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 MreB และ FtsZ เป็นโปรตีน โครงสร้างของเซลล์แบคทีเรีย MreB มีความสําคญัสําหรับการ

ควบคุมทิศทางในการสร้างผนงัเซลล์ ในขณะที= FtsZ มีความจาํเป็นในการแบ่งเซลล์ ไม่นานนี) มี

รายงานวา่ทั)งสองโปรตีนไดท้าํอนัตรกิริยากนัโดยตรง บริเวณที=มีการสร้างผนงักั)นเซลล์ แนะให้เห็น

ว่าโปรตีนทั)งสองทาํงานร่วมกนัในการแบ่งเซลล์และการสร้างผนงัเซลล์ การเกิดเป็นเส้นใยของ 

MreB และ FtsZ เป็นขั)นตอนแบบพลวตั โดยทั=วไปถูกควบคุมโดยการสลาย ATP และ GTP 

ตามลาํดบั และการเกิดเป็นเส้นใยของ MreB ที=บริเวณผวิภายในเซลล์นั)น ยงัตอ้งการ Mg2+ MreB ทาํ

หน้าที=เป็นโครงสร้างคํ)ายนัเพื=อเชื=อมโยงเอนไซม์ peptidoglycan synthases โดยการทาํอนัตรกิริยา

ผา่นกลุ่มโปรตีนชื=อ penicillin binding proteins  FtsZ ไม่ไดมี้หนา้ที=ในการสร้างผนงัเซลล์โดยตรง

เช่นเดียวกบั MreB แต่ FtsZ ทาํหนา้ที=ขบัเคลื=อนการสร้างผนงัเซลล์ในระหวา่งการแบ่งเซลล์ ณ เวลา

และสถานที=ที=จาํเพาะ ซึ= งอาจสันนิษฐานไดว้า่ เป็นผลที=เกิดจากการทาํอนัตรกิริยากบัโปรตีนในกลุ่ม 

Min ในการกาํหนดตาํแหน่งของการแบ่งเซลล์ และทาํอนัตรกิริยากบั MreB ในการกาํหนดทิศทาง

ในการสร้างแผน่กั)นเซลล ์(Septum) 

การทดลองในวิทยานิพนธ์นี)  ประกอบดว้ย การโคลนยีน mreB-Bs และ ftsZ-Bs การแสดง 

ออกของโปรตีน การทาํโปรตีน MreB-BS และ FtsZ-Bs ให้บริสุทธิA  และการพิสูจน์เอกลกัษณ์ของ

คุณสมบติัการสลายนิวคลีโอไทด์ของโปรตีนทั)ง 2 ชนิด และตรวจสอบผลของ apigenin baicalein 

luteolin α-mangostin และ naringenin ซึ= งเป็นสารสกดัจากธรรมชาติ ที=สามารถยงัย ั)งการแบ่งเซลล์

และรบกวนความสมบูรณ์ของผนงัเซลล์ แต่ยงัไม่ทราบเป้าหมายระดบัโมเลกุล โดยวิธี malachite 

green assay     

จากการทดลองพบวา่ MreB สามารถสลาย ATP และ GTP ไดที้=ช่วง pH 5.5 – 8.0  MreB 

สลาย ATP ไดดี้ที=สุดที= pH 7.0  และสลาย GTP ไดดี้ที=สุดที= pH 6.5 ส่วน FtsZ สามารถสลายได้

เฉพาะ GTP ในช่วง pH 5.5 – 8.0 ยอ่ยสลายดีที=สุดที= pH 6.5 ผลการศึกษาสารสกดัจากธรรมชาติ
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พบวา่ apigenin สามารถลดการสลาย GTP ของ FtsZ ไดร้้อยละ 33.3 และ baicalein ร้อยละ 42.5 เมื=อ

เปรียบเทียบกบัผลการศึกษาของ Mayer และ Amann ในปี ค.ศ. 2009 ผลการทดลองนี)  บ่งชี) วา่การ

สลายนิวคลิโอไทด์และการเกิดเป็นสายของ MreB-Bs เป็นกระบวนการที=ไม่ขึ)นตรงต่อกนั และยงั

สนบัสนุนรายงานขา้งตน้ที=วา่การเกิดเป็นสายของ MreB-Bs ไม่ตอ้งการการสลาย นิวคลิโอไทด์ ยิ=ง

ไปกว่านั)น ผลการศึกษาครั) งนี) ถือว่าเป็นการรายงานผลครั) งแรกที=แนะว่า FtsZ-Bs เป็นเป้าหมาย

ระดบัโมเลกุลของ apigenin และ baicalein อยา่งไรก็ตาม ยงัตอ้งมีการทาํการทดลองเพื=อยืนยนั และ

ศึกษาเพิ=มเติมเกี=ยวกบัสมบติัทั)งทางดา้นชีวเคมี และโครงสร้าง เพื=อให้เขา้ใจมากขึ)นถึงกระบวนการ

และขั)นตอนการทาํงานของโปรตีนทั) งสองชนิด เพื=อจะนํามาซึ= งข้อมูลที= เป็นประโยชน์ในการ

ออกแบบยาต่อไป 
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BACTERAL CYTOSKELATON/ MREB/ FTSZ/ ATPASE/ GTPASE/ NATURAL 

PRODUCT 

 

MreB and FtsZ are key cytoskeletal proteins of bacteria. MreB plays important 

roles in bacterial cell wall synthesis while FtsZ is crucial for septum formation and 

cell division. Interestingly, these two proteins make direct interaction and colocalize at 

the septum suggesting cooperative functions of these proteins in cell wall synthesis 

during cell division. Polymerization of MreB and FtsZ is a dynamic process regulated 

by ATP and GTP hydrolysis, respectively. Polymerization of MreB into filaments at 

the cell periphery beneath the cell membrane responds to the presence of Mg2+, and 

ATP hydrolysis. MreB acts as a scaffold for tethering of peptidoglycan synthases to 

the cell membrane by a mechanism that relies on penicillin binding proteins. Similar 

to MreB, FtsZ has no peptidoglycan synthases activity. However, FtsZ drives 

peptidoglycan synthesis during cell division at the particular time and place, 

presumably via interaction with Min-family of proteins and MreB.  

 This thesis included gene cloning, protein expression, protein purification, and 

nucleotides hydrolysis characterization of the Bacillus subtilis versions of these 

proteins, MreB-Bs and FtsZ-Bs.  The work found that MreB-Bs has optimum pH for 

nucleotide hydrolysis at 7.0, which is different from the optimum pH for the protein 

polymerization, indicating that these two processes occur independently. This result 
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supports nucleotide hydrolysis independent polymerization by MreB-Bs, reported by 

Mayer and Amann, 2009.  The work also investigated the effect of apigenin, baicalein, 

luteolin, α-mangostin, and naringenin on ATP and GTP-hydrolysis of MreB and FtsZ 

by malachite green assay. The results show that MreB was able to hydrolyze both 

ATP and GTP over a broad pH range (5.5 – 8), with the optimum pH for ATP 

hydrolysis and GTP hydrolysis of 7.0 and 6.5, respectively. On the other hand, FtsZ 

was able to hydrolyze only GTP over a broad pH range (5.5 – 8), with optimum pH at 

6.5. Importantly, this work also found that apigenin and baicalein were able to inhibit 

the GTPase activity of FtsZ-Bs by 33.3% and 42.5%, respectively. These results 

suggest that FtsZ-Bs is a molecular target of apigenin and baicalein in cell wall 

deformation. In order to get clearer ideas of these two proteins for drugs design, 

further biochemical and structural studies of these two proteins need to be done.  
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CHAPTER I 

INTRODUCTION 

 

1.1 General introduction 

Cytoskeletal proteins play crucial roles in cellular organization. It was believed 

those cytoskeletal proteins do not exist in bacteria.  Bacterial cell morphology was 

traditionally assumed to be determined by the external cell wall (Carballido‐López, 

2006a). It is now known that bacterial cytoskeletons, MreB, FtsZ, are crucial for 

bacterial survival.  

Similar to actin, MreB (an actin orthologe) can assemble into filaments. 

Assembly of MreB into filaments or polymerization is a dynamics process, which 

relates to ATP hydrolysis (Mayer and Amann, 2009; Bean and Amann, 2008). The 

polymerization of MreB is involve in many cellular processes especially in cell wall 

synthesis (Carballido-López and Errington, 2003), which is crucial for cell elongation 

and cell division (Fenton and Gerdes, 2013; van den Ent, Amos, and Löwe, 2010).   

FtsZ is a tubulin orthologe, which forms a ring-like structure at the mid cell, 

called the Z-ring. Formation of the Z-ring through polymerization requires GTP 

hydrolysis. GDP from GTP hydrolysis is used to support the polymer (Löwe, van den 

Ent, and Amos, 2004). The polymerization of FtsZ is the rate limiting step in septum 

formation under the membrane at the site of cell division (Erickson,  Anderson, and 

Osawa, 2010). Z-ring is necessary for the localization of a variety of other proteins 

(Aarsman, Piette, Fraipont et al., 2005).   
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Both FtsZ and MreB tether peptidoglycan synthases by a mechanism that relies 

on penicillin binding protein 2, PBP2 (Varma and Yong, 2009). A recent report has 

shown that direct interactions between FtsZ and MreB are necessary for appropriate 

cell division in Escherichia coli, which suggests a potential mechanism for the 

coordination of cell elongation and cell division (Fenton and Gerdes, 2013). In the 

absence of MreB, FtsZ can direct peptidoglycan incorporation into the lateral walls of 

E. coli, which may indicate a more general role in coordination of the peptidoglycan 

synthases. FtsZ may drive a general form of peptidoglycan synthesis during cell 

division at a particular time and place. The genesis of cell shape is probably based on 

a specific geometry of cell wall growth that is directed by MreB (Varma and Yong, 

2009).  

Bacteria are unicellular microbes. Cell morphology influences bacterial 

existence. A small cell size increase surface area relative to high surface-to-volume 

ratio (Capaldo-Kimball and Barbour, 1971).  This leads to obvious benefits such as 

selective pressures-access to nutrients, cell division, predation, and motility (Yang, 

Blair, and Salama, 2016; Jiang and Sun, 2010). Bacteria usually attach to surfaces 

through specific cell morphology, which is essential for the overall survival of the 

bacteria, especially pathogenic ones (Okagaki, Strain, Nielsen et al., 2010). 

Together, the preceding information shows that polymerization and direct 

interactions of MreB and FtsZ are very important for survival of bacteria. The 

molecular detail and mechanism remain unclear, and understanding of these processes 

is necessary and will provide fundamental information for controlling bacterial 

infection and drug design.  This study focuses on an investigation of effects of natural 

products on nucleotide hydrolysis by MreB and FtsZ.  
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1.2 Research objectives  

1.2.1 To clone and express mreB and ftsZ of Bacillus subtilis in E. coli. 

1.2.2 To purify MreB and FtsZ of B. subtilis for biochemical studies. 

1.2.3 To study the effects of some natural products on nucleotides hydrolysis 

by MreB and FtsZ of B. subtilis. 

 

 

 

 

 

 

 

 

 



  

CHAPTER II 

BACKGROUND 

 

2.1 Eukaryotic cytoskeletons 

In eukaryotes, the cytoskeletal proteins play crucial roles in the organization of 

the cells. The three classes of eukaryotic cytoskeletal fibers are microfilaments, 

microtubules and intermediate filaments (as show in Figure 2.1). Microfilament, actin 

filament (F-actin) is a polymer of globular actin or G-actin (Moriyama and Yahara, 

2002). Microtubule is a polymer of α, β-tubulin heterodimers, while γ-tubulin is not 

part of the tubulin subunit (Desai and Mitchison, 1997).  Lastly, intermediate 

filaments are homopolymers formed by several classes of cell-specific subunit 

proteins, including keratins, lamins, and vimentin (Herrmann and Aebi, 2004). A 

complex filamentous assemblage of microfilaments, microtubules and intermediate 

filaments form a highly dynamic network that controls a multitude of cell processes, 

such as cell motility, cell morphology, cell division, cell adhesion.  

2.1.1 Microfilament (MF)  

Actin, the monomeric form of MF, is one of the most abundant and 

highly conserved proteins among eukaryotic cells (Pantaloni, Hill, Carlier et al., 

1985). It is a member of a larger superfamily of proteins, which include a group of 

ATPases such as Hsp70 (Bork, Sander, Valencia et al., 1992).  
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Figure 2.1 Fluorescence images representation of eukaryotic cytoskeleton.  The 

three major components of the cytoskeleton of Huh7 cultured human hepatocytes 

were triple-stained with phalloidin to visualize microfilaments (blue, A), anti-tubulin 

antibody to visualize microtubules (green, B), and anti-K8/K18 antibody to visualize 

intermediate filaments (red, C). A superimposed image is shown in (D). Scale bar 

represent 10 µm (Omary, Ku, Tao et al., 2006). 

 

In vivo, switching between G-actin and F-actin is a dynamic process, 

actin dynamics. This process is essential for various cellular processes, including cell 

motility, cell migration, phagocytosis, vesicular movement, cytokinesis, and 
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molecular transport (Hoglund, Karlsson, Arro et al., 1980). Actin dynamics is 

regulated by innate properties of actin itself and by actin-binding proteins, ABS 

(Schüler, 2001).  

 

 

 
 

Figure 2.2  Representation of the conformational change of G-actin upon 

polymerization.  Superimposition the structure of ADP-actin shown in yellow (PDB: 

1J6Z; Otterbein, Graceffa, and Dominguez, 2001) onto the structure of ATP-actin 

excised from a fiber diffraction derived model shown in cyan (Oda, Iwasa, Aihara et 

al., 2009) demonstrates that subdomains III and IV are rotated with respect to 

subdomain I and II about the rotation axis (red line) in the direction indicate by the 

red arrow. The two conformations are related by a 20° rotation of the major domains 

around an axis passing along the front of subdomain I and the side of subdomain III, 

and the DNase I-binding, which loop extends to make contacts to an adjacent actin 

molecule in the filament, is in different position. The rotation is associated with bends 

of the peptide chain, as indicated in blue.  
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Superimposition of the crystal structure of G-actin with ADP in 

nucleotide binding pocket (Otterbein et al., 2001) onto actin monomer (ATP-actin) 

excised from fiber diffraction of actin filament (Oda et al., 2009)  has demonstrated 

that the conformation of actin in monomeric state is different from the polymeric state 

(Figure 2.2). It suggests that the conformation of actin affects the polymerization 

process of actin. 

