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CHAPTER I

INTRODUCTION

In this chapter, we discuss some models of population dynamics. We give

an introduction to the predator-prey model and the epidemic model, where we

follow the standard works (Gopalsamy, 1992; Hassell, 1978; Driver, 1977; Hethcote,

1989). The final goal of this chapter will be the derivation of the necessity for our

studies.

1.1 Remarks on Models of Single Species Dynamics

Mathematical descriptions of ecological systems may be made for two quite

different purposes, one practical and the other theoretical (Maynard Smith, 1974).

We begin with some remarks on models of single species dynamics (Gopal-

samy, 1992). Most of the differential equation models of population dynamics have

been derived starting from the following simple format

dN(t)

dt
=

{
an individual’s contribution

to population change in unit time

}
N(t) (1.1)

where N(t) denotes the density of a population (or biomass) of a single species

at time t. Subsequently, one makes an assumption regarding the factor inside the

braces in (1.1). In particular, if one assumes that an individual’s contribution to

the change in population in unit time is denoted by a function, say f(N), defined

suitably for all t > 0, N ≥ 0, then one obtains from (1.1) the so called Kolmogorov

formulation in the form

dN(t)

dt
= f (t, N(t))N(t). (1.2)
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Various choices of f together with some ecologically plausible assumptions

such as the temporal constancy of the environment and density dependent effects in

f lead to several well known ordinary differential equations of population dynam-

ics. For instance, if f(t, N) ≡ r (a positive constant) one obtains the Malthusian

formulation

dN(t)

dt
= rN(t) (1.3)

and if one assumes f(t, N) ≡ r − (r/K)N for some positive constants r and K,

one gets the familiar logistic equation

dN(t)

dt
= rN(t)

(
1− N(t)

K

)
. (1.4)

The above logistic equation implies a monotonic approach as t → ∞ of the

population density to the steady state N(t) ≡ K.

1.2 Review on Predator-Prey Models

The predator-prey system is an important population model and has been

been studied by many authors (Hassell, 1978; Jiao, Cai and Chen, 2011; Wang

and Chen, 1997; Berezovskaya, Song and Castillo-Chavez, 2010; Georgescu and

Hsieh, 2007). For instance, three types of predator-prey interactions have been

observed by Hassell (1978): (1) those where the prey becomes extinct (e.g. Gause,

1934; Luchinbill, 1973); (2) those where both populations oscillate out of phase

with each other (e.g. Huffaker, 1958; Huffaker, Shea and Herman, 1963); and

(3) those where both populations persist, but fluctuate less regularly (e.g. Utida,

1957; Burnett, 1977).

There is a well-known model (Driver, 1977), which was invented and studied

by Lotka (1925) and Volterra (1926). Let x(t) be the population at time t of some

animal species called prey and let y(t) be the population of a predator species which
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lives on these prey. We assume that x(t) would increase at a rate proportional to

x(t) if the prey were left alone, i.e., we would have x′(t) = a1x(t), where a1 > 0.

However the predators are hungry, and the rate at which each of them eats prey

is limited only by his ability to find prey. Thus we shall assume that the activities

of the predators reduce the growth rate of x(t) by an amount proportional to the

product x(t)y(t), i.e.,

x′(t) = a1x(t)− b1x(t)y(t),

where b1 is another positive constant.

Now let us also assume that the predators are completely dependent on the

prey as their food supply. If there were no prey, we assume y′(t) = −a2y(t), where

a2 > 0, i.e., the predator species would die out exponentially. However, given food

the predators breed at a rate proportional to their number and to the amount of

food available to them. Thus we consider the pair of equations x′(t) = a1x(t)− b1x(t)y(t)

y′(t) = −a2y(t) + b2x(t)y(t),
(1.5)

where a1, a2, b1 and b2 are positive constants. This well-known model is the most

primitive predator-prey population model.

From the book of Cushing (1987), we know that in order to gain a better

understanding of the dynamics of biological populations, theoretical biologists and

applied mathematicians have modified classical models and modeling methodolo-

gies in many ways. All mathematical models make simplifying assumptions, of

course, and there is a relentless trade-off between biological accuracy and mathe-

matical tractability. One way to view many of the simplifying assumptions made

in population models is with regard to various uniformities and homogeneities that

are either explicitly or implicitly postulated. For example, two common simplifi-

cations concern homogeneities in space and time. There exists now a rather large

 

 

 

 

 

 

 

 



4

and growing body of literature on predator-prey models for biological populations

(Berezovskaya, Song and Castillo-Chavez, 2010; Chen, Huang, Ruan and Wang,

2013; Jiao, Pang, Chen and Luo, 2008; Jiao and Chen, 2012).

1.3 Review on Epidemic Model

Mass immunization is often used as a tool to control the transmission of

epidemics. Pulse vaccination is an important and effective strategy for the elim-

ination of infectious diseases, and has been considered in much literature (Agur,

Cojocaru, Mazor, Anderson and Danon, 1993; Lu, Chi and Chen, 2002; Meng and

Chen, 2008b; Shulgin, Stone and Agur, 1998; Stone, Shulgin and Agur, 2000; Gao,

Teng and Xie, 2009; Gakkhar and Negi, 2008).

In the classical epidemiological model, the population is usually divided

into disjoint three classes, which we can refer to the paper of Hethcote (1989).

The susceptible class consists of those individuals who can incur the disease but

are not yet infective. The infective class consists of those who are transmitting the

disease to others. The removed class consists of those who are removed from the

susceptible-infective interaction by recovery with immunity, isolation, or death.

The fractions of the total population in these classes are denoted by S(t), I(t) and

R(t), respectively.

Hethcote (1989) investigated an SIR model of an endemic disease with vital
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dynamics as follows:

(NS(t))′ = −λSNI + µN − µNS,

(NI(t))′ = λSNI − γNI − µNI,

(NR(t))′ = γNI − µNR,

NS(0) = NS0 > 0, NI(0) = NI0 ≥ 0,

NR(0) = NR0 ≥ 0,

NS(t) +NI(t) +NR(t) = N,

(1.6)

where the contact rate λ, the removal rate constant γ and the death rate constant

µ are positive constants.

If each equation in (1.6) is divided by N , then the IVP in terms of S(t) and

I(t) is 

S ′(t) = −λSI + µ− µS,

I ′(t) = λSI − γI − µI,

S(0) = S0 > 0, I(0) = I0 ≥ 0.

(1.7)

For more details of SIS and SIR models, we refer to Hethcote (1989), Gao

et al., (2006).

Epidemiological models are now widely used as more epidemiologists realize

the role that modeling can play in basic understanding and policy development

(e.g. Gao et al., 2009; Gao, Zhang and He, 2013; Xu, 2013, 2014).

1.4 Stage-Structured Population Model and Impulsive Ef-

fects

In the real world, there are many species whose individual members have a

life history that takes them through two stages, immature and mature. That is,
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stage structure was introduced in biological models, and stage-structured models

have attracted much attention in recent decades. A systematic consideration for

stage-structured models can be found in the literature (Nisbet et al., 1986; Nisbet

and Gurney, 1984; Nisbet et al., 1989). In 1990, Aiello and Freedman (Aiello

and Freedman, 1990) considered a single species model with stage structure and

discrete delay, showed that there exists a globally asymptotically stable equilibrium

for this model. An excellent survey on the dynamics of stage-structured population

models was made in (Liu and Chen, 2002). Predator-prey models with stage

structure for the predator have also received considerable attention in recent years.

For example, we can refer to (Georgescu and Hsieh, 2007; Xiao and Chen, 2004;

Liu and Beretta, 2006; Aiello et al., 1992; Xu, 2011; Wang and Chen, 1997; Wang

et al., 2001).

It is known that many biological phenomena involving thresholds, bursting

rhythm models in medicine and biology, optimal control models in economics,

pharmacokinetics and frequency modulated systems, do exhibit impulsive effects.

Thus impulsive differential equations, i.e., differential equations involving impulse

effects, appear as a natural description of observed evolution phenomena of several

real world problems, which have been introduced into population dynamics lately

(Lakshmikantham, Bainov and Simeonov, 1989; Liu and Chen, 2003). Impulsive

equations have been studied in many investigations (Jiao et al., 2008b; Jiao and

Chen, 2008).

Thus, there is a need to investigate stage-structured population models with

impulse.

 

 

 

 

 

 

 

 



CHAPTER II

PRELIMINARIES

In this chapter, we start discussing the concept of persistence and extinc-

tion, an important concept for biological systems. Then, we review the mathemat-

ical theory and techniques that are important in the study of nonlinear difference

equations and systems, where we follow the work (Allen, 2007; Edelstein-Keshet,

1988; Cantrell and Cosner, 1996; Cao and Gard, 1998). The main objective of this

chapter is to pave the way for our study.

2.1 Concept of Persistence and Extinction

Basically, persistence of a system means no state of the system approaches

zero, that is, there can be no extinction of any of the populations that make up

the biological system (Allen, 2007).

Definition 2.1. Given a system of differential equations,
dX

dt
= F (X, t), X(0) =

X0, where X(t) = (x1(t), x2(t), · · · , xn(t))
T , the system is said to be persistent if

for any positive initial conditions X0 > 0, the solution X(t) satisfies

lim inf
t→∞

xi(t) > 0

for i = 1, 2, · · · , n.

There are other definitions of persistence that either weaken or strengthen

the previous definition. For example, the system is said to be weakly persistent if

lim sup
t→∞

xi(t) > 0
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for i = 1, 2, · · · , n; uniformly persistent if there exists δ > 0 such that

lim inf
t→∞

xi(t) > δ

for i = 1, 2, · · · , n; permanent if there exists a time T > 0 and a compact set

K in the interior of the positive cone, Rn
i = {(x1, x2, · · · , xn) ∈ Rn|xi > 0, i =

1, 2, · · · , n} such that X(t) ∈ K for t > T .

Weak persistence and persistence are generally not very good indications of

population survival because solutions may be initial condition dependent. For ex-

ample, in the case of persistence, there could be a set of initial conditions {Xk
0 }∞k=1

such that the corresponding solution Xk(t) = (xk
i (t)) satisfies

ϵk > lim inf
t→∞

xk
i (t) > 0,

where ϵk → 0 as k → ∞ for some i. Even uniform persistence and permanence may

not be very good measures of survival since solutions may approach very close to

the extinction boundaries if δ is small or the compact setK is close to the extinction

boundaries. Another more reasonable type of persistence criterion is referred to

as practical persistence. Practical persistence requires that the bounds on the

solutions be specified a priori. Given Li > 0 and Mi > 0, solution xi(t) exhibit

practical persistence if 0 < Li < lim inf
t→∞

xi(t) ≤ lim sup
t→∞

xi(t) ≤ Mi, i = 1, 2, · · · , n

(Cantrell and Cosner, 1996; Cao and Gard, 1998).

In general, practical persistence implies permanence. Persistence implies

weak persistence. If solutions are uniformly bounded, lim sup
t→∞

xi(t) < M, i =

1, · · · , n, then uniform persistence and permanence are equivalent. If a system

has a globally stable equilibrium in Rn
+, then it is permanent. The converse of this

statement is not true. If a system is permanent, it may not have a globally stable

equilibrium. Further discussion and examples of systems that are permanent or

persistent may be found in Hofbauer and Sigmund (1988, 1998) or Freedman and
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Moson (1990).

2.2 Discrete Dynamical System

Some mathematical problems of interest in nonlinear difference equations

include identification of equilibrium and periodic solutions and analyses of the sta-

bility of these types of solutions. Equilibrium solutions are biologically interesting

because they represent “resting states” or “stationary states” of the system. The

zero solution is often an equilibrium solution. If the zero solution is stable, then

the system may approach zero. However, if a positive solution is an equilibrium

solution and it is stable, then for initial values close to this equilibrium, solutions

approach it. In population dynamics, the zero equilibrium represents population

extinction and a positive equilibrium represents survival of the population. The ze-

ro equilibrium is often not a desired state, unless, for example, the state represents

the proportion of the population that is infected or a population of pests.

It is important to distinguish between local and global stability. Local

stability of an equilibrium implies that solutions approach the equilibrium only

if they are initially close to it. For example, if the initial population size is very

small and the zero equilibrium is stable, then extinction of the population may

occur. However, if the initial population size is large, then local stability of the

zero equilibrium tells nothing about population extinction. Global stability of

an equilibrium is much stronger. Global stability implies that regardless of the

initial population size, solutions approach the equilibrium. We state conditions

for local stability and global stability of an equilibrium in the case of a scalar

difference equation, where only one state is modeled such as population size. In

addition, we state conditions for local stability of an equilibrium when several

states are modeled by first-order difference equations or when one state is modeled
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by a second-order or higher-order difference equation. These latter conditions are

known as the Jury conditions (Allen, 2007).

First, we concentrate on first-order equations and systems.

2.2.1 Basic Definitions and Notation

Definition 2.2. For the first-order difference equation,

xt+1 = f(xt), (2.1)

an equilibrium solution or steady-state solution is a constant solution x̄ to the

difference equation, that is, a solution x̄ satisfying

x̄ = f(x̄). (2.2)

For the first-order system, Xt+1 = F (Xt), an equilibrium solution or a steady-state

solution is a constant solution X̄ satisfying

X̄ = f(X̄). (2.3)

solution x̄ satisfying (2.2) or X̄ satisfying (2.3) are also called fixed points of the

function f or F , respectively.

The term “equilibrium solution” or “steady-state solution” is often short-

ened to “equilibrium” or “steady-state.” For the two-dimensional, first-order sys-

tem,

xt+1 = f(xt, yt),

yt+1 = g(xt, yt),

an equilibrium solution is a solution (x̄, ȳ) such that x̄ = f(x̄, ȳ) and

ȳ = g(x̄, ȳ). An equilibrium solution for a higher-order difference equation

f(xt+k, · · · , xt+1, xt) = 0 is a solution x̄ satisfying f(x̄, · · · , x̄, x̄) = 0.
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For convenience, we introduce an alternate notation for the solution at time

t, xt in (2.1). The solution can be expressed in terms of the initial value x0. Denote

f(f(x0)) = f 2(x0). In general,

xt = f(f(· · · f(x0) · · · )) = f t(x0),

where the superscript t represents the number of time steps or iterations beginning

from the initial value x0.

Solutions to the difference equation (2.1) may exhibit periodic behavior.

Definition 2.3. A periodic solution of period m > 1 of the difference equation

(2.1) is a real-valued solution x̄k satisfying

fm(x̄k) = x̄k and f i(x̄k) ̸= x̄k for i = 1, 2, . . . ,m− 1.

An m-cycle is a set of points {x̄1, x̄2, · · · , x̄m}, where for each k = 1, · · · ,m, x̄k

is a periodic solution of period m. The set {x̄1, f(x̄1), · · · , fm−1(x̄1)} is called the

periodic orbit of x̄1. A periodic solution of period m of the first order system

Xt+1 = F (Xt) is a real-valued vector X̄k satisfying

Fm(X̄k) = X̄k and F i(X̄k) ̸= X̄k for i = 1, 2, . . . ,m− 1.

An m-cycle is a set of vectors {X̄1, F (X̄1), · · · , Fm−1(X̄1)} is called the periodic

orbit of X̄1.

If x̄k, k = 1, · · · ,m− 1 is a periodic solution, then each x̄k is a fixed point

of the functions fm, f 2m, f 3m, and so on (or X̄k is a fixed point of the functions

Fm, F 2m, F 3m, and so on). In addition, Definition 2.3, implies that a solution of

period m is the smallest value such that fm(x̄k) = x̄k or Fm(X̄k) = X̄k.

Next, we define the local stability of an equilibrium. An equilibrium is

called locally asymptotically stable if for any small perturbation away from the
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equilibrium, the solution returns to the equilibrium value. In mathematical ter-

minology,

Definition 2.4. An equilibrium solution x̄ of (2.1) is locally stable if, for any

ϵ > 0, there exists δ > 0 such that if |x0 − x̄| < δ, then

|xt − x̄| = |f t(x0)− x̄| < ϵ for every t ≥ 0.

If x̄ is not stable it is said to be unstable. The equilibrium solution x̄ is locally

attracting if there exists γ > 0 such that for all |x0 − x̄| < γ.

lim
t→∞

xt = lim
t→∞

f t(x0) = x̄.

The equilibrium solution x̄ is locally asymptotically stable if it is locally stable

and locally attracting.

The convergence behavior for a first-order difference equation of the form

(2.1) that is locally asymptotically stable may take one of two forms, either con-

vergent oscillations or convergent exponential solutions. If the solution values tend

to amplify themselves and do not converge to the equilibrium no matter how small

the value of ϵ, then the equilibrium is unstable. Such instability may appear as

divergent oscillations or divergent exponential solutions. The case where solutions

do not converge toward or diverge away from the equilibrium is sometimes referred

to as neutral stability (stable, but not asymptotically stable).

In the next sections, we give criteria for determining local stability for first-

order equations and systems.

2.2.2 Local Stability in First-Order Equations

In a study of local stability, first equilibrium solutions are identified, then

linearization techniques are applied to determine the behavior of solutions near the
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equilibrium. If the equilibrium is stable for any set of initial conditions, then this

type of stability is referred to as global stability. Some techniques for determining

global stability of first-order difference equations are studied in the next section.

In the particular case of linear difference equations or linear first-order systems, it

will be seen that local and global stability are equivalent (Allen, 2007).

Suppose that the difference equation (2.1) has an equilibrium at x̄. The

equilibrium is translated to the origin by defining a new variable,

ut = xt − x̄.

Then ut+1 satisfies

ut+1 = xt+1 − x̄ = f(xt)− x̄ = f(ut + x̄)− f(x̄) = g(ut), (2.4)

where g(u) = f(u + x̄) − f(x̄). The equilibrium x̄ in the original system has

been translated to zero in the new system. Note that zero is a fixed point of g

iff x̄ is a fixed point of f . In addition, zero is a locally stable (unstable or locally

asymptotically stable) fixed point of g iff x̄ is a locally stable (unstable or locally

asymptotically stable) fixed point of f .

To find conditions for local asymptotic stability of x̄, we assume f has a

continuous second-order derivative in some interval I containing x̄. Then Taylor’s

Theorem with remainder can be applied,

f(x) = f(x̄) + f ′(x̄)(x− x̄) +
f ′′(ξ)

2!
(x− x̄)2

for some ξ ∈ I. For (x− x̄t) sufficiently small, the following linear approximation

is valid: f(xt) − x̄ ≈ f ′(x̄)(xt − x̄) or ut+1 ≈ f ′(x̄)ut. We refer to this latter

approximation as the linear approximation to the difference equation (2.1) at the

equilibrium x̄:

ut+1 = f ′(x̄)ut. (2.5)
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If x0 is sufficiently close to x̄ then the dynamics of ut are determined by the lin-

earization (2.5). The value of f ′(x̄) determines whether x̄ is locally asymptotically

stable or unstable. If |f ′(x̄)| > 1, then ut will not approach 0 (and xt will not

approach x̄), and if |f ′(x̄)| < 1, then ut approaches 0 (and xt approaches x̄).

There is exponential convergence if 0 < f ′(x) < 1 and oscillatory convergence if

−1 < f ′(x) < 0. We have the following theorem.

Theorem 2.1. Assume f ′ is continuous on an open interval I containing x̄ and

x̄ is a fixed point of f . Then x̄ is a locally asymptotically stable equilibrium of

xt+1 = f(xt) if

|f ′(x̄)| < 1

and unstable if

|f ′(x̄)| > 1.

A rigorous proof of Theorem 2.1 is based on the Mean Value Theorem and

only requires that f ′ be continuous (Allen, 2007).

The criterion for stability in Theorem 2.1 can be applied to periodic solu-

tions. In the case of a periodic solution of period m, the function fm(x) is used

instead of f(x).

Theorem 2.2. Suppose f ′ is continuous on an open interval I and the m-cycle,

{x̄1, f(x̄1), · · · , fm−1(x̄1)}

of the difference equation (2.1) is contained in I. Then the m-cycle is locally

asymptotically stable if

∣∣∣∣d[fm(x̄k)]

dx

∣∣∣∣ < 1 (2.6)
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for some k and unstable if ∣∣∣∣d[fm(x̄k)]

dx

∣∣∣∣ > 1 (2.7)

for some k.

