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CHAPTER I

INTRODUCTION

The theorem which concerns the physical results and conservation laws

is Noether’s theorem (Noether, 1918). In 1918, Emmy Noether established a

fundamental theorem of physics which gives a connection between the symmetries

of a physical system with a Lagrangian and the conservation laws for the associated

Euler-Lagrange equations. The application of Noether’s theorem depends on the

following two conditions:

1. The differential equations (DEs) under consideration must be derived from

a variational principle, i.e., they are Euler-Lagrange equations.

2. The symmetries must leave the variational integral invariant.

The latter implies that not every symmetry of the DEs can generate a

conservation law through Noether’s theorem. Therefore a suitable Lagrangian of

the differential equations is needed for application of Noether’s theorem. There are

some differential equations which have no Lagrangian; that means the differential

equations have no a variational principle. Some approaches were developed to

overcome of the limitations of Noether’s theorem. These developed methods use

a formula which directly generates the conservation laws and does not require the

existence of a Lagrangian. The most elementary method is the direct method. This

method was first used by Laplace (1798) to derive the well-known Laplace vector of

the two-body Kepler problem. The direct method is applicable to any differential

equation with or without Lagrangian and the construction of conservation laws

through the direct method is computationally more straightforward than Noether’s
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theorem. Bluman, Cheviakov and Anco (2010) and Anco and Bluman (1997,

2002) derived a direct method to construct the conservation laws and applied it to

systems of equations that do not admit a variational principle. Ibragimov (1985)

and Bluman, Temuerchaolu, and Anco (2006) showed how to directly obtain a new

conservation law from a known conservation law through the action of admitted

symmetries, a contact transformation.

Ibragimov (2007a, 2007b, 2011) proved a new theorem for constructing con-

servation laws where the existence of a Lagrangian is not required. This theorem

is based on the concept of the adjoint equation and he also proved that the ad-

joint equation admits all symmetries of the original equation which allows the use

of Noether’s theorem. He also applied his conservation law approach to the gas

dynamics equations (Ibragimov, 2007b).

There is extensive literature developing methods to use Noether’s theorem

to derive conservation laws of differential-difference equations, see more details in

Webb and Mace (2014), Webb and Zank (2007,2009), Webb (2015) and Ibragimov

(2007b). One of the important model in continuum mechanics is the gas dynamics

equations. The gas dynamics equations are defined by the well-known conservation

laws: mass, momentum and energy conservation laws. The gas dynamics equations

still attract attention of researchers to derive conservation laws by applying a

variety of approaches combining with Noether’s theorem.

Webb and Zank (2007) presented the role of the Lagrangian map for Lie

symmetries in magnetohydrodynamics (MHD) and gas dynamics by converting

the Eulerian Lie point symmetries of the Galilei group to Lagrange label space.

They determined the conditions for the symmetries to be a variational symmetry

of the action and Noether’s theorem is used to obtained the corresponding conser-

vation laws in Eulerian and Lagrangian form. Moreover, Webb and Zank (2009)

investigated conservation laws associated with the scaling symmetries of the one-
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dimensional ideal gas dynamic equations and Sjöberg and Mahomed (2004) showed

that new conservation laws of one-dimensional gas dynamics can be generated from

non-local symmetries. Webb and Mace (2014) applied Noether’s theorem to in-

vestigate conservation laws in magnetohydrodynamics (MHD) and gas dynamics

by using Lagrange multipliers. In 2015, Webb (2015) applied the Lagrangian map

to obtain the conservation laws of the gas dynamics equations and the Clebsch

representation is used to transform the conservations laws into the simple form.

In this thesis we consider a class of dispersive models.

ρ̇+ ρ div(u) = 0, ρu̇+∇p = 0, Ṡ = 0,

p = ρ δW
δρ

−W = ρ
(
∂W
∂ρ

− ∂
∂t

(
∂W
∂ρ̇

)
− div

(
∂W
∂ρ̇
u
))

−W,
(1.1)

where t is time, ∇ is the gradient operator with respect to the space vari-

ables, ρ is the fluid density, u is the velocity field, p is the pressure, S is the

entropy and W (ρ, ρ̇, S) is a given potential, the “dot” denotes the material time

derivative: ḟ = df
dt

= ft + u∇f , and δW
δρ

denotes the variational derivative

of W with respect to ρ at a fixed value of u.

The model (1.1) was derived by Gavrilyuk and Shugrin (1996) and Gavri-

lyuk and Teshukov (2001) using the Lagrangian

L = ρ
u2

2
−W (ρ, ρ̇, S). (1.2)

In this paper (Gavrilyuk and Teshukov, 2001), it was proven that these

models include the non-linear one-velocity model of a bubbly fluid (with incom-

pressible liquid phase) at small volume concentration of gas bubbles (Iordanski,

1960; Kogarko, 1961, Wijngaarden, 1968) and the dispersive shallow water model

(Green and Naghdi, 1976; Salmon,1998), where W = W (ρ, ρ̇). For the Green-

Naghdi model,

W (ρ, ρ̇) =
1

2
gρ2 − 1

6
ρρ̇2,
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where g is the gravity and ρ is the height of a free surface. Here and below,

“ −̇ ” denotes the material time derivative. There has been an increasing num-

ber of studies of properties of the Green-Naghdi system in recent years. For the

Iordanski-Kogarko-Wijngaarden model,

W (ρ, ρ̇) = ρ(c2ε(ρ20)− 2πρ10R
3Ṙ2),

where ρ10 and ρ20 are the physical densities of the liquid and gas components,

respectively, c2 is the mass concentration of the gas component, R is the bubble

radius and ε is the internal energy of a gas component. The physical density

of a gas component ρ20 and the bubble radius R are related with the average

density ρ by the formulae

4

3
πnR3 =

1

ρ
− β, ρ20 = c2

(
1

ρ
− β

)−1

.

Here the physical density of the liquid component ρ10, the number of bubbles

per unit mass n, and β = (1− c2)ρ
−1
10 are constant. Notice that if one assumes

that the behavior of a gas component is not isentropic, then ε2 = ε(ρ20, S) and

the potential function is W =W (ρ, ρ̇, S).

The class of dispersive models (1.1) is an example of a medium whose be-

havior depends not only on thermodynamical variables but also on their derivatives

with respect to space and time. In this particular case the potential function de-

pends on the total derivative of the density, which reflects the dependence of the

medium on its inertia.

The first model that this thesis is focused are the one-dimensional gas dy-

namics equations, in particular, the potential function is determined by the con-

dition Wρ̇ = 0,

ρ(ut + uux) + px = 0, ρt + uρx + ρux = 0, St + uSx = 0. (1.3)
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The second class of models which is analysed in the thesis are the shallow

water equations which correspond to the potential W = γ1ρ
2−γρρ̇2. In particular,

the potential for classical hyperbolic shallow water equations is determined by the

condition γ = 0.

The main aim of the thesis is to derive the conservation laws for (1.1) in

Lagrangian coordinates: the one-dimensional gas dynamics equations, the hyper-

bolic shallow water equations and the Green-Naghdi model, by using Noether’s

theorem. The Lagrangian map is applied in order to construct the Euler-Lagrange

equations using a suitable Lagrangian. The group analysis method is used for find-

ing the admitted Lie group of the Euler-Lagrange equations and the variational

integral must be invariant under the action of this admitted symmetry. Finally,

Noether’s theorem is allowed to be applied for constructing conservation laws for

these three models.

It is also worth mentioning that Webb and Zank (2007, 2009) derived con-

servation laws of the one-dimensional gas dynamics equations in Lagrangian coor-

dinates by Noether’s theorem. However they did not study all admitted generators,

they only considered generators converted from the generators admitted by the gas

dynamics equations in Eulerian coordinates.

The structure of this thesis is as follows. In Chapter II a review of Lie group

analysis which is necessary for this study is provided. Noether’s theorem, Noether’s

identities and variational principle concepts are given in Chapter III. Computation

procedures including the three approaches, i.e. Shmyglevskii’s approach, Ibragi-

mov’s approach and Lagrangian’s approach, which satisfy the variational principle

and the obtained Euler-Lagrange equation are performed in Chapter IV. Chapter

V shows how one can apply group analysis to the Euler-Lagrange equation (in

Lagrangian coordinate). The group classification of the Euler-Lagrange equation

with respect to the arbitrary pressure function P = P (X,φX) with the restric-
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tions PX ̸= 0, and PφX
< 0 is presented. Noether’s theorem is allowed to be ap-

plied for constructing conservation laws for the equations of fluids. The results of

conservation laws of the gas dynamics equations and the hyperbolic shallow-water

equations are shown in Chapter VI. Chapter VII provides the group classification

of fluids with internal inertia (1.1), and conservation laws of the Green-Naghdi

model in Lagrangian coordinates are presented there. A summary and discussion

are summed up in the final Chapter VIII.

 

 

 

 

 

 

 

 



CHAPTER II

GROUP ANALYSIS

Sophus Lie (1842-1899) was a Norwegian mathematician who applied the

theory of continuous transformation groups to the theory of differential equations

which then gave rise to the modern theory of the so-called Lie groups. He showed

that the Lie groups of point transformations leaving invariant a differential equa-

tion, i.e., point symmetries of a differential equation, reduced to solving related

linear systems of determining equations for its infinitesimal generators. He also

showed that a point symmetry of a differential equation in the case of the nth-

order ordinary differential equation would reduce its order to n−1, and in the case

of a partial differential equation would find special solutions is called invariant

solutions.

This chapter introduces basic background knowledge of Lie groups which

is necessary for the later chapters. The mathematical tools of this method are

provided in Ovsiannikov (1978) and Ibragimov (1985, 1994, 1999). Many examples

and results with applications of this method are collected in the the Handbooks

of Lie Group Analysis of differential equation (Ibragimov, 1994).

2.1 Local Lie group of transformations

Let V be an open set in Z = RN , ∆ be a symmetric interval in R1. The

invertible point transformations are presented as

z̄i = gi(z; a), (2.1)

where i = 1, 2, ..., N , z ∈ V ⊂ Z and the parameter a ∈ ∆.
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For differential equations the variables z is separated into two parts, z =

(x, u) ∈ V ⊂ Z, where Z = Rn × Rm, N = n + m. Here, x = (x1, x2, ..., xn) is

the n-tuples of the independent variables and u = (u1, u2, ..., um) is the m-tuples

of the dependent variables. By the notations given above, the invertible transfor-

mations of the equation (2.1) are represented as

x̄i = φi(x, u; a), ūj = ψj(x, u; a) (2.2)

where i = 1, 2, ..., n, j = 1, 2, ...,m, (x, u) ∈ V.

2.1.1 Local one-parameter Lie group of transformations

Definition 1. A set of transformations of equation (2.1) is a local one-parame-

ter Lie group G if it has the following properties:

(1) g(z; 0) = z for all z ∈ V,

(2) g(g(z; a), b) = g(z; a+ b) for all a, b, a+ b ∈ ∆, z ∈ V,

(3) If a ∈ ∆ and g(z; a) = z for all z ∈ V, then a = 0,

(4) g ∈ C∞(V,∆).

The group property is valid only locally, i.e., only for |a| and |b| sufficiently

small. In group analysis, G is referred to as a local one-parameter Lie group of

transformations. For brevity, it will be simply called a Lie group or a group.

Transformations (2.2) are called point transformations, and the group G is

called a group of point transformations.

The representation of the functions φi(x, u; a) and ψj(x, u; a) are given as

follows:

x̄i = φi(x, u; a) ≈ xi + ξi(x, u)a, ūj = ψj(x, u; a) ≈ uj + ηj(x, u)a, (2.3)

where

ξi(x, u) =
∂φi(x, u; a)

∂a

∣∣∣∣
a=0

, ηj(x, u) =
∂ψj(x, u; a)

∂a

∣∣∣∣
a=0

. (2.4)
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Consider the first-order differential operator

X = ξi(x, u)∂xi + ηj(x, u)∂uj , (2.5)

where i and j are repeated indexes which mean a summation of terms with respect

to i from i = 1 to n and with respect to j from j = 1 to m, respectively. This

operator X is called an infinitesimal generator or a generator of the Lie group of

transformations (2.2), and the terms infinitesimal operator, group operator, group

generator, and Lie operator can be used interchangeably. The functions ξi, ηj are

called the coefficients of the generator.

For a given infinitesimal transformation (2.3), a corresponding group is

completely determined by the Cauchy problem of a system of ordinary differential

equations, called Lie equations :

dφi

da
= ξi(φ, ψ), φi

∣∣
a=0

= xi

dψj

da
= ηj(φ, ψ), ψj

∣∣
a=0

= uj.

(2.6)

There is a one-to-one correspondence between Lie groups of transformations and

infinitesimal generators.

2.2 Prolongation of a Lie group

The space Z = Rn × Rm is prolonged by introducing the additional vari-

ables p = (pkα). Here α = (α1, α2, ..., αn) is a multi-index, and the notations |α| ≡

α1 + α2 + ... + αn and α,i≡ (α1, α2, ..., αi−1, αi + 1, αi+1, ..., αn) are used. The

variable pkα plays the role of a derivative,

pkα =
∂|α|uk

∂xα
=

∂|α|uk

∂xα1
1 ∂x

α2
2 ...∂x

αn
n

.

The space J l of the variables :

x = (xi), u = (uk), p = (pkα),
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for i = 1, 2, ..., n; k = 1, 2, ...,m; |α| ≤ l is called an l-th prolongation of the

space Z. This space can be provided with a manifold structure. For convenience

one agrees that J0 ≡ Z.

Let the infinitesimal generator

X = ξi(x, u)∂xi + ηj(x, u)∂uj (2.7)

be an infinitesimal generator of a Lie group of transformations of equation (2.2).

Definition 2. The generator

X l = X +
∑
j,α

ηjα∂pjα , (j = 1, ...,m, |α| ≤ l), (2.8)

with the coefficients

ηjα̃,k = Dkη
j
α̃ −

∑
i

pjα̃,iDkξ
i, (|α̃| ≤ l − 1) (2.9)

is called the l-th prolongation of the generator X. The operators

Dk =
∂

∂xk
+
∑
j,α

pjα,k
∂

∂pjα

are operators of the total derivatives with respect to xk, (k = 1, ..., n).

A simple example for using the prolongation formula given by equation

(2.8) is illustrated for n = m = 1. In this case, the generator X1 includes a

local Lie group of transformations in the space J1 :

x̄ = φ(x, u ; a), ū = ψ(x, u ; a), p̄ = f(x, u, p ; a), (2.10)

with the generator

X1 = ξx(x, u)∂x + ηu(x, u)∂u + ζp(x, u, p)∂p , (2.11)

where

ζp = Dx(η
u)− pDx(ξ

x), p =
du

dx
. (2.12)
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To derive the coefficients of the prolonged operator presented in (2.12), one

formulates it through the following process.

Let a function u = u0(x) be given. Substituting it into the first part of

equation (2.10), one obtains

x̄ = φ(x, u0(x) ; a).

Since φ(x, u0(x) ; 0) = x, then the Jacobian at a = 0 is

∂x̄

∂x

∣∣∣
a=0

=
(∂φ
∂x

+
∂φ

∂u

du0
dx

)∣∣∣
a=0

= 1.

By virtue of the inverse function theorem, in some neighborhood of a = 0, one

can express x as a function of x̄ and a,

x = ϕ(x̄, a). (2.13)

Note that after substituting (2.13) into (2.10), one has the identity:

x̄ = φ(ϕ(x̄, a), u0(ϕ(x̄, a)); a). (2.14)

The transformed function ua(x̄) is presented as follows

ua(x̄) = ψ(ϕ(x̄, a), u0(ϕ(x̄, a)); a). (2.15)

Differentiating the function ua(x̄) with respect to x̄, one finds :

ūx̄ =
∂ua
∂x̄

(x̄) =
∂ψ

∂x

∂ϕ

∂x̄
+
∂ψ

∂u

du0
dx

∂ϕ

∂x̄
=
(∂ψ
∂x

+
∂ψ

∂u
u′0

)∂ϕ
∂x̄
.

Next, differentiating (2.14) with respect to x̄, one gets

1 =
∂φ

∂x

∂ϕ

∂x̄
+
∂φ

∂u

du0
dx

∂ϕ

∂x̄
=
(∂φ
∂x

+
∂φ

∂u
u′0

)∂ϕ
∂x̄
.

Since φ(x, u0(x); 0) = x, then

∂φ

∂x
(ϕ(x̄, 0), u0(ϕ(x̄, 0)); 0) = 1
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and

∂φ

∂u
(ϕ(x̄, 0), u0(ϕ(x̄, 0)); 0) = 0,

one has ∂φ
∂x

+ ∂φ
∂u
u′0 ̸= 0 in some neighborhood of a = 0. Thus,

∂ϕ

∂x̄
=
(∂φ
∂x

+
∂φ

∂u
u′0

)−1

,

and then

ūx̄ =
(∂ψ
∂x

+
∂ψ

∂u
u′0

)(∂φ
∂x

+
∂φ

∂u
u′0

)−1

= g(x, u0, u
′
0; a). (2.16)

The transformation as shown in equation (2.10) together with :

ūx̄ = g(x, u, u′; a), and p̄ =
dū

dx̄

is called the prolongation of transformation (2.10). Now, one defines the coefficient

ζp as follows:

ζp(x, u, p) =
∂g(x, u, p; a)

∂a

∣∣∣∣
a=0

, g
∣∣
a=0

= p. (2.17)

Therefore equation (2.16) is rewritten as

g(x, u, p; a)
(∂φ(x, u; a)

∂x
+ p

∂φ(x, u; a)

∂u

)
=
(∂ψ(x, u; a)

∂x
+ p

∂ψ(x, u; a)

∂u

)
.

Differentiating the latter equation with respect to the group parameter a and

then substituting a = 0, one finds :

(∂g
∂a

(∂φ
∂x

+ p
∂φ

∂u

)
+ g
( ∂2φ

∂x∂a
+ p

∂2φ

∂u∂a

))∣∣∣
a=0

=
( ∂2ψ
∂x∂a

+ p
∂2ψ

∂u∂a

)∣∣∣
a=0

.

Since
(
∂φ
∂x

+ p∂φ
∂u

)∣∣∣
a=0

= 1, the above equation can be solved for ∂g
∂a

and after

substituting it into equation (2.17), one obtains

ζp(x, u, p) =
( ∂2ψ
∂x∂a

+ p
∂2ψ

∂u∂a

)∣∣∣
a=0

− g
∣∣
a=0

( ∂2φ

∂x∂a
+ p

∂2φ

∂u∂a

)∣∣∣
a=0

=
(∂ηu
∂x

+ p
∂ηu

∂u

)
− p
(∂ξx
∂x

+ p
∂ξx

∂u

)
= Dx(η

u)− pDx(ξ
x)
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where ξx = ∂φ
∂a

∣∣
a=0

, ηu = ∂ψ
∂a

∣∣
a=0

, ζp = ∂g
∂a

∣∣
a=0

, and Dx =
∂
∂x
+p ∂

∂u
+px

∂
∂p
+....

Therefore the coefficients of the first prolongation of the generator (2.7) can

be derived by the above process and the the first prolongation of the generator

(2.7) is

X(1) = X + ζp(x, u, p)∂p. (2.18)

Similarly, one can obtains the prolongation formulae for any order prolongation of

an infinitesimal generator.

2.3 Admitted Lie group

Definition 3 (Admitted Lie group). A symmetry group of a differential

equation is a group of transformations that converts every solution of the equa-

tion into another solution of the same equation. This equation is said to be

invariant under the symmetry group.

The terms a symmetry group, a group admitted by a differential equation,

and an admitted group are used interchangeably.

Consider a system of differential equations,

F k(x, u, p) = 0, (k = 1, 2, ..., s). (2.19)

Here, x is the independent variable, u is the dependent variable, and p are

arbitrary partial derivatives of u with respect to x.

Let u = u0(x) be a solution of system (2.19) and the transformations de-

pending on a parameter a given by (2.10) belong to a group admitted by system

(2.19). Therefore, by the definition of an admitted group,

ū = ψ(x, u0(x); a)
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is another solution of system (2.19), where p0(x) is the derivative of the func-

tion u0(x). Hence

F k(x̄, ū, p̄) = 0, (k = 1, 2, ..., s). (2.20)

whenever u satisfies system (2.19). Equation (2.19) is not changed (is invariant)

under the Lie group of transformations as given in equation (2.2) or, in other

words, the Lie group of transformations is admitted by equation (2.19).

Theorem 1. A system of differential equations (2.19) is not changed with res-

pect to the Lie group of transformations (2.2) with the infinitesimal generator:

X = ξi(x, u)∂xi + ηj(x, u)∂uj

if and only if,

X(l)F k(x, u, p)
∣∣∣
(2.19)

= 0, (k = 1, 2, ..., s). (2.21)

Equations (2.21) are called the determining equations.

These determining equations are linear homogeneous differential equations

for the unknown ξi(x, u) and ηj(x, u). Any solution of the determining equa-

tions generates an infinitesimal generator of system (2.19). The set of transforma-

tions which is generated by one-parameter Lie groups corresponding to all admitted

generators X is called the Lie group admitted by system (2.19) or one says that

system (2.19) admits the Lie group G.

2.4 Equivalence Lie group

Consider a system of differential equations

F k(x, u, p, θ) = 0, (k = 1, 2, ..., s), (2.22)

where x is the independent variable, u is the dependent variable, and θ = θ(x, u)

is an arbitrary element of system (2.22). Here (x, u) ∈ V ⊂ Rn+m and θ : V → Rt.
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A nondegenerate change of the dependent and independent variables, and

the arbitrary element θ, which transforms system of differential equations (2.22)

to a system of differential equations of the same class or same differential structure

is called an equivalence transformation.

The problem of constructing a Lie group of equivalence transformations

consists of generating a transformation of the space Rn+m+t(x, u, θ) that preserves

the equations while only changing their representation of θ = θ(x, u).

A Lie group of transformations of the space Rn+m+t depending on a one-

parameter a is considered here. Assume that the transformations

x̄ = fx(x, u, θ; a), ū = fu(x, u, θ; a), θ̄ = f θ(x, u, θ; a), (2.23)

compose a Lie group of equivalence transformations and the infinitesimal generator

of this group (2.23) is

Xe = ξxi∂xi + ηu
j

∂uj + ζθ
k

∂θk , (2.24)

with the coefficients

ξxi =
∂fxi(x, u, θ; a)

∂a

∣∣∣
a=0

, (i = 1, ..., n)

ηu
j

=
∂fu

j
(x, u, θ; a)

∂a

∣∣∣
a=0

, (j = 1, ...,m)

ζθ
k

=
∂f θ

k
(x, u, θ; a)

∂a

∣∣∣
a=0

, (k = 1, ..., t).

(2.25)

The main point to construct a Lie group of equivalence transformations is to

obtain that any solution u = u0(x) of system (2.22) with the function θ(x, u) is

transformed by the transformation (2.23) into the solution u = ua(x̄) of a system

of equations (2.22) with the same function F k, but with another transformed

function θa(x̄, ū).

Consider the relations

x̄ = fx(x, u, θ(x, u); a), ū = fu(x, u, θ(x, u); a).
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By virtue of the inverse function theorem, in some neighborhood of a = 0, one

can express x and u as functions of x̄, ū and a :

x = gx(x̄, ū; a), u = gu(x̄, ū; a). (2.26)

Substituting (2.26) into equation (2.23), the transformed function is defined as

follows

θa(x̄, ū) = f θ(x, u, θ(x, u); a),

where (x, u) of the latter equation has to be substituted by their expression (2.26).

Because of the definition of the function θa(x̄, ū), there is the following identity

with respect to x and u :

(θ ◦ (fx, fu))(x, u, θ(x, u); a) = f θ(x, u, θ(x, u); a).

As u = u0(x) is a given solution of equation (2.22), to obtain the transformed

solution Ta(u) = ua(x̄), one considers the relation

x̄ = fx(x, u0(x), θ(x, u0(x)); a).

By virtue of the inverse function theorem, one finds x = ψx(x̄; a). Substituting x =

ψx(x̄; a) into equation (2.23), one obtains the transformed function

ua(x̄) = fu(x, u0(x), θ(x, u0(x)); a).

As for the function θa, notice that there is an identity with respect to x, i.e.

(ua ◦ fx)(x, u0(x), θ(x, u0(x)); a) = fu(x, u0(x), θ(x, u0(x)); a). (2.27)

A formula for transformations of partial derivative p̄a = fp(x, u, p, θ, ...; a) can be

obtained by differentiating equation (2.27) with respect to x̄.

As the transformed function ua(x̄) is a solution of system of differential

equations (2.22) with the transformed arbitrary element θa(x̄, ū), the system of

differential equations

F k(x̄, ua(x̄), p̄a(x̄), θa(x̄, ua(x̄))) = 0, (k = 1, 2, ..., s).
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must be satisfied for an arbitrary x̄. Because of the one-to-one correspondence

between x and x̄, one has

F k(fx(z(x); a), fu(z(x); a), f p(zp(x); a), f
θ(z(x); a)) = 0, (2.28)

where z(x) = (x, u0(x), θ(x, u0(x))), and zp(x) = (x, u0(x), p0(x), θ(x, u0(x)), ...).

Differentiating equation (2.28) with respect to the group parameter a, one

obtains the determining equations

X̃eF k(x, u, p, θ)
∣∣
Fk=0

= 0, (k = 1, 2, ..., s). (2.29)

The sign
∣∣
Fk=0

means that the equations X̃eF k(x, u, p, θ) are considered on any

solution u0(x) of equation (2.22). Here X̃e is the prolonged operator for the

equivalence Lie group:

X̃e = Xe + ζu
j
xi∂ujxi

+ ζθ
k
xi∂θkxi

+ ζθ
k
uj∂θk

uj
+ ... , (2.30)

and the coefficients of the prolonged operator can be expressed as follows,

ζu
j
xi = De

xi
ζu

j − ujxβD
e
xi
ξxβ ,

ζθ
k
xi = D̃e

xi
ζθ

k − θkxβD̃
e
xi
ξxβ − θkujD̃

e
xi
ζu

j

,

ζθ
k
uj = D̃e

ujζ
θk − θkxiD̃

e
ujξ

xi − θkuβD̃
e
uj
ζu

β

,

(2.31)

where

De
xi
= ∂xi + ujxi∂uj + (θkxi + θkuju

j
xi
)∂θk + ...,

D̃e
xi
= ∂xi + θkxi∂θk + ...,

D̃e
uj = ∂uj + θkuj∂θk + ...,

A solution of the determining equation (2.29) gives the coefficients of an

infinitesimal generator Xe and after solving the Lie equation, one obtains the

transformations as illustrated in equation (2.23). The set of transformations cor-

responding to this generator Xe, is called an equivalence group.

 

 

 

 

 

 

 

 



CHAPTER III

NOETHER’S THEOREM

In 1918, the German mathematician Emmy Noether formulated the corre-

spondence between the symmetries of a variational principle and the conservation

laws for the associated variational equations, i.e., she combined the methods of

variational calculus with the theory of Lie groups to formulate a general approach

for constructing conservation laws for Euler-Lagrange equations when their sym-

metries are known. It is commonly referred to as “Noether’s theorem”. The

original proof of this theorem used calculus of variations, and an alternative proof

were given in Ibragimov (1979).

Noether’s theorem is applicable if the differential equations (DEs) under

consideration satisfy a variational principle and the used symmetries leave the

variational integral invariant. This implies that not every symmetry of a DE can

generate a conservation law through Noether’s theorem, and a suitable Lagrangian

of the DE is needed.

Therefore, this Chapter will start with the basic idea of the variational prin-

ciple; which an Euler-Lagrange equation can be derived. The variational derivative

(or the Euler-Lagrange operator), Noether’s identity, Noether’s theorem and the

conserved vectors formulae are also presented here.

3.1 Hamilton variational principle

Mechanics is the branch of physics studying motion. One of the aims of

study in mechanics is trying to explain the World by means of the smallest possible

number of universal laws and general principles. The most successful and fruitful
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attempts emanate from the idea that the observable events are extreme in their

character, and this general principle found is called variational, i.e., they assert

that certain parameters obtain their maximum or minimum values in realizable

physical processes.

A variational principle was first formulated in mechanics by Pierre Moper-

tuis in 1744. His principle opened up a new idea of the least action principle which

made the necessity of a technique to deal with the so-called action functional or

action integral,

I(x(t)) =

∫ t1

t0

L
(
x(t), x′(t), t

)
dt.

This technique was developed into a theory of dynamics by Euler, Lagrange, Jacobi

and Hamilton; the developed techniques for their variational principle are reviewed

by Berdichevsky (2009).

The most general formulation of mechanics through the principle of least

action was explained by Hamilton. This theorem known as Hamilton’s variational

principle, states: the motion of the system from fixed time t0 to t1 is such that

the action integral

I(q(t)) =

∫ t1

t0

L
(
t, q(t), q′(t)

)
dt (3.1)

is an extremum for the path q(t) of motion. In other words, the variational of the

action, δI, is zero for this path, i.e.

δI = 0. (3.2)

Here t is time, q = (q1, ..., qm) are coordinates and q′ denotes the velocities of the

particles of the system. The action is defined on the set of functions qα = qα(t)

such that the integral exists in an arbitrary interval of time t0 ≤ t ≤ t1.

To find the variational of the action functional, δI, one considers infinites-

imally small variations, δq, of some function, q:

q → q̄ = q + δq,
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where δq = δq(t) is an arbitrary function such that it is small everywhere in the

interval t0 ≤ t ≤ t1 and vanishes at the boundary, i.e.,

δq(t0) = 0 and δq(t1) = 0.

The corresponding change (variation) in the function L
(
q, q̇, t

)
is

δI = I(q + δq)− I(q)

=

∫ t1

t0

L
(
t, q + δq, q̇ + δq̇

)
dt−

∫ t1

t0

L
(
t, q, q̇

)
dt

=

∫ t1

t0

(
L
(
t, q + δq, q̇ + δq̇

)
− L

(
t, q, q̇

))
dt.

Applying multi-variables Taylor series, one has,

L
(
t, q + δq, q̇ + δq̇

)
= L

(
t, q, q̇

)
+
∂L
(
t, q, q̇

)
∂q

δq +
∂L
(
t, q, q̇

)
∂q̇

δq̇ +O(δq2).

Therefore the change in the action integral yields the linear principal part of δI

(summation in α = 1, 2, ...,m) :

δI =

∫ t1

t0

( ∂L
∂qα

δqα +
∂L
∂q̇α

δq̇α
)
dt. (3.3)

Since q̄ = q+ δq, one of the explicit forms of the variations in the coordinate and

velocity is

δq = q̄ − q,

δq̇ =
dq̄

dt
− dq

dt
=

d

dt

(
q̄ − q) =

d

dt
δq.

To put equation (3.3) into a suitable form for simplification, then this equation is

rewritten as

δI =

∫ t1

t0

( ∂L
∂qα

δqα +
∂L
∂q̇α

dδqα

dt

)
dt.

Integrating by-parts of the second term, one finds∫ t1

t0

( ∂L
∂q̇α

dδqα

dt

)
dt =

∂L
∂q̇α

δqα
∣∣∣t1
t0
−
∫ t1

t0

δqα
d

dt

∂L
∂q̇α

dt.
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Substituting this integral into equation (3.3), one has

δI =

∫ t1

t0

( ∂L
∂qα

δqα − δqα
d

dt

∂L
∂q̇α

)
dt+

∂L
∂q̇α

δqα
∣∣∣t1
t0

=

∫ t1

t0

( ∂L
∂qα

− d

dt

∂L
∂q̇α

)
δqαdt+

∂L
∂q̇α

δqα
∣∣∣
t=t1

− ∂L
∂q̇α

δqα
∣∣∣
t=t0

,

and by the boundary condition δq(t0) = δq(t1) = 0 :

δI =

∫ t1

t0

( ∂L
∂qα

− d

dt

∂L
∂q̇α

)
δqαdt.

The necessary condition for I to have an extremum is that δI = 0. Since for

time interval t0 ≤ t ≤ t1 and function δqα are arbitrary, this equation is satis-

fied if and only if

∂L
∂qα

− d

dt

∂L
∂q̇α

= 0, α = 1, 2, ...,m. (3.4)

Differential equations (3.4) are known as Euler-Lagrange equation. Thus the

path q = q(t) of a mechanical system with the Lagrangian L(t, q, q̇) solves the

Euler-Lagrange equation.

One can treat a multi-dimensional problem with n independent vari-

ables x = (x1, x2, ..., xn) and m dependent variables u = (u1, u2, ..., um) in a

similar way.

LetA be the space of all differential functions of all finite orders, and L ∈ A,

be a differential function of the sth order, L = L(x, u, u(1), u(2), u(3), ..., ). Here, the

notations u(1) = {uαi } ≡
{
∂uα(x)
∂xi

}
, u(2) = {uαi1i2} ≡

{
∂2uα(x)
∂xi1∂xi2

}
, for i1 ≤ i2, u(3) =

{uαi1i2i3} ≡
{

∂3uα(x)
∂xi1∂xi2∂xi3

}
, for i1 ≤ i2 ≤ i3, ... are the sets of first-order, second-

order, third-order etc. partial derivatives where α = 1, 2, ...,m; i, i1, i2, ...,=

1, 2, ..., n. Let V ⊂ Rn be an arbitrary n-dimensional volume in the space of the

independent variables x with the boundary ∂V .

An action integral, also termed a variational integral ,

I(u(x)) =

∫
V

L(x, u, u(1))dx (3.5)
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is defined on the set of functions u = u(x) such that the action integral (3.5)

exists. Here L = L(x, u, u(1)) is a differential function of the first order.

The variation δI of the integral (3.5) is presented as

δI =

∫
V

(
L(x, u+ a, u(1) + a(1))− L(x, u, u(1))

)
dx.

Applying multi-variable Taylor series yields the linear terms, and one obtains:

δI =

∫
V

( ∂L
∂uα

aα +
∂L
∂uαi

aαi
)
dx.

Integrating by-parts of the second term and using the assumption that the func-

tions aα(x) vanish on the boundary, the above equation becomes, (see in Ibragi-

mov (1999), Bluman, Cheviakov and Anco (2010)),

δI =

∫
V

( ∂L
∂uα

−Di

( ∂L
∂uαi

))
aαdx.

A function u = u(x) yields an extremum of the variational integral (3.5)

if δI = 0 for any volume V and any a = a(x) vanishing on the boundary. It

then follows from the first expression that

δL
δuα

≡ ∂L
∂uα

−Di

( ∂L
∂uαi

)
= 0, α = 1, 2, ...,m. (3.6)

The operator
δL
δuα

is called the Euler-Lagrange operator.

Similarly, one can obtain Euler-Lagrange equations if L is a differential

function of the second order, L = L(x, u, u(1), u(2)). The Euler-Lagrange equa-

tions then have the form

δL
δuα

≡ ∂L
∂uα

−Di

( ∂L
∂uαi

)
+Di1Di2

( ∂L
∂uαi1i2

)
= 0, α = 1, 2, ...,m.

In general, an Euler-Lagrange equation is in the following form

δL
δuα

= 0, α = 1, 2, ...,m, (3.7)
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where the function L = L(x, u, u(1), u(2), ..., u(k)) is a Lagrange function. The

Euler-Lagrange operator is then defined by the formal sum

δ

δuα
=

∂

∂uα
+
∑
s≥1

(−1)sDi1 ... Dis

∂

∂uαi1...is
, (3.8)

where Di is the total derivative with respect to xi, i.e.,

Di =
∂

∂xi
+ uαi

∂

∂uα
+ uαii1

∂

∂uαi1
+ uαii1i2

∂

∂uαi1i2
+ ... , i = 1, 2, ..., n, (3.9)

and for every s the summation is supposed over the repeated indices i1...is running

from 1 to n.

