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ภาพเอกซเรยมี์ขอ้ดีในการช่วยวินิจฉยัหรือตรวจเช็คผูป่้วย ภาพเอกซเรยใ์ชฟิ้ลม์แบบดั้งเดิม
ถูกแทนท่ีด้วยภาพดิจิทัล เช่น ภาพเอกซเรยซี์อาร์ ซ่ึงมีข้อดีหลายอย่าง ยกตัวอย่าง เช่น ภาพท่ี
สามารถดูได้ ขยาย วดั และเปรียบเทียบบนจอภาพโดยรังสีแพทย ์ภาพเอกซเรยท่ี์เป็นภาพดิจิทัล 
สามารถเก็บได้ในระยะยาว และมีความเส่ียงของการสูญหายน้อยกว่าภาพในระบบฟิลม์ การสร้าง
ภาพรังสีแบบดิจิทลัมีช่วงพลวตัท่ีกวา้ง และสามารถด าเนินการกบัภาพซ ้ าแลว้ซ ้ าอีก โดยไม่กระทบ
กบัคุณภาพ อยา่งไรก็ตาม สัญญาณรบกวนเป็นปัจจยัส าคญัท่ีลดคุณภาพของภาพเอกซเรย ์บางครั้ ง
อาจจะท าให้เกิดการวินิจฉัยผิดพลาดได้ ดังนั้นงานวิจัยน้ีมีวตัถุประสงค์ เพื่อพฒันาขั้นตอนวิธี
ส าหรับระบุชนิดสัญญาณรบกวนในระบบเอกซเรยซี์อาร์ ประยุกต์ขั้นตอนวิธีส าหรับลดสัญญาณ
รบกวนในภาพเอกซเรยซี์อาร์ และสร้างโปรแกรมตน้แบบเพื่อลดสญัญาณรบกวน 

การวิจยัน้ีด าเนินการควบคุมคุณภาพระบบซีอาร์ พฒันาขั้นตอนวิธีส าหรับจ าแนกสญัญาณ
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การสร้างโมเดลโดยใช้ขั้นตอนวิธีเพอร์เซ็ปตรอนหลายชั้น ส าหรับการระบุชนิดสัญญาณรบกวน 
และขั้นตอนวิธีส าหรับลดสญัญาณรบกวนใชต้วักรองแบบคลุมเครือส าหรับลดสญัญาณรบกวน 

การควบคุมคุณภาพของระบบซีอาร์เป็นท่ียอมรับไดต้ามมาตรฐาน ไอ พี อี เอม็ การจ าแนก
สญัญาณรบกวนในระบบซีอาร์สามารถจ าแนกไดว้่า คือ สญัญาณรบกวนแบบปัวซง และเกาส์เซียน 
ซ่ึงมีค่าเฉล่ียของค่าคน้คืน เท่ากบั 93.31% ค่าเฉล่ียของค่าความเท่ียง เท่ากบั 93.79% และค่าเฉล่ีย
ของค่าเอฟเมเชอร์ เท่ากบั 93.34% ส าหรับการจ าแนก ซอฟต์แวร์ต้นแบบสามารถลดสัญญาณ
รบกวนไดม้ากกว่าซอฟต์แวร์ของบริษทั ผลการประเมินภาพท่ีถูกลดสญัญาณรบกวน ค่าความคลาด
เคล่ือนก าลังสองเฉล่ีย เท่ากับ 0.2822  ค่าพีคซิกแนลทูนอยส์ เรโช  เท่ากับ 53.6247  และค่า
สหสมัพนัธ ์เท่ากบั 0.9972 
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There are many advantages to having X-ray images, diagnoses or check-ups 

for patients. Conventional X-ray images are replaced by digital X-rays, such as 

computed radiography (CR) images. The advantages of having digital X-rays are, for 

example, that the images can be viewed, extended, measured and compared on a 

monitor by the radiologist. Since the images are produced digitally, they can be stored 

long term and there is less risk of their being lost and they require less storage space 

than conventional X-ray films. Digital radiography has a wide dynamic range and can 

be processed repeatedly without compromising on quality. However, image noise is a 

key factor that reduces the quality of X-ray images. It sometimes causes a deficiency 

in images which can lead to misdiagnoses. Hence, this research aims to develop an 

algorithm for the specification of the type of noise in the CR system, and to apply the 

appropriate algorithm for reducing noise in CR images and to create a prototype 

software for de-noising. 

This research includes commissioning and routine quality control of CR 

systems, develops algorithms for the classification of the noise in the CR system, and 

applies an algorithm for de-noising. The commissioning and routine quality control of 

the CR system is performed following the guidelines of the Institute of Physics and 
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Engineering in Medicine (IPEM). The classification of the noise in the CR the system 

is conducted by creating a model using multilayer perceptron (MLP) algorithms for 

specifying noise types. The algorithm for de-noising applies fuzzy filters for de-

noising. 

The quality control of the CR system is acceptable according to the guidelines 

of the IPEM. The classification of the noise in the CR image can be specified as 

Poisson and Gaussian noises, the mean recall is 93.31%, the mean of precision is 

93.79%, and the mean of the F-measure is 93.34% for classification. This prototype 

software can be de-noised more efficiently than the software found on the market. 

According to the assessment of the de-noising image, the Mean Square Error (MSE) 

value is 0.2822, the Peak Signal to Noise Ratio (PSNR) value is 53.6247 and the 

correlation value is 0.9972. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

X-rays were used for detecting internal defects inside structures soon after 

being discovered by the German scientist Wilhelm Conrad Röntgen in 1895. In the 

form of very energetic radiation, it can penetrate opaque and even metallic objects. 

Radiography can detect variations in different types of materials or thickness via the 

variations in intensity of the transmitted radiation. Heavy or thick materials can 

greatly attenuate X-ray beams. The transmitted beam, which carries the object pattern, 

is received by a detector. At the beginning, in the early 1900s, glass radiography 

plates were used to detect X-ray images. Later, a flexible silver film was invented. 

Now, with the advent of the digital age, the film is being replaced more and more by 

digital detectors such as storage phosphor plates used in computed radiography (CR) 

and photoconductor plates used in digital radiography (DR). 

When compared with traditional film radiography, digital technology, both CR 

and DR are much more dose efficient and have a larger dynamic range. A direct 

digital output allows image processing, long distance sharing, a lossless image copy, 

elimination of chemical development and physical storage. Though digital systems 

are more expensive than film systems, as films are not reusable, the long term costs 

become smaller. CR is based on the use of Photostimulated Phosphor (PSP) in the 

Imaging Plate (IP). 
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Digital radiography systems have replaced films over a broad range of 

investigations. The basic definition of digital imaging is any imaging acquisition 

process that produces an electronic image which can be viewed and manipulated on a 

computer. Most modern medical imaging modalities produce digital images that can 

be distributed through a computer network to a host of locations. 

CR or cassette-based digital radiography is the digital acquisition modality 

that uses storage phosphor plates to produce projection images (Carter and Veale, 

2010). There are many advantages of having digital X-rays, for example, the images 

can be viewed, extended, measured and compared on a monitor by the radiologist. 

Since the images are produced digitally, they can be stored long term and have less 

risk of being lost and they require less storage space than conventional X-ray films. 

Digital radiography has a wide dynamic range and can be processed repeatedly 

without compromising on quality (Bushberg, Seibert, Leidholdt, and Boone, 2002). 

However, image noise is a key factor that reduces the quality of X-ray images. It 

sometimes causes a deficiency in images which can lead to misdiagnoses. 

This research focuses on noise arising in the image processing of CR systems. 

Analysis of the process provides a mathematical model of the CR image overlaid with 

noise which helps in the selection of a suitable method to de-noise and recover the 

anatomical details of the medical CR image. 

The CR system is similar to the conventional X-ray system, which uses a film 

base for X-ray examinations. The receiver plate of a CR system uses an Imaging Plate 

that is like an X-ray film when the IP is exposed by X-ray beams, it is read by a CR 

reader. It is analogous to film processing in the conventional X-ray system. Finally, 

the digital X-ray image is processed and sent to a radiologist or physician. The 
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production process of the CR image requires several steps that are the cause of the 

noise, therefore this research will be of interest for research of the CR system. 

 The CR system is still being used in hospitals in Thailand which is expected to 

continue in the future, because this system is also important and cheaper than the DR 

system.  

Hence, this research aims to apply the appropriate algorithm for reducing 

noise in the CR system. Prototype software will be designed to implement the 

algorithm. This study should help patients to obtain accurate diagnoses and treatment 

in the future. 

 

1.2 Research Objectives 

1.2.1 To develop an algorithm for the specification of the type of noise in the 

CR system. 

1.2.2 To apply the appropriate algorithm for reducing noise in CR images. 

1.2.3 To create a prototype software for de-noising in CR images. 

 

1.3 Research Hypothesis 

1.3.1 The recall for the classification of types of noise in the CR system is 

greater than or equal to 80%. 

1.3.2 The prototype software can de-noise greater than the software currently 

available on the market. 
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1.4 Scope of the Study 

 1.4.1 The trial studies and research are located in the Department of 

Radiology, Maharat Nakhon Ratchasima Hospital, School of Information 

Technology, and the School of Mathematics, Suranaree University of Technology. 

 1.4.2 Duration of the study is from June 2015 to June 2016. 

 1.4.3 The contents of the study include quality evaluation of the CR system, 

specifications of the noise in the CR system, and the appropriate algorithm for noise 

reduction in CR images and prototype software for de-noising in CR images. 

 

1.5 Expected Results 

 1.5.1 To produce the type of noise found in the CR system. 

 1.5.2 To produce the appropriate algorithm for noise reduction in CR images. 

 1.5.3 To produce prototype software which can enhance CR images. 

 

1.6 Definitions of Terms 

Computed Radiography (CR) is digital radiography that records 

radiographic images on photostimulable phosphor plates instead of film/ screen image 

receptors. The acquired image data are converted to electronic signals and digitized so 

they can be stored and manipulated by a computer and displayed on a high-resolution 

monitor or recorded on film by using a laser printer. 

Noise is random variations of brightness or color information in images, and is 

usually an aspect of electronic noise, which produces random electronic variations in 

the signals of the electromagnetic spectrum that do not carry any useful information 

from the source. 
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Peak Signal to Noise Ratio (PSNR) is an expression for the ratio between the 

maximum possible value (power) of a signal and the power of distorting noise that 

affects the quality of its representation. Because many signals have a very wide 

dynamic range, (the ratio between the largest and smallest possible values of a 

changeable quantity) the PSNR is usually expressed in terms of the logarithmic 

decibel scale. 
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CHAPTER 2 

REVIEW OF THE LITERATURE 

 

The literature review is presented in this chapter comprising the related 

concept, theories, background knowledge, and related work. Firstly, the X-ray 

production is described. The second part of this chapter explains mechanism of 

processing in CR. The quality evaluation for CR is clarified in the third section. The 

fourth section introduces mathematical model of noise. The fifth part expounds the 

concept of machine learning followed by introduction of neural network and fuzzy 

logic. The algorithms of noise reduction are elucidated in the seventh section. The last 

part explicates computer programming. The topics in this chapter are as follows. 

2.1 X-ray production 

 2.2 Mechanism of processing in CR 

 2.3 Quality evaluation for CR 

 2.4 Mathematical model of noise 

 2.5 Machine learning 

 2.6 Neural network 

 2.7 Fuzzy logic 

 2.8 Algorithm of noise reduction 

 2.9 Computer programming 

 

 

 

 

 

 

 

 

 

 



7 

 

2.1 X-ray Production 

 2.1.1 The X-ray Tube 

An X-ray machine circuit is a simplified schematic of a complete X-ray 

machine. The main circuit is composed of three general sections, the control console, 

the high voltage section, and the X-ray tube.  

 

Figure 2.1  X-ray machine circuit (Quinn and Carroll, 2011) 

 

Figure 2.1 as shown simplified schematic of a complete X-ray machine 

circuit, A is incoming lines and power switch, B is exposure switch and timer, C is 

autotransformer for kVp selection, D is pre-reading kVp meter, E is step-up 

transformer for high voltage, F is mA meter, G is rectification bridge, H is X-ray tube, 

I is bank of resistors for mA selection, and J is step-down transformer. 

Figures 2.2 (a) and 2.2 (b) show a diagram and a photograph of a 

complete X-ray tube. The diagram shows the way in which the focusing cup and 

filaments are aligned to the anode in the tube. 
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(a) 

 

 
(b) 

Figure 2.2  X-ray tubes (Quinn and Carroll, 2011) 

 

The source of free electrons is a filament wire heated sufficiently to 

produce thermionic emission. A minimum filament temperature of about 3700° F 

(2000° C) is required. The actual temperature of the filament and the rate of 

thermionic emission are predetermined by the mA station selected. When the rotor 

button is depressed, a current sufficient to generate this temperature flows through the 

filament. With added energy, electrons jump from their atoms and right off the wire, 

forming an electron cloud or space charge around the filament. The space charge 

constitutes electrons that are free to move across the X-ray tube to the anode. Some of 

the electrons fall back into the filament, but are replaced by other electrons jumping 

out such that a constant number of electrons hover within the cloud. This state of 
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equilibrium is called the space charge effect. The number of electrons is 

predetermined by setting the mA station. All of this process occurs through the filament 

circuit. In order to suddenly accelerate the electrons of the space charge in a direction 

toward the anode, an extremely high-voltage electromotive force is applied to the 

same filament. The electron cloud feels the force of the negative voltage behind it, 

and is repelled away from the filament. At the same time, the anode of the X-ray tube 

has acquired a positive charge from the same high-voltage circuit, and also pulls the 

electron cloud toward it. This potential difference in the tens of thousands of volts is 

so strong that the electrons can accelerate to more than one-half of the speed of light 

in just one inch of travel before reaching the anode disc. The anode disc, made of 

metals with very high atomic numbers, provides the means of precipitously 

decelerating these projectile electrons as they smash into it. By the law of 

conservation of energy, the energy lost by the sudden slowing down of the electrons 

cannot disappear but must be converted into another form. It is emitted from the 

anode in the form of electromagnetic radiation waves, including infrared, visible light, 

ultraviolet waves and X-rays. Unfortunately, the entire process is not very efficient. 

Only 1 percent of the radiation emitted is in the form of useful diagnostic X-rays. The 

other 99 percent is emitted from the X-ray tube and its housing in the form of wasted 

heat (Quinn and Carroll, 2011; Bushberg, Seibert, Leidholdt and Boone, 2002). 

2.1.2 Bremsstrahlung X-ray Generation 

If the electron passes near the atomic nucleus, the positive attraction of 

the nucleus will cause it to brake or slow down. This deceleration in the speed of the 

electron represents a loss of kinetic energy, and that energy which is lost is emitted as 

an X-ray photon. X-rays produced by this interaction are called bremsstrahlung or 
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braking radiation in German, and they account for the vast majority of the overall X-

ray beam (Quinn and Carroll, 2011; Bushberg et al., 2002). 

 

Figure 2.3  The bremsstrahlung interaction (Quinn and Carroll, 2011) 

 

High speed electrons may pass by the nucleus at various distances from 

it. The closer an electron approaches to the nucleus, the greater will be the 

deceleration of the electron, due to the stronger pulling force of the nucleus. As shown 

in Figure 2.3, the attractive force of the nucleus also causes the electron to bend in its 

path of travel toward the nucleus. The greater the deceleration of the electron, the 

more it deviates from its original direction, and the more kinetic energy is lost. Thus, 

the closer the electron passes by the nucleus, the higher will be the energy of the 

emitted X-ray. Bremsstrahlung, occurring at various distances from the nucleus, 

produces a wide range of X-ray energies and is thus responsible for the heterogeneous 

or poly energetic nature of the X-ray beam. Heterogeneity contributes to the 

differential absorption X-rays within the patient’s body by different tissues. It is just 

this differential absorption which provides subject contrast to the remnant X-ray beam 

and makes the radiographic image possible (Quinn and Carroll, 2011; Bushberg et al., 

2002). 
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The X-ray beam must first pass through a number of materials which 

effectively act as filters. These include the anode itself, from which each X-ray must 

escape without being absorbed by another tungsten or rhenium atom. They include the 

glass window of the X-ray tube and the oil surrounding it, a beryllium window filter, 

an added aluminum filter normally placed between the X-ray tube and the 

collimator box, the mirror in the collimator, and other parts of the collimator. All of 

these filters absorb the X-rays with the lowest energies, so that the remaining 

bremsstrahlung portion of the emitted X-ray beam is graphed like Figure 2.4 (Quinn 

and Carroll, 2011; Bushberg et al., 2002). 

 

Figure 2.4  The bremsstrahlung X-ray spectrum (Quinn and Carroll, 2011) 

 

Figure 2.4, fewer X-rays are produced at low energies due to filtration, 

and fewer X -rays are produced at high energies because of the statistical distribution 

of bremsstrahlung X-rays production. This leaves a bell shaped curve which is 

somewhat lopsided toward the left, so that the average kV within the beam is roughly 

one third of the set peak kilovoltage (kVp). The total number of X-rays producing is 

represented by the total area under the curve. This area covers the wide range of 

energies needed to produce subject contrast within the X-ray beam as it passes 
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through the patient’s body tissues, rendering a full range of information for the image 

(Quinn and Carroll, 2011; Bushberg et al., 2002). 

 
(a)                                             (b) 

Figure 2.5  The characteristic interaction in the x-ray tube (Quinn and Carroll, 2011) 

 

2.1.3 Characteristic X-ray Generation 

Characteristic X-rays depend entirely on the difference in energy levels 

between different orbital shells in the atom. The atoms in the X-ray tube anode, the 

second possibility for the projectile electron is that it might interact with one of the 

atoms’ orbital electrons. When it passes near an orbital electron, its repulsive negative 

charge can eject the orbital electron out of its orbit, leaving a vacancy in that electron 

shell of the atom (Fig. 2.5 (a)). The atom, left with a positive charge, will eventually 

pull in another electron to return to a neutral state. In the meantime, the vacancy 

created in this specific shell will be filled by any electron available from higher orbits. 

As the atom attempts to return to its ground state, the state with the least energy, 

electrons from outer orbits will fall down into vacancies that are closer to the nucleus. 

When an electron falls from an outer orbit down into an inner orbit, there is a loss of 

potential energy. By the law of conservation of energy, this potential energy cannot 

merely disappear, but must be converted into some other form of energy. It is emitted 
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as a characteristic X-ray (Fig. 2.5 (b)). Characteristic radiation makes up only a small 

portion of the overall X-ray beam, but since it can possess high energies that penetrate 

through the patient to the detectors, these X-rays are still important in producing a 

radiographic image (Quinn and Carroll, 2011; Bushberg et al., 2002). 

Figure 2.5, in step (a), a projectile electron collides with and dislodges 

an orbital electron from the atom, in step (b), the atom pulls down an electron from a 

higher shell to fill the vacancy left. As this electron drops into a lower orbit, it loses 

potential energy which is emitted as an X-ray. 

 

Figure 2.6  The characteristic X-ray spectrum (Quinn and Carroll, 2011) 

 

Figure 2.6 plots the spectrum of characteristic X-rays production in 

tungsten. Inherent filtration will remove virtually all of the 2 kV and 3 kV X-rays, so 

these do not show up on the graph. Filtration also removes most of the 9 and 12 kV 

X-rays, so the graph plots them but showing a reduced number. Those characteristic 

X-rays having 57, 66, 68, and 69 kV largely escape the X-ray tube and are considered 

part of the useful X-ray beam. At each of these energies, a fairly high quantity of 

characteristic X-rays is produced, so they show up on the graph as tall spikes (Quinn 

and Carroll, 2011; Bushberg et al., 2002). 
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2.1.4 Interaction of X-ray with Matter 

 

Figure 2.7  The coherent scattering (Sherer, Visconti, Ritenour, and Haynes, 2014) 

 

1) Coherent Scattering 

Coherent scattering (Fig. 2.7), the incoming low energy X-ray photon 

interacts with an atom and transfers its energy by causing some or all of the electrons 

of the atom to vibrate momentarily. The electrons then radiate energy in the form of 

electromagnetic waves. These waves nondestructively combine with one another to 

form a scattered wave, which represents the scattered photon. Its wavelength and 

energy, or penetrating power, are the same as those of the incident photon. Generally, 

the emitted photon may change in direction less than 20 degrees with respect to the 

direction of the original photon (Quinn and Carroll, 2011; Bushberg et al., 2002; 

Sherer et al., 2014). 

2) Photoelectric Absorption 

Photoelectric absorption, on encountering an inner-shell electron in 

the K or L shells, the incoming X-ray photon surrenders all its energy to the electron 

and the photon ceases to exist. The atom responds by ejecting the electron, called a 

photoelectron, from its inner shell, thus creating a vacancy in that shell. To fill the 

opening, an electron from an outer shell drops down to the vacated inner shell by 
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releasing energy in the form of a characteristic photon. Then, to fill the new vacancy 

in the outer shell, another electron from the shell next farthest out drops down and 

another characteristic photon is emitted, and so on until the atom regains electrical 

equilibrium. There is also some probability that instead of a characteristic photon, an 

Auger electron will be ejected (Quinn and Carroll, 2011; Bushberg et al., 2002; Sherer 

et al., 2014). 

 

Figure 2.8  The photoelectric effect (Quinn and Carroll, 2011) 

 

Figure 2.8, photoelectric absorption is the most important mode in the 

interaction between X-ray and the atoms of the patient's body in the energy range 

used in diagnostic radiology because this interaction is responsible for both the 

patient's dose and contrast in the image. During the process of photoelectric 

absorption, the kinetic energy of the incident photon is completely absorbed as it 

interacts with and ejects an inner shell electron of biologic tissue from its orbit. The 

newly ejected photoelectron possesses kinetic energy and can ionize other atoms it 

encounters until its energy is spent. After losing an electron, the original ionized atom 

is unstable and attempts to re-stabilize. This occurs as an electron from a higher shell 

drops down and fills the vacancy in the inner shell by releasing energy as a 
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characteristic photon. This cascading effect of electrons dropping down to fill existing 

shell vacancies continue until the original atom regains its stability (Quinn and 

Carroll, 2011; Bushberg et al., 2002; Sherer et al., 2014). 

3) Compton Scattering 

In the Compton process, an incoming X-ray photon interacts with a 

loosely bound outer electron of an atom of the irradiated object. On encountering the 

electron, the incoming X-ray photon surrenders a portion of its kinetic energy to 

dislodge the electron from its outer shell orbit, thereby ionizing the biologic atom. 

The freed electron, called a Compton scattered electron, or secondary, or recoil 

electron, possesses excess kinetic energy and is capable of ionizing other atoms. It 

loses its kinetic energy by a series of collisions with nearby atoms and finally 

recombines with an atom that needs another electron. This usually occurs within a few 

micrometers of the site of the original Compton interaction (Quinn and Carroll, 2011; 

Bushberg et al., 2002; Sherer et al., 2014). 

 

Figure 2.9  The Compton effect (Quinn and Carroll, 2011) 

 

Figure 2.9 is Compton scattering, on encountering a loosely bound 

outer shell electron, the incoming X-ray photon surrenders a portion of its kinetic 
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energy to dislodge the electron from its orbit. The energy degraded X-ray photon then 

continues on its way but in a new direction. The high speed electron ejected from its 

orbit is called a Compton scattered electron, or secondary or recoil electron. 

4) Pair Production 

Pair production does not occur unless the energy of the incident X-ray 

photon is at least 1.022 Mega electron Volts (MeV). The incoming photon strongly 

interacts with the nucleus of the atom of the irradiated object and disappears. In the 

process, the energy of the photon is transformed into two new particles, a negatron 

(electron) and a positron. The negatron eventually recombines with any atom that 

needs another electron. The positron interacts destructively with a nearby electron. 

During the interaction, the positron and the electron annihilate each other, with their 

rest masses converted into energy, which appears in the form of two 0.511 MeV 

photons, each moving in the opposite direction as shown in Figure 2.10 (Bushberg et 

al., 2002; Sherer et al., 2014). 

 

Figure 2.10  The pair production (Sherer et al., 2014) 
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5) Photodisintegration 

Photodisintegration is an interaction that occurs at more than 10 MeV 

in high energy radiation therapy treatment machines. As with pair production, this 

energy range is also far higher than useful diagnostic energies. An incoming high 

energy photon collides with the nucleus of the atom of the irradiated object and 

absorbs all the photon's energy. This energy excess in the nucleus creates an 

instability that is usually alleviated by the emission of a neutron (Sherer et al., 2014). 

