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Lagrangian allows us to apply Noether’s theorem for construction conservation
laws for these equations.

In this thesis three types of these models are studied: the gas dynamics
equations, the hyperbolic shallow water equations and the Green-Naghdi model.
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CHAPTER I

INTRODUCTION

The theorem which concerns the physical results and conservation laws
is Noether’s theorem (Noether, 1918). In 1918, Emmy Noether established a
fundamental theorem of physics which gives a connection between the symmetries
of a physical system with a Lagrangian and the conservation laws for the associated
Euler-Lagrange equations. The application of Noether’s theorem depends on the

following two conditions:

1. The differential equations (DEs) under consideration must be derived from

a variational principle, i.e., they are Euler-Lagrange equations.
2. The symmetries must leave the variational integral invariant.

The latter implies that not every symmetry of the DEs can generate a
conservation law through Noether’s theorem. Therefore a suitable Lagrangian of
the differential equations is needed for application of Noether’s theorem. There are
some differential equations which have no Lagrangian; that means the differential
equations have no a variational principle. Some approaches were developed to
overcome of the limitations of Noether’s theorem. These developed methods use
a formula which directly generates the conservation laws and does not require the
existence of a Lagrangian. The most elementary method is the direct method. This
method was first used by Laplace (1798) to derive the well-known Laplace vector of
the two-body Kepler problem. The direct method is applicable to any differential
equation with or without Lagrangian and the construction of conservation laws

through the direct method is computationally more straightforward than Noether’s



theorem. Bluman, Cheviakov and Anco (2010) and Anco and Bluman (1997,
2002) derived a direct method to construct the conservation laws and applied it to
systems of equations that do not admit a variational principle. Ibragimov (1985)
and Bluman, Temuerchaolu, and Anco (2006) showed how to directly obtain a new
conservation law from a known conservation law through the action of admitted
symmetries, a contact transformation.

Ibragimov (2007a, 2007b, 2011) proved a new theorem for constructing con-
servation laws where the existence of a Lagrangian is not required. This theorem
is based on the concept of the adjoint equation and he also proved that the ad-
joint equation admits all symmetries of the original equation which allows the use
of Noether’s theorem. He also applied his conservation law approach to the gas
dynamics equations (Ibragimov, 2007b).

There is extensive literature developing methods to use Noether’s theorem
to derive conservation laws of differential-difference equations, see more details in
Webb and Mace (2014), Webb and Zank (2007,2009), Webb (2015) and Ibragimov
(2007b). One of the important model in continuum mechanics is the gas dynamics
equations. The gas dynamics equations are defined by the well-known conservation
laws: mass, momentum and energy conservation laws. The gas dynamics equations
still attract attention of researchers to derive conservation laws by applying a
variety of approaches combining with Noether’s theorem.

Webb and Zank (2007) presented the role of the Lagrangian map for Lie
symmetries in magnetohydrodynamics (MHD) and gas dynamics by converting
the Eulerian Lie point symmetries of the Galilei group to Lagrange label space.
They determined the conditions for the symmetries to be a variational symmetry
of the action and Noether’s theorem is used to obtained the corresponding conser-
vation laws in Eulerian and Lagrangian form. Moreover, Webb and Zank (2009)

investigated conservation laws associated with the scaling symmetries of the one-



dimensional ideal gas dynamic equations and Sjoberg and Mahomed (2004) showed
that new conservation laws of one-dimensional gas dynamics can be generated from
non-local symmetries. Webb and Mace (2014) applied Noether’s theorem to in-
vestigate conservation laws in magnetohydrodynamics (MHD) and gas dynamics
by using Lagrange multipliers. In 2015, Webb (2015) applied the Lagrangian map
to obtain the conservation laws of the gas dynamics equations and the Clebsch
representation is used to transform the conservations laws into the simple form.