3.2 Noether’s theorem

Consider a one-parameter group G, of point transformations,

x̄i = φi(x, u; a), ūα = ψα(x, u; a), i = 1, 2, ..., n; α = 1, 2, ...,m, (3.10)

with its infinitesimal generator

X = ξi(x, u)
∂

∂xi
+ ηα(x, u)

∂

∂uα
. (3.11)

Definition 1. An action integral∫
Ω

L(x, u(x), u(1)(x), ..., u(k)(x))dx, Ω ⊂ Rn (3.12)

is said to be invariant under the action of the group G of transformations (3.10) if∫
Ω

L(x, u(x), u(1)(x), ..., u(k)(x))dx =

∫
Ω̄

L(x̄, ū(x̄), ū(1)(x̄), ..., ū(k)(x̄))dx̄ (3.13)

where function u(x) is transformed into ū(x̄), Ω̄ ⊂ Rn is the domain obtained

from Ω by transformations (3.10).

Lemma 1. An action integral (3.12) is invariant under the group G of point

transformations with infinitesimal operator (3.11) if and only if

X(L) + LDi(ξ
i) = 0. (3.14)
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Consider a Lie infinitesimal operator

X = ξi
∂

∂xi
+ ηα

∂

∂uα
+ ζαi

∂

∂uαi
+ ζαi1i2

∂

∂uαi1i2
+ . . . (3.15)

where the first, the second and the higher-order prolongations are

ζαi = Di(η
α)− uαjDi(ξ

j),

ζαi1i2 = Di2Di1(η
α)− uαjDi2Di1(ξ

j)− uαji1Di2(ξ
j),

ζαi1...is = Di1 ...Dis(W
α) + ξjuαji1...is , s = 1, 2, ...

The function Wα = ηα − ξjuαj is called Lie’s characteristic function. Consider

the operator

N i = ξi +Wα δ

δuαi
+
∑
s≥1

Di1 ...Dis(W
α)

δ

δuαii1i2...is
, (3.16)

where the variational derivatives
δ

δuαi
are obtained from (3.8) by replacing uα by

the corresponding derivative uαi , e.g.

δ

δuαi
=

∂

∂uαi
+
∑
s≥1

(−1)sDi1 ...Djs

∂

∂uαij1...js
. (3.17)

The operator N i was introduced and called Noether operator in Ibragimov

(1985). The operators (3.15), (3.16) and (3.17) are connected by the following

theorem.

Theorem 1. (Noether Identity) The three operators (3.15), (3.16) and

(3.17) satisfy the identity

X +Di(ξ
i) = Wα δ

δuα
+DiN i. (3.18)

Equation (3.18) is called Noether identity (see proof of this theorem in Ibragimov

(1999)). Ibragimov (1979) used this identity for simplifying the proof of Noether’s

theorem.

Noether’s theorem is a direct consequence of identities (3.18) and (3.14).
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Theorem 2. (Noether’s theorem) If the operator X given in (3.15) is ad-

mitted by the Euler-Lagrange equations (3.7) and satisfies the condition (3.14) of

the invariance of the variational integral (an action integral), then the vector

C = (C1, ..., Cn) defined by

Ci = N i(L) (3.19)

is a conserved vector for equation (3.7).

Consider the identity of equation (3.18). Applying this identity to L, one

obtains

XL+Di(ξ
i)L = Wα δL

δuα
+Di

(
N i(L)

)
.

Taking into account equations (3.7) and (3.14), the vector with the components

C i = N i(L) , i = 1, . . . , n.

satisfies the conservation equation

Di

(
C i
)∣∣∣

(3.7)
= 0. (3.20)

Applying the operator (3.16) to L, the vector field C = (C1, ..., Cn) in (3.19)

can be expressed as

Ci = ξiL+Wα
[ ∂L
∂uαi

−Dj

( ∂L
∂uαij

)
+DjDk

( ∂L
∂uαijk

)
− . . .

]
+Dj

(
Wα
)[ ∂L
∂uαij

−Dk

( ∂L
∂uαijk

)
+ . . .

]
+DjDk

(
Wα
)[ ∂L
∂uαijk

− . . .
]
.

(3.21)

If the invariance condition (3.14) is replaced by the divergence condition

X(L) + LDi(ξ
i) = Di(B

i), Bi ∈ A, (3.22)

then the fundamental identity (3.18) leads to the conservation law

Di

(
Ci
)∣∣∣

(3.7)
= 0
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where the conserved vector (3.19) is replaced by

Ci = N i(L)−Bi, i = 1, ..., n. (3.23)

The symmetry X satisfying condition (3.14) is called a variational symmetry

while a symmetry satisfying condition (3.22) is called a divergent symmetry.

The second identity is

δ

δuj
(X +Di(ξ

i)−Di(B
i)) = X(

δ

δuj
) +

δ

δuk
(∂ηk
∂uj

− ∂ξi

∂uj
uki + δkjDiξ

i
)
,

for j = 1, 2, ...m.

(3.24)

Applying this identity to the Lagrange function L, one obtains

δ

δuj
(X(L) + LDi(ξ

i)−Di(B
i)) = X(

δL
δuj

) +
δL
δuk
(∂ηk
∂uj

− ∂ξi

∂uj
uki + δkjDiξ

i
)
.

If the symmetry X satisfies condition (3.22) and
δL
δuk

= 0, then the above

equation is reduced to

X

(
δL
δuj

)∣∣∣ δL
δuj

=0

= 0. (3.25)

This latter equation shows that a variational (or divergent) symmetry is

admitted by the Euler-Lagrange equation on the invariant manifold
δL
δuj

= 0.

Here
∣∣∣ δL
δuj

= 0 means that equations (3.25) are considered on the manifold
δL
δuj

= 0.

Remark. The identity of equation (3.24) becomes simpler by representing

it in the case where a function L(x, u, p) does not depend on the second or higher

derivatives. The coefficients ξi = ξi(x, u) and ηk = ηk(x, u) are also considered

here. Identity (3.24) is valid in more general cases.

 

 

 

 

 

 

 

 



CHAPTER IV

EULER-LAGRANGE EQUATIONS

Recently, attention of scientist was attracted to the models with internal

inertia (Gavrilyuk and Shugrin, 1996; Gavrilyuk and Teshukov, 2001)

ρ̇+ ρ div(u) = 0, ρu̇+∇p = 0, Ṡ = 0,

p = ρ
δW

δρ
−W = ρ

(∂W
∂ρ

− ∂

∂t

(∂W
∂ρ̇

)
− div

(∂W
∂ρ̇

u
))

−W,
(4.1)

where, t is time, ∇ is the gradient operator with respect to the space vari-

ables, ρ is the fluid density, u is the velocity field, W (ρ, ρ̇, S) is a given po-

tential, the “dot” denotes the material time derivative: ḟ = df
dt

= ft+ u∇f , and

δW
δρ

denotes the variational derivative of W with respect to ρ at a fixed value

of u.

The complete group classification of equations (4.1) has already been ob-

tained by Siriwat, Kaewmanee, and Meleshko (2015) in the particular case where

the potential function W =W (ρ, ρ̇, S) satisfies condition Wρ̇ ̸= 0. Notice that

the case Wρ̇ = 0 corresponds to the gas dynamic equations.

The starting objective of the present study was to construct conservation

laws of one-dimensional equation of model (4.1) by applying Noether’s theorem

and using the complete group classification of Siriwat et al. (2015). Noether’s

theorem gives a procedure to find conservation laws for a system that admit a

variational principle. When a given differential equations system admits a varia-

tional principle, then the extremum of its action integral yield the Euler-Lagrange

equation. If one has a symmetry of the action integral, then one can obtain a

conservation law through an explicit formula that involves the infinitesimal of the

 

 

 

 

 

 

 

 



28

symmetry and the Lagrangian of the action integral.

To show that system (4.1) satisfies a variational principle, one requires a

suitable Lagrangian. In this thesis, investigating for a suitable Lagrange func-

tion will be considered through three approaches, namely Shyglevskii’s approach,

Ibragimov’s approach and Lagrangian’s approach in Lagrangian coordinates (New-

comb, 1961). This chapter presents and discusses the concepts of each approach,

in order to investigate the Euler-Lagrange equation.

To show the symmetries of the Euler-Lagrange equations leave the varia-

tional integral invariant needs 2 steps. The first step is to find an admitted Lie

group. The second step is to show that the variational integral is invariant under

the action of the admitted symmetries of the Euler-Lagrange equations such that

the condition (3.14) holds.

4.1 Shmyglevskii’s approach

This approach is named after Shmyglevskii (1980) even through the study

of differential equations with variational principles was started earlier by Bateman

(1929). Bateman derived various problems from variational principles including

the hydrodynamical equations for non-viscous compressible fluid by using a vari-

ational principle form

δ

∫
L dtdxdydz = 0,

in which the expression of the Lagrangian is

L = ρ
(u2
2

− U(ρ) + φ̇+ ηµ̇
)

where u is the velocity, ρ is the fluid density and U is the internal energy per

mass and ḟ is the substantial derivative : ∂f
∂t

+ u · ∇.

Later on, Ito (1953) discovered that the internal energy U is not only a

function of ρ but also of the entropy S. The parameters η and µ are con-
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served along the stream lines; such that the entropy is conserved in the reversible

adiabatic process. Ito obtained a variational problem with two additive conditions,

namely conservation of mass and entropy. The variational principle states that

δ

∫
ρ
(u2
2

− U(ρ, S) + φ̇+ Sµ̇
)
dtdxdydz = 0 , (4.2)

where φ and µ play the roles of Lagrange’s multipliers, S is the entropy and U is

the internal energy depending on ρ and S. Varying variables ρ , u, φ, µ and S in

such a manner that the variations vanish on the boundary of the region of inte-

gration, he obtained the Euler-Lagrange equations

u = −∇φ− S∇µ,
u2

2
− U − ρUρ + φ̇+ Sµ̇ = 0,

µ̇ = US,

∂ρ

∂t
+ div (ρu) = 0,

∂(ρS)

∂t
+ div (ρSu) = 0.

(4.3)

Shmyglevskii (1980) presented the variational principle of gas dynamics. He

considered the variational principle in the same manner as Ito, and then verified

equations (4.3) with the thermodynamic equation

dU = TdS +
p

ρ2
dρ, (4.4)

where p is a pressure, and he obtained the Euler-Lagrange equation

u̇ = −∇p
ρ
. (4.5)

Accordingly to Shmyglevskii’s approach, the Lagrangian is

L = ρ
(u2
2

+ φ̇+ Sµ̇
)
−W (ρ, ρ̇, S). (4.6)
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By the variational principle, the Euler-Lagrange equations are

u = −∇φ− S∇µ+ ρ−1Wρ̇∇ρ, (4.7a)

u2

2
+ φ̇+ Sµ̇ = Wρ −

∂Wρ̇

∂t
− div(Wρ̇u), (4.7b)

µ̇ = ρ−1WS, (4.7c)

ρ̇+ ρ div u = 0, (4.7d)

∂(ρS)

∂t
+ div (ρSu) = 0. (4.7e)

Excluding ρ̇ from equation (4.7e), one has

Ṡ = 0. (4.8)

For the sake of simplicity, consider equation (4.7a) for the 1-dimension case,

u = ρ−1Wρ̇ρx − φx − Sµx.

Differentiating this equation with respect to t and x, one gets

ut = −ρ−2ρtWρ̇ρx + ρ−1
(∂Wρ̇

∂t

)
ρx + ρ−1Wρ̇ρxt − φxt − Stµx − Sµxt,

ux = −ρ−2ρ2xWρ̇ + ρ−1
(∂Wρ̇

∂x

)
ρx + ρ−1Wρ̇ρxx − φxx − Sxµx − Sµxx.

One obtains that

ut + uux = −ρ−1
(
ρx
(δW
δρ

)
+ ρ

∂

∂x

(δW
δρ

)
−Wx

)
= −ρ−1

((
ρ
δW

δρ

)
−W

)
x

where Wx = ρxWρ + SxWS −Wρ̇(ρux)x,
δW

δρ
= Wρ −

∂

∂t
Wρ̇ − div(Wρ̇u).

Introducing p = ρ
δW

δρ
−W, one obtains

ρu̇+ px = 0. (4.9)

Equations (4.7d), (4.8) and (4.9) show that the one-dimensional equations of fluids

with internal inertia

ρ̇+ ρux = 0, ρu̇+ px = 0, Ṡ = 0,

p = ρ
δW

δρ
−W = ρ

(∂W
∂ρ

− ∂

∂t

(∂W
∂ρ̇

)
− div

(∂W
∂ρ̇

u
))

−W,
(4.10)
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can be derived from the Euler-Lagrange equation (4.7) corresponding to the La-

grangian (4.6) :

L = ρ
(u2
2

+ φ̇+ Sµ̇
)
−W (ρ, ρ̇, S).

As an example, consider one of the models from Siriwat et al. (2015).

Applying Noether’s theorem to the model with the potential function

W = ρ−3ρ̇2η, (4.11)

equation (4.10) with (4.11) admit the generator

X = t∂t − u∂u. (4.12)

One can check that this generator is a variational symmetry. Noether’s theorem

then gives the conservation laws

DtC
1 +DxC

2 = 0,

where

C1 = tρ
u2

2
− tρ−3ηρ̇2 + ρ(φ+ ηµ),

C2 = −tρu
3

2
− tuηρ−3ρ̇2 − 4tu2ηρ−3ρ̇ρx+4tu2ηρ−2ρtx− 2tu2ρ−2ρ̇ηx+2tu2ρ−2ρ̇ηηx

+2tuρ−2ρ̇uxη−2tu2ρ−2uxηρx+2tuρ−2ηρtt+2tuρ−2ηutρx+2tu3ρ−3ηρxx+ρu(φ+ ηµ).

The underlined terms still contain the unknown functions φ and µ which

act in the roles of Lagrangian multipliers. This example shows that this approach

can be applied to construct conservation laws. However, the Lagrangian multipli-

ers φ and µ are not known, one therefore this approach is not suitable.

4.2 Ibragimov’s approach

Ibragimov established the conservation law method in Ibragimov

(2007a, 2011). He defined an adjoint equation for a non-linear differential equa-

tion and constructed a formal Lagrangian for an arbitrary equation considered

 

 

 

 

 

 

 

 



32

together with its adjoint equation. It is proven that the adjoint equation inherits

all symmetries of the original equation which means that application of Noether’s

theorem does not require existence of a classical Lagrangian. Ibragimov also ap-

plied his approach to construct conservation law for several equations such as

fourth-order nonlinear partial differential equations, lubrication equations (Bru-

zon,Gandarias, and Ibragimov, 2007), gas dynamics equations (Ibragimov, 2007b)

and Maxwell equations (Ibragimov, 2006).

Consider a system of sth-order differential equations

Fα(x, u, u(1), u(2), . . . , u(s)) = 0 , α = 1, . . . ,m (4.13)

with n independent variables x = (x1, x2, . . . , xn) and m dependent variables

u = (u1, u2, . . . , um). The adjoint system

F ∗
α(x, u, v, u(1), v(1), u(2), v(2), . . . , u(s), v(s)) ≡

δL
δuα

= 0 , α = 1, . . . ,m (4.14)

inherits the symmetries of the system (4.13), where L = vβFβ(x, u, u(1), . . . , u(s)).

Namely, if the system (4.13) admits a point transformation group with a generator

X = ξi(x, u)
∂

∂xi
+ ηα(x, u)

∂

∂uα
(4.15)

then the adjoint system (4.14) also admits the operator (4.15). Then the quantities

Ci = vβ
[
ξiFβ + (ηα − ξjuαj )

∂Fβ
∂uαi

]
, i = 1, . . . , n, (4.16)

furnish a conserved vector C = (C1, . . . , Cn) for the system (4.13).

Applying Ibragimov’s approach to equations (4.1), the formal Lagrangian

is

L = (R +
u2

2
)(ρ̇+ ρux) + U(ut + uux + ρ−1px) + P η̇ , (4.17)

where R, U, and P are Lagrangian multipliers or adjoint functions. The fol-

lowing functions

U = ρu, P = Wη −Wρ̇η(ρ̇+ ρux),

R = ρ−1(p+W ) +Wρ̇ηη̇ =
δW

δρ
+Wρ̇ηη̇

(4.18)
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satisfy adjoint system of equation (4.14).

Choosing the same example as in the first approach, the potential function

and the admitted generator are

W = ρ−3ρ̇2η , X = t∂t − u∂u.

Applying Noether’s theorem, the conserved vectors are

C1 = −tuρut − ρu2 − 1

2
tu2ρ̇+

1

2
tu3ρx + 11tηρ−4ρ̇3 − 11tuηρ−4ρ̇2ρx + 8tuηρ−3ρ̇ρtx

+ tuηxρ
−3ρ̇2,

C2 = −3

2
tu2ρut −

3

2
u2ρ− 1

2
tu3ρ̇+

1

2
tu4ρx − 5tηρ−3ρ̇2ut + 23tuηρ−4ρ̇3 + 8tuηρ−3ρ̇utρx

− 47tu2ηρ−4ρ̇2ρx + 8tu2ηρ−3ρ2xut + 11uηρ−3ρ̇2 + 5tu2ρ−3ρ̇2ηx − 8tu3ρ−3ρ̇ρxηx

+ 8tu2ηρ−3ρx(ρtt + uρtx) + 24tu3ηρ−4ρ̇ρ2x.

This approach is not suitable because the equations for U, P, and R are

more complicated than the original equations. For the multipliers U, P, and R

given above is just an example solution which means that the Lagrangian can be

found more and one can not say which one is the suitable Lagrangian and it also

takes more computation on finding.

4.3 Lagrangian’s approach

The Lagrangian map is applied here such that these Lagrangian coordinates

satisfy the variational principles, and the Euler-Lagrange equations can be found.

4.3.1 Lagrangian map

Let D(t) be the position of a medium at the moment of time t. The

particles are labeled by their initial position X in the reference space D(t0), the

motion of the continuum is defined as a diffeomorphism from D(t0) into D(t),
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φ : D(t0) → D(t) :

x = φ(X, t) ∈ D(t).

Here, x is the material point (or particle) of continuous medium which is obtained

as a result of movement of a fixed point X ∈ D(t0). The set {x(t) | t ≥ t0} is

called the trajectory of the point X ∈ D(t0).

The velocity u and the deformation gradient F are defined by

u =
∂φ(X, t)

∂t
, F =

∂x

∂X
=
∂φ(X, t)

∂X
.

Let f be a function of position x and time t, representing some physi-

cal property of the movement. There are two ways of describing the field f given

on the moving continuous theorem. The first one is Eulerian description; it con-

sists of giving value of the field f of x in the position D(t) at time t, i.e.,

it has a value f(x, t). The second one is called Lagrangian description. This

field is a function of each particle X ∈ D(t0) at time t, writing f(X, t). Coordi-

nates (X, t) are called material or Lagrangian coordinates and (x, t) are called

spatial or Eulerian coordinates.

To avoid possible confusion, we will use different notation for functions.

The corresponding families of f in the Eulerian coordinates will be denoted

by f̃(x, t) and in the Lagrangian coordinates will be denoted by f̂(X, t). The

functions f̃(x, t) and f̂(X, t) are related by the identity

f̂(X, t) = f̃(φ(X, t), t). (4.19)

In this approach, the velocity u, the density ρ and the entropy S are defined

as follows,

u =
∂φ(X, t)

∂t
= φt(X, t), ρ detF = ρ0(X), S = S0(X), (4.20)

where ρ0(X) is the reference density.
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Therefore functions u(x, t), ρ(x, t), and S(x, t) in Eulerian coordinates

can be written through the relation (4.20) in Lagrangian coordinates as follow

u(φ(X, t), t) = φt(X, t), ρ(φ(X, t), t)φX(X, t) = ρ0(X),

S(φ(X, t), t) = S0(X).
(4.21)

4.3.2 Euler-Lagrange equations in Lagrangian coordinates

Newcomb (1962) was the first one who considered Lagrangian and Hamil-

tonian methods in gas dynamic equations which also can be found in Gavrilyuk

(1996, 2001). The presentation of the Lagrangian of fluids containing gas bubbles

(bubbly fluid) is

LE(t, x, ρ, u, S, ρ̇) = ρ
u2

2
−W (ρ, ρ̇, S) (4.22)

where W =W (ρ, ρ̇, S) is a given potential. Here LE is presenting the Lagrange

function in Eulerian coordinates.

Applying the relations (4.21) between Eulerian and Lagrangian coordinates,

then the Lagrangian, LL, in Lagrangian coordinates is

LL(t,X, φ, ρ0, φt, φX , φtX , S0) =
ρ0
φX

φ2
t

2
−W

(
ρ0
φX

,− ρ0
φ2
X

φtX , S0(X)

)
. (4.23)

The present research considers the gas dynamics equations where the po-

tential function is W = W (ρ, S). Thus the studied Lagrangian is

L(t,X, φ, ρ0, φt, φX , S0(X)) = ρ0
φ2
t

2
− φXW

(
ρ0
φX

, S0(X)

)
, (4.24)

where L = φXLL. The action integral is defined as

a =

∫ t1

t0

∫
DE(t)

LE dx dt =

∫ t1

t0

∫
DL(t0)

L dXdt,

and the Euler-Lagrange equations related to the Lagrangian can be obtained by

applying the variational principle, and it is in this following form:

δL
δφ

= 0, (4.25)
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where

δ

δφ
=

∂

∂φ
−Dt

∂

∂φt
−DX

∂

∂φX
+D2

t

∂

∂φtt
+DtDX

∂

∂φtX
+D2

X

∂

∂φXX
+ ... ,

and Dt and DX are total derivatives with respect to the Lagrangian coordi-

nates. Moreover, the operators of total derivatives in Lagrangian and Eulerian

coordinates are

DX = φXDx, Dt = φtDx +Dt̃, (4.26)

where, operators Dx, Dt̃ are total derivative in Eulerian coordinates.

Simplifying equation (4.25) for the Euler-Lagrange equation with the La-

grangian (4.24), one obtains

ρ0XWρρφXρ0 +WρSφ
2
Xρ0S0X −WρρφXXρ

2
0 −WSφ

3
XS0X + φttφ

3
Xρ0 = 0. (4.27)

Because of the relations between variables in Eulerian and Lagrangian co-

ordinates, one gets

φtt = φtux + ut̃, ρX = φXρx, S0X = φXSx, ρ0X = ρxφ
2
X + ρφXX .

Substituting them into (4.27), one has

ρ
(
ut̃ + uux

)
− SxWS + ρSxWρS + ρρxWρρ = 0. (4.28)

Introducing p = ρ δW
δρ

−W = ρWρ −W , one gets

px = ρxWρ + ρWρx −Wx = ρxWρ + ρ
[
Wρρρx +WρSSx

]
−
[
Wρρx +WSSx

]
= ρρxWρρ + ρSxWρS − SxWS.

Finally, equation (4.28) becomes

ρ(ut̃ + uux) + px = 0. (4.29)
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The relation condition ρ(φ(X, t), t)φX(X, t) = ρ0(X), can be rewritten as the

mass conservation law

ρt̃ + uρx + uxρ = 0. (4.30)

Moreover, differentiating the relation condition S(φ(X, t), t) = S0(X), with re-

spect to t, one finds

St̃ + φtSx = St̃ + uSx = 0. (4.31)

Therefore (4.29), (4.30), and (4.31) can be obtained from the Euler-Lagrange

equation (4.27) together with the relation condition (4.21). This means that the

Euler-Lagrange equation in Lagrangian coordinates reduces to a gas dynamic equa-

tions in Eulerian coordinates.

Consider the Euler-Lagrange equation (4.27) :

ρ0XWρρφXρ0 + φ2
XS0XWρSρ0 −WρρφXXρ

2
0 −WSφ

3
XS0X + φttφ

3
Xρ0 = 0.

Without loss of generality one can assume that ρ0 = 1. In fact, consider the

change

X̄ = g(X), ρ̄0(X) = α(X)ρ0(X), t̄ = t, φ̄ = φ, S̄0 = S0(X). (4.32)

Let X = h(X̄) be the inverse function of g(X) : h(g(X)) = X. The above

transformation can be written as

ρ̄0(X̄) = α(h(X̄))ρ0(h(X̄))

and one obtains the following conditions :

ρ̄0X̄ = αXh
′ρ0(h(X̄)) + α(h(X̄))ρ0Xh

′, S̄0X̄
= S0Xh

′.

The change in (4.32) maps a function φ(X, t) to the function φ̄(X̄, t̄) = φ(h(X̄), t̄),

and maps the potential function W = W (ρ, S) to the function W̄ (ρ̄, S̄) =
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W ( ρ̄0(X̄)
φ̄X̄

, S̄0(X̄)) = W (α(h(X̄))ρ0(h(X̄))
φXh′

, S0(h(X̄))). If h′ = α, one finds these fol-

lowing relations,

φ̄t̄ = φt, φ̄X̄ = φXh
′, φ̄t̄t̄ = φtt, φ̄X̄X̄ = φXh

′′ + φXXh
′2,

W̄ρ̄ρ̄ =Wρρ, W̄ρ̄S̄ = WρS W̄S̄ =WS.
(4.33)

Substituting the Euler-Lagrange equation with all relations, one gets

− ρ̄0X̄W̄ρ̄ρ̄φ̄X̄ ρ̄0 − φ̄2
X̄ S̄0X̄

W̄ρ̄S̄ ρ̄0 + W̄ρ̄ρ̄φ̄X̄X̄ ρ̄
2
0 + W̄S̄φ̄

3
X̄ S̄0X̄

− φ̄t̄t̄φ̄
3
X̄ ρ̄0

=
1

h′3

(
−
(
αXh

′ρ0 + αρ0Xh
′)WρρφXh

′αρ0 − φ2
Xh

′2S0Xh
′WρSαρ0

+Wρρ

(
φXh

′′ + φXXh
′2)α2ρ20 +WSφ

3
Xh

′3S0Xh
′ − φttφ

3
Xh

′3αρ0

)
= −WρρφX

ααXρ
2
0

h′
−WρρφX

α2ρ0ρ0X
h′

−WρSφ
2
XS0Xαρ0

+Wρρ
α2ρ20φXh

′′

h′3
+WρρφXX

α2ρ20
h′

+WSφ
3
XS0Xh

′ − φttφ
3
Xαρ0

= WρρφXρ
2
0

(α2h′′

h′3
− ααX

h′
)
−WρρφX

α2ρ0ρ0X
h′

−WρSφ
2
XS0Xαρ0

+WρρφXX
α2ρ20
h′

+WSφ
3
XS0Xh

′ − φttφ
3
Xαρ0.

As h′(g(X)) = α(X), the above equation becomes

−WρρφXρ0ρ0X −WρSφ
2
XS0Xρ0 +WρρφXXρ

2
0 +WSφ

3
XS0X − φttφ

3
Xρ0 = 0.

This means that (4.32) is an equivalence transformation. It does not change equa-

tion (4.27), it only changes the functions ρ0(X).

In the particular case of an isentropic solution, i.e. S0(X) is a con-

stant, one can assume that ρ0(X) is a constant by the transformation

with α(X) satisfying the condition

ρ0(X)α(X) = 1,

and one obtains that

ρ̄(X, t) =
1

φ̄X(X, t)
.
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Hence, the equation (4.27) transforms to

φttφ
3
X −WρρφXX = 0, where W = W (

1

φX
, S0). (4.34)

In the particular case where

1

φ3
X

Wρρ(
1

φX
, S0) = k2 = constant,

equation (4.34) becomes the wave equation, φtt − k2φXX = 0.

Moreover for Wρρ(
1
φX
, S0) = k2φ3

X , it can be written in Eulerian coordi-

nates as

Wρρ(ρ, S0) = k2ρ−3.

Since pρ = ρWρρ, one obtains

pρ = k2ρ−2.

The pressure p in this case defines the Chaplygin gas.

From what was mentioned above, one can assume ρ0(X) = 1, and

W (ρ, S0(X)) = W̃ (ρ,X), then equation (4.27) can be changed to

φ2
XW̃ρX − W̃ρρφXX − W̃Xφ

3
X + φttφ

3
X = 0. (4.35)

From here on; the tilde (˜) symbol will be omitted. Since p = ρWρ − W , and

W (ρ,X) = W ( 1
φX
, X), one finds

Wρρ =
1

ρ
pρ, WρX =

1

ρ

(
pX +WX

)
.

Substituting the above relations into equation (4.35), it changes to

φtt + pX + pφX
φXX = φtt +DXp = 0. (4.36)

Equation (4.36) takes the form of a one dimensional wave equation.

Consider the one dimensional wave equation presented in the following form

φtt = px, p = p(x, φ, φx).
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There are several author who have studied the group properties of this type of equa-

tion. Ames, Lohner, and Adams (1981) demonstrated how a number of physical

problems from gas dynamics, shallow water waves, dynamics of a finite non-linear

string, elastic-plastic materials and electromagnetic transmission line satisfy the

quasilinear wave equation φtt = [f(φ)φx]x for arbitrary f ∈ C2(R), f > 0, f ′ ̸= 0.

Ames et al. also provided the symmetry group which are presented in several

cases of function f(φ). Baikov and Gazizov (1989) and Suhubi and Bakkaloǧlu

(1991) considered arbitrary function p = f(φx) and Vinokurov and Nurgalieva

(1985) found the conservation law of this function p (see in Ibragimov (1993)).

For the case of polytropic gas such that p = −b(x)φγx, γ > 1, the symmetry

group was presented by Andreev, Kaptsov, Pukhnachov and Rodionov (1998). In

1987, Bluman and Kumei (1987) constructed a complete group classification of

the wave equation with p = −c(x)φx, whereas Grimshaw, Pelinovsky and Peli-

novsky (2010) showed the existence of traveling wave in the one-dimensional wave

equation with a spatially-variable wave speed c(x) and also provided the group

of point transformations of this equation.

Notice that these authors studied the symmetry group just only in the

particular case of function p = −b(x)φγx when γ > 1 or γ = 1, (Chaplygin

gas); in this present study, we will construct the group classification of the Euler-

Lagrange equation which is reduced to one dimensional wave equation (4.36) for

arbitrary function of p = p (φx, x), i.e.

φtt +DXp = 0, p = p (φx, x).

 

 

 

 

 

 

 

 



CHAPTER V

APPLICATION OF GROUP ANALYSIS TO

THE EULER-LAGRANGE EQUATION

In this chapter the group analysis method is applied to construct the group

classification of a gas dynamic equation in Lagrangian coordinates with respect to

the arbitrary pressure function P = P (X,φX) with the restrictions

PX ̸= 0, and PφX
< 0. The studied equation is

φtt +DXP = φtt + PX + PφX
φXX = 0, (5.1)

where DX is the total derivative with respect to the Lagrangian coordinates.

Suppose the form of an infinitesimal generator is

X = ξt(t,X, φ)∂t + ξX(t,X, φ)∂X + ηφ(t,X, φ)∂φ, (5.2)

with the unknown coefficients ξt(t,X, φ), ξX(t,X, φ), and ηφ(t,X, φ). The de-

termining equations will give conditions for solving for the coefficients of the gener-

ator X in order to obtain all possible generators which are admitted by equation

(5.1). The way to study consists of the two following steps.

Step 1. Find the equivalence transformations of equation (5.1).

Step 2. Find the admitted Lie group which is admitted for all arbitrary

elements and any specification of arbitrary elements.

5.1 Equivalence transformations of equation (5.1)

A transformation which transform equation (5.1) into an equation with the

same differential structure is called an equivalence transformation. The algorithm
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presented by Meleshko, S.V (1996) has been applied to construct an equivalence

Lie Group. This algorithm assumes dependence of all coefficients on all variables

including the arbitrary elements. Here, the arbitrary element in equation (5.1)

is the pressure function P = P (X,φX) which depends on the independent vari-

able and the derivative of the dependent variable and in order to simplify the

equivalence Lie group, new dependent variables are introduced :

u = φt, and v = φx. (5.3)

Hence P = P (X, v) and equation (5.1) can rewrite as

ut + PX + PvvX = 0. (5.4)

Moreover, a condition for the mixed derivatives

uX − vt = 0 (5.5)

holds.

The independent variables are x1 = X, x2 = t, the dependent variables

are u1 = u , u2 = v , u3 = φ and P is the arbitrary pressure function. An

infinitesimal operator Xe of the equivalence Lie group is presented as follows,

Xe = ξxi∂xi + ζuj∂uj + ζP∂P

= ξX∂X + ξt∂t + ζu∂u + ζv∂v + ζφ∂φ + ζP∂P ,

with the coefficients

ξxi = ξxi(X, t, u, v, φ, P ), ζuj = ζuj(X, t, u, v, φ, P ), ζP = ζP (X, t, u, v, φ, P ),

where i = 1, 2 and j = 1, 2, 3.

The prolonged operator is

X̃e = Xe + ζ
ujxi∂ujxi

+ ζPxi∂Pxi
+ ζPuj∂Puj

= Xe + ζuX∂uX + ζut∂ut + ζvX∂vX + ζvt∂vt + ζφX∂φX
+ ζφt∂φt

+ ζPX∂PX
+ ζPt∂Pt + ζPu∂Pu + ζPv∂Pv + ζPφ∂Pφ ,
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where the coefficients of the prolonged operator are obtained by using the prolon-

gation formulae

ζ
ujxi = De

xi
ζuj − ujx1D

e
xi
ξx1 − ujx2D

e
xi
ξx2 ,

ζPxi = D̃e
xi
ζP − Px1D̃

e
xi
ξx1 − Px2D̃

e
xi
ξx2 − Pu1D̃

e
xi
ζu1 − Pu2D̃

e
xi
ζu2 − Pu3D̃

e
xi
ζu3 ,

ζPuj = D̃e
uj
ζP − Px1D̃

e
uj
ξx1 − Px2D̃

e
uj
ξx2 − Pu1D̃

e
uj
ζu1 − Pu2D̃

e
uj
ζu2 − Pu3D̃

e
uj
ζu3 ,

Here, the operators are :

De
xi
= ∂xi+ujxi∂uj+(Pxi+ujxiPuj)∂P , D̃e

xi
= ∂xi+Pxi∂P , D̃e

uj
= ∂uj+Puj∂P .

or their expression of the coefficients and operators are

ζuX = De
Xζ

u − uXD
e
Xξ

X − utD
e
Xξ

t, ζut = De
t ζ
u − uXD

e
t ξ
X − utD

e
t ξ
t,

ζvX = De
Xζ

v − vXD
e
Xξ

X − vtD
e
Xξ

t, ζvt = De
t ζ
v − vXD

e
t ξ
X − vtD

e
t ξ
t,

ζφX = De
Xζ

φ − φXD
e
Xξ

X − φtD
e
Xξ

t, ζφt = De
t ζ
φ − φXD

e
t ξ
X − φtD

e
t ξ
t,

ζPX = D̃e
Xζ

P − PXD̃
e
Xξ

X − PtD̃
e
Xξ

t − PuD̃
e
Xζ

u − PvD̃
e
Xζ

v − PφD̃
e
Xζ

φ,

ζPt = D̃e
t ζ
P − PXD̃

e
t ξ
X − PtD̃

e
t ξ
t − PuD̃

e
t ζ
u − PvD̃

e
t ζ
v − PφD̃

e
t ζ
φ,

ζPu = D̃e
uζ

P − PXD̃
e
uξ

X − PtD̃
e
uξ

t − PuD̃
e
uζ

u − PvD̃
e
uζ

v − PφD̃
e
uζ

φ,

ζPv = D̃e
vζ
P − PXD̃

e
vξ
X − PtD̃

e
vξ
t − PuD̃

e
vζ
u − PvD̃

e
vζ
v − PφD̃

e
vζ
φ,

ζPφ = D̃e
φζ

P − PXD̃
e
φξ

X − PtD̃
e
φξ

t − PuD̃
e
φζ

u − PvD̃
e
φζ

v − PφD̃
e
φζ

φ,

De
X = ∂X + uX∂u + vX∂v + φX∂φ + (PX + uXPu + vXPv + φXPφ)∂P ,

De
t = ∂t + ut∂u + vt∂v + φt∂φ + (Pt + utPu + vtPv + φtPφ)∂P ,

D̃e
X = ∂X + PX∂P , D̃e

t = ∂t + Pt∂P ,

D̃e
u = ∂u + Pu∂P , D̃e

v = ∂v + Pv∂P , D̃e
φ = ∂φ + Pφ∂P .