2.1.5 Attenuation and Subject Contrast 

Attenuation is the partial absorption of the X-ray beam, the reduction in 

intensity that occurs as the X-ray beam traverses a body part. General attenuation of 

the X-ray beam includes all three of the interactions explained in the previous section, 

since both the absorption and the scattering of X-rays can prevent them from 

reaching the image receptor (Quinn and Carroll, 2011; Bushberg et al., 2002). 

 

Figure 2.11  The attenuation of an X-ray beam by a homogeneous object  

(Quinn andCarroll, 2011) 
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Figure 2.11 demonstrates the attenuation of an X-ray beam by a 

homogeneous object, a step wedge made of pure aluminum. Since the material is of 

uniform consistency throughout, differences in the remnant radiation beam are 

entirely due to the changing thickness of the steps in the block of aluminum. Primary 

radiation, striking the first and thinnest step is only slightly attenuated, and the 

receptor plate behind it receives high radiation exposure. As each step gets thicker, 

more attenuation occurs and less radiation exposure reaches the receptor plate (Quinn 

and Carroll, 2011; Bushberg et al., 2002). 

 

Figure 2.12  The attenuation of an X-ray beam by a soft tissues (Quinn and  

Carroll, 2011) 

 

Figure 2.12, the progressive, exponential attenuation of an X-ray beam 

as it passes through soft tissues of the body. Each 4 to 5 cm of tissue thickness 

reduces the X-ray intensity to about one half. The compensating rule for radiographic 

technique is to double technique for every 4 cm increase in body part thickness. 

Figure 2.12 shows this progressive attenuation of the X-ray beam as it passes through 
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a fairly homogeneous body tissue, such as muscle tissue, which possesses close to the 

same molecular atomic number and physical density as liquid water. The attenuation 

is about 50 percent for every 4 to 5 centimeters of soft tissue thickness. At 4 cm 

depth, only 500 of the original 1000 X-rays incident upon the body surface remain. At 

8 cm, half of these, 250, remain, and so on until, after passing through the full 

thickness of a 24 centimeter abdomen, only 16 X-rays remain of the original 1000. 

This is 1.6 percent penetration through the body, which is close to the actual situation 

(Quinn and Carroll, 2011). 

Subject contrast is produced by the differential absorption between 

various tissues of the body. The physical differences between these tissues are already 

present before the X-ray beam strikes them. Simply put a tissue such as bone stands 

out from the background of soft tissues because the bone attenuates more X-rays than 

soft tissue does. This general attenuation of X-rays can be due to either absorption of 

the X-rays by the tissue or to scattering of the X-rays by the tissue either way, the X-

ray photon is prevented from reaching the image receptor. All interactions within the 

patient, whether photoelectric, Compton, or coherent scattering, represent some 

degree of absorption of the overall X-ray beam. All interactions attenuate the beam 

(Quinn and Carroll, 2011). 

 Changes in the energy levels of the X-ray beam, controlled primarily 

by the selected kVp, alter the penetration characteristics of the X-rays. Penetration is 

the opposite of attenuation. As kVp is increased and more penetration is achieved, the 

subject contrast between different tissues is lessened, but more different type soft 

tissues can also be demonstrated between the extremes of black and white within the 

image. This is referred to as lengthened gray scale. As subject contrast is decreased, 
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gray scale is increased. These effects are due to the penetration of the beam versus the 

overall attenuation factor, and will hold true regardless of the particular prevalence of 

the photoelectric effect or the Compton scattering. However, there are implications 

for the relative prevalence of these two interactions as study subject contrast (Quinn 

and Carroll, 2011).  

 

Figure 2.13  The relative predominance of photoelectric and Compton interactions in 

 various tissues at increasing levels of kVp (Quinn and Carroll, 2011) 

 

Figure 2.13 shows the relative predominance of photoelectric and 

Compton interactions in various tissues at increasing levels of kVp. While Compton 

interactions occur at about the same rate for all tissues, photoelectric interactions 

occur in much greater numbers in substances with higher atomic numbers such as 

bone and iodine. However, they still drop quickly as kVp increases (Quinn and 

Carroll, 2011). 

 

2.2 Mechanism of Processing in CR 

The CR uses same exposure routine as traditional film radiography: by 

absorption of X-ray, a latent image is generated in PSP Imaging Plate (IP). The latent 
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image is stable in hours under room temperature. The Imaging Plate, like film, can be 

handled with a light tight cassette. In order to enhance the X-ray absorption efficiency 

at high energies, metallic screens are usually used together with IP within a cassette. 

After exposure, the IP is introduced into an optical scanner by users. With the 

scanning of the finely focused laser light (raster scanning), the latent image stored in 

IP is released by means of PSL. The emitted signal is guided into photomultiplier by 

an optical fiber, and then converted into a digital image. An intense light is used in the 

last step to erase the unreleased information, and then the Imaging Plate can be 

reused. An Imaging Plate can be reused thousands of times. 

 

Figure 2.14  Computed Radiography cycle 

 

Figure 2.14 is computed radiography procedure, during exposure, an Imaging 

Plate is used to receive the transmitted X-ray image creating a latent image (which is 

stable in hours under room temperature); as a second step, the Imaging Plate is 

introduced into an laser scanner, and the latent image is released and digitized 
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resulting in a final digital image which can be viewed through monitors; intense light 

is used in the last step to erase the residual image in Imaging Plate (Leblans, 

Vandenbroucke and Willems, 2011). 

 

                 (a)                                       (b)                                             (c) 

Figure 2.15  Substance element medium of three different type Imaging Plates  

(Leblans et al., 2011) 

 

Imaging Plate is the recording medium of the latent image, and the CR image 

depends massively on IP’s property. Today’s existing Imaging Plates can be 

categorized into three families: powder (or granular) plate, needle structured plate and 

glass ceramic plate (Figure 2.15 (a), (b), and (c), respectively). Powder plates are the 

most common commercial Imaging Plate, in which the phosphor (e.g. BaFBr: Eu2+) 

grains (of about 5 µm diameter) are held in a polymer binder. In needle plates, there is 

no use of binder, the phosphor crystals (e.g. CsBr: Eu2+) are grown into needles 

(about 5 to 10 µm diameter and 400 to 500 µm length (Leblans et al., 2011) which act 

as light guides. Hence strong light scattering can be avoided leading to better image 

quality than a powder plate of the same thickness. The glass ceramic type IP is not yet 

commercialized nowadays, in which nano or micro crystallites (e.g. BaCl: Ce3+) are 

doped into a glassy material. Due to the transparency of the glass ceramic material, 

the light scattering can be greatly reduced resulting in good spatial resolution.  
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                 (a)                                                                (b) 

Figure 2.16  Imaging Plate and construction (Carter and Veale, 2010) 

 

The CR cassette looks like the conventional radiography cassette.  It consists 

of a durable, lightweight plastic material.  The cassette is backed by a thin sheet of 

aluminum that absorbs X-rays. Instead of intensifying screens inside, there is 

antistatic material that protects against static electricity buildup, dust collection, and 

mechanical damage to the plate. In CR, the radiographic image is recorded on a thin 

sheet of plastic known as the Imaging Plate (Carter and Veale, 2010).  

The Imaging Plate consists of several layers as shown in Figure 2.16 (Carter 

and Veale, 2010). 

(1) A protective layer is a very thin, tough, clear plastic that protects the 

phosphor layer. 

(2) A phosphor active layer is a layer of photostimulable phosphor that 

traps electrons during exposure. It is usually made of phosphors from the barium 

fluorohalide family (e.g., barium fluorohalide, chlorohalide, or bromohalide crystals). 

This layer may also contain a dye that differentially absorbs the stimulating light to 

prevent as much spread as possible and functions much the same as dye added to 

conventional radiographic screens. 
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(3) A reflective layer is a layer that sends light in a forward direction when 

released in the cassette reader. This layer may be black to reduce the spread of 

stimulating light and the escape of emitted light. Some detail is lost in this process. 

(4) A conductive layer is a layer of material that absorbs and reduces static 

electricity. 

(5) A color layer that newer plates may contain a color layer, located 

between the active layer and the support that absorbs the stimulating light but reflects 

emitted light. 

(6) A support layer is a semi rigid material that gives the imaging sheet 

some strength. 

(7) A backing layer is a soft polymer that protects the back of the cassette. 

 

Figure 2.17  CR reader 

 

The patient is X-rayed exactly the same way as in conventional radiography. 

The patient is then exposed using the proper combination of kVp, mAs, and distance. 

The difference lies in how the exposure is recorded. In CR, the remnant beam 

interacts with electrons in the barium fluorohalide crystals contained within the 
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Imaging Plate. This interaction stimulates, or gives energy to, electrons in the crystals, 

allowing them to enter the conductive layer, where they are trapped in an area of the 

crystal known as the color or phosphor center. This trapped signal will remain for 

hours, even days, although deterioration begins almost immediately. In fact, the 

trapped signal is never completely lost. That is, a certain amount of an exposure 

remains trapped so that the Imaging Plate can never be completely erased. However, 

the residual trapped electrons are so few in number that they do not interfere with 

subsequent exposures. With CR systems, no chemical processor or darkroom is 

necessary. Instead, following exposure, the cassette is fed into a CR reader (Figure 

2.17) that removes the Imaging Plate and scans it with a laser to release the stored 

electrons. A laser, or light amplification of stimulated emission of radiation, is a 

device that creates and amplifies a narrow, intense beam of coherent light (Figure 

2.18).  

 

Figure 2.18  Laser construction (Carter and Veale, 2010) 

 

The atoms or molecules of a crystal such as ruby or garnet or of a gas, liquid, 

or other substance are excited so that more of them are at high energy levels rather 

than low energy levels. Surfaces at both ends of the laser container reflect energy 

back and forth as atoms bombard each other, stimulating the lower energy atoms to 
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emit secondary photons in the same frequency as the bombarding atoms. When the 

energy builds sufficiently, the atoms discharge simultaneously as a burst of coherent 

light. It is coherent because all of the photons are traveling in the same direction at the 

same frequency. The laser requires a constant power source to prevent output 

fluctuations. The laser beam passes through beam shaping optics to an optical mirror 

that directs the laser beam to the surface of the Imaging Plate as shown in Figure 2.19 

(Carter and Veale, 2010). 

 

Figure 2.19  CR reader laser optics (Carter and Veale, 2010) 

 

When the cassette is put into the reader, the Imaging Plate is extracted and 

scanned with a helium laser beam or, in more recent systems, solid state laser diodes. 

This beam, about 100 μm wide with a wavelength of 633 nm (or 670 to 690 nm for 

solid state), scans the plate with red light in a raster pattern and gives energy to the 

trapped electrons. 
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Figure 2.20  The laser scans Imaging Plate (Carter and Veale, 2010) 

 

The red laser light is emitted at approximately 2 eV, which is necessary to 

energize the trapped electrons. This extra energy allows the trapped electrons (Figure 

2.20) to escape the active layer where they emit visible blue light at the energy of 3 

eV as they relax into lower energy levels. As the Imaging Plate moves through the 

reader, the laser scans across the Imaging Plate multiple times. The plate movement 

through the scanner is known as translation because it moves in a parallel manner at a 

certain rate through the reader. This scan process produces lines of light intensity 

information that are detected by a photomultiplier that amplifies the light and sends it 

to a digitizer. The translation speed of the plate must be coordinated with the scan 

direction of the laser, or the spacing of the scan lines will be affected. The action of 

moving the laser beam across the Imaging Plate is much like holding a flashlight at 

the same height and moving it back and forth across a wall. The more angled the 
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beam is, the more elliptical the shape of the beam. The same thing happens with the 

reader laser beam as it scans (Carter and Veale, 2010). 

This means that if this change in the beam shape were ignored, the output of 

the screen would differ from the middle to the edges, resulting in differing spatial 

resolution and inconsistent output signals, depending on the position and angle of the 

laser beam. To correct this, the beam is shaped by special optics that keeps the beam 

size, shape, and speed largely independent of the beam position. A beam deflector 

moves the laser beam rapidly back and forth across the Imaging Plate to stimulate the 

phosphors. Mirrors are used to ensure that the beam is positioned consistently. 

Because the type of phosphor material in the Imaging Plate has an effect on the 

amount of energy required, the laser and the Imaging Plate should be designed to 

work together. The light collection optics direct the released phosphor energy to an 

optical filter and then to the photo detector (Figure 2.21). Although there will be 

variances among manufacturers, the typical throughput is 50 cassettes/hr. Some 

manufacturers claim up more than one (Carter and Veale, 2010). 

 

Figure 2.21  Laser optics (Carter and Veale, 2010) 
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The digitizing a signal, such as the light signal from the photomultiplier, that 

is talking about assigning a numerical value to each light photon. As humans, that 

once experience the world analogically that see the world as infinitely smooth 

gradients of shape and colors. Analog refers to a device or system that represents 

changing values as continuously variable physical quantities. A typical analog device 

is a watch that hands move continuously around the face and are capable of indicating 

every possible time of day. In contrast, a digital clock is capable of representing only 

a finite number of times (e.g., every tenth of a second). In the process of digitizing the 

light signal, each phosphor storage center is scanned, and the released electrons enter 

a digitizer that divides the analog image into squares (matrix) and assigns each square 

in the matrix a number based on the brightness of the square. Each square is called a 

pixel or picture element. The typical number of pixels in a matrix ranges from about 

512 × 512 to 1024 × 1024 for CT but can be as large as 2500 × 2500 for radiography. 

The more pixels there are, the greater the image resolution. The image is digitized 

both by position (spatial location) and by intensity (gray level). Each pixel contains 

bits of information, and the number of bits per pixel that define the shade of each 

pixel is known as bit depth. If a pixel has a bit depth of 8, then the number of gray 

tones that pixel can produce is 2 to the power of the bit depth, or 28, or 256 shades of 

gray. Therefore how many photons are detected will determine where it will be 

located in the matrix in conjunction with the amount of gray level or bit depth. Some 

CR systems have bit depths of 10 or 12, resulting in more shades of gray. Each pixel 

can have a gray level between 0 (20-1) and 4095 (212-1). The gray level will be a 

factor in determining the quality of the image. The amount of detail present in any 

image is known as its spatial resolution. Just as the crystal size and thickness of the 
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phosphor layer determine resolution in film/screen radiography, phosphor layer 

thickness and pixel size determine resolution in CR. The thinner the phosphor layer, 

the higher the resolution.  In film/screen radiography, resolution at its best is limited 

to 10 lp/ mm. In CR, resolution is approximately 2.55 to 5 lp/mm, resulting in less 

detail. However, because the dynamic range, or the number of recorded densities, is 

much higher, the difference in resolution is more difficult to discern. In conventional 

radiography, speed is determined by the size and layers of crystals in the film and 

screen. In CR, speed is not exactly the same because there is no intensifying screen or 

film. The phosphors emit light according to the width and intensity of the  laser  beam  

as  it  scans  the  plate,  resulting  in  a  relative  speed  that  is  roughly equivalent to a 

200 speed film/screen system. CR system speeds are a reflection of the amount of 

photostimulable luminescence (PSL) given off by the Imaging Plate while being 

scanned by the laser. For example, Fuji Medical Systems (Tokyo, Japan) reports that a 

1 mR exposure at 80 kVp and a source to image distance of 72 inches will result in a 

luminescence value of 200, hence the speed number (Carter and Veale, 2010). 

The process of reading the image returns most but not all of the electrons to a 

lower energy state, effectively removing the image from the plate. However, Imaging 

Plates are extremely sensitive to scatter radiation and should be erased to prevent a 

buildup of background signal. The plates should be run at least once a week under an 

erase cycle to remove background radiation and scatter. CR readers have an erasure 

mode that allows the surface of the Imaging Plate to be scanned without recoding the 

generated signal. Systems automatically erase the plate by flooding it with light to 

remove any electrons still trapped after the initial plate reading (Figure 2.22). 

Cassettes should be erased before using if the last time of erasure is unknown. Once 
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the Imaging Plate has been read, the signal is sent to the computer where it is 

preprocessed. The data then go to a monitor where the technologist can review the 

image, manipulate it if necessary (post-processing), and send it to the quality control 

(QC) station and ultimately to the PACS (Carter and Veale, 2010). 

 

Figure 2.22  Erasing the Imaging Plate (Carter and Veale, 2010) 

 

2.3 Commissioning and Routine Quality Control of CR 

 The performance tests for CR systems are used for general radiography. These 

include checks on the sensitivity of the system and image quality.  

 As the Imaging Plate has a wide dynamic range, changes to the sensitivity of 

the system or exposure levels may not be obvious to users. Thus, routine quality 

control (QC) of the system is particularly important. 

 Clinical image processing may adversely affect test images, for example, by 

introducing artifacts. For QC, it will generally be appropriate to use minimal image 
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processing, with a direct relationship between the exposure and mean pixel value. 

This relationship, known as the signal transfer property (STP), may not be linear. 

 Consistency checks are made easier by reducing the numbers of variables. If 

possible, always use the same X-ray tube and generator; choose an X-ray unit that is 

known to perform well. Check that its tube potential calibration is accurate and that its 

output is consistent over the range of exposures that are likely to be used (IPEM, 

2005). Use consistent image processing and be aware that readers that are nominally 

the same may have different response. Assess image quality on the media uses 

clinically and archive and/or print reference images from commissioning. 

 2.3.1 Image Processing 

The raw image is produced by digital imaging systems that are generally 

not of diagnostic quality due to the wide dynamic range of the detector and presence 

of non-uniformities in it. Pre-processing is undertaken on the raw image to 

compensate for detector artifacts. 

1) Image Collection for CR Systems 

Whilst there will be some degree of structural noise in CR system, it 

is not possible to apply a generic gain correction to the whole image. This is a result 

of difficulties in registering each image with a correction map. However, some 

manufacturers do apply a correction in the scan direction to account for variations in 

the light collection efficiency along this axis. However, in dark images where there is 

no signal, the correction matrix is applied to a uniform dark signal and creates bands 

in the image parallel to the scan direction corresponding to the sensitivities of the 

photomultiplier tubes. 
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2) Clinical Image Processing 

The aforementioned pre-processing is used to correct for detector 

characteristics. Further processing is applied to make the image ready for presentation 

and suitable for clinical use. This may include collimation recognition, spatial 

frequency and grey scale processing. Ideally, the viewer should not need to undertake 

any further post-processing of the image. 

3) Image Processing for Quality Control 

Image processing can affect the results of QC. Where possible, no or 

minimal post-processing should be applied. In any case, the images should be 

processed in the consistent and reproducible manner. Clinical image processing may 

adversely affect test images, for example, by introducing artifacts (Honey and 

Mackenzie, 2009). Usually, only pre-processing corrections should be applied. Spatial 

frequency processing should be avoided as this is aimed at specific examinations and 

can adversely affect test images. Quantitative image quality tests require the imaging 

systems to be linear. 

 2.3.2 Signal Transfer Property 

1) Linearizing the Image Data 

The first step in any form of objective image quality analysis is 

measurement of the STP, which relates output parameter (usually a pixel value which 

is unitless) to the air kerma at the detector input plane. A system must have a linear or 

at least linearisable response to produce valid results for quantitative analysis 

measurements whether it is for simple measurements such as uniformity or for the 

more complex measurement of modulation transfer function (MTF). An image can be 

linearized by applying the inverse of the STP function. For systems with a linear (with 
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or without an offset), logarithmic, or power response (typically square root), the STP 

values and their respective inverses would be: 
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where ,a b  and c  are constants, PV  is pixel value and K  is detector air kerma 

(µGy). 

2) Measuring STP 

The pixel value reading is taken from the pre-processed images. 

These image types are available on many digital imaging systems and are often given 

a distinct name such as ‘RAW’, ‘For Processing’ or ‘Flat Field’ images by the system. 

There should be sufficient images obtained to cover the range of 

doses relevant to the tests being performed and to produce an accurate assessment of 

the STP. For a system known to have a straight line STP, then five images will 

generally be sufficient to specify the STP. For non-linear systems, the International 

Electrotechnical Commission (IEC) recommends that the ratio between adjacent dose 

steps should be a maximum of 1.26 (IEC, 2005). With careful measurement, the 

coefficient of correlation ( 2R ) of the STP should be greater than 0.99, though, for 

QC, a lower tolerance of greater than 0.98 should be satisfactory. Values of 2R  below 

0.98 will increase the uncertainty of measurements involving linearizing the image 

data. 
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In cases where image processing is applied to the images, some of the 

quantitative tests may not produce meaningful results. Usually, on request, the 

supplier will set up an option with suitable image processing. There are several 

software packages available to measure mean pixel value, however, caution must be 

taken as even for the same image, some of they will give significantly different 

results. 

 2.3.3 Detector Dose Indicator 

1) Defining Detector Dose Indicator 

There are some fundamental differences between digital detectors and 

film/screen systems. One of the main advantages of digital imaging is the separation 

of the acquisition and display of the image. The majority of digital detectors have a 

wide dynamic range and so a wide range of exposures can therefore be displayed 

optimally. However, this can potentially obscure changes in the imaging system’s 

sensitivity or give rise to situations where patient exposure is not optimal. 

The Medicines and Healthcare products Regulatory Agency (MHRA) 

recommends that all digital systems for radiography in the UK have an indication of 

the absorbed dose at the detector (MHRA, 2006). Manufacturers have different names 

and definitions for such indices. In this report, such indices will be referred to as 

detector dose indicators (DDI). The DDI generally does not have a linear relationship 

with detector dose. The IEC has produced a standard for DDI (IEC, 2008), though this 

is not widely implemented at this time. 

DDI can be considered as the digital equivalent of optical density for 

film/ screen systems. Previously with film imaging, changes in the film density could 

indicate problems with the film processing, automatic exposure control (AEC) or X-
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ray system. Problems with the imaging system may be detected using the DDI. It is 

also a useful concept for undertaking QC, to test for changes in sensitivity to the 

imaging system and for testing the AEC. 

Each manufacturer has their own approach to specifying clinically 

acceptable DDIs. These values can be used by radiographers to check acquired 

images. However, the DDI only indicates whether the Imaging Plate has received an 

appropriate exposure for that type of radiograph; it does not by itself show that the 

correct exposure parameters are set for a particular examination. It can also be 

affected by radiographic technique and image post-processing. There may be a range 

of acceptable DDI values for different examinations. DDI should be used in 

conjunction with another parameter such as dose-area product (DAP) for monitoring 

patient dose. 

2) Routine Quality Control of DDI 

DDI is dependent on beam quality (Tucker and Rezentes, 1997) and 

different manufacturers specify different beam conditions for DDI calibration, as 

shown in Table 2.1. At acceptance, the DDI calibration should be checked using the 

manufacturer’s protocol. However, given the number of different definitions, it may 

be advisable to use a single, consistent method for routine QC on all types of digital 

systems. It may also be difficult to achieve the manufacturer’s specified set-up, for 

example, if a low level of filtration and/ or a very long focus detector distance (FDD) 

is needed (to achieve a sufficiently low detector air kerma).  

For consistency and simplicity, the standard set-up should reflect that 

used for image quality measurements. For CR, the time delay between exposure and 

readout could be reduced to 1 min as opposed to 2 to 15 min used in DDI calibration. 
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Table 2.1  Manufacturers’ conditions for checking DDI calibration 

 Agfa Fuji Kodak Konica 

Energy 

spectrum 

75 kVp/ 1.5 mm 

Cu filtration 

80 kVp/ no 

filtration 

80 kVp/ 0.5 mm 

Cu + 1 mm Al 

filtration 

80 kVp/ no 

filtration 

Processing 2.5 min delay/ S 

= 200/ Exam 

type ‘System 

Diagnostic’/ 

Processing ‘Flat 

Field’/ Linear 

sensitometry 

10 min delay/ 

Readout 

mode ‘Semi-

Auto’/ L = 1 

5 min delay/ 

‘Pattern’ mode 

2 min delay/ 

‘Test 1’/ G = 

2/F off 

Linearized 

DDI value 

DAKDDI 

(µGy) 

DAKDDI  

= 

2

402







 SAL
 

DAKDDI  

= 








S

1740
 

DAKDDI=
n10  

where  

1000

CEI
n


  

C = 1060 for GP; 

C = 760 for HR 

DAKDDI  

= 








S

1740
 

 

Consistency between physics tests and more frequent user tests may 

make comparison of results easier and is recommended in IPEM 91 (IPEM, 2005). 