In this thesis we consider a class of dispersive models.

p+pdiviu) =0, pu+Vp=0, S=0, L)
poot W oo -G () () v
where t is time, V is the gradient operator with respect to the space vari-
ables, p is the fluid density, u is the velocity field, p is the pressure, S is the
entropy and W (p, p,S) is a given potential, the “dot” denotes the material time
derivative: f = % = fi +uVf, and %V—X— denotes the variational derivative
of W with respect to p at a fixed value of wu.
The model (1.1) was derived by Gavrilyuk and Shugrin (1996) and Gavri-
lyuk and Teshukov (2001) using the Lagrangian
U2

£:p2

Wi(p,p,9S). (1.2)

In this paper (Gavrilyuk and Teshukov, 2001), it was proven that these
models include the non-linear one-velocity model of a bubbly fluid (with incom-
pressible liquid phase) at small volume concentration of gas bubbles (Iordanski,
1960; Kogarko, 1961, Wijngaarden, 1968) and the dispersive shallow water model
(Green and Naghdi, 1976; Salmon,1998), where W = W(p,p). For the Green-

Naghdi model,

1 1

Wp,p) = §g/)2 - gp/ﬂ



where ¢ is the gravity and p is the height of a free surface. Here and below,
“ — 7 denotes the material time derivative. There has been an increasing num-

ber of studies of properties of the Green-Naghdi system in recent years. For the

Iordanski-Kogarko-Wijngaarden model,

W(p, p) = p(cae(pan) — 2mpr1oR*R?),

where pjp and poy are the physical densities of the liquid and gas components,
respectively, co isthe mass concentration of the gas component, R is the bubble
radius and e is the internal energy of a gas component. The physical density
of a gas component p,y and the bubble radius R are related with the average

density p by the formulae

4 .1 1 -t
—mnR? == — By p2 = Co ( - 5) .
3 p p

Here the physical density of the liquid component pio, the number of bubbles
per unit mass n, and 3 = (1 —cy)p;, are constant. Notice that if one assumes
that the behavior of a gas component is not isentropic, then ey = &(pg,.S) and
the potential function is W = W(p, p, ).

The class of dispersive models (1.1) is an example of a medium whose be-
havior depends not only on thermodynamical variables but also on their derivatives
with respect to space and time. In this particular case the potential function de-
pends on the total derivative of the density, which reflects the dependence of the
medium on its inertia.

The first model that this thesis is focused are the one-dimensional gas dy-
namics equations, in particular, the potential function is determined by the con-

dition W, =0,

p(uy + uug) + pr =0, P+ upy + puy =0, S, +uS, = 0. (1.3)



The second class of models which is analysed in the thesis are the shallow
water equations which correspond to the potential W = ~;p?—~vpp?. In particular,
the potential for classical hyperbolic shallow water equations is determined by the
condition ~ = 0.

The main aim of the thesis is to derive the conservation laws for (1.1) in
Lagrangian coordinates: the one-dimensional gas dynamics equations, the hyper-
bolic shallow water equations and the Green-Naghdi model, by using Noether’s
theorem. The Lagrangian map is applied in order to construct the Euler-Lagrange
equations using a suitable Lagrangian. The group analysis method is used for find-
ing the admitted Lie group of the Euler-Lagrange equations and the variational
integral must be invariant under the action of this admitted symmetry. Finally,
Noether’s theorem is allowed to be applied for constructing conservation laws for
these three models.

It is also worth mentioning that Webb and Zank (2007, 2009) derived con-
servation laws of the one-dimensional gas dynamics equations in Lagrangian coor-
dinates by Noether’s theorem. However they did not study all admitted generators,
they only considered generators converted from the generators admitted by the gas
dynamics equations in Fulerian coordinates.

The structure of this thesis is as follows. In Chapter II a review of Lie group
analysis which is necessary for this study is provided. Noether’s theorem, Noether’s
identities and variational principle concepts are given in Chapter III. Computation
procedures including the three approaches, i.e. Shmyglevskii’s approach, Ibragi-
mov’s approach and Lagrangian’s approach, which satisfy the variational principle
and the obtained Euler-Lagrange equation are performed in Chapter IV. Chapter
V shows how one can apply group analysis to the Euler-Lagrange equation (in
Lagrangian coordinate). The group classification of the Euler-Lagrange equation

with respect to the arbitrary pressure function P = P(X,¢x) with the restric-



tions Py # 0, and F,, < 0is presented. Noether’s theorem is allowed to be ap-
plied for constructing conservation laws for the equations of fluids. The results of
conservation laws of the gas dynamics equations and the hyperbolic shallow-water
equations are shown in Chapter VI. Chapter VII provides the group classification
of fluids with internal inertia (1.1), and conservation laws of the Green-Naghdi
model in Lagrangian coordinates are presented there. A summary and discussion

are summed up in the final Chapter VIII.