The conditions that P = P (X, v) is an arbitrary function and does not depend

on t , u , φ are

Pt = 0, Pu = 0, Pφ = 0. (5.6)
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The determining equations of the equivalence Lie group are

[
ζut + ζPX + vXζ

Pv + Pvζ
vX
]∣∣(S) = 0[

ζu − ζφt
]∣∣(S) = 0,

[
ζv − ζφX

]∣∣(S) = 0,
[
ζuX − ζvt

]∣∣(S) = 0,

ζPt ∣∣(S) = 0, ζPu ∣∣(S) = 0, ζPφ ∣∣(S) = 0.

(5.7)

After substituting ζu, ζut , ζuX , ζv, ζvt , ζvX , ζφt , ζφX , ζPu , ζPv , ζPt ,

ζPX , ζPφ and transition onto the manifold (S) : ut = −PX − PvvX , equation

(5.7) can be split with respect to the variables uX , vX , vt, PX , Pv. The sym-

bolic computer Reduce program was applied here. After solving the determining

equations, the following basis of generators were obtained :

Xe
1 = ∂t, Xe

2 = ∂X , Xe
3 = ∂φ, Xe

4 = ∂P , Xe
5 = t∂φ,

Xe
6 = φ∂φ + P∂P , Xe

7 = t∂t − 2P∂P , Xe
8 = t2∂φ − 2X∂P ,

Xe
9 = X∂X + P∂P ,

The following equivalence Lie group of transformations corresponding to these

basis generators will be applied to simplify the function P (X,φX) in the process

of the group classification:

Xe
1 : t̄ = t+ a, X̄ = X, φ̄ = φ, P̄ = P ;

Xe
2 : t̄ = t, X̄ = X + a, φ̄ = φ, P̄ = P ;

Xe
3 : t̄ = t, X̄ = X, φ̄ = φ+ a, P̄ = P ;

Xe
4 : t̄ = t, X̄ = X, φ̄ = φ, P̄ = P + a ;

Xe
5 : t̄ = t, X̄ = X, φ̄ = φ+ ta, P̄ = P ;

Xe
6 : t̄ = t, X̄ = X, φ̄ = φea, P̄ = Pea ;

Xe
7 : t̄ = tea, X̄ = X, φ̄ = φ, P̄ = Pe−2a ;

Xe
8 : t̄ = t, X̄ = X, φ̄ = φ+ t2a, P̄ = P − 2aX ;

Xe
9 : t̄ = t, X̄ = Xea, φ̄ = φ, P̄ = Pea ;
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Here, a is the group parameter. Moreover, a particular case of pressure function,

P (X,φX) = P1(X)
(
φX + P2(X)

)γ
+ P3(X),

can be simplified by applying these equivalence Lie group of transformations

Xe
10 : t̄ = t, X̄ = X, φ̄ = φea, P̄1 = P1e

−(α−1)a, P̄2 = P2e
a, P̄3 = P3e

a ;

Xe
11 : t̄ = tea, X̄ = X, φ̄ = φ, P̄1 = P1e

−2a, P̄2 = P2, P̄3 = P3e
−2a ;

Xe
12 : t̄ = t, X̄ = Xea, φ̄ = φ, P̄1 = P1e

(α+1)a, P̄2 = P2e
−a, P̄3 = P3e

a ;

Xe
13 : t̄ = t, X̄ = X, φ̄ = φ+ t2a, P̄1 = P1, P̄2 = P2, P̄3 = P3 − 2aX ;

Xe
14 : t̄ = t, X̄ = X, , φ̄ = φ, P̄1 = P1, P̄2 = P2, P̄3 = P3 + a ;

Xe
15 : t̄ = t, X̄ = X, φ̄ = φ+ ζ(X)a, P̄1 = P1, P̄2 = P2 − ζ ′(X)a, P̄3 = P3 ;

where the function ζ(X) and α are arbitrary.

5.2 Admitted Lie group of equation (5.1)

The infinitesimal generators of one-parameter Lie groups admitted by equa-

tion (5.1) are sought in the form:

X = ξt(t,X, φ)∂t + ξX(t,X, φ)∂X + ηφ(t,X, φ)∂φ. (5.8)

The prolonged infinitesimal generator of (5.8) is

X(2) = X + ηφt∂φt + ηφX∂φX
+ ηφtt∂φtt + ηφtX∂φtX

+ ηφXX∂φXX
(5.9)

with the coefficients

ηφt = ηt + φtηφ − φ2
t ξ
t
φ − φtξ

t
t − φtφXξ

X
φ − φXξ

X
t ,

ηφX = ηX + φXηφ − φtφXξ
t
φ − φtξ

t
X − φ2

Xξ
X
φ − φXξ

X
X ,

ηφXX = ηXX + 2φXηφX + φ2
Xηφφ + φXXηφ − 2φtφXξ

t
φX − φtφ

2
Xξ

t
φφ

− φtφXXξ
t
φ − 2φXφtXξ

t
φ − φtξ

t
XX − 2φtXξ

t
X − 2φ2

Xξ
X
φX

− φ3
Xξ

X
φφ − 3φXφXXξ

X
φ − φXξ

X
XX − 2φXXξ

X
X ,
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ηφtX = ηtX + φXηφt + φtηφX + φtφXηφφ + φtXηφ − φtφXξ
t
φt − φ2

t ξ
t
φX − φXφ

2
t ξ
t
φφ

− 2φtφtXξ
t
φ − φXφttξ

t
φ − φtξ

t
tX − φtXξ

t
t − φttξ

t
X − φ2

Xξ
X
φt − φtφXξ

X
φX

− φtφ
2
Xξ

X
φφ − φtφXXξ

X
φ − 2φXφtXξ

X
φ − φXξ

X
tX − φXXξ

X
t − φtXξ

X
X ,

ηφtt = ηtt + 2φtηφt + φ2
tηφφ + φttηφ − 2φ2

t ξ
t
φt − φ3

t ξ
t
φφ − 3φtφttξ

t
φ − φtξ

t
tt − 2φttξ

t
t

− 2φtφXξ
X
φt − φ2

tφXξ
X
φφ − 2φtφtXξ

X
φ − φttφXξ

X
φ − φXξ

X
tt − 2φtXξ

X
t .

The generator of (5.8) is admitted by equation (5.1), if and only if,

[
X(2)F (t,X, φ, φx, φtt, φXX)

]∣∣
(S)

= 0.

The last equation becomes

[
ηφtt+ξXPXX+η

φXPφXX+φXX
(
ξXPφXX+η

φXPφXφX

)
+ηφXXPφX

]∣∣
(S)

= 0. (5.10)

This equation is called the determining equation. Here (S) is the manifold defined

by the relation φtt = −PX−PφX
φXX . Substituting the coefficients ηφX , ηφtt , ηφXX

and the derivative φtt = −PX − PφX
φXX , one obtains

2φtηφt + 2φXηφXPφX
+ φ2

XηφφPφX
+ φ2

tηφφ + φXηφPφXX

+φXφXXηφPφXφX
+ φXXηφPφX

+ φttηφ + ηtt + ηXXPφX

+ηXPφXX + φXXηXPφXφX
− 2φ2

t ξ
t
φt − 2φtφXξ

t
φXPφX

− φtφ
2
Xξ

t
φφPφX

−φ3
t ξ
t
φφ − φtφXξ

t
φPφXX − φtφXφXXξ

t
φPφXφX

− φtφXXξ
t
φPφX

−2φtXφXξ
t
φPφX

− 3φtφttξ
t
φ − φtξ

t
tt − 2φttξ

t
t − φtξ

t
XXPφX

− φtξ
t
XPφXX

−φtφXXξtXPφXφX
− 2φtXξ

t
XPφX

− 2φtφXξ
X
φt − 2φ2

Xξ
X
φX
PφX

− φ3
Xξ

X
φφPφX

−φ2
tφXξ

X
φφ − φ2

Xξ
X
φ PφXX − φ2

XφXXξ
X
φ PφXφX

− 3φXφXXξ
X
φ PφX

−2φtφtXξ
X
φ − φXφttξ

X
φ − φXξ

X
tt − 2φtXξ

X
t − φXξ

X
XXPφX

− φXξ
X
XPφXX

−φXφXXξXXPφXφX
− 2φXXξ

X
XPφX

+ φXXξ
XPφXX + ξXPXX = 0.

(5.11)

The equation (5.11) can be split with respect to the parametric deriva-
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tives φt , φtX , φXX . After splitting, one obtains these equations

2φXηφXPφX
+ φ2

XηφφPφX
+ φXηφPφXX − ηφPX + ηtt + ηXXPφX

ηXPφXX

+2ξttPX − 2φ2
Xξ

X
φXPφX

− φ3
Xξ

X
φφPφX

− φ2
Xξ

X
φ PφXX + φXξ

X
φ PX − φXξ

X
tt

−φXξXXXPφX
− φXξ

X
XPφXX + ξXPXX = 0, (5.12a)

2φXξ
t
φXPφX

+ φ2
Xξ

t
φφPφX

+ φXξ
t
φPφXX − 3ξtφPX + ξttt − 2ηφt + ξtXXPφX

+ξtXPφXX + 2φXξ
X
φt = 0, (5.12b)

ηφφ − 2ξtφt − φXξ
X
φφ = 0, (5.12c)

ξtφφ = 0, (5.12d)

φXξ
t
φPφX

+ ξtXPφX
+ ξXt = 0, (5.12e)

ξXφ = 0, (5.12f)

φXηφPφXφX
+ ηXPφXφX

+ 2ξttPφX
− φ2

Xξ
X
φ PφXφX

− 2φXξ
X
φ PφX

−φXξXXPφXφX
− 2ξXXPφX

+ ξXPφXX = 0, (5.12g)

φXξ
t
φPφXφX

− 2ξtφPφX
+ ξtXPφXφX

= 0. (5.12h)

As P (X,φX) is an arbitrary function, one can split the above determining equa-

tions with respect to PX , PφX
, PφXX , PφXφX

. A solution for the determining

equations is

ξt = k1, ξX = 0, η = k2t+ k3.

The generator corresponding to these coefficients compose a basis of the kernel of

admitted groups such that the kernel is admitted for all functions P (X,φX) and

they consist of the generators

X1 = ∂t, X2 = ∂φ, X3 = t∂φ.

Extensions of the kernel depend on the value of the function P (X,φX).

From equations (5.12c), (5.12d), and (5.12f), by a simple analysis, one

finds

ξt(t,X, φ) = φξt1(t,X) + ξt0(t,X),
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η(t,X, φ) = φ2ξt1t + φη1(t,X) + η0(t,X).

Substituting and differentiating equations (5.12b) and (5.12e) with respect

to φ, the relations

ξt1XPφX
= 0 , ξt1tt = 0

are obtained. As PφX
< 0, then

ξt1(t) = tk1 + k2 where k1, k2 are constant.

Substituting all above relations into (5.12e), then it becomes

ξXt (t,X) = −PφX
(ξt0X + φXk1t+ φXk2)

Differentiating this latter equation with respect to φX , one gets

PφXφX

(
ξt0X + k1tφX + k2φX

)
+ PφX

(
k1t+ k2

)
= 0, (5.13)

and by taking linear combinations of equations (5.13) and (5.12h), one has

PφX
(k1t+ k2) = 0. (5.14)

The latter equation implies that k1 = 0, and k2 = 0. Equation (5.12h) becomes

ξt0XPφXφX
= 0. (5.15)

The study of this equation can be separated in 2 cases: PφXφX
̸= 0 and

PφXφX
= 0. If PφXφX

= 0, then P (X,φX) = a(X)φX + b(X). This type of

pressure function is called the Chaplygin gas if a(X) and b(X) are constant

and the group classification of this case has already been obtained by Bluman and

Kumei (1986) and Grimshaw et al. (2010). Therefore in our study, we consider

the case

PφXφX
̸= 0. (5.16)
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As PφXφX
̸= 0, one has from (5.15) that ξt0X = 0 which means that ξt0 = ξt0(t).

Substituting this relation, then equation (5.12b) gives

η1(t,X) =
1

2

(
ξt0t + η11(X)

)
.

Differentiating equations (5.12a) and (5.12g) with respect to φ, one has

η11 = k3, ξt0(t) = k4t
2 + k5t+ k6,

where k3, k4, k5, and k6 are constant. Moreover, one also derives equation (5.12g),

one finds

η0X(t,X) =
1

2PφXφX

(
PφXφX

(
2ξXXφX − k3φX − 2k4tφX − k5φX

)
+PφX

(
4ξXX − 8k4t− 4k5

)
− 2ξXPφXX

)
.

Differentiating this equation with respect to φX , one gets

PφXφXφX

(
− 4ξXXPφX

+ 2ξXPφXX + 8k4tPφX
+ 4k5PφX

)
+P 2

φXφX

(
6ξXX − k3 − 10k4t− 5k5

)
− 2ξXPφXφX

PφXφXX = 0.

(5.17)

Substituting and differentiating equation (5.12a) with respect to t twice, one

derives

η0(t,X) = t3η03(X) + t2η02(X) + tη01(X) + η00(X),

where

η02X = 0, η03X = 0

such that η02 = k7, and η03 = k8 where k7 and k8 are constants,

η00X = 1
2PφXφX

(
− k3φXPφXφX

+ k5
(
− φXPφXφX

− 4PφX

)
+2
(
ξXXφXPφXφX

+ 2ξXXPφX
− ξXPφXX

))
,

(5.18)

η01X =
k4

PφXφX

(
− φXPφXφX

− 4PφX

)
, (5.19)

k5
(
4PφX

PφXφXφX
− 5P 2

φXφX

)
+ 2ξXX

(
− 2PφX

PφXφXφX
+ 3P 2

φXφX

)
+2ξX

(
PφXXPφXφXφX

− PφXφXXPφXφX

)
− k3P

2
φXφX

= 0,
(5.20)
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k4
P 2
φXφX

(
4PφX

PφXφXφX
− 5P 2

φXφX

)
= 0. (5.21)

Moreover, substituting all conditions into (5.12a) again, one gets these following

conditions

k8 =
k4

6P 2
φXφX

(
8PφX

PφXXPφXφX
− 4P 2

φX
PφXφXX − 3P 2

φXφX
PX

)
, (5.22)

k4
6P 3

φXφX

(
8P 2

φXφX

(
PφX

PφXXX + P 2
φXX

)
+ 8P 2

φX
P 2
φXφXX

− 3P 3
φXφX

PXX

−4PφX
PφXφX

(
4PφXXPφXφXX − PφX

PφXφXXX

))
= 0,

(5.23)

k4
6P 3

φXφX

(
PφXφX

PφXX

(
− 8PφX

PφXφXφX
+ 5P 2

φXφX

)
+P 2

φX

(
− 4PφXφX

PφXφXφXX + 8PφXφXXPφXφXφX

))
= 0.

(5.24)

To simplify the calculation, let us introduce a new constant kk3 which is k3 =

kk3 + k5 and by taking a linear combination of equation (5.17) and (5.20), then

equation (5.17) becomes

2k5
(
2PφX

PφXφXφX
− 3P 2

φXφX

)
+ 2ξXX

(
− 2PφX

PφXφXφX
+ 3P 2

φXφX

)
−kk3P 2

φXφX
+ 2ξX

(
PφXXPφXφXφX

− PφXφXXPφXφX

))
= 0.

(5.25)

Since PφXφX
̸= 0, one gets

kk3 =
1

P 2
φXφX

(
2k5
(
2PφX

PφXφXφX
− 3P 2

φXφX

)
+ 2ξXX

(
− 2PφX

PφXφXφX

+3P 2
φXφX

)
+ 2ξX

(
PφXXPφXφXφX

− PφXφXXPφXφX

))
.

(5.26)

Differentiating equation (5.26) with respect to X and φ, one finds these two

conditions

4k5

(
PφXφXφX

(
PφXXPφXφX

− 2PφXφXXPφX

)
+ PφXφXφXXPφXφX

PφX

)
+2ξXXXPφXφX

(
− 2PφXφXφX

PφX
+ 3P 2

φXφX

)
+ 2ξXXPφXφXX

(
4PφXφXφX

PφX
− P 2

φXφX

)
+2ξXPφXφX

(
PφXφXφX

PφXXX + PφXφXφXXPφXX − PφXφXXXPφXφX
+ P 2

φXφXX

)
−2ξXXPφXφX

(
PφXXPφXφXφX

− 2PφXφXφXXPφX

)
− 4ξXPφXφXXPφXφXφX

PφXX = 0,

(5.27)
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and

4k5

(
PφX

PφXφXφXφX
PφXφX

+ PφXφXφX
P 2
φXφX

− 2P 2
φXφXφX

PφX

)
+2ξXXPφXφX

(
− 2PφXφXφXφX

PφX
− 2PφXφXφX

PφXφX

)
+2ξXPφXX

(
PφXφXφXφX

PφXφX
− 2P 2

φXφXφX

)
+ 8ξXXP

2
φXφXφX

PφX

+2ξXPφXφX

(
− PφXφXφXXPφXφX

+ 2PφXφXφX
PφXφXX

)
= 0.

(5.28)

Substituting all relations, one finds ξXXX from (5.12a)

ξXXX = ξXX

(
− 3PφX

PφXXPφXφX
− 2PXPφX

PφXφXφX
+ 2P 2

φX
PφXφXX + 3PXP

2
φXφX

)
+2k5

(
2PφX

PφXXPφXφX
+ PXPφX

PφXφXφX
− P 2

φX
PφXφXX − 2PXP

2
φXφX

)
+ξX

(
PφXφX

(
PφX

PφXXX + P 2
φXX

)
− PφXφXX

(
PφX

PφXX + PXPφXφX

)
+PXPφXXPφXφXφX

− P 2
φXφX

(
PXX + 2k7

))
.

(5.29)

Differentiating equation (5.29) with respect to φX , one finds

ξXX

(
PφXXPφXφX

PφX

(
− 2PφX

PφXφXφX
+ 6P 2

φXφX

)
+P 2

φXφX

(
− 3P 2

φX
PφXφXX − 6PXP

2
φXφX

)
+P 2

φX
PφXφX

(
− 2PXPφXφXφXφX

+ 2PφX
PφXφXφXX

)
+2PφX

PφXφXφX

(
PXPφX

PφXφXφX
− P 2

φX
PφXφXX + 5PXP

2
φXφX

))
+2k5

(
PφXXPφXφX

PφX

(
PφX

PφXφXφX
− 4P 2

φXφX

)
+P 2

φXφX

(
2P 2

φX
PφXφXX + 4PXP

2
φXφX

)
+P 2

φX
PφXφX

(
PXPφXφXφXφX

− PφX
PφXφXφXX

)
+PφX

PφXφXφX

(
− PXPφX

PφXφXφX
+ P 2

φX
PφXφXX − 3PXP

2
φXφX

))
+ξX

(
PφX

PφXφX

(
− 2PφXXXP

2
φXφX

+ P 2
φXX

PφXφXφX

)
+PφXXP

2
φXφX

(
− 2PXPφXφXφX

+ 2PφX
PφXφXX

)
+PφX

PφXXPφXφXφX

(
PXPφXφXφX

+ PφX
PφXφXX

)
+PφX

P 2
φXφX

(
− PXXPφXφXφX

+ PφX
PφXφXXX

)
+PφXφX

(
− 2P 2

φXX
P 2
φXφX

+ PXPφX
PφXXPφXφXφXφX

−P 2
φX
PφXXPφXφXφXX − P 2

φX
P 2
φXφXX

(5.30)
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+2PXPφXφXXP
2
φXφX

+ 2PXXP
3
φXφX

))
+2k7P

2
φXφX

(
− PφX

PφXφXφX
+ 2P 2

φXφX

)
= 0

Taking a linear combination of equations (5.27) and (5.30), one finds

k7 =
1

2P 4
φXφX

(
ξXX

(
PφX

PφXφX

(
− 3PφXXP

2
φXφX

+ 4PXPφX
PφXφXφXφX

)
+PXPφX

PφXφXφX

(
8PφX

PφXφXφX
+ 2P 2

φXφX

)
+ P 2

φXφX

(
2P 2

φX
PφXφXX + 3PXP

2
φXφX

))
+2k5

(
PφX

PφXφX

(
2PφXXP

2
φXφX

− 2PXPφX
PφXφXφXφX

)
+PXPφX

PφXφXφX

(
4PφX

PφXφXφX
− P 2

φXφX

)
+ P 2

φXφX

(
− P 2

φX
PφXφXX − 2PXP

2
φXφX

))
+ξX

(
P 3
φXφX

(
PφX

PφXXX + P 2
φXX

)
+ PXPφX

PφXX

(
PφXφX

PφXφXφXφX
+ 4P 2

φXφXφX

)
+PφXXP

2
φXφX

(
PXPφXφXφX

− PφX
PφXφXX

)
+ P 3

φXφX

(
− PXPφXφXX − PXXPφXφX

)
+PXPφX

PφXφX

(
2PφXφX

PφXφXφXX − 4PφXφXXPφXφXφX

)))
(5.31)

Let us introduce a new function

µ1 =
PφX

PφXφXφX

P 2
φXφX

. (5.32)

After substituting function µ1(X,φX) into all above conditions, the following

equations are the latest form, and they must be analyzed to find the solution

of the determining equation.

Equation (5.21) becomes

k4
(
4µ1 − 5

)
= 0. (5.33)

Equation (5.23) becomes

k4

(
P 2
φXφX

(
8PφX

PφXφXX + 8P 2
φXX

− 3PXXPφXφX

)
+ 8P 2

φX
P 2
φXφXX

+PφXφX

(
− 16PφX

PφXXPφXφXX − 4P 2
φX
PφXφXXX

))
= 0.

(5.34)

Equation (5.24) becomes

k4

(
PφXφX

(
− 4µ1XPφX

+ 4µ1PφXX − 5PφXX

)
+2PφXφXXPφX

(
− 4µ1 + 5

))
= 0.

(5.35)
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Equation (5.27) becomes

ξXXPφX
PφXφX

(
PφXφX

(
4µ1φX

µ1PX − 6µ1φX
PX − 2µ1XPφX

+ µ1PφXX

)
−PφX

PφXφXX

)
+ ξX

(
P 2
φXφX

(
− 2µ1φX

µ1PXPφXX + 3µ1φX
PXPφXX

−µ1P
2
φXX

+ µ1XPφX
PφXX + 2µ1Xµ1PXPφXφX

− 3µ1XPXPφXφX

+µ1PφX
PφXXX

)
− P 2

φX

(
PφXφX

PφXφXXX − P 2
φXφXX

))
+2k5PφX

P 2
φXφX

(
µ1φX

PX
(
− 2µ1 + 3

)
+ µ1XPφX

)
= 0.

(5.36)

Equation (5.28) becomes

2ξXXµ1φX
PφX

− 2k5µ1φX
PφX

+ ξX
(
− µ1φX

PφXX + µ1XPφXφX

)
= 0. (5.37)

Equation (5.30) becomes

ξXXPφX
PφXφX

(
µ1φX

PXPφXφX

(
− 4µ1 + 6

)
+ PφXφX

(
2µ1XPφX

− µ1PφXX

)
+PφX

PφXφXX

)
+ ξX

(
P 2
φXφX

(
2µ1φX

µ1PXPφXX − 3µ1φX
PXPφXX

−µ1XPφX
PφXX − 2µ1Xµ1PXPφXφX

+ 3µ1XPXPφXφX

−µ1PφX
PφXXX + µ1P

2
φXX

)
+ P 2

φX

(
PφXφX

PφXφXXX − P 2
φXφXX

))
+2k5PφX

P 2
φXφX

(
µ1φX

PX
(
2µ1 − 3

)
− µ1XPφX

)
= 0.

(5.38)

Equation (5.22) becomes

k8 =
k4

6P 2
φXφX

(
8PφXXPφXφX

PφX
− 4PφXφXXP

2
φX

− 3P 2
φXφX

PX

)
. (5.39)

Equation (5.26) becomes

kk3 = 1
PφXφX

PφX

(
2ξXXPφXφX

PφX
(−2µ1 + 3) + 2k5PφXφX

PφX
(2µ1 − 3)

+2ξX
(
PφXXPφXφX

µ1 − PφXφXXPφX

))
.

(5.40)

Equation (5.31) becomes

k7 =
1

2P 2
φXφX

PφX

(
ξXXPφX

(
4µ1φX

PφXφX
PφX

PX − 3PφXXPφXφX
PφX

+2PφXφXXP
2
φX

− 2P 2
φXφX

PXµ1 + 3P 2
φXφX

PX
)

+2k5PφX

(
− 2µ1φX

PφXφX
PφX

PX + 2PφXXPφXφX
PφX

− PφXφXXP
2
φX

(5.41)
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+P 2
φXφX

PXµ1 − 2P 2
φXφX

PX
)
+ ξX

(
− 2µ1φX

PφXXPφXφX
PφX

PX

+2µ1XP
2
φXφX

PφX
PX + PφXXXPφXφX

P 2
φX

+P 2
φXX

PφXφX
PφX

− PφXXPφXφXXP
2
φX

+PφXXP
2
φXφX

PXµ1 − PφXφXXPφXφX
PφX

PX − P 2
φXφX

PφX
PXX

))
.

Differentiating equation (5.41) with respect to φX , one finds

ξXXPXPφXφX

(
PφX

(
4µ1φXφX

PX + 4µ1φX
PφXXPφXφXX

)
+µ1φX

PXPφXφX

(
− 4µ1 + 2

)
PφXφX

(
2µ1XPφX

− µ1PφXX

))
+ξX

(
PXPφX

PφXφX

(
2µ1φXX

PφXφX
− 2µ1φXφX

PφXX

)
+µ1φX

PφXXPφXφX

(
− 2PφXXPφX

+ 2µ1PXPφXφX
+ PXPφXφX

)
+P 2

φX

(
PφXφX

PφXφXXX − P 2
φXφXX

)
(5.42)

+PφX
PφXφX

(
− 2µ1φX

PXPφXφXX + µ1XPφXXPφXφX

)
+P 2

φXφX

(
− µ1XPXPφXφX

− µ1PφX
PφXXX + µ1P

2
φXX

))
+2k5PφX

PφXφX

(
PφX

(
− 2µ1φXφX

PX − 2µ1φX
PφXX − µ1XPφXφX

)
+µ1φX

PXPφXφX

(
2µ1 − 1

))
= 0.

Further study of the determining equations is separated in several cases as indi-

cated in Figures 5.1-5.4. Details of solving the determining equations and finding

the function P (X,φX) of all these cases are given in Appendix A, and results of

this analysis are summarized in Tables 5.1-5.2. Here details of the study of one of

the branches are presented. We start analyzing the branch choosing µ1φX
̸= 0.

5.3 Case µ1φX
̸= 0

By equation (5.37), assuming µ1φX
̸= 0 ,and since PφX

̸= 0, then ξXX can

be found:

ξXX =
1

2µ1φX
PφX

(
2k5µ1φX

PφX
+ ξX

(
µ1φX

PφXX − µ1XPφXφX

))
. (5.43)
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Next, consider equation (5.33), differentiating it with respect to φX , one has

k4 = 0

and

2k5µ1φX
PφX

(
µ1φX

PφXX − µ1XPφXφX

)
+ξX

(
2µ1φXX

µ1XPφX
PφXφX

+ 2µ1
2
φX
PφX

PφXXX − µ1
2
φX
P 2
φXX

−2µ1φX
µ1XXPφX

PφXφX
− 2µ1φX

µ1XPφX
PφXφXX + µ1

2
XP

2
φXφX

)
= 0.

(5.44)

Differentiating equation (5.43) with respect to φX , one has

ξX
(µ1φX

PφXX − µ1XPφXφX

2µ1φX
PφX

)
φX

= 0. (5.45)

Let ∆ =
(
µ1φX

PφXX−µ1XPφXφX

2µ1φX
PφX

)
φX

. Consider equation (5.45), in order to analyze

the transformations, we will consider two cases: ∆ ̸= 0 and ∆ = 0.

5.3.1 Case ∆ ̸= 0

Considering equation (5.45), when ∆ ̸= 0, then ξX = 0. In this case one

finds k5 = 0 and a solution for the determining equations is

ξt = k6, ξX = 0, η = tη01 + η00, η00X = 0, η01X = 0.

This case has no extension of the kernels of admitted Lie algebras.

5.3.2 Case ∆ = 0

Considering equation (5.45), in this case
(
µ1φX

PφXX−µ1XPφXφX

2µ1φX
PφX

)
φX

=0, one

can introduce a function µ2 = µ2(X) such that

µ2 =
µ1φX

PφXX − µ1XPφXφX

2µ1φX
PφX

. (5.46)

From the latter equation one has

µ1X =
µ1φX

(
PφXX − 2µ2PφX

)
PφXφX

. (5.47)
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Equation (5.44) reduces to the equation

k5µ2 + ξX
(
µ2X + µ2

2

)
= 0. (5.48)

Differentiating equation (5.48) with respect to X, one gets

k5

(
2µ2X + µ2

2

)
+ ξX

(
µ2XX + 3µ2Xµ2 + µ3

2

)
= 0. (5.49)

Equations (5.48) and (5.49) are algebraic linear homogeneous equations with re-

spect to k5 and ξX with the determinant µ2µ2XX − 2µ2
2
X . If this determinant

is not equal to zero, then k5 = 0 and ξX = 0. In this case there is no extension

of the kernel of admitted Lie algebras. Hence, one has to assume that

µ2µ2XX − 2µ2
2
X = 0.

The general solution of this equation is µ2
1(X) = 0, and µ2

2(X) = 1
k1X+k2

,

where k1 and k2 are constants such that k21 + k22 ̸= 0.

Case µ2(X) ̸= 0

Substituting µ2(X) = 1
k1X+k2

into equation (5.43) and (5.48), they become

ξXX = k5 +
ξX

k1X + k2
,

and

k5

(
k1X + k2

)
+ ξX

(
− k1 + 1

)
= 0. (5.50)

• Case I k1 = 1

Substituting k1 = 1 into equation (5.50), one gets k5 = 0, then

ξX = k9
(
X + k2

)
. (5.51)

Equation (5.40) also becomes

kk3 =
k9

PφX
PφXφX

(
− 2PφX

PφXφXX(X + k2)

+2µ1PφXφX

(
PφXX(X + k2)− 2PφX

)
+ 6PφX

PφXφX

)
.

(5.52)
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Let g = g(X,φX) be such that

g = 1
PφX

PφXφX

(
− 2PφX

PφXφXX(X + k2)

+2µ1PφXφX

(
PφXX(X + k2)− 2PφX

)
+ 6PφX

PφXφX

)
,

one can rewrite equation (5.52) as

kk3 = k9g. (5.53)

Differentiating equation (5.53) with respect to X and φX , one has

k9gX = 0, k9gφX
= 0.

If g2X + g2φX
̸= 0, one has k9 = 0. In this case there is no extension of the kernel

of admitted Lie algebras. Hence, one has to assume that g is constant.

As kk3 is constant, say g = kk3, the latter can be rewritten as

PφXφXX =
1

2PφX
(X + k2)

(
2µ1PφXφX

(
PφXX(X + k2)− 2PφX

)
+ PφXφXφX

(6− g)
)
.

A similar study applies to equation (5.41), which can be also rewritten in the new

form

k7 = k9ko4,

or

PφXXX =
1

2PφX
(X + k2)2

(
− 2P 2

φXX
(X + k2)

2 − k2gPφX
PφXX

+2µ1

(
P 2
φXX

(X + k2)
2 − 4PφX

PφXX(X + k2) + 4P 2
φX

)
+PφX

PφXX(12k2 − gX + 12X) + 2PXXPφXφX
(X + k2)

2

−PφXφX
(X + k2)

(
gPX − 4ko4

)
+ 2P 2

φX
(g − 6)

)
,

(5.54)

where ko4 is constant.

Substituting all these relations into equation (5.18), it becomes

η00X =
k9

2PφXφX

(
− 2k2PφXX − 2XPφXX − φXPφXφX

(g − 2) + 4PφX

)
. (5.55)
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Since η00 only depends on X and for existence of extension of the kernel of

admitted Lie algebras one obtains that

η00X = f(X)k9,

equation (5.55) provides that

PφXX =
1

2(X + k2)

(
PφXφX

(−gφX + 2φX − 2f(X)) + 4PφX

)
(5.56)

where f(X) is a function of X only. Substituting (5.56) into (5.54), one derives

φ2
XPφXφX

g(4− g)− 4φXPφXφX

(
φX + gf(X)

)
+4f(X)PφXφX

(
2φX − f(X)

)
+ 4φXPφX

(g − 2) + 8f(X)PφX

+4PXX(X + k2)
2 − (X + k2)

(
2gPX − 8ko4 − 4f(X)PφX

)
= 0.

(5.57)

Notice that (X + k2)
2 ̸= 0, one from equation (5.57), one can find

PXX =
1

4(X + k2)

(
φ2
XPφXφX

g(g − 4) + 4φXPφXφX

(
φX + gf(X)

)
−4f(X)PφXφX

(
2φX − f(X)

)
− 4φXPφX

(g − 2)− 8f(X)PφX

+(X + k2)
(
2gPX − 8ko4 − 4f(X)PφX

))
.

(5.58)

Finally, the solution of the determining equations is

k4 = 0, k5 = 0, k8 = 0, kk3 = k9g, k7 = k9ko4,

η00X = f(X)k9, η01X = 0, ξt = k6, ξX = k9(X + k2),

η =
2k9ko4t

2 + 2η01t+ 2η00 + k9gφ

2
,

for k10 = η01 then, the generator corresponding to these coefficients is

X = k6X
1 + k10X

2 + k9X
3

with the basis of generators

X1 = ∂t, X2 = t∂φ

X3 = (X + k2)∂X +
(
ko4t

2 +

∫
f(X)dX +

gφ

2

)
∂φ.

(5.59)
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Here the function P (X,φX) satisfies the two equations (5.56) and (5.58).

Finding : Pressure function

Equation (5.56) can be rewritten as

2(X + k2)PφXX + PφXφX

(
φX(g − 2) + 2f(X)

)
= 4PφX

.

Thus, the general solution of equation (5.56) is

PφX
= ϕ(Z̃)(X + k2)

2 (5.60)

where Z̃ = φX(X + k2)
−α −

∫
f(X)(X + k2)

−α−1dX.

Integrating equation (5.60) with respect to φX we obtain the pressure function,

P (X,φX) = ϕ̃(Z̃)(X + k2)
α+2 + h(X) (5.61)

where ϕ(Z̃) is such that ϕ(Z̃) = ϕ̃(Z̃)
′
. Substituting this function into (5.58),

one derives

2(X + k2)hXX − ghX + 4ko4 = 0.

To find the integral −
∫
f(X)(X + k2)

−α−1dX, let us introduce the function

C(X) = −
∫
f(X)(X + k2)

−α−1dX.

Then C ′(X) = −f(X)(X + k2)
−α−1 or f(X) = −(X + k2)

α+1C ′(X). Consider∫
f(X)dX = −

∫
(X + k2)

α+1C ′(X)dX.

Integrating by-parts, one has∫
f(X)dX = −

[
C(X)(X + k2)

α+1 −
∫

(α + 1)(X + k2)
αC(X)dX

]
= −C(X)(X + k2)

α+1 + (α + 1)

∫
C(X)(X + k2)

αdX

= −C(X)(X + k2)
α+1 + (α + 1)f̃(X)
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where f̃(X) =
∫
C(X)(X + k2)

αdX or C(X) = (X + k2)
−αf̃ ′(X).