Ideally, the response of the detector should be tested at clinical beam energies. This is 

difficult to achieve in practice as tissue equivalent materials are bulky. Instead, metal 

filters attached to the tube exit port can provide suitable attenuation. This removes (to 

a large extent) the effect of variations in the filtration of X-ray tubes and provides 
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reasonably scatter-free conditions. This additional filtration is generally copper or 

aluminum.  

3) Linearising DDI 

The DDI is used to measure changes in the imaging system sensitivity 

and for testing the AEC. However, the DDIs are normally not linear and need to be 

linearized before they can be used quantitatively. Alternatively, tolerances can be set 

in terms of changes in the DDI.  

A relationship between DDI compared to any suitable dose 

measurement, e.g. detector air kerma, entrance dose or dose-area product, must be 

measured. The IPEM recommended using DDI against DAK as the DDI calibration 

method. The linearized DDI value (DAKDDI) can be found using the inverse of the 

measured relationship between DAK and DDI, in a similar manner to STP. The DDI 

is related not only to DAK but is dependent on the beam quality (Tucker and 

Rezentes, 1997), therefore at beam qualities different from the DDI calibration, DAK 

will be different from DAKDDI. 

 2.3.4 Beam Quality 

The STP and DDI will show some energy dependence. Ideally, the STP 

equation should be measured at the same beam quality as the image quality test. 

Most departments already possess copper filters for testing image 

intensifiers. The spectrum recommended by IPEM 91 (IPEM, 2005) is 70 kVp with 1 

mm copper on the tube exit port. The King’s Centre for the Assessment of 

Radiological Equipment (KCARE, 2005) protocol for CR testing also uses these 

standard beam conditions. Table 2.2 compares this beam energy to RQA5. The 

American Association of Physicists in Medicine (AAPM) recommended 0.5 mm 
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copper plus 1 mm aluminum, with the copper positioned closest to the exit port of the 

X-ray tube (AAPM, 2006). Any kVp filter combination can be used if it is felt to be 

more relevant to the clinical use of the system, provided it is used consistently. 

 

Table 2.2  Comparison of standard beam spectra for testing 

Spectrum Filter kVp 1st HVL (mm Al) 

IPEM 91 1 mm Cu 70 ~7.7 

AAPM 0.5 mm Cu/ 1 mm Al 75 ~7.1 

RQA5 21 mm Al Nominally 70 7.1 

 

 2.3.5 Commissioning and Quality Control 

The QC measurements should be undertaken as detailed in the following 

sub-sections using standard conditions. The following conditions should be used 

unless specified otherwise: 

- Position the Imaging Plate a long way from the X-ray tube, ideally > 

150 cm 

- Minimize backscatter as much as possible; use a sheet of lead rubber or 

spacers behind the Imaging Plate (AAPM, 2006) 

- Use a QC cassette 

- Set a field size that will just cover the largest cassette size 

- Attach any additional filtration at the tube housing exit 

- Standardize beam conditions should be used, e.g. 70 kVp, 1 mm Cu 

and detector air kerma of 10 µGy. 
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Table 2.3  Commissioning tests for CR 

Test parameter Acceptable level 

DDI calibration 20% 

Signal transfer properties Simple relationship 

DDI repeatability CV of DAKDDI < 10% 

Matching of CR Imaging Plate DAKDDI varies by < 20% between Imaging Plate 

Differences between CR readers DAKDDI varies by < 20% between CR readers 

Dark noise Agfa: SAL < 100 

Fuji: Pixel value < 280 

Kodak: EI < 80 (GP plates) 

             EI < 380 (HR plates) 

Konica: Pixel value > 3975 

Measured uniformity STP corrected ROI values within mean ±10% 

Erasure cycle efficiency No visible ghost image 

Threshold contrast detail 

detectability 

Compare with data from other systems tested or 

published data 

Variation of noise with detector 

air kerma 

Compare with data from other systems tested 

Signal-to-noise ratio Compare with data from other systems tested 

Limiting high contrast spatial 

resolution 

≥ 0.70/2∆p for scan and sub-scan measurements 

Laser beam function Edge continuous across whole image; uniform 

‘stair’ characteristics across whole image 
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Table 2.3 list the some test parameters recommended to commission CR 

systems and documents a level of acceptability for each. 

 

2.4 Mathematical Model of Noise 

 Rudin, Osher, and Fatemi (1992) presented a mathematical de-noising model 

which is called the ROF model used the additive noise model and was based on 

calculus of variation. The ROF model is considered u as the solution to a problem of 

calculus of variation which minimized the functional 

   
 ,)~()( 222 dAuudAuuuF yx                        (2.4) 

where 2R  is the domain of the image functions and λ is a chosen parameter. By 

calculus of variations, the solution of this problem is obtained when the Euler-

Lagrange differential equation is satisfied, i.e. 
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N

u
 on   and N  is the normal vector to the boundary  . 

 

 Le, Chatrand and Asaki (2007) adapted the ROF model to reduce Poisson 

noise in the image by minimizing the functional 

   
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The Euler-Lagrange differential equation for solving this problem is 

 

 

 

 

 

 

 

 

 



43 

 

,0)~(
1 2

2222






































uu

uuu

u

yuu

u

x
yx

y

yx

x


              (2.7) 

where 0




N

u
 on   and N  is the normal vector to the boundary  . 

 

Gravel, Beaudoin, and De Guise, (2004) developed a method to study the 

statistical properties of the noise found in various medical images. The method is 

specifically designed for types of noise with uncorrelated fluctuations. Such signal 

fluctuations generally originated in the physical processes of imaging rather than in 

the tissue textures. Various types of noise (e.g., photon, electronics, and quantization) 

often contributed to degrade medical images; the overall noise is generally assumed to 

be additive with a zero-mean, constant-variance Gaussian distribution. However, 

statistical analysis suggested that the noise variance could be better modeled by a 

nonlinear function of the image intensity depending on external parameters related to 

the image acquisition protocol. They presented a method to extract the relationship 

between an imaged intensity and the noise variance and to evaluate the corresponding 

parameters. The method is applied successfully to magnetic resonance images with 

different acquisition sequences and to several types of X-ray images. 

Altas, Louis, and Belward, (1995) presented a variational approach to the 

problem of finding suitable radiometric image transformations that optimized 

desirable characteristics of the output image histogram. This variational approach can 

be interpreted as the minimization of the cumulative spacing between histogram bars 

in the least squares sense subject to some weight function. Most of the common 

histogram transformation procedures used in remote sensing applications can be 
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deduced from this general variational approach with an appropriate choice of the 

weight function. 

Zhang, Cao, Zhang, and Wang, (2014) proposed an adaptive total variation 

(TV) model by introducing the steerable filter into the TV-based diffusion process for 

image filtering. The local energy measured by the steerable filter can effectively 

characterize the object edges and ramp regions and guide the TV-based diffusion 

process so that the new model behaves like the TV model at edges and leads to linear 

diffusion in flat and ramp regions. This way, the proposed model can provide a better 

image processing tool which enables noise removal, edge-preserving, and staircase 

suppression. 

Sun, Chen, and Qiao, (2014) studied a general non-local de-noising model 

using multi kernel induced measures. Noises are inevitably introduced in digital 

image acquisition processes, and thus image de-noising was still a hot research 

problem. Different from local methods operating on local regions of images, the non 

local methods utilized non local information (even the whole image) to accomplish 

image de-noising. Due to their superior performance, the non local methods have 

recently drawn more and more attention in the image de-noising community. 

However, these methods generally did not work well in handling complicated noises 

with different levels and types. Inspired by the fact in machine learning field that 

multi kernel methods were more robust and effective in tackling complex problems 

than single-kernel ones, the authors established a general non local de-noising model 

based on multi kernel induced measures (GNLMKIM for short), which provided them 

a platform to analyze some existing and design new filters. With the help of 

GNLMKIM, the authors reinterpreted two well known non local filters in the united 

 

 

 

 

 

 

 

 



45 

 

view and extend them to their novel multi kernel counterparts. The comprehensive 

experiments indicated that these novel filters achieved encouraging de-noising results 

in both visual effect and PSNR index. 

Gaussian noise is statistical noise having a probability density function (PDF) 

equal to that of the normal distribution, which is also known as the Gaussian 

distribution. In other words, the values that the noise can take on are Gaussian 

distributed. The probability density function PDF of a Gaussian random variable z  is 

given by: 
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where z  represents gray level,   is the mean value and   is its standard deviation.  

 A special case is white Gaussian noise, in which the values at any pair of times 

are identically distributed and statistically independent. In communication channel 

testing and modeling, Gaussian noise is used as additive white noise to generate 

additive white Gaussian noise. In telecommunications and computer networking, 

communication channels can be affected by wideband Gaussian noise coming from 

many natural sources, such as the thermal vibrations of atoms in conductors. Principal 

sources of Gaussian noise in digital images arise during acquisition e.g., sensor noise 

caused by poor illumination, high temperature, transmission e.g., electronic circuit 

noise (Gonzalez and Woods, 2002). 

In probability theory and statistics, the Poisson distribution, named after 

French mathematician Siméon Denis Poisson, was a discrete probability distribution 

that expressed the probability of a given number of events occurring in a fixed 

interval of time and/or space if these events occur with a known average rate and 
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independently of the time since the last event. The Poisson distribution can also be 

used for the number of events in other specified intervals such as distance, area or 

volume (Haight, 1967). 

Individual photon detections can be treated as independent events that follow a 

random temporal distribution. As a result, photon counting is a classic Poisson 

process, and the number of photons N  measured by a given sensor element over a 

time interval t  is described by the discrete probability distribution 
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where   is the expected number of photons per unit time interval, which is 

proportional to the incident scene irradiance. This is a standard Poisson distribution 

with a rate parameter t  that corresponds to the expected incident photon count. The 

uncertainty described by this distribution is known as photon noise (Bushberg, et al, 

2002). 

 Poisson noise prevailed in situations where an image is created by the 

accumulation of photons over a detector. Typical examples are found in standard X- 

ray films, CCD cameras, and infrared photometers (Gravel, Beaudoin, and De Guise, 

2004). 

 Linear Intensity Scaling: the following analysis assumes a pixel intensity 

corresponding to the number of monochromatic photons captured in a given amount 

of time. Real X-ray beams are not monochromatic and have energy spectra showing 

strong characteristic emission lines superimposed over a Bremsstrahlung radiation 

background (Bushberg, et al, 2002). The energy deposited at a pixel location (the 

image intensity) did not correspond exactly to the number of captured monochromatic 
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photons since the X-rays follow a compound Poisson noise process. Whereas the 

number of X-rays followed a Poisson noise distribution, the X-ray energy converted 

counts follow a compound Poisson noise distribution due to the wide spectrum of the 

energy. For a Poisson process of mean X (where X represents the number of captured 

photons), the expectation value for the variance is 

XX 2                                                       (2.10) 

because a recorded image is usually linearly rescaled to accommodate a given range 

in grey scales, the relation between the intensity X reaching the detector and the 

recorded intensity I is 

  XI                                                     (2.11) 

where   and   are constants. The corresponding variance 
2

I  varies linearly with the 

intensity I  (Gravel et al, 2004). 

  II
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                                                 (2.12) 

 

Figure 2.23  The PDF of Rayleigh noise (Gonzalez and Woods, 2002) 
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Rayleigh noise, the PDF is given by 
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The mean and variance of this density are given by 

4/ba                                                   (2.14) 

and 
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Figure 2.23 is shown a plot of the Rayleigh density. Note the displacement 

from the origin and the fact that the basic shape of this density is skewed to the right. 

The Rayleigh density can be quite useful for approximating skewed histograms. 

 

Figure 2.24  The PDF of gamma noise (Gonzalez and Woods, 2002) 

 

Gamma or Erlang noise, The PDF of gamma noise is given  
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where the parameters are such that ba ,0  is a positive integer, and "!" indicates 

factorial. The mean and variance of this density are given by 

a

b
                                                         (2.17) 

and 
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Figure 2.24 is shown a plot of this density. Although this equation often is 

referred to as the gamma density, strictly speaking this is correct only when the 

denominator is the gamma function, )(b . When the denominator is as shown, the 

density is more appropriately called the Erlang density. 

 

Figure 2.25  The PDF of exponential noise (Gonzalez and Woods, 2002) 

 

Exponential noise, the PDF is given by 
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where 0a . The mean and variance of this density function are 
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a

1
                                                          (2.20) 

and 
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The PDF of exponential noise is shown in Figure 2.25. 

 

Figure 2.26  PDF of uniform noise (Gonzalez and Woods, 2002) 

 

Figure 2.26 is shown a plot of the uniform density. Uniform noise, the PDF is 

given by 
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The mean of this density function is given by 
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and its variance by 
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Impulse valued noise or salt and pepper noise is also called data drop noise 

because statistically its drop the original data values. This noise is also referred as salt 

and pepper noise. However, the image is not fully corrupted by salt and pepper noise 

instead of some pixel values are changed in the image. Although in noisy image, there 

is a possibilities of some neighbors did not change (Boyat and Joshi, 2015). 
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Figure 2.27  PDF of salt and pepper noise (Boyat and Joshi, 2015) 

 

Figure 2.27 is shown the PDF of salt and pepper noise, if mean is zero and 

variance is 0.05. The two spike is met two, one is for bright region where gray level is 

less that called region a and another one is dark region where gray level is large that 

called region b, the PDF values are minimum and maximum in region a and region b, 

respectively (Koli and Balaji, 2013). Salt and pepper noise generally corrupted the 
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digital image by malfunctioning of pixel elements in camera sensors, faulty memory 

space in storage, errors in digitization process and many more. 

 

2.5 Machine Learning for Classification 

Classification techniques can be grouped into two main types: supervised and 

unsupervised. Supervised classification relies on having example pattern or feature 

vectors which have already been assigned to a defined class. Using a sample of such 

feature vectors as our training data, a classification system was designed with the 

intention and hope that new examples of feature vectors which were not used in the 

design would subsequently be classified accurately. In supervised classification then, 

the aim is to use training examples to design a classifier which generalizes well to 

new examples. By contrast, unsupervised classification did not rely on possession of 

existing examples from a known pattern class (Solomon and Breckon, 2011). 

 A decision tree is defined as a connected, acyclic, undirected graph, with a 

root node, zero or more internal nodes (all nodes except the root and the leaves), and 

one or more leaf nodes (terminal nodes with no children), which would be termed as 

an ordered tree if the children of each node are ordered (normally from left to right). 

A tree is termed as univariate, if it splits the node using a single attribute or a 

multivariate, if it uses several attributes. A binary tree is an ordered tree such that 

each child of a node is distinguished either as a left child or a right child and no node 

has more than one left child or more than one right child. For a binary decision tree, 

the root node and all internal nodes have two child nodes. All non-terminal nodes 

contain splits (Cormen, Leiserson, Rivest, and Stein, 2009). 
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 The basic algorithm for decision tree is a greedy algorithm that constructs 

decision tree in a top-down recursive divide and conquer manner. Assuming that a 

training set consisting of feature vectors and their corresponding class labels are 

available, the decision tree is then constructed by partitioning the feature space in 

such a way as to recursively generate the tree. This procedure involves: create a root 

node; for each known feature value of the sample, partition the samples grow a branch 

node from the root node. And determining which nodes are terminal nodes (it is leaf 

node), assign class labels to terminal nodes. Obviously, the most important step is 

partition the samples to grow the branch node. One of the popular algorithms for 

design the decision tree is C4.5 (Quinlan, 1993). The information gain is used as the 

criterion for splitting the nodes. The feature attribute of the sample with the high 

information gain is chosen as the test attribute for the current node. This feature 

attribute minimizes the Information needed to classify the samples in the resulting 

partitions and reflects the least randomness in these partitions. It guarantees that a 

simple tree is found. 

 An Artificial Neural Network (ANN) is an information processing paradigm 

that is inspired by the way biological nervous systems, such as the brain, process 

information. The key element of this paradigm is the novel structure of the 

information processing system. It is composed of a large number of highly 

interconnected processing elements (neurones) working in unison to solve specific 

problems. ANNs, like people, learn by example. An ANN is configured for a specific 

application, such as pattern recognition or data classification, through a learning 

process. Learning in biological systems involves adjustments to the synaptic 

connections that exist between the neurones. 

 

 

 

 

 

 

 

 



54 

 

 Wang, Fan, Bhatt, and Davatzikos, (2010) presented a general methodology 

for high-dimensional pattern regression on medical images via machine learning 

techniques. Compared with pattern classification studies, pattern regression considers 

the problem of estimating continuous rather than categorical variables, and can be 

more challenging. It is also clinically important, since it can be used to estimate 

disease stage and predict clinical progression from images. In this work, adaptive 

regional feature extraction approach is used along with other common feature 

extraction methods, and feature selection technique is adopted to produce a small 

number of discriminative features for optimal regression performance. Then the 

Relevance Vector Machine (RVM) is used to build regression models based on 

selected features. To get stable regression models from limited training samples, a 

bagging framework is adopted to build ensemble basis regressors derived from 

multiple bootstrap training samples, and thus to alleviate the effects of outliers as well 

as facilitate the optimal model parameter selection. Finally, this regression scheme is 

tested on simulated data and real data via cross-validation. Experimental results 

demonstrate that this regression scheme achieves higher estimation accuracy and 

better generalizing ability than Support Vector Regression (SVR). 

 

2.6 Artificial Neural Network 

Artificial neural networks (Floreano and Mattiussi, 2008) are computational 

models implemented in software or custom-made hardware devices that attempt to 

capture the behavioral and adaptive features of biological nervous systems. An 

artificial neural network is composed of several interconnected units, or neurons 

(Figure 2.28). Some of these units receive information directly from the environment 
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(input units), some have a direct effect on the environment (output units), and others 

communicate only with units within the network (internal or hidden units). 

 

Figure 2.28  Generic neural network architecture (Floreano and Mattiussi, 2008) 

 

Each unit implements a simple operation that consists in becoming active if 

the total incoming signal is larger than its threshold. An active unit emits a signal that 

reaches all units to which it is connected. The connection, or synaptic point, operates 

like a filter that multiplies the signal by a signed weight, also known as synaptic 

strength. 

Whereas biological neurons are either inhibitory or excitatory and have the 

same effect on all neurons which they send signals to, artificial neurons can emit both 

negative and positive signals and thus the same neuron can establish both negative 

and positive synaptic connections with other neurons. There are two reasons for this 

difference. The first is that artificial neurons are mathematical objects that are not 

constrained by the physiological properties of biological neurons in order to achieve 
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the same functionality. The second is that an artificial neuron often models the 

average response of a population of biological neurons, which may include both 

excitatory and inhibitory neurons. 

The response of an artificial neural network to an input from the environment 

depends on its architecture and pattern of connection strengths. The knowledge of the 

network is distributed across its connections. The behavior of the network is given by 

the pattern of activations of the neurons, which in some models can self-sustain and 

change over time even in the absence of input from the environment. 

Neural networks learn by modification of synaptic strengths when presented 

with stimulation from the environment. Usually, learning requires several repeated 

presentations of the set of input patterns. There are several types of learning rules, 

each displaying specific functionalities and applicable to specific architectures. 

Typically, all synaptic connections within the artificial neural network change 

according to the same learning rule. 

In addition to the ability of learning by exposition to examples (learning by 

demonstration), neural networks are often appreciated in engineering applications also 

for the following features. 

(1) Robustness, neural networks are robust to various types of signal 

degradation, such as input noise or malfunctioning of connection and unit operation in 

hardware implementations. As the noise level increases, neural networks display 

graceful degradation by increasing the error rate more or less uniformly across the 

entire input domain or by making errors for specific input patterns while maintaining 

a correct response for all other patterns. Furthermore, neural networks can be 

incrementally trained to compensate for signal noise or damage to their components. 
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(2) Flexibility, neural networks are not domain specific, that is to say that a 

neural model can be applied to several types of problems (however, that does not 

mean that any type of neural network can be applied to any type of problem). Neural 

networks can be used to tackle problems for which there is not an analytical solution, 

but this presents the risk of giving up the effort of understanding the problem to find 

the comfort of a neural solution that does not increase our knowledge. 

(3) Generalization, neural networks trained on a limited number of examples 

can provide the correct response to input patterns that share some similarity with 

training patterns, but were never seen before. This ability comes from the fact that 

neural networks store a larger number of input-output associations than the number of 

available synaptic strengths by extracting invariant features of the patterns. The ability 

of the network to generalize the response to a new pattern depends on the extent to 

which the new pattern can be described by the learned invariant features. The 

extraction of invariant features is also a common property of biological neural 

systems that allow them to operate consistently in continuously changing 

environments. From an engineering perspective, the ability to generalize to novel 

input patterns is very useful for those applications where it is impossible to obtain an 

exhaustive list of all situations that the system may be exposed to. 

(4) Content-based retrieval, neural networks retrieve memories by matching 

contents and can do so even when the input patterns are incomplete or corrupted by 

noise. In some neural models, such as those derived from adaptive resonance theory 

(Grossberg, 1987), retrieval resembles the way in which humans operate: more 

familiar patterns are recognized faster than items that are different or seen less 

frequently. Instead, in conventional computer systems, data are retrieved using the 
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address of the electronic memory cells. If that number is corrupted or lost, the entire 

memory is lost. 

 Neural model, an artificial neuron is characterized by a set of connection 

strengths, a threshold, and an activation function (Figure 2.29). If we ignore 

transmission delays, the effect of a set of input signals x


 on the postsynaptic neuron 

is equal to the product xw

 , where w


 are the synaptic weights and can take any real 

value (both negative and positive). The net input, or activation ia , of a neuron i  is the 

sum of all weighted inputs from pre-synaptic neurons j : 
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Figure 2.29  Schematic representation of a biological (pyramidal cell) and artificial  

neuron (Floreano and Mattiussi, 2008) 
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(a)                                       (b)                                        (c) 

Figure 2.30  Activation functions, (a) linear, (b), threshold, and (c), sigmoid function  

 (Floreano and Mattiussi, 2008) 

 

The output signal iy  is a function of the net input and of the neuron threshold 

i , which is usually subtracted from the sum of weighted inputs: 
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The activation function )(  describes the response profile of the neuron and 

can take several different forms, (Figure 2.30) (a) linear, (b) step (threshold), and (c) 

sigmoid function. In the original formulation by McCulloch and Pitts (1943) neurons 

have a binary output (0 or 1) and the threshold is used as a hard delimiter to tell 

whether a neuron emits a signal. 





 

  

otherwise:0

:1
)( 1

N

j ijij
i

xw
a


                                             (2.28) 

A variation of this function is the bipolar activation where 
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Here the neuron can be in only one of two states and transmit only one bit of 

information. More information can be transmitted if the neuron could be in several 

states, as is the case for continuous activation functions. The output of a continuous 

activation function is a real number. In biological terms, this number could be 

interpreted either as the firing rate of the neuron over a short time window or as the 

sum of all excitatory and inhibitory outputs of a population of neurons at a given 

instant. The simplest continuous function is the linear model 

ii kaa  )(                                                   (2.30) 

where k  is a constant. In undesirable situations where the output of the neuron could 

grow indefinitely for example, if it has a positive feedback connection, this activation 

function can be constrained to operate within a given interval, such as [0, 1] or  

[−1, 1].  

There are also several continuous and nonlinear activation functions that are 

used in complex neural architectures. One of the most common nonlinear functions is 

the sigmoid, or logistic, function 
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where k  is a scaling factor that determines the inclination of the slope as shown in 

Figure 2.30 (c) (for 0k  the function approximates a linear function; for k  

the function approximates a step function). The sigmoid function tends asymptotically 

to 0 and 1. A similar function is )tanh(kA , which tends asymptotically to -1 and 1. 
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2.7 Fuzzy Logic 

Fuzzy logic idea is similar to the human being’s feeling and inference process. 