CHAPTER 11

GROUP ANALYSIS

Sophus Lie (1842-1899) was a Norwegian mathematician who applied the
theory of continuous transformation groups to the theory of differential equations
which then gave rise to the modern theory of the so-called Lie groups. He showed
that the Lie groups of point transformations leaving invariant a differential equa-
tion, i.e., point symmetries of a differential equation, reduced to solving related
linear systems of determining equations for its infinitesimal generators. He also
showed that a point symmetry of a differential equation in the case of the nth-
order ordinary differential equation would reduce its order to n—1, and in the case
of a partial differential equation would find special solutions is called wnvariant
solutions.

This chapter introduces basic background knowledge of Lie groups which
is necessary for the later chapters. The mathematical tools of this method are
provided in Ovsiannikov (1978) and Ibragimov (1985, 1994, 1999). Many examples
and results with applications of this method are collected in the the Handbooks

of Lie Group Analysis of differential equation (Ibragimov, 1994).

2.1 Local Lie group of transformations

Let V be an open set in Z = RN, A be a symmetric interval in R'. The

invertible point transformations are presented as

Z' = g'(z;a), (2.1)

where 1 = 1,2,..., N, z € V C Z and the parameter a € A.



For differential equations the variables z is separated into two parts, z =
(x,u) € V C Z, where Z = R* x R™, N = n+ m. Here, v = (11,2, ...,2,) 18
the n-tuples of the independent variables and u = (u!, u?, ...,u™) is the m-tuples

of the dependent variables. By the notations given above, the invertible transfor-

mations of the equation (2.1) are represented as

T = o'(z,u;a), W = (z,u;a) (2.2)

2.1.1 Local one-parameter Lie group of transformations

Definition 1. A set of transformations of equation (2.1) is a local one-parame-

ter Lie group G if it has the following properties:

9(z;0) =2z forall z €V,

g9(g(z;a),b) = g(z;a+b) forall a,ba+be A z€V,
If a€A and g(z;a) =z forall z€V, then a=0,
g€ C®(V,A).

The group property is valid only locally, i.e., only for |a| and |b| sufficiently
small. In group analysis, G is referred to as a local one-parameter Lie group of
transformations. For brevity, it will be simply called a Lie group or a group.

Transformations (2.2) are called point transformations, and the group G is
called a group of point transformations.
The representation of the functions ¢'(z,u;a) and 17 (z,u;a) are given as

follows:

Ty = (pz(x7u7 CL) ~ T + gi(l’,U)C% aj = wj(xa U, CL) ~ uj + nj(x,u)a, (23)

where

¢ (x,u; a)

a,u) = D



Consider the first-order differential operator

where ¢ and j are repeated indexes which mean a summation of terms with respect
to ¢ from 7 = 1 to m and with respect to j from 7 = 1 to m, respectively. This
operator X is called an infinitesimal generator or a generator of the Lie group of
transformations (2.2), and the terms infinitesimal operator, group operator, group
generator, and Lie operator can be used interchangeably. The functions &%, 1)/ are
called the coefficients of the generator.

For a given infinitesimal transformation (2.3), a corresponding group is
completely determined by the Cauchy problem of a system of ordinary differential

equations, called Lie equations:

dy’ . .

T 5%@7770)7 SOZ o — T
dq/ﬁ“ 0 (2.6)
EE: ](SO,w), w]‘azozuj.

There is a one-to-one correspondence between Lie groups of transformations and

infinitesimal generators.

2.2 Prolongation of a Lie group

The space Z = R™ x R™ is prolonged by introducing the additional vari-
ables p = (pF). Here a = (a3, ay, ..., a,,) is a multi-index, and the notations |a| =
a; + as + ... + a, and a; = (o, o, e 1, + 1,41, .0, a) are used. The
variable p* plays the role of a derivative,

L Ollyk el k
p = —= .
¢ Oxe 0zt 0xg?...0xen

The space J! of the variables :

r = (x;), u = (u"), p = (ph);
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fori = 1,2,...,n; k = 1,2,...,m; |a] < lis called an [-th prolongation of the
space Z. This space can be provided with a manifold structure. For convenience
one agrees that J° = Z.

Let the infinitesimal generator
X = &(x,u)0, + 1’ (2, u)0u (2.7)
be an infinitesimal generator of a Lie group of transformations of equation (2.2).