Therefore

−
∫
f(X)(X + k2)

−α−1dX = (X + k2)
−αf̃ ′(X),∫

f(X)dX = −(X + k2)f̃
′(X) + (α + 1)f̃(X),

and hence, η00 = k9

(
− (X + k2)f̃

′(X) + (α + 1)f̃(X)
)
.

Then generator in equation (5.59) can be rewritten as

X1 = ∂t, X2 = t∂φ

X3 = (X + k2)∂X +
(
βt2 − (X + k2)f̃

′(X) + (α + 1)
(
f̃(X) + φ

))
∂φ

(5.62)

where β = ko4 and 2(α + 1) = g. The pressure function (5.61) can be written

as

P (X,φX) = ϕ(Z)(X + k2)
α+2 + h(X) (5.63)

where Z = (X + k2)
−α(φX + f̃ ′(X)

)
and (X + k2)hXX − (α + 1)hX + 2β = 0.

By virtue of the equivalence transformations corresponding to the genera-

tors Xe
2 , X

e
15, it can be assumed that k2 = 0 and f̃(X) = 0. The genera-

tor X3 in equation (5.62) is changed to

X3 = X∂X +
(
βt2 + (α+ 1)φ

)
∂φ.

Later on the equivalence transformation corresponding to the operator Xe
8 will be

applied and this transformation allows one to simplify that β = 0. For α ̸= −1,

the extension of the kernel and the related pressure function are

X4 = X∂X + (α + 1)φ∂φ, P (X,φX) = ϕ(Z)Xα+2 + h(X) (5.64)

where Z = X−αφX and XhXX − (α + 1)hX = 0. The result of this case is

presented in Table 5.1 as the model M1.

Further study of the determining equations of the other branches are pre-

sented in Appendix A.
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5.4 Results of the group classification

The result of the group classification of equation (5.1) is summarized in

Tables 5.1-5.2. The first column presents the number of the extension, forms of

the function P (X,φX) are presented in the second column, and the extensions

of the kernel of admitted Lie algebra can be found in the third column. The

restrictions on functions and constants are given in the fourth column.

Table 5.1 Group classification of the equation φtt +DXP = 0.

No. P (X,φX) Extensions Remarks

M1 Φ(Z)Xα+2γ + h(X) (γ − 1)t∂t −X∂X γ ̸= 0, 1,

Z = X−αφX −(α + 1)φ∂φ

Xh′′(X)− (α + 2γ − 1)h′(X) = 0

M2 Φ(Z)e(2β−α)X + h(X) βt∂t − ∂X + αφ∂φ α ̸= 0

Z = eαXφX

h′′(X)−
(
2β − α

)
h′(X) = 0

M3 Φ(Z)Xα + h(X) t∂t +X∂X α ̸= −1

Z = X−αφX +
(
α+ 1

)
φ∂φ

Xh′′(X)− (α− 1)h′(X) = 0

M4 Φ(φX) + βX + γX2 ∂X − γt2∂φ γ, β ̸= 0

M5 Φ(φX) t∂t +X∂X + φ∂φ, ∂X

M6 eβX
(
φγX + k2

α2 e
(α−β)X) (

β + α(γ − 1)
)
t∂t− α, β ̸= 0

2γ∂X + 2(β − α)φ∂φ γ ̸= 0, 1

α− β ̸= 0

M7 eβXφγX (γ − 1)∂X − βφ∂φ, β ̸= 0

(γ − 1)t∂t − 2φ∂φ γ ̸= 0, 1
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Table 5.2 Group classification of the equation φtt +DXP = 0 (continued).

No. P (x, φx) Extensions Remarks

M8 b(X)φγX + k1b
m+1(X)

(
γ(1 +m+ 2l

)
−m

)
t∂t+ γ ̸= 0, 1

bl(X) = β
X

(2γl)X∂X + 2(γl −m)φ∂φ m ̸= γl

m ̸= −1,

l, β ̸= 0,

M9 b(X)φγX l(γ − 1)X∂X +
(
l(γ + 1) + 1

)
φ∂φ, γ ̸= 0, 1

bl(X) = β
X

(γ − 1)t∂t − 2φ∂φ l, β ̸= 0

M10 b(X)φγX + k1X
2 (2l − 1)t∂t + 2lγX∂X+ γ ̸= 0, 1

bl(X) = βX 2
(
2l − 1 + lγ

)
φ∂φ l, β, k1 ̸= 0

M11 eβXφγX + k1X
2 −βt∂t + 2γ∂X − 2βφ∂φ γ ̸= 0, 1

β, k1 ̸= 0

M12 k1Xφ
γ
X + k2X

α+1
(
γ(1− α) + α

)
t∂t+ γ ̸= 0, 1

2γX∂X + 2(γ + α)φ∂φ k1, k2 ̸= 0

α ̸= −1, 0

γ + α ̸= 0

M13 βφγX + k1X
2 ∂X − k1t

2∂φ, γ ̸= 0, 1, −2

t∂t + γX∂X + (γ + 2)φ∂φ k1, β ̸= 0

M14 βφ−3
X + k1X

2 ∂X − k1t
2∂φ, β, k1 ̸= 0

t∂t − 3X∂X − φ∂φ

M15 βφγX (γ − 1)t∂t − 2φ∂φ, β ̸= 0

(γ − 1)X∂X + (γ + 1)φ∂φ γ ̸= 0, 1

M16 βφ−3
X ∂X , 2X∂X + φ∂φ, β ̸= 0

t2∂t + tφ∂φ, 2t∂t + φ∂φ

M17 b(X)φ−3
X t2∂t + tφ∂φ,
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Figure 5.1 Tree diagram of µ1φx ̸= 0.
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Figure 5.2 Tree diagram of µ1φx = 0.
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Figure 5.3 Tree diagram of µ1φx = 0 with µ1x = 0.
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Figure 5.4 Tree diagram of µ1φx = 0 with µ1x ̸= 0.

 

 

 

 

 

 

 

 



CHAPTER VI

CONSERVATION LAWS

6.1 Constructing Lagrangians

In this chapter we apply Noether’s theorem to construct conservation laws

of the gas dynamics equations in Lagrangian coordinates corresponding to the

pressure function P (X,φX) presented in Tables 5.1- 5.2. The Lagrangian of the

gas dynamics equations in Lagrangian coordinates is

L(X,φt, φX) =
φ2
t

2
− φXW (X,φX), (6.1)

where X is the Lagrangian mass coordinate .

The function W (X,φX) and the pressure function P (X,φX) are related

as follows. Let

W̃ (X, ρ) = W (X, ρ−1), p(X, ρ) = P (X, ρ−1).

The relation is

p = ρW̃ρ − W̃ , (6.2)

and ρ = φ−1
X .

Consider the function W̄ (X, ρ) = W̃ (X, ρ) + ρ g(X). Then

ρW̄ρ − W̄ = ρW̃ρ − W̃ .

This means that the function W̃ (X, ρ) can be found up to the term ρ g(X). This

term will be omitted in the further study.

In order to construct the Lagrangian, one has to analyze a non-homogeneous

equation (6.2) for the potential function W̄ (X, ρ). This equation can be solved by
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the method of variation of parameters, in which one assumes that

W̃ (X, ρ) = ρf(X, ρ).

Differentiating the latest equation with respect to ρ and substituting it into equa-

tion (6.2) yields:

∂f

∂ρ
=

1

ρ2
p.

Hence

f(X, ρ) =

∫
1

ρ2
p dρ+ g(X).

Therefore, the general solution of the non-homogeneous equation (6.2) is

W̃ (X, ρ) = ρ

∫
1

ρ2
p(X, ρ) dρ. (6.3)

Consider the pressure function P (X,φX) of the model M1 which is pre-

sented in Table 5.1. The Lagrangian can be constructed by applying equation

(6.3) and the process is analyzed as follows

W̃ (X, ρ) = ρ

∫
1

ρ2
p(X, ρ)dρ

= ρ

∫
1

ρ2

(
Φ(Z)Xα+2γ + h(X)

)
dρ

= ρ

∫
1

ρ2
Φ(Z)Xα+2γdρ− h(X)

where Z = X−αρ−1.

In the first integral term, one applies the change u = X−α

ρ
. Then∫

1

ρ2
Φ(Z)Xα+2γdρ =

∫
1

ρ2
Φ(
X−α

ρ
)Xα+2γdρ

= −
∫

Φ(u)X2(α+γ)du

= −X2(α+γ)Φ̃(u),

where Φ̃(u) =
∫
Φ(u)du or Φ̃′(u) = Φ(u). Therefore the potential func-

tion W (X,φX) relating to the pressure function in M1 is

W (X,φX) = −φ−1
X Φ̃(Z)X2(α+γ) − h(X),
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where Z = X−αφX .

The potential functions of the other models can be solved in similar way.

The results are summarized in Tables 6.1-6.2. The first column gives the number

of models, the second column presents the pressure functions P (X,φX), and the

potential functions W (X,φX) are shown in the third column. The restrictions

for constants are in the fourth column.

Table 6.1 The potential functions of the equation φtt +DXP = 0.

No. P (X,φX) W (X,φX) Remarks

M1 Φ(Z)Xα+2γ + h(X) −φX−1Φ(Z)X2(α+γ) − h(X) γ ̸= 0, 1,

Z = X−αφX α ̸= −1

Xh′′(X) = (α + 2γ − 1)h′(X)

M2 Φ(Z)e(2β−α)X + h(X) −φX−1e2(β−α)XΦ(Z)− h(X) α ̸= 0

Z = eαXφX

h′′(X) =
(
2β − α

)
h′(X)

M3 Φ(Z)Xα + h(X) −φX−1Φ(Z)X2α − h(X) α ̸= −1

Z = X−αφX

Xh′′(X) = (α − 1)h′(X)

M4 Φ(φX) + βX + γX2 −φX−1Φ(φX)−
(
βX + γX2

)
α, β ̸= 0

M5 Φ(φX) −φX−1Φ(φX)

M6 eβX
(
φγX + k2

α2 e
(α−β)X) −φX−1 ln (φX)e

βX − k2
α2 e

αX γ = −1

− 1
(γ+1)

φγXe
βX − k2

α2 e
αX γ ̸= −1

M7 eβXφγX −φX−1 ln (φX)e
βX γ = −1

− 1
(γ+1)

φγXe
βX γ ̸= −1

M8 b(X)φγX + k1b
m+1(X) −φX−1 ln (φX)b(X)− k1b

m+1(X) γ = −1

bl(X) = β
X

− 1
(γ+1)

φγXb(X)− k1b
m+1(X) γ ̸= −1

 

 

 

 

 

 

 

 



70

Table 6.2 The potential functions of the equation φtt +DXP = 0 (continued).

No. P (X,φX) W (X,φX) Remarks

M9 b(X)φγX −φX−1 ln (φX)b(X) γ = −1

bl(X) = β
X

− 1
(γ+1)

φγXb(X) γ ̸= −1

M10 b(X)φγX + k1X
2 −φX−1 ln (φX)b(X)− k1X

2 γ = −1

bl(X) = βX − 1
(γ+1)

φγXb(X)− k1X
2 γ ̸= −1

M11 eβXφγX + k1X
2 −φX−1 ln (φX)e

βX − k1X
2 γ = −1

− 1
(γ+1)

φγXe
βX − k1X

2 γ ̸= −1

M12 k1Xφ
γ
X + k2X

α+1 −k1XφX−1 ln (φX)− k2X
α+1 γ = −1

− k1
(γ+1)

XφγX − k2X
α+1 γ ̸= −1

M13 βφγX + k1X
2 −βφX−1 ln (φX)− k1X

2 γ = −1

− β
(γ+1)

φγX − k1X
2 γ ̸= −1

M14 βφ−3
X + k1X

2 β
2
φ−3
X − k1X

2

M15 βφγX −βφX−1 ln (φX) γ = −1

− β
(γ+1)

φγX γ ̸= −1

M16 βφ−3
X

β
2
φ−3
X

M17 b(X)φ−3
X

1
2
b(X)φ−3

X

6.2 Conservation laws of equation (5.1)

Noether’s theorem is applied to derive conservation laws

DtC
t +DXC

X = 0.

Using the kernel of the admitted Lie algebras X1 = ∂t, X2 = ∂φ, X3 = t∂φ,

one finds the conserved vectors which are already known as conservation laws of

energy, momentum and center of mass, respectively. It is very worthy to our study

to construct the conservation laws for the use of extensions of the kernel which they

have not yet been studied and found. Details of the study are given in Appendix
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B and results are summarized in Tables 6.3-6.8. The following details perform the

study of Model 1.

The extension of the kernel of admitted Lie algebras in M1 is given by the

generator

X4 = (γ − 1)t∂t −X∂X − (α + 1)φ∂φ.

Determining equation for vector Bi is

Y L+ L
(
Dtξ

t +DXξ
X
)
= DtB

1 +DXB
2 (6.4)

where Y is the extension of the generator X4, B1 = B1(t,X, φ, φt, φX), and

B2 = B2(t,X, φ, φt, φX). Equation (6.4) has to be satisfied for any func-

tion φ(t,X).

Substituting the Lagrangian L into equation (6.4), one obtains

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t

−φXB2
φ − φtXB

2
φt

− φXXB
2
φX

−B2
X

−hXXφX − (2α + γ + 2)X2α+2γΦ(Z)

−αhφX −
(2α+ γ + 2

2

)
φ2
t + (γ − 2)hφX = 0.

(6.5)

Splitting equation (6.5) with respect to φtt, φtX , φXX , one gets

B1
φt

= 0, B2
φX

= 0, B1
φX

+B2
φt

= 0, (6.6)

2φtB
1
φ + 2B1

t + 2φXB
2
φ + 2hXXφX + (2α+ γ + 2)X2α+2γΦ(Z)

+2αhφX +
(
2α + γ + 2

)
φ2
t − 2(γ − 2)hφX = 0.

(6.7)

Solving equation (6.6), one finds

B1 = −φXh1 + h3, B2 = φth1 + h2,

where hi = hi(t,X, φ). Substituting B
1 and B2 into equation (6.7), and splitting

it again with respect to φX and φt, one obtains the condition γ = −2α−2. Solving

 

 

 

 

 

 

 

 



72

the latter equations, one derives

B1 = −tφX
(
Xh′(X) + 3αh(X) + 4h(X)

)
,

B2 = tφt
(
Xh′(X) + 3αh(X) + 4h(X)

)
.

(6.8)

The symmetry is divergent. Using Noether’s theorem, the conserved vectors are

Ct = −tXφXh′(X) + (α + 1)
(
φφt − tφXh(X)

)
− (α +

3

2
)tφ2

t

−XφtφX + (2α + 3)tX−2α−4Φ(Z),

CX = tXφth
′(X) + (α + 1)

(
φ+ tφt

)
h(X) +

1

2
Xφ2

t +X−2α−3Φ(Z)

+
(
(α + 1)φ− (2α + 3)tφt −XφX

)
X−3α−4Φ′(Z).

(6.9)

Further details of the study on constructing the conservation laws of other exten-

sions of the kernel can be found in Appendix B.

6.3 Results of conservation laws

The conserved vectors in Lagrangian coordinates of the gas dynamic equa-

tions are summarized in Tables 6.3-6.8. The first column gives the number of the

model. The second column presents the conserved vectors Ct and CX , and the

restriction of conditions can be found in the third column.
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Table 6.7 The conserved vectors in Lagrangian coordinates (continued).

No. Ct and CX Remarks

M14 X1 = ∂X − k1t
2∂φ

Ct = φtφX + k1t
2φt + 2k1tXφX ,

CX = 3
2
βφ−2

X + βk1t
2φ−3

X − 1
2
φ2
t − 2k1tXφt+

k21t
2X2.

M15 X1 = (γ − 1)t∂t − 2φ∂φ,

Ct = 2βt lnφX − 2βt+ 2φφt − tφ2
t + 2XφtφX , γ = −1

CX = −2βX lnφX + 2β
(
φφ−1

X − tφtφ
−1
X

)
−Xφ2

t .

Ct = 2
(
− βtφ−2

X + φφt − tφ2
t

)
, γ ̸= −1, γ = −3

CX = 2βφ−3
X

(
φ− 2tφt

)
.

X2 = (γ − 1)X∂X + (γ + 1)φ∂φ

Ct = −2βt, CX = 2βX. γ = −1

Ct = 2
3

(
− φφt − 2XφtφX

)
, γ ̸= −1, γ = −1/3

CX = 2
3

(
Xφ2

t − βφφ
−1/3
X + βXφ

2/3
X

)
.

X3 = ∂X

Ct = φtφX , CX = −β lnφX + β − 1
2
φ2
t . γ = −1

Ct = φtφX , CX =
(
βγ
γ+1

)
φγ+1
X − 1

2
φ2
t . γ ̸= −1

M16 X1 = ∂X

Ct = φtφX , CX = 3β
2
φ−2
X − 1

2
φ2
t .

X3 = t2∂t + tφ∂φ,

Ct = 1
2
βt2φ−2

X + 1
2
φ2
t − tφφt +

1
2
t2φ2

t ,

CX = βt(−φ+ tφt)φ
−3
X .
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Table 6.8 The conserved vectors in Lagrangian coordinates (continued).

No. Ct and CX Remarks

M16 X4 = 2t∂t + φ∂φ

Ct = βtφ−2
X − φφt + tφ2

t ,

CX = βφ−3
X (−φ+ 2tφt).

M17 Ct = 1
2
b(X)t2φ−2

X + 1
2
φ2 − tφφt +

1
2
t2φ2

t ,

CX = tb(X)(−φ+ tφt)φ
−3
X

The following section provides conservation laws of the hyperbolic shallow

water equations. This models belong to the particular class model (1.1) considered

by Gavrilyuk and Teshukov (2001).

6.4 Hyperbolic shallow water equations

The one-dimensional hyperbolic shallow-water equations are

ht + uhx + hux = 0, ut + uux + ghx = 0,

where u is the velocity of the fluid and h is the location of the free surface.

Here g = 2γ1. It is well-known that exchanging the depth h by ρ (density of a

gas), these equations describe one-dimensional isentropic gas flow

ρt + uρx + ρux = 0, ut + uux +
1

ρ
px = 0 (6.10)

with the pressure

p = γ1ρ
2. (6.11)

The admitted Lie algebra of equations (6.10) with (6.11) is infinite-

dimensional and defined by the generators (Szatmari and Bihlo, 2014 ; Chirkunov

and Pikmullina , 2014 ; Chirkunov, Dobrokhotov, Medvedec, and Minenkov, 2014)

Y1 = t∂t + x∂x, Y2 = t∂x + ∂u, Y3 = x∂x + u∂u + 2ρ∂ρ,
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Y4 = 2(x− 3tu)∂t + 3t(2ρ− u2)∂x + (u2 + 4ρ)∂u + 4ρu∂ρ,

Yh = f(u, ρ)∂t + g(u, ρ)∂x,

where

gu − ufu + ρfρ = 0, gρ − ufρ + fu = 0.

Choosing the function W (ρ) such that

γ1ρ
2 = ρWρ −W or W = γ1ρ

2,

equations (6.10) are equivalent to the Euler-Lagrange equation

δL
δφ

= 0 (6.12)

with the Lagrangian

L = ρ0(
1

2
φ2
t − γ1ρ0φ

−1
ξ ).

The Euler-Lagrange equation (6.12) is

φξφtt + 2γ1(ρ0φ
−1
ξ )ξ = 0. (6.13)

Here

δ

δφ
=

∂

∂φ
−Dt

∂

∂φt
−Dξ

∂

∂φξ
+D2

t

∂

∂φtt
+DtDξ

∂

∂φtξ
+D2

ξ

∂

∂φξξ
+ ... (6.14)

is the variational derivative. Because of the equivalence transformation

ξ = α(x0) where α′(x0) = ρ0(x0), one can assume ρ0 = 1.

In our further study we will consider the Euler-Lagrange equation (6.13) in reduced

Lagrangian coordinates:

φ3
ξφtt − 2γ1φξξ = 0. (6.15)

Calculations show that the Lie group admitted by equation (6.15) consists

of the transformations corresponding to the generators

X1 = ∂t, X2 = ∂ξ, X3 = ∂φ, X4 = t∂φ,
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X5 = t∂t + 4ξ∂ξ + 2φ∂φ, X6 = φ∂φ + 3ξ∂ξ.

Functions T 1 and T 2 are called densities of a conservation law if

(
DtT

1 +DξT
2
)
|S = 0, (6.16)

where (S) is a system of studied equations, |S means that equation (6.16) is

identically satisfied for any solution of the system of equations (S).

Assume that

T 1 = T 1(t, ξ, φ, φt, φξ), T
2 = T 2(t, ξ, φ, φt, φξ).

Substituting the latter representation of the densities into equation (6.16), exclud-

ing φtt found from equation (6.15), and splitting it with respect to φtξ and φξξ,

one obtains the overdetermined system of equations:

T 1
φφt + T 1

t + T 2
φφξ + T 2

ξ = 0,

T 1
φξ

+ T 2
φt

= 0, 2γ1T
1
φt

+ φ3
ξT

2
φξ

= 0.

The general solution of this system is

(T 1, T 2) = c1(T
1
1 , T

2
1 ) + c2(T

1
2 , T

2
2 ) + c3(T

1
3 , T

2
3 ) + (P̃ , Q̃),

where ci, (i = 1, 2, 3) are constant,

T 1
1 = tφt − φ, T 2

1 = tγ1φ
−2
ξ

T 1
2 = φt(5tφt − 2ξφξ − 6φ) + 10γ1tφ

−1
ξ ,

T 2
2 = φ−2

ξ (2γ1(5tφt − 2ξφξ − 3φ) + ξφ2
t ,

T 1
3 = 6γ1φ

−1
ξ (40tφt + ξφξ(10 ln(φξ) + 3)− 15φ) + 5φ2

t (8tφt − 3ξφξ − 9φ),

T 2
3 = 160γ21tφ

−3
ξ + 30γ1φtφ

−2
ξ (4tφt − 2ξφξ − 3φ) + 5ξφ3

t ,

and the functions P̃ (φt, φξ) and Q̃(φt, φξ) satisfy the conditions

P̃φξ
+ Q̃φt = 0, φ3

ξQ̃φξ
+ 2γ1P̃φt = 0. (6.17)
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Notice that excluding Q̃(φt, φξ) from the latter equations, one derives that the

function P̃ (φt, φξ) has to satisfy

2γ1P̃φtφt − φ3
ξP̃φξφξ

= 0. (6.18)

The conservation laws related with the densities (T 1
1 , T

2
1 ) and (P̃ , Q̃) are

known in the theory of the gas dynamics equations. The conservation law cor-

responding to (T 1
1 , T

2
1 ) is the center of mass conservation law (Ibragimov, 1985).

The conservation laws related with the densities (P̃ , Q̃) are as follows. It is well

known (Whitham, 1974) that the hyperbolic shallow water equations (6.10) have

an infinite number of conservation laws in Eulerian coordinates:

DtP +DxQ = 0, (6.19)

where the functions P (u, ρ) and Q(u, ρ) satisfy the equations

Qu = uPu + ρPρ, Qρ = 2γ1Pu + uPρ. (6.20)

As densities of conservation laws in Lagrangian coordinates and Eulerian coordi-

nates are related by the formulae

P = ρP̃ , Q = ρuP̃ + Q̃,

one also obtains an infinite number of conservation laws in Lagrangian coordinates

with

P̃ (φt, φξ) = φξP (φt, φ
−1
ξ ), Q̃(φt, φξ) = Q(φt, φ

−1
ξ )− φtP (φt, φ

−1
ξ ).

Equations (6.20) become (6.17).

6.4.1 Applications of symmetries for deriving conserva-

tion laws.

Direct checking shows that the symmetries X1, X2 and X3 satisfy (3.22)

with (B1, B2) = 0, and the symmetry X4 is a divergent symmetry with the vector

(B1, B2) = (φ, 0). The symmetries X5, X6 and Xc do not satisfy equation (3.22).
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Using the generators X1, X2, X3 and X4, Noether’s theorem allows one to

derive conservation laws

DtT
1 +DξT

2 = 0,

where the densities of the conservation laws T 1, T 2 are presented in Table 6.9.

Table 6.9 Conservation laws of the hyperbolic shallow-water equations.

T 1 T 2 Remark

X1 φ2
t + 2γ1φ

−1
ξ 2γ1φtφ

−2
ξ energy

X2 φtφξ 2γ1φ
−1
ξ − φ2

t/2 (Whitham, 1974)

X3 φt γ1φ
−2
ξ momentum

X4 tφt − φ γ1tφ
−2
ξ center of mass

Remark. The system of modified one-dimensional shallow-water equations stud-

ied in Szatmari and Bihlo (2014),

ρt + uρx + ρux = 0, ut + uux + g

(
1 +

H

ρ

)
ρx = 0,

where H is constant, can be rewritten in form (1.1) with the potential function

W = γ1ρ(ρ+ 2H ln ρ).

The Euler-Lagrange equation is

φ3
ξφtt − 2γ1φξξ(1 +Hφ2

ξ) = 0.

Remark. The one-dimensional shallow-water equations with arbitrary bottom

ηt + ((η +H)u)x = 0, ut + uux + gηx = 0, (6.21)

where H = H(x) can be changed, by setting

η = ρ−H,
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to

ρt + uρx + ρux = 0, ut + uux + 2γ1ρx = 2γ1H
′. (6.22)

Group analysis of equations (6.21) is given in Aksenov and Druzhkov (2016). The

potential function W for equations (6.22) can be chosen as follows

W = γ1ρ(ρ− 2H(x)),

and the Euler-Lagrange equation is

φ3
ξφtt − 2γ1φξξ(1 +H ′(φ)φ3

ξ) = 0.

 

 

 

 

 

 

 

 



CHAPTER VII

FLUIDS WITH INTERNAL INERTIA

This chapter is focused on the group classification of a class of dispersive

models (Gavrilyuk and Teshukov, 2001)

ρ̇+ ρ div(u) = 0, ρu̇+∇p = 0, Ṡ = 0,

p = ρ δW
δρ

−W = ρ(∂W
∂ρ

− ∂
∂t
(∂W
∂ρ̇

)− div(∂W
∂ρ̇
u))−W,

(7.1)

where t is time, ∇ is the gradient operator with respect to space variables, ρ

is the fluid density, u is the velocity field, W (ρ, ρ̇, S) is a given potential, “dot”

denotes the material time derivative: ḟ = df
dt

= ft+u∇f and δW
δρ

denotes the vari-

ational derivative of W with respect to ρ at a fixed value of u. The method used

in Siriwat and Meleshko (2012) (as well in Hematulin, Meleshko and Gavrilyuk

(2007); Siriwat and Meleshko (2008)) followed the classical approach developed

in Ovsiannikov (1978) for the gas dynamics equations. In contrast to the gas

dynamics equations, this method becomes very complicated and cumbersome for

the group classification of equations (7.1) with WS ̸= 0. In Siriwat and Meleshko

(2012), a complete group classification of the one-dimensional equations (7.1) for a

particular case where the functionW =W (ρ, ρ̇, S) satisfies the conditionWSρ̇ρ̇ = 0

was performed. It is worth to notice that the used approach did not take into ac-

count the algebraic properties of the admitted Lie group. On the other hand the

knowledge of algebraic structure of admitted Lie groups allow essentially simplify

the group classification.
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7.1 Some results of Siriwat and Meleshko (2012)

For the sake of completeness it is necessary to review here some results of

Siriwat and Meleshko (2012).

The basis of generators of the equivalence Lie group consists of the gener-

ators

Xe
1 = ∂x, X

e
2 = ∂t, X

e
3 = t∂x + ∂u, X

e
4 = t∂t + x∂x,

Xe
5 = t∂t + 2ρ∂ρ − u∂u, X

e
6 = ∂W , X

e
7 = −u∂u + ρ∂ρ −W∂W + t∂t,

Xe
8 = ρφ(S)∂W , X

e
9 = ρ̇g(ρ, S)∂W , X

e
10 = h(S)∂S,

where the functions g(ρ, S), φ(S) and h(S) are arbitrary. Here only the essential

part of the operators Xe
i , (i = 5, 6, ..., 10) is written.

Since the equivalence transformations corresponding to the operators Xe
5 ,

Xe
6 , X

e
7 , X

e
8 ,X

e
9 andX

e
10 are applied for simplifying the functionW in the process of

the group classification, let us present these transformations. Because the function

W depends on ρ, ρ̇ and S only, the transformations of these variables are presented:

Xe
5 : ρ′ = ρe2a, ρ̇′ = ρ̇ea, S ′ = S, W ′ =W ;

Xe
6 : ρ′ = ρ, ρ̇′ = ρ̇, S ′ = S, W ′ =W + a;

Xe
7 : ρ′ = ρea, ρ̇′ = ρ̇, S ′ = S, W ′ =We−a;

Xe
8 : ρ′ = ρ, ρ̇′ = ρ̇, S ′ = S, W ′ = ρφ(S)a+W ;

Xe
9 : ρ′ = ρ, ρ̇′ = ρ̇, S ′ = S, W ′ = ρ̇h(ρ, S)a+W

Xe
10 : ρ′ = ρ, ρ̇′ = ρ̇, S ′ = q(S, a), W ′ =W ;

Here a is the group parameter. The group classification is performed up to this

set of equivalence transformations.

The kernel of admitted Lie algebras is determined for all functions

W (ρ, ρ̇, S) and it consists of the generators

X1 = ∂x, X2 = ∂t, X3 = t∂x + ∂u.
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Table 7.1 Functions W (ρ, ρ̇, S) such that equations (7.1) admit projective

transformations.

W (ρ, ρ̇, S) Extensions Remarks

M1 q0ρ
−3ρ̇2 + ρ3S Xp, X4 − 2S∂S, X5 −X6

M2 ρ−3ρ̇2S + q1ρ
3Sk Xp, X5 −X6, X6 − (k + 1)X4 + 2S∂S q1 ̸= 0

M3 ρ−3ρ̇2S + ρ3µ(S) Xp, X5 −X6 µ′ ̸= q1S
k

M4 ρ−3ρ̇2S Xp, X4, X5 −X6, X6 + 2S∂S

Extensions of the kernel depend on the value of the function W (ρ, ρ̇, S). They can

only be operators of the form

kpXp + k4X4 + k5X5 + k6X6 + ζ∂S,

where ζ = ζ(S) and

X4 = t∂t − u∂u − ρ̇∂ρ̇, X5 = x∂x + 2t∂t − u∂u − 2ρ̇∂ρ̇, X6 = ρ∂ρ + ρ̇∂ρ̇,

Xp = tx∂x + t2∂t + (x− ut)∂u − tρ∂ρ − (ρ+ 3tρ̇)∂ρ̇,

Since the function W (ρ, ρ̇, S) depends on ρ̇, the term with ∂ρ̇ is also presented in

the generators.

In Siriwat and Meleshko (2012), it is shown that if the function W (ρ, ρ̇, S)

is not equivalent to one of the functions presented in Table 7.1, then kp = 0.

7.1.1 Group classification of equations (7.1) with kp = 0

In the present study we focus on the case where kp = 0. In this case one

can reduce the determining equations∗. to the equation

k6ρgρ + ρ̇gρ̇(k6 − k4 − 2k5) + ζgS = g(2k5 − k6) + ρ̇−2(ρφ+ c), (7.2)

∗Equations (2)–(7) of Siriwat and Meleshko (2012)
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where g = (ρ̇−1W )ρ̇, the constant c and the function φ(S) are arbitrary and

obtained during the integration. Relations between the constants k4, k5, k6 and

ζ(S) depend on the function W (ρ, ρ̇, S).

Notice that the study given in Siriwat and Meleshko (2012) analyzes the

case where Wρ̇ρ̇S = 2gS + ρ̇gρ̇S = 0. Application of an algebraic approach allows

us to omit this restriction.

7.1.2 Algebraic properties of admitted Lie algebras

The commutator table of the Lie algebra L6 = {X1, X2, X3, X4, X5, X6} is

X1 X2 X3 X4 X5 X6

X1 0 0 0 0 X1 0

X2 0 0 −X1 −X2 −X2 0

X3 0 X1 0 X3 2X3 0

X4 0 X2 −X3 0 0 0

X5 X1 −X3 −2X3 0 0 0

X6 0 0 0 0 0 0

The Lie algebra {X1, X2, X3} is a kernel of admitted Lie algebras, the Lie algebra

{X4, X5, X6} is an Abelian subalgebra. The generator Xζ belongs to the center

for any function ζ(S). Since the Lie algebra {X1, X2, X3} composes the kernel of

admitted Lie algebras, then the basis generators of an admitted Lie algebra related

with the generators X4, X5, X6 and Xζ can be chosen in the form

βX6 + qX5 + γX4 +Xζ . (7.3)

The latter generators also compose a Lie algebra.

Notice that if ζ ̸= 0 for one of the basis generators, then for this generator† one

can assume that ζ = 1.

†Only for a single basis generator: for other basis generators the function ζ = ζ(S).
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7.1.3 Strategy of further study

In the approach used in Siriwat and Meleshko (2012) it was tried to find the

coefficients β, q, γ and ζ of the basis generators simultaneously with the function

W (ρ, ρ̇, S) by solving the determining equations. This led to a complicated and

cumbersome study.

It is well known that the set of admitted generators composes a Lie alge-

bra (Ovsiannikov, 1978): the property to compose a Lie algebra is automatically

satisfied for solutions of the determining equations.

The idea of the algebraic approach used in the present paper is to separate

the study of group classification into two steps. In the first step one makes a

preliminary study of possible coefficients of the basis generators using the require-

ment of admitted generators to compose a Lie algebra. In the second step one

substitutes these coefficients of each basis generator of the Lie algebra into the de-

termining equation (7.2). Solving the obtained system of equations, the function

W (ρ, ρ̇, S) and additional restrictions for the coefficients of the basis generators

are obtained.

Here we have to notice that the function φ(S) and the constant c can be

different for each basis generator.

Let us also notice that if one can choose basis generators such that two of

them have the form

ζ1(S)∂S, ζ2(S)∂S, (7.4)

then this case is reduced to WS = 0. Indeed, since the generators (7.4) are basis

generators, then ζi ̸= 0 and ζ1ζ
′
2 − ζ ′1ζ2 ̸= 0. By virtue of the equivalence trans-

formation related with Xe
10, one can assume that ζ1 = 1 and ζ ′2 ̸= 0. Substituting

the coefficients of the generators (7.4) into (7.2) one obtains the equations

gS = ρ̇−2(ρφ1 + c1), ρ(φ2 − ζ2φ1) + c2 − ζ2c1 = 0. (7.5)
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Splitting the second equation with respect to ρ, and then with respect to S, one

finds that

φ2 = ζ2φ1, c1 = 0, c2 = 0.

Integration of the first equation (7.5) gives

g = ρρ̇−2ψ + f̃ ,

where ψ′(S) = φ1(S) and f̃ = f̃(ρ, ρ̇). Hence,

W (ρ, ρ̇, S) = ρψ(S) + f(ρ, ρ̇) + ρ̇h(ρ, S).

where h(ρ, S) is an arbitrary function of the integration, and f̃(ρ, ρ̇) = fρ̇(ρ, ρ̇). Us-

ing the equivalence transformations corresponding to Xe
8 and Xe

9 , one can assume

that ψ = 0 and h = 0, which means that WS = 0.

In the preliminary study of Lie algebras of dimension more than 1, it is

sufficient for our goals to use classifications of two- and three dimensional Lie

algebras. These classifications are well-known‡. For the sake of completeness they

are presented in Appendix C.

Further study depends on the dimension of a Lie algebra composed by the

generators of the form (7.3).

7.2 Results of the group classification of equations (7.1)

The result of the group classification of equations (7.1) with WS ̸= 0 is

summarized in Tables 7.2-7.4. The representation of the function W (ρ, ρ̇, S) is

simplified by equivalence transformations.