2.2.3 Global Stability in First-Order Equations

Global stability of an equilibrium removes the restrictions on the initial

conditions. In global asymptotic stability, solutions approach the equilibrium for

all initial conditions. However, because of our applications to biological systems,

we consider only positive initial conditions. In addition, we distinguish between

global attractivity and global asymptotic stability.

Definition 2.5. Suppose x̄ is an equilibrium of the difference equation

xt+1 = f(xt), (2.8)

where f : [0, a) → [0, a), 0 < a ≤ ∞. Then x̄ is said to be globally attractive if

for all initial conditions x0 ∈ (0, a), lim
t→∞

xt = x̄. The equilibrium x̄ is said to be

globally asymptotically stable if x̄ is globally attractive and if x̄ is locally stable.

Globally attractive equilibria are locally attractive, and therefore globally

asymptotically stable equilibria are locally asymptotically stable. Sedaghat (1997)

proved that if the map f is continuous, then a globally attracting equilibrium must

be locally asymptotically stable. Thus, for a continuous map f , global attractivity

is equivalent to global asymptotic stability (Allen, 2007).

In the global definitions given in Definition 2.5, it is assumed that solutions

are nonnegative; the initial conditions and f are restricted to the interval [0, a).

For biological models, this is a reasonable assumption. It is often the case in

biological models that zero is an equilibrium, f(0) = 0. If there is an additional

 

 

 

 

 

 

 

 



16

positive equilibrium. f(x̄) = x̄, a question of interest is whether the zero or positive

equilibrium is globally asymptotically stable. An analogous definition for global

asymptotic stability of an equilibrium X̄ for first-order systems, Xt+1 = F (Xt),

can be stated.

First, we make some assumptions about the function f .

(i) f is a continuous function on [0, a), 0 < a ≤ ∞.

(ii) f : [0, a) → [0, a), 0 < a ≤ ∞.

Because of assumption (i), continuity of f , global asymptotic stability and

global attractivity are equivalent.

The following result shows global asymptotic stability of the origin; solu-

tions approach zero (extinction).

Theorem 2.3. If the function f of (2.8) satisfies (i), (ii), and 0 < f(x) < x for

all x ∈ (0, a), then the origin is globally asymptotically stable.

2.2.4 Stability in First-Order Systems

We provide a simple criterion for verifying local asymptotic stability of an

equilibrium solution to a first-order system of difference equations. We derive cri-

teria for the equilibrium (x̄, ȳ) of the following two-dimensional first-order system

to be locally asymptotically stable.

xt+1 = f(xt, yt),

yt+1 = g(xt, yt).
(2.9)

Before we state the stability result for system (2.9), we linearize the system about

the equilibrium.

We assume that f and g have continuous second-order partial derivatives

in an open set containing the equilibrium (x̄, ȳ). Then applying a Taylor series
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expansion about the equilibrium for the function f(x, y) yields

f(x, y) = f(x̄, ȳ) +
∂f(x̄, ȳ)

∂x
(x− x̄) +

∂f(x̄, ȳ)

∂y
(y − ȳ)

+
∂2f(x̄, ȳ)

∂x2

(x− x̄)2

2!
+

∂2f(x̄, ȳ)

∂y2
(y − ȳ)2

2!
+ · · · ,

where the notation

∂f(x̄, ȳ)

∂x
=

∂f(x, y)

∂x

∣∣∣∣
(x,y)=(x̄,ȳ))

has been used.

Denote u = x− x̄ and v = y − ȳ. Then we have

f(x, y) ≈ f(x̄, ȳ) +
∂f(x̄, ȳ)

∂x
(x− x̄) +

∂f(x̄, ȳ)

∂y
(y − ȳ)

= x̄+
∂f(x̄, ȳ)

∂x
u+

∂f(x̄, ȳ)

∂y
v.

A similar approximation for g yields

g(x, y) ≈ ȳ +
∂g(x̄, ȳ)

∂x
u+

∂g(x̄, ȳ)

∂y
v.

The linearization of the system (2.9) about the equilibrium (x̄, ȳ), where ut = xt−x̄

and vt = yt − ȳ, is given by

Xt+1 = JXt,

where Xt = (ut, vt)
T and J is the Jacobian matrix of (f, g)T evaluated at the

equilibrium (x̄, ȳ),

J =


∂f(x̄, ȳ)

∂x

∂f(x̄, ȳ)

∂y

∂g(x̄, ȳ)

∂x

∂g(x̄, ȳ)

∂y

 .

Let the Jacobian matrix J be denoted by (aij), where the elements (aij)

represent the partial derivatives of f or g evaluated at the equilibrium point.

Recall that the eigenvalues of the Jacobian matrix J = (aij) are found by solving

det(J − λI) = 0 or

det

 a11 − λ a12

a21 a22 − λ

 = 0.
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in a simplified form, the characteristic equation is

λ2 − (a11 + a22)λ+ a11a22 − a21a12 = 0 or λ2 − Tr(J)λ+ det(J) = 0.

There is an easy check for local stability in the two-dimensional case. Local

stability depends on the values of the trace and the determinant of the Jacobian

matrix. The proof follows Edelstein-Keshet (1988).

Theorem 2.4. Assume the functions f(x, y) and g(x, y) have continuous first-

order partial derivatives in x and y on some open set in R2 that contains the point

(x̄, ȳ). Then the equilibrium point (x̄, ȳ) of the nonlinear system

xt+1 = f(xt, yt), yt+1 = g(xt, yt),

is locally asymptotically stable if the eigenvalues of the Jacobian matrix J evaluated

at the equilibrium satisfy |λj| < 1 iff

|Tr(J)| < 1 + det(J) < 2. (2.10)

The equilibrium is unstable if some |λj| > 1, that is, if any one of three inequalities

is satisfied,

Tr(J) > 1 + det(J). Tr(J) < −1− det(J), or det(J) > 1. (2.11)

 

 

 

 

 

 

 

 



CHAPTER III

A PREDATOR-PREY MODEL WITH

IMPULSIVE DIFFUSION AND RELEASE OF

PREDATOR POPULATION

In this chapter, we investigate a predator-prey model with impulsive diffu-

sion and release of the predator population. This is a predator-prey model for two

regions, which are connected by diffusion of the predator population. It portrays

the evolvement of population. We expect to obtain some dynamical properties of

the investigated system. We also expect that the impulsive diffusion and predator

release will provide a tactic reliable basis for pest management.

3.1 Introduction

The warfare between human and pests has sustained for thousands of years.

In the past few decades, man has adopted a variety advanced and modern weapons,

for instance chemical pesticides, biological pesticides, remote sensing and measure,

computers, atomic energy, etc. Some brilliant achievements have been obtained.

However, the warfare will never be over. Although a great number of pesticides

can be used to control pests, insect pests impairing crops are increasingly resistant

to pesticides. With pesticides employed, the surviving pests breed a large number

of pests with resistance to pesticides. So the pesticide is rendered ineffective to

some degree, so that insect pests will continue to thrive. In addition, the chemical

pesticides kill not only pests but also their natural enemies. Therefore, insect
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pests are rampant again, and the effect of chemical control has been undermined.

Furthermore, the practice proves that long-term adopting chemical control may

lead to disastrous results, for example, environmental contamination and toxicosis

of the man and animals and so on.

The use of a natural enemy to suppress pests is one of the most important

approaches in pest control. Biological control (Caltagirone and Doutt, 1989; De-

Bach, 1964; DeBach and Rosen, 1991; Barclay, 1982; Murray, 1989; Freedman,

1976; Grasman et al., 2001; Liu and Chen, 2003) is one of the reduction in pest

populations through the actions of other living organisms, often called natural

enemies or beneficial species. It is the purposeful introduction and establishment

of one or more natural enemies from region of origin of an exotic pest, specifically

for the purpose of suppressing the abundance of the pest in a new target region to

a level at which it no longer causes economic damage. Jiao et al. (2007) analyzed

the dynamics of a stage-structured Holling mass defence predator-prey model with

impulsive perturbations on predators

x′1(t) = rx2(t)− re−wτ1x2(t− τ1)− wx1(t),

x′2(t) = re−wτ1x2(t− τ1)−
βx2(t)

1 + ax2 + bx22
x3(t)− d3x2(t)− d4x

2
2(t),

x′3(t) =
kβx2(t)

1 + ax2 + bx22
x3(t)− dx3(t),


t ̸= nτ,

∆x1(t) = 0,

∆x2(t) = 0,

∆x3(t) = µ,


t = nτ, n = 1, 2, . . . ,

(φ1(ζ), φ2(ζ), φ3(ζ)) ∈ C+ = C([−τ1, 0], R
3
+), φi(0) > 0, i = 1, 2, 3,

(3.1)

where x1(t) and x2(t) represent the immature and mature pest densities, respec-

tively, and x3(t) denotes the density of the nature enemy. The biological meanings

of the parameters can be seen in (Jiao et al., 2007).
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The dispersal is a ubiquitous phenomenon in the natural world. It is im-

portant for us to understand the ecological and evolutionary dynamics of pop-

ulations mirrored by the large number of mathematical models devoted to it in

the scientific literature (Levin, 1994; Allen, 1983; Song and Chen, 2002; Cui and

Chen, 2001). In recent years, the analysis of these models has focused on the

coexistence of populations and local (or global) stability of equilibria (Beretta

and Takeuchi, 1998; Beretta and Takeuchi, 1987; Freedman and Takeuchi, 1989a;

Freedman, 1987; Freedman et al., 1986; Freedman and Takeuchi, 1989b; Hui and

Chen, 2005). Spatial factors play a fundamental role in the persistence and sta-

bility of the population, although complete results have not yet been obtained

even in the simplest one-species case. Whereas the population dynamics with the

effects of spatial heterogeneity is modeled by a diffusion process, most previous

papers focused on the population dynamical system modeled by ordinary differ-

ential equations. But in practice, it is often the case that diffusion occurs at a

regular pulse. For example, when winter comes, birds migrate between patches

in search for a better environment, whereas they do not diffuse in other seasons,

and the excursion of foliage seeds occurs at fixed period of time every year. Thus,

impulsive diffusion provides a more natural description. Lately theories of impul-

sive differential equations (Bainov and Simeonov, 1993) have been introduced into

population dynamics. Jiao et al. (2010) propose to investigate the dynamical be-

haviors of a stage-structured predator-prey model with prey impulsively diffusing
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between two patches

dx1(t)

dt
= x1(t)(a1 − b1x1(t)),

dx2(t)

dt
= x2(t)(a2 − b2x2(t))− αx2(t)y2(t),

dy1(t)

dt
= kαx2(t)y2(t)− kαe−wτ1x2(t− τ1)y2(t− τ1)− wy1(t),

dy2(t)

dt
= kαe−wτ1x2(t− τ1)y2(t− τ1)− dy2(t),


t ̸= nτ,

∆x1(t) = d1(x2(t)− x1(t)),

∆x2(t) = d2(x1(t)− x2(t)),

∆y1(t) = 0,

∆y2(t) = 0,


t = nτ, n = 1, 2, . . . ,

(3.2)

where we suppose that the system is composed of two patches connected by dif-

fusion and occupied by a single species; xi (i = 1, 2) is the density of species in

the ith patch, and y1(t) and y2(t) represent the densities of the immature individ-

ual predator and mature individual predator at time t in the second patch. The

biological meanings of parameters can be seen in (Jiao et al., 2010).

The organization of this chapter is as follows. In the next section, we

introduce the model and background concepts. In Section 3, some important

lemmas are presented. We give the globally asymptotically stable conditions of

the prey-extinction boundary periodic solution of system (3.3) and the permanent

condition of system (3.3) in Section 4. Simulation analysis and brief discussion

are given in the last section to conclude this chapter.
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3.2 The Model

In this chapter, we establish a predator-prey model with periodic impulsive

diffusion and periodic release of predator population:

dx1(t)

dt
= x1(t)(a1 − b1x1(t))−

β1x1(t)y1(t)

σ1 + x1(t)
,

dy1(t)

dt
=

k1β1x1(t)y1(t)

σ1 + x1(t)
− d1y1(t),

dx2(t)

dt
= x2(t)(a2 − b2x2(t))−

β2x2(t)y2(t)

σ2 + x2(t)
,

dy2(t)

dt
=

k2β2x2(t)y2(t)

σ2 + x2(t)
− d2y2(t),


t ̸= (n+ l)τ, t ̸= (n+ 1)τ,

∆x1(t) = 0,

∆y1(t) = D(y2(t)− y1(t)),

∆x2(t) = 0,

∆y2(t) = D(y1(t)− y2(t)),


t = (n+ l)τ, n ∈ Z+,

∆x1(t) = 0,

∆y1(t) = µ1,

∆x2(t) = 0,

∆y2(t) = µ2,


t = (n+ 1)τ, n ∈ Z+,

(3.3)

where we suppose that the system is composed of two patches connected by dif-

fusion. These two patches are separated by rivers or highways or railways. The

predator population can traverse the rivers or highways or railways, whereas the

prey population cannot. In this system, xi(t) and yi(t) represent the sizes of prey

and predator populations in patch i (i = 1, 2) at time t, ai > 0 represents the

intrinsic growth rate of the prey population in patch i (i = 1, 2), and bi > 0 rep-

resents the coefficient of the intraspecific competition of the prey population in
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patch i (i = 1, 2). The predator consumes the prey according to Holling type-II

functional response

βixi(t)

σi + xi(t)
(i = 1, 2)

with the half-saturation constant σi in patch i (i = 1, 2) at time t. ki (i = 1, 2)

is the rate of conversion of nutrients into the reproduction of the predator in

patch i (i = 1, 2), di (i = 1, 2) represents the death in patch i (i = 1, 2). The

pulse diffusion occurs every τ period (τ is a positive constant), the system evolves

from its initial state without being further affected by diffusion until the next pulse

appears; ∆yi((n+ l)τ) = yi((n+ l)τ+)−yi((n+ l)τ), where yi((n+ l)τ+) represents

the density of population in the ith patch immediately after the nth diffusion pulse

at time t = (n + l)τ , whereas yi((n + l)τ) represents the density of population in

the ith patch before the nth diffusion pulse at time t = (n+ l)τ, 0 < l < 1, n ∈ Z+,

0 < D < 1 represents the diffusive rate between the patches, ∆yi((n + 1)τ) =

yi((n + 1)τ+) − yi((n + 1)τ), and µi (i = 1, 2) represents the releasing amount of

predator population at t = (n+ 1)τ, n ∈ Z+ in patch i (i = 1, 2).

3.3 The Lemmas

The solution of (3.3), denoted by X(t) = (x1(t), y1(t), x2(t), y2(t))
T , is a

piecewise continuous function X:R+ → R4
+, X(t) is continuous on (nτ, (n + l)τ ]

and ((n + l)τ, (n + 1)τ ], n ∈ Z+, and X(nτ+) = limt→nτ+ X(t), X((n + l)τ+) =

limt→(n+l)τ+ X(t) exist. Obviously, the global existence and uniqueness of solutions

of (3.3) is guaranteed by the smoothness properties of f , the mapping defined by

the right-hand side of system (3.3) (Bainov and Simeonov, 1993).

Let V : R+ ×R4
+ → R+. Then V is said to belong to class V0 if

(i) V is continuous in (nτ, (n+ l)τ ]×R4
+ and ((n+ l)τ, (n+ 1)τ ]×R4

+, for

all z ∈ R4
+, n ∈ Z+, and V (nτ+, z) = lim(t,y)→(nτ+,z) V (t, y) and V ((n + l)τ+, z)
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= lim(t,y)→((n+l)τ+,y) V (t, y) exist.

(ii) V is locally Lipschitzian in z.

Definition 3.1. If V ∈ V0, then, for (t, z) ∈ (nτ, (n+ l)τ ]×R4
+ and ((n+ l)τ, (n+

1)τ ] × R4
+, the upper right derivative of V (t, z) with respect to the impulsive

differential system (3.3) is defined as

D+V (t, z) = lim sup
h→0

1

h
[V (t+ h, z + hf(t, z))− V (t, z)].

Since dxi(t)
dt

= 0 when xi(t) = 0, dyi(t)
dt

= 0 when yi(t) = 0, and ∆yi(t) =

µi > 0 when t = (n+ 1)τ , we easily obtain the following lemma.

Lemma 3.1. Suppose that X(t) is a solution of (3.3) with X(0+) ≥ 0. Then

X(t) ≥ 0 for t ≥ 0, and further X(t) > 0 (t ≥ 0) for X(0+) > 0.

Lemma 3.2. (Lakshmikantham et al., 1989) Let the function m ∈ PC ′[R+, R]

satisfy the inequalities
m′(t) ≤ p(t)m(t) + q(t), t ≥ t0, t ̸= tk, k = 1, 2, . . . ,

m(t+k ) ≤ dkm(tk) + bk, t = tk,

(3.4)

where p, q ∈ C[R+, R] and dk ≥ 0 and bk are constants. Then

m(t) ≤ m(t0)
∏

t0<tk<t

dk exp

(∫ t

t0

p(s)ds

)
+
∑

t0<tk<t

 ∏
tk<tj<t

dj exp

(∫ t

tk

p(s)ds

) bk

+

∫ t

t0

∏
s<tk<t

dk exp

(∫ t

s

p(σ)dσ

)
q(s)ds, t ≥ t0.

Now, we show that all solutions of (3.3) are uniformly ultimately bounded.

Lemma 3.3. There exists a constant M > 0 such that xi(t) ≤ M , yi(t) ≤ M (i =

1, 2) for each solution (x1(t), y1(t), x2(t), y2(t)) of (3.3) with all t large enough.

Proof. Define

V (t) = k1x1(t) + y1(t) + k2x2(t) + y2(t),
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and λ = mini=1,2{di}. When t ̸= nτ, t ̸= (n+ l)τ , we have

D+V (t) + λV (t)

= k1x1(t)[(a1 + λ)− b1x1(t)]− (d1 − λ)y1(t)

+k2x2(t)[(a2 + λ)− b2x2(t)]− (d2 − λ)y2(t)

≤ k1x1(t)[(a1 + λ)− b1x1(t)] + k2x2(t)[(a2 + λ)− b2x2(t)]

= −k1b1

(
x1(t)−

a1 + λ

2b1

)2
+

k1(a1 + λ)2

4b1

−k2b2

(
x2(t)−

a2 + λ

2b2

)2
+

k2(a2 + λ)2

4b2

≤ k1(a1 + λ)2

4b1
+

k2(a2 + λ)2

4b2

∆
= ζ.

When t = nτ , we have

V (nτ+) = k1x1(nτ
+) + y1(nτ

+) + k2x2(nτ
+) + y2(nτ

+)

= k1x1(nτ) + y1(nτ) + µ1 + k2x2(nτ) + y2(nτ) + µ2

= k1x1(nτ) + y1(nτ) + k2x2(nτ) + y2(nτ) + µ1 + µ2

= V (nτ) + (µ1 + µ2).

When t = (n+ l)τ , we have

V ((n+ l)τ+)

= k1x1((n+ l)τ+) + y1((n+ l)τ+) + k2x2((n+ l)τ+) + y2((n+ l)τ+)

= k1x1((n+ l)τ) + (1−D)y1((n+ l)τ) +Dy2((n+ l)τ) + k2x2((n+ l)τ)

+Dy1((n+ l)τ) + (1−D)y2((n+ l)τ)

= k1x1((n+ l)τ) + y1((n+ l)τ) + k2x2((n+ l)τ) + y2((n+ l)τ)

= V ((n+ l)τ).
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By Lemma 3.2, for t ∈ (nτ, (n+ 1)τ ], we have

V (t) ≤ V (0+)e−λt +
ζ

λ
(1− e−λt) + (µ1 + µ2)

e−λ(t−τ)

1− eλτ
+ (µ1 + µ2)

eλτ

eλτ − 1

→ ζ

λ
+ (µ1 + µ2)

eλτ

eλτ − 1
as t → ∞.

So V (t) is uniformly ultimately bounded. Hence, by the definition of V (t)

we have that there exists a constant M > 0 such that xi(t) ≤ M, yi(t) ≤ M (i =

1, 2) for t large enough. The proof is complete.