Definition 2. The generator
X'=X+Y 9o, (=1..m |o <), (2.8)
ja
with the coefficients
Maw = Dty = DopasDi€'s (a1 <1-1) (2.9)

is called the [-th prolongation of the generator X. The operators

0] .0
D - + J =
| dxy, jzapa’k Oy
are operators of the total derivatives with respect to zx, (k=1,...,n).
A simple example for using the prolongation formula given by equation

(2.8) is illustrated for n = m = 1. In this case, the generator X' includes a

local Lie group of transformations in the space J! :
T=op(r,usa), u=vua),  p=flr,up;a) (2.10)
with the generator
X' =& (2, u)0, + (2, u)0y + C*(x,u,p)d,, (2.11)

where

(" = D,(n") — pD.(§"), pP=—. (2.12)
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To derive the coefficients of the prolonged operator presented in (2.12), one
formulates it through the following process.
Let a function u = ug(z) be given. Substituting it into the first part of

equation (2.10), one obtains

T = p(z,up(z);a).

Since ¢(x,up(z);0) =z, then the Jacobian at a =0 is

0x

a=0

By virtue of the inverse function theorem, in some neighborhood of a = 0, one

can express x as a function of z and a,
r = ¢(Z,a). (2.13)
Note that after substituting (2.13) into (2.10), one has the identity:
T = @(¢(7, a), uo(P(T, a)); a). (2.14)
The transformed function wu,(z) is presented as follows
ua(T) = Y(D(T, a),uo(¢(Z,a)); a). (2.15)
Differentiating the function w,(Z) with respect to z, one finds :

__ Oug

U= o ) = e T Sude 95

oY oo O dug I (81/) o\ 0¢
=4 = (== 4+ =—up) =
or  Ou 0) 0T

Next, differentiating (2.14) with respect to z, one gets

= &p@ 0@du08¢: (8_90+8_<p ,>8¢

T 0rdr  OQudror \ox  ou)or
Since ¢(x,up(z);0) =z, then

9%,

O gb(:f,O),uo(qb(f,O));O) =1
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and
g—jw, 0), uo(¢(7,0)); 0) = 0,

one has g—f + g—‘qf% # 0 in some neighborhood of a = 0. Thus,

00— (%2 %)

0T ox  Ou
and then
- 820 82&, 890 8901 _1_ /.
Uz = (a -+ %u(]) (8_[E + %U()) — 9(%“0; an CL). (216)

The transformation as shown in equation (2.10) together with :

du
dz

uz = g(z,u,u’;a), and D=

is called the prolongation of transformation (2.10). Now, one defines the coefficient

(P as follows:

9g(z,u, p; a)

¢P(x,u,p) = 50

- 9|,_o = P- (2.17)

Therefore equation (2.16) is rewritten as

g(:z:,u,p;a)( @(g,xu, a) +p @(Sg,uu, a)) :( w(g,xu,a) +p w(:(;,uu, a)>‘

Differentiating the latter equation with respect to the group parameter a and

then substituting a = 0, one finds :

2 2
(%(g_i +pg_i> + g((‘fx(‘fa +p88u(;0a>>

0? 0?
B <8xga +p8u§a>

a=0 a=0

99

Since (g—i + p%—“j) T 1, the above equation can be solved for Z? and after

substituting it into equation (2.17), one obtains

¢, u,p) = (Ef;ga +paa:(;/}a> a=0 g“l:O(@a:jga +p88uzga>
-G )l )

ox +p8u ox p@u

= Dx(n") — pD(£7)

a=0
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T o) U 0 0,
where §"= %8| . n'= a_lﬁ o P =52 g and D, = 8%+p%+pxa%+....

Therefore the coefficients of the first prolongation of the generator (2.7) can
be derived by the above process and the the first prolongation of the generator
(2.7) is

XW =X 4 ¢?(x, U, p)0p. (2.18)

Similarly, one can obtains the prolongation formulae for any order prolongation of

an infinitesimal generator.

2.3 Admitted Lie group

Definition 3 (Admitted Lie group). A symmetry group of a differential
equation is a group of transformations that converts every solution of the equa-
tion into another solution of the same equation. This equation is said to be

invariant under the symmetry group.

The terms a symmetry group, a group admitted by a differential equation,
and an admitted group are used interchangeably.