The process of actin polymerization is shown in Figure 2.3. 

Polymerization of G-actin to form F-actin involves uptake of a divalent salt cation 

(Ca2+ or Mg2+) that ATP presented (Blanchoin and Pollard, 2002). G-actins carrying 

ATP will form a stable nucleus, composing of 2-3 G-actin in the process. During the 

process of elongation, actin depolymerizing factor (cofilin family) binds to the side of 

ADP-actin filaments and induces pointed end depolymerization to increase the 

concentration of G-actin at steady state (Moriyama and Yahara, 2002). In the next 

step, profilin enhances the exchange of ADP for ATP to recycle G-actins (Pantaloni et 

al., 1985; Nürnberg, Kitzing, Grosse et al., 2011). The profilin-actin complex 

assembles exclusively at the barbed end by blocking the barbed ends of major F-actin 

to increase G-actin at steady state and funnel the flux of G-actins to the non-capped 

filaments, which take another G-actin in order to start a new cycle of polymerization 

(Pollard, Blanchoin, Mullins et al., 2000).  
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Figure 2.3 A schematic representation actin polymerization and roles of actin 

binding proteins: (Adapted from Nürnberg et al., 2011). 

 

2.1.2 Microtubules (MT) 

Microtubules are long filamentous, tube-shaped protein polymers involve 

in many essential cellular processes, including cell division, ciliary and flagella 

motility, intracellular transport, and development and maintenance of cell shape 

(Jordan and Wilson, 2004). 

Microtubules are non-covalent polymers of the two related protein 

monomers α- and β-tubulins, in the presence of GTP hydrolysis (Hyman, Salser, 

Drechsel et al., 1992; Mandelkow and Mandelkow, 1990). Figure 2.4 shows that 

polymerization of tubulin occurs by a nucleation-elongation mechanism in which the 

relatively slow formation of a short microtubule or nucleus is followed by rapid 

elongation of the microtubule at its ends by the reversible addition of tubulin dimers 

(Ottaviani, Pregnolato, Cangiotti et al., 2012). 
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Figure 2.4 Polymerization of microtubules. Heterdimers of α- and β-tubulin 

assemble to form a short microtubule nucleus. Nucleation is followed by elongation at 

both ends to form a cylinder (plus (+) end with β-tubulin facing, and α-tubulin facing 

the minus end (–)) (Adapted from Jordan and Wilson, 2004). 

 

 The tubulins show complex polymerization dynamics that use energy 

provided by GTP, which is in a direct contact with loops T1 to T6 of the GTPase 

domain (Desai and Mitchison, 1997). Figure 2.5 shows the structure of tubulin in 

complex with Taxol (Nogales, Whittaker, Milligan et al., 1999). The GTPase domains 

are showing in red and the activation domains in blue. The core helix that connects 

the two globular domains in each monomer is yellow and the C-terminal domain on 

the external surface is green. 
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Figure 2.5 The model of the tubulin dimer show α-tubulin with GTP bound and β-

tubulin containing GDP and Taxol bound. The arrow indicates the direction of the 

protofilament and microtubule axis (Amos and Schlieper, 2005). 

 

 The GTP is sandwiched between the α- and β-tubulin subunits of each 

heterodimer, being bound to α-tubulin by loops T1-T6 and also makes contact with 

loop T7 of β-tubulin. The nucleotide bound to β-tubulin has been hydrolyzed to GDP 

through contact with helix H8 and loop T7 of the activation domain of another α-

tubulin subunit. Taxol sits in the pocket of β-tubulin on the inside face of 

microtubules. In α-tubulin, this pocket is occupied by the extended L loop (Amos and 

Schlieper, 2005; Amos, 2004). 
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2.1.1 Intermediate filament (IF) 

IFs typically form a network throughout the cytoplasm, surrounding the 

nucleus and extending out to the cell periphery (Cooper, 2000). They are often 

anchored to the plasma membrane at cell-cell junctions such as desmosomes, where 

the external face of the membrane is connected to that of another cell (Osborn and 

Weber, 1983).  

The family of IF proteins include two common traits that define 

members. Firstly, the (IF) proteins exhibit a characteristic tripartite domain 

organization. It consists of a highly conserved α-helical central rod domain 

(subdomains 1A, 1B, 2A and 2B) flanked by variable N-terminal head and C-terminal 

tail domains (Eriksson, Dechat, Grin et al., 2009), a generic version of which is 

shown in Figure 2.6. Secondly, the proteins can self-assemble into cytoskeletal 

filaments, which usually appear as homogeneous, apolar fibers that have a 10-12 nm 

diameter (Coulombe, Ma, Yamada et al., 2001). 

 

 

 

Figure 2.6 Genetic secondary structures of intermediate filament proteins 

(Coulombe et al., 2001).  
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 IFs are composed of a variety of proteins that are expressed in different 

types of cells (Cooper, 2000). The more than 65 different IF proteins are divided into 

six chemically distinct classes, which are described show in Table 2.1 (Cooper, 2000). 

At the protein level, polymerization properties define 3 assembly groups (A, B, and 

C), shown in Figure 2.7. Assembly group A, Keratins assemble from heterodimeric 

tetramers by lateral and nearly concomitant longitudinal assembly into heterogenous 

full-width filaments. Assembly group B, Vimentin-type assembly starts from 

antiparallel, half-staggered double dimers (or tetramers) to form full-width, unit-

length filaments. Assembly group C, Lamin dimers associate first into head-to-tail 

filaments that later laterally associate. The orientation of the two associating filaments 

is arbitrary (Herrmann and Aebi, 2004; Kim and Coulombe, 2007). 

 

 

 

Figure 2.7 Schematic models of the prime association reactions occurring between 

dimers and double dimers, respectively, of the three major IF assembly groups 

(Herrmann and Aebi, 2004). 
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Table 2.1  Classification of intermediate filament proteins. 

 Type 

 

Protein Size  

(kD) 

Assembly 

group 

Site of expression 

 I Acidic keratins 

(~15 protein) 

40–60 A Epithelial cells 

 II Neutral or basic keratins 

(~15 protein) 

50–70 A Epithelial cells 

 III Vimentin  

 

 

Desmin  

Glial fibrillary acidic protein  

Peripherin 

54 

 

 

53 

51 

57 

B 

 

 

B 

B 

B 

Fibroblasts, white 

blood cells, and 

other 

cell types 

Muscle cells  

Glial cells  

Peripheral neurons 

 IV Neurofilament protein-L  

Neurofilament protein-M  

Neurofilament protein-H 

α-Internexin 

67 

150 

200 

66 

B 

B 

B 

B 

Neurons  

Neurons  

Neurons  

Neurons 

 V Nuclear lamins 60–75 C Nuclear lamina of all 

cell types 

 VI Nestin 200 B Stem cells of central 

nervous system 
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2.2 Prokaryotic cytoskeleton proteins 

In recent years, scientists have found that bacteria present a number of 

cytoskeletal structures. The most understood bacterial cytoskeleton proteins, FtsZ, 

MreB and crescentin are orthologe of the three major types of eukaryotic cytoskeletal 

proteins actin, tubulin, and intermediate filament, respectively. These proteins play 

essential roles in dictating cell shape, motility, chromosome separation and cell 

division. 

2.2.1 MreB  

  In rod shape bacteria, the cytoskeletal protein MreB is an actin 

orthologue that plays important roles in several cellular functions in bacteria, 

especially regulation of cell shape (Bean, Flickinger, Westler et al., 2009; Fenton and 

Gerdes, 2013). The mreB gene is located in the gene cluster mre (murein cluster e). 

Bioinformatics analysis indicated that MreB has a sequence pattern in common with 

the actin superfamily (van den Ent et al., 2001). The crystal structure of Thermotoga 

maritima MreB1 revealed that actin is the most related protein to MreB, in overall 

structure, as shown in Figure 2.8 (van den Ent et al., 2001). 

MreB plays an important role in regulation of cell shape (van den Ent et 

al., 2010). Mutation of mreB causes E. coli to lose in normal rod-shape to become a 

spherical shape (Doi et al., 1988; Yamachika et al., 2012). In E. coli, MreB 

polymerizes into filament bundles in a reversible process, which responds to ions 

(Mg2+) and nucleotides (ATP) (van den Ent et al., 2001). This suggests that 

polymerization proceeds with a nucleation step in much the same way as that of 

eukaryotic actin (Nurse and Marians, 2012).   
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Figure 2.8 Superimposition of the crystal structure of MreB (PDB: 1JCE) in blue 

onto actin (PDB: 3HBT) in grey. Both structures include 4 subdomains and ATP 

binds in a cleft between the domains. 

 

The early study by Bean and colleagues (Bean et al., 2009) has shown 

that S-(3,4-Dichlorobenzyl) isothiourea (A22) increases the critical concentration for 

ATP-bound MreB assembly from 500 nM to approximately 2000 nM. Suggesting that 

A22 acts as a competitive inhibitor of ATP binding to MreB, and MreB is unable 

polymerize when bound to A22. The structure of MreB of Caulobacter crescentusin 

complex with A22 shows that A22 binds closely to the nucleotide in MreB, 

presumably preventing nucleotide hydrolysis and destabilizing double protofilaments 

(van den Ent et al., 2014). In vivo study has shown that A22 inhibits growth and 

induces a morphological change of P. aeruginosa, as shown in Figure 2.9 (Cowles 

and Gitai, 2010; Yamachika et al., 2012). 
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Figure 2.9  Effects of A22 on the morphology of P. aeruginosa. A22 absent (A)            

A22 present (B). Scale bars represent 2 µm (Cowles and Gitai, 2010). 

 

2.2.2 FtsZ 

The tubulin orthologue, Filamenting temperature-sensitive mutant Z 

(FtsZ) is one of the major cytoskeletal protein present in eubacteria, and is also found 

in archae and chloroplasts (Erickson, Anderson, Osawa et al., 2010; Löwe, van den 

Ent, Amos et al., 2004). FtsZ forms a dynamic ring-like structure, called the Z-ring at 

mid cell, under the membrane, at the site of cell division. It is necessary for the 

localization of various proteins that are required for cell division (Erickson et al., 

2010).  

FtsZ forms polymers, with the GTPase active-site split across two 

monomers. One monomer provides the GTP-binding site and the other, through its T7 

loop, nucleotide hydrolysis, as illustrated in Figure 2.10 (Erickson and Osawa, 2010).  

The polymers contain a substantial amount of GTP, which suggests that hydrolysis 

occurs with some lag following assembly. After the polymerization, the polymer 

condenses to form a Z-ring. Some models suggest that rearrangement of FtsZ drives 
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condensation of the ring and generates adequate force to pinch the cell at the site of 

the division plane (Lan et al., 2009). 

 

 

Figure 2.10 The structure of FtsZ protofilament. FtsZ forms a chain of molecules 

with the GDP bound between two subunits. Residues in loop T7 contact the 

nucleotide directly and are required for hydrolysis (Löwe et al., 2004). 

 

 The divisome of E. coli is nucleated initially by the assembly of FtsZ, and then 

the rest of the ring proteins are incorporated sequentially: FtsA, ZipA, FtsK, FtsQBL, 

FtsW, FtsEX, and finally FtsN. ZipA and FtsA interact with and stabilize the Z ring at 

the inner membrane, as showed in Figure 2.11 (Aarsman, Piette, Fraipont et al., 

2005). The divisome contains essential cell division proteins, such as the 

peptidoglycan synthases PBP1B and PBP3, and amidase enzymes (Ami) with their 

activators (EnvC), as well as proteins of the Tol-Pal complex for constriction of the 

outer membrane. Activity of the PBPs is regulated in part by outer membrane-
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anchored lipoproteins (LpoB) and lytic transglycosylase (LT). Cells lacking 

functional FtsZ are unable to divide and instead grow as filaments (Typas, Banzhaf, 

Gross et al., 2011). 

 

 

 

Figure 2.11 The schematic representation of a transverse section of a divisome of E. 

coli cell. The complex is composed of FtsA, ZipA, FtsK, FtsQBL, FtsW, FtsEX, 

FtsN, PBP1B, PBP3, Ami, EnvC, Tol–Pal, LpoB, and LT (Typas et al., 2011).  

 

2.2.3 Crescentin  

Crescentin (CreS) is the only IF orthologue identified in prokaryotic 

cells at the moment (Shih and Rothfield, 2006), based on  structural prediction and in 

vitro polymerization properties (Charbon, Cabeen, Jacobs-Wagner et al., 2009). The 

amino acid sequence of CreS has a distinct seven-residue repeat that is predicted to 
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form coiled-coil structures (Herrmann and Aebi, 2004). Because of the dominating 

coiled-coil repeat, sequence comparisons are unreliable, but CreS shares some 

important overall features with eukaryotic IF (Herrmann and Aebi, 2004; Margolin, 

2004). Analysis has revealed that the domain organization of CreS is similar to 

eukaryotic IF, suggesting that CreS probably is a prokaryotic homologue of IF 

(Michie and Löwe, 2006). 

CreS forms a polymer along the cell-length direction, localizes at the 

inner curvature of the cell, and attaches to the cytoplasmic side of the cell membrane 

(Gitai, 2005). CreS filament, when detached from the cell membrane through 

antibiotic treatment, collapses into a helix (Cabeen et al., 2009). This suggests CreS 

affixed to the cell membrane in a stretched configuration form in untreated cells, and 

may generate a constricting force on the cell wall, as shown in the model action of 

CreS shown in Figure 2.12.   