Unlike classical control strategy, which is a point to point control, fuzzy logic 

control is a range to point or range to range control. The output of a fuzzy 

controller is derived from fuzzifications of both inputs and outputs using the 

associated membership functions. A crisp input will be converted to the different 

members of the associated membership functions based on its value. From this 

point of view, the output of a fuzzy logic controller is based on its memberships of 

the different membership functions, which can be considered as a range of inputs. 

The idea of fuzzy logic was invented by Professor L. A. Zadeh of the 

University of California at Berkeley in 1965 (Zadeh, 1965). This invention was not 

well recognized until Dr. E. H. Mamdani, who is a professor at London University, 

applied the fuzzy logic in a practical application to control an automatic steam 

engine in 1974 (Mamdani, 1999), which is almost ten years after the fuzzy theory was 

invented. Then, in 1976, Blue Circle Cement and SIRA in Denmark developed an 

industrial application to control cement kilns (Holmblad and Ostergaard, 1982). That 

system began to operation in 1982. More and more fuzzy implementations have been 

reported since the 1980s, including those applications in industrial manufacturing, 

automatic control, automobile production, banks, hospitals, libraries and academic 

education. Fuzzy logic techniques have been widely applied in all aspects in today’s 

society. 

To implement fuzzy logic technique to a real application requires the 

following three steps: 
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(1) Fuzzification, convert classical data or crisp data into fuzzy data or 

Membership Functions (MFs). 

(2) Fuzzy Inference Process, combine membership functions with the 

control rules to derive the fuzzy output. 

(3) Defuzzification, use different methods to calculate each associated output 

and put them into a table: the lookup table. Pick up the output from the lookup table 

based on the current input during an application. 

Fuzzy set is only an extension of the concept of a classical or crisp set. The 

fuzzy set is actually a fundamentally broader set compared with the classical or crisp 

set. The classical set only considers a limited number of degrees of membership such 

as ‘0’ or ‘1’, or a range of data with limited degrees of membership. For instance, if a 

temperature is defined as a crisp high, its range must be between 27° C and higher and 

it has nothing to do with 21° C or even 16° C. But the fuzzy set will take care of a 

much broader range for this high temperature. In other words, the fuzzy set will 

consider a much larger temperature range such as from -18° C to higher degrees as a 

high temperature. The exact degree to which the -18° C can contribute to that high 

temperature depends on the membership function. This means that the fuzzy set uses a 

universe of discourse as its base and it considers an infinite number of degrees of 

membership in a set. In this way, the classical or crisp set can be considered as a 

subset of the fuzzy set. 

Linguistic variable is some fuzzy set joining values sharing some common 

property, usually familiar to human beings. For example, if we consider outdoor 

temperatures, then warm could be a linguistic variable. A set of linguistic variables is 

used to represent the original domain set in terms of the variables. In the case of 
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outdoor temperatures, this set could be (cold, cool, just right, warm, hot): cold = {0, 0, 

8}, cool = {0, 12, 20}, just right = {16, 20, 24}, warm = {20, 28, 36}, and hot = {32, 

36, 40}. 

 

Figure 2.31  Membership function 

 

Figure 2.31, fuzzification and membership functions: the fuzzy set is a 

powerful tool and allows us to represent objects or members in a vague or ambiguous 

way. The fuzzy set also provides a way that is similar to a human being’s concepts 

and thought process. However, just the fuzzy set itself cannot lead to any useful and 

practical products until the fuzzy inference process is applied. To implement fuzzy 

inference to a real product or to solve an actual problem, as we discussed before, three 

consecutive steps are needed, which are fuzzification, fuzzy inference, and 

defuzzification. 

Fuzzification is the first step to apply a fuzzy inference system. Most variables 

existing in the real world are crisp or classical variables. One needs to convert those 

crisp variables (both input and output) to fuzzy variables, and then apply fuzzy 

inference to process those data to obtain the desired output. Finally, in most cases, 
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those fuzzy outputs need to be converted back to crisp variables to complete the 

desired control objectives. 

Generally, fuzzification involves two processes: derive the membership 

functions for input and output variables and represent them with linguistic variables. 

This process is equivalent to converting or mapping classical set to fuzzy set to 

varying degrees. 

In practice, membership functions can have multiple different types, such as 

the triangular waveform, trapezoidal waveform, Gaussian waveform, bell-shaped 

waveform, sigmoid waveform and S-curve waveform. The exact type depends on the 

actual applications. For those systems that need significant dynamic variation in a 

short period of time, a triangular or trapezoidal waveform should be utilized. For 

those system that need very high control accuracy, a Gaussian or S-curve waveform 

should be selected. 

The membership function of these temperatures is shown in Figure 2.32. To 

make thing simple, a triangular waveform is utilized for this type of membership 

function. A crisp cool temperature can be considered as a just right temperature to 

some degree in this fuzzy membership function representation. For instance, about 

17° C will belong to cool and just right to about 0.4 degree. Some terminologies used 

for the membership function are also shown in Figure 2.32. 
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Figure 2.32  Input and output membership functions 

 

Fuzzy control rule can be considered as the knowledge of an expert in any 

related field of application. The fuzzy rule is represented by a sequence of the form 

IF-THEN, leading to algorithms describing what action or output should be taken in 

terms of the currently observed information, which includes both input and feedback 

if a closed-loop control system is applied. The law to design or build a set of fuzzy 

rules is based on a human being’s knowledge or experience, which is dependent on 

each different actual application. 

A fuzzy IF-THEN rule associates a condition described using linguistic 

variables and fuzzy sets to an output or a conclusion. The IF part is mainly used to 

capture knowledge by using the elastic conditions, and the THEN part can be utilized 
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to give the conclusion or output in linguistic variable form. This IF-THEN rule is 

widely used by the fuzzy inference system to compute the degree to which the input 

data matches the condition of a rule. 

Fuzzy mapping rules provide a functional mapping between the input and the 

output using linguistic variables. The foundation of a fuzzy mapping rule is a fuzzy 

graph, which describes the relationship between the fuzzy input and the fuzzy output. 

Sometimes, in real applications, it is very hard to derive a certain relationship between 

the input and the output, or the relationship between those inputs and outputs are very 

complicated even when that relationship is developed. Fuzzy mapping rules are a 

good solution for those situations. Fuzzy mapping rules work in a similar way to 

human intuition or insight, and each fuzzy mapping rule only approximates a limited 

number of elements of the function, so the entire function should be approximated by 

a set of fuzzy mapping rules. Still using our air conditioner system as an example, a 

fuzzy mapping rule can be derived as “IF the temperature is cool, THEN the heater 

motor should be rotated fast”. 

For other input temperatures, different rules should be developed. For most 

actual applications, the input variables are commonly more than one dimension. For 

example, in our air conditioner system, the inputs include both current temperature 

and the change rate of the temperature. The fuzzy control rules should also be 

extended to allow multiple inputs to be considered to derive the output. 

Defuzzification, the conclusion or control output derived from the 

combination of input, output membership functions and fuzzy rules is still a vague or 

fuzzy element, and this process in called fuzzy inference. To make that conclusion or 

fuzzy output available to real applications, a defuzzification process is needed. The 
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defuzzification process is meant to convert the fuzzy output back to the crisp or 

classical output to the control objective.  

 

2.8 Algorithm of Noise Reduction 

Spatial domain filtering, this is the traditional way to remove the noise from 

the digital images to employ the spatial filters. Spatial domain filtering is further 

classified into linear filters and non-linear filters. 

2.8.1 Linear Filters 

A mean or average filter is the optimal linear for Gaussian noise in the 

sense of mean square error. Linear filters tend to blur sharp edges, destroy lines and 

other fine details of image. It includes mean filter and Wiener filter. 

Mean filter acts on an image by smoothing it. It reduces the intensity 

variations between the adjacent pixels. Mean filter is nothing just a simple sliding 

window spatial filter that replaces the centre value of the window with the average 

values of its all neighboring pixels values including itself. It is implemented with the 

convolution mask, which provides the results that is weighted sum of vales of a pixel 

and its neighbors. It is also called linear filter. The mask or kernel is square. Often 

3×3 mask is used. If the coefficient of the mask sum is up to one, then the average 

brightness of the image is not changed. If the coefficient sum to zero, average 

brightness is lost, and it returns a dark image. 

Weiner filter, Weiner filtering method requires the information about the 

spectra of noise and original signal and it works well only if the underlying signal is 

smooth. Weiner method implements the spatial smoothing and its model complexity 

control corresponds to the choosing the window size. ),( vuH is the degradation 
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function and ),( vuH  is its conjugate complex. ),( vuG  is the degraded image. 

Functions ),( vuSf  and ),( vuSn  are power spectra of original image and the noise. 

Wiener filter assumes noise and power spectra of object a priori. 

),()]],(/),([),(/),([),( 2 vuGvuSfvuSnvuHvuHvuF            (2.32) 

The Gaussian smoothing operator is a 2-D convolution operator that is 

used to blur images and remove detail and noise. In this sense it is similar to the mean 

filter, but it uses a different kernel that represents the shape of a Gaussian (bell-

shaped) hump. 

2.8.2 Non-linear Filters 

 With the non-linear filter, noise is removed without any attempts to 

explicitly identify it. Spatial filters employ a low pass filtering on the group of pixels 

with the assumption that noise occupies the higher region of frequency spectrum. 

Generally spatial filters remove the noise to reasonable extent but at the cost of 

blurring the images which in turn makes the edges in the picture invisible. 

Median filter follows the moving window principle and uses 3×3, 5×5 or 

7×7 window. The median of window is calculated and the center pixel value of the 

window is replaced with that value. 

 

2.9 Computer Programming 

 2.9.1 ImageJ 

Prior to the release of ImageJ in 1997, a similar freeware image analysis 

program known as National Institutes of Health (Collins, 2007; Schneider, Rasband 

and Eliceiri, 2012) (NIH) image had been developed in Object Pascal for Macintosh 
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computers running pre-OS X operating systems. Further development of this code 

continues in the form of Image SXM, a variant tailored for physical research of 

scanning microscope images. A Windows version – ported by Scion Corporation 

(now defunct), so-called Scion Image for Windows – was also developed. Both 

versions are still available but – in contrast to NIH Image – closed-source. 

ImageJ is a public domain, Java-based image processing program 

developed at the National Institutes of Health. ImageJ was designed with an open 

architecture that provides extensibility via Java plugins and recordable macros (Girish 

and Vijayalakshmi, 2004). Custom acquisition, analysis and processing plugins can be 

developed using ImageJ's built-in editor and a Java compiler. User-written plugins 

make it possible to solve many image processing and analysis problems, from three-

dimensional live-cell imaging (Eliceiri and Rueden, 2005) to radiological image 

processing (Barboriak et al., 2005), multiple imaging system data comparisons 

(Rajwa et al., 2004) to automated hematology systems (Gering and Atkinson, 2004). 

ImageJ's plugin architecture and built-in development environment has made it a 

popular platform for teaching image processing. 

ImageJ can be run as an online applet, a downloadable application, or on 

any computer with a Java 5 or later virtual machine. Downloadable distributions are 

available for Microsoft Windows, Mac OS, OS X, Linux, and the Sharp Zaurus PDA. 

The source code for ImageJ is freely available (Rueden and Eliceiri, 2007). 

ImageJ can display, edit, analyze, process, save, and print 8-bit color and 

grayscale, 16-bit integer, and 32-bit floating point images. It can read many image file 

formats, including TIFF, PNG, GIF, JPEG, BMP, DICOM, and FITS, as well as raw 

formats. ImageJ supports image stacks, a series of images that share a single window, 
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and it is multithreaded, so time-consuming operations can be performed in parallel on 

multi-CPU hardware. ImageJ can calculate area and pixel value statistics of user-

defined selections and intensity-thresholded objects. It can measure distances and 

angles. It can create density histograms and line profile plots. It supports standard 

image processing functions such as logical and arithmetical operations between 

images, contrast manipulation, convolution, Fourier analysis, sharpening, smoothing, 

edge detection, and median filtering. It does geometric transformations such as 

scaling, rotation, and flips. The program supports any number of images 

simultaneously, limited only by available memory. 

 2.9.2 MATLAB 

Cleve Moler, the chairman of the computer science department at the 

University of New Mexico, started developing MATLAB (Matrix Laboratory) in the 

late 1970s (Moler, 2004). He designed it to give his students access to LINPACK and 

EISPACK without them having to learn Fortran. It soon spread to other universities 

and found a strong audience within the applied mathematics community. Jack Little, 

an engineer, was exposed to it during a visit Moler made to Stanford University in 

1983. Recognizing its commercial potential, he joined with Moler and Steve Bangert. 

They rewrote MATLAB in C and founded MathWorks in 1984 to continue its 

development. These rewritten libraries were known as JACKPAC. In 2000, 

MATLAB was rewritten to use a newer set of libraries for matrix manipulation, 

LAPACK. 

MATLAB was first adopted by researchers and practitioners in control 

engineering, Little's specialty, but quickly spread to many other domains. It is now 
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also used in education, in particular the teaching of linear algebra, numerical analysis, 

and is popular amongst scientists involved in image processing. 

MATLAB is a multi-paradigm numerical computing environment and 

fourth-generation programming language. A proprietary programming language 

developed by MathWorks, MATLAB allows matrix manipulations, plotting of 

functions and data, implementation of algorithms, creation of user interfaces, and 

interfacing with programs written in other languages, including C, C++, Java, Fortran 

and Python. 

Although MATLAB is intended primarily for numerical computing, an 

optional toolbox uses the MuPAD symbolic engine, allowing access to symbolic 

computing abilities. An additional package, Simulink, adds graphical multi-domain 

simulation and model-based design for dynamic and embedded systems. In 2004, 

MATLAB had around one million users across industry and academia. MATLAB 

users come from various backgrounds of engineering, science, and economics. 

 2.9.3 Weka 

Waikato Environment for Knowledge Analysis (Weka) is a popular suite 

of machine learning software written in Java, developed at the University of Waikato, 

New Zealand. It is free software licensed under the GNU General Public License. 

Weka is a workbench that contains a collection of visualization tools and 

algorithms for data analysis and predictive modeling, together with graphical user 

interfaces for easy access to these functions. The original non-Java version of Weka 

was a Tcl/Tk front-end to (mostly third-party) modeling algorithms implemented in 

other programming languages, plus data preprocessing utilities in C, and a Make file-

based system for running machine learning experiments. This original version was 
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primarily designed as a tool for analyzing data from agricultural domains, but the 

more recent fully Java-based version (Weka 3), for which development started in 

1997, is now used in many different application areas, in particular for educational 

purposes and research. Advantages of Weka include: 

(1) Free availability under the GNU General Public License. 

(2) Portability, since it is fully implemented in the Java programming 

language and thus runs on almost any modern computing platform. 

(3) A comprehensive collection of data preprocessing and modeling 

techniques. 

(4) Ease of use due to its graphical user interfaces. 

Weka supports several standard data mining tasks, more specifically, 

data preprocessing, clustering, classification, regression, visualization, and feature 

selection. All of Weka's techniques are predicated on the assumption that the data is 

available as one flat file or relation, where each data point is described by a fixed 

number of attributes (normally, numeric or nominal attributes, but some other 

attribute types are also supported). Weka provides access to SQL databases using Java 

Database Connectivity and can process the result returned by a database query. It is 

not capable of multi-relational data mining, but there is separate software for 

converting a collection of linked database tables into a single table that is suitable for 

processing using Weka. Another important area that is currently not covered by the 

algorithms included in the Weka distribution is sequence modeling. 
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2.10 Related Work 

Rampado, Isoardi and Ropolo (2006) studied quantitative assessment of 

computed radiography quality control parameters. Quality controls for testing the 

performance of Computed Radiography systems have been recommended by 

manufacturers and medical physicists’ organizations. The purpose of this work was to 

develop a set of image processing tools for quantitative assessment of Computed 

Radiography quality control parameters. Automatic image analysis consisted in 

detecting phantom details, defining regions of interest and acquiring measurements. 

The tested performance characteristics included dark noise, uniformity, exposure 

calibration, linearity, low-contrast and spatial resolution, spatial accuracy, laser beam 

function and erasure thoroughness. CR devices from two major manufacturers, Kodak 

and Philips (Fuji) were evaluated. They investigated several approaches to quantify 

the detector response uniformity. They developed methods to characterize the spatial 

accuracy and resolution properties across the entire image area, based on the Fourier 

analysis of the image of a fine wire mesh. The implemented methods were sensitive to 

local blurring and allowed to detect a local distortion of 4% or greater in any part of 

an Imaging Plate. The obtained results showed that the developed image processing 

tools allow them to implement a quality control program for CR with short processing 

time and with absence of subjectivity in the evaluation of the parameters. 

Samei et al. (2001) studied performance evaluation of computed radiography 

systems. Recommended methods to test the performance of computed radiography 

digital radiographic systems have been recently developed by the AAPM Task Group 

No. 10. Included are tests for dark noise, uniformity, exposure response, laser beam 

function, spatial resolution, low-contrast resolution, spatial accuracy, erasure 
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thoroughness, and throughput. The recommendations may be used for acceptance 

testing of new CR devices as well as routine performance evaluation checks of 

devices in clinical use. The purpose of this short communication is to provide a 

tabular summary of the tests recommended by the AAPM Task Group, delineate the 

technical aspects of the tests, suggest quantitative measures of the performance 

results, and recommend uniform quantitative criteria for the satisfactory performance 

of CR devices. The applicability of the acceptance criteria is verified by tests 

performed on CR systems in clinical use at five different institutions. This paper 

further clarifies the recommendations with respect to the beam filtration to be used for 

exposure calibration of the system, and the calibration of automatic exposure control 

systems. 

Santhanam and Radhika (2005) studied probabilistic neural network a better 

solution for noise classification. Classification is one of the major research areas of 

neural networks. Classification problems play a major role in the field of business, 

science, industry and medicine. Neural networks have emerged as an important tool 

for classification. The recent research activities which use neural networks for 

classification have established that neural networks are a promising alternative to 

various conventional classification methods. The advantage of neural networks is that 

it makes use of self-adaptive methods to adjust to the data without any explicit 

specification. The use of a Probabilistic Neural Network (PNN) to classify the image 

noise, based on the statistical features is discussed. There are different types of image 

noise, include salt and pepper noise, Gaussian white noise, non-Gaussian white noise, 

speckle noise, quantization noise and shot noise. The characteristics of the noise are to 

be studied to analyze the type of the noise in an image. Noise identification is vital for 
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determining the de-noising procedure for an image, which leads to image 

enhancement for further processing. Noise classification in digital image processing is 

a must so as to identify the suitable filters for smoothing the image for further 

processing. The use of Probabilistic Neural Network to classify the noise present in an 

image after extracting the statistical features like skewness and kurtosis is explored in 

this article. When the noises are classified accurately, identification of the filter 

becomes an easy task. The use of PNN for classification of noise is explored in this 

article. Their databases have been used to test the performance of the network and the 

experiments have been carried out in MATLAB. The results show that PNN proves to 

be a better technique in classifying the noises than the MLP and BPN models. The 

future work will concentrate on identifying an appropriate filter for removal of each 

type of noise by using neural network which will further enhance the image for 

processing. 

Tiwari, Singh and Shukla (2011) studied statistical moments based noise 

classification using feed forward back propagation neural network, a neural network 

classification based noise identification method is presented by isolating some 

representative noise samples, and extracting their statistical features for noise type 

identification. The isolation of representative noise samples is achieved using 

prevalent used image filters whereas noise identification is performed using statistical 

moments features based classification system. The steps of the algorithm, these are 

seven major steps: image acquisition, preprocessing of images, noise inclusion, 

filtering, noise pattern extraction, feature extraction and classification. In the initial 

steps they introduced noises namely uniform, Gaussian, impulse and speckle to the 

preprocessed images. Then they filtered the noisy images using two commonly used 
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filters, average filter and median filter. To get the noise patterns, filtered images have 

been subtracted from the noisy images in case of additive noises and divided in case 

of multiplicative noise. Once the noise patterns are acquired, the method demands the 

extraction of features. So, the statistical features as the moments up to fifth order have 

been calculated in the next step to prepare the training and testing database. Finally, 

the training and testing performed quite well with this feature database using feed 

forward back propagation neural network. Their results of the experiments using this 

method show better identification of noise than those suggested in the recent works. 

In general the purpose of detection and classification of the noise has been achieved 

by using feed forward back propagation neural network. A maximum accuracy of 98 

percent was found for speckle noise followed by accuracy of 96 percent, 95 percent 

and 90 percent for those of uniform, Gaussian and impulse noises respectively. Their 

work shows that it can help in choosing the appropriate filter for image de-noising. 

Masood, Hussain and Jaffar (2012) studied intelligent noise detection and 

filtering using neuro-fuzzy system, in their research, they have proposed a neuro-

fuzzy based blind image restoration technique to remove impulse noise which 

improves an existing novel fuzzy filter (NFF) technique. The research introduces a 

new noise detection technique in the existing NFF technique so that edge and texture 

information can be preserved by not considering the non-noisy pixels for noise 

removal. Proposed method consists of noise detection, histogram estimation and noise 

filtering processes. Noise detection process, they have used feed forward neural 

network to detect salt & peppers noise in gray-scale images. Proposed method 

consists of two steps, neural network training and noise detection. Noise detection is 

performed using trained neural network. Neural network lies under supervised 
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learning paradigm. First of all they train a neural network using training data. 

Generation of training data is given below in detail. After training they get a trained 

net, which is capable of distinguishing noisy pixels from non-noisy pixels. They have 

applied their technique on a large dataset of images. They have used images having 

large fine details as well as images having lesser fine details. As the number of hidden 

layers increase, the time taken by neural network to train and to generate output also 

increases. Therefore, in the proposed technique minimum number of hidden layers 

and neurons, with which neural network gives best performance are used. 

Charhar and Thakare (2015) studied performance comparison of various filters 

for removing Gaussian and Poisson noises, the area of digital image processing 

related to processing of digital images by using digital computer. De-noising of image 

is an essential part of image reconstruction process. Noise gets introduced during 

acquisition, transmission, reception and storage and retrieval processes. Noise may be 

classified as substitutive noise (impulsive noise like salt and pepper noise, impulsive 

noise etc), additive noise like Gaussian noise and multiplicative noise like speckle 

noise. The important property of image de-noising model is that it should completely 

remove noise with preserving edges. Basically the image quality is measured by the 

peak signal to noise ratio and root mean square error. However, in their research first 

image is taken and some noise is added to image to make it as noisy image and then 

noisy image is decomposed by filters. It becomes very important to de-noise the 

image before applying to different applications. The principle approach of image de-

noising is filtering. Filters used to remove noise are averaging filters, median filters, 

and wiener filter. In their study, they have implemented the above mentioned filters in 

MATLAB to recover the image degraded by Gaussian noise and Poisson noise. 

 

 

 

 

 

 

 

 



78 

 

Wiener filter performs better in removing Gaussian noise as well as Poisson noise 

than other filters. Median filter also provide better results for Gaussian noise and 

Poisson noise. In this paper PSNR and RMSE has been used as comparison 

parameters. Results have been simulated on MATLAB 2013. 

Lal, Chandra and Upadhyay (2009) studied noise removal algorithm for 

images corrupted by additive Gaussian noise, their research presents noise removal 

algorithm for gray scale images corrupted by additive Gaussian noise. A robust open 

close sequence filter based on mathematical morphology for high probability additive 

Gaussian noise removal is discussed. Mathematical morphology is nonlinear image 

processing methodology that is based on the application of lattice theory to spatial 

structures. After that, mathematical morphology has become popular in the image 

processing field, due to its rigorous mathematical description and its proven 

applicability in a number of imaging problems, including noise elimination, feature 

extraction, and image compression. Two fundamental mathematical morphological 

operations are dilation and erosion. In fact, many of the morphological algorithms are 

based on these two primitive operations. In gray scale images, they develop 

algorithms for boundary extraction via a morphological gradient operation, and for 

region partitioning based on texture content. Mathematical morphological operations 

are also useful in smoothing and sharpening, which often are useful as per or post 

processing steps. Simulation and experimental results demonstrate that the robust 

open close sequence filter outperforms a number of other existing algorithms and is 

particularly effective for highly corrupted images. Their research highlighted the 

noise removal algorithm for gray scale images corrupted by additive Gaussian noise. 