Consider a system of differential equations,
F*(x,u,p) =0, (k=1,2,...,5). (2.19)

Here, z is the independent variable, u is the dependent variable, and p are
arbitrary partial derivatives of u with respect to .

Let u = up(z) be a solution of system (2.19) and the transformations de-
pending on a parameter a given by (2.10) belong to a group admitted by system

(2.19). Therefore, by the definition of an admitted group,

u = (x, uo(7); a)
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is another solution of system (2.19), where po(x) is the derivative of the func-

tion wg(x). Hence
F*(z,u,p) =0, (k=1,2,...,5). (2.20)

whenever u satisfies system (2.19). Equation (2.19) is not changed (is invariant)
under the Lie group of transformations as given in equation (2.2) or, in other

words, the Lie group of transformations is admitted by equation (2.19).

Theorem 1. A system of differential equations (2.19) is not changed with res-

pect to the Lie group of transformations (2.2) with the infinitesimal generator:
X =&z, u)0y, + 17 (1,u)0,
if and only if,

XOFk (2, u,p) =0, (k=1,2,...,5). (2.21)
(2.19)

Equations (2.21) are called the determining equations.

These determining equations are linear homogeneous differential equations
for the unknown &' (z,u) and 7/(z,u). Any solution of the determining equa-
tions generates an infinitesimal generator of system (2.19). The set of transforma-
tions which is generated by one-parameter Lie groups corresponding to all admitted
generators X is called the Lie group admitted by system (2.19) or one says that

system (2.19) admits the Lie group G.

2.4 Equivalence Lie group

Consider a system of differential equations
F*(x,u,p,0) =0, (k=1,2,....s), (2.22)

where z is the independent variable, u is the dependent variable, and 6 = 0(x, u)

is an arbitrary element of system (2.22). Here (z,u) € V C R"™™™ and 6 : V — R'.
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A nondegenerate change of the dependent and independent variables, and
the arbitrary element 6, which transforms system of differential equations (2.22)
to a system of differential equations of the same class or same differential structure
is called an equivalence transformation.

The problem of constructing a Lie group of equivalence transformations
consists of generating a transformation of the space R"*"*(x, u,6) that preserves
the equations while only changing their representation of 0 = 6(z, u).

A Lie group of transformations of the space R"*™** depending on a one-

parameter a is considered here. Assume that the transformations
i*:fx(x,u,e;a), ﬂ:fu(x7ua6;a>7 ézfg(x,u,e;a), (2'23)

compose a Lie group of equivalence transformations and the infinitesimal generator

of this group (2.23) is
X€ = €58y, + 1% 8, + (" O, (2.24)

with the coefficients

Of*(x,u,0;a)

& da a=0 (i=1mn)
g = (:’g;’e;“) o G=Leam) (2.25)
Of" (z,u,0:a
¢ = / (aa )a:o’ (k=1,..,1).

The main point to construct a Lie group of equivalence transformations is to
obtain that any solution u = ug(x) of system (2.22) with the function 0(x,u) is
transformed by the transformation (2.23) into the solution u = u,(z) of a system
of equations (2.22) with the same function F* but with another transformed
function 6,(z,u).

Consider the relations
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By virtue of the inverse function theorem, in some neighborhood of a = 0, one

can express x and wu as functions of Z, u and a :
x = g°(Z,u;a), u=g"(z,u;a). (2.26)

Substituting (2.26) into equation (2.23), the transformed function is defined as
follows

ea(j7 ) = f%l‘,lb,@(%,u);a),

|

where (z,u) of the latter equation has to be substituted by their expression (2.26).
Because of the definition of the function 0,(z,u), there is the following identity

with respect to x and w :

(‘9 o (fwu fu))<x7u79(x7u);a) = fe(x,uﬁ(x,u); CL).

As u = wy(z) is a given solution of equation (2.22), to obtain the transformed

solution T, (u) = u,(Z), one considers the relation
T = f%(x,up(x),0(x, up(x)); a).

By virtue of the inverse function theorem, one finds © = ¢*(Z; a). Substituting x =

" (T; a) into equation (2.23), one obtains the transformed function
ua(Z) = f*(x, uo(x), 0(x, uo(x)); a).
As for the function 6,, notice that there is an identity with respect to x, i.e.
(ug o f7)(x, up(x), 0(x, up(x));a) = f*(x,uo(x),0(x,ug(x)); a). (2.27)

A formula for transformations of partial derivative p, = fP(x,u,p,0,...;a) can be
obtained by differentiating equation (2.27) with respect to .