CreS forms filaments to generate the curved cell morphology in comma-

shaped Caulobacter crescentus that were identified in a screen for C. crescentus 

transposon insertion mutations that affected cell shape (Briegel, Dias Jensen et al., 

2006). Loss of the structural gene for CreS, leads to a change in cell shape from 

comma to rod (Ausmees and Wagner, 2003). Previous report indicated bacterial cells 

lacking CreS lose their curved morphology and adopt a straight rod-like shape, the 

mechanism of CreS induced curvature is likely to be simply mechanical. The 

difference of cell morphology is shown in Figure 2.13 (Charbon et al., 2009).  
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Figure 2.12 Model for CreS action. A rod-shaped cell lacking CreS, turgor pressure 

strains peptide bridges (A). A cell with a CreS structure, which is affixed to the cell 

membrane in a stretched configuration (B). This in turn produces a compressive force 

on the cell wall. Cell elongation under these conditions produces a gradient of cell 

lengths, from line a to line c (Cabeen et al., 2009). 
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Figure 2.13 Composite phase-contrasts image of E. coli cell showed that CreS can 

produce cell curvature; with CreS indicate elongated and helical cells while without 

CreS indicate rod shape of E. coli (Cabeen et al., 2009). 

 

2.3 MreB and FtsZ interactions 

The process of cell elongation is controlled by MreB, which localize 

components of the peptidoglycan synthesis along the lateral cell wall, thereby 

governing the geometry during cell wall growth (Carballido‐López, 2006b). During 

cell division on the inner membrane at the middle of the cell, it triggers invigilation by 

attracting a set of proteins to form a septal Z ring was formed with the tubulin 

homologue FtsZ (Gaballah, Kloeckner, Otten et al., 2011).  

Recent studies by Fenton and Gerdes suggest that direct interaction of MreB 

and FtsZ is crucial for septum synthesis during cell division. In vivo study by bacterial 

two hybrid analysis suggests MreB-FtsZ crosslink. Mutagenesis showed that D258 of 

MreB interacts with the C-terminus of FtsZ. The MreB/FtsZ interaction localizes the 

Z-ring and supports septum formation (Fenton and Gerdes, 2013).  
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2.4 Natural products 

A natural product is a chemical compound produced by a living organism and 

originating in nature. Natural products can also be produced by total synthesis or 

semi-synthesis processes. The products as long as a key role can be played in 

traditional medicine or other complementary and integrative health practices.  The 

ideas are effect of small molecule that mediated by specific interactions of the drug 

molecule with biological macromolecules. 

2.4.1  Apigenin  

Apigenin (4’,5,7-trihydroxyflavone), is a dietary flavonoid which is 

found in a wide variety of plants and herbs, including parsley, celery, rosemary, 

oregano, thyme, basil, and coriander (Figure 2.14). It is a natural product belonging to 

the flavone class. The chemical structure of apigenin is shown in Figure 

2.15. Apigenin shows promising biological effects, such as prevention and therapy of 

prostate cancer, suppression of tumorigenesis and angiogenesis in melanoma 

(Caltagirone, Rossi, Poggi et al., 2000) and breast, skin, and colon carcinomas (Wang, 

Heideman, Chung et al., 2000).  

Apigenin also has antimicrobial activity against oral pathogen agents 

(Cha, Kim, Cha et al., 2016). Ceftazidime is bactericidal in action, exerting its effect 

on target cell wall proteins and causing inhibition of cell wall synthesis. Recent report 

by Eumkeb (2012) has shown that the cells were treated with ceftazidime presenting 

elongated of shape and damaged cell wall especially at the cells polar. On the other 

hand, apigenin also causes cell elongation without disrupting cell wall integrity at the 
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poles of the cells as ceftazidime, as show in Figure 2.16 (Eumkeb and Chukrathok, 

2013). 

 

 

 

Figure 2.14 Examples of plants and herbs containing apigenin and luteolin. 

 

 

  

 

Figure 2.15 Chemical structure of apigenin.  
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Figure 2.16 Ultrathin sections of log phase CREC grown in cation-adjusted Mueller 

Hinton broth containing: drug-free (A), 20 µg/ml ceftazidime (B), 10 µg/ml apigenin 

(C), 3 µg/ml ceftazidime and 3 µg/ml apigenin (D). Scale bars represent 0.5 µm 

(Eumkeb and Chukrathok, 2013). 

 

2.4.2 Baicalein 

Baicalein (5,6,7-trihydroxyflavone) is a type of flavonoid, a major 

flavone of baikal skullcap (Scutellariae baicalensis, Figure 2.17). The chemical 

structure of baicalein show as Figure 2.18. The ability of baicalein showed significant 

cytotoxicity against the hepatocellular carcinoma cells and moderate cytotoxicity 

against immortalized human hepatocytes (Zheng, Yin, Grahn et al., 2014), and act as 

an anti-inflammatory agent (Hsieh, Hall, Ha et al., 2007). The baicalein has a 

potential adjuvant role in clinical bactericidal therapy for severe enterococcal 
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infection that demonstrated baicalein and gentamicin can act synergistically in 

inhibiting vancomycin-resistant Enterococcus (Chang, Li, Tang et al., 2007). It also 

demonstrated strong antibacterial activity against clinically isolated methicillin and 

vancomycin-resistant Staphylococcus aureus that baicalein could be employed as a 

natural antibacterial agent against multidrug-resistant pathogens infection (Lee, Jung, 

Cha et al., 2015). 

 

 

 

Figure 2.17 Appearance of baikal skullcap. It is member of the mint family 

(Lamiaceae) that is a perennial found in sandy mountain soils in northeast China and 

adjacent Russia, Korea, Mongolia, and Japan (Foster, 2004). 

 

 

 

Figure 2.18 Chemical structure of baicalein.  
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Baicalein is a potential synergistic adjunct to ceftazidime for the 

treatment of S. pyogenes infections. It acts by exerting inhibition activity against β-

lactamase. Compared with the controls (drug-free), combining ceftazidime with 

baicalein caused peptidoglycan and morphological damage (Figure 2.19) (Siriwong, 

Pimchan, Naknarong et al., 2015). 

 

 

 

Figure 2.19 Ultrathin sections of log phase S. pyogenes DMST 30653 grown in 

cation-adjusted Mueller-Hinton broth with lysed horse blood (2.5 %v/v) containing: 

Drug-free (A), 0.25 µg/ml ceftazidime (B), 128 µg/ml baicalein (C), 0.09 µg/ml 

ceftazidime and 24 µg/ml baicalein. Scale bars represent 0.5 µm (Siriwong et al., 

2015). 

 

2.4.3 Luteolin 

Luteolin, 3',4',5,7-tetrahydroxyflavone (Figure 2.20), is a common 

flavonoid that exists in many types of plants, including fruits, vegetables, and 
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medicinal herbs, such as celery, parsley, thyme, oregano, and rosemary (Figure 2.14), 

broccoli, green pepper, navel oranges, and olive oil. The hydroxylated flavone 

derivative is a strong antioxidant and radical scavenger.  (Evans, Miller, Paganga et 

al., 1996). Luteolin activates both the extrinsic and intrinsic apoptosis pathways 

(Horinaka, Yoshida, Shiraishi et al., 2005). Luteolin is potent to inhibit angiogenesis 

(Bagli, Stefaniotou, Morbidelli et al., 2004), to prevent carcinogenesis, to reduce 

tumor growth (Fang, Zhou, Shi et al., 2007) and to sensitize tumor cells to the 

cytotoxic effects of some anticancer drugs, which suggests that this flavonoid has 

cancer chemopreventive and chemotherapeutic potential (López-Lázaro, 2009). It also 

plays a role in inhibition of fatty acid synthase activity (Coleman, Bigelow, Cardelli et 

al., 2009). 

 

 

Figure 2.20 Chemical structure of luteolin.  

 

2.4.4 α-Mangostin 

Alpha-mangostin is a natural xanthonoid that belongs to the family of 

xanthones (Figure 2.21). It is a pigment from mangosteen (Figure 2.22). The xanthone 

derivative has been shown to induce apoptosis via inhibiting fatty acid synthase 

(Quan, Wang, Ma et al., 2012). α-Mangostin was found to be active against 
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vancomycin-resistant enterococci (VRE) and methicillin-resistant Staphylococcus 

aureus (MRSA) with synergism between alpha-mangostin and gentamicin (GM) 

against VRE, and α-mangostin and vancomycin hydrochloride (VCM) against MRSA 

(Sakagami, Iinuma, Piyasena et al., 2005).  The direct interactions of α-mangostin 

with the S. aureus membrane are responsible for the rapid concentration-dependent 

membrane disruption and bactericidal action (Koh, Qiu, Zhu et al., 2013). 

 

 

 

Figure 2.21 Chemical structure of α-mangostin.  

 

 

 

 

Figure 2.22 Appearance of mangosteen fruit (Garcinia mangostana). It is found 

particularly in the South-East Asian regions.  
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2.4.5  Naringenin 

 Naringenin is a flavanone, a type of flavonoid (Figure 2.23). It can be 

found in grapefruits, oranges and tomato skin. The pharmacological properties of 

naringenin, which has many potential applications, include an antioxidant effect 

(Andrade, Carvalho, Cunico et al., 2010), hepatoprotective (Lee, Yoon and Moon., 

2004), anti-inflammatory (Bodet, La, Epifano et al., 2008), antiviral (Nahmias, 

Goldwasser, Casali et al., 2008), antihypertensive (Saponara, Testai, Lozzi et al., 

2006) and antimutagenic effects (Renugadevi and Prabu, 2009). In addition naringenin 

displayed additive effects when combined with the different antibiotics at sub-

inhibitory concentrations against multidrug resistant Staphylococcus aureus (Ng’uni, 

Mothlalamme, Daniels et al., 2015) and inhibited the growth of gram-positive and 

gram-negative bacteria (Andrade et al., 2010). 

 

 

 

Figure 2.23 Chemical structure of naringenin.  

 

 

 

 

 

 

 

 



 

CHAPTER III 

MATERIALS AND METHODS 

 

3.1 Materials  

3.1.1   Chemicals 

Chemical reagents and sources used in this work are listed in Table 3.1 

 

Table 3.1  Chemical reagents and sources.  

Reagent Source 

• Coomassie brilliant blue R250  

• Dithiothreitol (C4H10O2S2) 

• Ethidium bromide (C21H20BrN3) 

• Malachite green (C23H25ClN2) 

• Methanol (CH3HO) 

• Perchloric acid (HClO4)  

• Triton X-100 

Acros Organics 

 

• Ammonium persulfate (NH4)2S2O4 

• Glycerol (C3H8O3) 

• Sodium chloride (NaCl) 

• Magnesium chloride (MgCl2) 

• Sodium dodecyl sulfate (NaC12H25SO4) 

CARLO ERBA 
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Table 3.1  Chemical reagents and sources (Continued).   

Reagent  Source 

• Potassium chloride(KCl) 

• Tris(hydroxymethyl)aminomethane (NH2C(CH2OH)3)  

• Hydrochloric acid (HCl) 

• Ethylenediaminetetraacetic acid (C10H16N2O8) 

• Sodium molybdate (Na2MoO4) 

• Sodium acetate (CH3COONa) 

CARLO ERBA 

• Bacto-agar 

• Peptone 

• Yeast extract 

HiMedia  

• Adenosine triphosphate 

• Guanosine triphosphate  

• Ampicillin  

• Bovine serum albumin  

• Isopropyl-β-D thiogalactopyranosid  

• Lysozyme 

• N, N-Methylenebisacrylamide 

• Acrylamide 

• 4-(2 Hydroxyethyl)-1-piperazineethanesulfonic acid  

• 2-(N morpholino)-ethanesulfonic acid  

• Apigenin (≥97% purity) 

• Baicalein (98% purity) 

Sigma-Aldrich 
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Table 3.1  Chemical reagents and sources (Continued).   

Reagent  Source 

• Luteolin (≥98% purity) 

• α-Mangostin (≥98% purity) 

• Naringenin (≥95% purity) 

Sigma-Aldrich 

• Restriction enzymes  

− EcoRI  

− SfiI 

− XhoI 

− SalI  

ThermoScience 

• Agarose  

• Deoxyribonucleotide triphosphate 

• DNA ladder VC 100 bp plus 

• Taq DNA polymerase 

• T4-DNA ligase 

• Protein maker 

• Tetramethylethylenediamine 

Vivantis 

 

3.1.2 Instruments and equipment 

3.1.2.1 TC-PLUS thermal cycler (Techne) 

3.1.2.2 DNA gel electrophoresis apparatus (Amersham) 

3.1.2.3 Vertical gel electrophoresis apparatus (Bio-RAD) 

3.1.2.4 Innova 4300 shaker incubator (Brunswick Scientific) 

3.1.2.5 Sorvall legend XFR centrifuge (ThermoScience) 
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 3.1.2.6 Nano drop 2000 spectrophotometer (ThermoScience) 

3.1.2.7 Labsystems iEMS Microplate Reader MF (MTX LabSystems) 

3.1.3  Bacterial stains and plasmids  

 3.1.3.1 Bacterial template  

   Bacilus subtilis (TISTR No. 001, Thailand Institute of Scientific 

and Technological Research, Thailand). 

 3.1.3.2 Escherichia coli strains 

1.) E. coli DH5α  

E. coli strains DH5α is suitable for cloning of genes. The 

mutations that the DH5α has are: F–Φ80lacZ∆M15 ∆(lacZYA-argF) U169 recA1 

endA1 hsdR17(rK-mK+) supE44λ- thi-1 gyrA96 relA1 (Taylor, Walker, McInnes et 

al., 1993). These mutations allow for blue-white screening, lower endonuclease 

degradation (which ensures higher plasmid transfer rates), increase insert stability and 

improve the quality of plasmid DNA preparation. 