In their study the performance of robust open-close sequence filter have been 
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evaluated and compared with the performance of other nonlinear filters and wavelet 

transforms. The morphological residue detector powerfully determinates the additive 

Gaussian noise with a low percentage error. The simulation results indicate that the 

robust open close filter performs better than other nonlinear filtering techniques and 

wavelet transforms for noise removal from gray scale images. The simulation results 

also indicate that the robust open close filter also provides better PSNR as compared 

to other non linear techniques used. 

 Palakkal and Prabhu (2012) studied Poisson image de-noising using fast 

discrete curvelet transform and wave atom, In their research, they propose a strategy 

to combine fast discrete curvelet transform (FDCT) and wave atom (WA) with multi-

scale variance stabilizing transform (MS-VST). Their objective is to develop 

algorithms for Poisson noise removal from images. Applying variance stabilizing 

transform (VST) on a Poisson noisy image results in a nearly Gaussian is distributed 

image. The noise removal can be subsequently done assuming Gaussian noise model. 

MS-VST has been recently proposed to improve the de-noising performance of 

Anscombe’s VST at low intensity regions of the image to facilitate the use of multi-

scale multi-directional transforms like the curvelet transform for Poisson image de-

noising. Since the MS-VST has been implemented in the space domain, it is not clear 

how it can be extended to FDCT and WA, which are incidentally implemented in the 

frequency domain. They propose a simple strategy to achieve this without increasing 

the computational complexity. They also extend our approach to handle the recently 

developed mirror extended versions of FDCT and WA. They have carried out 

simulations to validate the performance of the proposed approach. Their results 
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demonstrate that the MS-VST combined with FDCT and WA are promising 

candidates for Poisson de-noising. 

Summary of all related work is presented in Table 2.4. The table merely 

provides significant issues about this study above. The issues include commissioning 

and routine quality control of CR, classification the noise in CR system, algorithm 

for de-noising, respectively. 

 

Table 2.4  Summary of related work comparison associated with the development of  

 noise reduction model for computed radiography system 

Topics 

Related Work 

1 2 3 4 5 6 7 8 * 

Commissioning and routine quality 

control of CR 

         

Dosimetry          

Calibration of CR unit DDI          

STP and DDI with standard factors          

DDI Repeatability          

Matching of CR Imaging Plates          

Differences between CR readers          

Dark noise          

Measured uniformity          

Erasure cycle efficiency          

Variation of noise with detector air kerma          
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Table 2.4  Summary of related work comparison associated with the development of  

 noise reduction model for computed radiography system (Continued) 

Topics 

Related Work 

1 2 3 4 5 6 7 8 * 

Commissioning and routine quality 

control of CR 

         

Signal to noise ratio          

Limiting high contrast spatial resolution          

Laser beam function          

Threshold contrast detail detectability          

Blurring          

Scaling errors          

Moire patterns and anti-scatter grids          

Classification the noise in CR system          

Gaussian noise          

Rayleigh noise          

Gamma noise          

Exponential noise          

Uniform noise          

Impulse noise          

Poisson noise          

Speckle noise          

Feature, SD          
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Table 2.4  Summary of related work comparison associated with the development of  

 noise reduction model for computed radiography system (Continued) 

Topics 

Related Work 

1 2 3 4 5 6 7 8 * 

Classification the noise in CR system          

Feature, MSE          

Feature, Skewness          

Feature, Kurtosis          

Feature, Edge          

Feature, Texture information          

Gray scale image          

Neural network          

Fuzzy logic          

Algorithm for de-noising          

Spatial domain          

Frequency domain          

Wavelet transform          

Curvelet transform          

Wave atom          

Gray scale image          

Gaussian noise          

Poisson noise          

Impulse noise          
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Table 2.4  Summary of related work comparison associated with the development of  

 noise reduction model for computed radiography system (Continued) 

Topics 

Related Work 

1 2 3 4 5 6 7 8 * 

Algorithm for de-noising          

Speckle noise          

Wiener filter          

Median filter          

Average filter          

Gaussian filter          

Unsharp filter          

Neural network          

Fuzzy logic          

PSNR          

MSE          

Correlation          

RMSE          

 

Related Work: 1 = Rampado et al. (2006); 2 = Samei et al. (2001); 3 = Santhanam  

and Radhika (2005); 4 = Tiwari et al. (2011); 5 = Masood et al. (2012);  

6 = Charhar and Thakare (2015); 7 = Lal et al. (2009); 8 = Palakkal and 

 Prabhu (2012); * = This research 
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CHAPTER 3 

RESEARCH PROCEDURE 

 

This chapter presents research and design issues of the development of a 

noise reduction model for a computer radiography system. The following sections 

in this chapter consist of research methodology, research instruments, data 

collection and data analysis. 

 

3.1 Research Methodology 

An approach to the development of a noise reduction model for a computer 

radiography system is the commissioning and routine quality control of a 

Computed Radiography system, the classification of the noise in the Computed 

Radiography system, and the algorithm for de-noising. Details of the design are 

explained as follows:  

3.1.1 Commissioning and Routine Quality Control of CR 

1) Dosimetry 

The purpose is to establish the exposure factors needed to give known 

detector air kerma (DAK) values in subsequent tests. 

The materials consist of the X-ray equipment (Toshiba KXO-50R) as 

shown in Figure 3.1, the dosimeter (Unfors ThinX RAD; S/N: 30001075) as shown in 

Figure 3.2, and the 1 mm thick copper sheet as shown in Figure 3.3. 
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Figure 3.1  The X-ray equipment 

 

 

Figure 3.2  The dosimeter 

 

 

Figure 3.3  The copper sheet 

 

The method is as follows: 

(1) The dose meter was positioned at 1.2 m from the focus and 

centrally within the x-ray beam. 
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(2) A 1 mm thick copper sheet filter was added to the X-ray tube 

housing exit. 

(3) The air kermas at 1.8 m of 1 µGy, 5 µGy, 10 µGy, 15 µGy, 20 

µGy and 40 µGy were converted to 1.2 m using the inverse square law. 

(4) The kVp was set at 70 and the mAs was varied for the air 

kermas at 1.2 m measured to be equal to the calculated values. 

2) Calibration of CR Unit DDI 

The purpose is to assess the accuracy of the detector dose indicator 

for the particular Imaging Plate size. 

 

Figure 3.4  The CR reader 

 

The materials consist of the X-ray equipment as shown in Figure 3.1, 

the CR reader (FCR PROFECT) as shown in Figure 3.4,and the cassettes and Imaging 

Plates (Fuji; 352.0 mm x 428.0 mm, 250.5 mm x 301.5 mm and 200.0 mm x 251.0 

mm as shown in Figure 3.5 (a), (b), and (c), respectively. 
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                              (a)                                     (b)                                (c) 

Figure 3.5  The cassettes and Imaging Plates 

 

The method is as follows: 

(1) The whole 352.0 mm x 428.0 mm Imaging Plate was exposed 

to a known DAK of ~10 µGy using the tube potential 80 kVp, SID (Source to Image-

Detector Distance) was 180 cm and there was no filtration. The processing used a 10 

minute delay, readout mode used semi-auto and L = 1. 

(2) The detector dose indicator (DDI) was recorded and the 

linearised detector dose indicator value (DAKDDI) was calculated using the equation, 

DAKDDI = (1740/ S). This was compared to the delivered exposure. 

(3) The detector dose indicator calibration test was repeated for 

other cassettes sizes, 250.5 mm x 301.5 mm and 200.0 mm x 251.0 mm. 

3) Signal Transfer Property and DDI with Standard Factors 

The purpose is to establish the relationship between the receptor dose 

and the pixel value. 

The materials consist of the X-ray equipment as shown in Figure 3.1, 

the CR reader as shown in Figure 3.4, the Imaging Plates as shown in Figure 3.5(a), 

(b), and (c), respectively, and the copper plate as shown in Figure 3.3.  
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The method is as follows: 

(1) The largest Imaging Plate was exposed to a known DAK of ~1 

µGy using the standard beam condition of the Institute of Physics and Engineering in 

Medicine 91 (IPEM 91), 1 mm Cu filtration, SID = 180 cm, 70 kVp and 1st half value 

layer ~7.7 mm Al. The Imaging Plate was read by the CR reader using linearity, S = 

200 and L = 2. 

(2) This process was repeated for the air kerma values at 5 µGy, 10 

µGy, 15 µGy, 20 µGy and 40 µGy. 

(3) The mean pixel value from the center of the image was 

recorded using region of interest (ROI) analysis tools. The approximately 2 cm x 2 cm 

ROI was used and the actual size was recorded. 

(4) The detector dose indicator calibration test was repeated for 

other cassettes sizes, 250.5 mm x 301.5 mm and 200.0 mm x 251.0 mm. 

(5) The mean pixel value was plotted against the detector air 

kerma values and the equation was obtained for the trend-line graph. 

(6) The regression coefficient (R2) was obtained for the trend-line 

and checked to ensure that the trend-line was a good fit to the data. 

4) DDI Repeatability 

The purposes of this experiment are to check the short term 

consistency of the reader and to set a baseline for long term monitoring of system 

sensitivity. 

The materials consist of the X-ray equipment as shown in Figure 3.1, 

the CR reader as shown in Figure 3.4, the largest Imaging Plate as shown in Figure 

3.5 (a), and the copper sheet as shown in Figure 3.3. 
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The method is as follows: 

(1) The Imaging Plate was exposed to known DAK using standard 

beam conditions of IPEM 91 then it was read by the CR reader using linearity, S = 

200 and L = 2. 

(2) The air kerma values were replicated at 5 µGy, 10 µGy, 15 

µGy, 20 µGy and 40 µGy. 

(3) The DDI was recorded and the linearised detector dose 

indicator value was calculated. This process was repeated three times and the 

coefficient of variation (CV) was calculated for the indicated exposures. 

5) Matching of the CR Imaging Plates 

The purpose of this experiment is to assess the variation in sensitivity 

between the Imaging Plates and to select a quality control cassette. 

The materials consist of the X-ray equipment as shown in Figure 3.1, 

the CR reader as shown in Figure 3.4, the Imaging Plates as shown in Figure 3.5(a), 

(b), and (c), respectively, and the copper sheet as displayed in Figure 3.3. 

The method is as follows: 

(1) The 14” x 17” Imaging Plates in the batch were exposed to 

known DAK at 10 µGy using standard beam conditions and after that they were read 

by the CR reader using similar parameters of DDI repeatability. 

(2) The process was repeated for 10” x 12” Imaging Plates in the 

batch and 8” x 10” Imaging Plates in the batch. 

(3) The DDI was recorded and the linearised detector dose 

indicator values were calculated for each Imaging Plate. 

 

 

 

 

 

 

 

 



90 

 

(4) Each image was visually inspected for artifacts and the mean 

linearised DDI value was calculated for the Imaging Plates and any outliers were 

identified. 

(5) An Imaging Plate with a DDI close to the Imaging Plates mean 

was identified for using in future quality control checks. 

6) Differences between CR Readers 

The purpose of this experiment is to assess variations in the 

sensitivity of the CR readers. 

The materials consist of the X-ray equipment as shown in Figure 3.1, 

the CR reader (PROFECT) as shown in Figure 3.4, the CR reader (FCR XG5000) as 

shown in Figure 3.6 (a), the CR reader (FCR CAPSULA) as shown in Figure 3.6 (b), 

the largest Imaging Plate as shown in Figure 3.5 (a), and the copper sheet as shown in 

Figure 3.3. 

The method is as follows: 

(1) The Imaging Plate was exposed to known DAK using standard 

beam conditions, 1 mm Cu filtration, SID = 180 cm, 70 kVp and 1st half value layer 

~7.7 mm Al. The Imaging Plate was read by the CR reader using linearity, S = 200 

and L = 2. 

(2) This was repeated for the air kerma values at 5 µGy, 10 µGy, 

15 µGy, 20 µGy and 40 µGy. 

(3) The results of the detector dose indicator were recorded and the 

DAKDDI was calculated. 

(4) Using the same Imaging Plate, this test was repeated for the 

other CR readers. 

 

 

 

 

 

 

 

 



91 

 

 

                                               (a)                                    (b) 

Figure 3.6  The CR readers 

 

7) Dark Noise 

The purpose of this experiment is to assess the signal level of dark 

noise and to test the laser power indirectly. 

The materials consist of the CR reader (PROFECT) as shown in 

Figure 3.4 and the largest Imaging Plate as shown in Figure 3.5 (a). 

The method is as follows: 

(1) An Imaging Plate was erased by the CR reader using the 

primary mode erasure. 

(2) The Imaging Plate was then immediately read without making 

an exposure using fixed mode, S = 10000 and L = 1. 

(3) The image was examined visually for uniformity using a 

narrow window width. 

(4) The detector dose indicator value was recorded if appropriate 

and the mean pixel value was recorded and its standard deviation using ROI analysis. 
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8) Measured Uniformity 

The purpose of this experiment is to quantify the uniformity of the 

recorded signal from a uniformly exposed Imaging Plate. 

The materials consist of the X-ray equipment as shown in Figure 3.1, 

the CR reader as shown in Figure 3.4, the largest Imaging Plate as shown in Figure 

3.5 (a), and the copper sheet as shown in Figure 3.3. 

The method is as follows: 

(1) The largest Imaging Plate was positioned at SID = 180 cm. 

(2) The Imaging Plate was exposed to a known dose of5 µGy 

using 1 mm Cu filtration, 70 kVp and 1st half value layer ~7.7 mm Al. 

(3) The Imaging Plate was rotated through 180° about the vertical 

axis and re-exposed using the same parameters; this should largely cancel out non-

uniformities due to the anode heel effect. 

(4) The Imaging Plate was read by the CR reader using linearity,  

S = 200 and L = 2. 

(5) The image was inspected visually for any artifacts or local non-

uniformities. 

(6) Using ROI analysis tools, the mean pixel value was measured 

in five ROIs; one in the center of the image and one in the center of each quadrant of 

the image. Each ROI should include around 2 cm x 2 cm and should not include any 

artifacts or local non-uniformities. 

(7) The mean pixel values for each region of the image were 

estimated to DAKDDI from the inverse signal transfer property equation. 
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(8) The mean for the ROIs and the maximum difference from the 

mean was calculated. 

9) Erasure Cycle Efficiency 

The purpose of this experiment is to test whether the residual signal 

(ghosting) remains on an Imaging Plate after readout and erasure. 

The materials consist of the X-ray equipment as shown in Figure 3.1, 

the CR reader as shown in Figure 3.4, the largest Imaging Plate as shown in Figure 

3.5 (a), and the copper sheet as shown in Figure 3.3. 

The method is as follows: 

(1) The attenuating material which is a 1 mm thick copper sheet 

was positioned in the center of an Imaging Plate and a slightly larger field was set.  

(2) The Imaging Plate was exposed using 80 kVp, 20 mAs, no 

filtration, and SID 180 cm. 

(3) The Imaging Plate was read for the regular mode. 

(4) The Imaging Plate was replaced without the attenuator and 

center field at the same point on the Imaging Plate. 

(5) The collimation was changed so the resultant field was about 

10% smaller than the original field, but larger than the previously attenuated area. 

(6) The Imaging was re-exposed Plate using 80 kVp, 0.5 mAs, no 

filtration, and SID 180 cm. 

(7) The Imaging Plate was read using appropriate parameters for 

the system. 

(8) A narrow window was set and adjusted to the appropriate level. 

The image was visually inspected for any evidence of the previous image; the 
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attenuating material and the position of the collimators were both checked. There 

should be no ghosting on either side of the field edges on this image. If the erasure 

cycle is not working properly, ghosting will be seen as a darker band outside the field 

and a lighter central area inside the field. 

(9) ROI analysis was used to quantify the difference in pixel value 

between the ghost and surrounding areas and the indicated exposure was calculated 

for each area. The percentage of ghost to background signal was calculated using the 

signal transfer property to correct the pixel values. 

10) Variation of Noise with Detector Air Kerma 

The purpose of this experiment is to measure the noise relative to 

the dose. 

The materials consist of the X-ray equipment as shown in Figure 

3.1, the CR reader as shown in Figure 3.4, the largest Imaging Plate as shown in 

Figure 3.5 (a), and the copper sheet as shown in Figure 3.3. 

The method is as follows: 

(1) The STP images were used for this experiment. 

(2) The variance in the image over 2 cm x 2 cm ROI in the center 

of the image was measured. 

(3) A quadratic curve of variance against the detector dose 

indicator was fitted and the noise components obtained. 

11) Signal to Noise Ratio 

The purpose of this experiment is to measure the relative amount of 

noise in an image. 
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The materials consist of the X-ray equipment as shown in Figure 

3.1, the CR reader as shown in Figure 3.4, the largest Imaging Plate as shown in 

Figure 3.5 (a), and the copper sheet as shown in Figure 3.3. 

The method is as follows: 

(1) A uniform image was used. 

(2) The standard deviation in the image over a 2 cm x 2 cm ROI 

in the center of the image was measured and this was repeated for the center of the 

quadrants. 

12) Limiting High Contrast Spatial Resolution 

The purpose of this experiment is to test the high contrast limit of 

the system’s ability to resolve details. 

The materials consist of the X-ray equipment as shown in Figure 

3.1, the CR reader as shown in Figure 3.4, the Imaging Plates as shown in Figure 3.5 

(a), (b), and (c), respectively, and the Hüttner test object as shown in Figure 3.7. 

The method is as follows: 

(1) The Hüttner test object was placed in the center of the 

Imaging Plate and aligned at 45° to its edges. 

(2) The Imaging Plate was exposed using 54 kVp, 3.2 mAs, fine 

focus, with no added filtration. 

(3) The Imaging Plate was read by the CR reader using the 

appropriate parameters for that system. 

(4) The test object was placed at a slight angle to the scan and 

sub-scan axes and exposed same parameters. 

(5) The pixel pitch was identified for each cassette size.  
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(6) The images were transferred to the reporting workstation and 

the window level was optimized and set at a magnification of around five times. The 

number of resolvable groups of lines was scored and converted to the corresponding 

resolution. 

 

Figure 3.7  The Hüttner test object 

 

13) Laser Beam Function 

The purpose of this experiment is to assess the integrity and jitter of 

the laser beam scan line. 

The materials consist of the X-ray equipment as shown in Figure 

3.1, the CR reader as shown in Figure 3.4, the largest Imaging Plate as shown in 

Figure 3.5 (a), and the steel ruler as shown in Figure 3.8 (a). 

The method is as follows: 

(1) The steel ruler was placed at a slight angle to the sub-scan 

direction on a large Imaging Plate. 

(2) The Imaging Plate was exposed at 70 kVp with no added 

filtration and set at 2.8 mAs to deliver an incident exposure of ~20 µGy. 

(3) The Imaging Plate was read by the CR reader using the 

appropriate parameters for the system. 
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(4) The image was magnified by x10 and transferred to the 

reporting workstation, when necessary. 

(5) A narrow window width was set so that the image was largely 

polarized to black or white and the edge could easily be differentiated from the 

background. 

(6) The edge of the image was examined for evidence of laser 

beam jitter, as shown in Figure 3.8 (b).  

 

                                        (a)                                                  (b) 

Figure 3.8  The steel ruler (a) and (b) ROI for plot profile 

 

 3.1.2 Classification of the Noise in the Computed Radiography System 

1) Formation of the Original Image 

The materials consist of X-ray equipment (Toshiba KXO-50R) as 

shown in Figure 3.1, the CR reader (FCR PROFECT) as shown in Figure 3.4, the CR 

detector (250.5 mm x 301.5 mm Imaging Plate) as shown in Figure 3.5, the phantom 

(TOR CDR) as shown in Figure 3.9, and the software for post-processing (ImageJ) as 

shown in Figure 3.10. 
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Figure 3.9  The TOR CDR phantom 

 

 

Figure 3.10  The ImageJ software 

 

The method includes the following steps: The first step was 

radiography, using 54 kVp, 3.2 mAs, no filtration, and using a SID (Source to Image-

receptor Distance) = 100 cm. Then a detector was used to be processed by the CR 

reader at this stage, with no noise reduction being processed by the vendor’s software. 

Finally, the X-ray image was adjusted to the original image with minimal noise by 

retouching the software. This served as the original image, and the procedures as 

shown in Figure 3.11 and Figure 3.12, respectively. 
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Figure 3.11  The procedure for creating the original image 

 

 

Figure 3.12  The procedure for retouching the image 

 

2) Production of Known-Noise 

Gaussian noise, Rayleigh noise, gamma noise, exponential noise, 

uniform noise, impulse noise, and Poisson noise were all generated for model images. 

They were displayed as noise images and histograms. 
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3) Adding the Known-Noise to the Original Image  

The original image was assumed to be noiseless and the known-noise, 

such as Gaussian, Rayleigh, gamma, exponential, uniform, impulse, and Poisson was 

added. A diagram of the procedure is shown in Figure 3.13. 

 

Figure 3.13  The known-noise added 

 

 

Figure 3.14  Diagram showing extraction of features 
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4) Feature Extraction 

The known-noise, such as Gaussian, Rayleigh, gamma, exponential, 

uniform, impulse, and Poisson was superimposed on the original image. The Mean, 

MSE, PSNR, and SD were extracted from the noisy image. The diagram showing the 

extraction of the feature extractions is in Figure 3.14. 

5) Feature Selection 

The machine was trained by instances consist with 5 attributes, the 

Mean, SD, MSE, PSNR, and Class (Gaussian, Poisson, Impulse, Gamma, Uniform, 

Exponential, Rayleigh) using multilayer perceptron (MLP) algorithm, 5 hidden layers, 

20,000 epochs, and a training set was used for the validation of the technique. The 

diagram of the algorithm for the selection of the features is shown in Figure 3.15.  

 

Figure 3.15  The algorithm for feature selection 
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 The subsets of the 4 features, not including an empty set, {Mean}, 

{SD}, {MSE}, {PSNR}, {Mean, SD}, {Mean, MSE}, {Mean, PSNR}, {SD, MSE}, 

{SD, PSNR}, {MSE, PSNR}, {Mean, SD, MSE}, {Mean, SD, PSNR}, {SD, MSE, 

PSNR}, {Mean, MSE, PSNR}, and {Mean, SD, MSE, PSNR} were selected as being 

the most effective for classifying the noise. A diagram for choosing the best subset is 

shown in Figure 3.16. 

 

Figure 3.16  Procedure for the selection of the best subset 

 

 

Figure 3.17  Modeling of MLP 
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6) Modeling 

The instances were created from known-noise images. The best 

subset, a feature or n-features were extracted for use in the model. The models created 

the best model using the MLP algorithm, the training set for validation, the hidden 

layers were varied and the number of epochs was varied. The diagram of the MLP 

algorithm is shown in Figure 3.17. 

7) Evaluation Model 

The best model was trained and tested by the dataset, a training set 

was used for the validation technique using the MLP algorithm. The classification 

was evaluated by Precision, Recall, and F-measure. The evaluation model is shown in 

Table 3.1. 

 

Table 3.1  The confusion matrix for evaluating the categorical output 

 Data retrieved (+) Data not retrieved (-) 

Relevant data (+) TP FP 

Irrelevant data (-) FN TN 

TP = True Positive, FP = False Positive, FN = False Negative, TN = True Negative 
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where   = 1 

RecallPrecision

Precision2
MeasureF


                                     (3.4) 

 

8) Model Usage 

The unseen data was produced by radiography. The CR image was 

tested by using the model for classifying noise using the rule base of MLP. The 

diagram of the classification is shown in Figure 3.18. 

 

Figure 3.18  Model using for classification 

 

The unseen data was tested by classifying the model, machine 

learning using MLP algorithm. The approach for testing the model, for which 

each node of the MLP was calculated, is shown in Figure 3.19. 

 

Figure 3.19  Calculation of each node 
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From Figure 3.19, the summation function was calculated by 

using the equation: 





n

i

iiwxx
0

                                                 (3.5) 

where x  is the input value before the node,
 0x  = 1, w  is weight of each node. The 

output from the perceptron, f(x) is the activation function, using the sigmoid 

function: 
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3.1.3 The Algorithm for De-noising 

1) Reduced Poisson Noise 

The Poisson noise was added to the original image, using the scale 

= 1.85 x 109. The noisy image was converted into the de-noising image by 

applying different types of filters, for example, the Wiener filter (using 

neighborhoods of size [5 5] to estimate the local image mean and standard 

deviation), the Median filter, the Average filter ([3 3] kernel size), and the 

Gaussian filter ([5 5] kernel size, sigma = 1). The MSE, PSNR and correlation 

were calculated to check the performance of the filter and the de-noise images. 