As the transformed function wu,(Z) is a solution of system of differential
equations (2.22) with the transformed arbitrary element 6,(Z,u), the system of

differential equations

FH(Z,uq(Z), Pa(T), 0a(T, ua(T))) = 0, (k=1,2,...,5s).
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must be satisfied for an arbitrary z. Because of the one-to-one correspondence

between z and Z, one has
FE(f(2(2); a), f(2(2); a), fP(zp(2); a), fO(2(2); a)) = 0, (2.28)

where z(x) = (z,up(z), 0(x,uo(z))), and z,(x) = (x, up(z), po(x), O(x, up(z)), ...).
Differentiating equation (2.28) with respect to the group parameter a, one

obtains the determining equations
XF*(@,u,p,0)| u_y =0, (k=1,2,...,5). (2.29)

The sign | rr_o means that the equations X¢F*(z,u,p,0) are considered on any
solution ug(z) of equation (2.22). Here X°¢ is the prolonged operator for the

equivalence Lie group:
e e ul, ok 0k
Xe=X+("0,; +C"0p +(¢ wa(,kj + .., (2.30)

and the coefficients of the prolonged operator can be expressed as follows,

Cu‘ii _ D;Cuj I uzchelme’

T

¢’ ='Dg ¢ — ok D" — 0% D ¢ (2.31)
(P = De, ¢ — 0k Deye — 08, D5 ¢

where

DS = 0y, + ul Oy + (05, + 0%ud )Opr + ...,
DS =0y, + 0% Opn + ...,
D¢ = 0y + 08,00 + ..,
A solution of the determining equation (2.29) gives the coefficients of an
infinitesimal generator X°¢ and after solving the Lie equation, one obtains the

transformations as illustrated in equation (2.23). The set of transformations cor-

responding to this generator X°€, is called an equivalence group.



CHAPTER III

NOETHER’S THEOREM

In 1918, the German mathematician Emmy Noether formulated the corre-
spondence between the symmetries of a variational principle and the conservation
laws for the associated variational equations, i.e., she combined the methods of
variational calculus with the theory of Lie groups to formulate a general approach
for constructing conservation laws for Euler-Lagrange equations when their sym-
metries are known. It is commonly referred to as “Noether’s theorem”. The
original proof of this theorem used calculus of variations, and an alternative proof
were given in Ibragimov (1979).

Noether’s theorem is applicable if the differential equations (DEs) under
consideration satisfy a variational principle and the used symmetries leave the
variational integral invariant. This implies that not every symmetry of a DE can
generate a conservation law through Noether’s theorem, and a suitable Lagrangian
of the DE is needed.

Therefore, this Chapter will start with the basic idea of the variational prin-
ciple; which an Fuler-Lagrange equation can be derived. The variational derivative
(or the Euler-Lagrange operator), Noether’s identity, Noether’s theorem and the

conserved vectors formulae are also presented here.

3.1 Hamilton variational principle

Mechanics is the branch of physics studying motion. One of the aims of
study in mechanics is trying to explain the World by means of the smallest possible

number of universal laws and general principles. The most successful and fruitful
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attempts emanate from the idea that the observable events are extreme in their
character, and this general principle found is called variational, i.e., they assert
that certain parameters obtain their maximum or minimum values in realizable
physical processes.

A variational principle was first formulated in mechanics by Pierre Moper-
tuis in 1744. His principle opened up a new idea of the least action principle which
made the necessity of a technique to deal with the so-called action functional or

action integral,

This technique was developed into a theory of dynamics by Euler, Lagrange, Jacobi
and Hamilton; the developed techniques for their variational principle are reviewed
by Berdichevsky (2009).

The most general formulation of mechanics through the principle of least
action was explained by Hamilton. This theorem known as Hamilton’s variational
principle, states: the motion of the system from fixed time t; to ¢; is such that

the action integral

Haw) = [ £sate) o w)a 5.)

to

is an extremum for the path ¢(t) of motion. In other words, the variational of the

action, 01, is zero for this path, i.e.
ol =0. (3.2)

Here t is time, ¢ = (¢', ..., ¢™) are coordinates and ¢’ denotes the velocities of the
particles of the system. The action is defined on the set of functions ¢* = ¢*(t)
such that the integral exists in an arbitrary interval of time to <t < t;.