The first column in Tables 7.2-7.4 presents the number of the extension,

forms of the function W (ρ, ρ̇, S) are given in the second column, extensions of the

‡See for example in Ibragimov (1996)
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kernel of admitted Lie algebras are in the third column, restrictions for constants

are in the fourth column. Details of the study are presented in Appendix D.

Table 7.2 Group classification of a class of dispersive models (7.1).

No. W (ρ, ρ̇, S) Extensions Remarks

M1 q0ρ
−3ρ̇2 + ρ3S Xp, X4 − 2S∂S, X5 −X6

M2 ρ−3ρ̇2S + q1ρ
3Sk Xp, X5 −X6, q1 ̸= 0

X6 − (k + 1)X4 + 2S∂S

M3 ρ−3ρ̇2S + ρ3µ(S) Xp, X5 −X6 µ′ ̸= q1S
k, µ ̸= 0

M4 ρ−3ρ̇2S Xp, X4, X5 −X6,

X6 + 2S∂S

M5 ραϕ(ρ̇ρ
β
, S) −(α + β)X4 + (β + α+1

2
)X5 α(α− 1) ̸= 0

+X6

M6 ϕ(ρ̇ρ−γ, S)− q0 ln(ρ) 2γ(X4 −X5) +X5 + 2X6

M7 ρϕ(ρ̇ρα, S) + ρ ln(ρ)ψ(S) −(α + 1)(X4 −X5) +X6

M8 ρ̇ ln(ρ̇)ϕ(ρ, S) X5

M9 ρ̇αϕ(ρ, S) X4 +
2−α

2(α−1)
X5 α(α− 1) ̸= 0

M10 ϕ(ρ, S) + ln(ρ̇)(q0 + ρψ(S)) −X4 +X5 q0ψ ̸= 0

M11 eαSϕ(ρe−S, ρ̇eβS) −(α + β)X4 + (β + α+1
2
)X5 α ̸= 0

+X6 + ∂S

M12 ϕ(ρe−S, ρ̇e−γS) + q0S 2γ(X4 −X5) +X5

+2(X6 + ∂S)

M13 eαSϕ(ρ, ρ̇e(1−
α
2
)S) (−α− 2)X4 + 2X5 + 2∂S α ̸= 0

M14 ϕ(ρ, ρ̇eS) + q0S −X4 +X5 + ∂S

M15 e−2Sϕ(ρ, ρ̇eS) X4 + ∂S

M16 h(ρ)ρ̇−2 + αS ∂S, −3X4 + 2X5 + 2S∂S hα ̸= 0
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7.3 Green-Naghdi models

The models (7.1) were derived by Gavrilyuk and Shugrin (1996) and Gavri-

lyuk and Teshukov (2001) using the Lagrangian

L = ρ
u2

2
−W (ρ, ρ̇) . (7.6)

The Green-Naghdi model corresponds to the potential W = γ1ρ
2 − γρρ̇2. In par-

ticular, the potential for classical hyperbolic shallow water equations is determined

by the condition γ = 0.

The Green-Naghdi system is used to model highly nonlinear weakly dis-

persive waves propagating at the surface of a shallow layer of a perfect fluid. In

Eulerian coordinates these equations are

ρt + uρx + ρux = 0,

ρ(ut + uux + 2γ1ρx) = 2γ (ρ3(uxt + uuxx − u2x)))x ,
(7.7)

where ρ is the water depth, u is the horizontal velocity, g is the gravity and ε is the

ratio of the vertical length scale to the horizontal length scale. For ε = 0 equations

(7.7) become the classical hyperbolic shallow water equations corresponding to

hydrostatic pressure distribution as considered in the previous section. Here g =

2γ1 and γ = ε2/6 are introduced for convenience.

7.4 Conservation laws of Green-Naghdi models

The admitted Lie algebra of the Green-Naghdi equations is four-dimensional

and determined by the generators (Bagderina and Chupakhin, 2005)

Y1 = ∂t, Y2 = ∂x, Y3 = t∂x + ∂u, Y4 = t∂t + 2x∂x + u∂u + 2ρ∂ρ.

System (7.7) has four associated conservation laws (Gavrilyuk, Kalisch, and

Khorsand, 2015):

Dt
gT ti +Dx

gT xi = 0, (i = 0, 1, 2, 3), (7.8)
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where
gT t0 = ρ, gT x0 = ρu,

gT t1 = ρu,

gT x1 = 2γρ3(u2x − uuxx − utx) + ρ(u2 + γ1ρ)

gT t2 = 1
2
ρ(2γ1ρ+ u2 + 2γρ2u2x),

gT x2 = 1
2
ρu(2γρ2(3u2x − 2uuxx − 2utx) + u2 + 4γ1ρ)

gT t3 = u− 2γ
ρ
(ρ3ux)x,

gT x3 = 1
2
u2 + γρ(−2ρuuxx − 3ρu2x − 6ρxuux) + 2γ1ρ,

which describe the conservation of mass (i = 0), momentum (i = 1), and energy

(i = 2) due to the surface wave motion. The fourth conservation law (i = 3) can

be interpreted in terms of a concrete kinematic quantity related to the evolution

of the tangent velocity at a free surface (Gavrilyuk et al., 2015).

Here we also note that if

DtT
t +DxT

x = 0,

then

Dt(T
t +Dxf) +Dx(T

x −Dtf) = 0,

for any function f .

7.4.1 The Green-Naghdi equations in Lagrangian coordi-

nates

One can check that choosing the Lagrangian

L = ρ0
φ2
t

2
+ φ−4

ξ ρ20
(
γρ0φ

2
tξ − γ1φ

3
ξ

)
,

the Green-Naghdi equations are equivalent to the Euler-Lagrange equation (3.7)

δL
δφ

= 0, (7.9)
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where u = φt, ρ = ρ0(ξ)φ
−1
ξ , ρ̇ = −ρ0(ξ)φ−2

ξ φtξ and
δ

δφ
is the variational derivative

(6.14). The Euler-Lagrange equation (7.9) in reduced coordinates has the form:

2γ
(
φ2
ξφttξξ − 4φξφξξφttξ − 4φξφtξφtξξ + 10φ2

tξφξξ
)

+φ3
ξ

(
2γ1φξξ − φ3

ξφtt
)
= 0.

(7.10)

7.4.2 Conservation Laws of Green-Naghdi Model in La-

grangian Coordinates

Calculations show that the symmetries X1, X2 and X3 are variational.

Applying Noether’s theorem∗, one finds the following conservation laws.

For the generator X1 = ∂t:

T 1 =
1

2
φ2
t −

γφt(φξφtξξ − 4φtξφξξ)

φ5
ξ

+
γ1
φξ
,

T 2 =
γ1φt
φ2
ξ

− γ(φtφttξ − φttφtξ)

φ4
ξ

.

(7.11)

For the generator X2 = ∂ξ:

T 1 = φtφξ −
γ(φξφtξξ − 5φtξφξξ)

φ4
ξ

,

T 2 = −φ
2
t

2
− γφttξ

φ3
ξ

+
2γ1
φξ

.

(7.12)

For the generator X3 = ∂φ:

T 1 = −φt +
γ(φξφtξξ − 4φtξφξξ)

φ5
ξ

,

T 2 =
γφttξ
φ4
ξ

− γ1
φ2
ξ

.

(7.13)

The symmetry X4 = t∂φ is divergent, with

(B1, B2) = (φ, 0),

∗Because of the presence of mixed derivatives in the Lagrangian, for using Noether’s theorem

one has to rewrite the Lagrangian in a symmetric form Ibragimov (2014).
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and provides the conservation law:

T 1 = −tφt +
γt(φξφtξξ − 4φtξφξξ)

φ5
ξ

,

T 2 =
γ(tφttξ − φtξ)

φ4
ξ

− γ1t

φ2
ξ

.

(7.14)

The generator X5 = t∂t + 4ξ∂ξ + 2φ∂φ is not divergent, hence, does not provide a

conservation law.

7.4.3 Relations between conservation laws in Lagrangian

and Eulerian coordinates

The operators of total derivatives in Lagrangian and Eulerian coordinates

are related as follows

Dξ = φξDx,

Dt = φtDx +Dt̃,

(7.15)

where (˜) is used in order to distinguish time in Eulerian coordinates from time

in Lagrangian coordinates. Because the variables ρ(t, x) and u(t, x) are considered

in Eulerian coordinates, omitting˜in further study is not misleading.

Let T 1 and T 2 be the conserved vector in Lagrangian coordinates:

DtT
1 +DξT

2 = 0.

By the definition of velocity u = φt and density ρ = φ−1
ξ , one has that

ux = φtξφ
−1
ξ ,
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and

DtT
1 +DξT

2 = Dt(φξρT
1) +DξT

2

= φtξ(ρT
1) + φξDt(ρT

1) +DξT
2

= φtξφ
−1
ξ T 1 + φξ

(
uDx(ρT

1) +Dt̃(ρT
1)
)
+ φξDxT

2

= φtξφ
−1
ξ T 1 + φξ

(
Dx(ρuT

1)− ux(ρT
1) +Dt̃(ρT

1)
)
+ φξDxT

2

=
(
φtξφ

−1
ξ − ux

)
T 1 + φξ

(
Dx(ρuT

1 + T 2) +Dt̃(ρT
1)
)

= φξ

(
Dx(ρuT

1 + T 2) +Dt̃(ρT
1)
)
.

Thus, the conserved vector in Eulerian coordinates is

T t = ρT 1, T x = ρuT 1 + T 2. (7.16)

In order to derive representations of the obtained conservation laws in Eu-

lerian coordinates one can use the following relations:

φt = u, φξ = ρ−1, φtξ = ρ−1ux, φtt = uux + ut, φξξ = −ρxρ−3,

φtξξ = ρ−2
(
uxx − uxρxρ

−1
)
, φttξ = ρ−1

(
uuxx + u2x + uxt

)
,

φttt = utt + u2uxx + 2uutx + uu2x + uxut, φξξξ = ρ−4
(
3ρ2xρ

−1 − ρxx
)
,

φttξξ = ρ−3 (ρ (utxx + uuxxx + 3uxuxx)− uuxx − u2x − uxt) .

Therefore, the corresponding generators in Eulerian coordinates become as follows.

For the generator X1 = ∂t:

T t =
1

2
ρu2 − 3γuuxρxρ

2 − γuuxxρ
3 + γ1ρ

2 = gT t2 − γ(ρ3uux)x,

T x = u
(1
2
ρu2 − 3γuuxρxρ

2 − 2γuuxxρ
3 + 2γ1ρ

2
)
+ γρ3

(
− uutx + uu2x + uxut

)
.

(7.17)

By virtue of the equivalence transformation the last term in T t can be moved to

T x.

For the generator X2 = ∂ξ:

T t = u− γ(uxxρ
2 + 4ρρxux) =

gT t3 + γ(ρ2ux)x,

T x =
u2

2
− 2γuuxxρ

2 − γutxρ
2 − 4γρρxuux + 2γ1ρ.

(7.18)
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The term γ(ρ2ux)x in T t can be moved to the coefficient T x. Hence, this conser-

vation law is equivalent to (7.8)|i=3.

For the generator X3 = ∂φ:

T t = −ρu+ γ(ρ3ux)x = − gT t1 + γ(ρ3ux)x,

T x = ρ
(
2γuuxxρ

2 + γutxρ
2 + 3γρρxuux − γ1ρ− u2

)
.

(7.19)

This conservation law is also equivalent to the conservation law to (7.8)|i=1.

For the generator X4 = t∂φ:

T t4 = ρ(x− tu+ γρt(ρuxx + 3ρxux)) = ρ(x− tu) + γ(tρ3ux)x,

T x4 = ρ(u(x− ut) + γρ2t(2uuxx + utx + u2x)− γρ2ux + 3γρtρxuux − γ1ρt).

(7.20)

For the gas dynamics equations (γ = 0) this conservation was obtained in Ibrag-

imov (1985) and it is called the center of mass conservation law. For the Green-

Naghdi equations (γ ̸= 0) we also call it by the same name.

 

 

 

 

 

 

 

 



CHAPTER VIII

CONCLUSIONS

The equations of fluids in Lagrangian coordinates are considered in this the-

sis. With a natural Lagrangian, the equations of fluids in Lagrangian coordinates

have the form of an Euler-Lagrange equation and Noether’s theorem is allowed

to be applied for constructing conservation laws. Three types of these models are

studied: the gas dynamics equations, the hyperbolic shallow water equations and

the Green-Naghdi model.

For the one-dimensional gas dynamics equations the complete group classi-

fication in Lagrangian coordinates with respect to the pressure function P (X,φX)

with the restrictions PφXφX
̸= 0 and PX ̸= 0 is obtained. The kernel of admitted

Lie algebras is determined for all function P (X,φX). Extensions of the kernel de-

pend on the value of the function P (X,φX). These extensions of the kernel are

found by solving the conditions given by the determining equations. The group

classification separates this model into 17 different classes presented in Table 1.

Using Noether’s theorem the kernel of admitted Lie algebra X1, X2, X3,

for an arbitrary potential function W (ρ, S) gives rise to the well-known conserva-

tion laws; the energy, the momentum, and the center of mass, respectively. For

the extensions, first we needed to find the potential function corresponding to the

function P (X,φX), and then Noether’s theorem was applied for deriving conser-

vation laws. The results of the study of constructing conservation laws of the

one-dimensional gas dynamics equations are presented in Table 3. The hyperbolic

shallow water equations is a particular case of the one-dimensional isentropic gas

flow with the pressure p = γ1ρ
2. Using Noether’s theorem to derive conservation
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laws we obtained new conservation laws which have no analog in Eulerian coordi-

nates. The derivation of the conservation laws of these models are performed in

Chapter VI.

The group classification of one-dimensional nonisentropic equations of flu-

ids with internal inertia are obtained in the particular case where the potential

functionW = W (ρ, ρ̇, S) satisfies the conditionWρ̇ ̸= 0, and is performed in Chap-

ter VII. The Green-Naghdi model corresponds to the potential W = γ1ρ
2 − γρρ̇2.

Using Noether’s theorem a new conservation law in Lagrangian coordinates of the

Green-Naghdi equations is found.
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APPENDIX A

APPLICATION OF GROUP ANALYSIS TO

EULER-LAGRANGE EQUATION

A.1 Case µ1φX
̸= 0

• Case II k1 ̸= 1

Consider equation (5.50) when k1 ̸= 1. One has

ξX =
k5
(
k1X + k2

)
k1 − 1

. (A.1)

As ξX ̸= 0, it leads to k5 ̸= 0. Substituting all relations into equation (5.40), it

becomes

kk3 =
k5

(k1 − 1)PφX
PφXφX

(
− 2PφX

PφXφXX(k1X + k2)

+6PφX
PφXφX

+ 2µ1PφXφX

(
PφXX(k1X + k2)− 2PφX

))
.

(A.2)

Let g1 = g1(X,φX) such that

g1 =
1

(k1−1)PφX
PφXφX

(
− 2PφX

PφXφXX(k1X + k2) + 6PφX
PφXφX

+2µ1PφXφX

(
PφXX(k1X + k2)− 2PφX

))
,

one can rewrite equation (A.2) as

kk3 = k5g1. (A.3)

Differentiating equation (A.3) with respect to X and φX , one has

k5g1X = 0, k5g1φX
= 0.
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Since k5 ̸= 0, hence, g1 is constant. As kk3 is constant, say g1 = kk3, the

latter can be written as

PφXφXX =
1

2PφX
(k1X + k2)

(
2µ1PφXφX

(
PφXX(k1X + k2)− 2PφX

)
+PφX

PφXφX
((1− k1)g1 + 6)

)
.

Substituting all relations into equation (5.18), it becomes

η00X =
k5

2(k1 − 1)PφXφX

(
− 2PφXX(k1X + k2)

−g1(k1 − 1)φXPφXφX
+ 2φXPφXφX

+ 4PφX

)
,

(A.4)

Since η00 only depends on X and for existence of extension of the kernel of

admitted Lie algebra, one obtains that

η00X = k5f1(X).

Equation (A.4) provides that

PφXX =
1

2(k1X + k2)

(
g1(1− k1)φXPφXφX

+2PφXφX

(
φX − k1f1(X) + 2f1(X)

)
+ 4PφX

) (A.5)

where f1(X) is a function of X only.

A similar study can be performed for equation (5.41), which can be also

written in the new form

k7 = k5ko4,

or

PXX =
1

4(k1X + k2)2

(
4f ′

1(X)PφX
(k1X + k2)(1− k1)

+PφXφX

(
φ2
X

(
k1g1(k1g1 − 2g1 − 4) + (g1 + 2)2

)
+4φXf1(X)

(
k1g1(k1 − 2)− 2k1 + g1 + 2

)
+ 4f 2

1 (X)(k1 + 1)2
)

+2
(
− 2g1(k1 − 1)φXPφX

+ 4PφX

(
φX − f1(X)(k1 − 1)

)
+PXk1(g1 − 2)

(
k1X + k2 −X − 1

)
+ 4ko4(k1X + k2)(1− k1)

))
,

(A.6)
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where ko4 is constant.

Finally, a solution of the determining equations is

k4 = 0, k8 = 0, kk3 = k5g1, k7 = k5ko4, η00X = f1(X)k5,

η01X = 0, ξt = k5t+ k6, ξX =
k5(k1X + k2)

k1 − 1
,

η =
2k5ko4t

2 + k5φ(g1 + 2) + 2k10t+ 2η00

2
.

For k10 = η01, the generator corresponding to these coefficients is

X = k6X1 + k10X2 + k5X3

with the basis of generators

X1 = ∂t, X2 = t∂φ

X3 = t∂t +
k1X + k2
k1 − 1

∂X +
(
ko4t

2 +

∫
f1(X)dx+

(g1 + 2)φ

2

)
∂φ.

(A.7)

Here the function P (X,φX) satisfies (A.5) and (A.6).

Finding : Pressure function

Rewrite equation (A.5)

2(k1X + k2)PφXX − PφXφX

(
φX
(
2 + g1(1− k1)

)
+ 2f1(X)(1− k1)

)
= 4PφX

.

To simplify the extensions of kernel in this case, one has to separate into two

cases: k1 ̸= 0 and k1 = 0.

• k1 ̸= 0

The general solution of equation (A.5) for k1 ̸= 0 is

PφX
= ϕ(Z̃)(X +

k2
k1

)
2
k1 . (A.8)

where Z̃ = φX(X + k2
k1
)−α − (k1−1)

k1

∫
f1(X)(X + k2

k1
)−α−1dX. Integrate equation

(A.8) with respect to φX to obtain a pressure function,

P (X,φX) = ϕ̃(Z̃)(X + γk2)
α+2γ + h(X) (A.9)
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where ϕ(Z̃) = ϕ̃(Z̃)
′
, Z̃ = φX(X + γk2)

−α− (1− γ)
∫
f1(X)(X + γk2)

−α−1dX and

γ = 1
k1
. Substituting this function into (A.6), one derives

(X + γk2)hXX = hX(α + 2γ − 1) + 2k4(γ − 1).

To find the integral −(1−γ)
∫
f1(X)(X + γk2)

−α−1dX, let us introduce the func-

tion

C(X) = −(1− γ)

∫
f1(X)(X + γk2)

−α−1dX,

then C ′(X) = −(1−γ)f1(X)(X+γk2)
−α−1 or f1(X) = −1

1−γ (X+γk2)
α+1C ′(X).

Consider ∫
f1(X)dX =

−1

1− γ

∫
(X + γk2)

α+1C ′(X)dX.

Integrating by-parts, one has∫
f1(X)dX =

−1

1− γ

(
C(X)(X + γk2)

α+1 −
∫

(α+ 1)(X + γk2)
αC(X)dX

)
=

1

1− γ

(
− C(X)(X + γk2)

α+1 + (α+ 1)

∫
C(X)(X + γk2)

αdX
)

=
1

1− γ

(
− C(X)(X + γk2)

α+1 + (α+ 1)f̃1(X)
)

where f̃1(X) =
∫
C(X)(X + γk2)

αdX or C(X) = (X + γk2)
−αf̃1

′
(X).

Therefore

−(1− γ)

∫
f1(X)(X + γk2)

−α−1dX = (X + γk2)
−αf̃1

′
(X),∫

f1(X)dX =
1

1− γ

(
− (X + γk2)f̃

′(X) + (α + 1)f̃1(X)
)
,

and hence η00 = k5
1−γ

(
−Xf̃1

′
(X) + (α + 1)f̃1(X)

)
. The generators of equation

(A.7) become

X1 = ∂t, X2 = t∂φ

X3 = t∂t +
−(X + γk2)

γ − 1
∂X

+
1

γ − 1

(
β(γ − 1)t2 + (X + γk2)f̃1

′
(X)− (α + 1)

(
f̃1(X) + φ

))
∂φ

(A.10)
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where β = ko4 and g1+2
2

= α+1
1−γ .

The pressure function in equation (A.9) can also be written as

P (X,φX) = ϕ(Z)Xα+2γ + h(X) (A.11)

where Z = X−α(φX + f̃ ′
1(X)

)
and XhXX = (α+ 2γ − 1)hX + (2β(γ − 1)).

By virtue of the equivalence transformations corresponding to the genera-

tor Xe
2 , Xe

15, it can be assumed that k2 = 0, f̃1(X) = 0. The generator X3 in

equation (A.10) is changed to

X3 = t∂t +
−X
γ − 1

∂X +
1

γ − 1

(
β(γ − 1)t2 − (α + 1)φ

)
∂φ.

Later on the equivalence transformation corresponding to the operator Xe
8 is

applied and this transformation allows one to simplify to β = 0. For α ̸= −1 and

γ ̸= 0, 1, the extensions of the kernel and the related pressure function are

X4 = (γ − 1)t∂t −X∂X − (α + 1)φ∂φ,

P (X,φX) = ϕ(Z)Xα+2γ + h(X)

(A.12)

where Z = X−αφX and XhXX = (α+ 2γ − 1)hX .

Notice that the solution of (5.64) is a particular case of (A.12) when γ = 1.

Thus the general form of the solution of these two cases is presented in Table 5.1

as model M1.

• k1 = 0

Substitute k1 = 0 into equation (A.5). The general solution of this equa-

tion is

P (X,φX) = ϕ̃(Z̃)e(2β−α)X + h(X) (A.13)

where β ̸= 0, ϕ̃(Z̃) =
∫
ϕ(Z̃)dZ̃, and Z̃ = φXe

αX + β
∫
f1(X)eαXdX.

Substituting this pressure function into (A.6), one derives

hXX = hX
(
2β − α

)
+ 2βγ.
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Using a similar study as in the previous case to simplify β
∫
f1(X)eαXdX, one

gets

β

∫
f1(X)eαXdX = eαX f̃1

′
(X).

and ∫
f1(X)dX =

1

β

(
f̃1

′
(X) + αf̃1(X)

)
.

Hence, η00 = k5
β

(
f̃1

′
(X) + αf̃1(X)

)
. The generators in equation (A.7) become

X1 = ∂t, X2 = t∂φ

X3 = βt∂t − ∂X +
(
βγt2 + f̃1

′
(X) + α

(
f̃1(X) + φ

))
∂φ.

(A.14)

The pressure function in equation (A.13) is written as

P (X,φX) = ϕ(Z)e(2β−α)X + h(X) (A.15)

where Z = eαX
(
φX + f ′

1(X)
)

and hXX = hX
(
2β − α

)
+ 2βγ.

By virtue of the equivalence transformations corresponding to the generator Xe
15

and Xe
8 , it can be assumed that f̃1(X) = 0, and γ = 0.

The extension of the kernel and the related pressure function are

X5 = βt∂t − ∂X + αφ∂φ, P (X,φX) = ϕ(Z)e(2β−α)X + h(X) (A.16)

where Z = eαXφX , hXX = hX
(
2β − α

)
where β , α ̸= 0. The result of this

case is labelled as M2 in Table 5.1.

Case µ2(X) = 0

Substituting all conditions and µ2(X) = 0 into equation (5.43), it becomes

ξXX = k5. Solving the latter equation, one gets

ξX = k5X + k9. (A.17)

Remark. : As ξX ̸= 0, then k5X + k9 ̸= 0. Equation (5.40) becomes

kk3 =
2(k5X + k9)

PφX
PφXφX

(
PφXXPφXφX

µ1 − PφXφXXPφX

)
. (A.18)
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Let g2 = g2(X,φX) such that

g2 =
PφX

PφXφX

(
PφXXPφXφX

µ1 − PφXφXXPφX

)
, (A.19)

one can rewrite equation (A.18) as

kk3 =
2(k5X + k9)g2

P 2
φX

. (A.20)

By equation (A.19), one finds

PφXφXX =
PφXφX

(
PφXXPφX

µ1 − g2

)
P 2
φX

.

Differentiating this equation with respect to φX and comparing the result

with (PφXφXφX
)X , one derives

−g2φX
PφX

+ 2PφXφX
g2 = 0.

Solving this latter equation, one gets two solutions :

g2(X,φX) = h(X)P 2
φX
, g2(X,φX) = 0.

Substitution all relation into equation (5.36), it becomes

k5
(
XhX + h

)
+ k9hX = 0. (A.21)

Differentiate equation (A.21) with respect to X, one gives

k5
(
XhXX + 2hX

)
+ k9hXX = 0. (A.22)

Equations (A.21) and (A.22) are algebraic linear homogeneous equations with

respect to k5 and k9 with determinant hhXX − 2h2X . If this determinant is not

equal to zero, then k5 = 0 and k9 = 0. In this case there is no extension of the

kernel. Hence, one has to assume that

hhXX − 2h2X = 0.
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The general solution of this equation is h1(X) = 0, and h2(X) = 1
k1X+k2

where

k1 and k2 are constant such that k21 + k22 ̸= 0.

Case I h(X) ̸= 0

Substituting h(X) = 1
k1X+k2

into equation (A.21), one gets

k5k2 − k9k1 = 0. (A.23)

To analyze the extensions of the kernel, one has to split into 2 cases: k1 ̸= 0 and

k1 = 0.

• k1 ̸= 0

As k1 ̸= 0, from equation (A.23), one can find

k9 =
k2
k1
k5,

and

ξX = k5X +
k2
k1
k5 =

k5
(
k1X + k2

)
k1

.

Substituting all conditions into equation (5.41) and performing a study of this

equation similar to the previous cases, it can be rewritten in new form

k7 = k5ko3

or

PφXXX =
1

PφX
(k1X + k2)2

(
P 2
φXX

(
µ1X

2k21 −X2k21 + 2µ1Xk1k2

−2Xk1k2 + µ1k
2
2 − k22

)
+ PXXPφXφX

(k1X + k2)
2

+PφX
PφXX

(
−Xk21 − k1k2 −Xk1 − k2

)
+PXPφXφX

(
Xk21 + k1k2 −Xk1 + k2

)
+PφXφX

(
2Xk21ko3 + 2k1k2ko3

))
(A.24)

where ko3 is constant. Substituting all these relations into equation (5.18), it

becomes

η00X =
−k5

k1PφXφX

(
PφXX

(
k1X + k2

)
+ φXPφXφX

)
. (A.25)
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Since η00 only depends on X and for the existence of extension of kernel of

admitted Lie algebras, one obtains that

η00X = f2(X)k5.

Equation (A.25) provides that

PφXX =
−PφXφX

(
φX + k1f2(X)

)
k1X + k2

, (A.26)

where f2(X) is a function of X only. Substituting (A.26) into (A.24), one de-

rives

PXX =
1

(k1X + k2)2

(
(k1X + k2)

(
− f2X(X)k1PφX

− k1PX

+PX − 2k1ko3
)
+ PφXφX

(
φ2
X + 2k1f2(X)φX + k21f2

2(X)
))
.

(A.27)

Finally, a solution of the determining equations is

k4 = 0, k8 = 0, kk3 =
2

k1
k5, k7 = ko3k5, k9 =

k2
k1
k5,

η00X = g2(X)k5, η01X = 0, ξt = k5t+ k6, ξX =
k5(k1X + k2)

k1
,

η =
k5k1ko3t

2 + k5(k1 + 1)φ+ η01k1t+ η00k1
k1

.

For k10 = η01, then the generator corresponding to these coefficients is

X = k5X1 + k6X2 + k10X3

where

X1 = ∂t, X2 = t∂φ

X3 = t∂t + (
k1X + k2

k1
)∂X +

(
ko3t

2 +

∫
f2(X)dx+ (

k1 + 1

k1
)φ
)
∂φ.

(A.28)

Here the function P (X,φX) satisfies two equations (A.27) and (A.26).

Finding : Pressure function

Solving (A.26), one gets a general solution

P (X,φX) = ϕ̃(Z̃)(X + αk2)
α + h(X) (A.29)
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where ϕ̃(Z̃) =
∫
ϕ(Z̃)dZ̃, Z̃ = φX(X + αk2)

−α −
∫
f2(X)(X + αk2)

−α−1dX.

Substituting this equation into (A.27), one derives

(X + αk2)hXX = hX(α− 1)− 2ko3.

A similar study as in previous cases, gives

−
∫
f2(X)(X + αk2)

−α−1dX = (X + αk2)
−αf̃2

′
(X),

and ∫
f2(X)dX = −(X + αk2)f̃2

′
(X) + (α+ 1)f̃2(X)

and η00 = k5

(
−Xf̃2

′
(X) + (α+ 1)f̃2(X)

)
; therefore the generator in equation

(A.28) can be written as

X1 = ∂t, X2 = t∂φ

X3 = t∂t + (X + αk2)∂X +
(
βt2 + (α + 1)

(
φ+ f̃2(X)

)
− (X + αk2)f̃2

′
(X)

)
∂φ

(A.30)

where β = ko3. The pressure function in equation (A.29) becomes

P (X,φX) = ϕ(Z)(X + αk2)
α + h(X) (A.31)

where Z = (X + αk2)
−α(φX + f2

′(X)
)

and (X + αk2)hXX = hX(α− 1)− 2β.

By virtue of the equivalence transformations corresponding to the generators Xe
2

and Xe
15, it can be assumed that k2 = 0, f̃2(X) = 0. The equivalence transfor-

mation corresponding to the operator Xe
8 is also used and this transformation

allows one to simplify that β = 0.

For the condition α ̸= −1, the extensions of kernel and the pressure func-

tion are

X6 = t∂t +X∂X + (α + 1)φ∂φ, P (X,φX) = ϕ(Z)Xα + h(X)

where Z = X−αφX and XhXX = hX(α− 1).

(A.32)

The result of this case is presented in Table 5.1 as the model M3.
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• k1 = 0

Substituting k1 = 0 into equation (A.23), one gets

k5k2 = 0.

Assume k2 ̸= 0 then these relations

k5 = 0, kk3 =
2

k2
k9, ξX = k9 where k9 ̸= 0

are obtained. Substituting all conditions into (5.41) and with a similar study as

in the previous cases for this equation, it can be rewritten in the new form

k7 = ko3k9

or

PφXXX =
1

k2PφX

(
P 2
φXX

k2
(
µ1 − 1

)
− PφX

PφXX

+PφXφX

(
PXXk2 − PX + 2k2ko3

)) (A.33)

where ko3 is constant. Substituting all relations into (5.18), it becomes

η00X =
−k9

k2PφXφX

(
k2PφXX + φXPφXφX

)
. (A.34)

A similar study for (A.34) as performed in the previous cases gives

η00X = f3(X)k9

and provides that

PφXX =
−PφXφX

(
φX + k2f3(X)

)
k2

, (A.35)

where f3(X) is a function of X only. Substituting (A.35) into (A.33), one de-

rives

PXXX =
1

k32

(
− f3XX(X)k32PφX

+ 3k22f3X(X)PφXφX

(
φX + k2f3(X)

)
−φ2

XPφXφXφX

(
φX + 3k2f3(X)

)
− PφXφXφX

k22f3
2(X)

(
3φX + k2f3(X)

)
−φXPφXφX

(
φX + 2k2f3(X)

)
− PφXφX

k22
(
f3

2(X)− 1
))
,
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and

PXX =
1

k22

(
− f3X(X)k22PφX

+ φ2
XPφXφX

+ k2
(
PX − 2k2ko3

)
+k2f3(X)PφXφX

(
2φX + k2f3(X)

))
.

(A.36)

Finally, a solution of the determining equations is

k4 = 0, k5 = 0, k8 = 0, kk3 =
2

k2
k9, k7 = ko3k9,

η00X = f3(X)k9, η01X = 0, ξt = k6, ξX = k9,

η =
k9k2ko3t

2 + k9φ+ η01k2t+ η00k2
k2

with k10 = η01; then the generator corresponding to these coefficients is

X = k6X1 + k10X2 + k9X3

with

X1 = ∂t, X2 = t∂φ

X3 = ∂X +
(
ko3t

2 +

∫
f3(X)dx+ (

φ

k2
)
)
∂φ.

(A.37)

Here the function P (X,φX) satisfies the two equations (A.35) and (A.36).

Finding : Pressure function

Solving equation (A.35), one derives the general solution

P (X,φX) = ϕ̃(Z̃)eαX + h(X) (A.38)

where ϕ̃(Z̃) =
∫
ϕ(Z̃)dZ̃, Z̃ = φXe

−αX −
∫
f3(X)e−αXdX. Substituting this

equation into (A.36), one finds

hXX = αhX − 2ko3.

Performing a similar study as in the previous cases for finding −
∫
f3(X)e−αXdX,

one gets

−
∫
f3(X)e−αXdX = e−αX f̃3

′
(X)
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and ∫
f3(X)dX = −f̃3

′
(X) + αf̃3(X).

Hence, η00 = k9
(
− f̃3

′
(X) + αf̃3(X)

)
and the generators in (A.37) become

X1 = ∂t, X2 = t∂φ

X3 = ∂X +
(
βt2 − f3(X)′(X) + α

(
f3(X) + φ

))
∂φ

(A.39)

where β = ko3 and the pressure function in equation (A.38) can also be written

as

P (X,φX) = ϕ(Z)eαX + h(X) (A.40)

where Z = e−αX
(
φX + f ′

3(X)
)

and hXX = αhX − 2β.

By virtue of the equivalence transformations corresponding to the generators Xe
15

and Xe
8 allows us to assume that f̃3(X) = 0 and β = 0.

Therefore when α ̸= 0, the extension of the kernel and the pressure func-

tion are

X = ∂X + αφ∂φ, P (X,φX) = ϕ(Z)eαX + h(X) (A.41)

where Z = e−αXφX and hXX = αhX .

Consider equation (A.16) and (A.41), one notices that (A.41) is a particular

case of (A.16) when β = 0 with −α = α̃. Thus the general form of these two

cases with the related pressure function is given as model M2 in Table 5.1.

Case II h(X) = 0

Substituting h(X) = 0 into equation (A.20), one finds

kk3 = 0,

and

η00X =
−PφXX

PφXφX

(
ko5X + ko9

)
. (A.42)

 

 

 

 

 

 

 

 



123

Performing a similar study as in previous cases for (A.42), one obtains

η00X = f4(X)
(
ko5X + ko9

)
,

and provides that

PφXX = −f4(X)PφXφX
(A.43)

where f4(X) is a function of X only. Integrating equation (A.43) with respect

to φX , one obtains

PX = −f4(X)PφX
+ g11(X). (A.44)

Substituting all relations, one finds

k7 =
−k5

(
g11XX + g11

)
− g11Xk9

2
. (A.45)

Differentiating equation (A.45) with respect to X, one gets

k5
(
− g11XXX − 2g11X

)
− g11XXk9 = 0. (A.46)

Differentiating equation (A.46) with respect to X, one gets

k5
(
− g11XXXX − 3g11XX

)
− g11XXXk9 = 0. (A.47)

Equations (A.46) and (A.47) are algebraic linear homogeneous equations with

respect to k5 and k9 with the determinant 2g11XXXg11X − 3g11XX
2. If this de-

terminant is not equal to zero, then k5 = 0 and k9 = 0. In this case there is no

extension of the kernel. Hence, one has to assume that

2g11XXXg11X − 3g11XX
2 = 0.