If xi(t) = 0 (i = 1, 2), then we have the subsystem of (3.3)

dy1(t)

dt
= −d1y1(t),

dy2(t)

dt
= −d2y2(t),

 t ̸= (n+ l)τ, t ̸= (n+ 1)τ,

∆y1(t) = D(y2(t)− y1(t)),

∆y2(t) = D(y1(t)− y2(t)),

 t = (n+ l)τ,

∆y1(t) = −µ1,

∆y2(t) = −µ2,

 t = (n+ 1)τ, n = 1, 2, . . . .

(3.5)

We obtain the analytic solution of (3.5) between pulses as follows:

y1(t) =


y1(nτ

+)e−d1(t−nτ), t ∈ (nτ, (n+ l)τ ],

y1((n+ l)τ+)e−d1(t−(n+l)τ), t ∈ ((n+ l)τ, (n+ 1)τ ],

y2(t) =


y2(nτ

+)e−d2(t−nτ), t ∈ (nτ, (n+ l)τ ],

y2((n+ l)τ+)e−d2(t−(n+l)τ), t ∈ ((n+ l)τ, (n+ 1)τ ].

(3.6)

Considering the third and fourth equations of (3.5), we have
y1((n+ l)τ+) = (1−D)e−d1lτy1(nτ

+) +De−d2lτy2(nτ
+),

y2((n+ l)τ+) = De−d1lτy1(nτ
+) + (1−D)e−d2lτy2(nτ

+).
(3.7)
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In fact, from ∆y1(t) = D(y2(t)− y1(t)), t = (n+ l)τ , we have

y1((n+ l)τ+)− y1((n+ l)τ) = D[y2((n+ l)τ)− y1((n+ l)τ)]

i.e.,

y1((n+ l)τ+) = (1−D)y1((n+ l)τ) +Dy2((n+ l)τ).

From (3.6), we have

y1((n+ l)τ) = y1(nτ
+)e−d1lτ , y2((n+ l)τ) = y2(nτ

+)e−d2lτ ,

Hence,

y1((n+ l)τ+) = (1−D)e−d1lτy1(nτ
+) +De−d2lτy2(nτ

+).

From ∆y2(t) = D(y1(t)− y2(t)), t = (n+ l)τ , we have

y2((n+ l)τ+)− y2((n+ l)τ) = D[y1((n+ l)τ)− y2((n+ l)τ)],

i.e.,

y2((n+ l)τ+) = Dy1((n+ l)τ) + (1−D)y2((n+ l)τ).

Together with

y1((n+ l)τ) = y1(nτ
+)e−d1lτ , y2((n+ l)τ) = y2(nτ

+)e−d2lτ ,

we have

y2((n+ l)τ+) = De−d1lτy1(nτ
+) + (1−D)e−d2lτy2(nτ

+).

Considering the fifth and sixth equations of (3.5), we also have y1((n+ 1)τ+) = y1((n+ l)τ+)e−d1(1−l)τ + µ1,

y2((n+ 1)τ+) = y2((n+ l)τ+)e−d2(1−l)τ + µ2.
(3.8)

In fact, from ∆y1(t) = µ1, t = (n+ 1)τ , we have

y1((n+ 1)τ+) = y1((n+ 1)τ) + µ1.

 

 

 

 

 

 

 

 



29

From (3.6), y1((n+ 1)τ) = y1((n+ l)τ+)e−d1(1−l)τ , then

y1((n+ 1)τ+) = y1((n+ l)τ+)e−d1(1−l)τ + µ1.

Similarly, from ∆y2(t) = µ2, t = (n+ 1)τ , we have

y2((n+ 1)τ+) = y2((n+ 1)τ) + µ2.

From (3.6), y2((n+ 1)τ) = y2((n+ l)τ+)e−d2(1−l)τ . Thus,

y2((n+ 1)τ+) = y2((n+ l)τ+)e−d2(1−l)τ + µ2.

Substituting (3.7) into (3.8), we have the stroboscopic map of (3.5)

y1((n+ 1)τ+) = (1−D)e−d1τy1(nτ
+) +De−[d1(1−l)+d2l]τy2(nτ

+) + µ1,

y2((n+ 1)τ+) = De−[d1l+d2(1−l)]τy1(nτ
+) + (1−D)e−d2τy2(nτ

+) + µ2.

(3.9)

In fact,

y1((n+ 1)τ+) = y1((n+ l)τ+)e−d1(1−l)τ + µ1

= [(1−D)e−d1lτy1(nτ
+) +De−d2lτy2(nτ

+)]e−d1(1−l)τ + µ1

= (1−D)e−d1τy1(nτ
+) +De−[d1(1−l)τ+d2l]τy2(nτ

+) + µ1,

and

y2((n+ 1)τ+) = y2((n+ l)τ+)e−d2(1−l)τ + µ2

= [De−d1lτy1(nτ
+) + (1−D)e−d2lτy2(nτ

+)]e−d2(1−l)τ + µ2

= De−[d1l+d2(1−l)]τy1(nτ
+) + (1−D)e−d2τy2(nτ

+) + µ2.

System (3.9) has one fixed point
y∗1 =

µ2B1 + µ1(1−B2)

(1− A1)(1−B2)− A2B1

> 0,

y∗2 =
µ1A2 + µ2(1− A1)

(1− A1)(1−B2)− A2B1

> 0,
(3.10)
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where

A1 = (1−D)e−d1τ < 1,

B1 = De−[d1(1−l)+d2l]τ < 1,

A2 = De−[d1l+d2(1−l)]τ < 1,

B2 = (1−D)e−d2τ < 1.

Lemma 3.4. The fixed point (y∗1, y
∗
2) of (3.9) is globally asymptotically stable.

Proof. For convenience, we denote (yn1 , y
n
2 ) = (y1(nτ

+), y2(nτ
+)). The linear form

of (3.9) can be written as 
yn+1
1

yn+1
2

 = M


yn1

yn2

 . (3.11)

Obviously, the near dynamics of (y∗1, y
∗
2) is determined by linear system

(3.11). The stability of (y∗1, y
∗
2) is determined by the eigenvalue of M less than 1.

If M satisfies the Jury criterion (Jury, 1974), then we know that the eigenvalue of

M is less than 1,

1− trM + detM > 0. (3.12)

We easily see that (y∗1, y
∗
2) is a unique fixed point of (3.9) and

M =


A1 B1

A2 B2

 . (3.13)
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Since

1− trM + detM

= 1− (A1 +B2) + (A1B2 − A2B1)

= (1− A1)(1−B2)− A2B1

= [1− (1−D)e−d1τ ]× [1− (1−D)e−d2τ ]−De−[d1l+d2(1−l)]τ ·De−[d1(1−l)+d2l]τ

= [1− (1−D)e−d1τ ]× [1− (1−D)e−d2τ ]−D2e−(d1+d2)τ

= (1− e−d1τ )× (1− e−d2τ ) +De−d2τ (1− e−d1τ ) +De−d1τ (1− e−d2τ )

> 0,

by the Jury criterion, (y∗1, y
∗
2) is locally stable, and then, it is globally asymptoti-

cally stable. This completes the proof.

Lemma 3.5. The periodic solution (ỹ1(t), ỹ2(t)) of system (3.5) is globally asymp-

totically stable, where

ỹ1(t) =


y∗1e

−d1(t−nτ), t ∈ (nτ, (n+ l)τ ],

y∗∗1 e−d1(t−(n+l)τ), t ∈ ((n+ l)τ, (n+ 1)τ ],

ỹ2(t) =


y∗2e

−d2(t−nτ), t ∈ (nτ, (n+ l)τ ],

y∗∗2 e−c2(t−(n+l)τ), t ∈ ((n+ l)τ, (n+ 1)τ ],

(3.14)

and where y∗1 and y∗2 are determined as in (3.10), and y∗∗1 and y∗∗2 are defined as
y∗∗1 = (1−D)e−d1lτy∗1 +De−d2lτy∗2,

y∗∗2 = De−d1lτy∗1 + (1−D)e−d2lτy∗2.
(3.15)
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3.4 The Dynamics

Theorem 3.6. If

D <
1

2
(3.16)

and

max
i=1,2

{
aiτ − βi[y

∗
i (1− e−dilτ ) + y∗∗i (1− e−di(1−l)τ )]

σidi

}
< 0 (i = 1, 2), (3.17)

then the prey-extinction boundary periodic solution (0, ỹ1(t), 0, ỹ2(t)) of (3.3) is

globally asymptotically stable, where y∗i (i = 1, 2) and y∗∗i (i = 1, 2) are defined by

(3.10) and (3.15).

Proof. First, we prove the local stability of the prey-extinction boundary peri-

odic solution (0, ỹ1(t), 0, ỹ2(t)) of (3.3). Defining x1(t) = x1(t), y11(t) = y1(t) −

ỹ1(t), x2(t) = x2(t), y12(t) = y2(t) − ỹ2(t), we have the following linear system

which is similar to (3.3) and which has one periodic solution (0, ỹ1(t), 0, ỹ2(t)):

dx1(t)
dt

dy11(t)
dt

dx2(t)
dt

dy12(t)
dt


=



a1 − β1ỹ1(t)
σ1

0 0 0

k1β1ỹ1(t)
σ1

−d1 0 0

0 0 a2 − β2ỹ2(t)
σ2

0

0 0 k2β2ỹ2(t)
σ2

−d2





x1(t)

y11(t)

x2(t)

y12(t)


.

It is easy to obtain the fundamental matrix

Φ(t) =



exp [
∫ t
0 (a1 −

β1ỹ1(s)
σ1

)ds] 0 0 0

exp [
∫ t
0

k1β1ỹ1(s)
σ1

ds] exp(−d1t) 0 0

0 0 exp [
∫ t
0 (a2 −

β2ỹ2(s)
σ2

)ds] 0

0 0 exp [
∫ t
0

k2β2ỹ2(s)
σ2

ds] exp(−d2t)


.
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The linearization of the fifth, sixth, seventh, and eighth equations of (3.3) is

x1((n+ l)τ+)

y11((n+ l)τ+)

x2((n+ l)τ+)

y12((n+ l)τ+)


=



1 0 0 0

0 1−D 0 D

0 0 1 0

0 D 0 1−D





x1((n+ l)τ)

y11((n+ l)τ)

x2((n+ l)τ)

y12((n+ l)τ)


.

The linearization of the ninth, tenth, eleventh, and twelfth equations of (3.3) is

x1((n+ 1)τ+)

y11((n+ 1)τ+)

x2((n+ 1)τ+)

y12((n+ 1)τ+)


=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1





x1((n+ 1)τ)

y11((n+ 1)τ)

x2((n+ 1)τ)

y12((n+ 1)τ)


.

The stability of the periodic solution (0, ỹ1(t), 0, ỹ2(t)) is determined by the eigen-

values of

M =



1 0 0 0

0 1−D 0 D

D 0 1 0

0 D 0 1−D





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


Φ(τ),
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which are

λ1 = exp

[∫ τ

0

(
a1 −

β1ỹ1(s)

σ1

)
ds

]
,

λ2 =

∣∣∣∣∣(1−D)(K1 +K3) +
√
(1−D)2(K1 +K3)2 − 4(1− 2D)K1K3

2

∣∣∣∣∣
≤

∣∣∣∣∣(1−D)(K1 +K3) +
√
(1 +D)2(K1 +K3)2

2

∣∣∣∣∣
≤

∣∣∣∣(K1 +K3)

2

∣∣∣∣ < 1,

λ3 = exp

[∫ τ

0

(
a2 −

β2ỹ2(s)

σ2

)
ds

]
,

and

λ4 =

∣∣∣∣∣(1−D)(K1 +K3)−
√

(1−D)2(K1 +K3)2 − 4(1− 2D)K1K3

2

∣∣∣∣∣
≤

∣∣∣∣∣(1−D)(K1 +K3)−
√

(1−D)2(K1 −K3)2

2

∣∣∣∣∣
=

∣∣∣∣(1−D)(K1 +K3)− (1−D)|K1 −K3|
2

∣∣∣∣
≤ (1−D)max{K1, K3} < 1,

where K1 = e−d1τ < 1, K3 = e−d2τ < 1, and condition (3.16) holds. According to

conditions (3.16), (3.17), and the Floquet theory (Bainov and Simeonov, 1993), if

exp

[∫ τ

0

(
ai −

βiỹi(s)

σi

)
ds

]
< 1 (i = 1, 2),

then

λ1 < 1

and

λ3 < 1,

and thus the prey-extinction boundary periodic solution (0, ỹ1(t), 0, ỹ2(t)) of (3.3)

is locally stable.
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In fact, we can compute

exp

[∫ τ

0

(
ai −

βiỹi(s)

σi

)
ds

]
< 1 (i = 1, 2).

To see this, consider

ỹ1(t) =


y∗1e

−d1(t−nτ), t ∈ (nτ, (n+ l)τ ],

y∗∗1 e−d1(t−(n+l)τ), t ∈ ((n+ l)τ, (n+ 1)τ ].

For t ∈ (0, lτ ] ∪ (lτ, τ ], taking n = 0, we have

ỹ1(t) =


y∗1e

−d1t, t ∈ (0, lτ ],

y∗∗1 e−d1(t−lτ), t ∈ (lτ, τ ].

We need to show that

exp [

∫ τ

0

(a1 −
β1ỹ1(s)

σ1

)ds]

= exp[a1τ − β1

σ1

∫ τ

0

ỹ1(s)ds] < 1.

For this, it suffices to show that

a1τ − β1

σ1

∫ τ

0

ỹ1(s)ds < 0.

Since ∫ τ

0

ỹ1(s)ds =

∫ lτ

0

ỹ1(s)ds+

∫ τ

lτ

ỹ1(s)ds,

and ∫ lτ

0

ỹ1(s)ds =

∫ lτ

0

y∗1e
−d1sds = −y∗1

d1
e−d1s

∣∣∣s=lτ

s=0

= −y∗1
d1

(e−d1lτ − 1)

=
y∗1
d1

(1− e−d1lτ ),

and ∫ τ

lτ

ỹ1(s)ds =

∫ τ

lτ

y∗∗1 e−d1(s−lτ)ds = −y∗∗1
d1

e−d1(s−lτ)
∣∣∣s=τ

s=lτ

= −y∗∗1
d1

[e−d1(1−l)τ − 1]

=
y∗∗1
d1

(1− e−d1(1−l)τ ),
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then ∫ τ

0

ỹ1(s)ds =

∫ lτ

0

ỹ1(s)ds+

∫ τ

lτ

ỹ1(s)ds

=
y∗1
d1

(1− e−d1lτ ) +
y∗∗1
d1

(1− e−d1(1−l)τ )

=
y∗1(1− e−d1lτ ) + y∗∗1 (1− e−d1(1−l)τ )

d1
.

By

a1τ − β1

σ1

∫ τ

0

ỹ1(s)ds < 0,

we have

a1τ − β1[y
∗
1(1− e−d1lτ ) + y∗∗2 (1− e−d1(1−l)τ )]

σ1d1
< 0.

Similarly,

ỹ2(t) =


y∗2e

−d2(t−nτ), t ∈ (nτ, (n+ l)τ ],

y∗∗2 e−d2(t−(n+l)τ), t ∈ ((n+ l)τ, (n+ 1)τ ].

For t ∈ (0, lτ ] ∪ (lτ, τ ], taking n = 0, we have

ỹ2(t) =


y∗2e

−d2t, t ∈ (0, lτ ],

y∗∗2 e−d2(t−lτ), t ∈ (lτ, τ ].

We need to show that

exp [

∫ τ

0

(a2 −
β2ỹ2(s)

σ2

)ds]

= exp[a2τ − β2

σ2

∫ τ

0

ỹ2(s)ds] < 1,

or equivalently,

a2τ − β2

σ2

∫ τ

0

ỹ2(s)ds < 0.

Since ∫ τ

0

ỹ2(s)ds =

∫ lτ

0

ỹ2(s)ds+

∫ τ

lτ

ỹ2(s)ds,
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and ∫ lτ

0

ỹ2(s)ds =

∫ lτ

0

y∗2e
−d2sds = −y∗2

d2
e−d2s

∣∣∣s=lτ

s=0

= −y∗2
d2

[e−d2lτ − 1]

=
y∗2
d2

(1− e−d2lτ ),

and ∫ τ

lτ

ỹ2(s)ds =

∫ τ

lτ

y∗∗2 e−d2(s−lτ)ds = −y∗∗2
d2

e−d2(s−lτ)
∣∣∣s=τ

s=lτ

= −y∗∗2
d2

[e−d2(1−l)τ − 1]

=
y∗∗2
d2

(1− e−d2(1−l)τ ),

then ∫ τ

0

ỹ2(s)ds =

∫ lτ

0

ỹ2(s)ds+

∫ τ

lτ

ỹ2(s)ds

=
y∗2
d2

(1− e−d2lτ ) +
y∗∗2
d2

(1− e−d2(1−l)τ )

=
y∗2(1− e−d2lτ ) + y∗∗2 (1− e−d2(1−l)τ )

d2
.

By

a2τ − β2

σ2

∫ τ

0

ỹ2(s)ds < 0,

we have

a2τ − β2[y
∗
2(1− e−d2lτ ) + y∗∗2 (1− e−d2(1−l)τ )]

σ2d2
< 0.

Thus,

max
i=1,2

{
aiτ − βi[y

∗
i (1− e−dilτ ) + y∗∗i (1− e−di(1−l)τ )]

σidi

}
< 0 (i = 1, 2).

In the following, we will prove the global attraction. By condition (3.17)

we can choose ε > 0 such that

ρi = exp

[∫ τ

0

(
ai −

βi(ỹi(s)− ε)

σi

)
ds

]
< 1 (i = 1, 2).
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From the second and fourth equations of (3.3) we notice that dyi(t)
dt

≥ −diyi(t) (i =

1, 2). Then, we consider the following impulsive comparative differential equation:

dy21(t)

dt
= −d1y21(t),

dy22(t)

dt
= −d2y22(t),

 t ̸= (n+ l)τ, t ̸= (n+ 1)τ,

∆y21(t) = D(y22(t)− y21(t)),

∆y22(t) = D(y21(t)− y22(t)),

 t = (n+ l)τ,

∆y21(t) = µ1,

∆y22(t) = µ2,

 t = (n+ 1)τ.

(3.18)

From Lemma 3.5 and the comparison theorem of impulsive equations [see

Theorem 3.1.1 in (Lakshmikantham et al., 1989)] we have y1(t) ≥ y21(t), y2(t) ≥

y22(t), and y21(t) → ỹ1(t), y22(t) → ỹ2(t) as t → ∞. Then
y1(t) ≥ y21(t) ≥ ỹ1(t)− ε,

y2(t) ≥ y22(t) ≥ ỹ2(t)− ε,
(3.19)

for t large enough. For convenience, we may assume that (3.19) holds for all t ≥ 0.

From (3.3) and (3.19) we get

dxi(t)

dt
≤

[
ai −

βi(ỹi(t)− ε)

σi

]
xi(t) (i = 1, 2). (3.20)

So xi((n+1)τ) ≤ xi(nτ
+) exp[

∫ (n+1)τ

nτ
(ai− βi(ỹi(s)−ε)

σi
)ds] (i = 1, 2). Hence xi(nτ) ≤

xi(0
+)ρni (i = 1, 2) and xi(nτ) → 0 (i = 1, 2) as n → ∞; therefore xi(t) → 0 (i =

1, 2) as t → ∞.