2.) E. coli BL21(DE3) 

E. coli strains BL21(DE3) is used for performing protein 

expression that utilizes the T7 RNA polymerase promoter to direct high-level 

expression (Studier and Moffatt, 1986). The mutations that the BL21 has are: F–ompT 

gal dcm lon hsdSB(rB
- mB

-) λ(DE3). These expression strains naturally lack the Lon 

protease, which can degrade recombinant proteins. In addition, these strains are 

engineered to be deficient for a second protease, the OmpT protein (Grodberg 

and Dunn, 1988). 
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 3.1.3.3 Plasmid 

1.) pTG19-T cloning plasmid 

  pTG19-T is a plasmid designed for rapid and efficient 

cloning of PCR products with 3'-dA overhangs (Figure 3.1). The linearized plasmid 

was engineered with a multiple cloning in the gene for β-galactosidase (also known as 

lacZ) (Langley, Villarejo, Fowler et al., 1975). Successful cloning of foreign DNA 

into the multiple cloning sites interrupts lacZ the genes producing a non-functional β-

galactosidase enzyme. An unsuccessful cloning will produce a functional enzyme 

(Langley et al., 1975). The ligated plasmid without a foreign gene produces the 

functional enzyme that is able to hydrolyze X-gal, which creates a blue colony on LB 

agar plate supplemented by X-gal and IPTG. 

2.) pSY5 expression plasmid 

The pSY5 plasmid was modified from pET-21d(+), 

designed by the (Robert C Robinson group), Institute of Molecular and Cell Biology 

(IMCB), A*Star, Singapore. This plasmid enables expression the protein under the 

control of the T7 promoter. The pSY5 is encodes an N-terminal, His8-tag, followed 

by a human rhinovirus 3C protease cleavage site ahead of the N-terminus of the 

protein.  
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Figure 3.1 Map and multiple cloning site sequence of pTG19-T vector. 
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Figure 3.2  Map and multiple cloning site sequence of pSY5. 
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3.1.4  Oligonucleotides 

 The oligonucleotides (primers) used for genes amplification were 

purchased from Sigma-Aldrich (Singapore) Co., Ltd. and are shown in Table 3.1.  

 

Table 3.2 Details of primers.  

 Construction Primer Sequence Cloning  

    site 

 pTG19-mreB-Bs,     

 pSY5-mreB-Bs 

MreB-Bs Fwd 5’ggcccgggcggccgatgtttg

gaattggtgctagagac 3’ 

SfiI 

 pTG19-mreB-Bs,    

 pSY5-mreB-Bs 

MreB-Bs Rev 5’gaattcttatctagttttccctttg

aaaagat ggatgtgctcc 3’ 

EcoRI 

 pTG19-ftsZ-Bs,    

 pSY5-ftsZ-Bs 

 FtsZ-Bs Fwd 5’ggcccgggcggccgatgttg

gagttcgaaac 3’ 

SfiI 

 pTG19-ftsZ-Bs,   

 pSY5-ftsZ-Bs 

FtsZ-Bs Rev 5’gaattcttagccgcgtttattac

ggtttcttaagaatg 3’ 

EcoRI 

 

3.2  General Methods  

 3.2.1  CaCl2 Competent cell preparation  

The E. coli DH5α and BL21(DE3) were grown in 5 ml LB medium (10 

g/l peptone, 5 g/l yeast extract, 5 g/l NaCl) at 37 °C, 200 rpm for 16 – 18 hours as a 

starter, then 1 ml starter was inoculated to 100 ml LB and cultured at 37 °C, 200 rpm 

until the optical density at 600 nm reached 0.4 – 0.5. The cell pellet was collected by 

centrifugation at 3,000 xg, for 10 minutes, at 4 °C. The pellet was suspended in 10 ml 

of cold 0.1 M CaCl2, gently mixed and stored on ice for 10 minutes. The cell 
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suspension was centrifuged at 3,000 xg, for 10 minutes, at 4 °C, the supernatant 

discarded, and 2 ml of cold 15% glycerol in 0.1 M CaCl2 was added, and the cell 

suspension was mixed very well and aliquot into the micro centrifuge tubes with 100 

µl per tube. The tubes of competent cells were used immediately or kept at -80 °C. 

3.2.2 Heat shock transformation of CaCl2 competent cell   

 One hundred microliters of competent cell in 1.5 ml micro centrifuge 

tube was thawed on ice. One microliter of plasmid (or ~100 ng) was added to the cell 

and mixed by gently stirring the pipette tip. Incubation of the cells continued on ice 

for 30 minutes. The cells were heat pulsed at 42 °C for 45 seconds followed by 2 

minutes incubation on ice. The LB medium (0.9 ml) was added to each tube of cells 

and the tubes were incubated at 37 °C for 1 hour. A sample of 50 µl was plated out on 

agar plates with appropriate antibiotics for selection. Plates were incubated at 37 °C 

overnight. 

3.2.3  Cloning 

DNA encoding the genes of mreB (Gene ID: 936759) and ftsZ (Gene ID: 

935971) of B. subtilis were amplified by polymerase chain reaction (PCR). All 

forward primers contained a SfiI recognition site and reverse primers containing an 

EcoRI recognition site (Table 3.2). Chemical compositions of the PCR and thermo- 

cycler program are shown in Tables 3.3 and 3.4. The genes were amplified directly 

from B. subtilis cell by using Taq DNA polymerase. PCR products were cleaned by 

PCR Clean-up Kit. The concentration of cleaned PCR products was measured by 

Nano drop spectrophotometer. The cleaned PCR products were ligated into pTG19-T 

plasmid by using T4 ligase. The details of the ligation reaction are shown in Table 

3.5. The reaction was incubated at 22 °C for 1 hour. The ligation product was 
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transformed into E. coli DH5α. The transformation reaction was spread onto an LB 

agar plate containing 100 µg/ml ampicillin, 1 mM IPTG, and 50 µg/ml X-gal.  

 

Table 3.3  Chemical compositions of the PCR. 

 Composition Volume (µl) Final concentration 

 10× S buffer  

 dNTPs (0.2 mM each dNTP) 

 2 mM MgCl2 

 5 µM Primer forward 

 5 µM Primer reverse 

 DNA template 

 Taq DNA polymerase 

 Distilled water 

2.5 

2.5  

2.0 

2.5 

2.5 

2.0 

0.25 

10.75 

1x 

0.2 mM 

2.0 mM 

0.5 mM 

0.5 mM 

- 

 1U 

- 

 Total reaction volume 25 µl  

 

The constructs were confirmed by DNA sequencing (Macrogen, Korea) 

with the M13 forward primer and M13 reverse primer. The plasmid containing mreB-

Bs was named pTG19-mreB-Bs and the plasmid containing ftsZ-Bs was named 

pTG19-ftsZ-Bs.  The verified pTG19-mreB-Bs plasmid was digested and the mreB-Bs 

insert cloned into pSY5 at SfiI and EcoRI cloning sites (Table 3.6).  The plasmid 

containing mreB-Bs was named pSY5-mreB-Bs. The verified pTG19-ftsZ-Bs was 

digested with SfiI and SalI and the insert cloned into pSY5 at SfiI and XhoI cloning 

sites (Table 3.6). The plasmid containing ftsZ-Bs was named pSY5-ftsZ-Bs. 
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Table 3.4  Cycling parameters of the PCR. 

 Step Temperature (°C) Time (min) 

 Initial Denaturation  

 Denaturation  

 Annealing  

 Extension  

 Polish extension 

95  

95 

68 

72   

72   

5  

0.30 

0.30                30 cycles           

1.30            

5        

 

Table 3.5 Composition of ligation reaction of the PCR product into the cloning 

plasmid. 

 Composition Volume (µl) 

 pTG19 (25ng/µl)  

 Fresh PCR product (55ng/µl)   

 10X Buffer Ligase  

 T4 DNA Ligase (200u/µl)   

 Distilled water 

2  

1  

1  

0.2  

5.8 

 Total Volume 10 µl 
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Table 3.6  Composition of ligation reaction putting inserts into the expression 

plasmid.  

 Composition Volume (µl) 

 pSY5 (25 ng/µl)  

 Gene insert (20 ng/µl)   

 10X Buffer Ligase  

 T4 DNA Ligase (200 U/µl)   

 Distilled water 

4 

3  

1  

0.2 

1.8 

 Total Volume 10 µl 

 

3.3  Screening and optimization of protein expression 

 3.3.1   Screening of protein expression 

   The pSY5-mreB-Bs and pSY5-ftsZ-Bs plasmids were transformed into 

E. coli BL21(DE3) cells (expression cells). Ten single-colonies were selected from 

each transformation plate (pSY5-mreB-Bs or pSY5-ftsZ-Bs). Each single-colony was 

inoculated in 10 ml of LB media containing 100 µg/ml ampicillin.  The bacterial 

cultures were   incubated at 37 °C, 200 rpm in a shaker incubator for 16 hours.  Then, 

2.5 ml (5%) of each starter culture was inoculated in 47.5 ml of LB media containing 

100 µg/ml ampicillin.  The cells were grown at 37 °C, 200 rpm in a shaker incubator 

until optical density at 600 nm reached 0.6 – 0.8. The cultures were induced with 1 

mM IPTG and incubated at 20 °C, 200 rpm in shaker incubator for 16 hours.  

   The induction cells were harvested by centrifugation at 3,000 xg for 15 

minutes. The cell pellets were suspended in 1 ml of 50 mM Tris-HCl, pH 8, 150 mM 

NaCl, and 0.1 mg/ml lysozyme incubated at 37 °C for 30 minutes. The lysate were 
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clarified by centrifugation at 12,000 xg for 10 minutes.  The supernatant was applied 

to 20 µl of Ni2+-NTA resin and gently shaken for 10 minutes. The resin were washed 

with 50 mM Tris-HCl, pH 8.0, 20 mM imidazole, and 500 mM NaCl. The soluble 

protein was verified by SDS-PAGE. 

 3.3.2  Optimization of protein expression 

   The best expression clones were inoculated in 10 ml of LB media 

containing 100 µg/ml ampicillin. The starter cultures were incubated at 37 °C, 200 

rpm in shaker incubator for 16 hours.  Then, 2.5 ml of starter culture was inoculated 

in 47.5 ml of LB media containing 100 µg/ml ampicillin. The cells were cultured in 

LB media containing 100 µg/ml ampicillin until the optical density at 600 nm reached 

0.6 – 0.8. The optimum concentration of IPTG and temperature for the protein 

expression were investigated by varying the concentration of IPTG from 0.25 – 1.00 

mM, and temperature from 20 – 30 °C. The cell induced were collected by 

centrifugation at 3,000 xg and suspended in 50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 

and 0.1 mg/ml lysozyme. The cell suspensions were incubated at 37 °C for 30 

minutes and the lysate was clarified by centrifugation at 12,000 xg for 10 minutes.  

The supernatant was applied to 20 µl of Ni2+-NTA resin. The resin was washed with 

50 mM Tris-HCl, pH 8.0, 20 mM imidazole, and 500 mM NaCl. The soluble protein 

was verified by SDS-PAGE. 

 

3.4  Protein purification 

The expression cell pellets were suspended in 50 mM Tris-HCl, pH 8.0, and 150 

mM NaCl and lysed by sonication. The lysate was clarified by centrifugation at 

12,000 xg for 30 minutes.  The supernatant was applied to a Ni2+-NTA column. The 
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proteins were purified by Ni2+-NTA with stepwise elution using imidazole 

concentrations of 0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, and 240 mM in 

500 mM NaCl and 50 mM Tris-HCl, pH 8.  The pure proteins were dialyzed against 

buffer containing 50 mM Tris-HCl, pH 8.0, and 150 mM NaCl. The proteins were 

concentrated by a 30 kDa molecular mass cut off (MWCO) Centricon centrifugal 

filter. 

 

3.5  Nucleotide removal 

To examine the effects of concentration of nucleotide on the polymerization of 

MreB-Bs and FtsZ-Bs, nucleotides were removed from the proteins by treating the 

proteins in Dowex resin following Bean and Amann (2008). The proteins were mixed 

with 1/4 its volume of 50% Dowex resin (1X8-400Cl) slurry in 10 mM Tris-HCl, pH 

8.0. The reaction was incubated on ice for 15 minutes with gentle mixing every 2 – 3 

minutes, the mixture was centrifuged at 4 °C at 10,000xg for 2 minutes and the 

supernatant transferred to a separate tube. This procedure was carried out three times 

to ensure complete nucleotide removal.  

 

3.6  Phosphate release assays 

 3.6.1  Effect of pH on nucleotides hydrolysis by the proteins  

  The ATP hydrolysis and GTP hydrolysis activity of MreB-Bs at 

different pH values was investigated by the malachite green assay of released 

phosphate (Carter and Karl, 1982) by buffering the reaction with sodium acetate, pH 

5.5, MES pH 6.0, MES, pH 6.5, HEPES, pH 7.0, Tris-HCl, pH 7.5 and, Tris-HCl, pH 

8.0. 

 

 

 

 

 

 

 

 



 
 

44 
 

 

 

  The effect of pH on nucleotides hydrolysis by MreB-Bs was tested by 

mixing 5 µM MreB-Bs in 50 mM buffer, 100 mM NaCl, 4 mM MgCl2, and 0.2 mM 

ATP or GTP (van den Ent et al., 2001).  

  The effect of pH on nucleotides hydrolysis by FtsZ-Bs was tested by 

mixing 10 µM FtsZ-Bs in 50 mM Buffer, 200 mM KCl, 5 mM MgCl2, and 0.2 mM 

ATP or GTP (Matsui, Han, Yu et al., 2013).  

The reactions were stopped by adding an equal volume of cold 0.6 M 

perchloric acid. Two volumes of filtered malachite green solution (0.15 g malachite 

green, 1 g sodium molybdate, 0.25 g Triton X-100 in 500 ml 0.7 M HCl) was added  

to the supernatants and the mixtures incubated at room temperature for 15 minutes. 