The general solution of this equation is g111X(X) = 0 and g211X(X) = 4(
k1X+k2

)2 .
where k1 and k2 are constant such that k21 + k22 ̸= 0.
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Case II.1 g11X(X) ̸= 0

Substituting g11X(X) = 4
(k1X+k2)2

, into (A.46), it becomes

−4k5k2 + 4k9k1 = 0. (A.48)

One has to study in 2 cases : k1 ̸= 0 and k1 = 0.

• k1 ̸= 0

As k1 ̸= 0, equation (A.48) and (A.45) give

k9 =
k2
k1
k5, k7 =

−ko3
2

k5.

Finally, a solution of the determining equations is

k4 = 0, k8 = 0, kk3 = 0, k7 =
−ko3
2

k5, k9 =
k2
k1
k5,

η00X =
(k1X + k2

k1

)
g4(X)k5, η01X = 0 ξt = k5t+ k6

ξX =
k5(k1X + k2)

k1
, η =

−k5ko3t2 + 2k5φ+ 2η01t+ 2η00

2

with k10 = η01, then the generator corresponding to these coefficients is

X = k6X
1 + k10X

2 + k5X
3

with

X1 = ∂t, X2 = t∂φ

X3 = t∂t +
(k1X + k2

k1

)
∂X

+
(
− ko3

2
t2 + φ+

(k1X + k2
k1

) ∫
f4(X)dx

)
∂φ

(A.49)

Here the function P (X,φX) satisfies these two equations (A.43) and (A.44).

Finding : Pressure function

Solving equation (A.43), one gets the general solution

P (X,φX) = ϕ̃(Z̃) + h(X) (A.50)
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where ϕ̃(Z̃) =
∫
ϕ(Z̃)dZ̃, Z̃ = φX −

∫
g4(X)dX. Substituting this function into

(A.44), one finds

k1
2h(X) = k1

2(ko3X + ko4)− 4 ln (k1X + k2).

Consider
∫
f4(X)dX = −g̃′(X), one obtains∫

Xf4(X)dX = −Xg̃′(X) + g̃(X),

and

η00 = k5

∫
Xf4(X)dX + k5

k2
ko1

∫
f4(X)dX

= k5
(
−Xg̃′(X) + g̃(X)

)
+ k5

k2
k1

(
− g̃′(X)

)
= k5

(
−Xg̃′(X) + g̃(X)− αβg̃′(X)

)
where α = 1

k1
(α ̸= 0), and β = k2.

Hence the generator in equation (A.49) can be written as

X1 = ∂t, X2 = t∂φ

X3 = t∂t +
(
X + αβ

)
∂X +

(
− γt2 + φ+

(
−Xg̃′(X) + g̃(X)

− αβg̃′(X)
))
∂φ

(A.51)

where γ = 2ko3. Equation (A.50) can also be written as

P (X,φX) = ϕ(Z) + h(X) (A.52)

where Z = φX + g̃′(X) and h(X) = 2
(
γX − 2α2 ln

(
X + αβ

))
(α ̸= 0).

By virtue of the equivalence transformations corresponding to the genera-

tors Xe
15, Xe

8 , and Xe
2 , one can assume that g̃(X) = 0, γ = 0, and β = 0.

Therefore the extensions of kernel and the pressure function are

X = t∂t +X∂X + φ∂φ, P (X,φX) = ϕ(Z) + h(X) (A.53)

where Z = φX , h(X) = −4α2 lnX (α ̸= 0).
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Notice that the result in this case is a particular form of the result in (A.32)

when placing α = 0. Therefore the general form of these two cases is presented

as model M3 in the Table 5.1.

• k1 = 0

Substituting k1 = 0 into equation (A.48) and (A.45), and supposing

that k2 ̸= 0, one obtains

k5 = 0, k7 =
−2

k2
2k9.

Finally, the solution of the determining equations is

k4 = 0, k8 = 0, kk3 = 0, k5 = 0, k7 =
−2

k2
2k9,

η00X = f4(X)k9, η01X = 0 ξt = k6 ξX = k9,

η =
−2k9t

2 + k2
2η01t+ k2

2η00

k2
2

with k10 = η01; then the generator corresponding to these coefficients is

X = k6X
1 + k10X

2 + k9X
3

with

X1 = ∂t, X2 = t∂φ, X3 = ∂X +
(−2t2

k2
2 +

∫
f4(X)dx

)
∂φ. (A.54)

Here the function P (X,φX) satisfies the two equations (A.43) and (A.44).

Finding : Pressure function

Solving (A.43), one derives the general solution

P (X,φX) = ϕ(Z) + h(X) (A.55)

where Z = φX −
∫
f4(X)dX. Substituting this equation into (A.44), one finds

h(X) = ko3X +
2X2

k2
2 .
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Consider
∫
f4(X)dX = g̃(X), then

η00 = k9

∫
f4(X)dX = k9g̃(X),

and the generator of equation (A.54) can be written as

X1 = ∂t, X2 = t∂φ, X3 = ∂X +
(
− γt2 + g̃(X)

)
∂φ (A.56)

where γ = 2
ko2

2 (γ ̸= 0). For β = ko3, the equation (A.55) can also be written

as

P (X,φX) = ϕ(Z) + βX + γX2

Z = φX − g̃(X).

(A.57)

By virtue of the equivalence transformations corresponding to the genera-

tor Xe
15 one can assume that g̃(X) = 0.

The extensions of the kernel and its related pressure function are

X7 = ∂X − γt2∂φ, P (X,φX) = ϕ(Z) + βX + γX2 (A.58)

where Z = φX with γ ̸= 0. In the Table 5.1, this is model M4.

Case II.2 g11X(X) = 0

This case g11X(X) = 0 means that g11(X) = ko11, for some con-

stant ko11. Substituting g11(X) = ko11 into (A.45), one finds

k7 =
−k1
2
k5.

Finally, a solution of the determining equations is

k4 = 0, k8 = 0, kk3 = 0, k7 =
−k1
2
k5, η00X = g4(X)

(
k5X + k9

)
,

η01X = 0, ξt = k5t+k6, ξX = k5X+k9, η =
−k5k1t2 + 2k5φ+ 2tη01 + 2η00

2
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with k10 = η01, then the generator corresponding to these coefficients is

X = k5X
1 + k9X

2 + k6X
3 + k10X

4

with

X1 = ∂t, X2 = t∂φ

X3 = t∂t +X∂X +
(−k1

2
t2 + φ+

∫
Xf4(X)dX

)
∂φ

X4 = ∂X +

∫
f4(X)dX∂φ.

(A.59)

Here the function P (X,φX) satisfies the two equations (A.43) and (A.44).

Finding : Pressure function

Solving (A.43), one derives the general solution

P (X,φX) = ϕ(Z) + h(X) (A.60)

where Z = φX −
∫
f4(X)dX. Substituting this equation into (A.44), one finds

h(X) = k1X + k2.

Consider C(X) = −
∫
f4(X)dX; one obtains

∫
Xf4(X)dX = −Xg̃′(X) + g̃(X)

where g̃(X) =
∫
C(X)dX, which gives the generator in equation (A.59) of form

X1 = ∂t, X2 = t∂φ

X3 = t∂t +X∂X +
(−β

2
t2 + φ−Xg̃′(X) + g̃(X)

)
∂φ

X4 = ∂X − g̃′(X)∂φ

(A.61)

where β = ko1. By virtue of the equivalence transformation corresponding to the

generators Xe
15 and Xe

8 , it can be assumed that g̃(X) = 0, and β = 0. In

this case, there are two extensions of the kernel which are related to the following

pressure function

X8 = t∂t +X∂X + φ∂φ, X9 = ∂X , P (X,φX) = ϕ(Z) (A.62)

where Z = φX . In the Table 5.1, this is model M5.

 

 

 

 

 

 

 

 



129

A.2 Case µ1φX
= 0

Consider equation (5.37)

2ξXXµ1φX
PφX

− 2k5µ1φX
PφX

+ ξX
(
− µ1φX

PφXX + µ1XPφXφX

)
= 0.

Substituting µ1φX
= 0 into this equation, it becomes

ξXµ1XPφXφX
= 0. (A.63)

As PφXφX
̸= 0, then the latter equation holds when assuming in 2 cases:

µ1X ̸= 0 and µ1X = 0.

A.2.1 Case µ1X = 0

From equation (A.63), as PφXφX
̸= 0, and assuming ξX ̸= 0

then µ1X = 0 that is

µ1 = k1, where k1 is a constant.

Finding : Pressure function

Construct the pressure function by solving equation (5.32)

PφXφXφX
PφX

PφXφX

2 = µ1 = k1.

Since
(

PφX

PφXφX

)
φX

= 1− PφX
PφXφXφX

P 2
φXφX

, then
(

PφX

PφXφX

)
φX

= 1− µ1. Integrating the

latter equation with respect to φX , one gets

PφX

PφXφX

= (1− µ1)φX + a

PφXφX

PφX

=
1

(1− µ1)
(
φX + ã(X)

) , ã =
a

1− µ1

where µ1 ̸= 1. The pressure function is

P (X,φX) = b̃(X)
(
φX + ã(X)

) 1
1−µ1

+1
+ c(X), b̃(X) =

b(X)
1

1−µ1 + 1
.

 

 

 

 

 

 

 

 



130

Let γ = 1
1−µ1 + 1. As PφX

̸= 0, then γ ̸= 0. The general form of the pressure

function can be written as

P (X,φX) = b(X)
(
φX + a(X))γ + c(X), γ ̸= 0 , 1. (A.64)

Moreover one finds PφXφX
= γ(γ−1)b(X)(a(X)+φX)

γ−2, as PφXφX
̸= 0, then

this condition

γ(γ − 1)b(X) ̸= 0

is obtained. Substituting the pressure function, P into equation (5.36), it becomes

−2ξXX bXb+ 2ξX
(
− bXXb+ b2X

)
b2(γ − 1)

= 0. (A.65)

From this equation, one can study in 2 cases: bX ̸= 0 and bX = 0.

Case bX ̸= 0

Assuming bX ̸= 0, then (A.65) becomes

ξXX =
ξX
(
− bXXb+ b2X

)
bbX

. (A.66)

Integrating equation (A.66) with respect to X, one obtains

ξX = k11
b

bX
(A.67)

with the relations k11 ̸= 0 and b ̸= 0 (as ξX ̸= 0). Substituting all conditions

into (5.33), one finds

k4γ(γ + 3)(γ − 1)b(X)(a(X) + φX)
γ = 0.

Once consider γ + 3 ̸= 0, and as γ(γ − 1)b(X) ̸= 0, one gets

k4 = 0.

Substituting all conditions into equation (5.42), it becomes

2k5b
2
XcXXγ(−γ + 1) + k11

((
a+ φX)

γbXXXbXb(γ − 1)

−2(a+ φX)
γb2XXb(γ − 1) + (a+ φX)

γbXXb
2
X(γ − 1)− 2bXXcXXb(γ − 1)

+b2XcXX(γ − 1)− bXcXXXb(γ − 1)2
)
= 0.

(A.68)
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Differentiating equation (A.68) with respect to φ;

k11(a+ φX)
γγ
(
bXXXbXb− 2b2XXb+ bXXb

2
X

)
= 0.

Since k11 ̸= 0, and bX ̸= 0, one derives

bXXX =
bXX

(
2bXXb− b2X

)
bbX

. (A.69)

Finding the extension of the kernel in this case, one has to consider 2 cases

: bXX ̸= 0 and bXX = 0.

Case I bXX ̸= 0

Solving equation (A.69), the general solution is

bX = bβ1ko2,

where β1 is constant and since bX ̸= 0 then ko2 ̸= 0. Therefore equation

(A.68) changes to

−2k5b
β1γko2cXX + k11

(
− cXXXb(γ − 1)− bβ1cXXko2(2β1 − 1)

)
= 0. (A.70)

Differentiating equation (A.70) with respect to X, one gets

−2k5γko2b
β1
(
cXXXb+ βko2b

β1cXX
)
+ k11

(
− cXXXXb

2(γ − 1)

−ko2bβ1+1cXXX(γ − 2β1 − 2)− ko22β1b
2β1cXXX(2β1 − 1)

)
= 0.

(A.71)

Equations (A.70) and (A.71) are algebraic linear homogeneous equations with re-

spect to k5 and k11 with the determinant γ(γ − 1)ko2b
β1+1(X)

(
cXXXXcXX −

c2XXX − ko2(β1 − 1)bβ1−1cXXXcXX
)
. If this determinant is not equal to zero,

then k5 = 0 and k11 = 0 (which contradicts our condition k11 ̸= 0). Hence,

one has to assume that

γ(γ − 1)ko2b
β1+1(X)

(
cXXXXcXX − c2XXX − ko2(β1 − 1)bβ1−1cXXXcXX

)
= 0.
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Since γ(γ − 1)b(X) ̸= 0 and ko2 ̸= 0, it yields

cXXXXcXX − c2XXX − ko2(β1 − 1)bβ1−1cXXXcXX = 0.

To solve the latter equation, one has to determine 2 cases: cXXX ̸= 0 and

cXXX = 0.

Case I.1 cXXX ̸= 0

Let us consider

cXXXX
cXXX

− cXXX
cXX

− ko2(β1 − 1)bβ1−1 = 0. (A.72)

To complete the analysis, one has to consider 2 cases: β1 = 1, and β1 ̸= 1.

Case I.1a β1 = 1

Substituting β1 = 1 in to (A.72), one can find the general solution of

equation (A.72) as

c(X) =
ko4
ko23

eko3X + ko5X + ko6

where ko3, ko4, ko5, ko6 are constant and ko3 ̸= 0. Next, we will consider

the value of ko4 which is ko4 = 0 and ko4 ̸= 0.

• ko4 ̸= 0

Substituting c(X) into (A.70), one derives

k5 =
k11
(
− ko2(γ − 1)2 − ko3(γ − 1)3

)
2γko2(γ − 1)2

and

η00X =
k11
(
− aXγ − ako2 + ko3

)
γko2

. (A.73)

Performing a similar study as in previous cases for equation (A.73), one can rewrite

it as

η00X = k11f5(X)
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where f5(X) is a function of X only. Equation (A.73) provides that

a′(X) =
−a(X)ko2 + a(X)ko3 − γko2g5(X)

γ
.

Finally, a solution of the determining equations is

k4 = 0, k8 = 0, kk3 = 0, k5 =
k11
(
− ko2 − ko3(γ − 1)

)
2γko2

,

k7 =
k11ko3ko5

2ko2
, η00X = g5(X)k11, η01X = 0.

ξt =
k11t

(
− ko2 − ko3(γ − 1)

)
+ 2k6γko2

2γko2
, ξX =

k11
ko2

,

η =
k11ko3ko5γt

2 + 2k11φ
(
− ko2 + ko3

)
+ 2tγko2η

01 + 2γko2η
00

2γko2

with k10 = η01; then the generator corresponding to these coefficients is

X = k6X
1 + k10X

2 + k11X
3

with

X1 = ∂t, X2 = t∂φ

X3 =
t
(
− ko2 − ko3(γ − 1)

2γko2
∂t +

1

ko2
∂X

+
(ko3ko5

2ko2
t2 +

−ko2 + ko3
γko2

φ+

∫
g5(X)dX

)
∂φ.

(A.74)

Letting ko2 = β, ko3 = α, ko6 = 0, and
∫
g5(X)dX = g̃(X) then the basis

generator X3 in equation (A.74) can be written as

X3 =
(−1

2γ
− α

2β
+

α

2βγ

)
t∂t+

1

β
∂X +

( α
2β
k3t

2 +
(−1

γ
+

α

βγ

)
φ+ g̃(X)

)
∂φ, (A.75)

and the pressure function is

P (X,φX) = b(X)(a(X) + φX)
γ + c(X)

a′(X) =
a(X)

γ

(
α− β

)
− βg̃′(X), b(X) = k1 e

βX ,

c(X) =
k2
α2

eαX + k3X

(A.76)
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where k1 ̸= 0, α ̸= 0, β ̸= 0, and γ ̸= 0, 1.

By virtue of the equivalence transformation corresponding to the genera-

tors Xe
15 and Xe

8 , it can be assumed that a(X) = 0 and k3 = 0.

For α− β ̸= 0 the extension of the kernel and the pressure function are

X10 =
(
β + α(γ − 1)

)
t∂t − 2γ∂X + 2

(
β − α

)
φ∂φ

P (X,φX) = k1e
βX
(
φγX +

k2
k1α2

e(α−β)X
) (A.77)

The result of this case is presented in Table 5.1 as model M6.

• ko4 = 0

Substituting ko4 = 0, then

η00X =
k11
(
− aX(γ − 1)− ako2

)
− 2ko2k5a

(γ − 1)ko2

and it can be written as

η00X =
g6(X)k11 − 2ako2k5

ko2(γ − 1)

where g6(X) is a function of X only. This equation provides

a′(X) =
−(ko2a(X) + g6(X))

γ − 1
.

Finally, a solution of the determining equations is

k4 = 0, k8 = 0, kk3 = 0, k7 =
−ko5

2(γ − 1)

(
k11 + 2γk5

)
,

η00X =
g6(X)k11 − 2ako2k5

ko2(γ − 1)
, η01X = 0, ξt = k5t+ k6, ξX =

k11
ko2

,

η =
−k11ko5t2

2(γ − 1)
− k11φ

γ − 1
− γko5k5t

2

γ − 1
− 2k5φ

γ − 1
+ tη01 + η00

with k10 = η01. The generator corresponding to these coefficients is

X = k6X
1 + k10X

2 + k11X
3 + k5X

4.
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Letting ko2 = β, ko3 = α, ko6 = 0, γ̃ = γ − 1,
∫
g6(X)dX = g̃(X)

and
∫
a(X)dX = ã(X), the basis generators can be written as

X1 = ∂t, X2 = t∂φ

X3 = ∂X +
1

2γ̃

(
− βk2t

2 − 2
(
βφ− g̃(X)

))
∂φ

X4 = t∂t +
1

γ̃

(
− k2

(
γ̃ + 1

)
t2 − 2

(
ã+ φ)

)
∂φ

(A.78)

and the pressure function with a(X), b(X), and c(X) becomes

P (X,φX) = b(X)(ã′(X) + φX)
γ̃+1 + c(X)

ã′′(X) =
−
(
βã′(X) + g̃′(X)

)
γ̃

, b(X) = k1e
βX ,

c(X) = k2X + k3

(A.79)

where k1 ̸= 0 β ̸= 0, and γ̃ ̸= 0 − 1.

By virtue of the equivalence transformation corresponding to the opera-

tor Xe
15, Xe

2 , and Xe
8 , it can be assumed ã(X) = 0, g̃′(X) = 0, k3 = 0, and

k2 = 0.

For letting γ = γ̃ + 1, the extensions of kernel of admitted Lie group and

the pressure function are

X11 = (γ − 1)∂X − βφ∂φ, X12 = (γ − 1)t∂t − 2φ∂φ (A.80)

P (X,φX) = k1e
βXφγX

where β ̸= 0, and γ ̸= 0, 1. The result of this case is presented in Table 5.1 as

model M7.

Case I.1b β1 ̸= 1

Solving equation (A.72), one obtains the solution

c(X) = ko4b
c1 + ko5X + ko6

where c1 is constant and c1 ̸= 0. To analyze the solutions of this equation, one

has to split into 2 cases : ko4 ̸= 0 and ko4 = 0.
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• ko4 ̸= 0

For ko4 ̸= 0, one obtains

η00X = k11

(−aXb1−β1
ko2

+
a(X)

(
c1 − 1

)
γ

)
,

Performing a similar study for this equation as previously, it can be rewritten as

η00X = k11g7(X),

where g7(X) is a function of X only. This equation also provides

a′(X) =
ko2b

β1−1

γ

(
a(X)

(
c1 − 1

)
− γg7(X)

)
.

Finally, a solution of the determining equations is

k4 = 0, k8 = 0, kk3 =
k11
(
c1γ + c1 − 1

)
γ

, k7 =
k11ko5

2

(
β1 + c1 − 1

)
,

η00X = g7(X)k11, η01X = 0, ξX =
k11
ko2

b1−β1 ,

ξt =
k11t

2γ

(
− 2γ(β1 − 1) + c1(1− γ)− 1

)
+ k6,

η = k11

(ko5
2

(
β1 + c1 − 1

)
t2 +

φ

γ

(
− γβ1 + γ + c1 − 1

))
+ tη01 + η00

with k10 = η01. The generator corresponding to these coefficients is

X = k6X
1 + k10X

2 + k11X
3.

Letting ko2 = β, c1 − 1 = m, β1 − 1 = l, ko4 = k1, ko5 = k2, ko6 = k3,

and
∫
g7(X)dX = g̃(X), finally, the basis generators are

X1 = ∂t, X2 = t∂φ

X3 =
(
− l +

m

2γ
− (m+ 1)

2

)
t∂t +

b−l

β
∂X +

(k2
2
t2
(
l +m+ 1

)
+
(
− l +

m

γ

)
φ+ g̃(X)

)
∂φ

(A.81)

and the pressure function is

P (X,φX) = b(X)(a(X) + φX)
γ + c(X)
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a′(X) =
βbl

γ

(
ma(X)− γg̃′(X)

)
, b′(X) = βbl+1,

c(X) = k1b
m+1 + k2X + k3

(A.82)

where β ̸= 0, γ ̸= 0 , 1, l ̸= 0, and m ̸= −1.

By virtue of the equivalence transformations corresponding to the opera-

tors Xe
15, Xe

2 and Xe
8 one can assume a(X) = 0, k2 = 0, and k3 = 0.

For m ̸= γl, therefore, the extensions of the kernel and the pressure func-

tion are

X13 =
(
γ(1 +m+ 2l)−m

)
t∂t + (2γl)X∂X + 2(γl −m)φ∂φ

P (X,φX) = b(X)
(
φγX + k1b

m(X)
)
, bl(X) =

−1

lβX

where l, β, ̸= 0, γ ̸= 0, 1, and m ̸= −1. In Table 1, this is model M8.

• ko4 = 0

Substituting ko4 = 0, one obtains

η00X =
k11

(
− aXb(X)(γ − 1)− a(X)bβ1ko2

(
2β1 − 1

))
− 2k5a(X)bβ1ko2

bβ1ko2
(
γ − 1

) .

Performing a similar study for this equation as previously, one can rewrite it as

η00X = g8(X)k11 −
2a(X)

γ − 1
k5,

and it provides

a′(X) =
ko2b

β1−1(X)

γ − 1

(
a(X)

(
1− 2β1

)
+
(
1− γ

)
g8(X)

)
where g8(X) is function of X only. Finally, a solution of the determining equa-
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tions is

k4 = 0, k8 = 0, kk3 =
2k11

(
− γ2(β1 − 1)− γ + β1

)
+ 2k5

(
1− γ2

)(
γ − 1

)2 ,

k7 =
ko5k11

(
− γ4(β1 − 1) + γ3(2β1 − 3) + γ(3γ − 2β1)− γ + β1

)
− 2ko5γk5

(
γ − 1

)3
2
(
γ − 1

)4 ,

η00X = g8(X)k11 −
2a(X)

γ − 1
k5, η01X = 0, ξt = k5t+ k6, ξX =

b1−β1

ko2
k11,

η = k11
(
− γ2β1 + γ2 − γ + β1

)(
ko5t

2 + 2φ
)
+ 2k5

(
1− γ)

(
γko5t

2 + 2φ
)

+ tη01 + η00

with k10 = η01. The generator corresponding to these coefficients is

X = k6X
1 + k10X

2 + k11X
3 + k5X

4.

Letting ko2 = β, β1 − 1 = l, γ − 1 = γ̃, ko5 = k1, ko6 = k2,
∫
g8(X)dX = g̃(X),

and
∫
a(X)dX = ã(X), finally, the basis generators and the pressure are

X1 = ∂t, X2 = t∂φ

X3 =
b−l

β
∂X +

1

2γ

(
−
(
k1t

2 + 2φ
)(
γl + 2l + 1

)
+ 2γg̃(X)

)
∂φ

X4 = t∂t +
1

γ

(
− k1t

2
(
γ + 1

)
− 2
(
ã(X) + φ

))
∂φ

(A.83)

P (X,φX) = b(X)(ã′(X) + φX)
γ̃+1 + c(X)

ã′′(X) =
βbl

γ

(
− (2l + 1)ã′(X)− γg̃′(X)

)
,

b′(X) = βbl+1, c(X) = k1X + k2

(A.84)

where β ̸= 0, γ̃ ̸= 0 , −1, and l ̸= 0.

By virtue of the equivalence transformations corresponding to the opera-

tors Xe
15, Xe

2 and Xe
8 , one can assume that ã(X) = 0, k1 = 0 and k2 = 0.

For γ̃ + 1 = γ, the extensions of the kernel and the pressure function are

X14 = l(γ − 1)X∂X +
(
l(γ + 1) + 1

)
φ∂φ,

X15 = (γ − 1)t∂t − 2φ∂φ,

P (X,φX) = b(X)φγX , where b−l(X) = −lβX,

(A.85)
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where l, β, ̸= 0, and γ ̸= 0, 1. In Table 5.1, this is model M9.

Case I.2 cXXX = 0

The general solution of this equation is

c(X) = c1X
2 + c2X + c3 c1, c2, c3 are constant.

Substituting c(X) into equation (A.68), one obtains

c1
γ − 1

(
k11
(
1− 2β1

)
− 2γk5

)
= 0.

We will consider 2 cases : cXX ̸= 0 and cXX = 0.

Case I.2a cXX ̸= 0

For cXX ̸= 0 that is c1 ̸= 0, such that one finds

k5 =
1− 2β1

2γ
k11.

Substituting all relations then

η00X = k11

(−aXb1−β1
ko2

−
a(X)

(
2β1 − 1

)
γ

)
.

Performing a similar study for this equation as previously, it can be written as

η00X = g9(X)k11

and it provides

a′(X) =
ko2b

β1−1(X)

γ

(
a(X)

(
1− 2β1

)
− γg9(X)

)
where g9(X) is a function of X only.

• β1 ̸= 1
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For β1 ̸= 1, there are relations of a(X) , b(X) , c(x) as follows :

a′(X) =
ko2
γ
bβ1−1

(
a(X)

(
1− 2β1

)
− γg9(X)

)
b′(X) = bβ1(X)ko2 c(X) = c1X

2 + c2X + c3

and a solution of the determining equations is

k4 = 0, k8 = 0, k5 =
k11
(
1− 2β1

)
2γ

, η01X = 0

k7 = k11

(1
2

(
1− β1

)(
2c1X + c2

)
− c1b

1−β1

ko2

)
, η00X = g9(X)k11,

ξt =
(−2β1 + 1

2γ

)
tk11 + k6, ξX =

(b1−β1
ko2

)
k11,

η = k11t
2
((1− β1

2

)(
2c1X + c2

)
−
( c1
ko2

)
b1−β1

)
+ k11

(φ
γ

)(
γ
(
1− β1

)
− 2β1 + 1

)
+ tη01 + η00

with k10 = η01. The generator corresponding to these coefficients is

X = k6X
1 + k10X

2 + k11X
3.

Letting ko2 = β, 1 − β1 = l, c1 = k1, c2 = k2, c3 = k3, and
∫
g9(X)dX = g̃(X)

or g9(X) = g̃′(X), finally, the basis generators and the pressure function can be

written as

X1 = ∂t, X2 = t∂φ

X3 =
(2l − 1

2γ

)
t∂t +

bl

β
∂X +

( t2
2β

(
2lβk1X + lβk2 − 2k1b

l
)

+
φ

γ

(
lγ + 2l − 1

)
+ g̃(X)

)
∂φ

(A.86)

and

P (X,φX) = b(X)(a(X) + φX)
γ + c(X)

a′(X) =
βb−l

γ

(
a(X)

(
2l − 1

)
− γg̃′(X)

)
,

b′(X) = βb1−l, c(X) = k1X
2 + k2X + k3

(A.87)

where β ̸= 0, γ ̸= 0 , 1, l ̸= 0 and k1 ̸= 0.

By virtue of the equivalence transformations corresponding to the opera-

tors Xe
15, Xe

2 and Xe
8 , one can assume a(X) = 0, k2 = 0, and k3 = 0.
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Therefore the extensions of the kernel and the pressure function are

X16 = (2l − 1)t∂t + (2γl)X∂X +
(
2(2l − 1) + 2lγ

)
φ∂φ

P (X,φX) = b(X)φγX + k1X
2 where bl(X) = lβX ,

l, β ̸= 0, γ ̸= 0, 1 and k1 ̸= 0. In Table 5.2, this is model M10.

• β1 = 1

Substituting β1 = 1, and solving equation bX = bko2, one gets

b(X) = c4e
ko2X .

The condition for a(X), such that a′(X) = −ko2
γ

(
a(X) + γg9(X)

)
is obtained.

Finally, a solution of the determining equations is

k4 = 0, k8 = 0, kk3 =
−k11
γ

, k5 =
−k11
2γ

,

k7 =
−k11c1
ko2

, η00X = g9(X)k11, η01X = 0,

ξt =
−k11t+ 2γk6

2γ
, ξX =

k11
ko2

, η = −k11
(c2t2
ko2

+
φ

γ

)
+ tη01 + η00

with k10 = η01. The generator corresponding to these coefficients is

X = k6X
1 + k10X

2 + k11X
3.

Letting ko2 = β, c1 = k1, c2 = k2, c3 = k3, c4 = k4, and
∫
g9(X)dX = g̃(X) or

g9(X) = g̃′(X), then the basis generators and the pressure function can be written

as

X1 = ∂t, X2 = t∂φ

X3 =
−t
2γ
∂t +

1

β
∂X +

(
−
(k2t2
β

+
φ

γ

)
+ g̃(X)

)
∂φ

(A.88)

and

P (X,φX) = b(X)(a(X) + φX)
γ + c(X),

a′(X) =
−β
γ

(
a(X) + γg̃′(X)

)
,

b(X) = k4e
βX , c(X) = k1X

2 + k2X + k3

(A.89)
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where β ̸= 0, γ ̸= 0 , 1, k1 ̸= 0 and k4 ̸= 0.

By virtue of the equivalence transformations corresponding to the opera-

tors Xe
15, Xe

2 and Xe
8 , one can assume a(X) = 0, k2 = 0, and k3 = 0.

Therefore the extensions of the kernel and the pressure function are

X17 = −βt∂t + 2γ∂X − 2βφ∂φ, P (X,φX) = eβXφγX + k1X
2 (A.90)

where β ̸= 0, γ ̸= 0, 1 and k1 ̸= 0. In Table 5.2, this is model M11.

Case I.2b cXX = 0

This case is considering cXX = 0; substituting c1 = 0, one gets

η00X = k11

(−b1−β1
ko2

aX −
(2β1 − 1

γ − 1

)
a(X)

)
− 2a(X)k5

γ − 1
.

Performing a similar study for this equation as previously, one can rewrite it as

η00X = g10(X)k11 −
2a(X)

γ − 1
k5,

and it provides

a′(X) =
ko2b

β1−1

γ − 1

(
a(X)

(
1− 2β1

)
+
(
1− γ

)
g10(X)

)
.

where g10(X) is function of X only. To find conditions for function b(X), one

has to consider 2 cases : β1 = 1 and β1 ̸= 1.

• β1 = 1

For β1 = 1, one obtains the conditions for a(X), b(X) and c(X) as fol-

lows :

a′(X) =
( ko2
1− γ

)
a(X)− ko2g10(X), b(X) = c4e

ko2X , c(X) = c2X + c3.
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A solution of the determining equations is

k4 = 0, k8 = 0, kk3 =
2k11

(
1− γ

)
+ 2k5

(
1− γ2

)(
γ − 1

)2 ,

k7 =
−k11c2

(
γ − 1

)3 − 2k5γc2
(
γ − 1

)3
2
(
γ − 1

)4 , η00X = g10(X)k11 −
2a(X)

γ − 1
k5

η01X = 0 ξt = k5t+ k6, ξX =
k11
ko2

,

η =
k11
(
1− γ

)(
t2c2 + 2φ

)
+ k5

(
1− γ

)(
2t2γc2 + 4φ

)
2
(
γ − 1

)2 + tη01 + η00

with k10 = η01 ; then the generator corresponding to these coefficients is

X = k6X
1 + k10X

2 + k11X
3 + k5X

4.

Letting ko2 = β, 1 − γ = γ̃, c2 = k1, c3 = k2, c4 = k3,
∫
g10(X)dX = g̃(X) and∫

a(X)dX = ã(X) then the basis generators and the pressure function become

X1 = ∂t, X2 = t∂φ

X3 =
1

β
∂X +

(
g̃(X) +

k1t
2

2γ
+
φ

γ

)
∂φ

X4 = t∂t +
1

γ

(
2ã(X)− γ̃k1t

2 + k1t
2 + 2φ

)
∂φ

(A.91)

and

P (X,φX) = b(X)(ã′(X) + φX)
1−γ̃ + c(X)

ã′′(X) =
β

γ̃

(
ã′(X)− γ̃g̃′(X)

)
, b(X) = k3e

βX , c(X) = k1X + k2

(A.92)

where β ̸= 0, γ̃ ̸= 0 , 1, and k3 ̸= 0.

By virtue of the equivalence transformations corresponding to the operators Xe
15,

Xe
2 and Xe

8 , one can assume ã′(X) = 0, k1 = 0, and k2 = 0.

For 1 − γ̃ = γ, therefore, the extensions of the kernel and the pressure

function are

X1 = (1− γ)∂X + βφ∂φ, X2 = (1− γ)t∂t + 2φ∂φ

P (X,φX) = eβXφγX ,

(A.93)

where β ̸= 0, and γ ̸= 0, 1. This case is equivalent to the generator of equation

(A.80).
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• β1 ̸= 1

For β1 ̸= 1, then the condition for a(X), b(X) and b(X) are given as

a′(X) =
ko2b

β1−1

γ − 1

(
a(X)

(
1− 2β1

)
+ (1− γ)g10(X)

)
,

b′(X) = ko2b
β1 , c(X) = c2X + c3

and a solution of the determining equations is

k4 = 0, k8 = 0, kk3 =
2k11

(
− γ2(β − 1)− γ + β

)
+ 2k5(1− γ2)(

γ − 1
)2 ,

k7 =
k11c2

(
− γ4(β − 1) + γ3(2β − 3) + 3γ2 − 2γβ − γ + β

)
− 2k5γc2(γ − 1

)3
2
(
γ − 1

)4 ,

η00X = g10(X)k11 −
2a(X)

γ − 1
k5, η01X = 0 ξt = k5t+ k6 ξX =

k11b
1−β1

ko2

η = k11

(c2t2 + 2φ

2(γ − 1)

)(
− β(1 + γ) + γ

)
− k5
γ − 1

(
c2γt

2 + 2φ
)
+ tη01 + η00,

with k10 = η01 ; then the generator corresponding to these coefficients is

X = k6X
1 + k10X

2 + k11X
3 + k5X

4.

Letting ko2 = β, γ − 1 = γ̃, β1 − 1 = l, c2 = k1, c3 = k2,
∫
g10(X)dX = g̃(X)

and
∫
a(X)dX = ã(X), then the basis generators and the pressure function can

be written as

X1 = ∂t, X2 = t∂φ

X3 =
b−l

β
∂X +

1

2γ̃

((
k1t

2 + 2φ
)(

− 1− 2l − γ̃l
)
+ 2γ̃g̃(X)

)
∂φ

X4 = t∂t −
1

γ̃

((
γ̃ + 1

)
k1t

2 + 2
(
φ+ ã(X)

))
∂φ

(A.94)

and

P (X,φX) = b(X)(ã′(X) + φX)
γ̃+1 + c(X),

ã′′(X) =
βbl

γ̃

(
−ã′(X)

(
2l + 1)− γ̃g̃′(X)

)
, b′(X) = βbl+1(X),

c(X) = k1X + k2

(A.95)
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where β ̸= 0, γ̃ ̸= 0 , −1, and l ̸= 0.