Next, we will prove that yi(t) → ỹi(t) (i = 1, 2) as t → ∞. For ε1 > 0, there

must exist a t0 > 0 such that 0 < xi(t) < ε1 (i = 1, 2) for all t ≥ t0. Without loss

of generality, we may assume that 0 < xi(t) < ε1 for all t ≥ 0. For system (3.3),
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we have

−diyi(t) ≤
dyi(t)

dt
≤ −

(
di −

kiβiε1
σi + ε1

)
yi(t) (i = 1, 2), (3.21)

and then we have y21(t) ≤ y1(t) ≤ y31(t), y22(t) ≤ y2(t) ≤ y32(t), and

y21(t) → ỹ1(t), y22(t) → ỹ2(t), y31(t) → ˜y31(t), y32(t) → ˜y32(t) as t → ∞, where

(y21(t), y22(t)) and (y31(t), y32(t)) are the solutions of (3.18) and

dy31(t)

dt
= −(d1 −

k1β1ε1
σ1 + ε1

)y31(t),

dy32(t)

dt
= −(d2 −

k2β2ε1
σ2 + ε1

)y32(t),

 t ̸= (n+ l)τ, t ̸= (n+ 1)τ,

∆y31(t) = D(y32(t)− y31(t)),

∆y32(t) = D(y31(t)− y32(t)),

 t = (n+ l)τ,

∆y31(t) = µ1,

∆y32(t) = µ2,

 t = (n+ 1)τ,

(3.22)

respectively.

˜y31(t) =


y∗31e
−(d1− k1β1ε1

σ1+ε1
)(t−nτ)

, t ∈ (nτ, (n+ l)τ ],

y∗∗31e
−(d1− k1β1ε1

σ1+ε1
)(t−(n+l)τ)

, t ∈ ((n+ l)τ, (n+ 1)τ ],

˜y32(t) =


y∗32e
−(d2− k2β2ε1

σ2+ε1
)(t−nτ)

, t ∈ (nτ, (n+ l)τ ],

y∗∗32e
−(d2− k2β2ε1

σ2+ε1
)(t−(n+l)τ)

, t ∈ ((n+ l)τ, (n+ 1)τ ],

(3.23)

where y∗31 and y∗32 are determined as
y∗31 =

µ2B31 + µ1(1−B32)

(1− A31)(1−B32)− A32B31

> 0,

y∗32 =
µ1A32 + µ2(1− A31)

(1− A31)(1−B32)− A32B31

> 0,
(3.24)

and y∗∗31 and y∗∗32 are defined as
y∗∗31 = (1−D)e

−(d1− k1β1ε1
σ1+ε1

)lτ
y∗31 +De

−(d2− k2β2ε1
σ2+ε1

)lτ
y∗32,

y∗∗32 = De
−(d1− k1β1ε1

σ1+ε1
)lτ
y∗31 + (1−D)e

−(d2− k2β2ε1
σ2+ε1

)lτ
y∗32,

(3.25)
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where

A31 = (1−D)e
−(d1− k1β1ε1

σ1+ε1
)τ
< 1,

B31 = De
−[(d1− k1β1ε1

σ1+ε1
)(1−l)+(d2− k2β2ε1

σ2+ε1
)l]τ

< 1,

A32 = De
−[(d1− k1β1ε1

σ1+ε1
)l+(d2− k2β2ε1

σ2+ε1
)(1−l)]τ

< 1,

B32 = (1−D)e
−(d2− k2β2ε1

σ2+ε1
)τ
< 1.

For any ε2 > 0, there exists t1, t > t1, such that

˜y21(t)− ε2 < y1(t) < ˜y31(t) + ε2

and ˜y22(t)− ε2 < y2(t) < ˜y32(t) + ε2.

Letting ε1 → 0, we have

ỹ1(t)− ε2 < y1(t) < ỹ1(t) + ε2

and

ỹ2(t)− ε2 < y2(t) < ỹ2(t) + ε2

for t large enough, which implies y1(t) → ỹ1(t) and y2(t) → ỹ2(t) as t → ∞. This

completes the proof.

The next work is to investigate the permanence of system (3.3).

Definition 3.2. System (3.3) is said to be permanent if there are constants m,

M > 0 (independent of the initial value) and a finite time T0 such that for all

solutions (x1(t), y1(t), x2(t), y2(t)) with any initial values x1(0
+) > 0, y1(0

+) > 0,

x2(0
+) > 0, y2(0

+) > 0, we have m ≤ x1(t) ≤ M , m ≤ y1(t) ≤ M , m ≤ x2(t) ≤

M , m ≤ y2(t) ≤ M for all t ≥ T0. Here T0 may depend on the initial values

(x1(0
+), y1(0

+), x2(0
+), y2(0

+)).
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Theorem 3.7. If

min
i=1,2

{
aiτ − βi[y

∗
i (1− e−dilτ ) + y∗∗i (1− e−di(1−l)τ )]

σidi

}
> 0 (i = 1, 2), (3.26)

then system (3.3) is permanent, where y∗i (i = 1, 2) and y∗∗i (i = 1, 2) are defined

by (3.10) and (3.15), respectively.

Proof. Suppose (x1(t), y1(t), x2(t), y2(t)) is a solution of (3.3) with x1(0) >

0, y1(0) > 0, x2(0) > 0, y2(0) > 0. By Lemma 3.3 there exists a constant M > 0

such that x1(t) ≤ M, y1(t) ≤ M,x2(t) ≤ M, y2(t) ≤ M for t large enough. From

(3.3) and Theorem 3.6 we have yi(t) > ỹi(t) − ε2 > y∗i e
−dilτ + y∗∗i e−di(1−l)τ ∆

=

mi (i = 1, 2) for ε2 small enough. So we only need to find m3 > 0 and ε3 such

that xi(t) > m3 for t large enough. Otherwise, we can select m4 > 0 small e-

nough satisfying m4 < σidi
kiβi−di

(di < kiβi) and prove xi(t) < m4 cannot hold for

t ≥ 0. Suppose the contrary. By condition (3.26), choosing ε3 small enough, we

can obtain

δi = aiτ − βi[y
∗
4i(1− e

−(di−
kiβim4
σi+m4

)lτ
) + y∗∗4i (1− e

−(di−
kiβim4
σi+m4

)(1−l)τ
)]

σi(di − kiβim4

σi+m4
)

− βiε3
σi

τ > 0

with y∗4i (i = 1, 2) and y∗∗4i (i = 1, 2) defined as in (3.30) and (3.31)below. Then,

dy1(t)

dt
< −(d1 −

k1β1m4

σ1 +m4

)y1(t),

dy2(t)

dt
< −(d2 −

k2β2m4

σ2 +m4

)y2(t),

 t ̸= (n+ l)τ, t ̸= (n+ 1)τ,

∆y1(t) = D(y2(t)− y1(t)),

∆y2(t) = D(y1(t)− y2(t)),

 t = (n+ l)τ,

∆y1(t) = µ1,

∆y2(t) = µ2,

 t = (n+ 1)τ.

(3.27)

By Lemma 3.5 we have y1(t) ≤ y41(t), y2(t) ≤ y42(t) and y41(t) →
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y41(t), y42(t) → y42(t), t → ∞, where (y41(t), y42(t)) is the solution of

dy41(t)

dt
= −(d1 −

k1β1m4

σ1 +m4

)y41(t),

dy42(t)

dt
= −(d2 −

k2β2m4

σ2 +m4

)y42(t),

 t ̸= (n+ l)τ, t ̸= (n+ 1)τ,

∆y41(t) = D(y42(t)− y41(t)),

∆y42(t) = D(y41(t)− y42(t)),

 t = (n+ l)τ,

∆y41(t) = µ1,

∆y42(t) = µ2,

 t = (n+ 1)τ,

(3.28)

with

y41(t) =


y∗41e

−(d1− k1β1m4
σ1+m4

)(t−nτ)
, t ∈ (nτ, (n+ l)τ ],

y∗∗41e
−(d1− k1β1m4

σ1+m4
)(t−(n+l)τ)

, t ∈ ((n+ l)τ, (n+ 1)τ ],

y42(t) =


y∗42e

−(d2− k2β2m4
σ2+m4

)(t−nτ)
, t ∈ (nτ, (n+ l)τ ],

y∗∗42e
−(d2− k2β2m4

σ2+m4
)(t−(n+l)τ)

, t ∈ ((n+ l)τ, (n+ 1)τ ],

(3.29)

where y∗41 and y∗42 are determined as
y∗41 =

µ2B41 + µ1(1−B42)

(1− A41)(1−B42)− A42B41

> 0,

y∗42 =
µ1A42 + µ2(1− A41)

(1− A41)(1−B42)− A42B41

> 0,
(3.30)

and y∗∗41, y
∗∗
42 are defined as

y∗∗41 = (1−D)e
−(d1− k1β1m4

σ1+m4
)lτ
y∗41 +De

−(d2− k2β2m4
σ2+m4

)lτ
y∗42,

y∗∗42 = De
−(d1− k1β1m4

σ1+m4
)lτ
y∗41 + (1−D)e

−(d2− k2β2m4
σ2+m4

)lτ
y∗42,

(3.31)
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where

A41 = (1−D)e
−(d1− k1β1m4

σ1+m4
)τ
< 1,

B41 = De
−[(d1− k1β1m4

σ1+m4
)(1−l)+(d2− k2β2m4

σ2+m4
)l]τ

< 1,

A42 = De
−[(d1− k1β1m4

σ1+m4
)l+(d2− k2β2m4

σ2+m4
)(1−l)]τ

< 1,

B42 = (1−D)e
−(d2− k2β2m4

σ2+m4
)τ
< 1.

Therefore, there exist T1 > 0 and ε3 > 0 such that

y1(t) ≤ y41(t) ≤ y41(t) + ε3

and

y2(t) ≤ y42(t) ≤ y42(t) + ε3.

Then,

dxi(t)

dt
≥

[
ai −

βi(y4i(t) + ε3)

σi

]
xi(t) (i = 1, 2), (3.32)

for t ≥ T1. Let N1 ∈ N and N1τ > T1. Integrating (3.32) on (nτ, (n+1)τ), n ≥ N1,

we have

xi((n+ 1)τ) ≥ xi(nτ
+) exp

(∫ (n+1)τ

nτ

[
ai −

βi(y4i(t) + ε3)

σi

]
dt

)

= xi(nτ)e
δi (i = 1, 2).

Then, xi((N1 + k)τ) ≥ xi(N1τ
+)ekδi → ∞ as k → ∞, which is a contradiction to

the boundedness of xi(t) (i = 1, 2). Hence, there exists t1 > 0 such that xi(t) ≥

m3 (i = 1, 2). This completes the proof.

Now, we give more details about the computation of the δi. We need to

δi > 0, where

δi =

∫ τ

0

[ai −
βi(y4i(t) + ε3)

σi

]dt

=

∫ τ

0

[ai −
βiy4i(t)

σi

− βi

σi

ε3]dt

= aiτ − βi

σi

∫ τ

0

y4i(t)dt−
βiε3
σi

τ.
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First, we compute
∫ τ

0
y41(t)dt.

y41(t) =


y∗41e

−(d1− k1β1m4
σ1+m4

)(t−nτ)
, t ∈ (nτ, (n+ l)τ ],

y∗∗41e
−(d1− k1β1m4

σ1+m4
)(t−(n+l)τ)

, t ∈ ((n+ l)τ, (n+ 1)τ ],

y42(t) =


y∗42e

−(d2− k2β2m4
σ2+m4

)(t−nτ)
, t ∈ (nτ, (n+ l)τ ],

y∗∗42e
−(d2− k2β2m4

σ2+m4
)(t−(n+l)τ)

, t ∈ ((n+ l)τ, (n+ 1)τ ].

For t ∈ (0, τ ] = (0, lτ ] ∪ (lτ, τ ], taking n = 0, we have,

y41(t) =


y∗41e

−(d1− k1β1m4
σ1+m4

)t
, t ∈ (0, lτ ],

y∗∗41e
−(d1− k1β1m4

σ1+m4
)(t−lτ)

, t ∈ (lτ, τ ],

y42(t) =


y∗42e

−(d2− k2β2m4
σ2+m4

)t
, t ∈ (0, lτ ],

y∗∗42e
−(d2− k2β2m4

σ2+m4
)(t−lτ)

, t ∈ (lτ, τ ].

Since
∫ τ

0
y41(t)dt =

∫ lτ

0
y41(t)dt+

∫ τ

lτ
y41(t)dt, and∫ lτ

0

y41(t)dt =

∫ lτ

0

y∗41e
−(d1− k1β1m4

σ1+m4
)t
dt

= − y∗41
d1 − k1β1m4

σ1+m4

e
−(d1− k1β1m4

σ1+m4
)t
∣∣∣t=lτ

t=0

= − y∗41
d1 − k1β1m4

σ1+m4

[e
−(d1− k1β1m4

σ1+m4
)lτ − 1]

=
y∗41

d1 − k1β1m4

σ1+m4

[1− e
−(d1− k1β1m4

σ1+m4
)lτ
],

and ∫ τ

lτ

y41(t)dt =

∫ τ

lτ

y∗∗41e
−(d1− k1β1m4

σ1+m4
)(t−lτ)

dt

= − y∗∗41
d1 − k1β1m4

σ1+m4

e
−(d1− k1β1m4

σ1+m4
)(t−lτ)

∣∣∣t=τ

t=lτ

= − y∗∗41
d1 − k1β1m4

σ1+m4

[e
−(d1− k1β1m4

σ1+m4
)(1−l)τ − 1]

=
y∗∗41

d1 − k1β1m4

σ1+m4

[1− e
−(d1− k1β1m4

σ1+m4
)(1−l)τ

],
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then,

δ1 = a1τ − β1

σ1

∫ τ

0

y41(t)dt−
β1ε3
σ1

τ

= a1τ − β1

σ1

[ ∫ lτ

0

y41(t)dt+

∫ τ

lτ

y41(t)dt
]
− β1ε3

σ1

τ

= a1τ − β1

σ1

[
y∗41

d1 − k1β1m4

σ1+m4

(
1− e

−(d1− k1β1m4
σ1+m4

)lτ
)

+
y∗∗41

d1 − k1β1m4

σ1+m4

(
1− e

−(d1− k1β1m4
σ1+m4

)(1−l)τ
)]

−β1ε3
σ1

τ

= a1τ

−β1[y
∗
41(1− e

−(d1− k1β1m4
σ1+m4

)lτ
) + y∗∗41(1− e

−(d1− k1β1m4
σ1+m4

)(1−l)τ
)]

σ1(d1 − k1β1m4

σ1+m4
)

−β1ε3
σ1

τ

> 0.

In a similar way, we compute
∫ τ

0
y42(t)dt.

Since
∫ τ

0
y42(t)dt =

∫ lτ

0
y42(t)dt+

∫ τ

lτ
y42(t)dt, and∫ lτ

0

y42(t)dt =

∫ lτ

0

y∗42e
−(d2− k2β2m4

σ2+m4
)t
dt

= − y∗42
d2 − k2β2m4

σ2+m4

e
−(d2− k2β2m4

σ2+m4
)t
∣∣∣t=lτ

t=0

= − y∗42
d2 − k2β2m4

σ2+m4

[e
−(d2− k2β2m4

σ2+m4
)lτ − 1]

=
y∗42

d2 − k2β2m4

σ2+m4

[1− e
−(d2− k2β2m4

σ2+m4
)lτ
],
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and ∫ τ

lτ

y42(t)dt =

∫ τ

lτ

y∗∗42e
−(d2− k2β2m4

σ2+m4
)(t−lτ)

dt

= − y∗∗42
d2 − k2β2m4

σ2+m4

e
−(d2− k2β2m4

σ2+m4
)(t−lτ)

∣∣∣t=τ

t=lτ

= − y∗∗42
d2 − k2β2m4

σ2+m4

[e
−(d2− k2β2m4

σ2+m4
)(1−l)τ − 1]

=
y∗∗42

d2 − k2β2m4

σ2+m4

[1− e
−(d2− k2β2m4

σ2+m4
)(1−l)τ

],

then,

δ2 = a2τ − β2

σ2

∫ τ

0

y42(t)dt−
β2ε3
σ2

τ

= a2τ − β2

σ2

[ ∫ lτ

0

y42(t)dt+

∫ τ

lτ

y42(t)dt
]
− β2ε3

σ2

τ

= a2τ − β2

σ2

[
y∗42

d2 − k2β2m4

σ2+m4

(
1− e

−(d2− k2β2m4
σ2+m4

)lτ
)

+
y∗∗42

d2 − k2β2m4

σ2+m4

(
1− e

−(d2− k2β2m4
σ2+m4

)(1−l)τ
)]

−β2ε3
σ2

τ

= a2τ

−β2[y
∗
42(1− e

−(d2− k2β2m4
σ2+m4

)lτ
) + y∗∗42(1− e

−(d2− k2β2m4
σ2+m4

)(1−l)τ
)]

σ2(d2 − k2β2m4

σ2+m4
)

−β2ε3
σ2

τ

> 0.

Therefore,

δi = aiτ − βi[y
∗
4i(1− e

−(di−
kiβim4
σi+m4

)lτ
) + y∗∗4i (1− e

−(di−
kiβim4
σi+m4

)(1−l)τ
)]

σi(di − kiβim4

σi+m4
)

− βiε3
σi

τ > 0,
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and thus

min
i=1,2

{aiτ − βi[y
∗
i (1− e−dilτ ) + y∗∗i (1− e−di(1−l)τ )]

σidi
} > 0 (i = 1, 2).

3.5 Simulation Analysis and Discussion

In this chapter, we have established a predator-prey model with impulsive

diffusion and release of predator population. We have proved that all solutions

of the investigated system are uniformly ultimately bounded. By Theorem 3.6, if

D < 1
2
and

max
i=1,2

{
aiτ − βi[y

∗
i (1− e−dilτ ) + y∗∗i (1− e−di(1−l)τ )]

σidi

}
< 0 (i = 1, 2),

then the prey-extinction boundary periodic solution ( ˜0, y1(t), 0, ỹ2(t)) of system

(3.3) is globally asymptotically stable. By Theorem 3.7, if

min
i=1,2

{
aiτ − βi[y

∗
i (1− e−dilτ ) + y∗∗i (1− e−di(1−l)τ )]

σidi

}
> 0 (i = 1, 2),

then system (3.3) is permanent.

3.5.1 The Dynamical Behaviors Influenced by Parameter

D

Let x1(0) = 0.5, y1(0) = 0.5, x2(0) = 0.5, y2(0) = 0.5, a1 = 0.1, b1 =

0.2, a2 = 0.1, b2 = 0.2, β1 = 0.5, β2 = 5, k1 = 0.5, k2 = 5, µ1 = 0.5, µ2 = 0.3, d1 =

0.3, d2 = 0.3, σ1 = 3.5, σ2 = 3.5, τ = 1, l = 0.25, D = 0.1. Then conditions (3.16)

and (3.17) are obviously satisfied, and thus the prey-extinction periodic solution

of system (3.3) is globally asymptotically stable (see Figure 3.1).

Also assume that x1(0) = 0.5, y1(0) = 0.5, x2(0) = 0.5, y2(0) = 0.5, a1 =

0.1, b1 = 0.2, a2 = 0.1, b2 = 0.2, β1 = 0.5, β2 = 5, k1 = 0.5, k2 = 5, µ1 = 0.5, µ2 =

 

 

 

 

 

 

 

 



48

(a) (b)

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

x1
(t

)

0 20 40 60 80 100
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

t

y1
(t

)

(c) (d)

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

x2
(t

)

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

t

y2
(t

)

Figure 3.1 Globally asymptotically stable prey-extinction periodic solution of

system (3.3) with x1(0) = 0.5, y1(0) = 0.5, x2(0) = 0.5, y2(0) = 0.5, a1 = 0.1, b1 =

0.2, a2 = 0.1, b2 = 0.2, β1 = 0.5, β2 = 5, k1 = 0.5, k2 = 5, µ1 = 0.5, µ2 = 0.3, d1 =

0.3, d2 = 0.3, σ1 = 3.5, σ2 = 3.5, τ = 1, l = 0.25, D = 0.1. (a) Time-series of x1(t);

(b) Time-series of y1(t); (c) Time-series of x2(t); (d) Time-series of y2(t).
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0.3, d1 = 0.3, d2 = 0.3, σ1 = 3.5, σ2 = 3.5, τ = 1, l = 0.25, D = 0.95. Then

condition (3.26) is obviously satisfied, and system (3.3) is permanent (see Figure

3.2).
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Figure 3.2 The permanence for system (3.3) with x1(0) = 0.5, y1(0) = 0.5, x2(0) =

0.5, y2(0) = 0.5, a1 = 0.1, b1 = 0.2, a2 = 0.1, b2 = 0.2, β1 = 0.5, β2 = 5, k1 =

0.5, k2 = 5, µ1 = 0.5, µ2 = 0.3, d1 = 0.3, d2 = 0.3, σ1 = 3.5, σ2 = 3.5, τ = 1, l =

0.25, D = 0.95. (a) Time-series of x1(t); (b) Time-series of y1(t); (c) Time-series

of x2(t); (d) Time-series of y2(t).

