ( 1) ( 1)

( 1)( 1)

( )w w
w w wli i T

ijm mn T jnw

Ti m

i m

g y
f p






 
  



 

 



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Hence when t T  , (C.8) can be obtained as 

( )

1( , ) log ( , , )w

T i T j T m

H S

q H S p h a h a s b     

( )

1 1 1( , , , ) log ( , , )w

T i T m T j T n T T T

i j m n

q h a s b h a s b p h h s         

( 1) ( 1)
( 1) ( 1) ( 1)

( 1)( 1)

( )
log

w w
w w wli i T

ijm mn T jn ijmw

Ti m

i m

g y
f p f






 
  



 

 




. 

So according to (C.6) and (C.8), (C.1) can be obtained as 

When 2 t T  , 
 

( )

1

2

( , ) log ( , , )
T

w

t t t

H S t

q H S p h s h   



   

( 1) ( 1)1
( 1) ( 1) ( 1) ( 1)

( 1)( 1)
2

( )
log

w wT
w w w wli i t

t im ijm mn t jn ijmw
t i j m n t i m

i m

g y
f p f


 



 
   

 
   

 

 





 

( 1) ( 1)
( 1) ( 1) ( 1)

( 1)( 1)

( )
log

w w
w w wli i T

ijm mn T jn ijmw

Ti m

i m

g y
f p f






 
  



 

 


. 

Hence we have obtained equation (4.26).

                                                                     
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