The absorbance at 620 nm was read by spectrophotometer. The phosphate 

concentrations were calculated from the standard curve plot (Appendix B), 

(Geladopoulos et al., 1991). 

 3.6.2 Screening of natural products effect on nucleotides hydrolysis by the 

proteins 

  3.6.2.1  Screening of natural products effect on nucleotides hydrolysis 

of MreB-Bs  

MreB-Bs (5 µM) was mixed in 50 mM Tris-HCl, pH 7.5, 100 

mM NaCl, 4 mM MgCl2 and 200 µM of one natural products (apigenin, baicalein, 

luteolin, α-mangostin, or naringenin), and 200 µM ATP or GTP was added and 

incubated for 1 hour. 
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  3.6.2.2 Screening of natural products effects on nucleotides 

hydrolysis by FtsZ-Bs  

FtsZ-Bs (10 µM) was mixed in 50 mM MES, pH 6.5, 200 mM 

KCl, 5 mM MgCl2 and 200 µM of one natural products (apigenin, baicalein, luteolin, 

α-mangostin, or naringenin), and 200 µM GTP was added and incubated for 1 hour. 

The reaction was stoped by adding an equal volume of cold 0.6 M 

perchloric acid. Two volumes of filtered malachite green solution (0.15 g malachite 

green, 1 g sodium molybdate, 0.25 g Triton X-100 in 500 ml 0.7 M HCl) were added  

to the supernatants and the mixtures incubated at room temperature for 15 minutes. 

The absorbance at 620 nm was read by spectrophotometer. The phosphate 

concentrations were calculated from the standard curve plot (Appendix B), 

(Geladopoulos et al., 1991). 

  

 

 

 

 

 

 

 

 



 

 
 

 

    

 

CHAPTER IV 

RESULTS AND DISCUSSION 

 

4.1  Cloning  

4.1.1 Amplification of mreB-Bs and ftsZ-Bs by PCR   

DNA encoding the genes of mreB and ftsZ of B. subtilis were amplified 

from the B. subtilis cells by Taq DNA polymerase with the pair of gene specific 

primers (Table 3.2). The best annealing temperature for the two genes was 62 °C. The 

PCR products with the expected sizes of mreB-Bs (1,041 bp) and ftsZ-Bs (1149 bp) 

were obtained, as show in Figure 4.1. 

 

 

 

Figure 4.1 Agarose gel electrophoresis analysis of mreB-Bs and ftsZ-Bs 

amplification: Lane M; DNA ladder (VC 100 bp plus, Vivantis), (A) lanes 1–3; PCR 

product of mreB-Bs, (B) lanes 1–3; PCR product of ftsZ-Bs.  
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4.1.2 Screening of pTG19-T cloning vector containing the mreB-Bs and 

ftsZ-Bs by PCR 

The purified PCR products were ligated into pTG19-T cloning vector by 

using T4 ligase. The ligation products were transformed into E. coli DH5α. The 

transformation reaction was spread on LB agar plate supplemented by 2% (w/v) X-gal 

and 1 mM IPTG. The ligated plasmid without a foreign gene produces the functional 

enzyme that is able to hydrolyze X-gal, which creates a blue colony on the agar plate.  

Thus, the blue colony is a clone without insert and then the white colony is a positive 

clone (the clone with non-functional β-galactosidase). However, false white colonies 

can occur but doesn’t have insert is possible, because single 3’- dT overhangs on the 

vector may be degraded.  

Therefore, colony PCR was performed by using the sets of cloning 

primers to screen and verify the plasmid containing gene insert. Figure 4.2 shows that 

clones numbers 2 – 8 yielded the PCR product with the size of mreB-Bs (1,041 bp), 

suggesting the presence of the insert of mreB-Bs in the pTG19.  In the same way,  

Figure 4.3 shows that clones numbers 1, 3 – 6, and 10 produced the PCR products 

with the expected size of ftsZ-Bs (1149 bp), suggesting the insert of ftsZ-Bs in the 

pTG19.  
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Figure 4.2  Agarose gel electrophoresis analysis of mreB-Bs in pTG19 

amplification: Lane M, DNA ladder; lanes 1 – 11, PCR products that show the 

presence or absence of mreB-Bs in pTG19-T clones numbers 1 – 11. 

 

 

 

Figure 4.3  Agarose gel electrophoresis analysis of ftsZ-Bs in pTG19 amplification: 

Lane M, DNA ladder; lane 1 – 11, PCR products that show the presence or absence of 

ftsZ-Bs in pTG19-T clones numbers 1 – 11. 

 

4.1.4 Verification of the genes in pTG19-T DNA sequencing  

The sequencing was carried out by Macrogen Inc. (Korea), (the details 

are shown in Appendix A). The pTG19 containing genes ftsZ-Bs was sequenced by 

using the M13 universal primers in both directions. The result showed that the pSY5-
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mreB-Bs contains the mreB-Bs without mutation. However, the pTG19-ftsZ-Bs 

contained the mutation on the reverse primer (FtsZ-Bs Rev) at the late base of the 

EcoRI recognition site (from C to A, show in Figure 4.4). However, the SalI 

restriction site on the pTG19-ftsZ-Bs after the mutated EcoRI site remains intacted. 

We deiced to used SalI instead of EcoRI, because of the compatibility of the cohesive 

end of SalI and XhoI recognition sites (on the cloning site of pSY5). As a result, the 

construct was actually cloned into pSY5 at the SfiI and XhoI recognition sites. 

                                                                        

 

 

Figure 4.4 The mutation of pTG19-ftsZ-Bs on the late base of EcoRI recognition site 

of the revers primer. 

 

4.1.3 Cloning and screening of mreB-Bs and ftsZ-Bs into expression 

plasmid (pSY5)   

 The verified genes were excised from the cloning plasmids (pTG19-

mreB and pTG19-ftsZ-Bs) and ligated into the expression plasmid. The ligation 

products were transformed into E. coli DH5α. PCR using the sets of cloning primers 

were performed to screen the E. coli DH5α clones containing mreB-Bs and ftsZ-Bs in 

pSY5. Figure 4.5 shows that clone numbers 1 – 10 gave the PCR product with the 

expected size of mreB-Bs (1,041 bp), suggested the insert of mreB-Bs in the pSY5. 
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The PCR product with the expected size of ftsZ-Bs (1149 bp) of clones 1, 2, 4, 6 – 10 

suggested the ftsZ-Bs in these pSY5 (Figure 4.6). 

 

 

 

Figure 4.5   Agarose gel electrophoresis analysis of mreB-Bs in pSY5 amplification:  

Lane M, DNA ladder; lanes 1 – 10: PCR products that show the presence of mreB-Bs 

in pSY5 clones numbers 1 – 10. 

 

 

 

Figure 4.6 Agarose gel electrophoresis analysis of ftsZ-Bs in pSY5 amplification: 

Lane M, DNA ladder; lanes 1 – 11, PCR products that show the presence or absence 

of ftsZ-Bs in pSY5 clones numbers 1 – 11. 
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4.2  Expressions and Purifications of MreB-Bs and FtsZ-Bs 

 4.2.1 Optimization of protein expression 

  Expressed His8-tagged proteins can be purified and detected easily 

because the string of 8 his8-tidine residues binds to IMAC (Ni2+-NTA), under specific 

buffer conditions. The expression plasmids containing the target genes, pSY5-mreB-

Bs and pSY5-ftsZ-Bs, were transformed into the expression strain, E. coli BL21(DE3). 

The expression cells were screened for the best clones in terms of expression by a 

small scale purification using Ni2+-NTA.  

  The expressions of selected clones were optimized by varying the IPTG 

concentration and induction temperature. The protein expressions levels were 

analyzed by a small scale purification using Ni2+-NTA followed by SDS-PAGE. The 

patterns of proteins expressed from cell lysates from expression of MreB-Bs are show 

in Figures 4.7A and the protein bound with Ni2+-NTA resins shown in Figure 4.7B. 

The black arrow indicates the protein with the 36 kDa.  

  The protein expression patterns of FtsZ-Bs were analyzed by SDS-

PAGE. The cell lysates are shown in Figures 4.8A and the protein bound with Ni2+-

NTA resin is shown in Figures 4.8B. The black arrow indicates the protein with the 

38 kDa. The over expressions of MreB-Bs and FtsZ-Bs are not significantly different 

in every test condition. According to the screening tests, the optimal condition of the 

expression was selected at lower IPTG concentration (0.25 mM) and lower 

temperature (20 °C).    
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Figure 4.7  SDS-PAGE of MreB-Bs expression pattern after induction with different 

concentrations of IPTG (0.25, 0.50, and 1.00 mM) at difference temperatures (20, 25, 

and 30 °C). (A) Cell lysated, and (B) proteins bound to Ni2+-NTA resin. The black 

arrow indicates MreB-Bs.   
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Figure 4.8  SDS-PAGE of FtsZ-Bs expression pattern after induction with different 

concentrations of IPTG (0.25, 0.50, and 1.00 mM) at difference temperatures (20, 25, 

and 30 °C). (A) Cell lysated, and (B) proteins bound to Ni2+-NTA resin. The black 

arrow indicates FtsZ-Bs.   
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4.2.2  Protein purification 

    The selected clones were expressed in the optimal condition (0.25 mM 

IPTG at 20 °C). The proteins were purified by Ni2+-NTA with stepwise elution using 

imidazole concentrations of 0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, and 

240 mM in 500 mM NaCl and 50 mM Tris-HCl, pH 8. The MreB-Bs was released out 

from the resin at the concentration of imidazole from 100 – 240 mM (Figure 4.9). At 

fractions of 100 – 120 mM imidazole were discarded due to their containing a 

significant amount of contaminating proteins. The FtsZ-Bs was released out from the 

resin at the concentration of imidazole from 80 – 180 mM (Figure 4.10). However, 

the fraction at 80 mM imidazole was discarded, sine it contaminated a significant 

amount of contaminated protein. 

    The fractions of 140 – 240 mM imidazole of MreB-Bs and the 

fractions with 100 – 180 mM imidazole of FtsZ-Bs appeared to be more than 95% 

pure bases on SDS-PAGE profiles and were saved for the further experiments.  

Totally, approximately 1 mg of MreB-Bs, and approximately 2 mg of the FtsZ-Bs 

were obtained from 1 L of E. coli BL21(DE3) culture. Each protein was pooled and 

concentrated and removed nucleotides were removed by adsorption to Dowex resin. 

The proteins then were analyzed by SDS-PAGE, as show in Figure 4.11. 
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Figure 4.9  SDS-PAGE of MreB-Bs purification faction, including washes and 

elution with different imidazole concentrations. The black arrow indicates the MreB-

Bs with an approximate size of 36 kDa. 

 

 

 

Figure 4.10  SDS-PAGE of FtsZ-Bs purification faction, including washes and 

elution with different imidazole concentrations. The black arrow indicates the MreB-

Bs with an approximate size of 38 kDa. 
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Figure 4.11 SDS-PAGE of MreB-Bs and FtsZ-Bs purified after removed nucleotide 

by 1X8-400Cl Dowex resin. The black arrows indicate MreB-Bs (approximately size 

36 kDa and FtsZ-Bs approximate size 38 kDa). 

 

4.3  Phosphate release assay  

The phosphate release assay is a simplified method based on free inorganic 

phosphate determination. The liberation of orthophosphate from ATP and GTP 

was generated by ATPases and GTPases. The technique is simple and cost effective 

functional assay for this class of enzymes.  

Malachite green assay is a colorimetric method for measuring free inorganic 

phosphate. The assay is based on the formation of malachite green 

molybdophosphoric acid complex that absorbs light at 620-640 nm. It is directly 

related to the free inorganic phosphate concentration (Figure 4.12) (D'Angelo, 

Crutchfield, and Vandiviere et al., 2001). This application is a reliable and suitable 

means of quantifying minimal amounts of 1 – 100 µM of inorganic phosphate and 

amenable to high-throughput screening applications (Attin, Becker, Hannig et al., 
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2005).  This includes quantification of phosphorylation and phosphate release from 

protein phosphatase substrates (Maehama, Taylor, Slama et al., 2000).   

Releasing orthophosphate is a key factor in the control of MreB and FtsZ 

function. ATPase activity is a consequence of MreB polymerization. After the ATP 

hydrolysis, free inorganic phosphate is release from the protein filament. dDuring the 

course of MreB polymerization, there is a lag between polymerization and phosphate 

release (Esue, Cordero, Wirtz et al., 2005). This indicates that ATP hydrolysis occurs 

after MreB monomers are assembled into filaments (Esue et al., 2005).  Likewise, the 

GTP-dependent assembly of FtsZ into protofilaments is followed by hydrolyzes GTP 

to GDP by an active site formed between two associated FtsZ monomers (Pacheco-

Go´mez, Roper, Dafforn et al., 2011).  

 

 

 

Figure 4.12 Representative of free inorganic phosphate in the malachite green assay.  

The samples containing malachite green molybdophosphoric acid complex present 

green color, the absence present yellow color, (yellow-green gradient bar shows 

increasing of inorganic phosphate ion concentration).  

 The ATP and GTP hydrolysis activities of MreB-Bs and FtsZ-Bs at different 

pH were investigated by the malachite green assay. The reactions under the condition 

were described in the method section 3.4. 
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 4.3.1 Effect of pH on nucleotides hydrolysis by MreB-Bs 

4.3.1.1  Effect of pH on ATP hydrolysis by MreB-Bs  

 MreB-Bs hydrolyzed ATP over a wide pH range. The 

inorganic phosphate 6.80, 16.50, 14.90, 31.11, 33.70, and 33.24 µM were released 

from ATP in the experiment at pH 5.5, 6.0, 6.5, 7.0, 7.5, and 8.0, respectively (Figure 

4.13). 

 

 

 

Figure 4.13 pH effect on phosphate release from ATP by MreB-Bs.  