By virtue of the equivalence transformations corresponding to the opera-

tors Xe
15, Xe

2 and Xe
8 , one can assume ã(X) = 0, k1 = 0, and k2 = 0.

For γ̃ + 1 = γ, therefore, the extensions of the kernel and the pressure

function are

X1 = l(γ − 1)X∂X +
(
l(γ + 1) + 1

)
φ∂φ, X2 = (γ − 1)t∂t − 2φ∂φ

P (X,φX) = b(X)φγX where b−l(X) = −lβX,
(A.96)

l, β ̸= 0, and γ ̸= 0, 1. This case is equivalent to the generator in equation

(A.85).

Case II bXX = 0

This case is considering bXX = 0 ; solving this equation gives

b(X) = ko2X + ko3, ko2, ko3 are constant.

After substituting b(X) = ko2X + ko3 into equation (A.68), it becomes

k11

(
cXXX

(
ko2X + ko3

)(
1− γ

)
+ cXXko2

)
− 2k5cXXγko2 = 0. (A.97)

Differentiating equation (A.97) with respect to X, then

k11

(
cXXXX

(
ko2X + ko3

)(
1− γ

)
− cXXXko2(γ− 2)

)
− 2k5cXXXγko2 = 0. (A.98)

Equations (A.97) and (A.98) are algebraic linear homogeneous equations with

respect to k5 and k11 with the determinant

γ(γ − 1)ko2

(
cXXXXcXX

(
ko2X + ko3

)
− c2XXX

(
ko2X + ko3

)
+ ko2cXXXcXX

)
.

If this determinant is not equal to zero, then k5 = 0 and k11 = 0 (which contra-

dicts our condition k11 ̸= 0). Hence, one has to assume that

cXXXXcXX
(
ko2X + ko3

)
− c2XXX

(
ko2X + ko3

)
+ ko2cXXXcXX = 0. (A.99)
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There are 2 assumptions to determine solutions of this equation: cXXX ̸= 0 and

cXXX = 0.

Case II.1 cXXX ̸= 0

From equation (A.99), assuming cXXX ̸= 0 one obtains

cXXXXcXX
(
ko2X + ko3

)
− c2XXX

(
ko2X + ko3

)
+ ko2cXXXcXX = 0.

Integrating this equation with respect to X, one solution is obtained as

c(X) = ko5

(
X +

ko3
ko2

)ko4
+ ko6X + ko7, ko4, ko5, ko6, ko7 are constant.

• ko4 ̸= 0, and ko5 ̸= 0

Substituting c(X), one derives

k5 =
k11

(
− γ3ko4 + 2γ3 + 3γ2ko4 − 5γ2 − 3γko4 + 4γ + ko4 − 1

)
2γ(γ − 1)2

and

η00X =
k11

(
− aXγko2X − aXγko3 + a(X)ko2ko4 − a(X)ko2

)
γko2

.

Moreover η00X can be written as

η00X = g11(X)k11, g11(X) is function of X only,

and it provides

a′(X) =
ko2

(
a(X)ko4 − a(X)− γg11(X)

)
γ
(
ko2X + ko3

) .

A solution of the determining equations is

k4 = 0, k8 = 0, kk3 =
k11
(
γko4 + ko4 − 1

)
γ

,

k5 =
k11
(
− γko4 + 2γ + ko4 − 1

)
2γ

, k7 =
k11ko6

(
ko4 − 1

)
2

,

η00X = g11(X)k11, η01X = 0.

 

 

 

 

 

 

 

 



147

ξt =
(−γko4 + 2γ + ko4 − 1

2γ

)
k11t+ k6, ξX =

(ko2X + ko3
ko2

)
k11,

η = k11

(ko6(ko4 − 1)

2
t2 +

φ

γ

(
γ + ko4 − 1

))
+ tη01 + η00

with k10 = η01 ; then the generator corresponding to these coefficients is

X = k6X
1 + k10X

2 + k11X
3.

Letting ko2 = k1, ko5 = k2, ko6 = k3, ko4 − 1 = α, ko3
ko2

= β, and
∫
g11(X)dX =

g̃(X), then the basis generators and the pressure function can be written as

X1 = ∂t, X2 = t∂φ

X3 =
1

2γ

(
γ
(
1− α

)
+ α

)
t∂t +

(
X + β

)
∂X

+
(k3α

2
t2 + φ

(
1 +

α

γ

)
+ g̃(X)

)
∂φ,

(A.100)

and

P (X,φX) = b(X)(a(X) + φX)
γ + c(X), a′(X) =

αa(X)− γg̃′(X)

γ
(
X + β

) ,

b(X) = k1
(
X + β

)
, c(X) = k2

(
X + β

)α+1
+ k3X,

(A.101)

where k1 ̸= 0, k2 ̸= 0, α ̸= 0 , −1, and γ ̸= 0 , 1.

By virtue of the equivalence transformations corresponding to the opera-

tors Xe
15, Xe

2 and Xe
8 one can assume a(X) = 0, k3 = 0 and β = 0.

For γ + α ̸= 0, therefore, the extensions of the kernel and the pressure

function are

X18 =
(
γ(1− α) + α

)
t∂t + 2γX∂X + 2(γ + α)φ∂φ

P (X,φX) = X
(
k1φ

γ
X + k2X

α
) (A.102)

where α ̸= −1, 0, γ ̸= 0, 1, γ + α ̸= 0, k1, k2 ̸= 0. In Table 1, the result of

this case is presented as model M12.

Remark. Either ko4 = 0 or ko5 = 0 lead a contradiction to the condition

cXXX ̸= 0.
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Case II.2 cXXX = 0

The general solution of cXXX = 0 is

c(X) = ko4X
2 + ko5X + ko6,

where ko4, ko5, and ko6 are constant. Substituting c(X) into equation (A.97),

one gets

ko4
(
γ − 1

)2(
k11 − 2k5γ

)
= 0.

• ko4 ̸= 0

Since γ ̸= 0 , 1 and assuming ko4 ̸= 0, then

k5 =
k11
2γ
.

Substituting all relations, η00X is

η00X =
k11

(
− aXγ

(
ko2X + ko3

)
+ ko2a(X)

)
γko2

which can be rewritten in the following form,

η00X = g12(X)k11.

This equation also provides

a′(X) =
ko2

(
a(X)− γg12(X)

)
γ
(
ko2X + ko3

)
where g12(X) is function of X only. Finally, a solution of the determining equa-

tion is

k4 = 0, k8 = 0, kk3 =
(2γ + 1

γ

)
k11, k5 =

k11
2γ
,

k7 =
(ko2ko5 − 2ko3ko4

2ko2

)
k11, η00X = g12(X)k11, η01X = 0,

ξt =
k11t

2γ
+ k6, ξX =

(ko2X + ko3
ko2

)
k11,

η = k11

( t2

2ko2

(
ko2ko5 − 2ko3ko4

)
+
φ

γ

(
γ + 1

))
+ tη01 + η00

 

 

 

 

 

 

 

 



149

with k10 = η01 ; then the generator corresponding to these coefficients is

X = k6X
1 + k10X

2 + k11X
3.

Letting ko2 = k1, ko4 = k2, ko5 = k3, ko6 = k4,
ko3
ko2

= β, and
∫
g12(X)dX = g̃(X),

then the basis generator can be written as

X1 = ∂t, X2 = t∂φ

X3 =
t

2γ
∂t + (X + β)∂X +

(
t2
(k3
2

− k2β
)
+ φ

(
1 +

1

γ

)
+ g̃(X)

)
∂φ,

(A.103)

and the pressure function with the conditions for a(X), b(X), and c(X) is

P (X,φX) = b(X)(a(X) + φX)
γ + c(X) a′(X) =

a(X)− γg̃′(X)

γ
(
X + β

) ,

b(X) = k1
(
X + β

)
, c(X) = k2X

2 + k3X + k4

(A.104)

where k1 ̸= 0, k2 ̸= 0, and γ ̸= 0 , 1.

By virtue of the equivalence transformations corresponding to the opera-

tor Xe
15, Xe

2 and Xe
8 one can assume a(X) = 0, k3 = 0, k4 = 0 and β = 0.

Therefore the extensions of the kernel and the related pressure function are

X1 = t∂t + 2γX∂X + 2(γ + 1)φ∂φ, P (X,φX) = X
(
k1φ

γ
X + k2X

)
(A.105)

where γ ̸= 0, 1, −1, and k1, k2 ̸= 0. This case is a particular case of equation

(A.102) when α = 1. Thus the general form of these two equations (A.102) and

(A.105) is given in Table 5.2 as a model M12.

• ko4 = 0

If ko4 = 0, there exists extensions of the kernel and its corresponding

pressure function as follows

X3 = t∂t + 2γX∂X + 2(γ + 1)φ∂φ, P (X,φX) = k1Xφ
γ
X

(A.106)

where γ ̸= 0, 1, −1, and k1 ̸= 0. This case is given in Table 5.2 as a model M12a.
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Case bX = 0

Substituting P (X,φX) = b(X)
(
φX+a(X))γ+c(X), µ1φX

= 0, and bX = 0

or b(X) = ko2, where ko2 ̸= 0, one obtains the relation

2ξXX cXX − 2k5cXXγ + ξXcXXX
(
1− γ

)
2(γ − 1)

= 0. (A.107)

Construct ξXX by assuming cXX ̸= 0.

Case I cXX ̸= 0, cXXX = 0

Assuming cXX ̸= 0 , one can find ξXX ,

ξXX =
2k5cXXγ + ξXcXXX

(
γ − 1

)
2cXX

,

such that

ξX = k5γX + k9

and

c(X) = ko3X
2 + ko4X + ko5, where ko3 ̸= 0.

Substituting all relations into equation (5.34), it becomes

ko2γ
(
a(X) + φX

)γ(
a(X)aXX

(
γ + 3

)
+ φXaXX

(
γ + 3

)
+a2Xγ(γ + 2)− 3a2X

)
− 6ko3(γ − 1)

(
a(X) + φX

)2
= 0.

(A.108)

Differentiating equation (A.108) with respect to φX , then

ko2k4
(
a(X) + φX

)γ−3
(γ(γ + 3)

6

)(
aXX

(
a(X) + φX

)
+ a2X

(
γ − 2

))
= 0 (A.109)

is obtained. To consider γ + 3 ̸= 0, one will consider two cases as follows :

Case I.1 aXX
(
a(X) + φX

)
+ a2X

(
γ − 2

)
̸= 0
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In this case, one obtains k4=0 and after substitution one can find all so-

lutions of the determining equations as follows :

k8 = 0, kk3 = 2k5
(
γ + 1

)
, k7 = −ko3k11 +

ko4
2
γk5

η00X = k5

(
− aXγX + 2a(X)

)
− aXk11, η01X = 0

ξt = k5t+ k6, ξX = γXk5 + k11,

η = k11

(
− ko3t

2
)
+ k5

(ko4γ
2

t2 + φ
(
γ + 2

))
+ tη01 + η00

with k10 = η01 ; then the generator corresponding to these coefficients is

X = k6X
1 + k10X

2 + k11X
3 + k5X

4.

Letting ko2 = β, ko3 = k1, ko4 = k2, ko5 = k3, and
∫
a(X)dX = ã(X), the basis

generators and the pressure function can be written as

X1 = ∂t, X2 = t∂φ, X3 = ∂X +
(
− k1t

2 − ã′(X)
)
∂φ

X4 = t∂t + γX∂X +
(k2γ

2
t2 + φ

(
γ + 2

)
− γ
(
Xã′(X)− ã(X)

)
+ 2ã(X)

)
∂φ,

(A.110)

and

P (X,φX) = β(ã′(X) + φX)
γ + k1X

2 + k2X + k3 (A.111)

where β ̸= 0, γ ̸= 0 , 1, −3, and k1 ̸= 0.

By virtue of the equivalence transformations corresponding to the opera-

tors Xe
15, Xe

2 and Xe
8 , one can assume ã′(X) = 0, k2 = 0, and k3 = 0.

For γ ̸= −2, therefore, the extensions of the kernel and the pressure func-

tion are

X19 = t∂t + γX∂X +
(
γ + 2

)
φ∂φ, X20 = ∂X − k1t

2∂φ,

P (X,φX) = βφγX + k1X
2

(A.112)

where β ̸= 0, γ ̸= 0, 1, −2, −3, and k1 ̸= 0. The result of this case is given in

Table 5.2 as model M13.
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Case I.2 aXX
(
a(X) + φX

)
+ a2X

(
γ − 2

)
= 0

Solving equation aXX
(
a(X) + φX

)
+ a2X

(
γ − 2

)
= 0, one gets 2 general

solutions, i.e., aX ̸= 0 and aX = 0.

Case aX ̸= 0

The solution of equation aXX
(
a(X) + φX

)
+ a2X

(
γ − 2

)
= 0 is

aX = ko6
(
a(X) + φX

)2−γ
, ko6 is a constant.

Substituting and considering γ + 3 ̸= 0, and applying the equivalence transfor-

mation corresponding to the generator Xe
15, and this transformation allows to

assume a(X) = 0. Then

η00X = k5

(
− ko6γXφ

2−γ
X

)
− ko6φ

2−γ
X k11

and one obtains η00 = k5

(
− ko6

X2

2
γφ2−γ

X

)
− ko6Xφ

2−γ
X k11. Moreover, a solution

of the determining equations is

k4 = 0, k8 = 0, kk3 = 2k5
(
γ + 1

)
, k7 = −ko3k11 +

ko4
2
γk5

η00X = k5

(
2a(X)− ko6γX

(
a(X) + φX

)2−γ)− ko6
(
a(X) + φX

)2−γ
k11, η01X = 0,

ξt = k5t+ k6, ξX = γXk5 + k11,

η = k11

(
− ko3t

2
)
+ k5

(ko4γ
2

t2 + φ
(
γ + 2

))
+ tη01 + η00

with k10 = η01 ; then the generator corresponding to these coefficients is

X = k6X
1 + k10X

2 + k11X
3 + k5X

4.

Letting ko2 = β, ko3 = k1, ko4 = k2, ko5 = k3, ko6 = 0, finally, the basis generator

and the pressure function can be written as

X1 = ∂t, X2 = t∂φ X3 = ∂X − k1t
2∂φ

X4 = t∂t + γX∂X +
(k2γ

2
t2 + φ

(
γ + 2

))
∂φ

(A.113)
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and

P (X,φX) = βφγX + k1X
2 + k2X + k3 (A.114)

where β ̸= 0, γ ̸= 0 , 1 and k1 ̸= 0.

By virtue of the equivalence transformation corresponding to the generators Xe
2

and Xe
8 , one can assume k2 = 0 and k3 = 0.

For γ ̸= −2, therefore the extensions of the kernel and the pressure func-

tion are

X1 = ∂X − k1t
2∂φ, X2 = t∂t + γX∂X +

(
γ + 2

)
φ∂φ

P (X,φX) = βφγX + k1X
2

(A.115)

where γ ̸= 0, 1, −2, −3, and k1 ̸= 0. This case is equivalent to the generator in

equation (A.112)

Case aX = 0

If aX = 0, then a(X) = ko6 and a solution of the determining equations

is given as follows :

k4 = 0, k8 = 0, kk3 = 2k5
(
γ + 1

)
, k7 = −ko3k11 +

ko4
2
γk5

η00X = 2ko6k5, η01X = 0, ξt = k5t+ k6, ξX = γXk5 + k11,

η = k11

(
− ko3t

2
)
+ k5

(ko4γ
2

t2 + φ
(
γ + 2

))
+ tη01 + η00.

with k10 = η01, then the generator corresponding to these coefficients is

X = k6X1 + k10X2 + k11X3 + k5X4.

Letting ko2 = β, ko3 = k1, ko4 = k2, ko5 = k3, ko6 = k4, then the basis generator

and the pressure function can be written as

X1 = ∂t, X2 = t∂φ X3 = ∂X − k1t
2∂φ

X4 = t∂t + γX∂X +
(k2γ

2
t2 + φ

(
γ + 2

)
+ 2k4X

)
∂φ

(A.116)
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and

P (X,φX) = β(φX + k4)
γ + k1X

2 + k2X + k3 (A.117)

where β ̸= 0, γ ̸= 0 , 1 and k1 ̸= 0.

By virtue of the equivalence transformation corresponding to the genera-

tors Xe
15, Xe

2 and Xe
8 , one can assume k2 = 0, k3 = 0, and k4 = 0.

For γ ̸= −2, therefore the extensions of the kernel and the pressure func-

tion are

X1 = ∂X − k1t
2∂φ, X1 = t∂t + γX∂X +

(
γ + 2

)
φ∂φ

P (X,φX) = βφγX + k1X
2

(A.118)

where β ̸= 0, γ ̸= 0, 1, −2, −3, and k1 ̸= 0. This case is equivalent to the

generator in equation (A.112).

• γ + 3 = 0

Substituting γ = −3, there exists a solution of the determining equations

as

k4 = 0, k8 = 0, kk3 = −4k5, k7 = −ko3k11 −
3ko4
2

k5

η00X = −aXk11 + k5
(
3XaX + 2a(X)

)
, η01X = 0, ξt = k5t+ k6,

ξX = −3Xk5 + k11, η = −k11ko3t2 −
3ko4
2

t2k5 − φk5 + tη01 + η00.

with k10 = η01 ; then the generator corresponding to these coefficients is

X = k6X1 + k10X2 + k11X3 + k5X4.

The pressure function is given by

P (X,φX) = ko2(a(X) + φX)
γ + ko3X

2 + ko4X + ko5.

Letting ko2 = β, ko3 = k1, ko4 = k2, ko5 = k3 and
∫
a(X)dX = ã(X) or

a(X) = ã′(X), finally, the basis generators and the pressure function can be written
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as

X1 = ∂t, X2 = t∂φ X3 = ∂X −
(
k1t

2 + ã′(X)
)
∂φ

X4 = t∂t − 3X∂X +
(−3k2

2
t2 − φ+ 3Xã′(X)− ã(X)

)
∂φ

(A.119)

and

P (X,φX) = β(φX + ã′(X))−3 + k1X
2 + k2X + k3 (A.120)

where β ̸= 0, and k1 ̸= 0.

By applying the equivalence transformations corresponding to the genera-

tors Xe
15, Xe

2 and Xe
8 , one can assume k2 = 0, k3 = 0, and ã′(X) = 0.

Then the extensions of the kernel and the pressure function are

X21 = ∂X − k1t
2∂φ, X22 = t∂t − 3X∂X − φ∂φ (A.121)

P (X,φX) = βφ−3
X + k1X

2

where β ̸= 0,and k1 ̸= 0. This case is presented as a model M14 in Table 5.2.

Case II cXX = 0

The general solution of cXX = 0 is c(X) = ko3X + ko4. Substituting

all conditions into (5.33), one gets

k4ko2γ
(
γ + 3

)(
γ − 1

)(
a(X) + φX

)γ
= 0.

Case II.1 γ + 3 ̸= 0

Since γ
(
γ − 1

)
̸= 0,

(
a(X) +φX

)γ ̸= 0, and ko2 ̸= 0, then k4 = 0.

Substituting all relations into (5.29), it becomes ξXX = 0, that is

ξX = k9X + k11, k9, k11 is constant (and not equal to zero).
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A solution of the determining equations is

k4 = 0, k8 = 0, kk3 =
−2k5

(
γ2 − 1

)
+ 2k9

(
γ2 − 1

)(
γ − 1

)2 ,

k7 =
−2k5γko3

(
γ − 1

)3
+ k9ko3

(
γ4 − 2γ3 + 2γ − 1

)
2
(
γ − 1

)4 ,

η00X = −k11aX + k5
(−2a(X)

γ − 1

)
+ k9

(
− aXX +

2a(X)

γ − 1

)
, η01X = 0.

ξt = k5t+ k6, ξX = k9X + k11,

η =
−k5
γ − 1

(
γko3t

2 + 2φ
)
+
k9
(
γ + 1

)
2
(
γ − 1

) (ko3t2 + 2φ
)
+ tη01 + η00

with k10 = η01, then the generator corresponding to these coefficients is

X = k6X
1 + k10X

2 + k5X
3 + k9X

4 + k11X
5.

The pressure function is

P (X,φX) = ko2(a(X) + φX)
γ + ko3X + ko4.

Letting ko2 = β, ko3 = k1, ko4 = k2, γ− 1 = γ̃(X) and
∫
a(X)dX = ã(X), finally,

the basis generators and the pressure function can be written as

X1 = ∂t, X2 = t∂φ

X3 = t∂t −
1

γ̃

(
2
(
φ+ ã(X)

)
+ k1t

2
(
˜̃γ + 1

))
∂φ

X4 = X∂X +
( γ̃ + 2

2γ̃

)(
2
(
φ+ ã(X)

)
+ k1t

2
)
∂φ

X5 = ∂X − ã′(X)∂φ

(A.122)

and

P (X,φX) = β(φX + ã′(X))γ̃+1 + k1X + k2 (A.123)

where β ̸= 0, and k1 ̸= 0 and γ̃ ̸= 0 , −1.

By applying the equivalence transformations corresponding to the genera-

tors Xe
15, Xe

2 and Xe
8 , one can assume k1 = 0, k2 = 0, and ã(X) = 0.
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Therefore, for γ̃ + 1 = γ, the extensions of the kernel and the pressure

function are

X23 = (γ − 1)t∂t − 2φ∂φ, X24 = (γ − 1)X∂X + (γ + 1)φ∂φ,

X25 = ∂X , and P (X,φX) = βφγX ,

(A.124)

where β ̸= 0, and γ ̸= 0, 1. In Table 5.2, this case is presented as a model M15

Case II.2 γ + 3 = 0

Substituting γ = −3 one gets a solution of the determining equations

k8 =
−ko3k4

2
, kk3 = −k5 + k9, k7 =

−3ko3
4

k5 +
ko3
4
k9

η00X = −aXk11 +
a(X)

2
k5 +

k9
2

(
− 2XaX − a(X)

)
, η01X = a(X)k4.

ξt = k4t
2 + k5t+ k6, ξX = k9X + k11,

η = k4

(−ko3t3
2

+ tφ
)
+ k5

(−3ko3t
2

4
+
φ

2

)
+ k9

(ko3t2
4

+
φ

2

)
+ tη01 + η00

and the generator corresponding to these coefficients is

X = k5X
1 + k6X

2 + k11X
3 + k9X

4 + k4X
5.

The pressure function is given as

P (X,φX) = ko2(a(X) + φX)
−3 + ko3X + ko4.

Letting ko2 = β, ko3 = k1, ko4 = k2, and
∫
a(X)dX = ã(X), then the basis

generators and the pressure function can be written as

X1 = ∂t, X2 = ∂X − ã′(X)∂φ,

X3 = X∂X +
(
−Xã′(X) +

a(X) + φ

2
+
k1t

2

4

)
∂φ,

X4 = t2∂t +
(
a(X) + φ− k1t

2

2

)
t∂φ,

X5 = t∂t +
(a(X) + φ

2
− 3k1t

2

4

)
∂φ,

(A.125)

and

P (X,φX) = β(φX + ã′(X))−3 + k1X + k2 (A.126)
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where β ̸= 0. By applying the equivalence transformations corresponding to the

generators Xe
15, Xe

6 and Xe
8 , one can assume k1 = 0, k2 = 0, and ã′(X) = 0.

Therefore the extensions of the kernel and the pressure function are

X26 = ∂X , X27 = 2X∂X + φ∂φ,

X28 = t2∂t + tφ∂φ, X29 = 2t∂t + φ∂φ,

P (X,φX) = βφ−3
X

(A.127)

where β ̸= 0. In Table 5.2, this case is presented as a model M16.

A.2.2 Case µ1X ̸= 0

As µ1X ̸= 0, by equation (A.63), one assumes ξX = 0. Substituting µ1φX
=

0 and ξX = 0 into equation (5.36), it becomes

4k5µ1X = 0. (A.128)

As µ1X ̸= 0, one gets

k5 = 0.

Construct the pressure function by solving equation (5.32)

PφXφXφX
PφX

PφXφX

2 = µ1(X),

the general form of pressure function is

P (X,φX) = b(X)
(
φX + a(X))γ + c(X), γ ̸= 1. (A.129)

For P (X,φX) = b(X)
(
φX+a(X))γ+c(X), since PφXφX

̸= 0, then one obtains

condition

γ(γ − 1)b(X) ̸= 0.

Moreover, equation (5.33) becomes

γ(γ − 1)(γ + 3)b(X)
(
a(X) + φX

)γ
k4 = 0.
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Case I γ + 3 ̸= 0

Assuming γ + 3 ̸= 0 and since γ(γ − 1)b(X) ̸= 0, then k4 = 0 and a

solution of determining equations is

kk3 = 0 k5 = 0, k7 = 0, k8 = 0 η00X = 0, η01X = 0

ξt = k6, ξX = 0, η = tη01 + η00

with k9 = η00 and k10 = η01. Then the generator corresponding to these

coefficients is

X = k6X1 + k9X2 + k10X3.

In this case there exists no any extension of the kernel.

Case II γ + 3 = 0

Substituting γ = −3, µ1φX
= 0, ξX = 0, and P (X,φX), then equa-

tion (5.34) is changed to

k4cXX = 0.

For cXX ̸= 0

Assuming cXX ̸= 0 then k4 = 0 and a solution of the determining equa-

tions is

kk3 = 0 k5 = 0, k7 = 0, k8 = 0, η00X = 0, η01X = 0.

ξt = k6, ξX = 0, η = tη01 + η00

This case does not have any generator extension.

For cXX = 0

The general solution of cXX = 0 is c(X) = ko1X + ko2. Substituting all

relations, one obtains a solution of the determining equations as

kk3 = 0 k5 = 0, k7 = 0, k8 =
−ko1k4

2
,

η00X = 0, η01X = a(X)k4 ξt = k4t
2 + k6, ξX = 0,

η =
−ko1t3

2
k4 + tφk4 + tη01 + η00.
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with k10 = η00 ; then the generator corresponding to these coefficients is

X = k6X1 + k10X2 + k4X3.

Letting ko1 = k1, ko2 = k2, and
∫
a(X)dX = ã(X), then the basis generators

and the pressure function are presented as

X1 = ∂t, X2 = ∂φ, X3 = t2∂t +
(−k1t2

2
+ φ+ ã(X)

)
t∂φ (A.130)

and

P (X,φX) = b(X)(φX + ã′(X))−3 + k1X + k2. (A.131)

By virtue of the equivalence transformations corresponding to the genera-

tors Xe
15, Xe

2 , Xe
8 , one can assume that ã(X) = 0, k1 = 0, and k2 = 0.

Therefore the extensions of the kernel and the pressure function are

X30 = t2∂t + tφ∂φ, P (X,φX) = b(X)φX
−3. (A.132)

The result of this case is presented in Table 5.2 as the model M17.

 

 

 

 

 

 

 

 



APPENDIX B

CONSERVATION LAWS

Details of constructing the conservation laws of the gas dynamic equations

for all extensions of the kernel of the admitted Lie algebras are presented here.

The extension of the kernel in M2 is given by the generator

X5 = βt∂t − ∂X + αφ∂φ.

Substituting the Lagrangian into equation (6.4), one obtains

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t

−φXB2
φ − φtXB

2
φt

− φXXB
2
φX

−B2
X

−φXh′(X) + (α− β

2
)φ2

t + (α + β)φXh(X)

+e2(β−α)XΦ(Z)
(
2α− β

)
= 0.

(B.1)

Solving equation (B.1) for Bi, one finds the condition β = 2α, and it satisfies

B1 = −tφX
(
h′(X)− 3αh(X))

)
, B2 = tφt

(
h′(X)− 3αh(X)

)
.

This symmetry is divergent. Using Noether’s theorem, the conserved vectors are

Ct = −tφXh′(X)− 2αte2αXΦ(Z)− αφφt + αtφXh(X) + αtφ2
t − φtφX ,

CX = tφth
′(X)− αφh(X)− αtφth(X) +

1

2
φ2
t + e2αXΦ(Z)

+
(
− αφ+ 2αtφt − φX

)
e3αXΦ′(Z).

The extension of the kernel in M3 is given by the generator

X6 = t∂t +X∂X +
(
α + 1

)
φ∂φ.

Substituting the Lagrangian into equation (6.4), one obtains

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ − φtXB

2
φt

− φXXB
2
φX

−B2
X

+XφXh
′(X) + 2(α + 1)X2αΦ(Z) + (α+ 1)φ2

t + (α + 2)φXh(X) = 0.

(B.2)
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Solving equation (B.2) for Bi, one finds the condition α = −1, which satisfies

B1 = tφX
(
h′(X) + h(X))

)
, B2 = −tφt

(
h′(X) + h(X)

)
.

The symmetry is divergent. Using Noether’s theorem, the conserved vectors are

Ct = tXφXh
′(X) +

1

2
tφ2

t +XφtφX − t

X2
Φ(Z),

CX = −tXφth′(X)− 1

2
Xφ2

t −
1

X
Φ(Z) +

( t
X
φt + φX

)
Φ′(Z).

The extension of the kernel in M4 is given by the generator

X7 = ∂X − γt2∂φ.

Substituting the Lagrangian into equation (6.4), one finds

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ − φtXB

2
φt

−φXXB2
φX

−B2
X + βφX − 2γtφt + 2γXφX = 0.

(B.3)

Solving equation (B.3) then vectors Bi are derived

B1 = 2γtXφX , B2 = −2γtXφt + βφ.

This symmetry is divergent. Using Noether’s theorem, then the conserved vectors

are

Ct = φtφX + γt2φt + 2γtXφX ,

CX = βφ+ βγt2X − 1

2
φ2
t − 2γtXφt + γ2t2X2 − Φ(Z)

+
(
φX + γt2

)
Φ′(Z).

The extension of the kernel in M5 is given by the generator

X8 = ∂X − γt2∂φ.

Substituting the Lagrangian into equation (6.4), one gets

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ − φtXB

2
φt

−φXXB2
φX

−B2
X + φ2

t + 2Φ(Z) = 0.

(B.4)
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In this case one can not find vector Bi ; therefore this case does not provide

conservation laws.

Next consider the extension of the kernel in M5 , which is given by the

generator

X9 = ∂X .

The determining equation for vector Bi is

φtB
1
φ + φttB

1
φt

+ φtXB
1
φX

+B1
t + φXB

2
φ + φtXB

2
φt

+ φXXB
2
φX

+B2
X = 0. (B.5)

Solving this equation, one finds B1 = 0 and B2 = 0. This symmetry is called a

variational symmetry and the conservation laws are

Ct = φtφX , CX =
−1

2
φ2
t − Φ(φX) + φXΦ

′(Z).

The extension of the kernel in M6 is given by the generator

X10 =
(
β + α(γ − 1)

)
t∂t − 2γ∂X + 2(β − α)φ∂φ.

There are 2 cases to be considered, which are γ = −1 and γ ̸= −1.

Case 1. γ = −1, W (X,φX) = −φ−1
X ln (φX)e

βX − k2
α2 e

αX .

Substituting the Lagrangian into equation (6.4), one gets

−φtB1
φ +

(k2
2
eαX +

eβX

φ2
X

(βφX − φXX)
)
B1
φt

− φtXB
1
φX

−B1
t

−φXB2
φ − φtXB

2
φt

− φXXB
2
φX

−B2
X − k2

α2
(2α− 3β)eαXφX

−
(
(2α− 3β) lnφX + 2(α− β)

)
eβX − (2α− 3β)

2
φ2
t = 0.

(B.6)

Solving the above equation for a particular condition β = 2α
3
, one finds

B1 = 0 and B2 = −e 2αX
3 . The conserved vectors are

Ct =
2

3α

(
2α2t lnφXe

2αX
3 + 2k2tφXe

αX + α2φφt − α2tφ2
t + 3αφtφX

)
,

CX =
1

3αφX

(
αe

2αX
3

(
− 6φX lnφX + 2αφ− 4αtφt + 3φX

)
+ 2k2e

αX
(
φφX − 2tφtφX

)
− 3αφ2

tφX

)
.
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Moreover, for another condition β = 2α, one obtains

B1 = 2(−2αte2αX + αφφt − φtφX),

B2 =
1

αφX

(
(2αφX lnφX + 2α2φ)e2αX + 2k2φφXe

αX + αφ2
tφX

)
.

Using Noether’s theorem, the conserved vectors are

Ct = −4αte2αX , CX = 2e2αX .

Case 2. γ ̸= −1, W (X,φX) = − φγ
X

(γ+1)
eβX − k2

α2 e
αX

Here, the determining equation for vector Bi is

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t

−φXB2
φ − φtXB

2
φt

− φXXB
2
φX

−B2
X

+
(3β − α(γ + 3) + 2β(α− γ)

γ + 1

)
eβXφγ+1

X

+k2
(3β − α(γ + 3)

α2

)
eαXφX +

(
3β − α(γ + 3)

)φ2
t

2
= 0.

(B.7)

Solving this equation for a particular case β = α(γ+3)
3

, one gets a variational sym-

metry such that B1 = 0 and B2 = 0. Using Noether’s theorem, the conserved

vectors are

Ct =
2γ

3α

((−2α2

γ + 1

)
te

αX(γ+3)
3 φγ+1

X − 2k2tφXe
αX − α2φφt + α2tφ2

t − 3αφtφX
)
,

CX =
γ

3α

((−6αγ

γ + 1

)
e

αX(γ+3)
3 φγ+1

X +
(
2α2e

αX(γ+3)
3 φγX + 2k2e

αX
)(
2tφt − φ

)
+ 3αφ2

t

)
.

The extensions of the kernel in M7 are given by the generators

X11 = (γ − 1)∂X − βφ∂φ, X12 = (γ − 1)t∂t − 2φ∂φ.

In this case we will consider 2 cases, γ = −1 and γ ̸= −1.

Case 1. γ = −1, W (X,φX) = φ−1
X ln (φX)e

βX
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I. X11 = (γ − 1)∂X − βφ∂φ,

Substituting the Lagrangian into equation (6.4), one gets

−φtB1
φ +

( β
φX

− φXX
φ2
X

)
eβXB1

φt
− φtXB

1
φX

−B1
t − φXB

2
φ − φtXB

2
φt

−φXXB2
φX

−B2
X − β

(
2 lnφX + 1

)
eβX − βφ2

t = 0.

(B.8)

Solving equation (B.8), one finds X11 is not divergent. Hence, it does not provide

a conservation law.

II. X12 = (γ − 1)t∂t − 2φ∂φ,

The determining equation for vector Bi is

−φtB1
φ +

( β
φX

− φXX
φ2
X

)
eβXB1

φt
− φtXB

1
φX

−B1
t − φXB

2
φ − φtXB

2
φt

−φXXB2
φX

−B2
X − 2

(
lnφX + 1

)
eβX − φ2

t = 0.

(B.9)

This extension generator is not divergent either.

Case 2. γ ̸= −1, W (X,φX) = − φγ
X

(γ+1)
eβX

I. X11 = (γ − 1)∂X − βφ∂φ,

The determining equation is

−φtB1
φ +

(
βφγX + γφγ−1

X φXX
)
eβXB1

φt
− φtXB

1
φX

−B1
t − φXB

2
φ

−φtXB2
φt

− φXXB
2
φX

−B2
X − 2β

γ + 1
φγ+1
X eβX − βφ2

t = 0.
(B.10)

In this case one cannot find Bi, thus a conservation law cannot be constructed.

II. X12 = (γ − 1)t∂t − 2φ∂φ,

The determining equation is

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ − φtXB

2
φt

−φXXB2
φX

−B2
X −

(γ + 3

γ + 1

)
φγ+1
X eβX −

(γ + 3

2

)
φ2
t = 0.