2) Reduced Gaussian Noise 

The Gaussian noise was added to the original image, with mean = 

0 and variance = 0.001. The noisy image was converted into a de-noising image 

by applying different types of filters, for example, the Wiener filter (using 

neighborhoods of size [5 5] to estimate the local image mean and standard 
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deviation), the Median filter, the Average filter ([3 3] kernel size), and the 

Gaussian filter ([5 5] kernel size, sigma = 1). The MSE, PSNR and correlation 

were calculated to check the performance of the filter and the de-noise images. 

3) The Prototype Program 

 

Figure 3.20  Diagram of the prototype program 

 

Figure 3.20 shows the prototype program. Firstly, the noisy image 

was filtered by the fuzzy filter. Next, the noisy image was classified according to 

the model by using the MLP algorithm. Finally, the noisy image was de-noised by 

using the fuzzy filter for the Poisson or the Gaussian noise.  

3.1) The Fuzzy Filter used for Creating Original Image 

 

Figure 3.21  Fuzzy inference system used for creating the original image 
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Figure 3.21 shows the fuzzy inference system (FIS) used for 

creating the original image. The diagram shows the name of the input variable, SD on 

the left and the name of the output variable, and the matrix size on the right. The box 

at the center was the rule base that defines the fuzzy rules. 

The steps for building a fuzzy system are as follows: 

(1) The input and output linguistic variables are assigned. 

- The input variable is the value of SD 

- The output variable is the matrix size using the 

neighborhoods of the Wiener filter. 

(2) The fuzzy sets are assigned. 

- The value of SD is defined in linguistic terms as the 

input linguistic variables, which are very low, low, middle, high, and very high. 

The triangular function is used for the membership functions as shown in Figure 

3.22. 

Very low = {0, 0, 12.90} 

Low = {12.76, 12.92, 12.98} 

Middle = {12.93, 13.01, 13.18} 

High = {13.04, 13.28, 13.60} 

Very high = {13.39, 26.00, 26.00} 

- The matrix size of using neighborhoods is defined for 

linguistic terms of the output linguistic variables, which are tiny, small, medium, 

large, and huge. The triangular function is used for the membership functions as 

shown in Figure 3.23. 

Tiny = {0, 0, 2.50} 
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Small = {1.50, 3.00, 6.00} 

Medium = {4.00, 7.00, 10.25} 

Large = {8.00, 11.50, 13.50} 

Huge = {11.75, 50.00, 50.00} 

 

Figure 3.22  Membership functions of input variable “SD” 

 

 

Figure 3.23  Membership functions of output variable “Matrix size” 

 

(3) The fuzzy rules are assigned as follows: 

Rule 1: “If SD is very low, then the matrix size is tiny” 

Rule 2: “If SD is low, then the matrix size is small” 
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Rule 3: “If SD is middle, then the matrix size is 

medium” 

Rule 4: “If SD is high, then the matrix size is large” 

Rule 5: “If SD is very high, then the matrix size is 

huge” 

(4) The rule bases are used for fuzzy inference. 

(5) The crisp output is defuzzified. The technique consists 

of the minimum (min) which is used for implication, the maximum (max) which 

is used for aggregation, and the centroid of the area (COA) (Jang, Sun, and 

Mizutani, 1997) is used for defuzzification. 

3.2) MLP Classification 

The machine was trained by using instances consistent with 3 

attributes, SD, MSE, and Class (Gaussian, Poisson) using the MLP algorithm, 3 

hidden layers, 3,000 epochs, and the training set was used for the validation 

technique. The details of the instances are presented in Table 3.2. 

  

Table 3.2  The details of instances used for modeling 

Feature Maximum Minimum Mean SD 

SD 13.496 12.889 13.060 0.171 

MSE 8.202 0.011 2.408 2.286 

Class = Gaussian (300 instances), Poisson (300 instances) 

 

3.3) Fuzzy Filter for Poisson Noise 

The steps for building a fuzzy system are as follows: 

(1) The input and output linguistic variables are assigned. 
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- The input variables are the values of SD and MSE. 

- The output variable is the matrix size using 

neighborhoods for the Wiener filter. 

 

Figure 3.24  Fuzzy inference system for creating fuzzy filter of Poisson noise 

 

Figure 3.24 shows the fuzzy inference system for creating the 

fuzzy filter of Poisson noise. The diagram shows the name of the input variables, SD 

and MSE on the left and the name of output variable, and the matrix size on the right. 

The box at the center is the rule base that defines the fuzzy rules. 

(2) The fuzzy sets were assigned. 

- The value of SD was defined in linguistic terms as the 

input linguistic variables: very low, low, middle, high, and very high. The 

triangular function was used for the membership functions as shown in Figure 

3.25. 

Very low = {0, 0, 12.88} 

Low = {12.76, 12.90, 12.93} 

Middle = {12.91, 12.94, 13.12} 

High = {13.00, 13.15, 13.20} 
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Very high = {13.17, 26.00, 26.00} 

 

Figure 3.25  Membership functions of input variable “SD” 

 

- The value of MSE is defined in linguistic terms as the 

input linguistic variables: very low, low, middle, high, and very high. The 

triangular function is used for the membership functions as shown in Figure 3.26. 

Very low = {0, 0, 0.20} 

Low = {0.11, 0.28, 0.66} 

Middle = {0.37, 0.95, 1.52} 

High = {1.23, 2.55, 4.60} 

Very high = {3.58, 10.00, 10.00} 

- The matrix size using neighborhoods is defined in 

linguistic terms as the output linguistic variables: tiny, small, medium, large, and 

huge. The triangular function is used for the membership functions as shown in 

Figure 3.27. 

Tiny = {0, 0, 2.50} 

Small = {1.50, 3.00, 6.00} 

Medium = {4.00, 7.00, 10.25} 
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Large = {8.00, 11.50, 13.50} 

Huge = {11.75, 50.00, 50.00} 

 

Figure 3.26  Membership functions of input variable “MSE” 

 

 

Figure 3.27  Membership functions of output variable “Matrix size” 

 

(3) The fuzzy rules are assigned as follows: 

Rule 1:  

“If SD is very low or MSE is very low, then the matrix size is tiny” 

Rule 2:  

“If SD is low or MSE is low, then the matrix size is small” 
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Rule 3:  

“If SD is middle or MSE is middle, then the matrix size is medium” 

Rule 4:  

“If SD is high or MSE is high, then the matrix size is large” 

Rule 5:  

“If SD is very high or MSE is very high, then the matrix size is huge” 

(4) The rule bases are used for fuzzy inference. 

(5) The crisp output is defuzzified. The technique consists 

of minimum (min) which is used for implication, the maximum (max) which is 

used for aggregation, and the centroid of the area which is used for 

defuzzification. 

3.4) Fuzzy Filter for Gaussian Noise 

The steps for building a fuzzy system are as follows: 

(1) The input and output linguistic variables are assigned. 

- The input variables are the values of SD and MSE. 

- The output variable is the matrix size using the 

neighborhoods for the Wiener filter. 

 

Figure 3.28  Fuzzy inference system for creating fuzzy filter of Gaussian noise 
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Figure 3.28 shows the fuzzy inference system for creating the 

fuzzy filter of Gaussian noise. The diagram shows the input variables, SD and MSE 

on the left and the output variable, and the matrix size on the right. The box at the 

center is the rule base that defines the fuzzy rules. 

(2) The fuzzy sets are assigned. 

- The value of SD is defined in linguistic terms of the 

input linguistic variables: very low, low, middle, high, and very high. The 

triangular function is used for the membership functions as shown in Figure 3.29. 

Very low = {0, 0, 12.95} 

Low = {12.92, 12.99, 13.08} 

Middle = {13.02, 13.14, 13.26} 

High = {13.20, 13.32, 13.44} 

Very high = {13.38, 26.00, 26.00} 

 

Figure 3.29  Membership functions of input variable “SD” 
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- The value of MSE is defined in linguistic terms of the 

input linguistic variables: very low, low, middle, high, and very high. The 

triangular function is used for the membership functions as shown in Figure 3.30. 

Very low = {0, 0, 0.86} 

Low = {0.44, 1.28, 2.51} 

Middle = {1.70, 3.32, 4.95} 

High = {4.13, 5.76, 7.39} 

Very high = {6.57, 10.00, 10.00} 

 

Figure 3.30  Membership functions of input variable “MSE” 

 

- The matrix size using neighborhoods is defined in 

linguistic terms of the output linguistic variables: tiny, small, medium, large, and 

huge. The triangular function is used for the membership functions as shown in 

Figure 3.31. 

Tiny = {0, 0, 2.50} 

Small = {1.50, 3.00, 6.00} 

Medium = {4.00, 7.00, 10.25} 
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Large = {8.00, 11.50, 13.50} 

Huge = {11.75, 50.00, 50.00} 

 

Figure 3.31  Membership functions of output variable “Matrix size” 

 

(3) The fuzzy rules are assigned as follows: 

Rule 1:  

“If SD is very low or MSE is very low, then the matrix size is tiny” 

Rule 2:  

“If SD is low or MSE is low, then the matrix size is small” 

Rule 3:  

“If SD is middle or MSE is middle, then the matrix size is medium” 

Rule 4:  

“If SD is high or MSE is high, then the matrix size is large” 

Rule 5:  

“If SD is very high or MSE is very high, then the matrix size is huge” 

(4) The rule bases are used for fuzzy inference. 

 

 

 

 

 

 

 

 



117 

 

(5) The crisp output is defuzzified. The technique consists 

of the minimum (min) used for implication, the maximum (max) used for 

aggregation, and the centroid of the area is used for defuzzification. 

3.1.4 Hypothesis Testing 

1) De-noising CR image Using Prototype Program 

The first step is that CR image used fuzzy filter for created 

original image. The SD and the MSE are calculated from the CR image and the 

approximate original image. The second step is that the SD and MSE are used for 

classifying noise. The next step is that the fuzzy filter was de-noised for Poisson 

or Gaussian noise. Finally, the PSNR is calculated and the correlation is 

compared with the Vendor’s software.  

2) De-noised CR image Using Vendor’s Software 

The CR image was de-noised using the Vendor’s software then the 

PSNR and the correlation are calculated. 

 

3.2 Research Instruments 

 The research instruments or development tools are shown below. 

(1) Hardware specification includes: 

- Processor: Intel Core i3-550 4M 3.20 GHz 

- Memory: 2048 MB 

- Hard Drive: 800 GB 

(2) Software specification includes: 

- Operating System: Windows 7 Ultimate 32-bit 

- MATLAB R2015a 
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- ImageJ 1.50i 

- Weka 3.7.4 

 

3.3 Data Collection 

 This research collects the dataset of 2,100 instances for developing a 

model for classifying types of noise in digital images. The instances were 

generated by using MATLAB commands. 300 instances of Gaussian noise were 

generated by varying the variances that were randomly selected from 0.0000010 

to 0.0002510. 300 instances of Poisson noise were generated by varying the 

scales that were randomly selected from 1.00 x 107 to 2.45 x 109. 300 instances of 

impulse noise were generated by varying the noise densities that were randomly 

selected from 0.0001 to 0.006. 300 instances of gamma noise were generated by 

varying the integer values for dividing the results image that were randomly 

selected from 60 to 1500. 300 instances of uniform noise were generated by 

varying the numbers in the interval (a b) that were randomly selected at intervals 

(0 0.054). 300 instances of exponential noise were generated by varying the 

numbers of parameter A that was randomly selected from 32.5 to 1000. 300 

instances of Rayleigh noise were generated by varying the parameter B that was 

randomly selected from 0.000001 to 0.001175. 

 

3.4 Data Analysis 

 The data analysis in this research comprises the correct evaluation of the 

performance of classification, the peak signal to noise ratio and MSE and 

correlation. 
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 3.4.1 Analyzing Evaluating the Performance of Classification 

Several criteria may be used to evaluate the performance of 

algorithms in supervised Machine Learning (ML). In general, different measures 

evaluate different characteristics of the classifier induced by the algorithm. 

Therefore, the evaluation of a classifier is a matter of on-going research 

(Sokolova and Lapalme, 2009), even for binary classification problems, which 

involve only two classes and are the most studied by the ML community. 

Generally, the evaluation measures in classification problems are 

defined from a matrix with the numbers of examples correctly or incorrectly 

classified for each class, which is named the confusion matrix. The confusion 

matrix for a binary classification problem (which has only two classes – positive 

and negative) is presented in Table 3.3. 

 

Table 3.3  Confusion matrix 

 Predicted Class 

True Class Positive Negative 

Positive TP FN 

Negative FP TN 

 

The FP, FN, TP and TN concepts may be described as: 

- False positives (FP): examples predicted as positive, which are 

from the negative class. 

- False negatives (FN): examples predicted as negative, whose 

true class is positive. 
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- True positives (TP): examples correctly predicted as pertaining 

to the positive class. 

- True negatives (TN): examples correctly predicted as belonging 

to the negative class. 

The evaluation measures most used in practice are as follows: 

The recall measures evaluate the effectiveness of a classifier for 

each class in the binary problem. The recall, also known as sensitivity or true 

positive rate, is the proportion of examples belonging to the positive class which 

were correctly predicted as positive. The recall is given by the equation 3.2. 

The precision is a measure which estimates the probability that a 

positive prediction is correct. It is given by the equation in 3.1 and may be 

combined with the recall originating the F-Measure. There is a constant control of 

the trade-off between the precision and the recall, as can be seen in equation 3.3. 

Generally, it is set to 1. 

 3.4.2 Analyzing Peak Signal to Noise Ratio and MSE 

The performance parameters are the most important criteria in 

justifying the simulation results for noise reduction. Peak signal to noise ratio 

(PSNR) and mean square error (MSE) are considered to be the parameters, and 

the quality of the de-noised image is measured by: 











MSE

R
PSNR

2

10log10                                         (3.7) 

where R  is the maximum value of pixel present in an image and MSE is the mean 

square error between the original and the de-noised image with NM *  size. 
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Where, ),( jix  is the pixel of the original image and ),( jiy  is the 

pixel of the restored noisy image in i , j  coordination. M  and N are the image 

size. 

 3.4.3 Analyzing Correlation 

The two-dimensional correlation criterion is used to compare the 

simulation results. The equation 3.9 defines the correlation (Chan and Xu, 2007). 
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CHAPTER 4 

THE RESULTS OF THE STUDY AND DISCUSSIONS 

 

In this chapter, the results of the development of noise reduction model for 

computer radiography system are proposed. As previously discussed in the 

Chapter 3, there are commissioning and routine quality control of CR system, 

classification the type of noise in CR image and creating the prototype program 

for de-noising. Furthermore, the experimental results for checking the CR system, 

the most accurate classification, the appropriate algorithm for noise reduction of 

prototype program and all results of the study are discussed. Finally, the results of 

hypothesis testing are discussed. 

 

4.1 Commissioning and Routine Quality Control of CR 

4.1.1 Result of Dosimetry 

Most CR testing protocols recommend using a long focus to detector 

distance (FDD) to minimize the anode heel effect. The same long FDD should be 

used throughout. The DAK should be measured reasonably scatter free 

conditions, correcting any dose measurements made at a shorter focus to chamber 

distance (FCD) using the inverse square law.  

The mAs values were calculated for the air kerma of standard beam 

at 120 cm from the focus. The results are presented in Table 4.1.  
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Table 4.1  The air kerma of standard beam 

Air kerma at 180 cm (µGy) Air kerma at 120 cm (µGy) mAs 

1 2.25 1 

5 11.25 4 

10 22.50 8 

15 33.75 10 

20 45.00 14.4 

40 90.00 28.4 

 

The exposure factors needed to give known DAK (at 180 cm from 

focal spot) values, 1 mAs for 1 µGy, 4 mAs for 5 µGy, 8 mAs for 10 µGy, 14.4 

mAs for 20 µGy, and 28.4 mAs for 40 µGy that they were used in subsequent 

tests. 

In practice, it may be easier to work on the floor, rather than on the 

table, when using long FDD. If so, care should be taken to avoid back injuries 

when repeatedly lifting heavy Imaging Plates. Care should also be taken not to 

transfer any dirt from the floor to the cassette or reader. Many of these can be 

overcome by placing the cassette on a block of polystyrene or foam pad. 

4.1.2 Result of Calibration of CR Unit DDI 

The DAKDDI was calculated by equation,  

DAKDDI 









S

1740
                                                     (4.1) 

and the percent different was calculated. The evaluations of calibration of CR unit 

DDI for the study are presented in Table 4.2. 
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Table 4.2  Calibration of CR unit DDI 

IP size (cm x cm) DAK (µGy) S value DAKDDI (µGy) Percent different 

352.0 x 428.0  10 210 8.29 17.1 

250.5 x 301.5 10 205 8.49 15.1 

200.0 x 251.0 10 205 8.49 15.1 

 

The percent different of 352.0 cm x 428.0 cm Imaging Plate is 17.1%. 

The percent different of 250.5 x 301.5 cm Imaging Plate is 15.1%. And the percent 

different of 200.0 x 251.0 cm Imaging Plate is 15.1%. The accuracy of the DDI for a 

particular Imaging Plate size was percent different within 20%. 

During step exposure the whole Imaging Plate, mark the corners of the 

Imaging Plate on the table or floor with tape, so that the Imaging Plate can be easily 

repositioned without the use of the light beam. Marking positions for all Imaging 

Plate sizes at this point can save time. 

The latent image signal from the Imaging Plate will drop rapidly after 

exposure; this is common to all CR systems. Between 1 and 10 min post-exposure, the 

signal typically drops by 5 to 10% (CEP, 2006a), although some systems may show 

less latent image decay (CEP, 2006b). Therefore, the time delay between exposures 

should match that specified by the manufacturer. 

Cassettes usually indicate which is the tube side and which way round to 

insert the cassette into the reader. Care should be taken as the unloading mechanism 

in some readers may damage Imaging Plate by scratching them if they are inserted in 

the wrong orientation. 
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4.1.3 Result of STP and DDI with Standard Factors 

The mean and SD of pixel vale of image of each Imaging Plate were 

presented in Table 4.3. 

 

Table 4.3 STP and DDI with standard factors 

DAK 

(µGy) 

14” x 17” 10” x 12” 8” x 10” 

Pixel value Pixel value Pixel value 

Mean SD Mean SD Mean SD 

1 256 64 256 64 256 64 

5 477 7.64 480 8.34 486 7.90 

10 645 2.79 652 3.14 640 2.60 

15 722 2.22 731 2.76 724 2.41 

20 778 1.61 789 1.84 780 1.56 

40 895 0.93 896 1.04 893 1.23 

 

The graph of STP function was plotted from mean pixel value against 

DAK for 14” x 17” Imaging Plate. The relation of STP function between mean pixel 

value and DAK is logarithm response as shown in Figure 4.1. 
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Figure 4.1  Graph of STP function of 14” x 17” 

 

Figure 4.1 that the STP function was applied for calculating the DAK 

from pixel value then it was used for the next experiment. The STP function of 14” x 

17” Imaging Plate is 

3.235)ln(4.177Value Pixel  DAK                               (4.2) 

and the regression coefficient ( 2R ) = 0.990 that the trend-line is good fit to the data. 

The graph of STP function was plotted from mean pixel value against 

DAK for 10” x 12” Imaging Plate. The relation of STP function between mean pixel 

value and DAK is logarithm response as shown in Figure 4.2. 

 

 

 

 

 

 

 

 

 



127 

 

 

Figure 4.2  Graph of STP function of 10” x 12” 

 

Figure 4.2 that the STP function was applied for calculating the DAK 

from pixel value then it was used for the next experiment. The STP function of 10” x 

12” Imaging Plate is 

9.236)ln(179Value Pixel  DAK                               (4.3) 

and the regression coefficient ( 2R ) = 0.989 that the trend-line is not very good fit to 

the data. 

The graph of STP function was plotted from mean pixel value against 

DAK for 8” x 10” Imaging Plate. The relation of STP function between mean pixel 

value and DAK is logarithm response as shown in Figure 4.3. 
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Figure 4.3  Graph of STP function of 8” x 10” 

 

Figure 4.3 that the STP function was applied for calculating the DAK 

from pixel value then it was used for the next experiment. The STP function of 8” x 

10” Imaging Plate is 

0.238)ln(7.176Value Pixel  DAK                               (4.4) 

and the regression coefficient ( 2R ) = 0.992 that the trend-line is good fit to the data. 

These images can also be used to determine the actual relationship 

between DDI and DAK where the standard conditions used differ from those 

recommended by the manufacturer. KCARE provide details for the standard 

conditions used in evaluations (CEP, 2006a): for Fuji  

.152)ln(138  DAKPV                                            (4.5) 
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4.1.4 Result of DDI Repeatability 

The pixel value of image, exposed to known DAK, was converted to 

DAKDDI by equation 4.2. The evaluations of DDI repeatability for studied CR system 

are presented in Table 4.4. 

 

Table 4.4  DDI repeatability 

DAK 

(µGy) 

Time 1 Time 2 Time 3 Time 4 

CV of 

DAKDDI 

Pixel 

value 

D
A

K
D

D
I Pixel 

value 

D
A

K
D

D
I Pixel 

value 

D
A

K
D

D
I Pixel 

value 

D
A

K
D

D
I 

1 256 1.12 256 1.12 256 1.12 256 1.12 0 

5 477 3.91 479 3.95 487 4.13 483 4.04 0.03 

10 645 10.07 668 11.46 648 10.24 653 10.53 0.06 

15 722 15.54 716 15.02 713 14.77 720 15.37 0.02 

20 778 21.31 771 20.49 773 20.72 767 20.03 0.03 

40 895 41.21 881 38.08 896 41.44 886 39.17 0.04 

 

The CV values of DDI are less than 10% that they are acceptable for 

DDI repeatability.  

Some centers set a large field size and position a reference ion chamber 

in one corner of the field, avoiding the Imaging Plate. This is used to check exposure 

consistency during this test. If the X-ray tube is fitted with a DAP meter, this can be 

used instead. Alternatively, if output is known to be very consistent, no monitor 

chamber is needed. 
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4.1.5 Result of Matching of CR Imaging Plates 

The assessments of matching of CR Imaging Plates for studied CR 

system are presented in Table 4.5. 

 

Table 4.5  Matching of CR Imaging Plates 

IP size DDI of IP 1 

(µGy) 

DDI of IP 2 

(µGy) 

DDI of IP 3 

(µGy) 

DDI of IP 4 

(µGy) 

Mean 

(µGy) 

14” x 17” 10.07 10.11 10.08 10.03 10.07 

10” x 12” 10.58 10.46 10.49 - 10.51 

8” x 10” 9.89 10.12 9.91 - 9.97 

 

The mean of DDI for 14” x 17” Imaging Plates in the batch was 10.07 

µGy the IP 1 was chosen for future QC check. The mean of DDI for 10” x 12” 

Imaging Plates in the batch was 10.51 µGy the IP 3 was chosen for future QC 

perform. And the mean of DDI for 8” x 10” Imaging Plates in the batch was 9.97 µGy 

the IP 3 was chosen for future QC perform.  

Each batch of Imaging Plates should be checked to ensure that the 

sensitivities of all Imaging Plates are matched. This is particularly important when 

Imaging Plates are added to an existing batch. Refer to manufacturer’s 

recommendations on inter-Imaging Plate variations in sensitivity. Some CR readers 

correct for variations in light output between Imaging Plates. Either an Imaging Plate 

sensitivity value is set in the chip that identifies the Imaging Plates or this value is 

held in the CR reader. It is sensible to keep a departmental inventory of Imaging 

Plates with type, ID or serial number, age and usage. Record the Imaging Plate 

cassette combination if possible. 
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The visual inspection of the images should be undertaken using a narrow 

window width; possible causes of artifacts include dust, cracks and scratches on the 

Imaging Plates. The natural variation in sensitivity across an Imaging Plate should not 

be mistaken for an artifact.  

4.1.6 Result of Differences between CR readers 

The DAKDDI was calculated by pixel value of images from three CR 

readers. The evaluations of differences between CR readers, FCR PROFECT, FCR 

XG5000 and FCR CAPSULA for studied CR system are presented in Table 4.6. 