 

 4.3.1.2  Effect of pH on GTP hydrolysis by MreB-Bs  

MreB-Bs hydrolyzed GTP over a wide pH range. The 

inorganic phosphate concentrations of 20.64, 28.64, 44.43, 39.81, 25.77, and 25.26 

µM were released from ATP in the experimant at pH 5.5, 6.0, 6.5, 7.0, 7.5, and 8.0, 

respectively (Figure 4.14). 
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Figure 4.14 pH effect on phosphate release from GTP by MreB-Bs.  

 

  MreB is a member of a larger superfamily of proteins carrying ATPase 

activity (van den Ent et al., 2001) that can bind and hydrolyze both ATP and GTP. 

Our study found that the ATPase activity of MreB-Bs was favored at higher pH 7.0 – 

8.0, but strongly favored at pH 7.5, while the GTPase activity was most favored at pH 

6.5 – 7.0, but and highest at pH 6.5. The nucleotide hydrolysis characteristics of 

MreB-Bs was similar to that from other species that have been reported, however 

nucleotide hydrolysis by MreB-Bs is not necessary for polymerization, as in other 

study species, as shown in Table 4.1.  

    

 

 

 

 

 

 

 

 



 

 
 

 

         

Table 4.1 Characters of polymerization of MreB. 

MreB  pH 

range 

Optimal  

pH 

Ion NTP  Critical 

concentration 

(µM)  

NTPase 

dependent  

polymerization 

Gram/ 

Morphology 

Reference 

Mg2+ Ca2+ ATP GTP 

T. maritime 

(MreB-Tm)  

4 – 9.5 6 – 7 Yes Yes Yes Yes 5 Yes 

 

Negative/ 

rod-shape 

enveloped 

van den Ent et al., 2001 

Bean and Amann, 2009 

B. subtilis 

(MreB-Bs) 

5.5 – 8 5.5 Yes Yes Yes Yes 0.9 No Positive/ 

rod-shaped 

Mayer and Amann, 

2009 

C. pneumonia 

(MreB-Cp) 

5.5 – 7 6.5 Yes N/A Yes Yes N/A No Negative/  

rod-shaped 

Gaballah et al., 2011 

E. coli  

(MreB-Ec) 

N/A 7 Yes Yes Yes Yes 1.5 Yes Negative/ 

coccobacilli 

Nurse and Marians, 

2012 

C. crescentus 

(MreB-Cc)   

N/A 8 Yes N/A Yes N/A N/A Yes Negative/ 

curved rod 

van den Ent et al., 2014 
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Figure 4.15 Phylogenetic tree visualizing the relationship of MreB proteins from 

various bacteria to each other and yeast actin. The tree was produced from the protein 

sequence alignment by using MEGA6. Yeast actin (GI: 170986), MreB-Bs (GI: 

760457758), MreB-Cp (GI: 15618759), MreB-Ec (GI: 751252054), MreB-Cc (GI: 

221234549), MreB-Tm (GI: 15988309). 

 

  The effect of pH on nucleotide hydrolysis by MreB has never been 

studied before. This study found that the optimum pH of the nucleotides hydrolysis by 

MreB-Bs was different from the optimum pH of the previously reported 

polymerization of the protein (Mayer and Amann, 2009). The result suggests that the 

two processes may be independent, which supports the earlier report that the 

polymerization of MreB-Bs does not require nucleotide hydrolysis (Mayer and 

Amann, 2009).   

  MreB shares ~57% sequence identity among bacteria which, is less than 

its orthologue, actin.  Actin is one of the most conserved proteins in eukaryotes, 

sharing ~90% sequence identity.  The conformational changes of actin regard to 

ADP- and ATP-bounding are innate properties of actin, which affect the 

polymerization process.  The biochemical characters (Table 4.1) and the primary 
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structure analysis (Figure 4.15) classified MreB into two groups. The first group, 

which requires the nucleotides hydrolysis for the polymerization, comprises MreB-

Tm, MreB-Ec, and MreB-Cc. The structural study (van den Ent et al., 2014) has 

demonstrated that the conformational changes of MreB-Cc result from the nucleotides 

binding.   

 

 

 

Figure 4.16  Crystal structures of MreB in different nucleotide states reveal a propeller 

twist. (A) Superposition of ADP-MreB-Cc (orange) and AMPPNP-MreB-Cc (blue), a 

small movement of domain IB initiates the propeller twist observed upon 

polymerization. (B) Schematic drawing showing the propeller twists in MreB. The 

interdomain cleft narrows due to the movement of domain I towards domain II that is 

accompanied by a rotation of domain I resulting in flattening of the interfilament 

interface, M is indicated the membrane binding site (van den Ent, Izoré, Bharat et al., 

2014).  
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 This study proposed that the structure of MreB-Cc is an innate property 

that regulates the polymerization process, similar to actin. The second group 

consisting of MreB-Bs and MreB-Cp does not require the nucleotides hydrolysis for 

the polymerization. Biochemical studies (Mayer and Amann, 2009) have shown that 

MreB-Bs has very low critical concentration for the polymerization (Table 4.1) and 

monovalent cation (K+) inhibits the polymerization (Bean and Amann, 2009; Mayer and 

Amann, 2009). Together, this information suggests that MreB-Bs adopts a unique 

structure that has high affinity for polymerization. This unique structure is not 

affected by nucleotide binding. 

 4.3.2 Effect of pH on nucleotides hydrolysis by FtsZ-Bs 

4.3.2.1  Effect of pH on ATP hydrolysis by FtsZ-Bs  

   ATP hydrolysis by FtsZ-Bs was not detected, since there was 

no release of free phosphate from ATP. The data are shown in Appendix B. 

4.3.2.2  Effect of pH on GTP hydrolysis of FtsZ-Bs  

FtsZ-Bs hydrolyzed GTP over a wide pH range. The inorganic 

phosphate concentrations of 9.00, 13.71, 14.81, 11.15, 9.76, and 11.42 µM were 

released from GTP in the experiment at pH 5.5, 6.0, 6.5, 7.0, 7.5, and 8.0, respectively 

(Figure 4.17).  
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Figure 4.17 pH effect on phosphate release from GTP by FtsZ-Bs. 

 

  FtsZ exhibits the GTP-dependent assembly, in which GTP is 

hydrolyzed to GDP by the active-site GTPase split across two monomers (Pacheco-

Go´mez et al., 2011). Our experiment found that ATP hydrolysis of FtsZ-Bs was not 

detectable, indicating that was no release of free phosphate from ATP. The GTPase 

activity occurred over a wide pH range (5.5 – 8.0), but was highest at pH 6.5. The 

GTP hydrolysis character of FtsZ-Bs was similar to that reported earlier (Król and 

Scheffers, 2013). 
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4.4 Screening of natural products effects on nucleotides hydrolysis 

by the proteins  

 The effects of natural products on nucleotides hydrolysis by the proteins were 

screened against apigenin, baicalein, luteolin, α-mangostin, and naringenin. Lysozyme 

and BSA were used as negative controls that there are has no nucleotide hydrolysis 

activity. The reactions were performed under optimal pH and condition as described 

in the methods section 3.4. 

 4.4.1 Screening of natural  products effect on ATP hydrolysis by MreB-Bs 

The effects of the natural products on ATP hydrolysis by MreB-Bs were 

screened by the malachite green assay in the presence and absence of the natural 

products (as described in section 3.4). Free phosphates at the final concentrations of 

32.22, 31.51, 32.76, 30.57, 32.04, and 29.34 µM, were released from ATP in the 

assay containing apigenin, baicalein, luteolin, α-mangostin, and naringenin, 

respectively, compare to in the control reaction  (Figure 4.18). Statistical analysis was 

used to analyze p-value (Appendix B). The results showed that the liberation of free 

phosphates from ATP in the presence of the natural products was not significantly 

different from that without the natural products shows no statistically significant 

(Appendix B). It indicated that the natural products have no effect on ATP hydrolysis 

by MreB-Bs under the conditions tested.  
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Figure 4.18 Screening of natural products effect on ATP hydrolysis by MreB-Bs. 

 

 4.4.2 Screening of natural  products effects on GTP hydrolysis by MreB-Bs 

The effects of the natural products on GTP hydrolysis by MreB-Bs were 

screened by the malachite green assay in the presence and absence of the natural 

products (as described in section 3.4). The final free phosphate concentrations were 

38.37, 36.38, 35.51, 37.12, 35.74, and 38.93 µM, when phosphate was released from 

GTP in the reactions with apigenin, baicalein, luteolin, α-mangostin, and naringenin, 

respectively compared to 38.37 µM (Figure 4.19). The results were showed that the 

liberation of free phosphates from the reaction in the presence of the natural products 

was not significantly different compare with the reaction without the natural products 

(Appendix B). This indicated that the natural products have no effect on GTP 

hydrolysis by MreB-Bs.  
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Figure 4.19 Screening of natural products effect on GTP hydrolysis by MreB-Bs. 

 

 4.4.3 Screening of natural products effect on GTP hydrolysis by FtsZ-Bs 

The effects of the natural products on GTP hydrolysis by FtsZ-Bs were 

screened by the malachite green assay in the presence and absence of the natural 

products (as described in section 3.4). The free phosphate concentrations of 8.38, 

7.22, 13.25, 12.78, and 12.72 µM were obtained from release of phosphate from GTP 

in the reation containing apigenin, baicalein, luteolin, α-mangostin, and naringenin, 

respectively, (Figure 4.19) compared to 12.56 µM in the reaction absence of the 

natural products. The p-value indicated that the amount of phosphate liberated from 

GTP by FtsZ-Bs in the presence of luteolin, α-mangostin, and naringenin showed no 

statistically significant difference compared to the control without the natural 

products. It suggested that luteolin, α-mangostin, and naringenin have no effect on 
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GTP hydrolysis property of FtsZ-Bs. On the other hand, apigenin and baicalein 

significant decreased the GTPase activity of FtsZ-Bs to 33.3% and 42.5%, 

respectively.  

 

 

   
Figure 4.20  Screening of natural products effect on GTP hydrolysis by FtsZ-Bs 

 
GTP hydrolysis occurs during the polymerization by one FtsZ molecule 

providing the GTP-binding site to a second molecule, and then the T7 loop provides 

the catalytic residues to cleave GTP into GDP and Pi. The results from the malachite 

green released phosphate assay indicated FtsZ-Bs has interaction with apigenin and 

baicalein, but the site of interaction is unclear.  

Possibly, the position may be anywhere on the protein that affects GTP 

binding or interferes with the polymerization mechanism, as proposed in Figure 4.21. 

This includes any possible allosteric sites on the molecule, such as the GTP binding 
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site at the N-terminal subdomain, T7 loop and H6-H7 loop on H7 helix, and binding 

site at the C-terminal subdomain. 

 

 

 

Figure 4.21  Proposed mechanism of straight-to-curved conformational switch. FtsZ 

bound with GDP is a soluble monomer in the R (Relaxed) state (A). When FtsZ is 

bound to GTP, FtsZ is assembled (B). The intermolecular interactions between bound 

GTP and the T7 loop of the second molecule induce a structural change of the 

molecule from the R to the T (Tense) state to form the straight protofilament (C). In 

the straight protofilament, the catalytic residues in the upper subunit hydrolyze GTP 

to GDP and an intermediate state of FtsZ with GDP in the straight protofilament is 

formed (D). After releasing phosphate, the FtsZ molecule returns to the R state, and 

the straight protofilament changes to a curved protofilament. Finally, the curved 

protofilament is disassembled to monomeric FtsZ (E) (Matsui, Han et al., 2013). 

 

 

 

 

 

 

 

 



 

CHAPTER V 

CONCLUSION AND FUTURE PERSPECTIVE 

 

DNA encoding mreB and ftsZ of B. subtilis were cloned into the pSY5 plasmids 

and expressed in E. coli BL21(DE3). The proteins were purified by Ni2+-NTA with 

stepwise elution. Batch production of the proteins yielded approximately 1 mg of 

MreB-Bs, and approximately 2 mg of the FtsZ-Bs from 1 L of E. coli BL21(DE3) 

culture. 

MreB-Bs was able to hydrolyze both ATP and GTP over a broad pH range (5.5 

– 8.0).  The optimum pH values for ATP and GTP hydrolysis were at pH 7.0 and pH 

6.5, respectively. The results demonstrated that MreB-Bs has the optimum pH for 

nucleotide hydrolysis that is different from the reported optimum pH for protein 

polymerization (Mayer and Amann, 2009). Apigenin, baicalein, luteolin, α-

mangostin, and naringenin showed no effect on both ATP and GTP hydrolysis of 

MreB-Bs. 

FtsZ-Bs was unable to hydrolyze ATP, but hydrolyzed GTP over a broad pH 

range (5.5 – 8.0), with the optimum pH at 6.5. This work found that apigenin and 

baicalein inhibited GTP hydrolysis by FtsZ-Bs. Apigenin decrease GTPase activity of 

FtsZ-Bs to 33.3% while baicalein decreased the GTPase activity of FtsZ-Bs by 

42.5%. 

Together, the results suggest that MreB-Bs adopts a unique structure that is not 

different between the nucleotide-free and the nucleotides-bound states bound to (GTP, 
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GDP, ATP, or ADP), suggesting an optimum structure for the polymerization of 

MreB. However, the structures of MreB-Bs alone and with nucleotides are not yet 

determined. Thus, structural investigation of MreB-Bs is needed.  