(B.11)

For the condition γ = −3, there exists a variational symmetry and the conserved

vectors are

Ct =
2

φ2
X

(
− teβX + φφtφ

2
X − tφ2

tφ
2
X

)
, CX =

2eβX
(
φ− 2tφt

)
φ3
X

.
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The extension of the kernel in M8 is given by the generator

X13 =
(
γ(1 +m+ 2l

)
−m

)
t∂t + (2γl)X∂X + 2(γl −m)φ∂φ

There are 2 cases of the Lagrangian to be considered : γ = −1 and γ ̸= −1.

Case 1. γ = −1, W (X,φX) = −φ−1
X ln (φX)b(X)− c(X)

Substituting the Lagrangian into equation (6.4), one gets

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ − φtXB

2
φt

− φXXB
2
φX

−B2
X − k1(4l + 2m− 1)φXb

m+1(x)− (4l + 2m− 1) lnφXb(X)

−2mb(X)− (2l +m)φ2
t +

1

2
φ2
t = 0.

(B.12)

Solving the above equation, one finds the condition m = 4l−1
−2

, which is satisfied

when B1 = t(4l − 1)b(X) and B2 = 0. Using Noether’s theorem, one derives

the conserved vectors as

Ct = 2(1− l)k1l
2β2tX2φXb

3
2 (X) + 2(1− l)t lnφXb(X) + (4l − 1)tb(X)

+ (1− 2l)φφt − (1− l)tφ2
t − 2lXφtφX ,

CX = k1l
2β2X2b

3
2 (X)

(
(1− 2l)φ− 2(1− l)tφt

)
+

(1− 2l)

φX
φb(X)− 2(1− l)

φX
tφtb(X) + 2lXb(X)

(
lnφX − 1) + lXφ2

t .

Case 2. γ ̸= −1, W (X,φX) = − φγ
X

(γ+1)
b(X)− c(X)

The determining equation for the vectors Bi is

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ − φtXB

2
φt

− φXXB
2
φX

−B2
X

+
1

γ + 1

(
k1
(
γ2(4l −m− 1) + 4γl − 4γm− γ − 3m

)
φXb

m+1(X)

+
(
γ2(4l −m− 1) + 4γl − 4γm− γ − 3m

)φ2
t

2

+(4γl − γm− γ − 3m)φγ+1
X b(X)

)
= 0.

(B.13)

In this case, the symmetry is not divergent, hence, it can not provide a conservation

law.
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The extensions of the kernel in M9 are given by the generators

X14 = l(γ − 1)X∂X +
(
l(γ + 1) + 1

)
φ∂φ, X15 = (γ − 1)t∂t − 2φ∂φ.

There are 2 cases of the Lagrangian to be considered : γ = −1 and γ ̸= −1,

Case 1. γ = −1, W (X,φX) = −φ−1
X ln (φX)b(X)

I. X14 = l(γ − 1)X∂X +
(
l(γ + 1) + 1

)
φ∂φ

Substituting the Lagrangian into equation (6.4), one gets

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ − φtXB

2
φt

− φXXB
2
φX

−B2
X − 2(l − 1) lnφXb(X) + (2l + 1)b(X)− (l − 1)φ2

t = 0.

(B.14)

For the particular condition l = 1, one obtains B1 = −3t
βX

and B2 = 0. The

conserved vectors are

Ct = −φφt − 2XφtφX − 3t

βX
, CX =

−2

β
lnφX +Xφ2

t +
1

β

(
φX−1φ−1

X + 2
)
.

II. X15 = (γ − 1)t∂t − 2φ∂φ

The determining equation is

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ − φtXB

2
φt

− φXXB
2
φX

−B2
X − 2

(
lnφX + 1

)
b(X)− φ2

t = 0.

(B.15)

In this case the symmetry is not divergent, therefore conservation laws cannot be

obtained.

Case 2. γ ̸= −1, W (X,φX) = − φγ
X

(γ+1)
b(X)

I. X14 = l(γ − 1)X∂X +
(
l(γ + 1) + 1

)
φ∂φ

The determining equation is

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ − φtXB

2
φt

− φXXB
2
φX

−B2
X +

(3γl + l + 2

γ + 1

)
φγ+1
X b(X) +

(3γl + l + 2

2

)
φ2
t = 0.

(B.16)
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The symmetry satisfying this case is a variational symmetry and the conserved

vectors are found as

Ct =
( 1− γ

3γ + 1

)(
φφt + 2XφtφX

)
,

CX =
(3γ + 1)−3(γ+1)/2

γ + 1
(2βX)(3γ+1)/2

(
(1− γ2)φφγX + 2γ(1− γ)Xφγ+1

X

)
+
( γ − 1

3γ + 1

)
Xφ2

t .

II. X15 = (γ − 1)t∂t − 2φ∂φ

The determining equation is

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ − φtXB

2
φt

− φXXB
2
φX

−B2
X

−
(γ + 3

γ + 1

)
φγ+1
X b(X)−

(γ + 3

2

)
φ2
t = 0.

(B.17)

For the particular condition γ = −3, there exists a variational symmetry such

that B1 = 0 and B2 = 0, and the conserved vectors are

Ct = 2φ−2
X

(
− tb(X) + φφtφ

2
X − tφ2

tφ
2
X

)
, CX = 2b(X)

(
φ− 2tφt

)
φ−3
X .

The extension of the kernel in M10 is given by the generator

X16 = (2l − 1)t∂t + 2lγX∂X + 2
(
2l − 1 + lγ

)
φ∂φ.

This model has 2 cases of the Lagrangian, when γ = −1 and γ ̸= −1.

Case 1. γ = −1, W (X,φX) = −φ−1
X ln (φX)b(X)− k1X

2

Substituting the Lagrangian into equation (6.4), one gets

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ − φtXB

2
φt

− φXXB
2
φX

−B2
X − 3 lnφXb(X) + 2(2l − 1)b(X)− 3k1X

2φX − 3

2
φ2
t = 0.

(B.18)

The symmetry is not divergent, then it can not provide a conservation law.

Case 2. γ ̸= −1, W (X,φX) = − φγ
X

(γ+1)
b(X)− k1X

2
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The determining equation for vector Bi is

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ − φtXB

2
φt

− φXXB
2
φX

−B2
X

+3
(
2l(γ + 1)− 1

)(( 1

γ + 1

)
φγ+1
X b(X) +

1

2
φ2
t + k1X

2φX
)
= 0.

(B.19)

For a particular condition l = 1
2(γ+1)

, one obtains Bi = 0. This symmetry is

variational and the conserved vectors are

Ct =
γ

4(γ + 1)4
(( β

2(γ + 1)

)2γ
β2tX2γ+2φγ+1

X

+
(
γ2(γ + 3) + 3γ + 1

)(
4φφt − 2tφ2

t + 4XφtφX + 4k1tX
2φX

))
,

CX =
γX

4(γ + 1)4
(( β

2(γ + 1)

)2γ
(γ + 1)β2X2γ+1φγX

(
φ− tφt

)
+
( β

2(γ + 1)

)2γ
γβ2X2γ+2φγ+1

X

+
(
γ2(γ + 3) + 3γ + 1

)(
4k1Xφ− 4k1tXφt − 2φ2

t

))
.

(B.20)

The extension of the kernel in M11 is given by the generator

X17 = −βt∂t + 2γ∂X − 2βφ∂φ.

This model has 2 cases of the Lagrangian, when γ = −1 and γ ̸= −1.

Case 1. γ = −1, W (X,φX) = −φ−1
X ln (φX)e

βX − k1X
2

Substituting the Lagrangian into equation (6.4), one gets

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ − φtXB

2
φt

− φXXB
2
φX

−B2
X − β

(
3 lnφX + 2

)
eβX − k1

(
3βX + 4

)
XφX − 3β

2
φ2
t = 0.

(B.21)

In this case the symmetry is not divergent, hence, it can not provide a conservation

law.

Case 2. γ ̸= −1, W (X,φX) = − φγ
X

(γ+1)
eβX − k1X

2

The determining equation is

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ − φtXB

2
φt

− φXXB
2
φX

−B2
X

−
( 3β

γ + 1

)
φγ+1
X eβX − 3β

2
φ2
t − 3k1βX

2φX + 4k1γXφX = 0.
(B.22)
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In this case the symmetry is not divergent, hence, it can not provide a conservation

law.

The extension of the kernel in M12 is given by the generator

X18 =
(
γ(1− α) + α

)
t∂t + 2γX∂X + 2(γ + α)φ∂φ.

This model has 2 cases of the Lagrangian when γ = −1 and γ ̸= −1.

Case 1. γ = −1, W (X,φX) = −k1Xφ−1
X ln (φX)− k2X

α+1

Substituting the Lagrangian into equation (6.4), one gets

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ − φtXB

2
φt

− φXXB
2
φX

−B2
X

+(2α− 5)
(
k2φXX

α+1 + k1X lnφX +
1

2
φ2
t

)
+ 2αk1X = 0.

(B.23)

For the condition α = 5
2

one finds B1 = 5k1tX and B2 = 0. The con-

served vectors are

Ct = −4k2tX
7/2φX − 4k1tX lnφX − 3φφt + 2tφ2

t − 2XφtφX + 5k1tX,

CX = −3k2X
7/2φ+ 4k2tX

7/2φt + 2k1X
2 lnφX − 3k1Xφ

φX

+Xφ2
t +

4k1tXφt
φX

− 2k1X
2.

Case 2. γ ̸= −1, W (X,φX) = −k1X
φγ
X

(γ+1)
− k2X

α+1

The determining equation for vector Bi is

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ − φtXB

2
φt

− φXXB
2
φX

−B2
X

+(αγ + 3α + 5γ)
(( k1
γ + 1

)
Xφγ+1

X + k2X
α+1φX +

1

2
φ2
t

)
= 0.

(B.24)

The symmetry is a variational symmetry for the condition α = −5γ
γ+3

. The con-

served vectors are given as follow

Ct =
(−2k2γ(3γ − 1)

(γ + 1)(γ + 3)

)
tXφγ+1

X −
(2k2γ(3γ − 1)

γ + 3

)
tX

3−4γ
γ+3 φX

−
(2γ(γ − 2)

γ + 3

)
φφt +

(γ(3γ − 1)

γ + 3

)
tφ2

t + 2γXφtφX ,

CX =
(−2k1γ(γ − 2)

γ + 3

)
XφφγX +

(2k1γ(3γ − 1)

γ + 3

)
tXφtφ

γ
X

+
(2k1γ2
γ + 1

)
X2φγ+1

X −
(2k2γ(γ − 2)

γ + 3

)
X

3−4γ
γ+3 φ+

(2k2γ(3γ − 1)

γ + 3

)
tX

3−4γ
γ+3 φt.
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The extensions of the kernel in M13 are given by the generators

X19 = t∂t + γX∂X + (γ + 2)φ∂φ, X20 = ∂X − k1t
2∂φ.

This model has 2 cases of the Lagrangian, when γ = −1 and γ ̸= −1.

Case 1. γ = −1, W (X,φX) = −βφ−1
X ln (φX)− k1X

2

I. X19 = t∂t + γX∂X + (γ + 2)φ∂φ

The determining equation for vector Bi is

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ

−φtXB2
φt

− φXXB
2
φX

−B2
X + 2β = 0.

(B.25)

Solving the above equation for Bi, one obtains a divergent symmetry. Using

Noether’s theorem, the conserved vector are

Ct = −βt lnφX + 2βt− φφt +
1

2
tφ2

t −XφtφX − k1tX
2φX ,

CX = βX lnφX − βφ−1
X

(
φ− tφt

)
− βX − k1X

2φ+
1

2
Xφ2

t + k1tX
2φt.

II. X20 = ∂X − k1t
2∂φ

The determining equation is

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ − φtXB

2
φt

−φXXB2
φX

−B2
X − 2k1

(
tφt −XφX

)
= 0.

(B.26)

Solving this equation, one finds

B1 = 2k1tXφX , B2 = −2k1tXφt.

The conserved vectors are obtained as

Ct = φtφX + k1t
2φt + 2k1tXφX ,

CX = −β lnφX + β + k1βt
2φ−1

X − 1

2
φ2
t − 2k1tXφt + k21t

2X2.

Case 2. γ ̸= −1, W (X,φX) = − βφγ
X

(γ+1)
− k1X

2
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I. X19 = t∂t + γX∂X + (γ + 2)φ∂φ

The determining equation is

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ − φtXB

2
φt

− φXXB
2
φX

−B2
X + 3βφγ+1

X +
3(γ + 1)

2
φ2
t + 3(γ + 1)k1X

2φX = 0.

(B.27)

In this case the symmetry is not divergent, therefore conserved vectors can not be

constructed.

II. X20 = ∂X − k1t
2∂φ

The determining equation is

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ

−φtXB2
φt

− φXXB
2
φX

−B2
X − 2k1

(
tφt −XφX

)
= 0.

(B.28)

Solving the above equation, one obtains a divergent symmetry such that

B1 = 2k1tXφX and B2 = −2k1tXφt and the conserved vectors

Ct = φtφX + k1t
2φt + 2k1tXφX ,

CX =
βγ

γ + 1
φγ+1
X + βk1t

2φγX − 1

2
φ2
t − 2k1tXφt + k21t

2X2.

The extensions of the kernel in M14 are given by 2 generators. The first

generator is

X21 = ∂X − k1t
2∂φ,

Substituting the Lagrangian into equation (6.4), one gets

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ − φtXB

2
φt

−φXXB2
φX

−B2
X − 2k1(tφt −XφX) = 0.

(B.29)

Solving this equation, one finds a divergent symmetry where B1 = 2k1tXφX

and B2 = −2k1tXφt. Using Noether’s theorem, one finds

Ct = φtφX + k1t
2φt + 2k1tXφX ,

CX =
3

2
βφ−2

X + βk1t
2φ−3

X − 1

2
φ2
t − 2k1tXφt + k21t

2X2.
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For the second generator

X22 = t∂t − 3X∂X − φ∂φ,

the determining equation of the symmetry of equation is

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ − φtXB

2
φt

−φXXB2
φX

−B2
X +

3β

φ2
X

− 3φ2
t − 6k1X

2φX = 0.
(B.30)

This generator is not divergent, therefore a conserved vector does not exist.

The extensions of the kernel in M15 are given by the generators

X23 = (γ − 1)t∂t − 2φ∂φ, X24 = (γ − 1)X∂X + (γ + 1)φ∂φ, X25 = ∂X .

This model has 2 cases of the Lagrangian, when γ = −1 and γ ̸= −1.

Case 1. γ = −1, W (X,φX) = −βφ−1
X ln (φX)

I. X23 = (γ − 1)t∂t − 2φ∂φ

Substituting the Lagrangian into equation (6.4), one gets

−φtB1
φ −

βφXX
φ2
X

B1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ

−φtXB2
φt

− φXXB
2
φX

−B2
X − 2β lnφX − 2β − φ2

t = 0.

(B.31)

Solving the above equation, one obtains a divergent symmetry such that

B1 = 2
(
− βt+XφtφX

)
, B2 = X(−2β lnφX − φ2

t

)
.

Using Noether’s theorem, the conserved vectors are

Ct = 2βt lnφX − 2βt+ 2φφt − tφ2
t + 2XφtφX ,

CX = −2βX lnφX + 2βφ−1
X

(
φ− tφt

)
−Xφ2

t .

II. X24 = (γ − 1)X∂X + (γ + 1)φ∂φ

The determining equation for vector Bi is

−φtB1
φ −

βφXX
φ2
X

B1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ

−φtXB2
φt

− φXXB
2
φX

−B2
X − 2β lnφX + 2β − φ2

t = 0.

(B.32)
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The symmetry is divergent, as one finds

B1 = 2
(
− βt+XφtφX

)
, B2 = X(−2β lnφX − φ2

t + 4β
)
.

The conserved vectors are

Ct = −2βt, CX = 2βX.

III. X25 = ∂X

The determining equation is

φtB
1
φ + φttB

1
φt

+ φtXB
1
φX

+B1
t + φXB

2
φ + φtXB

2
φt

+ φXXB
2
φX

+B2
X = 0. (B.33)

This symmetry is a variational symmetry where Bi = 0 and the conserved vec-

tors are

Ct = φtφX , CX = −β lnφX + β − 1

2
φ2
t .

Case 2. γ ̸= −1, W (X,φX) = − βφγ
X

(γ+1)

I. X23 = (γ − 1)t∂t − 2φ∂φ

The determining equation is

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ − φtXB

2
φt

−φXXB2
φX

−B2
X − β(γ + 3)

γ + 1
φγ+1
X − (γ + 3)

2
φ2
t = 0.

(B.34)

For the condition γ = −3, one obtains a variational symmetry and the conserved

vectors are given as follows,

Ct = 2
(
− βtφ−2

X + φφt − tφ2
t

)
, CX = 2βφ−3

X

(
φ− 2tφt

)
.

II. X24 = (γ − 1)X∂X + (γ + 1)φ∂φ

The determining equation is

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ − φtXB

2
φt

−φXXB2
φX

−B2
X +

(β(3γ + 1)

γ + 1

)
φγ+1
X +

(3γ + 1

2

)
φ2
t = 0.

(B.35)
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Solving this equation, for the condition γ = −1
3
, one finds a variational symmetry

and the conserved vectors are

Ct =
2

3

(
− φφt − 2XφtφX

)
, CX =

2

3

(
Xφ2

t − βφφ
−1/3
X + βXφ

2/3
X

)
.

III. X25 = ∂X

The determining equation is

−φtB1
φ − φttB

1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ − φtXB

2
φt

−φXXB2
φX

−B2
X = 0.

(B.36)

This symmetry is a variational symmetry and the conserved vectors are

Ct = φtφX , CX =
( βγ

γ + 1

)
φγ+1
X − 1

2
φ2
t .

The extensions of the kernel in M16 are given by the generators

X26 = ∂X , X27 = 2X∂X + φ∂φ, X28 = t2∂t + tφ∂φ X29 = 2t∂t + φ∂φ.

I. X26 = ∂X

Substituting the Lagrangian into equation (6.4), one gets

φtB
1
φ + φttB

1
φt

+ φtXB
1
φX

+B1
t + φXB

2
φ + φtXB

2
φt

+ φXXB
2
φX

+B2
X = 0. (B.37)

This symmetry is a variational symmetry and the conserved vectors are

Ct = φtφX , CX =
3

2
βφ−2

X − 1

2
φ2
t .

II. X27 = 2X∂X + φ∂φ

The determining equation for vector Bi is

−φtB1
φ −

βφXX
φ2
X

B1
φt

− φtXB
1
φX

−B1
t − φXB

2
φ

−φtXB2
φt

− φXXB
2
φX

−B2
X − 2β

φ2
X

+ 2φ2
t = 0.

(B.38)

In this case, the symmetry is not divergent, hence, it can not provide a conservation

law.
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III. X28 = t2∂t + tφ∂φ

The determining equation for vector Bi is

φtB
1
φ + φttB

1
φt

+ φtXB
1
φX

+B1
t + φXB

2
φ

+φtXB
2
φt

+ φXXB
2
φX

+B2
X − φφt = 0.

(B.39)

The symmetry is divergent where B1 = φ2

2
, B2 = 0 and the conserved vectors

are

Ct =
1

2

(
βt2φ−2

X + φ2
t − tφφt + t2φ2

t

)
, CX = βt(−φ+ tφt)φ

−3
X .

IV. X29 = 2t∂t + φ∂φ

The determining equation for vector Bi is

φtB
1
φ + φttB

1
φt

+ φtXB
1
φX

+B1
t + φXB

2
φ + φtXB

2
φt

+ φXXB
2
φX

+B2
X = 0. (B.40)

Solving this equation, one finds a variational symmetry and the conserved vectors

are

Ct = βtφ−2
X − φφt + tφ2

t , CX = β(−φ+ 2tφt)φ
−3
X .

The extension of the kernel in M17 is given by the generator

X30 = t2∂t + tφ∂φ.

Substituting the Lagrangian into equation (6.4), one gets

φtB
1
φ + φttB

1
φt

+ φtXB
1
φX

+B1
t + φXB

2
φ

+φtXB
2
φt

+ φXXB
2
φX

+B2
X − φφt = 0.

(B.41)

Solving this equation, one obtains B1 = φ2

2
, and B2 = 0 and the conserved

vectors are

Ct =
1

2
b(X)t2φ−2

X +
1

2
φ2 − tφφt +

1

2
t2φ2

t , CX = tb(X)(−φ+ tφt)φ
−3
X .

 

 

 

 

 

 

 

 



APPENDIX C

THE CLASSIFICATIONS OF TWO- AND

THREE-DIMENSIONAL LIE ALGEBRAS

In an appropriate basis, every two-dimensional Lie algebra will have a com-

mutator table as one of the following two forms:

L(2, 1) :

∣∣∣∣∣∣∣∣∣∣
e1 e2

e1 0 0

e2 0

∣∣∣∣∣∣∣∣∣∣
, L(2, 2) :

∣∣∣∣∣∣∣∣∣∣
e1 e2

e1 0 e1

e2 0

∣∣∣∣∣∣∣∣∣∣
.

Here ei are the basis vectors of a Lie algebra.

All three-dimensional Lie algebras are exhausted by the list:

L(3, 1) :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

e1 0 0 0

e2 0 e1

e3 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, L(3, 2, p) :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

e1 0 0 e1

e2 0 p e2

e3 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, 0 < |p| ≤ 1,

L(3, 3) :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

e1 0 0 e1

e2 0 e1 + e2

e3 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, L(3, 4, p) :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

e1 0 0 p e1 − e2

e2 0 e1 + p e2

e3 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, p ≥ 0,

L(3, 5) :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

e1 0 e1 2e2

e2 0 e3

e3 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, L(3, 6) :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

e1 0 e3 −e2

e2 0 e1

e3 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,
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L(3, 7) :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

e1 0 e1 0

e2 0 0

e3 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, L(3, 0) :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 e3

e1 0 0 0

e2 0 0

e3 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

 

 

 

 

 

 

 

 



APPENDIX D

THE GROUP CLASSIFICATION OF

EQUATION (7.1)

D.1 One-dimensional Lie algebras

The function ζ(S) in the basis generator (7.3) of a one-dimensional Lie

algebra can be reduced to one of the two cases: either ζ = 0 or ζ = 1. This can be

done by virtue of the equivalence transformation related with the generator Xe
10.

The set of possible basis generators of one-dimensional Lie algebras is exhausted

by the following generators

ζ = 0 : X6 + qX5 + γX4, X5 + γX4, X4

ζ = 1 : X6 + qX5 + γX4 + ∂S, X5 + γX4 + ∂S, X4 + ∂S

In the second step one has to substitute the coefficients of each genera-

tor into the determining equation (7.2) and solve it with respect to the function

W (ρ, ρ̇, S). Here we present the calculations of the case where X6 + qX5 + γX4.

The study of the other cases is similar and is summarized in Tables 7.2-7.5.

Substituting

k4 = γ, k5 = q, k6 = 1, ζ = 0

into equation (7.2), one obtains

ρgρ + ρ̇gρ̇(1− γ − 2q) = g(2q − 1) + ρ̇−2(ρφ+ k). (D.1)

The characteristic system of equations is

dρ

1
=

dρ̇

ρ̇(1− γ − 2q)
=

dg

g(2q − 1) + ρ̇−2(ρφ+ k)
.
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Invariants of the characteristic system of equations depend on the vanishing of the

expression

(γ + q)((γ + q)− 1/2).

If (γ + q)((γ + q)− 1/2) ̸= 0, then the solution of (D.1) is

g(ρ, ρ̇, S) = ρ2q−1ϕ̃(ρ̇ργ+2q−1, S) + ρ̇−2

(
ρφ(S)

2(γ + q)
+

k

2(γ + q)− 1

)
,

where the function ϕ̃ is an arbitrary function. Integrating the function g(ρ, ρ̇, S),

one finds

W (ρ, ρ̇, S) = ρ1−2(γ+q)ϕ(ρ̇ργ+2q−1, S)− ρφ(S)

2(γ + q)
+

k

2(γ + q)− 1
+ ρ̇h(ρ, S),

where h(ρ, S) is an arbitrary function of the integration. Using the equivalence

transformations corresponding to Xe
6 , X

e
8 and Xe

9 , one gets that the system of

equations (7.1) with the function

W (ρ, ρ̇, S) = ρ1−2(γ+q)ϕ(ρ̇ργ+2q−1, S)

admits the generator

X6 + qX5 + γX4, (γ + q)((γ + q)− 1/2) ̸= 0.

Similarly, one finds that for the function

W (ρ, ρ̇, S) = ϕ(ρ̇ρq−1/2, S)− q0 ln(ρ),

the extension of the kernel of the admitted Lie algebra is defined by the generator

X6 + qX5 + (−q + 1/2)X4,

and for the function

W (ρ, ρ̇, S) = ρϕ(ρ̇ρq−1, S) + ρ ln(ρ)ψ(S)

the admitted generator is

X6 + q(X5 −X4).

Here q0 and ψ(S) are arbitrary.
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D.2 Two-dimensional Lie algebras

Since for the basis generators

X = β1X6 + q1X5 + γ1X4 +Xζ1 , Y = β2X6 + q2X5 + γ2X4 +Xζ2 ,

their commutator is

[X,Y ] = [Xζ1 , Xζ2 ],

substituting the commutator into the equation

[X,Y ] = pX,

one has

[Xζ1 , Xζ2 ] = p (β1X6 + q1X5 + γ1X4 +Xζ1) ,

where p = 0 or p = 1. From these conditions one finds that

ζ ′2ζ1 − ζ ′1ζ2 = pζ1, (D.2)

and

pβ1 = 0, pq1 = 0, pγ1 = 0. (D.3)

Let us consider the case where p = 1. For this case one finds that the basis

of the Lie algebra consists of the generators

X = Xζ1 , Y = β2X6 + q2X5 + γ2X4 +Xζ2 ,

where ζ1 ̸= 0. By virtue of equivalence transformations, one can assume that

ζ1 = 1. The general solution of equation (D.2) is

ζ2 = S + c0,

where the constant c0 can be assumed to be zero. Thus, in the case p = 1 the Lie

algebras have the form:

{∂S, βX6 + qX5 + γX4 + S∂S}. (D.4)
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The set of such Lie algebras is exhausted by the following list

1. ∂S, X6 + qX5 + γX4 + ∂S 2. ∂S, X5 + γX4 + S∂S

3. ∂S, X4 + S∂S 4. ∂S, S∂S.

Let us consider the case p = 0. For this case equation (D.2) becomes

ζ ′2ζ1 − ζ ′1ζ2 = 0. (D.5)

Notice that if ζ21 + ζ22 ̸= 0, then one can assume that ζ1 = 1. In this case equation

(D.5) gives that ζ2 = kζ1. Hence, one also can assume that ζ2 = 0. Thus, Lie

algebras in this case have the following forms

{β1X6 + q1X5 + γ1X4 + ∂S, β2X6 + q2X5 + γ2X4}, (D.6)

{β1X6 + q1X5 + γ1X4, β2X6 + q2X5 + γ2X4}. (D.7)

The set of all possible Lie algebras of the forms (D.6) and (D.7) is exhausted

by the list

ζ1 = 1 : q1X5 + γ1X4 + ∂S, X6 + q2X5 + γ2X4,

: β1X6 + γ1X4 + ∂S, X5 + γ2X4,

: β1X6 + q1X5 + ∂S, X4,

ζ1 = 0 : q1X5 + γ1X4, X6 + q2X5 + γ2X4,

: X4, X5.

Similar to the one-dimensional Lie algebras, further obtaining of the func-

tion W (ρ, ρ̇, S) consists of solving the determining equations (7.2) where the co-

efficients are defined by the obtained Lie algebras. Results of these studies are

summarized in Tables 7.2-7.5.

D.3 Three-dimensional Lie algebras

Let the basis generators of a three-dimensional Lie algebra be

X = X̃ +Xζ1 , Y = Ỹ +Xζ2 , Z = Z̃ +Xζ3 ,
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where

X̃ = β1X6+ q1X5+ γ1X4, Ỹ = β2X6+ q2X5+ γ2X4, Z̃ = β3X6+ q3X5+ γ3X4.

Notice that

[X̃, Ỹ ] = 0, [X̃, Z̃] = 0, [Ỹ , Z̃] = 0. (D.8)

Let us first study the Abelian Lie algebra. In this case one has

[X, Y ] = 0, [X,Z] = 0, [Y, Z] = 0,

which means that

ζ1ζ
′
2 − ζ ′1ζ2 = 0, ζ1ζ

′
3 − ζ ′1ζ3 = 0, ζ2ζ

′
3 − ζ ′2ζ3 = 0. (D.9)

If ζ21 + ζ22 + ζ23 = 0, then the basis of this Lie algebra is

X4, X5, X6.

This case is reduced to Wρ̇ = 0.

If, for example, ζ1 ̸= 0, then one can assume that ζ1 = 1 and, hence,

ζ2 = c1, ζ3 = c2,

where c1 and c2 are constant. Without loss of generality one can assume that

c1 = 0 and c2 = 0. Hence, the list of all possible Abelian three-dimensional Lie

algebras consists of the following Lie algebras

ζ1 = 1 : q1X4 + ∂S, X6 + q2X4, X5 + q3X4,

: βX5 + ∂S, X6 + q1X5, X4,

ζ1 = 0 : X6 + ∂S, X5, X4,

: ∂S, X5, X4.

Let us study three-dimensional non-Abelian Lie algebras. In the case L(3, 1)

one has

[X,Y ] = 0, [X,Z] = 0, [Y, Z] = X,
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which means that

ζ1ζ
′
2 − ζ ′1ζ2 = 0, ζ1ζ

′
3 − ζ ′1ζ3 = 0, ζ2ζ

′
3 − ζ ′2ζ3 = ζ1. (D.10)

and

[X̃, Ỹ ] = 0, [X̃, Z̃] = 0, [Ỹ , Z̃] = X̃.

Because of (D.8), one has that X̃ = 0. Hence, ζ1 ̸= 0, and one can assume that

ζ1 = 1. Equations (D.10) become contradictory.

In the case L(3, 2, p), (0 < |p| ≤ 1) one obtains

[X,Y ] = 0, [X,Z] = X, [Y, Z] = pY,

which means that

ζ1ζ
′
2 − ζ ′1ζ2 = 0, ζ1ζ

′
3 − ζ ′1ζ3 = ζ1, ζ2ζ

′
3 − ζ ′2ζ3 = pζ2. (D.11)

and

[X̃, Ỹ ] = 0, [X̃, Z̃] = X̃, [Ỹ , Z̃] = pỸ .

Because of (D.8), one has that X̃ = 0 and Ỹ = 0. Hence, ζ1ζ2 ̸= 0, and one can

assume that ζ1 = 1. Equations (D.11) give that ζ2 is constant, which contradicts

the property that X, Y and Z are basis generators of the Lie algebra.

Similar contradictions are obtained for L(3, 3) and L(3, 4, p). Indeed, for

L(3, 3) one has

[X,Y ] = 0, [X,Z] = X, [Y, Z] = X + Y,

or

ζ1ζ
′
2 − ζ ′1ζ2 = 0, ζ1ζ

′
3 − ζ ′1ζ3 = ζ1, ζ2ζ

′
3 − ζ ′2ζ3 = ζ1 + ζ2. (D.12)

and

[X̃, Ỹ ] = 0, [X̃, Z̃] = X̃, [Ỹ , Z̃] = X̃ + Ỹ .
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Hence, X̃ = 0 and Ỹ = 0. Similar for L(3, 4, p):

[X,Y ] = 0, [X,Z] = pX − Y, [Y, Z] = X + pY, (p ≥ 0),

which means that

ζ1ζ
′
2 − ζ ′1ζ2 = 0, ζ1ζ

′
3 − ζ ′1ζ3 = pζ1 − ζ2, ζ2ζ

′
3 − ζ ′2ζ3 = ζ1 + pζ2 (D.13)

and

[X̃, Ỹ ] = 0, [X̃, Z̃] = pX̃ − Ỹ , [Ỹ , Z̃] = X̃ + pỸ .

Because of (D.8), one also has that X̃ = 0 and Ỹ = 0. Hence, in both these cases

ζ1ζ2 ̸= 0, and one can assume that ζ1 = 1. Equations (D.12) and (D.13) give that

ζ2 is constant, which contradicts the property that X, Y and Z compose a basis

of the Lie algebra.

Let us consider the algebra L(3, 5). In this case one has

[X, Y ] = X, [X,Z] = 2Y, [Y, Z] = Z,

which means that

ζ1ζ
′
2 − ζ ′1ζ2 = ζ1, ζ1ζ

′
3 − ζ ′1ζ3 = 2ζ2, ζ2ζ

′
3 − ζ ′2ζ3 = ζ3 (D.14)

and

[X̃, Ỹ ] = X̃, [X̃, Z̃] = 2Ỹ , [Ỹ , Z̃] = Z̃.

Because of (D.8), one has that X̃ = 0, Ỹ = 0 and Z̃ = 0. Hence, ζ1ζ2ζ3 ̸= 0, and,

for example, ζ1 = 1. The general solution of equations (D.14) is

ζ2 = S + c1, ζ3 = S2 + 2c1S + c21.

Thus, the basis generators are

X = ∂S, Y = S∂S, Z = S2∂S.

As noticed in the previous section in this case WS = 0.
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For the Lie algebra L(3, 6):

[X, Y ] = Z, [X,Z] = −Y, [Y, Z] = X,

which mean that

ζ1ζ
′
2 − ζ ′1ζ2 = ζ3, ζ1ζ

′
3 − ζ ′1ζ3 = −ζ2, ζ2ζ

′
3 − ζ ′2ζ3 = ζ1, (D.15)

and

[X̃, Ỹ ] = Z̃, [X̃, Z̃] = −Ỹ , [Ỹ , Z̃] = X̃.

Because of (D.8), one has that X̃ = 0, Ỹ = 0 and Z̃ = 0. Hence, ζ1ζ2ζ3 ̸= 0, and

assuming that ζ1 = 1, one obtains the general solution of the first two equations

of (D.15)

ζ2 = c1 sin(S) + c2 cos(S), ζ3 = c1 cos(S)− c2 sin(S)

and the contradiction c21 + c22 + 1 = 0.

Let us study the Lie algebra L(3,−1):

[X,Y ] = X, [X,Z] = 0, [Y, Z] = 0,

which mean that

ζ1ζ
′
2 − ζ ′1ζ2 = ζ1, ζ1ζ

′
3 − ζ ′1ζ3 = 0, ζ2ζ

′
3 − ζ ′2ζ3 = 0, (D.16)

and

[X̃, Ỹ ] = X̃, [X̃, Z̃] = 0, [Ỹ , Z̃] = 0.

Hence, X̃ = 0 and one can assume that ζ1 = 1. Solving equations (D.16), one

finds that the basis generators have the form

X = ∂S, Y = S∂S + β2X6 + q2X5 + γ2X4, Z = β3X6 + q3X5 + γ3X4.

Thus, one only needs to study Lie algebras with the following basis gener-

ators

X = ∂S, Y = S∂S, Z = S2∂S, (D.17)
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and

X = ∂S, Y = S∂S + β2X6 + q2X5 + γ2X4, Z = β3X6 + q3X5 + γ3X4.

According to the remark in the previous section for the case (D.17) one can

assume that WS = 0. Hence, for the non-Abelian three-dimensional Lie algebras

the list of possible Lie algebras is

1. ∂S, S∂S + q2X5 + γ2X4, X + q3X5 + γ3X4,

2. ∂S, S∂S + β2X6 + γ2X4, X5 + γ3X4,

3. ∂S, S∂S + β2X6 + q2X5, X4.

D.4 Lie algebras of dimension greater than 3

If the dimension of the Lie algebra is greater or equal to 4, then one can

either choose the basis generators such that two of the generators have the form

(7.4) or the admitted Lie algebra is four-dimensional and the basis generators can

be chosen such as

X4 + ζ1(S)∂S, X5 + ζ2(S)∂S, X6 + ζ3(S)∂S, ∂S. (D.18)

Substituting the coefficients of the generators (D.18) into (7.2) one obtains reduc-

tion to the case either where WS = 0 or Wρ̇ = 0.
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