From (3.17) and (3.26) we can calculate that there exists one threshold D∗,

which satisfies

max
i=1,2

{
aiτ − βi[y

∗
i (1− e−dilτ ) + y∗∗i (1− e−di(1−l)τ )]

σidi

}
< 0 (i = 1, 2)

or

min
i=1,2

{
aiτ − βi[y

∗
i (1− e−dilτ ) + y∗∗i (1− e−di(1−l)τ )]

σidi

}
> 0 (i = 1, 2).
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If D < D∗, the prey population will go to extinction; if D > D∗, the population

will be permanent.

3.5.2 The Dynamical Behaviors Influenced by Parameters

µ1 and µ2

In this subsection, we always assume that µ = µ1 = µ2. Assume that

x1(0) = 0.5, y1(0) = 0.5, x2(0) = 0.5, y2(0) = 0.5, a1 = 0.1, b1 = 0.2, a2 = 0.1, b2 =

0.2, β1 = 0.5, β2 = 5, k1 = 0.5, k2 = 5, µ1 = 0.4, µ2 = 0.4, d1 = 0.4, d2 = 0.3, σ1 =

3.5, σ2 = 3.5, τ = 1, l = 0.25, D = 0.2. Then conditions (3.16) and (3.17) are

obviously satisfied, and the prey-extinction periodic solution of system (3.3) is

globally asymptotically stable (see Figure 3.3).

Also assume that x1(0) = 0.5, y1(0) = 0.5, x2(0) = 0.5, y2(0) = 0.5, a1 =

0.1, b1 = 0.2, a2 = 0.1, b2 = 0.2, β1 = 0.5, β2 = 5, k1 = 0.5, k2 = 5, µ1 = 0.3, µ2 =

0.3, d1 = 0.3, d2 = 0.3, σ1 = 3.5, σ2 = 3.5, τ = 1, l = 0.25, D = 0.2. Then condition

(3.26) is obviously satisfied, and system (3.3) is permanent (see Figure 3.4).

We can calculate that there exists at least one threshold µ∗ such that if

µ > µ∗, then the prey population will go to extinction, and if µ < µ∗, then the

population will be permanent.

From the simulations we discover that an increasing diffusive rate of preda-

tor population will counteract the pest management. We conclude that the im-

pulsive diffusion and releasing predator model provides a reliable tactic basis for

pest management.
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Figure 3.3 Globally asymptotically stable prey-extinction periodic solution of

system (3.3) with x1(0) = 0.5, y1(0) = 0.5, x2(0) = 0.5, y2(0) = 0.5, a1 = 0.1, b1 =

0.2, a2 = 0.1, b2 = 0.2, β1 = 0.5, β2 = 5, k1 = 0.5, k2 = 5, µ1 = 0.4, µ2 = 0.4, d1 =

0.4, d2 = 0.3, σ1 = 3.5, σ2 = 3.5, τ = 1, l = 0.25, D = 0.2, (a) Time-series of x1(t);

(b) Time-series of y1(t); (c) Time-series of x2(t); (d) Time-series of y2(t).
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Figure 3.4 The permanence for system (3.3) with x1(0) = 0.5, y1(0) = 0.5, x2(0) =

0.5, y2(0) = 0.5, a1 = 0.1, b1 = 0.2, a2 = 0.1, b2 = 0.2, β1 = 0.5, β2 = 5, k1 =

0.5, k2 = 5, µ1 = 0.3, µ2 = 0.3, d1 = 0.3, d2 = 0.3, σ1 = 3.5, σ2 = 3.5, τ = 1, l =

0.25, D = 0.2, (a) Time-series of x1(t); (b) Time-series of y1(t); (c) Time-series of

x2(t); (d) Time-series of y2(t).

 

 

 

 

 

 

 

 



CHAPTER IV

AN SIR EPIDEMIC MODEL WITH STAGE

STRUCTURE AND PULSE VACCINATION

The present chapter is to introduce birth pulse of the population, state

structure and pulse vaccination into the SIR epidemic model and obtain some

important qualitative properties for the investigated system. As a matter of fact,

pulse birth is used in an epidemic model. To the best of our knowledge, no such

research has been conducted before.

4.1 Introduction

The SIR (susceptible, infectious, recovered) epidemic model is one of the

most popular epidemic models in epidemiology; it was initially proposed by Kerma-

ck and Mckendrick (Kermack and Mckendrick, 1927; Kermack and Mckendrick,

1932; Kermack and Mckendrick, 1933; Kermack and Mckendrick, 1937). Since

then, SIR models have been considered by many researchers (Shulgin, Stone and

Agur, 1998; d’Onofrio, 2005; Gao, Teng and Xie, 2009; Lu, Chi and Chen, 2002;

Meng and Chen, 2008b; Buonomo et al., 2008; Xu and Ma, 2009; Zhang and Suo,

2010; Liu et al., 2012; Yuan et al., 2014; Liu, 2015; Jiao et al, 2015). For details of

a simple SIR model, we can refer to the books of Hethcote (1989) and Anderson

and May (1992).

In addition, Gao et al. (2009) have investigated a delayed SIR epidemic

model with pulse vaccination. They conclude that the infection-free periodic solu-
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tion is globally attractive and the system is permanent. Meng and Chen (2008b)

studied the SIR epidemic model with both vertical and horizontal transmission,

analyzed some dynamical behaviors, such as the infection-free equilibrium, the

positive equilibrium, the permanence, global asymptotic behavior and so on, and

obtained some important qualitative properties.

Recently, pulse vaccination strategy, a new vaccination strategy against

measles, has been proposed. Its theoretical study was started by Agur et al.

in (Agur, Cojocaru, Mazor, Anderson and Danon, 1993). Furthermore, a lot of

original work has been done in (Shulgin, Stone and Agur, 1998; Stone, Shulgin

and Agur, 2000; Gao et al., 2006; Agur, Cojocaru, Mazor, Anderson and Danon,

1993; d’Onofrio, 2005; Gao, Teng and Xie, 2009; Lu, Chi and Chen, 2002; Meng

and Chen, 2008b).

In the real world, individual members of many species experience two stages

of life, immature and mature ones. Stage-structured population models have re-

ceived great attention, and many stage-structured models have been studied in

recent years (Li and Wang, 2005; Xiao and Chen, 2001; Wang and Chen, 1997;

Song and Chen, 2001; Xiao and Chen, 2003; Aiello and Freedman, 1990; Aiello

et al., 1992).

Theories of impulsive differential equations have been introduced into pop-

ulation dynamics lately (Liu, 1995; Lakshmikantham et al., 1989; Bainov and

Simeonov, 1993; Liu and Chen, 2003). Impulsive equations are found in almost

every domain of applied science and have been studied in many investigations

(Jiao and Chen, 2008; Lakshmikantham et al., 1989; Bainov and Simeonov, 1993;

Jiao et al., 2008a; Jiao et al., 2008b). They generally describe phenomena which

are subject to steep or instantaneous changes.

Motivated by the above studies, our study is to investigate transmission
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dynamics of an SIR epidemic model with stage structure and pulse vaccination.

We assume that the matured population approaches a steady state, if there is

no disease infection and all matured individuals are susceptible. We assume full

immunity of recovered individuals; that is to say, those individuals are no longer

susceptible after they have recovered.

4.2 The Model

In this chapter, we consider an SIR epidemic model with stage structure

and pulse vaccination:

dS1(t)

dt
= −(c+ d1)S1(t),

dS2(t)

dt
= cS1(t)− d2S2(t)− βS2(t)I(t),

dI(t)

dt
= βS2(t)I(t)− (r + d3)I(t),

dR(t)

dt
= rI(t)− d4R(t),


t ̸= nτ, t ̸= (n+ l)τ,

∆S1(t) = S2(t)(a− bS2(t)),

∆S2(t) = 0,

∆I(t) = 0,

∆R(t) = 0,


t = nτ, n = 1, 2, . . . ,

∆S1(t) = 0,

∆S2(t) = −µS2(t),

∆I(t) = 0,

∆R(t) = µS2(t),


t = (n+ l)τ, n = 1, 2, . . . ,

(4.1)

where S1(t), S2(t) represent the numbers of the immature and the mature of the

susceptibles, and I(t), R(t) represent the numbers of the infectious, and the recov-
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ered, respectively. c is called the rate of the immature susceptible turning into the

mature susceptible. d1, d2, d3, d4, respectively denote the natural death rate of the

immature susceptible, the mature susceptible, the infectious and the recovered.

β is the average number of adequate contacts of a mature infectious individual

per unit time. r stands for the recovery rate of the mature infectious individual.

The mature susceptible is birth pulse with intrinsic rate of natural increase and

density dependence rate of the mature susceptible denoted by a, b, respectively.

The pulse birth and pulse vaccination occurs every τ period (τ is a positive con-

stant). ∆S2(t) = S2(t
+)− S2(t). µ(0 < µ < 1) is the proportion of the successful

vaccinations which is called pulse vaccination rate, at t = (n + l)τ , 0 < l < 1,

n ∈ Z+. ∆S1(t) = S1(t
+)− S1(t), and S2(t)(a− bS2(t)) represents the birth effort

of the mature susceptible at t = nτ, n ∈ Z+.

In this chapter, we assume:

(i) The susceptible is infertile after being infected; that is to say, the infec-

tious and the recovered have no ability to reproduce.

(ii) The immature susceptible is immune to the disease for taking from their

parent population; that is to say, the immature susceptible achieves temporary

immunity.

As the first, second, and third equations do not comprise R(t), we can

 

 

 

 

 

 

 

 



57

simplify system (4.1) as follows:

dS1(t)

dt
= −(c+ d1)S1(t),

dS2(t)

dt
= cS1(t)− d2S2(t)− βS2(t)I(t),

dI(t)

dt
= βS2(t)I(t)− (r + d3)I(t),


t ̸= nτ, t ̸= (n+ l)τ,

∆S1(t) = S2(t)(a− bS2(t)),

∆S2(t) = 0,

∆I(t) = 0,


t = nτ, n = 1, 2, . . . ,

∆S1(t) = 0,

∆S2(t) = −µS2(t),

∆I(t) = 0,


t = (n+ l)τ, n = 1, 2, . . . .

(4.2)

This is equivalent to system (4.1).

4.3 Some Lemmas

Before discussing the main results, we will introduce some definition-

s, notations and lemmas. Denote by f = (f1, f2, f3, f4) the map defined by

the right-hand side of system (4.1), the solution of (4.1), denoted by z(t) =

(S1(t), S2(t), I(t), R(t))T , is a piecewise continuous function z : R+ → R4
+, where

R+ = [0,∞), R4
+ = {z ∈ R4 : z > 0}, z(t) is continuous on (nτ, (n+ l)τ ]×R4

+ and

((n + l)τ, (n + 1)τ ] × R4
+ (n ∈ Z+, 0 < l < 1). According to Lakshmikantham et

al. (1989) and Bainov and Simeonov (1993), the global existence and uniqueness

of solutions of system (4.1) is guaranteed by the smoothness properties of f , the

mapping defined by the right-hand side of system (4.1).

Let V : R+ ×R4
+ → R+. Then V is said to belong to class V0 if:
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(i) V is continuous in (nτ, (n + l)τ ] × R4
+ and ((n + l)τ, (n + 1)τ ] × R4

+,

for all z ∈ R4
+, n ∈ Z+, and lim(t,y)→((n+l)τ+,z) V (t, y) = V ((n + l)τ+, z) and

lim(t,y)→((n+1)τ+,z) V (t, y) = V ((n+ 1)τ+, z) exist.

(ii) V is locally Lipschitzian in z.

Definition 4.1. If V ∈ V0, then, for (t, z) ∈ (nτ, (n+ l)τ ]×R4
+ and ((n+ l)τ, (n+

1)τ) × R4
+, the upper right derivative of V (t, z) with respect to the impulsive

differential system (4.1) is defined as

D+V (t, z) = lim
h→0

sup
1

h
[V (t+ h, z + hf(t, z))− V (t, z)].

Lemma 4.1. (see (Lakshmikantham et al., 1989), Theorem 1.4.1) Let the function

m ∈ PC ′[R+, R] satisfy the inequalities
m′(t) ≤ p(t)m(t) + q(t), t ̸= tk, k = 1, 2, . . . ,

m(t+k ) ≤ dkm(tk) + bk, t = tk, t ≥ t0,

(4.3)

where p, q ∈ C[R+, R] and dk ≥ 0 and bk are constants. Then

m(t) ≤ m(t0)
∏

t0<tk<t

dk exp

(∫ t

t0

p(s)ds

)
+
∑

t0<tk<t

 ∏
tk<tj<t

dj exp

(∫ t

tk

p(s)ds

) bk

+

∫ t

t0

∏
s<tk<t

dk exp

(∫ t

s

p(σ)dσ

)
q(s)ds, t ≥ t0.

Lemma 4.2. There exists a constant M > 0 such that S1(t) ≤ M , S2(t) ≤ M ,

I(t) ≤ M , R(t) ≤ M for each solution (S1(t), S2(t), I(t), R(t)) of system (4.1)

with t large enough.

Proof. Define V (t) = S1(t) + S2(t) + I(t) + R(t), d = min{d1, d2, d3, d4}. When
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t ̸= (n+ l)τ, t ̸= (n+ 1)τ , we have

D+V (t) + dV (t) = −cS1(t)− d1S1(t) + cS1(t)− d2S2(t)− βS2(t)I(t)

+βS2(t)I(t)− (r + d3)I(t) + rI(t)− d4R(t)

+dS1(t) + dS2(t) + dI(t) + dR(t)

= −(d1 − d)S1(t)− (d2 − d)S2(t)

−(d3 − d)I(t)− (d4 − d)R(t) ≤ δ ≤ 0.

When t = (n+ l)τ , we have

V ((n+ l)τ+) = S1((n+ l)τ+) + S2((n+ l)τ+) + I((n+ l)τ+) +R((n+ l)τ+)

= S1((n+ l)τ) + (1− µ)S2((n+ l)τ) + I((n+ l)τ)

+R((n+ l)τ) + µS2((n+ l)τ)

= S1((n+ l)τ) + S2((n+ l)τ) + I((n+ l)τ) +R((n+ l)τ)

= V ((n+ l)τ).

When t = (n+ 1)τ , we have

V ((n+ 1)τ+) = S1((n+ 1)τ+) + S2((n+ 1)τ+) + I((n+ 1)τ+) +R((n+ 1)τ+)

= [S1((n+ 1)τ) + S2((n+ 1)τ)(a− bS2((n+ 1)τ))] + S2((n+ 1)τ)

+I((n+ 1)τ) +R((n+ 1)τ)

= S1((n+ 1)τ) + S2((n+ 1)τ)(a− bS2((n+ 1)τ)) + S2((n+ 1)τ)

+I((n+ 1)τ) +R((n+ 1)τ)

= V ((n+ 1)τ) + S2((n+ 1)τ)(a− bS2((n+ 1)τ))

≤ V ((n+ 1)τ) +
a2

4b
.

We introduce the notation ξ = a2

4b
> 0. Then by Lemma 4.1., for t ∈ (nτ, (n+1)τ ],
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we have

V (t) ≤ V (0) exp(−dt) +

∫ t

0

δ exp(−d(t− s))ds+
∑

0<nτ<t

ξ exp(−d(t− nτ))

< V (0) exp(−dt) +
δ

d
(1− exp(−dt)) +

ξ exp(−d(t− τ))

1− exp(dτ)
+

ξ exp(dτ)

exp(dτ)− 1

→ δ

d
+

ξ exp(dτ)

exp(dτ)− 1
as t → ∞.

So V (t) is uniformly ultimately bounded. Hence, by the definition of V (t)

we see that there exists a constant M > 0, such that S1(t) ≤ M , S2(t) ≤ M ,

I(t) ≤ M , R(t) ≤ M for t large enough.

We choose the following notation:

Ω∗ =
(c+ d1 − d2)[1 + e−(c+d1−d2)τ − e−(c+d1)τ − ed2τ ] + ac[1− e−(c+d1−d2)τ ]

(c+ d1 − d2)[1− e−(c+d1)τ ] + ac[1− e−(c+d1−d2)lτ ]
.

If I(t) = 0, then we have the following subsystem of (4.2):

dS1(t)

dt
= −(c+ d1)S1(t),

dS2(t)

dt
= cS1(t)− d2S2(t),

 t ̸= nτ, t ̸= (n+ l)τ,

∆S1(t) = S2(t)(a− bS2(t)),

∆S2(t) = 0,

 t = nτ, n = 1, 2, . . . ,

∆S1(t) = 0,

∆S2(t) = −µS2(t),

 t = (n+ l)τ, n = 1, 2, . . . .

(4.4)

We easily obtain the analytic solution of system (4.4) between pulses as

follows:

S1(t) = S1(nτ
+)e−(c+d1)(t−nτ), t ∈ (nτ, (n+ 1)τ ],

S2(t) =



e−d2(t−nτ)
[
S2(nτ

+) + cS1(nτ+)(1−e−(c+d1−d2)(t−nτ))
c+d1−d2

]
, t ∈ (nτ, (n+ l)τ ],

e−d2(t−(n+l)τ)

[
S2((n+ l)τ+) +

cS1((n+ l)τ+)(1− e−(c+d1−d2)(t−(n+l)τ))

c+ d1 − d2

]
,

t ∈ ((n+ l)τ, (n+ 1)τ ].

(4.5)
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In effect, since
dS1(t)

dt
= −cS1(t)−d1S1(t) = −(c+d1)S1(t), then

dS1(t)

S1(t)
=

−(c + d1)dt, t ∈ (nτ, (n + 1)τ ], i.e.,
dS1(u)

S1(u)
= −(c + d1)du, u ∈ (nτ, (n + 1)τ ],

integrating with respect to u from nτ to t on both sides, we have∫ t

nτ

dS1(u)

S1(u)
= −

∫ t

nτ

(c+ d1)du

⇒ lnS1(u)
∣∣∣u=t

u=nτ
= −(c+ d1)(t− nτ)

⇒ lnS1(t)− lnS1(nτ
+) = −(c+ d1)(t− nτ)

⇒ ln
S1(t)

S1(nτ+)
= −(c+ d1)(t− nτ)

⇒ S1(t)

S1(nτ+)
= e−(c+d1)(t−nτ)

⇒ S1(t) = S1(nτ
+)e−(c+d1)(t−nτ), t ∈ (nτ, (n+ 1)τ ].

Since
dS2(t)

dt
= cS1(t)− d2S2(t), t ∈ (nτ, (n+ l)τ ], then

dS2(t)

dt
= cS1(nτ

+)e−(c+d1)(t−nτ) − d2S2(t)

⇒ dS2(t)

dt
+ d2S2(t) = cS1(nτ

+)e−(c+d1)(t−nτ)

⇒ ed2tS ′
2(t) + d2e

d2tS2(t) = cS1(nτ
+)e−(c+d1)(t−nτ)ed2t

⇒ d

dt
[ed2tS2(t)] = cS1(nτ

+)e−(c+d1)t+(c+d1)nτed2t

⇒ d[ed2tS2(t)] = cS1(nτ
+)e(c+d1)nτe−(c+d1−d2)tdt

⇒ d[ed2uS2(u)] = cS1(nτ
+)e(c+d1)nτe−(c+d1−d2)udu, u ∈ (nτ, (n+ l)τ ].
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Integrating with respect to u from nτ to t on both sides,∫ t

nτ

d(ed2uS2(u))

= cS1(nτ
+)e(c+d1)nτ

∫ t

nτ

e−(c+d1−d2)udu

⇒ ed2tS2(t)− ed2nτS2(nτ
+) = −cS1(nτ

+)e(c+d1)nτ

c+ d1 − d2
[e−(c+d1−d2)t − e−(c+d1−d2)nτ ]

⇒ ed2tS2(t) = ed2nτS2(nτ
+) +

cS1(nτ
+)e(c+d1)nτ

c+ d1 − d2
(e−(c+d1−d2)nτ − e−(c+d1−d2)t)

⇒ ed2tS2(t) = ed2nτ

[
S2(nτ

+)

+
cS1(nτ

+)e(c+d1−d2)nτ

c+ d1 − d2
(e−(c+d1−d2)nτ − e−(c+d1−d2)t)

]

⇒ ed2tS2(t) = ed2nτ
[
S2(nτ

+) +
cS1(nτ

+)

c+ d1 − d2
(1− e−(c+d1−d2)(t−nτ))

]

⇒ S2(t) = e−d2(t−nτ)

[
S2(nτ

+) +
cS1(nτ

+)(1− e−(c+d1−d2)(t−nτ))

c+ d1 − d2

]
,

t ∈ (nτ, (n+ l)τ ].