 

Table 4.6  Differences between CR readers 

DAK 

(µGy) 

FCR PROFECT FCR XG5000 FCR CAPSULA 

CV of 

DAKDDI 

Pixel 

value 

DAKDDI 

Pixel 

value 

DAKDDI 

Pixel 

value 

DAKDDI 

1 256 1.12 256 1.12 256 1.12 0 

5 477 3.91 482 4.02 490 4.20 0.04 

10 645 10.07 657 10.77 660 10.96 0.04 

15 722 15.54 729 16.17 732 16.44 0.03 

20 778 21.31 788 22.55 792 23.06 0.04 

40 895 41.21 901 42.63 903 43.11 0.02 

 

The CV values of DDI, differences 3 CR readers are less than 20% that 

they are acceptable for DDI of differences between CR readers.  

Nominally, similar readers may have different sensitivities and there 

may be wide tolerances on the set-up of each reader. Even where two or more readers 

each have a DDI calibration that is within tolerance, there may be a relatively large 
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variation between these readers (up to twice the tolerance on calibration). Where 

Imaging Plates are likely to be read in more than one reader, it is good practice to set 

readers up to be as similar as possible. 

Compare the DAKDDI for each reader with others in the department. This 

test is only useful where Imaging Plates are likely to be read in more than one reader. 

4.1.7 Result of Dark Noise 

The evaluations of dark noise for studied CR system are presented in 

Table 4.7.  

 

Table 4.7  Dark noise 

IP size (cm x cm) Mean of pixel value SD of pixel value DAKDDI 

352.0 x 428.0  16 0.19 0.28 

250.5 x 301.5  16 0.15 0.28 

200.0 x 251.0  8 0.24 0.28 

 

 

The results found dark noise values below the specified tolerance for the 

Fuji CR reader, the specified tolerance, pixel value < 280.  

Dark noise describes the signal level of electronic noise inherent in the 

system. For CR, this is the level of noise seen when reading an unexposed Imaging 

Plate. High signal in the dark noise image may be indicative of falling laser power; 

increasing amplifier gain to compensate for this will result in greater amplification of 

dark noise. 

CR readers have a manual erasure cycle for removing low levels of 

signal from background and scattered radiation; some readers will also have a 

separate erasure cycle for clearing overexposed Imaging Plates. Readers usually 
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revert back to normal reading mode at the end of the manual erasure cycle. Care is 

required with some readers because, if they have not switched back to normal reading 

mode before the next Imaging Plate is inserted, that Imaging Plate will also be erased 

leading to the potential loss of patient data. 

The dark image should usually be uniform and artifact free. Some 

systems add a collector profile to the image to compensate for non-uniform collection 

efficiency across the Imaging Plate; this gives a series of bands across a dark noise 

image. This banding may be observed in the sub-scan direction on dark noise images 

but is not apparent on clinical images. 

4.1.8 Result of Measured Uniformity 

The assessments of measured uniformity for studied CR system are 

presented in Table 4.8. The DAKDDI was calculated from inverse STP equation: 

4.177

3235 .ValuePixel

eDDI



                                                 (4.6) 

Table 4.8  Measured uniformity 

 

Mean of 

pixel value 

SD of pixel 

value 

Maximum 

difference from 

mean 

DAKDDI 

Center of image 480 2.96 3 3.97 

Center of quadrant I 486 3.55 3 4.11 

Center of quadrant II 479 3.01 4 3.95 

Center of quadrant III 478 2.97 5 3.93 

Center of quadrant IV 492 3.38 9 4.25 
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The mean for the ROIs was 483 and the maximum difference from the 

mean was 9, the center of quadrant IV. The DAKDDI, the mean for the ROIs was 

4.042 µGy and the maximum difference from the mean was 5.15% of the center of 

quadrant IV. The results found measured uniformity values below the specified 

tolerance for the IPEM Guidance, the specified tolerance, STP corrected ROI values 

within mean ±10%. 

4.1.9 Result of Erasure Cycle Efficiency 

The assessment of erasure cycle efficiency for studied CR system is 

presented in Figure 4.4, upon initially visual examination there was no evidence of 

any “ghosting” on the second image. 

All systems have automatic erasure cycles after reading an Imaging 

Plate. This erasure cycle should remove any residual signal from the Imaging Plate, 

leaving it clear for the next exposure (Rowlands, 2002). The light source used for 

erasure fades over time and must eventually be replaced. This may become less of a 

problem in the future as longer lasting diodes replace halogen bulbs in new CR 

readers. 

 

                                            (a)                                        (b) 

Figure 4.4  The first image, (a) and (b), the second image 
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4.1.10 Result of Variation of Noise with Detector Air Kerma 

 

Table 4.9  Variation of noise with detector air kerma 

DAK (µGy) Mean of pixel value SD of pixel value Variance 

1 256 64 4096.00 

5 477 7.64 58.37 

10 645 2.79 7.78 

15 722 2.22 4.93 

20 778 1.61 2.59 

40 895 0.93 0.86 

 

The assessments of variation of noise with DAK for studied CR system 

are presented in Table 4.9. The relation between variance and DAK was plotted for 

curve as shown in Figure 4.5.  

 

Figure 4.5  Variation of noise with detector air kerma 
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Figure 4.5, the function for fitting the variance to the corresponding 

DAK of this study is power response, equation: 

,2968 34.2 DAKVariance                                       (4.6) 

and 2R  = 0.985 that the trend-line is not very good fit to the data. 

The measure of variance is useful indicator of noise in image. The 

noise performance of detector can be checked by plotting the variance of pixel value 

as a function of DAK. 

Most detectors have a DAK range over which image noise follows a 

Poisson distribution before other noise sources become important. If the detector is 

quantum limited, the variance should follow a Poisson distribution. This can be 

confirmed by fitting the variance to the corresponding DAK (equation 4.7); the b  

coefficient should be 1.0 for Poisson image noise. 

baKv                                                                (4.7) 

Where K  = DAK; v  = variance, a  and b  are constants. 

At low DAK values (additive) electronic noise can increase the 

variance, while at high DAK, structure noise can be an important component of total 

system noise. Although these noise sources are common to most current detector 

(Evans, Workman and Payne, 2002; Mackenzie and Honey, 2007), the type and 

magnitude of noise depend on the specific detector in question. These factors 

influence the shape of graph (variance Vs DAK), the value of the b  coefficient and 

the DAK range over which the detector is quantum noise limited. For this test, very 

low or high DAK values should not be used because at these doses, the system is 

unlikely to be quantum limited. 
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The size and position of the ROI will influence the measured variance, 

however using a nominal ROI placed at the image center is sufficient for a QC 

measurement. Flynn and Samei (1999) recommended an ROI size of 2 cm x 2 cm, as 

a compromise between small ROI which may be affected by local non-uniformities 

and large ROIs which may be affected by the anode heel effect. The ROI location 

should avoid artifacts in the image. 

Ideally, these images should be inverted via the STP before making 

this measurement (Mackenzie, 2008). Linear system theory states that to make 

meaningful calculations, the system should follow the rules of additivity and 

homogeneity. A system with a STP of a logarithmic or a power law relationship will 

not meet these criteria. The image data can be linearised by applying the inverse of 

the STP to the value of each pixel. For departments without access to software to 

linearise an image pixel-by-pixel, then Mackenzie (2008) provides an alternative 

correction method for correcting noise measurement, which gives acceptable results. 

This test recommended to be undertaken at commissioning; 

subsequently, it can be used to give more information on changes in the noise sources. 

It should be noted that the variance has not been normalized, therefore if there is a 

change in the amplification of the system then the variance should change with the 

amplification.  

4.1.11 Result of Signal to Noise Ratio 

The evaluations of signal to noise ratio for studied CR system were 

presented in Table 4.10. 

Signal to noise ratio is a useful concept for measuring the response of a 

digital detector quantitatively with simple tools. It may give information on system 
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sensitivity and noise properties. SNR is defined as the ratio of the STP corrected 

signal (pixel value) to the STP corrected noise (standard deviation of pixel value).  

 

Table 4.10  Values of mean pixel value, SD and SNR for the evaluating signal to  

noise ratio 

 Mean pixel value SD SNR 

Center of image 480 2.96 162.16 

Center of quadrant I 486 3.55 136.90 

Center of quadrant II 479 3.01 159.14 

Center of quadrant III 478 2.97 160.94 

Center of quadrant IV 492 3.38 145.56 

 

Care is required in SNR measurement, as SNR is strongly affected by 

processing. Any changes in processing may affect the results so consistency in 

selection of processing parameters is important. It is possible to apply processing 

algorithms in such a way that the SNR changes greatly, but the visibility of low 

contrast details is unchanged (Burgess, 1999). 

Although it is reasonable to compare SNR against a baseline for a 

single system, differences in processing mean that it is unwise to use SNR to compare 

different types of system. 

4.1.12 Results of Limiting High Contrast Spatial Resolution 

The assessments of limiting high contrast spatial resolution for studied 

CR system were presented in Table 4.11. 
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The limiting high contrast spatial resolution of 352.0 x 428.0 Imaging 

Plate was 2.87 for scan and sub-scan direction that they were not acceptable level for 

the IPEM Guidance, acceptable level values ≥ 0.70/2 p (3.5 for this study). 

The limiting high contrast spatial resolution of 250.5 x 301.5 Imaging 

Plate was 3.54 for scan and sub-scan direction that they were acceptable level for the 

IPEM Guidance, acceptable level values ≥ 0.70/2 p (3.5 for this study). 

The limiting high contrast spatial resolution of 200.0 x 251.0 Imaging 

Plate was 3.93 for scan and sub-scan direction that they were acceptable level for the 

IPEM Guidance, acceptable level values ≥ 0.70/2 p (3.5 for this study). 

 

Table 4.11  Limiting high contrast spatial resolution 

IP size (cm x cm) Align Pixel pitch (µm) Line pair (mm-1) 

352.0 x 428.0  

45º 100 2.87 

~0º 100 2.87 

~90º 100 2.87 

250.5 x 301.5  

45º 100 3.54 

~0º 100 3.54 

~90º 100 3.54 

200.0 x 251.0  

45º 100 3.93 

~0º 100 3.39 

~90º 100 3.93 

 

Spatial resolution in CR is determined mainly by pixel pitch, as 

determined by the sampling rate of the photomultiplier tube output (scan direction). 

 

 

 

 

 

 

 

 



140 

 

CR readers for general radiography typically use sampling frequencies of 5 to 12 

pixels per mm, giving pixel pitches of 200 to 80 µm and leading to theoretical 

limiting resolutions of 2.5 to 6 line pairs (lp) mm-1. The pixel pitch may be selectable 

by the user or may be linked to the Imaging Plate size. Some systems have a smaller 

pixel pitch of around 40 µm for use in mammography and extremity imaging. The 

pixel pitch can be found in the DICOM header of the image. The limiting resolution 

should approach the Nyquist limit. For smaller pixel pitches, the resolution is often 

below the Nyquist frequency indicating that other blurring processes are limiting the 

spatial resolution. Spatial resolution may also be limited by the display on review 

workstations, particularly if no or limited zoom facilities are available. 

Spatial resolution also depends on the size of the laser beam used to 

read out the Imaging Plate and on the optical characteristics of that Imaging Plate. 

Optical scatter in the phosphor causes the effective size of the laser beam to increase 

with depth. Light emitted deeper in the phosphor will also scatter more before 

reaching the collection system. Therefore, a latent image stored near the surface will 

give better resolution on readout than one stored deeper in the phosphor (Fetterly and 

Hangiandreou, 2001). As lower energy photons deposit their energy closer to the 

surface of the Imaging Plate, limiting spatial resolution should be assessed with a low 

energy X-ray beam. 

A lead resolution grating can be used to quickly assess high contrast 

spatial resolution. It should contain sufficiently fine gratings for the highest sampling 

rate for the Imaging Plates. A Hüttner 43 test object (or equivalent) with line spacings 

up to 10 lp mm-1 may be required. 
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Spatial frequencies above the Nyquist limit appear as lower frequency 

components of the image. This aliasing appears as light and dark bands superimposed 

at various angles across the different grating groups. Only unaliased groups should be 

counted (Albert et al., 2002). 

The limiting resolution should be compared to the Nyquist limit, 

defined at 45º by p2/2  where p  is the pixel pitch. It should also be compared to 

that measured at commissioning and/or any results measured on a similar system 

known to be in good adjustment. Spatial resolution is generally poorer in the scan 

direction. The image should be examined carefully, normally as the bar pattern 

frequency approaches the Nyquist frequency then aliasing appears and makes the 

limiting resolution criteria more difficult. Albert et al. (2002) showed that blurring 

artifacts appear in bands angled to the bar pattern; below the Nyquist frequency, the 

blurring will be in the same direction, and when the bar frequency is greater than the 

Nyquist frequency, the blurring bands will flip by 90º. Honey and Mackenzie (2009) 

also showed a system where no aliasing appeared and the measured resolution was 

below the expected value; this was shown to be due to an incorrectly set low 

frequency filter.  

4.1.13 Result of Laser Beam Function 

The result of laser beam function for studied CR system, a linear fit 

was calculated for the series of edge position value, thus obtaining position of an ideal 

edge with no jitter as shown in Figure 4.6. 

The readout laser beam should scan smoothly across the Imaging Plate. 

Any jitter in its motion will cause artifacts. Likewise, the Imaging Plate should move 

smoothly through the reader. 
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Figure 4.6  Plot of laser beam function for test jitter 

 

4.2 Classification the Noise in Computed Radiography System 

 

                              (a)                                                         (b) 

Figure 4.7  The CR image, (a) and (b), the original image 
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4.2.1 Result of Formation the Original Image  

The original image was adjusted for the lowest noise. Its standard 

deviation is 12.89 as shown in Figure 4.7 (b) and it is compared with CR image, 

the image before adjustment as shown in Figure 4.7 (a). The CR image obtained 

from processing by a CR reader, 10 bit gray scale images with intensity level 0-

1023, but in this study, the lookup table adjusted to the 8 bit image with intensity 

level 0-255. 

4.2.2 Results of Production the Known-Noise 

1) Gaussian Noise 

Image and histogram resulting from adding Gaussian noise to the 

image are shown in Figure 4.8. 

 

                                (a)                                                              (b) 

Figure 4.8  Image of added Gaussian noise to image, (a) and (b), its histogram 

 

2) Rayleigh Noise 

Image and histogram resulting from adding Rayleigh noise to the 

image are shown in Figure 4.9. 
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                                (a)                                                              (b) 

Figure 4.9  Image of added Rayleigh noise to image, (a) and (b), its histogram 

 

3) Gamma Noise 

Image and histogram resulting from adding gamma noise to the 

image are shown in Figure 4.10. 

 

                                 (a)                                                              (b) 

Figure 4.10  Image of added gamma noise to image, (a) and (b), its histogram 
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4) Exponential Noise 

Image and histogram resulting from adding exponential noise to 

the image are shown in Figure 4.11. 

 

                                  (a)                                                              (b) 

Figure 4.11  Image of added exponential noise to image, (a) and (b), its histogram 

 

5) Uniform Noise 

Image and histogram resulting from adding uniform noise to the 

image are shown in Figure 4.12. 

 

                                  (a)                                                              (b) 

Figure 4.12  Image of added uniform noise to image, (a) and (b), its histogram 
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6) Impulse Noise 

Image and histogram resulting from adding impulse noise to the 

image are shown in Figure 4.13. 

 

                                  (a)                                                              (b) 

Figure 4.13  Image of added impulse noise to image, (a) and (b), its histogram 

 

7) Poisson Noise 

Image and histogram resulting from adding Poisson noise to the 

image are shown in Figure 4.14. 

 

                                  (a)                                                              (b) 

Figure 4.14  Image of added Poisson noise to image, (a) and (b), its histogram 
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4.2.3 Results of Adding the Known-Noise in Original Image  

1) Gaussian Noise 

The original image was added Gaussian noise, variable amounts to 

more as shown in Figure 4.15. 

 

Figure 4.15  Images of added Gaussian noise to original image 

 

2) Rayleigh Noise 

The original image was added Rayleigh noise, variable amounts to 

more as shown in Figure 4.16. 

 

Figure 4.16  Images of added Rayleigh noise to original image 
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3) Gamma Noise 

The original image was added gamma noise, variable amounts to 

more as shown in Figure 4.17. 

 

Figure 4.17  Images of added gamma noise to original image 

 

4) Exponential Noise 

The original image was added exponential noise, variable amounts 

to more as shown in Figure 4.18. 

 

Figure 4.18  Images of added exponential noise to original image 
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5) Uniform Noise 

The original image was added uniform noise, variable amounts to 

more as shown in Figure 4.19. 

 

Figure 4.19  Images of added uniform noise to original image 

 

6) Impulse Noise 

The original image was added impulse noise, variable amounts to 

more as shown in Figure 4.20. 

 

Figure 4.20  Images of added impulse noise to original image 
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7) Poisson Noise 

The original image was added Poisson noise, variable amounts to 

more as shown in Figure 4.21. 

 

Figure 4.21  Images of added Poisson noise to original image 

 

Image noise is random (not present in the object imaged) variation 

of brightness or color information in images, and is usually an aspect of 

electronic noise. It can be produced by the sensor and circuitry of a scanner or 

digital camera. Image noise can also originate in film grain and in the 

unavoidable shot noise of an ideal photon detector. Image noise is an undesirable 

by-product of image capture that adds spurious and extraneous information. 

The original meaning of noise was and remains unwanted signal; 

unwanted electrical fluctuations in signals received by AM radios caused audible 

acoustic noise (static). By analogy unwanted electrical fluctuations themselves 

came to be known as noise (Stroebel and Zakia, 1995). Image noise is, of course, 

inaudible (Farooque and Rohankar, 2013). 
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The noisy images, added known-noise and their histogram of this 

study were similar to other (Gonzalez and Woods, 2002).  

4.2.4 Result of Feature Extraction 

The results for feature extraction were presented in Table 4.12. 

 

Table 4.12  The values of feature extraction 

Feature Maximum Minimum Mean SD 

Mean 25.499 17.766 19.100 1.776 

SD 18.120 12.890 13.174 0.615 

MSE 72.636 0.011 7.021 13.149 

PSNR 67.747 29.519 46.109 8.315 

Class = Gaussian (100 instances), Poisson (100 instances), Impulse (100 

instances), Uniform (100 instances), Gamma (100 instances), Exponential (100 

instances), Rayleigh (100 instances) 

 

The noisy images were extracted for features include Mean, SD, 

MSE, and PSNR. The amount each instance was 100 include Gaussian noise, 

Poisson noise, impulse noise, uniform noise, gamma noise, exponential noise, and 

Rayleigh noise. 

4.2.5 Result of Feature Selection 

The results for feature selection were presented in Table 4.13. The 

best subset was {SD, MSE}, the performance estimation was 88.00% and used 

time for modeling was 58.11. It was selected for modeling in the next step. 
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Table 4.13  The values of assessment the subsets for feature selection 

Subset 

Performance estimation 

(%) 

Time 

(s) 

Rank 

{Mean} 52.14 56.17 11 

{SD} 35.86 56.96 15 

{MSE} 44.00 56.75 14 

{PSNR} 44.43 56.25 13 

{Mean, SD} 79.86 58.41 5 

{Mean, MSE} 72.71 59.12 9 

{Mean, PSNR} 78.14 59.40 8 

{SD, MSE} 88.00 58.11 1 

{SD, PSNR} 79.29 58.60 7 

{MSE, PSNR} 45.43 59.23 12 

{Mean, SD, MSE} 87.00 61.64 2 

{Mean, SD, PSNR} 85.14 61.62 3 

{SD, MSE, PSNR} 71.29 61.39 10 

{Mean, MSE, PSNR} 79.43 61.47 6 

{Mean, SD, MSE, PSNR} 84.86 65.59 4 

 

4.2.6 Result of Modeling 

The model for classification the noise in CR image of this study is 

shown in Figure 4.22. 
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Figure 4.22  Model for classified noise 

 

Figure 4.22, the model for classifying the type of noise using MLP 

algorithm, the input layer has 2 nodes, SD and MSE, the hidden layer has 8 

nodes, and output layer has 7 nosed and the number of epochs for modeling was 

30,000 epochs. 

The classifier model of this study is presented in Table 4.14.  
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Table 4.14  Classifier model 

Sigmoid Node Input Weight 

Sigmoid Node 0 

Threshold -4.340293596662199 

Node 7 -32.3001983847927 

Node 8 -54.415574356793826 

Node 9 -53.64998768053294 

Node 10 -0.21753392344493436 

Node 11 -90.60613270681822 

Node 12 89.96138704616507 

Node 13 -27.467025036682383 

Node 14 -104.36743773019245 

Sigmoid Node 1 

Threshold 3.132948353829249 

Node 7 -2.290356052971897 

Node 8 71.14477705681175 

Node 9 -137.52537770522406 

Node 10 -0.32341139016187775 

Node 11 -134.15562653430484 

Node 12 -23.506774526451416 

Node 13 20.53757090863316 

Node 14 -53.97372123162601 
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Table 4.14  Classifier model (Continued) 

Sigmoid Node Input Weight 

Sigmoid Node 2 

Threshold -7.862564320960713 

Node 7 -11.332056135655781 

Node 8 -7.30433886241752 

Node 9 -3.003858945363586 

Node 10 1.4898523533574033 

Node 11 -10.773923307952298 

Node 12 4.1452669583953465 

Node 13 -1.5715334040918654 

Node 14 20.89187298311117 

Sigmoid Node 3 

Threshold 0.7313463812936851 

Node 7 -8.823577293262218 

Node 8 52.794224921884954 

Node 9 -24.270024386466297 

Node 10 -8.155679700658728 

Node 11 7.233495978471042 

Node 12 -82.11982739938247 

Node 13 -51.96902685168895 

Node 14 -29.602048583866623 
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Table 4.14  Classifier model (Continued) 

Sigmoid Node Input Weight 

Sigmoid Node 4 

Threshold 2.4016547726041924 

Node 7 3.9868166426594347 

Node 8 -114.9109377681528 

Node 9 7.879416892279265 

Node 10 -25.60398219861567 

Node 11 2.1719825795285708 

Node 12 -44.50765155249919 

Node 13 8.433638253293662 

Node 14 -21.077406292798265 

Sigmoid Node 5 

Threshold 5.747784402371199 

Node 7 6.967472205782868 

Node 8 -158.43467927580497 

Node 9 56.55611218366482 

Node 10 -8.510803065511306 

Node 11 -63.803706033836455 

Node 12 -86.6279644098854 

Node 13 -30.15111355394148 

Node 14 -57.83075589657358 
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Table 4.14  Classifier model (Continued) 

Sigmoid Node Input Weight 

Sigmoid Node 6 

Threshold -3.6296772483795574 

Node 7 34.202014888602356 

Node 8 -14.794823269203217 

Node 9 7.898978846857413 

Node 10 -263.26633759843065 

Node 11 -29.204523425683874 

Node 12 18.46059278471141 

Node 13 9.214121419411706 

Node 14 9.315186775468174 

Sigmoid Node 7 

Threshold 135.22883664650792 

Attribute SD -28.900734457219887 

Attribute MSE 164.18836801983977 

Sigmoid Node 8 

Threshold -457.50800888175837 

Attribute SD -616.24303234864 

Attribute MSE 57.53336793071455 

Sigmoid Node 9 

Threshold -5.765321365869601 

Attribute SD -76.72642327783892 

Attribute MSE 63.21186282835959 

Sigmoid Node 10 

Threshold 319.2570563688272 

Attribute SD 436.41000459355286 

Attribute MSE -40.11613448796177 
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Table 4.14  Classifier model (Continued) 

Sigmoid Node Input Weight 

Sigmoid Node 11 

Threshold -292.6468676732117 

Attribute SD -489.8711244056743 

Attribute MSE 117.09469060442025 

Sigmoid Node 12 

Threshold 22.521157631446876 

Attribute SD 497.63843863901405 

Attribute MSE -387.8506480607345 

Sigmoid Node 13 

Threshold 79.97927419721971 

Attribute SD 96.25092801695251 

Attribute MSE 3.9898444380867897 

Sigmoid Node 14 

Threshold 1.2190564760491405 

Attribute SD 191.65954735383008 

Attribute MSE -150.59469076305263 

 

The classifier model, full training set consist of sigmoid node 0 

include weight of threshold ( 0w ) and weight of node 7 -14, sigmoid node 1 

include 0w  and weight of node 7 -14, sigmoid node 2 include 0w  and weight of 

node 7 -14, sigmoid node 3 include 0w  and weight of node 7 -14, sigmoid node 4 

include 0w  and weight of node 7 -14, sigmoid node 5 include 0w  and weight of 

node 7 -14, and sigmoid node 6 include 0w  and weight of node 7 -14, sigmoid 

node 7 include 0w  and weight of SD and MSE, sigmoid node 8 include 0w  and 

weight of SD and MSE, sigmoid node 9 include 0w  and weight of SD and MSE, 
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sigmoid node 10 include 0w  and weight of SD and MSE, sigmoid node 11 include 

0w  and weight of SD and MSE, sigmoid node 12 include 0w  and weight of SD 

and MSE, sigmoid node 13 include 0w  and weight of SD and MSE, and sigmoid 

node 14 include 0w  and weight of SD and MSE. 