Evidently, FtsZ is one molecular targets of apigenin and baicalein. We 

speculated that the interactions between apigenin and baicalein and FtsZ may interfere 

with the polymerization of the protein (Z-ring formation) and/or disrupt interaction 

between FtsZ and MreB. It consequently has effects on cell wall synthesis during cell 

division. However the mechanism of the inhibition remains unclear. We now plan to 

perform further biochemical and structural studies to verify and investigate the 

interaction and mechanism of the two natural products on the GTPase activity of 

FtsZ-Bs and FtsZ from other species.    
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APPENDIX A 

SEQUENCE 

 

Gene sequence of mreB-Bs 

NCBI Reference Sequence: NC_000964.3 

atgtttggaattggtgctagagaccttggtatagatcttggaactgcgaatacgcttgtttttgtaaaaggaaaaggaattgttgt

gagagagccgtcagttgtcgctttgcagacggatacgaaatcgattgtcgctgtcggaaatgatgcgaaaaatatgattgga

cggacaccgggcaacgtggtggctcttcgcccgatgaaagacggcgttatcgctgattatgaaacaacggcgacgatgat

gaaatattacatcaatcaggccataaaaaataaaggcatgtttgccagaaaaccatatgtaatggtatgtgtcccatcaggca

ttacagctgttgaagaacgcgctgttatcgatgcgacaagacaggcgggagcgcgtgacgcgtatccgattgaagagcctt

ttgccgcagcaatcggagccaatctgccagtttgggaaccgactggaagcatggttgttgatatcgggggcggtacgaca

gaagttgcgattatttccctcggaggcatcgtaacgtctcagtcaatccgtgtagccggtgatgagatggatgacgcgattat

caactacatcagaaaaacgtacaatctgatgatcggtgaccgtacggctgaagcgattaaaatggaaatcggatctgcaga

agctcctgaagaatccgacaacatggaaatccgcggccgcgatttgctcacaggtttgccgaaaacaattgaaattacagg

aaaagagatttctaacgctctacgcgacactgtatctacaattgtcgaagcagtgaagagcacactcgaaaaaacaccgcct

gagcttgcagcagatatcatggacagaggtatagtgttaaccggcggcggagcgcttttgcgcaatttggacaaagtcatc

agcgaagaaacaaaaatgccggtccttatcgccgaagatccgcttgattgtgtagcgatcggaacagggaaagcactgga

gcacatccatcttttcaaagggaaaactagataa 
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Protein sequence of MreB-Bs 

mfgigardlgidlgtantlvfvkgkgivvrepsvvalqtdtksivavgndaknmigrtpgnvvalrpmkdgviadyett

atmmkyyinqaiknkgmfarkpyvmvcvpsgitaveeravidatrqagardaypieepfaaaiganlpvweptgs

mvvdigggttevaiislggivtsqsirvagdemddaiinyirktynlmigdrtaeaikmeigsaeapeesdnmeirgrd

lltglpktieitgkeisnalrdtvstiveavkstlektppelaadimdrgivltgggallrnldkviseetkmpvliaedpldc

vaigtgkalehihlfkgktr 

 

Gene sequence of ftsZ-Bs  

NCBI Reference Sequence: NC_000964.3 

atgttggagttcgaaacaaacatagacggcttagcatcaattaaagtaatcggagtaggaggcggcggtaacaacgccgtt

aaccgaatgattgaaaatgaagtgcaaggagtagagtatatcgcggtaaacacggacgctcaagctcttaacctgtcaaaa

gcagaagtgaaaatgcaaatcggcgcaaagctgactagaggattgggagcaggtgcgaatccggaagtcgggaaaaaa

gccgctgaagaaagcaaagagcagattgaagaagcacttaaaggtgctgacatggtattcgtgacagctggtatgggcgg

cggaacaggaacaggtgccgcaccggtttcgcacaaatcgcgaaagacttaggcgcattaacagtcggcgttgtgacaa

gaccgtttaccttcgaaggacgcaaaagacagcttcaggctgcaggcggaatctcggcaatgaaagaagcggtggatac

actgatcgtgatcccgaacgaccgtatccttgaaattgttgataaaaacacaccgatgcttgaagcattccgcgaagcggat

aacgtacttcgccaaggggttcaaggtatttctgacttgattgctacacctggtcttatcaaccttgactttgctgatgtgaaaac

aatcatgtcaaacaaaggatctgctttgatgggtatcggtattgctactggggaaaatcgcgcggcagaggcagcaaaaaa

agcaatttccagcccgcttcttgaagcggccattgacggtgcgcaaggcgtcctcatgaacatcactggaggaacaaacct

cagcctatatgaggttcaggaagcagcagacattgtcgcttcggcgtctgatcaagacgtaaacatgattttcggttctgttatt

aatgaaaatctaaaagatgagattgtggtgacagtgattgcaaccggctttatcgaacaagagaaggacgtgacgaagcct

cagcgtccaagcttaaatcaaagcatcaaaacacacaatcaaagtgttccgaagcgtgagccaaaacgtgaggaacctca

gcagcagaacacagtaagccgtcatacttcacagccggctgatgatacgcttgacatcccgacattcttaagaaaccgtaat

aaacgcggctaa 
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Protein sequence of FtsZ-Bs 

mlefetnidglasikvigvggggnnavnrmienevqgveyiavntdaqalnlskaevkmqigakltrglgaganpev

gkkaaeeskeqieealkgadmvfvtagmgggtgtgaapviaqiakdlgaltvgvvtrpftfegrkrqlqaaggisamk

eavdtlivipndrileivdkntpmleafreadnvlrqgvqgisdliatpglinldfadvktimsnkgsalmgigiatgenr

aaeaakkaissplleaaidgaqgvlmnitggtnlslyevqeaadivasasdqdvnmifgsvinenlkdeivvtviatgfi

eqekdvtkpqrpslnqsikthnqsvpkrepkreepqqqntvsrhtsqpaddtldiptflrnrnkrg 

 

Sequencing result 

>140804-07_D19_MreB-Bs_T7promoter.ab1 1613 

gttgggacgatacaattccctctagaataattttgtttaactttaagaaggagatataccatggcagaagaacaccaccacca

ccaccaccaccacctggaagttctgttccaggggcccgggcggccgatgtttggaattggtgctagagaccttggtataga

tcttggaactgcgaatacgcttgtttttgtaaaaggaaaaggaattgttgtgagagagccgtcagttgtcgctttgcagacgga

tacgaaatcaattgtcgctgtcggaaatgatgcgaaaaatatgattggacggacaccgggcaacgtggtggctctgcgccc

gatgaaagacggcgttatcgctgattatgaaacaacggcgacgatgatgaaatattacatcaatcaggccataaaaaataaa

ggtatgtttgccagaaaaccatatgtaatggtatgtgtcccatcaggcattacagctgttgaagaacgcgctgttatcgatgcg

acaagacaggcgggagcgcgtgacgcgtatccgattgaagagccttttgccgcagcaatcggggccaatctgccagtttg

ggaaccgactggaagcatggttgttgatatcgggggcggtacgacagaagttgcgattatttccctcggaggcatcgtaac

gtctcagtcaatccgtgtagccggtgatgagatggatgacgcgattatcaactacatcagaaaaacgtacaatctgatgatc

ggtgaccgtacggctgaagcgattaaaatggaaatcggatctgcagaagctcctgaagaatccgacaacatggaaatccg

cggacgcgatttgctgacaggtctgccgaaaacaattgaaattacaggaaaagagatttctaatgctctacgcgacactgtat

ctacaattgtcgaagcagtgaagagcacactcgaaaaaacaccgcctgagcttgcagcagatatcatggacagaggtata

gtgttaaccggcggcggagcgcttttgcgcaatttggacaaagtcatcagcgaagaaacaaaaatgccggtccttatcgcc

gaagatccgcttgattgtgtagcgatcggaacagggaaagcactggaacacatccatcttttcaaagggaaaactagatag

aattcacgtggtacctaacttaagcccgctgaacaataactagcataaccccttggggcctctaaacggggccttgaggggt
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tttttgctgaaaggaggaactatattcgggattggcgaattgggacccgccctggaccgggcctttaaacccgggcgggtg

tggggggttacccccaccgtgaccgctacctttgccagggccctaaggcccgtcctttttgttttttccttttctttttccccccgt

tccccgggtttccccccaaagcctaaaaagggggggctcctttagaggggcgataatgggttttggggccctccccccac

aaaaaatttttggggggaggtgtcccagggggcgccccccctcaaaaaagttttctcctttttttggggaggcccttttttatgg

gagtgttgtccggggaaaacacaacccccacccccccctttctttttatggaaaa 

 

>140804-07_F19_MreB-Bs_T7terminator.ab1 1186 

gaaatggtccgttgaattctatctagttttccctttgaaagatggatgtgctccagtgctttccctgttccgatcgctacacaatca

agcggatcttcggcgataaggaccggcatttttgtttcttcgctgatgactttgtccaaattgcgcaaaagcgctccgccgcc

ggttaacactatacctctgtccatgatatctgctgcaagctcaggcggtgttttttcgagtgtgctcttcactgcttcgacaattgt

agatacagtgtcgcgtagagcattagaaatctcttttcctgtaatttcaattgttttcggcagacctgtcagcaaatcgcgtccg

cggatttccatgttgtcggattcttcaggagcttctgcagatccgatttccattttaatcgcttcagccgtacggtcaccgatcat

cagattgtacgtttttctgatgtagttgataatcgcgtcatccatctcatcaccggctacacggattgactgagacgttacgatg

cctccgagggaaataatcgcaacttctgtcgtaccgcccccgatatcaacaaccatgcttccagtcggttcccaaactggca

gattggccccgattgctgcggcaaaaggctcttcaatcggatacgcgtcacgcgctcccgcctgtcttgtcgcatcgataac

agcgcgttcttcaacagctgtaatgcctgatgggacacataccattacatatggttttctggcaaacatacctttattttttatggc

ctgattgatgtaatatttcatcatcgtcgccgttgtttcataatcagcgataacgccgtctttcatcgggcgcagagccaccacg

ttgcccggtgtccgtccaatcatatttttcgcatcatttccgacagcgacaattgatttcgtatccgtctgcaaagcgacaactg

acggctctctcacaacaattccttttccttttacaaaaacaagcgtattcgcagttccaagatctataccaaggtctctagcacc

aattccaaacatcggccgcccgggccctggaacagacttcaagtggggggggggggggggggggggggggggtttttt

agttcctctttcttttttcccatctttttttcgcacttttccatgagcttacctctctcttatcccatccctccccttttttttaaaa 
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cccagcttctatacgactcactatagggaaagcttgcatgcctgcaggtcgactctagaggatccccaagattgaattcttag

ccgcgtttattacggtttcttaagaatgtcgggatgtcaagcgtatcatcagccggctgtgaagtatgacggcttactgtgttct

gctgctgaggctcctcacgttttggctcacgcttcggaacactttgattgtgtgttttgatgctttgatttaagcttggacgctga

ggcttcgtcacgtccttctcttgttcgataaagccggttgcaatcactgtcaccacaatctcatcttttagattttcattaataaca

gaaccgaaaatcatgtttacgtcttgatcagacgccgaagcgacaatgtctgctgcttcctgaacctcatataggctgaggttt

gttcctccagtgatgttcatgaggacgccttgcgcaccgtcaatggccgcttcaagaagcgggctggaaattgctttttttgct

gcctctgccgcgcgattttccccagtagcaataccgatacccatcaaagcagatcctttgtttgacatgattgttttcacatcag

caaagtcaaggttgataagaccaggtgtagcaatcaagtcagaaataccttgaaccccttggcgaagtacgttatccgcttc

acggaatgcttcaagcatcggtgtgttttcatcaacaatttcaaggatacggtcgttcgggatcacgatcagtgtatccaccgc

ttctttcattgccgagattccgcctgcagcctgaagctgtcttttgcgtccttcgaaggtaaacggtcttgtcacaacgccgac

agttaatgcgcctaagtctttcgcgatttgtgcgataaccggtgcggcacctgttcctgttccgccgcccataccagctgtcac

gaataccatgtcagcacctttaagtgcttcttcaatctgctctttgctttcttcagcggcttttttcccgacttccggattcgcacct

gctcccaatcctctagtcagctttgcgccgatttgcattttcacttctgcttttgacaggttaagactttgaccgtccgtgtttacc

gcgatatactctactccttggacttcattttcaatcattcgggttaacgggggttgttacccgccgcctcctaatccgaataactt

taattgatgctaaacccgcccaatgtttggttctaaattccaaataagggcggccgggcggatctttggattccccggggacc

aaagtcgaattacatgggcggcggttttataagacgggactggggaaaacctcggcgttccccacttaatccctttggggca

tcccctctcccccccggggggtaaaaaaaaaaagccgcccgatccgcttccaaatccccccccccatacggggggggat

tgaaaggggaatttgtgttataaggggaatttttgtaaacgctttttcaaaccggaacgaacttcacaaaaaaaccaaaaggg

gggggcttgggaaacttaaaatgcccccgggaaactcaggggtgccactatttggggggggggcccctttcgccccccc

cggggacaaaggttcaaggtcggggcaggggccttttcccaagggctttttatattttgactaccggaatttcaaagttcgaa

aaatgacccggttaaagcgggggtcccggtcgcccctggaggtatttatacgtgggcgtaaactaaaatgttttttttatcaat

ttctaggttttttttgttgttcttaggggcccaaatttggccacaatttagggtttagaaaccggccttttgccctttgggttatcttg

ccctccttttcccttggccgga 
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caaacgtcgggaattcgagctcggtaccggggatccaagattggcccgggcggccgatgttggagttcgaaacaaacat

agacggcttagcatcaattaaagtaatcggagtaggaggcggcggtaacaacgccgttaaccgaatgattgaaaatgaagt

gcaaggagtagagtatatcgcggtaaacacggacgctcaagctcttaacctgtcaaaagcagaagtgaaaatgcaaatcg

gcgcaaagctgactagaggattgggagcaggtgcgaatccggaagtcgggaaaaaagccgctgaagaaagcaaagag

cagattgaagaagcacttaaaggtgctgacatggtattcgtgacagctggtatgggcggcggaacaggaacaggtgccgc

accggttatcgcacaaatcgcgaaagacttaggcgcattaactgtcggcgttgtgacaagaccgtttaccttcgaaggacgc

aaaagacagcttcaggctgcaggcggaatctcggcaatgaaagaagcggtggatacactgatcgtgatcccgaacgacc

gtatccttgaaattgttgatgaaaacacaccgatgcttgaagcattccgtgaagcggataacgtacttcgccaaggggttcaa

ggtatttctgacttgattgctacacctggtcttatcaaccttgactttgctgatgtgaaaacaatcatgtcaaacaaaggatctgc

tttgatgggtatcggtattgctactggggaaaatcgcgcggcagaggcagcaaaaaaagcaatttccagcccgcttcttgaa

gcggccattgacggtgcgcaaggcgtcctcatgaacatcactggaggaacaaacctcagcctatatgaggttcaggaagc

agcagacattgtcgcttcggcgtctgatcaagacgtaaacatgattttcggttctgttattaatgaaaatctaaaagatgagatt

gtggtgacagtgattgcaaccggctttatcgaacaagagaaggacgtgacgaagcctcagcgtccaagcttaaatcaaag

catcaaacacacaatcaaagtgttccgaaacgtgagccaaaacgtgaggagctcagcagcagacacagtaagccgccta

cttcaaagccggctgatgatacgcttgaatcccgaattcttaaaaaaccgaaaaaacccggtagaattcattcttggggatct

cttaaatcacctggaggtggagtttctctaatggaggcgattaaactggcgaaccagggcaacgggttctctgtgggatatg

gttcctccaatcacaaataaaacccaacaaaagtaaacctggggggctaagggaggaacccattaatttttggctccgcctt

cctccggacatgggggcttaagaaaacaccccaggaaaaaggaaataagggtgtcctctcttccctcgctgtttcgggggt

ccccagggggtccaactgaaaatagaagaagaaaaaagttaggtctccacaaaaaccaataaaaacagttcgtgcccttct

tttttttgttttctttaattatcctttcttctttccctaattatttaattttaagtaaaagaaggggaagatccctgttccattcccaccctt

taggggaacaaatccataacaaggtctatggccggcccctcattgaaaccgaaaaa 

 

 

 

 

 

 

 

 

 

 



 

APPENDIX B 

PHOSPHATE RELEASE ASSAY 

 

Standard curve for free phosphate concentration  

 

Table B1  Free phosphate concentration standard. 