Similarly, since
dS2(t)

dt
= cS1(t) − d2S2(t), t ∈ ((n + l)τ, (n + 1)τ ]), and

S1(t) = S1((n+ l)τ+)e−(c+d1)(t−(n+l)τ), t ∈ ((n+ l)τ, (n+ 1)τ ], then

dS2(t)

dt
= cS1((n+ l)τ+)e−(c+d1)(t−(n+l)τ) − d2S2(t),

 

 

 

 

 

 

 

 



63

and we have,

dS2(t)

dt
+ d2S2(t)

= cS1((n+ l)τ+)e−(c+d1)(t−(n+l)τ)

⇒ ed2tS ′
2(t) + d2e

d2tS2(t)

= cS1((n+ l)τ+)e−(c+d1)(t−(n+l)τ)ed2t

⇒ ed2tS ′
2(t) + d2e

d2tS2(t) = cS1((n+ l)τ+)e−(c+d1)(t−(n+l)τ)ed2t

⇒ d

dt
[ed2tS2(t)] = cS1((n+ l)τ+)e−(c+d1)(t−(n+l)τ)ed2t

⇒ d[ed2tS2(t)] = cS1((n+ l)τ+)e(c+d1)(n+l)τe−(c+d1)ted2tdt

⇒ d[ed2tS2(t)] = cS1((n+ l)τ+)e(c+d1)(n+l)τe−(c+d1−d2)tdt

⇒ d[ed2uS2(u)] = cS1((n+ l)τ+)e(c+d1)(n+l)τe−(c+d1−d2)udu,

⇒
∫ t

(n+l)τ

d[ed2uS2(u)] = cS1((n+ l)τ+)e(c+d1)(n+l)τ

∫ t

(n+l)τ

e−(c+d1−d2)udu

⇒ ed2tS2(t)− ed2(n+l)τS2((n+ l)τ+)

= −cS1((n+ l)τ+)e(c+d1)(n+l)τ

c+ d1 − d2

[
e(c+d1−d2)t − e(c+d1−d2)(n+l)τ

]
⇒ ed2tS2(t) = ed2(n+l)τS2((n+ l)τ+)

+
cS1((n+ l)τ+)e(c+d1)(n+l)τ

c+ d1 − d2

[
e(c+d1−d2)(n+l)τ − e(c+d1−d2)t

]
⇒ ed2tS2(t) = ed2(n+l)τ

[
S2((n+ l)τ+)

+
cS1((n+ l)τ+)e(c+d1−d2)(n+l)τ

c+ d1 − d2
(e−(c+d1−d2)(n+l)τ − e−(c+d1−d2)t)

]

⇒ ed2tS2(t) = ed2(n+l)τ

[
S2((n+ l)τ+) +

cS1((n+ l)τ+)

c+ d1 − d2
(1− e−(c+d1−d2)(t−(n+l)τ))

]
⇒ S2(t) = e−d2(t−(n+l)τ)

[
S2((n+ l)τ+)

+
cS1((n+ l)τ+)(1− e−(c+d1−d2)(t−(n+l)τ))

c+ d1 − d2

]
, t ∈ ((n+ l)τ, (n+ 1)τ ].
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Considering the fourth, fifth, seventh, and eighth equations of system (4.2),

we have the stroboscopic map of (4.2)

S1((n+ 1)τ+) =

[
e−(c+d1)τ +

acζ

c+ d1 − d2

]
S1(nτ

+) + a(1− µ)e−d2τS2(nτ
+)

−b

[
cζ

c+ d1 − d2
S1(nτ

+) + (1− µ)e−d2τS2(nτ
+)

]2
,

S2((n+ 1)τ+) =
cζ

c+ d1 − d2
S1(nτ

+) + (1− µ)e−d2τS2(nτ
+),

(4.6)

where ζ = e−d2τ [(1− µ)(1− e−(c+d1−d2)lτ ) + e−(c+d1−d2)lτ − e−(c+d1−d2)τ ] > 0.

In fact, since ∆S2(t) = −µS2(t), t = (n+ l)τ , then ∆S2((n+ l)τ) = S2((n+

l)τ+) − S2((n + l)τ) = −µS2((n + l)τ), i.e., S2((n + l)τ+) = (1 − µ)S2((n + l)τ).

By

S2(t) = e−d2(t−nτ)

[
S2(nτ

+) +
cS1(nτ

+)(1− e−(c+d1−d2)(t−nτ))

c+ d1 − d2

]
, t ∈ (nτ, (n+ l)τ ],

we have

S2((n+ l)τ) = e−d2lτ

[
S2(nτ

+) +
cS1(nτ

+)(1− e−(c+d1−d2)lτ )

c+ d1 − d2

]
.

Thus,

S2((n+ l)τ+) = (1− µ)S2((n+ l)τ)

= (1− µ)e−d2lτ

[
S2(nτ

+) +
cS1(nτ

+)(1− e−(c+d1−d2)lτ )

c+ d1 − d2

]
.

Since ∆S1(t) = 0, t = (n+ l)τ , then ∆S1((n+ l)τ) = S1((n+ l)τ+)−S1((n+

l)τ) = 0, i.e., S1((n+ l)τ+) = S1((n+ l)τ), also,

S1(t) = S1(nτ
+)e−(c+d1)(t−nτ), t ∈ (nτ, (n+ 1)τ ],

then

S1((n+ l)τ) = S1(nτ
+)e−(c+d1)lτ ,

S1((n+ 1)τ) = S1(nτ
+)e−(c+d1)τ .
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Therefore,

S1((n+ l)τ+) = S1((n+ l)τ) = S1(nτ
+)e−(c+d1)lτ .

Since ∆S1(t) = S2(t)(a− bS2(t)), t = nτ , then

∆S1((n+ 1)τ) = S1((n+ 1)τ+)− S1((n+ 1)τ)

= S2((n+ 1)τ)(a− bS2((n+ 1)τ)).

Thus,

S1((n+ 1)τ+) = S1((n+ 1)τ) + S2((n+ 1)τ)(a− bS2((n+ 1)τ))

= S1((n+ 1)τ) + aS2((n+ 1)τ)− bS2
2((n+ 1)τ).

By

S2(t) = e−d2(t−(n+l)τ)

[
S2(n+ l)τ+) +

cS1((n+ l)τ+)(1− e−(c+d1−d2)(t−(n+l)τ))

c+ d1 − d2

]
,

t ∈ ((n+ l)τ, (n+ 1)τ ].

we have

S2((n+ 1)τ) = e−d2(1−l)τ

[
S2(n+ l)τ+) +

cS1((n+ l)τ+)(1− e−(c+d1−d2)(1−l)τ )

c+ d1 − d2

]
.
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Therefore,

S2((n+ 1)τ)

= e−d2(1−l)τ

[
(1− µ)e−d2lτ

(
S2(nτ

+) +
cS1(nτ

+)(1− e−(c+d1−d2)lτ )

c+ d1 − d2

)
+
cS1(nτ

+)e−(c+d1)lτ (1− e−(c+d1−d2)(1−l)τ )

c+ d1 − d2

]

= e−d2(1−l)τ

[
(1− µ)e−d2lτS2(nτ

+) +
c(1− µ)S1(nτ

+)e−d2lτ (1− e−(c+d1−d2)lτ )

c+ d1 − d2

+
cS1(nτ

+)e−(c+d1)lτ (1− e−(c+d1−d2)(1−l)τ )

c+ d1 − d2

]

= (1− µ)e−d2τS2(nτ
+) + e−d2τ

[
c(1− µ)S1(nτ

+)(1− e−(c+d1−d2)lτ )

c+ d1 − d2

+
cS1(nτ

+)e−(c+d1−d2)lτ (1− e−(c+d1−d2)(1−l)τ )

c+ d1 − d2

]

= (1− µ)e−d2τS2(nτ
+) + e−d2τ

[
c(1− µ)S1(nτ

+)(1− e−(c+d1−d2)lτ )

c+ d1 − d2

+
cS1(nτ

+)e−(c+d1−d2)lτ − cS1(nτ
+)e−(c+d1−d2)τ

c+ d1 − d2

]

= (1− µ)e−d2τS2(nτ
+) +

cS1(nτ
+)e−d2τ

c+ d1 − d2

[
(1− µ)(1− e−(c+d1−d2)lτ )

+e−(c+d1−d2)lτ − e−(c+d1−d2)τ

]
.

Therefore,

S2((n+ 1)τ)

=
cS1(nτ

+)e−d2τ

c+ d1 − d2

[
(1− µ)(1− e−(c+d1−d2)lτ ) + e−(c+d1−d2)lτ − e−(c+d1−d2)τ

]
+(1− µ)e−d2τS2(nτ

+),

i.e.,

S2(n+ 1)τ) =
cζ

c+ d1 − d2
S1(nτ

+) + (1− µ)e−d2τS2(nτ
+),

where ζ = e−d2τ [(1− µ)(1− e−(c+d1−d2)lτ ) + e−(c+d1−d2)lτ − e−(c+d1−d2)τ ] > 0.
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Since ∆S2(t) = 0, t = nτ, n ∈ Z+, then

S2(n+ 1)τ+) = S2((n+ 1)τ)

=
cζ

c+ d1 − d2
S1(nτ

+) + (1− µ)e−d2τS2(nτ
+),

where ζ = e−d2τ [(1− µ)(1− e−(c+d1−d2)lτ ) + e−(c+d1−d2)lτ − e−(c+d1−d2)τ ] > 0.

Since S1((n+ 1)τ+) = S1((n+ 1)τ) + aS2((n+ 1)τ)− bS2
2((n+ 1)τ), then

S1((n+ 1)τ+) = S1(nτ
+)e−(c+d1)τ

+
acζ

c+ d1 − d2
S1(nτ

+) + a(1− µ)e−d2τS2(nτ
+)

−b

[
cζ

c+ d1 − d2
S1(nτ

+) + (1− µ)e−d2τS2(nτ
+)

]2
=

[
e−(c+d1)τ +

acζ

c+ d1 − d2

]
S1(nτ

+) + a(1− µ)e−d2τS2(nτ
+)

−b

[
cζ

c+ d1 − d2
S1(nτ

+) + (1− µ)e−d2τS2(nτ
+)

]2
.

If we choose A = e−(c+d1)τ +
acζ

c+ d1 − d2
> 0, B = a(1 − µ)e−d2τ > 0,

C =
cζ

c+ d1 − d2
, D = (1 − µ)e−d2τ , A < 1, and 0 < D < 1, the following two

equivalence relations are found by calculation

µ < Ω∗ ⇔ 1− A−D + AD −BC < 0,

µ > Ω∗ ⇔ 1− A−D + AD −BC > 0.

 

 

 

 

 

 

 

 



68

From 1− A−D + AD −BC < 0, we have

1− e−(c+d1)τ − acζ
c+d1−d2

− (1− µ)e−d2τ + (e−(c+d1)τ + acζ
c+d1−d2

)(1− µ)e−d2τ

−a(1− µ)e−d2τ cζ
c+d1−d2

< 0

⇐⇒ 1− e−(c+d1)τ − acζ
c+d1−d2

− (1− µ)e−d2τ + e−(c+d1)τe−d2τ (1− µ) < 0

⇐⇒ (c+ d1 − d2)− (c+ d1 − d2)e
−(c+d1)τ − acζ − (c+ d1 − d2)e

−d2τ (1− µ)

+(c+ d1 − d2)e
−(c+d1+d2)τ (1− µ) < 0

⇐⇒ [ace−d2τ (1− e−(c+d1−d2)lτ ) + (c+ d1 − d2)e
−d2τ − (c+ d1 − d2)e

−(c+d1+d2)τ ](1− µ)

> (c+ d1 − d2)− (c+ d1 − d2)e
−(c+d1)τ − ace−d2τe−(c+d1−d2)lτ + ace−d2τe−(c+d1−d2)τ

⇐⇒ ace−d2τ (1− e−(c+d1−d2)lτ ) + (c+ d1 − d2)e
−d2τ − (c+ d1 − d2)e

−(c+d1+d2)τ

−[ace−d2τ (1− e−(c+d1−d2)lτ ) + (c+ d1 − d2)e
−d2τ − (c+ d1 − d2)e

−(c+d1+d2)τ ]µ

> (c+ d1 − d2)− (c+ d1 − d2)e
−(c+d1)τ − ace−d2τe−(c+d1−d2)lτ + ace−d2τe−(c+d1−d2)τ

⇐⇒ [ace−d2τ (1− e−(c+d1−d2)lτ ) + (c+ d1 − d2)e
−d2τ − (c+ d1 − d2)e

−(c+d1+d2)τ ]µ

< ace−d2τ (1− e−(c+d1−d2)lτ ) + (c+ d1 − d2)e
−d2τ − (c+ d1 − d2)e

−(c+d1+d2)τ

−(c+ d1 − d2) + (c+ d1 − d2)e
−(c+d1)τ + ace−d2τe−(c+d1−d2)lτ − ace−d2τe−(c+d1−d2)τ

⇐⇒ [ace−d2τ (1− e−(c+d1−d2)lτ ) + (c+ d1 − d2)e
−d2τ − (c+ d1 − d2)e

−(c+d1+d2)τ ]µ

< ace−d2τ − ace−d2τe−(c+d1−d2)lτ + (c+ d1 − d2)e
−d2τ − (c+ d1 − d2)e

−(c+d1+d2)τ

−(c+ d1 − d2) + (c+ d1 − d2)e
−(c+d1)τ + ace−d2τe−(c+d1−d2)lτ − ace−d2τe−(c+d1−d2)τ

⇐⇒ [ace−d2τ (1− e−(c+d1−d2)lτ ) + (c+ d1 − d2)e
−d2τ − (c+ d1 − d2)e

−(c+d1+d2)τ ]µ

< ace−d2τ + (c+ d1 − d2)e
−d2τ − (c+ d1 − d2)e

−(c+d1+d2)τ

−(c+ d1 − d2) + (c+ d1 − d2)e
−(c+d1)τ − ace−d2τe−(c+d1−d2)τ

⇐⇒ [ace−d2τ (1− e−(c+d1−d2)lτ ) + (c+ d1 − d2)e
−d2τ − (c+ d1 − d2)e

−(c+d1+d2)τ ]µ

< ace−d2τ + (c+ d1 − d2)e
−d2τ − (c+ d1 − d2)e

−(c+d1+d2)τ − (c+ d1 − d2)

+(c+ d1 − d2)e
−(c+d1)τ − ace−(c+d1)τ .
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Hence,

µ <
(c+ d1 − d2)[1 + e−(c+d1+d2)τ − e−(c+d1)τ − e−d2τ ]− ace−d2τ [1− e−(c+d1−d2)τ ]

(c+ d1 − d2)[e−(c+d1+d2)τ − e−d2τ ]− ace−d2τ [1− e−(c+d1−d2)lτ ]

=
(c+ d1 − d2)[1− e−(c+d1)τ − ed2τ + e−(c+d1−d2)τ ] + ac[1− e−(c+d1−d2)τ ]

(c+ d1 − d2)[1− e−(c+d1)τ ] + ac[1− e−(c+d1−d2)lτ ]

=
(c+ d1 − d2)[1 + e−(c+d1−d2)τ − e−(c+d1)τ − ed2τ ] + ac[1− e−(c+d1−d2)τ ]

(c+ d1 − d2)[1− e−(c+d1)τ ] + ac[1− e−(c+d1−d2)lτ ]
.

Set

Ω∗ =
(c+ d1 − d2)[1 + e−(c+d1−d2)τ − e−(c+d1)τ − ed2τ ] + ac[1− e−(c+d1−d2)τ ]

(c+ d1 − d2)[1− e−(c+d1)τ ] + ac[1− e−(c+d1−d2)lτ ]
,

then

µ < Ω∗ ⇔ 1− A−D + AD −BC < 0

and

µ > Ω∗ ⇔ 1− A−D + AD −BC > 0.

The two fixed points of (4.6) are obtained as G1(0, 0) and G2(S
∗
1 , S

∗
2), where

S∗
1 =

(1−D − A+ AD −BC)(−1 +D)

bC2
, µ < Ω∗,

S∗
2 =

−(1−D − A+ AD −BC)

bC
, µ < Ω∗.

(4.7)

In fact, from (4.6), we have
S1((n+ 1)τ+) = AS1(nτ

+) +BS2(nτ
+)− b[CS1(nτ

+) +DS2(nτ
+)]2,

S2((n+ 1)τ+) = CS1(nτ
+) +DS2(nτ

+).

Let f(S1, S2) = S1, g(S1, S2) = S2, we have S1(n + 1)τ+) =

f(S1(nτ
+), S2(nτ

+)) = S1(nτ
+) = S1, S2(n + 1)τ+) = g(S1(nτ

+), S2(nτ
+)) =

S2(nτ
+) = S2. Thus, S1 = AS1 +BS2 − b[CS1 +DS2]

2,

S2 = CS1 +DS2,
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So that  S1 = AS1 +BS2 − bS2
2 ,

CS1 = (1−D)S2,

and  CS1 = ACS1 +BCS2 − bCS2
2 ,

CS1 = (1−D)S2,

and hence

(1−D)S2 = A(1−D)S2 +BCS2 − bCS2
2 ,

one can get S2 = 0, or (1−D) = A(1−D) +BC − bCS2.

From (1−D) = A(1−D) +BC − bCS2, we can get

S2 =
−(1−D − A+ AD −BC)

bC
.

Since, S1 =
1−D

C
S2, then as S2 = 0, we have S1 = 0; as S2 =

−(1−D − A+ AD −BC)

bC
, we have

S1 =
(1−D − A+ AD −BC)(−1 +D)

bC2
.

Therefore, the two fixed points of (4.6) are obtained as G1(0, 0) and G2(S
∗
1 , S

∗
2),

where 
S∗
1 =

(1−D − A+ AD −BC)(−1 +D)

bC2
, µ < µ∗,

S∗
2 =

−(1−D − A+ AD −BC)

bC
, µ < µ∗.

Lemma 4.3. (i) If µ > Ω∗, then the fixed point G1(0, 0) is globally asymptotically

stable. (ii) If µ < Ω∗, then the fixed point G2(S
∗
1 , S

∗
2) is globally asymptotically

stable.
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Proof. This proof is similar to Lemma 3.3 of (Jiao, Cai and Chen, 2011). For

convenience, denote (Sn
1 , S

n
2 ) = (S1(nτ

+), S2(nτ
+)). The linear form of (4.6) can

be written as  Sn+1
1

Sn+1
2

 = M

 Sn
1

Sn
2

 . (4.8)

Obviously, the near dynamics of G1(0, 0) and G2(S
∗
1 , S

∗
2) are determined by

linear system (4.8). The stabilities of G1(0, 0) and G2(S
∗
1 , S

∗
2) are determined by

the eigenvalue of M less than 1. If M satisfies the Jury criterion (Jury, 1974), we

know that the eigenvalue of M is less than 1,

1− trM + detM > 0. (4.9)

(i) If µ > Ω∗, namely 1 − D − A + AD − BC > 0, G1(0, 0) is the unique

fixed point of system of (4.6), we have

M =

 A B

C D

 . (4.10)

Calculating 1− trM + detM = 1− (A+D) + (AD − BC) > 0, and from

the Jury criterion, G1(0, 0) is locally stable, and then it is globally asymptotically

stable.