The evaluation of model is presented in Table 4.15. The Correctly 

classified instance is 93.33%. From Table 4.15, Gaussian noise, the model can be 

classified correctly all 300 instances with no mistakes, Poisson noise can be 

classified correctly 298 instances with 2 mistakes, impulse noise can be classified 

correctly 298 instances with 2 mistakes, gamma noise can be classified correctly 

272 instances with 28 mistakes, uniform noise can be classified correctly 256 

instances with 44 mistakes, exponential noise can be classified correctly 283 

instances with 17 mistakes, and Rayleigh can be classified correctly 253 instances 

with 47 mistakes. 

 

Table 4.15  Cross-validated confusion matrix for classifier 

Classified 

as 

Gaussian Poisson Impulse Gamma Uniform Exponential Rayleigh 

Gaussian 300 0 0 0 0 0 0 

Poisson 2 298 0 0 0 0 0 

Impulse 2 0 298 0 0 0 0 

Gamma 0 0 0 272 0 25 3 

Uniform 0 5 0 27 256 11 1 

Exponential 0 16 0 1 0 283 0 

Rayleigh 0 7 0 27 3 10 253 
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The values of precision, recall and F-measure are presented in  

Table 4.16. 

 

Table 4.16  Detailed accuracy by class 

 Precision Recall F-measure 

Gaussian 0.987 1 0.993 

Poisson 0.914 0.993 0.952 

Impulse 1 0.993 0.997 

Gamma 0.832 0.907 0.868 

Uniform 0.988 0.853 0.916 

Exponential 0.860 0.943 0.900 

Rayleigh 0.984 0.843 0.908 

Weighted average 0.938 0.933 0.933 

 

4.2.7 Results of Model Usage 

The results for specifying the noise in CR images using model for 

this study are presented in Table 4.17. 

The unseen data was classified by model, the procedure consist of: 

Unseen image 1, SD = 13.5312, 9.8992. 

Normalization used equation: 

range

baseattribute
attributeionNormalizat


_                               (4.8) 

2
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range
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                               (4.9) 
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2

min_max_ atributeattribute
base


                              (4.10) 

Attribute SD:                  9865.2
2

383.12356.18



range  

3695.15
2

383.12356.18



base  

6155.0
9865.2

3695.155312.13
_ 


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2

011.0333.74



range  

1720.37
2

011.0333.74



base  

7339.0
1610.37

1720.378992.9
_ 


MSEionNormalizat  

Calculating at Node 7: 

 Summation function:  

{135.2288 + [(-0.6155) x (-28.9007)] + [(-0.7339) x 164.1884]} = 32.5193 

 Activation function: using sigmoid function 

1
1

1
)(

5293.32





e
xf  

Calculating at Node 8: 

 Summation function:  

{(-457.5080) + [(-0.6155) x (-616.2430)] + [(-0.7339) x 57.5334]} = -120.4340 

 Activation function: using sigmoid function 

0
1

1
)(

434.120





e
xf  
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Calculating at Node 9: 

 Summation function:  

{(-5.7653) + [(-0.6155) x (-76.7264)] + [(-0.7339) x 63.2119]} = -4.9314 

 Activation function: using sigmoid function 

01.0
1

1
)(

9314.4





e
xf  

Calculating at Node 10: 

 Summation function:  

{319.2571 + [(-0.6155) x 436.4100] + [(-0.7339) x (-40.1161)]} = 80.0880 

 Activation function: using sigmoid function 

1
1

1
)(

0880.80





e
xf  

Calculating at Node 11: 

 Summation function:  

{(-292.6469) + [(-0.6155) x (-489.8711)] + [(-0.7339) x 117.0947]} = -103.6772 

 Activation function: using sigmoid function 

0
1

1
)(

6772.103





e
xf  

Calculating at Node 12: 

 Summation function:  

{22.5212 + [(-0.6155) x 497.6384] + [(-0.7339) x (-387.8506)]} = 0.8683 

 Activation function: using sigmoid function 

7.0
1

1
)(

8683.0





e
xf  

Calculating at Node 13: 

 Summation function:  
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{79.9793 + [(-0.6155) x 96.2509] + [(-0.7339) x 3.9898]} = 17.8088 

 Activation function: using sigmoid function 

1
1

1
)(

8088.17





e
xf  

Calculating at Node 14: 

 Summation function:  

{1.2191 + [(-0.6155) x 191.6595] + [(-0.7339) x (-150.5947)]} = -6.2259 

 Activation function: using sigmoid function 

0
1

1
)(

3359.6





e
xf  

Calculating at Node 0: Gaussian noise 

 Summation function:  

{(-4.3403) + [1 x (-32.3002)] + 0 + [0.01 x (-53.6500)] + [1 x (-0.2175)] + 0 + 

[0.7 x 89.9614] + [1 x (-27.4670)] + 0} = -1.8885 

 Activation function: using sigmoid function 

13.0
1

1
)(

8885.1





e
xf  

Calculating at Node 1: Poisson noise 

 Summation function:  

{3.1329 + [1 x (-2.2904)] + 0 + [0.01 x (-137.5254)] + [1 x (-0.3234)] + 0 + [0.7 

x (-23.5068)] + [1 x 20.5376] + 0} = 3.2267 

 Activation function: using sigmoid function 

96.0
1

1
)(

2267.3





e
xf  

Calculating at Node 2: Impulse noise 

 Summation function:  
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{(-7.8626) + [1 x (-11.3321)] + 0 + [0.01 x (-3.0039)] + [1 x 1.4899] + 0 + [0.7 x 

4.1453] + [1 x (-1.5715)] + 0} = -16.4046 

 Activation function: using sigmoid function 

0
1

1
)(

4046.16





e
xf  

Calculating at Node 3: Gamma noise 

 Summation function:  

{0.7313 + [1 x (-8.8236)] + 0 + [0.01 x (-24.2700)] + [1 x (-8.1557)] + 0 + [0.7 x 

(-82.1198)] + [1 x (-51.9690)] + 0} = -125.9436 

 Activation function: using sigmoid function 

0
1

1
)(

9436.125





e
xf  

Calculating at Node 4: Uniform noise 

 Summation function:  

{2.4017 + [1 x 3.9868] + 0 + [0.01 x 7.8794] + [1 x (-25.6040)] + 0 + [0.7 x  

(-44.5077)] + [1 x 8.4336] + 0} = -41.8585 

 Activation function: using sigmoid function 

0
1

1
)(

8585.41





e
xf  

Calculating at Node 5: Exponential noise 

 Summation function:  

{5.7478 + [1 x 6.9675] + 0 + [0.01 x 56.5561] + [1 x (-8.5108)] + 0 + [0.7 x  

(-86.6280)] + [1 x (-30.1511)] + 0} = -86.0206 

 Activation function: using sigmoid function 

0
1

1
)(

0206.86





e
xf  
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Calculating at Node 6: Rayleigh noise 

 Summation function:  

{(-3.6297) + [1 x 34.2020] + 0 + [0.01 x 7.8990] + [1 x (-263.2663)] + 0 + [0.7 x  

18.4606] + [1 x 9.2141] + 0} = -210.4785 

 Activation function: using sigmoid function 

0
1

1
)(

4785.210





e
xf  

The value of activation function from node 1 was highest thus the 

noise in unseen image 1 was Poisson. 

 

Table 4.17  Specifying the noise in CR images 

 Exposure Technique SD MSE Classification 

Unseen 1  (50 kVp, 3.2 mAs) 13.5312 9.8992 Poisson 

Unseen 2  (50 kVp, 6.2 mAs) 13.3180 6.5987 Poisson 

Unseen 3  (55 kVp, 6.2 mAs) 13.1208 3.5384 Poisson 

Unseen 4  (60 kVp, 6.2 mAs) 13.0947 3.1695 Poisson 

Unseen 5  (65 kVp, 6.2 mAs) 13.0375 2.2541 Poisson 

Unseen 6  (70 kVp, 6.2 mAs) 13.0087 1.8457 Poisson 

Unseen 7  (75 kVp, 6.2 mAs) 12.9783 1.0247 Gaussian 

Unseen 8  (80 kVp, 6.2 mAs) 12.8984 0.1045 Gaussian 

 

Table 4.17, the unseen data was classified by model include Unseen 1 is 

Poisson noise, Unseen 2 is Poisson noise, Unseen 3 is Poisson noise, Unseen 4 is 

Poisson noise, Unseen 5 is Poisson noise, Unseen 6 is Poisson noise, Unseen 7 is 

Gaussian noise, and Unseen 8 is Gaussian noise. 
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4.3 The Algorithm for De-noising 

4.3.1 Results of Reduced Poisson Noise 

 

Table 4.18  Comparison of MSE, PSNR and Correlation for Poisson noise  

de-noised by filters 

Filters MSE PSNR Correlation 

Weiner filter 0.4787 51.3305 0.9970 

Median filter 0.9239 48.4747 0.9860 

Average filter 0.8055 49.0703 0.9919 

Gaussian filter 0.6953 49.7091 0.9926 

 

Table 4.18, the MSE, PSNR, and Correlation values resulting from 

different filters. The result showed that Weiner fitter was more efficient for 

removing Poisson noise, but the performance of Gaussian filter was also good 

enough for Poisson noise. 

 

Table 4.19  Comparison of MSE, PSNR and Correlation for Gaussian noise  

de-noised by filters 

Filters MSE PSNR Correlation 

Weiner filter 1.9821 45.1597 0.9890 

Median filter 5.6413 40.6170 0.9583 

Average filter 4.0103 42.0990 0.9742 

Gaussian filter 3.1082 43.2057 0.9793 
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4.3.2 Results of Reduced Gaussian Noise 

Table 4.19, the MSE, PSNR, and Correlation values resulting from 

different filters. The result showed that Weiner fitter was more efficient for 

removing Poisson noise, but the performance of Gaussian filter was also good 

enough for Poisson noise. 

4.3.3 Results of the Prototype Program 

1) Fuzzy Filter for Creating the Original Image 

The fuzzy rule for creating the original image was used for 

calculating the matrix size of Wiener filter for de-noising. Example, the image, 

SD was 13 then the fuzzy rule calculated the matrix size as 7.09, as shown in 

Figure 4.23. 

 

Figure 4.23  Rule viewer of creating original image 
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2) MLP Classification 

The model for classifying noise was used for specifying the 

Gaussian noise or Poisson noise, as shown in Figure 4.24 and the correctly 

classified instances = 99.83%. 

 

Figure 4.24  Rule viewer for classification 

 

Table 4.20  Cross-validated confusion matrix for classifier 

Actual/ 

Predicted 

Gaussian Poisson Total Recall 

Gaussian 300 0 300 1 

Poisson 1 299 300 0.997 

Total 301 229 600  

Precision 0.997 1   

 

Table 4.20, the F-Measure of Gaussian was 0.998 that it was 

calculated by  

 

 

 

 

 

 

 

 



169 

 

RecallPrecision

Precision)1(
MeasureF

2

2








, where 1  

10.997

0.997)2(
MeasureF




  = 0.998. 

The F-Measure of Poisson was 0.998 that it was calculated by  

RecallPrecision

Precision)1(
MeasureF

2

2








, where 1  

0.9971

1)2(
MeasureF




  = 0.998. 

 

3) Fuzzy Filter for Poisson Noise 

The fuzzy rule for filtering the Poisson noise was used for 

calculating the matrix size of Wiener filter for de-noising. Example, the image, 

SD was 13.5 and MSE was 0.591 then the fuzzy rule calculated the matrix size as 

13.2, as shown in Figure 4.25. 

 

Figure 4.25  Rule viewer of filtering Poisson noise 
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4) Fuzzy Filter for Gaussian Noise 

The fuzzy rule for filtering the Gaussian noise was used for 

calculating the matrix size of Wiener filter for de-noising. Example, the image, 

SD was 13 and MSE was 5 then the fuzzy rule calculated the matrix size as 7.17, 

as shown in Figure 4.26. 

 

Figure 4.26  Rule viewer of filtering Gaussian noise 

 

4.4 Hypothesis Testing 

 4.4.1 Result of De-noised CR image Using Prototype Program 

1) Fuzzy Filter for Create Original Image 

The SD of CR image was 13.6724 then the fuzzy filter was 

calculated the matrix size, it was 31.2, as shown in Figure 4.27. The approximate 

original image was produced by using Wiener filter, using neighborhoods of size 

31.2 x 31.2. 
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Figure 4.27  Rule viewer for calculating matrix size 

 

2) MLP Classification 

The MSE was 0.4775 and the SD was 13.6724, when they were 

classified by model that the result was Gaussian noise. 

3) De-noising 

The SD of CR image was 13.6724 and the MSE of CR image was 

0.477 then the fuzzy filter was calculated the matrix size, it was 14.5, as shown in 

Figure 4.28. The fuzzy filter for de-noising was produced by using Wiener filter, 

using neighborhoods of size 14.5 x 14.5. 
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Figure 4.28  Rule viewer for de-noising 

 

The values of de-noising image, the MSE value was 0.2822, the 

PSNR value was 53.6247 and the correlation value was 0.9972. 

 4.4.2 Result of De-noised CR image Using Vendor’s Software 

The CR image was de-noised by Vendor’s software that the values of 

de-noising image, the MSE value was 0.4699, the PSNR value was 51.4110 and 

the correlation value was 0.9871. 

In this study, the recalls for the classification of types of noise in the CR 

system are greater than 80% and the prototype software can be de-noised greater than 

the software currently available on the market when compared MSE, PSNR, and 

correlation. 
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CHAPTER 5 

CONCLUSIONS AND RESEARCH 

RECOMMENDATIONS 

 

The final chapter presents a summary of this study. It begins with 

describing the summary of the research findings. Then the limitations of the study 

are explained. Next, we explain the applications of the study. Finally, there are 

some suggestions for further studies. 

 

5.1 Summary of the Research Findings 

The objectives of this study were to develop an algorithm for the 

specification of the type of noise in the CR system, applying the appropriate algorithm 

for reducing noise in CR images, and creating a prototype software for de-noising in 

CR images. We propose commissioning and routine quality control of computed 

radiography for performing quality of CR system using guidelines provided by the 

Institute of Physics and Engineering in Medicine. Then, the algorithm for 

classification was developed for specifying the type of noise in the CR images using a 

neural network and a multilayer perceptron algorithm. Finally, the algorithms were 

applied for reducing specific noises and a prototype program was created for de-

noising. 

The research findings are summarized as follows: 
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5.1.1 Summary of Commissioning and Routine Quality Control of CR 

(1) The mAs values for dosimetry were set for each air kerma that 

was used for performance and as a referent for the CR system.  

(2) For the calibration of CR unit DDI, the percent differences for the 

values of 352.0 cm x 428.0 cm, 250.5 x 301.5 cm, and 200.0 x 251.0 cm Imaging 

Plates are acceptable (IPEM, 2010). The accuracy of the DDI for a particular Imaging 

Plate size was shown a difference of 20%. 

(3) For the STP and DDI with standard factors, the relation of STP 

functions of 352.0 cm x 428.0 cm, 250.5 cm x 301.5 cm, and 200.0 cm x 251.0 cm 

Imaging Plates between the mean pixel value and the DAK are logarithm response 

that reveals they have a simple relationship (IPEM, 2010). 

(4) For DDI Repeatability, the values of the Coefficient of Variation of 

DDI are less than 10% which is acceptable (IPEM, 2010). 

(5) For the matching of CR Imaging Plates, the mean of DDI for 352.0 

cm x 428.0 cm Imaging Plates in the batch was 10.07 µGy and the DDI of IP was 

nearest the mean so it was chosen for future QC performances. The mean of DDI for 

250.5 cm x 301.5 cm Imaging Plates in the batch was 10.51 µGy and the DDI of IP 

was nearest the mean so it was chosen for future QC performances. The mean of DDI 

for 200.0 cm x 251.0 cm Imaging Plates in the batch was 10.07 µGy and the DDI of 

IP was nearest the mean so it was chosen for future QC performances. The DDI 

values of all Imaging Plate sizes are acceptable, the specified tolerance, DDI varies by 

< 20% between Imaging Plates (IPEM, 2010). 

(6) Differences between CR readers, the CV values of DDI, the 

differences between 3 CR readers are less than 20% which are acceptable (IPEM, 
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2010) for DDI of differences between CR readers, FCR PROFECT, FCR XG5000 

and FCR CAPSULA. 

(7) Dark noise was found to have values below the specified tolerance 

for the Fuji CR reader, the specified tolerance, pixel value < 280 (IPEM, 2010). 

(8) For measured uniformity, we found values below the specified 

tolerance for the IPEM Guidance, the specified tolerance, STP corrected ROI values 

within mean ±10% (IPEM, 2010). 

(9) For erasure cycle efficiency, the results of the experiment show that 

there was no evidence of any “ghosting” on the second image for FCR PROFECT. Its 

light source could be used for erasing any longer. 

(10) Variation of noise with detector air kerma, the relationship of 

variance and DAK is power response and the trend-line is not very good fit to the 

data. The measure of variance is useful indicator of noise in the images. The noise 

performance of the detector can be checked by plotting the variance of pixel values as 

a function of DAK. 

(11) Signal to noise ratio is a useful concept for measuring the response 

of a digital detector quantitatively with simple tools. It may give information on 

system sensitivity and noise properties. In this study, the SNR values were 162.16 at 

the center of image, 136.90 at the center of quadrant I, 159.14 at the center of 

quadrant II, 160.94 at the center of quadrant III, and 145.56 at the center of quadrant 

IV. 

(12) When limiting the high contrast spatial resolution, the results of 

250.5 x 301.5 and 200.0 x 251.0 Imaging Plates were 3.54 and 3.93 for scan and sub-

scan direction which is an acceptable level according to the IPEM Guideline, and 

 

 

 

 

 

 

 

 



176 

 

which are acceptable level values ≥ 3.5 for this study (IPEM, 2010). The results of 

352.0 x 428.0 Imaging Plate were 2.87 for scan and sub-scan directions which are not 

an acceptable level according to the IPEM Guideline. 

(13) For the laser beam function, the results from studying the CR 

system, a linear fit was calculated for the series of edge position values, thus obtaining 

the position of an ideal edge with no jitter. 

5.1.2 Summary of Classification the Noise in CR System  

In this study, the noises were generated in seven types which include 

Gaussian, Poisson, gamma, exponential, impulse, uniform, and Rayleigh. Their 

images and histograms were the same as those of Gonzalez and Woods (2002). The 

features were extracted from noisy images including the Mean, Standard Deviation 

(SD), Mean Square Error (MSE), and Peak Signal to Noise Ratio (PSNR), however, 

the features used only SD and MSE from the process of feature selection. They were 

used for modeling so that the seven noises in the CR images could be classified using 

the rule bases of multilayer perceptron (MLP) (Floreano and Mattiussi, 2008; 

Gonzalez and Woods, 2002). The results for specifying the noise in CR images 

using the model for this study revealed unseen data which were classified according 

to the Poisson noise type. However, the Gaussian noise type was specified when the 

high exposure was set at 75 kVp, 6.2 mAs and 80 kVp, 6.2 mAs, respectively. 

5.1.3 Summary of Algorithm for De-noising 

The CR images for added Poisson noise were de-noised by filters, 

Weiner, Median, Average, and Gaussian and when compared to MSE, PSNR and 

correlation it was found that the Weiner fitter was more efficient for removing the 

noise (Charhar and Thakare, 2015). The CR images for added Gaussian noise were 
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de-noised by filters and when compared to MSE, and PSNR, it was found that the 

correlation with the Weiner fitter was more efficient for removing the noise 

(Charhar and Thakare, 2015).  

The prototype program was created for de-noising CR image. Firstly, the 

original image was created and then the fuzzy filter was calculated for matrix size of 

Wiener filter. Next, the CR image was classified according to the model using the 

multilayer perceptron. Lastly, if the noise in the CR image is of the Poisson type, the 

fuzzy rule for filtering the Poisson noise will be used for calculating the matrix 

size of Wiener filter for de-noising. If the noise in the CR image is Gaussian, the 

fuzzy rule for filtering the Gaussian noise will be used for calculating the matrix 

size of Wiener filter for de-noising. In this study, the prototype software was able to 

de-noise to a greater extent than the software currently available on the market when 

compared to MSE, PSNR, and correlation. 

 

5.2 The Limitation of the Study 

 The limitations of the development of a noise reduction model for a 

computed radiography system are as follows. 

(1) The study for commissioning and routine quality control of CR, IPEM 

Guidance was performed for dosimetry, calibration of CR unit DDI, signal transfer 

property and DDI with standard factors, DDI repeatability, matching of CR Imaging 

Plates, differences between CR readers, dark noise, measured uniformity, erasure 

cycle efficiency, variation of noise with detector air kerma, signal to noise ratio, 

limiting high contrast spatial resolution, and laser beam function. Nevertheless, this 

study was not able to conduct some experiments, such as threshold contrast detail 
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detectability, blurring, scaling errors, and Moire patterns and anti-scatter grids, 

because of a lack of suitable equipment. 

(2) This research used phantom instead of patients. The TOR CDR 

phantom was exposed to radiography for this study. The original image was 

processed from retouching software and it assumed a noiseless image. The noises, 

Gaussian noise, Rayleigh noise, gamma noise, exponential noise, uniform noise, 

impulse noise, and Poisson noise were generated from MATLAB commands that 

were used instead of the noise in the CR images.  

(3) The prototype program created an approximate image instead of 

using the original image. This research used the spatial domain for creating the 

fuzzy filters for de-noising and it also studied gray scale images. 

 

5.3 The Application of the Study 

 This research demonstrates the following benefits:  

 It can be used for commissioning and routine quality control of CR and as a 

referent for quality control of CR systems in the future and for comparison with 

other CR systems. These experiments can be studied by technical experts or 

physicists.  

 The noise in the CR images was specified as Poisson and Gaussian noises 

then they were de-noised by using the appropriate software. The algorithms could 

be used for de-noising so that the CR images enhanced accuracy for diagnoses. 

This will provide great benefits to patients. 

The algorithms for modeling of part classification could be applied for 

resolve problems concerning the diagnoses of patients in hospital. 
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 The prototype software for de-noising CR images could be applied for de-

noising other types of noise, such as in Digital Radiography (DR) images, 

Computed Tomography (CT) images, Magnetic Resonance Imaging (MRI), 

Nuclear Medicine images, and digital images. 

 

5.4 Recommendations for Further Study 

 There are some possible improvements that we would like to recommend 

for the near future as described below: 

(1) The commissioning and routine quality control of CR uses the 

guidance of the American Association of Physicists in Medicine (AAPM) for 

comparison with the Institute of Physics and Engineering in Medicine (IPEM) 

guidance. The DR system and others should be used for quality control. 

(2) The algorithms for classification the noise in the CR images can be 

applied, such as changing the type of noise for modeling, the amount of known-

noise types could be increased or decreased to appropriate amounts, the model of 

multilayer perceptron could be applied for use with other problems, such as a 

model to diagnose the X-ray image instead of a physician, and the model could 

also be used for the selection of X-ray images which could lead to the rejection of 

a diagnosis. 

(3) The prototype software could be applied, such as the software de-

noised in the color images, the software de-noised in the ultrasound images, the 

algorithms used other techniques, for example, Naïve Bayes, Neuro fuzzy for 

classification, de-noising in frequency domain or wavelet transforms. 
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