Standard PO4
3- (µM) Absorbance (620 nm) Standard deviation (SD) 

10 

20 

30 

40 

50 

0.022 

0.044 

0.068 

0.090 

0.119 

0.003 

0.001 

0.001 

0.004 

0.003 

Not: N=10 
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Table B2 Effect of pH on ATP hydrolysis of the proteins. 

pH MreB FtsZ Lysozyme BSA 

pH 5.5 

pH 6.0 

pH 6.5 

pH 7.0 

pH 7.5 

pH 8.0 

6.80 

16.50 

14.90 

31.11 

33.70 

33.24 

-0.50 

-1.70 

-1.32 

-2.12 

-1.31 

0.25 

0.20 

0.35 

-1.00 

-1.12 

-0.92 

-0.51 

0.50 

0.15 

0.30 

-0.22 

0.21 

-0.3 

Not: N=10 

 

Table B3  Effect of pH on GTP hydrolysis of the proteins.  

pH MreB FtsZ Lysozyme BSA 

pH 5.5 

pH 6.0 

pH 6.5 

pH 7.0 

pH 7.5 

pH 8.0 

20.64 

28.64 

44.43 

39.81 

25.77 

25.26 

9.00 

13.71 

17.81 

11.15 

9.76 

11.42 

0.71 

-0.90 

-1.30 

-0.25 

-0.91 

0.40 

0.32 

0.61 

-1.51 

-1.09 

1.05 

-1.43 

Not: N=10 

 

T-value Equation  
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Table B4 Screening of natural compounds effect on ATP hydrolysis by MreB-Bs. 

Sample [PO4
3-] (µM)  Standard deviation (SD) 

MreB + ATP 32.22 2.73 

MreB + ATP + Apigenin 31.51 1.11 

MreB + ATP + Baicalein 32.76 0.66 

MreB + ATP + Luteolin 30.57 1.63 

MreB + ATP + Mangostin 32.04 0.97 

MreB + ATP + Naringenin 29.34 0.58 

BSA + ATP  1.73 0.96 

Lysozyme + ATP  0.03 2.19 

Not: N=10 

 

Statistics  

MreB + ATP + Apigenin The t-value is 0.40213. The p-value is 0.354074  

The result is not significant at p < 0.05 

MreB + ATP + Baicalein The t-value is 0.4188. The p-value is 0.348438 

The result is not significant at p < 0.05 

MreB + ATP + Luteolin The t-value is -0.33284. The p-value is 0.377986 

The result is not significant at p < 0.05  

MreB + ATP + Mangostin The t-value is 0.10761. The p-value is 0.459744 

The result is not significant at p < 0.05 
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Table B5  Screening of natural compounds effect on GTP hydrolysis by MreB-Bs. 

Sample [PO4
3-] (µM)  Standard deviation (SD) 

MreB + GTP 38.37 2.42 

MreB + GTP + Apigenin 36.38 1.31 

MreB + GTP + Baicalein 35.51 0.95 

MreB + GTP + Luteolin 37.12 0.95 

MreB + GTP + Mangostin 35.74 1.33 

MreB + GTP + Naringenin 38.93 1.05 

BSA + GTP  -1.50 0.39 

Lysozyme + GTP -1.30 1.36 

Not: N=10 

 

Statistics  

MreB + GTP + Apigenin The t-value is 1.5872. The p-value is 0.09383  

The result is not significant at p < 0.05 

MreB + GTP + Baicalein The t-value is 1.78269. The p-value is 0.074608 

The result is not significant at p < 0.05 

MreB + GTP + Luteolin The t-value is 0.88195. The p-value is 0.213807 

The result is not significant at p < 0.05 

MreB + GTP + Mangostin The t-value is 1.5822. The p-value is 0.094383 

The result is not significant at p < 0.05 

MreB + GTP + Naringenin The t-value is -0.12525. The p-value is 0.453186 

The result is not significant at p < 0.05 
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Table B6  Screening of natural compounds effect on GTP hydrolysis by FtsZ-Bs. 

Sample [PO4
3-] (µM)  Standard deviation (SD) 

FtsZ + GTP* 12.56 1.19 

FtsZ + GTP + Apigenin* 8.38 0.67 

FtsZ + GTP + Baicalein* 7.22 1.21 

FtsZ + GTP + Luteolin 13.25 0.58 

FtsZ + GTP + Mangostin 12.78 0.92 

FtsZ + GTP + Naringenin 12.72 0.90 

BSA + GTP  -1.50 0.39 

Lysozyme + GTP -1.30 1.36 

Not:  N=10 

 *N=20 

 

Statistics  

FtsZ + GTP + Apigenin The t-value is 5.29673. The p-value is 0.00305  

The result is significant at p < 0.01 

FtsZ + GTP + Baicalein The t-value is 5.43484. The p-value is 0.002781 

The result is significant at p < 0.01 

FtsZ + GTP + Luteolin The t-value is -0.89731. The p-value is 0.21014 

The result is not significant at p < 0.05 

FtsZ + GTP + Mangostin The t-value is -0.24936. The p-value is 0.407682 

The result is not significant at p < 0.05 

FtsZ + GTP + Naringenin The t-value is -0.18151. The p-value is 0.432396 

The result is not significant at p < 0.05 

 

 

 

 

 

 

 

 



 

APPENDIX C 

CHEMICAL PREPARATIONS 

 

10 N NaOH (200 ml) 

Dissolve 80 g NaOH in a final volume of 200 ml dH2O. 

 

1 M Tris-HCl (500 ml) 

1. Dissolve 60.55 g Tris base in 300 ml of dH2O. 

2. Adjust the pH to the desired value with concentrated HCl. 

3. Bring up the volume to 500 ml with dH2O. 

 

1 M Sodium acetate (200 ml) 

1. Dissolve 27.22 g sodium acetate in 100 ml of dH2O. 

2. Add 6 ml of glacial acetic acid.  

3. Adjust the pH to the desired value with 10 N NaOH. 

4. Bring up the volume to 200 ml with dH2O. 

 

0.5 M MES (200 ml) 

1. Dissolve 19.52 g HEPES (free acid) in 100 ml of dH2O. 

2. Adjust the pH to the desired value with 10 N NaOH. 

3. Bring up the volume to 200 ml with dH2O. 
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1 M HEPES (200 ml) 

1. Dissolve 41.66 g HEPES (free acid) in 100 ml of dH2O. 

2. Adjust the pH to the desired value with 10 N NaOH. 

3. Bring up the volume to 200 ml with dH2O. 

 

0.5 M EDTA, pH 8 (500 ml) 

1. Resuspend 93.05 g Na2•EDTA•2H2O (disodium dihydrate) in about 400 ml 

of dH2O. 

2. Add about 9 g solid NaOH. 

3. Once all the NaOH dissolves, slowly adjust the pH with 10 N NaOH. 

4. Bring up the volume to 500 ml with dH2O. 

Note: EDTA will not completely dissolve until the pH reaches 8. 

 

50X TAE buffer (1 L)  

Tris base   242.0 g  

Glacial acetic acid   57.1 ml  

0.5 M EDTA (pH 8.0)  100 ml  

Bring up the volume to 1 L.  

 

6X DNA loading sample buffer (10 ml)  

Glycerol   3 g  

Bromophenol blue 0.025 g  

Xylene cyanol FF 0.025 g  

Bring up the volume to 10 ml and store at 4 °C. 
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SDS-PAGE preparation (30% gel) 

 Acrylamide gel solution (100 ml) 

  acrylamide    29.4 g 

 bis-acrylamide    0.6 g 

 Separating gel (15% gel) 

 dH2O    2.9 ml 

 2 M Tris-HCl, pH 8.8  2 ml 

 10% SDS    0.1ml 

 30% acrylamide gel solution 5 ml 

 10% (NH4)2S2O8   50 µl 

 TEMED    5 µl 

 Stacking gel (4% gel) 

 dH2O    6.1 ml 

 0.5 M Tris-HCl, pH 6.8  2.5 ml 

 10% SDS    0.1 ml 

 30% acrylamide gel solution 1.3 ml 

 10% (NH4)2S2O8   50 µl 

 TEMED    10 µl 

 

10X Running buffer (1 L) 

Tris base 30 g  

Glycine 144 g 

SDS  10 g  

Bring up the volume to 1 L.  
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5X Sample buffer 

SDS    1.0 g  

Glycerol   5.0 ml  

Bromophenol blue  25 mg  

Tris base   242 mg  

HCl    0.35 ml (adjust the pH to 6.8) 

2-Mercapoethanol  1.0 ml  

Bring up the volume to 10 ml and store at 4 °C. 

 

Coomassie blue stain (1 L)  

Methanol   500 ml  

Acetic acid   100 ml   

Coomassie blue   0.5 g  

dH2O   400 ml 

Mix on stir plate until all coomassie blue is dissolved. 

 

De-stain (1 L) 

Methanol  400 ml  

Acetic acid  100 ml   

Bring up the volume to 1 L. 

 

10% SDS (100 ml) 

10 g SDS into 100 ml, heat to 68 °C for solubility, pH ~6.6. 
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100 mg/ml ampicillin (10 ml)  

1. Weigh 1 g of ampicillin. 

2. Bring up the volume to 10 ml and filter sterilizes (0.22 µm), store at -20 °C. 

 

1 M IPTG (10 ml) 

1. Weigh 2.38 g of IPTG (MW = 238.3 g/mol).  

2. Bring up the volume to 10 ml and filter sterilizes (0.22 µm), store at -20 °C. 

 

20 mg/ml X-gal (1 ml)  

1. Weigh 20 mg of X-gal. 

2. Bring up the volume to 1 ml with 100% DMF (dimethylformamide), store 

the stock solution at -20°C in the dark. Discard the stock solution if the color 

changes significantly. 

 

LB broth (1 L) 

Tryptone  10 g 

Yeast extract  5 g 

NaCl   5 g  

Dissolve components in 1 L of dH2O and sterilize by autoclaving at 15 psi, at 

121 °C for 15 minutes. 
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LB agar (200 ml) 

Tryptone  2 g 

Yeast extract  1 g 

NaCl   1 g  

Agar   4 g 

Dissolve components in 200 ml of dH2O and sterilize by autoclaving at 15 psi, 

at 121 °C for 15 minutes. 

 

Blue-white selection LB agar plate 

1. Melt LB agar, and allow media to cool to 55 – 60 °C. Add ampicillin to final 

concentration of 100 µg/ml.  

2. Gently swirl the flask to mix the ampicillin into the agar. 

3.  Pour a thin layer of LB agar ~10 ml into each plate. 

4.  Let each plate cool until its solid ~20 minutes. 

5.  Spread 40 µl of IPTG on top of the plate with spreader, let the plates dry in 

laminar flow. 

6.  Spread 40 µl of X-gal on top of the plate with a hockey stick spreader. This 

should take 30 minutes or so if the plate is dry. 
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Ni-NTA resin regeneration 

1.  Put all of the resin into a big column. 

2.  Wash with 3 CV water. 

3.  Wash with 3 – 5 CV of 0.5 M NaOH. 

4.  Wash with water 5 CV make sure pH turn back to 6 – 7. 

5.  Wash with 6 M guanidine hydrochloride and 25 mM imidazole, 2 CV each. 

6. Wash with 5 CV water immediately. 

7.  Wash with 2 CV 100 mM EDTA. 

8.  Wash with more than 5CV water. 

9.  Re-charge the resin with 2 – 3 CV 100 mM NiSO4 and keep resin in buffer 

for a couple hours with shaking. 

10. Wash the resin with more than 10 CV water. 

11. Wash with 2 CV 20% ethanol. 

12. Wash with 2 CV 50% ethanol. 

13. Wash with 2 CV 70% ethanol. 

14. Wash with 2 CV 50% ethanol. 

15. Wash with 2 CV 20% ethanol. 

Stock the resin in 20% ethanol in 4 degree.  
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