(ii) If µ < Ω∗, say 1 − A − D + AD − BC < 0, G1(0, 0) is unstable. For

1− A−D + AD −BC < 0, G2(S
∗
1 , S

∗
2) exists, and

M =

 A− 2b(CS∗
1 +DS∗

2)C B − 2b(CS∗
1 +DS∗

2)D

C D

 . (4.11)
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Also

1− trM + detM

= 1− {[A− 2b(CS∗
1 +DS∗

2)C] +D}

+{[A− 2b(CS∗
1 +DS∗

2)C]×D − [B − 2b(CS∗
1 +DS∗

2)D]× C}

= 1− A+ 2b(CS∗
1 +DS∗

2)C −D

+[AD − 2b(CS∗
1 +DS∗

2)CD −BC + 2b(CS∗
1 +DS∗

2)DC]

= 1− A−D + 2b(CS∗
1 +DS∗

2)C + AD −BC

= (1− A−D + AD −BC) + 2b×(
C
(1−D − A+ AD −BC)(−1 +D)

bC2
+D

−(1−D − A+ AD −BC)

bC

)
C

= (1− A−D + AD −BC)

+2 ((1−D − A+ AD −BC)(−1 +D)−D(1−D − A+ AD −BC))

= (1− A−D + AD −BC)− 2(1− A−D + AD −BC)

= −(1− A−D + AD −BC) > 0.

From the Jury criterion, G2(S
∗
1 , S

∗
2) is locally stable, and then it is globally

asymptotically stable. This completes the proof.

Lemma 4.4. (i) If µ > Ω∗, then the trivial periodic solution (0, 0) of system (4.4)

is globally asymptotically stable.

(ii) If µ < Ω∗, then the periodic solution (S̃1(t), S̃2(t)) of system (4.4) is

globally asymptotically stable, where

S̃1(t) = S∗
1e

−(c+d1)(t−nτ), t ∈ (nτ, (n+ 1)τ ],

S̃2(t) =



e−d2(t−nτ)

[
S∗
2 +

cS∗
1(1− e−(c+d1−d2)(t−nτ))

c+ d1 − d2

]
, t ∈ (nτ, (n+ l)τ ],

e−d2(t−(n+l)τ)

[
(1− µ)e−d2lτ (S∗

2 +
cS∗

1(1− e−(c+d1−d2)lτ )

c+ d1 − d2
)

+
cS∗

1e
−(c+d1)lτ (1− e−(c+d1−d2)(t−(n+l)τ))

c+ d1 − d2

]
, t ∈ ((n+ l)τ, (n+ 1)τ ],

(4.12)
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in which S∗
1 , S

∗
2 are determined as in (4.7).

4.4 The Dynamics

In this section, for system (4.2) there obviously exists an infection-free

periodic solution (S̃1(t), S̃2(t), 0). First, we prove that the infection-free periodic

solution (S̃1(t), S̃2(t), 0) of system (4.2) is globally asymptotically stable. After

that, we prove that system (4.2) is permanent.

Theorem 4.5. If

µ < Ω∗,

τ >
1

c+ d1
ln(1 + a),

and

µ >

[
S∗
2(1− e−d2τ )

d2
+

cS∗
1(1− e−d2τ )

d2(c+ d1 − d2)
− cS∗

1(1− e−(c+d1)τ )

(c+ d1)(c+ d1 − d2)
− (r + d3)τ

β

]
×
[
(e−d2lτ − e−d2τ )

(
S∗
2

d2
+

cS∗
1(1− e−(c+d1−d2)lτ))

d2(c+ d1 − d2)

)]−1

,

then the infection-free periodic solution (S̃1(t), S̃2(t), 0) of system (4.2) is globally

asymptotically stable, where S∗
1 , S

∗
2 are defined by (4.7).

Proof. First of all, we prove the local stability. Defining Z1(t) = S1(t) − S̃1(t),

Z2(t) = S2(t) − S̃2(t), I(t) = I(t), we have the following linearly similar system

for (4.2):

dZ1(t)
dt

dZ2(t)
dt

dI(t)
dt


=


−(c+ d1) 0 0

c −d2 −βS̃2(t)

0 0 βS̃2(t)− (r + d3)




Z1(t)

Z2(t)

I(t)


.
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It is easy to obtain the fundamental matrix

Φ(t) =


exp[−(c+ d1)t] 0 0

∗ exp(−d2t) †

0 0 exp[
∫ t

0
(βS̃2(s)− (r + d3))ds]


.

There is no need to calculate the exact forms of ∗, †, as they are not required in

the analysis that follows. The linearization of the fourth, fifth, and sixth equations

of system (4.2) is
Z1((n+ 1)τ+)

Z2((n+ 1)τ+)

I((n+ 1)τ+)


=


1 + a 0 0

0 1 0

0 0 1




Z1((n+ 1)τ)

Z2((n+ 1)τ)

I((n+ 1)τ)


.

The linearization of the seventh, eighth, and ninth equations of system (4.2) is
Z1((n+ l)τ+)

Z2((n+ l)τ+)

I((n+ l)τ+)


=


1 0 0

0 1− µ 0

0 0 1




Z1((n+ l)τ)

Z2((n+ l)τ)

I((n+ l)τ)


.

The stability of the infection-free periodic solution (S̃1(t), S̃2(t), 0) is determined

by the eigenvalues of

M =


1 0 0

0 1− µ 0

0 0 1




1 + a 0 0

0 1 0

0 0 1

Φ(τ),

which are

λ1 = (1 + a) exp[−(c+ d1)τ ],

λ2 = (1− µ)e−d2τ < 1,
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and

λ3 = exp

[∫ τ

0

(βS̃2(s)− (r + d3))ds

]
.

According to the conditions of this theorem, we easily know that (1+a) exp[−(c+

d1)τ ] < 1, and exp
[∫ τ

0
(βS̃2(s)− (r + d3))ds

]
< 1, then λ1 < 1, and λ3 < 1. From

the Floquet theory (Klausmeier, 2008), the infection-free solution (S̃1(t), S̃2(t), 0)

of system (4.2) is locally stable.

In fact, |λ1| < 1, i.e., λ1 < 1, since

(1 + a) exp[−(c+ d1)τ ] < 1,

⇒ e−(c+d1)τ <
1

1 + a
,

⇒ −(c+ d1)τ < ln
1

1 + a
,

⇒ −(c+ d1)τ < − ln(1 + a),

⇒ (c+ d1)τ > ln(1 + a),

⇒ τ >
1

c+ d1
ln(1 + a).

In fact, λ3 < 1. Since

exp[

∫ τ

0

(βS̃2(s)− (r+ d3))ds] < 1, i.e., exp[−(r+ d3)τ +β

∫ τ

0

S̃2(s)ds] < 1,

need to −(r + d3)τ + β

∫ τ

0

S̃2(s)ds < 0, need to β

∫ τ

0

S̃2(s)ds < (r + d3)τ , i.e.,∫ τ

0

S̃2(s)ds <
(r + d3)τ

β
.

From

S̃2(t) =



e−d2(t−nτ)

[
S∗
2 +

cS∗
1(1− e−(c+d1−d2)(t−nτ))

c+ d1 − d2

]
, t ∈ (nτ, (n+ l)τ ],

e−d2(t−(n+l)τ)

[
(1− µ)e−d2lτ (S∗

2 +
cS∗

1(1− e−(c+d1−d2)lτ )

c+ d1 − d2
)

+
cS∗

1e
−(c+d1)lτ (1− e−(c+d1−d2)(t−(n+l)τ))

c+ d1 − d2

]
, t ∈ ((n+ l)τ, (n+ 1)τ ].
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For t ∈ (0, τ ], n = 0, i.e., (0, τ ] = (0, lτ ] ∪ (lτ, τ ], we have

S̃2(t) =



e−d2t

[
S∗
2 +

cS∗
1(1− e−(c+d1−d2)t)

c+ d1 − d2

]
, t ∈ (0, lτ ],

e−d2(t−lτ)

[
(1− µ)e−d2lτ (S∗

2 +
cS∗

1(1− e−(c+d1−d2)lτ )

c+ d1 − d2
)

+
cS∗

1e
−(c+d1)lτ (1− e−(c+d1−d2)(t−lτ))

c+ d1 − d2

]
, t ∈ (lτ, τ ].

Since

∫ τ

0

S̃2(s)ds =

∫ lτ

0

S̃2(s)ds+

∫ τ

lτ

S̃2(s)ds, then we have

∫ lτ

0

S̃2(s)ds

=

∫ lτ

0

e−d2s

[
S∗
2 +

cS∗
1(1− e−(c+d1−d2)s)

c+ d1 − d2

]
ds

=

∫ lτ

0

e−d2sS∗
2ds+

∫ lτ

0

cS∗
1e

−d2s(1− e−(c+d1−d2)s)

c+ d1 − d2
ds

=

∫ lτ

0

e−d2sS∗
2ds+

∫ lτ

0

cS∗
1e

−d2s − cS∗
1e

−(c+d1)s

c+ d1 − d2
ds

= −S∗
2

d2
e−d2s

∣∣∣s=lτ

s=0
+

∫ lτ

0

cS∗
1

c+ d1 − d2
e−d2sds− cS∗

1

(c+ d1 − d2)

∫ lτ

0

e−(c+d1)sds

= −S∗
2

d2
(e−d2lτ − 1)− cS∗

1

d2(c+ d1 − d2)
e−d2s

∣∣∣s=lτ

s=0

+
cS∗

1

(c+ d1)(c+ d1 − d2)
e−(c+d1)s

∣∣∣s=lτ

s=0

=
S∗
2

d2
(1− e−d2lτ )− cS∗

1

d2(c+ d1 − d2)
(e−d2lτ − 1)

+
cS∗

1

(c+ d1)(c+ d1 − d2)
(e−(c+d1)lτ − 1)

=
S∗
2

d2
(1− e−d2lτ ) +

cS∗
1

d2(c+ d1 − d2)
(1− e−d2lτ )

+
cS∗

1

(c+ d1)(c+ d1 − d2)
(e−(c+d1)lτ − 1)

=
S∗
2

d2
(1− e−d2lτ ) +

cS∗
1

d2(c+ d1 − d2)
(1− e−d2lτ )

− cS∗
1

(c+ d1)(c+ d1 − d2)
(1− e−(c+d1)lτ ).
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And ∫ τ

lτ

S̃2(s)ds =∫ τ

lτ

e−d2(s−lτ)
[
(1− µ)e−d2lτ (S∗

2 +
cS∗

1(1− e−(c+d1−d2)lτ )

c+ d1 − d2
)

+
cS∗

1e
−(c+d1)lτ (1− e−(c+d1−d2)(s−lτ))

c+ d1 − d2

]
ds

=

∫ τ

lτ

(1− µ)e−d2s(S∗
2 +

cS∗
1(1− e−(c+d1−d2)lτ )

c+ d1 − d2
)ds+

∫ τ

lτ

cS∗
1e

−(c+d1)lτe−d2(s−lτ)

c+ d1 − d2
ds

−
∫ τ

lτ

e−d2(s−lτ)e−(c+d1−d2)(s−lτ)cS∗
1e

−(c+d1)lτ

c+ d1 − d2
ds

= (S∗
2 +

cS∗
1(1− e−(c+d1−d2)lτ )

c+ d1 − d2
)(1− µ)(− 1

d2
)e−d2s

∣∣∣s=τ

s=lτ

+
cS∗

1e
−(c+d1)lτ

c+ d1 − d2
(− 1

d2
)e−d2(s−lτ)

∣∣∣s=τ

s=lτ
−
∫ τ

lτ

cS∗
1e

−(c+d1)s

c+ d1 − d2
ds

=
(1− µ)

d2
(S∗

2 +
cS∗

1(1− e−(c+d1−d2)lτ )

c+ d1 − d2
)(e−d2lτ − e−d2τ )

+
cS∗

1e
−(c+d1)lτ

c+ d1 − d2

1

d2
(1− e−d2(1−l)τ )− cS∗

1

c+ d1 − d2
(− 1

c+ d1
)e−(c+d1)s

∣∣∣s=τ

s=lτ

=
(1− µ)

d2
(S∗

2 +
cS∗

1(1− e−(c+d1−d2)lτ )

c+ d1 − d2
)(e−d2lτ − e−d2τ )

+
cS∗

1e
−(c+d1)lτ

d2(c+ d1 − d2)
(1− e−d2(1−l)τ ) +

cS∗
1(e

−(c+d1)τ − e−(c+d1)lτ )

(c+ d1)(c+ d1 − d2)

= (1− µ)

(
S∗
2

d2
+

cS∗
1(1− e−(c+d1−d2)lτ )

d2(c+ d1 − d2)

)(
e−d2lτ − e−d2τ

)
+

cS∗
1e

−(c+d1)lτ

d2(c+ d1 − d2)

(
1− e−d2(1−l)τ

)
+

cS∗
1

(c+ d1)(c+ d1 − d2)

(
e−(c+d1)τ − e−(c+d1)lτ)

)
.
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∫ τ

0

S̃2(s)ds =

∫ lτ

0

S̃2(s)ds+

∫ τ

lτ

S̃2(s)ds

=
S∗
2

d2
(1− e−d2lτ ) +

cS∗
1

d2(c+ d1 − d2)
(1− e−d2lτ )

− cS∗
1

(c+ d1)(c+ d1 − d2)
(1− e−(c+d1)lτ )

+(1− µ)

(
S∗
2

d2
+

cS∗
1(1− e−(c+d1−d2)lτ )

d2(c+ d1 − d2)

)(
e−d2lτ − e−d2τ

)
+

cS∗
1e

−(c+d1)lτ

d2(c+ d1 − d2)

(
1− e−d2(1−l)τ

)
+

cS∗
1

(c+ d1)(c+ d1 − d2)

(
e−(c+d1)τ − e−(c+d1)lτ

)
.

=
S∗
2

d2
(1− e−d2lτ ) +

cS∗
1

d2(c+ d1 − d2)
(1− e−d2lτ )

− cS∗
1

(c+ d1)(c+ d1 − d2)
+

cS∗
1e

−(c+d1)lτ

d2(c+ d1 − d2)

−cS∗
1e

−(c+d1−d2)lτe−d2τ

d2(c+ d1 − d2)
+

cS∗
1e

−(c+d1)τ

(c+ d1)(c+ d1 − d2)

+
(
e−d2lτ − e−d2τ

)(S∗
2

d2
+

cS∗
1(1− e−(c+d1−d2)lτ )

d2(c+ d1 − d2)

)
−µ
(
e−d2lτ − e−d2τ

)(S∗
2

d2
+

cS∗
1(1− e−(c+d1−d2)lτ )

d2(c+ d1 − d2)

)
=

S∗
2

d2
− S∗

2

d2
e−d2lτ +

cS∗
1

d2(c+ d1 − d2)
− cS∗

1e
−d2lτ

d2(c+ d1 − d2)

− cS∗
1

(c+ d1)(c+ d1 − d2)
+

cS∗
1e

−(c+d1)lτ

d2(c+ d1 − d2)

−cS∗
1e

−(c+d1−d2)lτe−d2τ

d2(c+ d1 − d2)
+

cS∗
1e

−(c+d1)τ

(c+ d1)(c+ d1 − d2)

+
S∗
2

d2
e−d2lτ − S∗

2

d2
e−d2τ +

cS∗
1e

−d2lτ

d2(c+ d1 − d2)
− cS∗

1e
−(c+d1)lτ

d2(c+ d1 − d2)

− cS∗
1e

−d2τ

d2(c+ d1 − d2)
+

cS∗
1e

−(c+d1−d2)lτe−d2τ

d2(c+ d1 − d2)

−µ
(
e−d2lτ − e−d2τ

)(S∗
2

d2
+

cS∗
1(1− e−(c+d1−d2)lτ )

d2(c+ d1 − d2)

)
=

S∗
2

d2
(1− e−d2τ ) +

cS∗
1(1− e−d2τ )

d2(c+ d1 − d2)
+

cS∗
1(e

−(c+d1)τ − 1)

(c+ d1)(c+ d1 − d2)

−µ
(
e−d2lτ − e−d2τ

)(S∗
2

d2
+

cS∗
1(1− e−(c+d1−d2)lτ )

d2(c+ d1 − d2)

)
<

(r + d3)τ

β
.
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That is,

S∗
2(1− e−d2τ )

d2
+

cS∗
1(1− e−d2τ )

d2(c+ d1 − d2)
− cS∗

1(1− e−(c+d1)τ )

(c+ d1)(c+ d1 − d2)
− (r + d3)τ

β

< µ
(
e−d2lτ − e−d2τ

)(S∗
2

d2
+

cS∗
1(1− e−(c+d1−d2)lτ )

d2(c+ d1 − d2)

)
.

This implies that

µ >

[
S∗
2(1− e−d2τ )

d2
+

cS∗
1(1− e−d2τ )

d2(c+ d1 − d2)
− cS∗

1(1− e−(c+d1)τ )

(c+ d1)(c+ d1 − d2)
− (r + d3)τ

β

]
×
[
(e−d2lτ − e−d2τ )

(
S∗
2

d2
+

cS∗
1(1− e−(c+d1−d2)lτ))

d2(c+ d1 − d2)

)]−1

.

Therefore, according to the conditions of this theorem, we easily know that

exp[
∫ τ

0
(βS̃2(s)− (r + d3))ds] < 1, i.e., λ3 < 1.

The following task is to prove the global attractivity; choose ε > 0 such

that

ρ = exp

[∫ τ

0

(
β(S̃2(s) + ε)− (r + d3)

)
ds

]
< 1.

From the second equation of system (4.2), we notice that
dS2(t)

dt
≤ cS1(t)−d2S2(t),

so we consider the following impulsive differential equation

dS11(t)

dt
= −cS11(t)− d1S11(t),

dS12(t)

dt
= cS11(t)− d2S12(t),

 t ̸= nτ, t ̸= (n+ l)τ,

∆S11(t) = S12(t)(a− bS12(t)),

∆S12(t) = 0,

 t = nτ, n = 1, 2, . . . ,

∆S11(t) = 0,

∆S12(t) = −µS12(t),

 t = (n+ l)τ, n = 1, 2, . . . .

(4.13)

From Lemma 4.4 and the comparison theorem of impulsive equations [see (Lak-

shmikantham et al., 1989), Theorem 3.1.1], we have S1(t) ≤ S11(t), S2(t) ≤ S12(t),
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and S11(t) → S̃1(t), S12(t) → S̃2(t) as t → ∞; that is,
S1(t) ≤ S11(t) ≤ S̃1(t) + ε,

S2(t) ≤ S12(t) ≤ S̃2(t) + ε,
(4.14)

for t large enough. For convenience, we may assume that (4.14) holds for all t ≥ 0.

From (4.2) and (4.14), we get
dI(t)

dt
≤ [β(S̃2(t) + ε)− (r + d3)]I(t), t ̸= nτ, t ̸= (n+ l)τ,

∆I(t) = 0, t = nτ, t = (n+ l)τ.
(4.15)

So I(t) ≤ I(0+) exp[
∫ t

0
(β(S̃2(t) + ε)− (r + d3))ds], thus I((n+ 1)τ) ≤ I(nτ+)×

exp[
∫ (n+1)τ

nτ
(β(S̃2(t) + ε)− (r + d3))ds], hence I(nτ) ≤ I(0+)ρn and I(nτ) → 0 as

n → ∞. Therefore, I(t) → 0 as t → ∞.

Next we prove that S1(t) → S̃1(t), S2(t) → S̃2(t) as t → ∞. Since ∀ε > 0,

we have 0 < I(t) < ε for all t ≥ 0, then, for system (4.2), we have

cS1(t)− (d2 + βε)S2(t) ≤
dS2(t)

dt
≤ cS1(t)− d2S2(t), (4.16)

then we have S21(t) ≤ S1(t) ≤ S31(t), S22(t) ≤ S2(t) ≤ S32(t), and S21(t) →

S̃21(t), S22(t) → ˜S22(t), S31(t) → S̃1(t), S32(t) → S̃2(t), as t → ∞. Meanwhile

(S21(t), S22(t)) and (S31(t), S32(t)) are the solutions to

dS21(t)

dt
= −cS21(t)− d1S21(t),

dS22(t)

dt
= cS21(t)− (d2 + βε)S22(t),

 t ̸= nτ, t ̸= (n+ l)τ,

∆S21(t) = S22(t)(a− bS22(t)),

∆S22(t) = 0,

 t = nτ, n = 1, 2, . . . ,

∆S21(t) = 0,

∆S22(t) = −µS22(t),

 t = (n+ l)τ, n = 1, 2 . . . ,

(4.17)
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and 

dS31(t)

dt
= −cS31(t)− d1S31(t),

dS32(t)

dt
= cS31(t)− d2S32(t),

 t ̸= nτ, t ̸= (n+ l)τ,

∆S31(t) = S32(t)(a− bS32(t)),

∆S32(t) = 0,

 t = nτ, n = 1, 2, . . . ,

∆S31(t) = 0,

∆S32(t) = −µS32(t),

 t = (n+ l)τ, n = 1, 2, . . . ,

(4.18)

respectively. Here ( ˜S21(t), ˜S22(t)) can be expressed as

˜S21(t) = S∗
21e

−(c+d1)(t−nτ), t ∈ (nτ, (n+ 1)τ ],

˜S22(t) =



e−(d2+βε)(t−nτ)
[
S∗
22 +

cS∗
21(1−e−(c+d1−d2−βε)(t−nτ))

c+d1−d2−βε

]
, t ∈ (nτ, (n+ l)τ ],

e−(d2+βε)(t−(n+l)τ)

[
(1− µ)e−(d2+βε)lτ (S∗

22 +
cS∗

21(1−e−(c+d1−d2−βε)lτ )
c+d1−d2−βε )

+
cS∗

21e
−(c+d1)lτ (1−e−(c+d1−d2−βε)(t−(n+l)τ))

c+d1−d2−βε

]
, t ∈ ((n+ l)τ, (n+ 1)τ ],

(4.19)

where
S∗
21 =

(1−D1 − A1 + A1D1 −B1C1)(−1 +D1)

bC2
1

, µ < Ω̃∗,

S∗
22 =

−(1−D1 − A1 + A1D1 −B1C1)

bC1

, µ < Ω̃∗,
(4.20)

and ζ1 = e−(d2+βε)τ [(1−µ)(1−e−(c+d1−d2−βε)lτ )+e−(c+d1−d2−βε)lτ−e−(c+d1−d2−βε)τ ] >

0. A1 = e−(c+d1)τ +
acζ1

c+ d1 − d2 − βε
> 0, B1 = a(1 − µ)e−(d2+βε)τ > 0, C1 =

cζ1
c+ d1 − d2 − βε

, D1 = (1− µ)e−(d2+βε)τ , A1 < 1, 0 < D1 < 1, and

Ω̃∗ = (c+d1−d2−βε)[1+e−(c+d1−d2−βε)τ−e−(c+d1)τ−e(d2+βε)τ ]+ac[1−e−(c+d1−d2−βε)τ ]

(c+d1−d2−βε)[1−e−(c+d1)τ ]+ac[1−e−(c+d1−d2−βε)lτ ]
.

Therefore, for any ε1 > 0, there exists t1, t > t1, such that

S̃21(t)− ε1 < S1(t) < S̃1(t) + ε1
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and

S̃22(t)− ε1 < S2(t) < S̃2(t) + ε1.

Letting ε → 0, we have

S̃1(t)− ε1 < S1(t) < S̃1(t) + ε1

and

S̃2(t)− ε1 < S2(t) < S̃2(t) + ε1

for t large enough, which implies that S1(t) → S̃1(t), S2(t) → S̃2(t) as t → ∞.

This completes the proof.

The next work is to investigate the permanence of system (4.2). Before

starting this work, we should give the following definition.

Definition 4.2. System (4.2) is said to be permanent if there are constants

m,M > 0 (independent of the initial value) and a finite time T0, such that for all

solutions (S1(t), S2(t), I(t)) with any initial values S1(0
+) > 0, S2(0

+) > 0, I(0+) >

0, we have m ≤ S1(t) ≤ M,m ≤ S2(t) ≤ M,m ≤ I(t) ≤ M for all t ≥ T0. Here T0

may depend on the initial values (S1(0
+), S2(0

+), I(0+)).

Theorem 4.6. If

µ < Ω∗,

τ <
1

c+ d1
ln(1 + a),

and

µ <

[
S∗
2(1− e−d2τ )

d2
+

cS∗
1(1− e−d2τ )

d2(c+ d1 − d2)
− cS∗

1(1− e−(c+d1)τ )

(c+ d1)(c+ d1 − d2)
− (r + d3)τ

β

]
×
[
(e−d2lτ − e−d2τ )

(
S∗
2

d2
+

cS∗
1(1− e−(c+d1−d2)lτ))

d2(c+ d1 − d2)

)]−1

, (4.21)

then system (4.2) is permanent, where S∗
1 , S

∗
2 are defined by (4.7).

 

 

 

 

 

 

 

 



83

Proof. Let (S1(t), S2(t), I(t)) be a solution of (4.2) with S1(0) > 0, S2(0) >

0, I(0) > 0. By Lemma 4.2, we have proved there exists a constant M > 0,

such that S1(t) ≤ M,S2(t) ≤ M, I(t) ≤ M for t large enough.

From the proof of Theorem 4.5, we know that S1(t) > S̃1(t) − ε1, S2(t) >

S̃2(t)− ε1 for t large enough, and ε1 > 0. So, S1(t) ≥ S∗
1e

−(c+d1)τ − ε1 = m2, and

S2(t)

≥ e−d2lτ

[
S∗
2 +

cS∗
1(1− e−(c+d1−d2)τ )

c+ d1 − d2

]

+e−d2(1−l)τ

[
(1− µ)e−d2τ

(
S∗
2 +

cS∗
1(1− e−(c+d1−d2)lτ )

c+ d1 − d2

)

+
cS∗

1e
−(c+d1)lτ (1− e−(c+d1−d2)(1−l)τ )

c+ d1 − d2

]

≥ e−d2lτ

[
S∗
2 +

cS∗
1(1− e−(c+d1−d2)τ )

c+ d1 − d2

]
+ e−d2(1−l)τ

×

[
(1− µ)e−d2τS∗

2 +
cS∗

1 [(1− µ)e−d2τ + e−(c+d1)τ ](1− e−(c+d1−d2)(1−l)τ )

c+ d1 − d2

]
− ε1

= m′
2,

for t large enough, where S∗
1 and S∗

2 are defined by (4.7). Thus, we only need to

find m1 > 0 such that I(t) ≥ m1 for t large enough. We will do it in the following

two steps.

1◦ Prove that I(t) ≥ m1, for t large enough. Otherwise, we can select

m3 > 0 small enough, and prove I(t) < m3 cannot hold for t ≥ 0. By condition
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(4.21), we can obtain

σ =
S∗
42

d2 + βm3
(1− e−(d2+βm3)lτ )

+
cS∗

41

(d2 + βm3)(c+ d1 − d2 − βm3)
(1− e−(d2+βm3)lτ )

− cS∗
41

(c+ d1)(c+ d1 − d2 − βm3)
(1− e−(c+d1)lτ )

+(1− µ)(e−(d2+βm3)lτ − e−(d2+βm3)τ )
( S∗

42

d2 + βm3
+

cS∗
41(1− e−(c+d1−d2−βm3)lτ )

(d2 + βm3)(c+ d1 − d2 − βm3)

)
+

cS∗
41e

−(c+d1)lτ

(d2 + βm2)(c+ d1 − d2 − βm3)
(1− e−(d2+βm3)(1−l)τ )

+
cS∗

41

(c+ d1)(c+ d1 − d2 − βm3)
(e−(c+d1)τ − e−(c+d1)lτ )− (r + d3)τ

β

> 0.

By Lemma 4.4, we have S1(t) ≥ S41(t), S2(t) ≥ S42(t), and S41(t) → ˜S41(t),

S42(t) → ˜S42(t), t → ∞, where (S41(t), S42(t)) is the solution to

dS41(t)

dt
= −cS41(t)− d1S41(t),

dS42(t)

dt
= cS41(t)− (d2 + βm3)S42(t),

 t ̸= nτ, t ̸= (n+ l)τ,

∆S41(t) = S42(t)(a− bS42(t)),

∆S42(t) = 0,

 t = nτ, n = 1, 2, . . . ,

∆S41(t) = 0,

∆S42(t) = −µS42(t),

 t = (n+ l)τ, n = 1, 2, . . . ,

(4.22)

with

˜S41(t) = S∗
41e

−(c+d1)(t−nτ), t ∈ (nτ, (n+ 1)τ ],

˜S42(t) =



e−(d2+βm3)(t−nτ)
[
S∗
42 +

cS∗
41(1−e−(c+d1−d2−βm3)(t−nτ))

c+d1−d2−βm3

]
, t ∈ (nτ, (n+ l)τ ],

e−(d2+βm3)(t−(n+l)τ)

[
(1− µ)e−(d2+βm3)lτ (S∗

42 +
cS∗

41(1−e−(c+d1−d2−βm3)lτ )
c+d1−d2−βm3

)

+
cS∗

41e
−(c+d1)lτ (1−e−(c+d1−d2−βm3)(t−(n+l)τ))

c+d1−d2−βm3

]
, t ∈ ((n+ l)τ, (n+ 1)τ ].

(4.23)
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Here S∗
41 and S∗

42 are determined as
S∗
41 =

(1−D2 − A2 + A2D2 −B2C2)(−1 +D2)

bC2
2

, µ < Ω∗∗

S∗
42 =

−(1−D2 − A2 + A2D2 −B2C2)

bC2

, µ < Ω∗∗,
(4.24)

and ζ2 = e−(d2+βm3)τ [(1 − µ)(1 − e−(c+d1−d2−βm3)lτ ) + e−(c+d1−d2−βm3)lτ −

e−(c+d1−d2−βm3)τ ] > 0. A2 = e−(c+d1)τ +
acζ2

c+ d1 − d2 − βm3

> 0, B2 = a(1 −

µ)e−(d2+βm3)τ > 0, C2 =
cζ2

c+ d1 − d2 − βm3

, D2 = (1 − µ)e−(d2+βm3)τ , A2 < 1,

0 < D2 < 1, and

Ω∗∗ = (c+d1−d2−βm3)[1+e−(c+d1−d2−βm3)τ−e−(c+d1)τ−e(d2+βm3)τ ]+ac[1−e−(c+d1−d2−βm3)τ ]

(c+d1−d2−βm3)[1−e−(c+d1)τ ]+ac[1−e−(c+d1−d2−βm3)lτ ]
.

Therefore, there exist T1 > 0 and ε3 > 0, such that

S1(t) ≥ S41(t) ≥ ˜S41(t)− ε3

and

S2(t) ≥ S42(t) ≥ ˜S42(t)− ε3.

Then

dI(t)

dt
≥ [β( ˜S42(t)− ε3)− (r + d3)]I(t), (4.25)

for t ≥ T1. Let N1 ∈ N and N1τ > T1. Integrating (4.25) on (nτ, (n + 1)τ ],

n ≥ N1, we have

I((n+ 1)τ) ≥ I(nτ+) exp
(∫ (n+1)τ

nτ

[β(S̃42(t)− ε3)− (r + d3)]dt
)
= I(nτ)eσ,

then I((N1 + k)τ) ≥ I(N1τ
+)ekσ → ∞, as k → ∞, which is a contradiction to the

boundedness of I(t). Hence, there exists a t1 > 0, such that I(t1) ≥ m3.

2◦ If I(t) ≥ m3 for all t ≥ t1, and let m1 = m3 then our aim is obtained.

Otherwise, let t∗ = inft≥t1{I(t) < m3}, there are two possible cases for t∗. In

the following, we will apply the ideas of Meng and Chen (2008b) to complete the

remaining proof.
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Case (I): t∗ = n1τ , n1 ∈ N . Then I(t) ≥ m3 for t ∈ [t1, t
∗) and x(t∗) = m3.

Select n2, n3 ∈ N, such that

n2τ > T1, e(n2+1)σ1τen3σ > 1,

where σ1 = βm
′
2 − (r + d3) < 0. Let T = n2τ + n3τ , we claim that there must

be a t2 ∈ (t∗, t∗ + T ], such that I(t2) > m3. Otherwise, (i.e., ∀t ∈ (t∗, t∗ + T ],

I(t) ≤ m3) consider (4.22) with S41(n1τ
+) = S1(n1τ

+), S42(n1τ
+) = S2(n1τ

+), for

t ∈ (nτ, (n+ 1)τ) and n1 ≤ n ≤ n1 + n2 + n3, we have

S1(t) ≥ S41(t) ≥ ˜S41(t)− ε3

and

S2(t) ≥ S42(t) ≥ ˜S42(t)− ε3,

for t∗ + n2τ ≤ t ≤ t∗ + T . This implies (4.25) holds for t∗ + n2τ ≤ t ≤ t∗ + T . As

in step 1, we have

I(t∗ + T ) ≥ I(t∗ + n2τ)e
n3σ.

The third equation of (4.2) gives

dI(t)

dt
≥ I(t)[βm

′

2 − (r + d3)] = σ1I(t), (4.26)

for t ∈ [t∗, t∗ + n2τ ].

Integrating on [t∗, t∗ + n2τ ], we have

I(t∗ + n2τ) ≥ m3e
σ1n2τ .

Then

I(t∗ + T ) ≥ I(t∗ + n2τ)e
n3σ ≥ m3e

σ1n2τen3σ

≥ m3e
σ1(n2+1)τen3σ > m3,

which is a contradiction.
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Let t = inft≥t∗{I(t) > m3}, thus I(t) ≤ m3 for t ∈ [t∗, t], I(t) = m3, since

I(t) is continuous and I(t) is not affected by the impulsive effect. For t ∈ (t∗, t],

suppose t ∈ (t∗ + (p− 1)τ, t∗ + pτ ], p ∈ N , and p ≤ n2 + n3, by (4.26) we have

I(t) ≥ I(t∗ + (p− 1)τ)eσ1(t−(t∗+(p−1)τ))

≥ I(t∗)e(p−1)σ1τeσ1τ = I(t∗)epσ1τ

≥ m3e
pσ1τ ≥ m3e

(n2+n3)σ1τ = m′
1 (clearly,m3 > m′

1),

hence, we have I(t) ≥ m′
1 for t ∈ (t∗, t). For t > t, the same arguments can be

presented, since I(t) ≥ m3.

Case (II): t∗ ̸= nτ, n ∈ N . Then I(t) ≥ m3 for t ∈ [t1, t
∗] and I(t∗) = m3,

suppose t∗ ∈ (n4τ, (n4 + 1)τ), n4 ∈ N . There are two possible cases for t ∈

(t∗, (n4 + 1)τ).

Case (IIa): I(t) ≤ m3 for all t ∈ (t∗, (n4 + 1)τ). We claim that there

must be a t′2 ∈ [(n4 + 1)τ, (n4 + 1)τ + T ], such that I(t′2) > m3. Otherwise,

i.e., ∀t ∈ [(n4 + 1)τ, (n4 + 1)τ + T ], we have I(t) ≤ m3. Consider (4.22) with

S41((n4 + 1)τ+) = S1((n4 + 1)τ+), S42((n4 + 1)τ+) = S2((n4 + 1)τ+), one can get

S1(t) ≥ S41(t) ≥ S̃41(t)− ε3, S2(t) ≥ S42(t) ≥ S̃42(t)− ε3,

for t ∈ (nτ, (n+ 1)τ ] and n4 + 1 ≤ n ≤ n4 + 1 + n2 + n3. Similarly, we have

I((n4 + 1 + n2 + n3)τ) ≥ I((n4 + 1 + n2)τ)e
n3σ.

Since I(t) ≤ m3 for t ∈ (t∗, (n4 + 1)τ), (4.26) holds on [t∗, (n4 + 1 + n2)τ ], so we

have

I((n4 + 1 + n2)τ) ≥ m3e
(n2+1)σ1τ .

In fact, since t ≤ (n4 +1+n2)τ, n4τ ≤ t∗ ≤ (n4 +1)τ , σ1 < 0, then n2τ ≤ t− t∗ ≤

(n2 + 1)τ , e(t−t∗)σ1τ ≥ e(n2+1)σ1τ . Thus,

I((n4 + 1 + n2)τ) ≥ I(t∗)e(t−t∗)σ1τ ≥ m3e
(n2+1)σ1τ .
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Therefore,

I((n4 + 1 + n2 + n3)τ) ≥ I((n4 + 1 + n2)τ)e
n3σ

≥ m3e
(n2+1)σ1τen3σ > m3,

which is a contradiction. Let t = inft>t∗{I(t) > m3}, then I(t) ≤ m3 for t ∈ (t∗, t)

and I(t) = m3. For t ∈ (t∗, t), suppose t ∈ (n4τ +(p′− 1)τ, n4τ + p′τ ], p′ ∈ N, p′ ≤

1 + n2 + n3, we have

I(t) ≥ I(t∗)e(t−t∗)σ1 ≥ I(t∗)eσ1τ ≥ I(t∗)ep
′σ1τ

≥ I(t∗)e(1+n2+n3)σ1τ ≥ m3e
(1+n2+n3)σ1τ .

Let m1 = m3e
(1+n2+n3)σ1τ < m3e

(n2+n3)σ1τ = m′
1(clearly,m3 > m1), hence, I(t) ≥

m1 for t ∈ (t∗, t). For t > t, the same arguments can be presented, since I(t) ≥ m1.

Case (IIb): Suppose that there exists a t ∈ (t∗, (n4 +1)τ), such that I(t) >

m3. Let t
∗∗ = inft>t∗{I(t) > m3}, then I(t) ≤ m3 for t ∈ (t∗, t∗∗) and x(t∗∗) = m3.

For t ∈ (t∗, t∗∗), (4.26) holds true, integrating (4.26) over (t∗, t∗∗), we have

I(t) ≥ I(t∗)eσ1(t−t∗) ≥ m3e
σ1τ > m3e

(1+n2+n3)σ1τ = m1.

Since I(t∗∗) ≥ m3, for t > t∗∗, the same arguments can be presented. Hence

I(t) ≥ m1 for all t ≥ t1. This completes the proof.

4.5 Discussion

In this chapter, we have considered an SIR epidemic model with state

structure and pulse vaccination at different fixed moments. We have proved that

all solutions of system (4.2) are uniformly ultimately bounded. The conditions

for the global asymptotic stability of the infection-free periodic solution of system

(4.2) are given, and the permanence of system (4.2) is also obtained.
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From the conditions of Theorems 4.5 and 4.6, we know that there exists

a threshold τ0. If τ > τ0, the infection-free periodic solution (S̃1(t), S̃2(t), 0) of

system (4.2) is globally asymptotically stable. If τ < τ0, system (4.2) is permanent.

That is, improving the proportion of vaccinations and enlarging the period of birth

pulse, the disease will die out. If the period of pulse vaccination is suitable, system

(4.2) will be permanent. This means after some period of time the disease will come

to be endemic. The results obtained provide a reliable tactic basis for preventing

the disease from spreading.

 

 

 

 

 

 

 

 



CHAPTER V

CONCLUSIONS

This dissertation is devoted to the investigation of population dynamics,

which includes two models.

In the fist part, we establish a predator-prey model with periodic impulsive

diffusion and periodic release of predator population. The model comprises two

regions, which are connected by diffusion of predator population, and portrays

the evolvement of population. We prove that all solutions of the investigated

system are uniformly ultimately bounded. We also prove that there exists globally

asymptotically stable prey-extinction boundary periodic solution. The condition

for permanence is obtained. Simulations are also employed to verify our results.

It is discovered that increasing the diffusive rate of the predator population will

counteract the pest management. We conclude that the impulsive diffusion and

releasing predator provide a reliable tactic basis for pest management.

In the second part, we investigate an SIR epidemic model with stage struc-

ture and pulse vaccination. By using the discrete dynamical system determined by

stroboscopic map, we obtain the conditions for the global asymptotical stability of

the infection-free periodic solution of the studied system. Permanence conditions

of the investigated system are also given. The results indicate that pulse vaccina-

tion rate plays an important role in eradicating the disease. It provides a reliable

tactic basis for preventing the disease from spreading.
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