To find the variational of the action functional, 6, one considers infinites-

imally small variations, dg, of some function, ¢:

q— q=q+dq,
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where dq = dq(t) is an arbitrary function such that it is small everywhere in the

interval ty <t <t; and vanishes at the boundary, i.e.,
dq(to) =0 and dq(t1) = 0.
The corresponding change (variation) in the function E(q, q, t) is

0I = 1(q+ dq) — I(q)

t1
~ [ £(tadad+biar— [ Lftad)

to to

t1
=/ (ﬁ(t,q+6q,q+6q)—,c(t,q,q))dt.

to

Applying multi-variables Taylor series, one has,

0L(t0.) OL(t.0.4)

. 2
&, i 54 + O(8¢2).

L(t,q+06q,q+06d) = L(t,q,9) +

Therefore the change in the action integral yields the linear principal part of o1

(summation in o =1,2,...,m) :

t1
ol :/ —0¢% + ——0q¢“)dt. 3.3
o (@qa q aqa q ) ( )

Since ¢ = q+ dq, one of the explicit forms of the variations in the coordinate and

velocity is

0g =q—q,
Cdg dg d, . d
0=~ a = a9 = goe

To put equation (3.3) into a suitable form for simplification, then this equation is

rewritten as

hooc oL dig”
ol :/ —0q% + — dt.
to (8qa q aqa dt )

Integrating by-parts of the second term, one finds

b AL dog” L n U 4oL
-~ dt = —6g%| — ¢ — —dt.
/t (aqa dt ) 2207, /t 04" Gt o
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Substituting this integral into equation (3.3), one has

5]:/t:1(a_£5a—5q d@ﬁ)d 3£5q

aq° dt 0~ e to
oL d 0L o oL oL
—/m (G~ o )2 55507~ 5

and by the boundary condition dq(ty) = dq(t1) =0 :

The necessary condition for I to have an extremum is that 6/ = 0. Since for

time interval ¢y <t <t¢; and function 0¢* are arbitrary, this equation is satis-

fied if and only if

—— ——— =0 =1,2,....m. 3.4
dq®  dt 0¢* | @ & ceey T (3-4)

Differential equations (3.4) are known as Fuler-Lagrange equation. Thus the
path ¢ = ¢(t) of a mechanical system with the Lagrangian L(t,q,q) solves the
Euler-Lagrange equation.

One can treat a multi-dimensional problem with n independent vari-
ables * = (x1,%9,...,7,) and m dependent variables u = (u!,u?, ...,u™) in a
similar way.

Let A be the space of all differential functions of all finite orders, and £ € A,

be a differential function of the sth order, £ = L(x, u, uny, w(), u); --., ). Here, the

notations upy = {uf'} = {M} = {u;,} = {a%a%} for iy < ig, ug) =

{ud i} = {8%8%8%} for i1 < iy < i3,... are the sets of first-order, second-
order, third-order etc. partial derivatives where o« = 1,2,...,m; i,1q,1%9,...,=
1,2,...,n. Let V. C R"™ be an arbitrary n-dimensional volume in the space of the
independent variables x with the boundary oV'.

An action integral, also termed a variational integral ,

= /Vﬁ(x, w, uyy)dx (3.5)



22

is defined on the set of functions u = wu(z) such that the action integral (3.5)
exists. Here £ = L(x,u,u(y) is a differential function of the first order.

The variation 61 of the integral (3.5) is presented as
ol = / (ﬁ(x, U+ a, U + a(l)) — ﬁ(:L‘, u, u(l)))dx.
1%

Applying multi-variable Taylor series yields the linear terms, and one obtains:

o1 = [ (G + St
14

ou oud '
Integrating by-parts of the second term and using the assumption that the func-

tions a®(x) vanish on the boundary, the above equation becomes, (see in Ibragi-

mov (1999), Bluman, Cheviakov and Anco (2010)),

oL oL
5T = | (Z&2 — Di(ZE))ad
/V (aua ( au;)z ) ) a-ax
A function w = wu(z) yields an extremum of the variational integral (3.5)

if I =0 for any volume V and any a = a(x) vanishing on the boundary. It

then follows from the first expression that

oL 0L
ou® — Ou~ Di(

=0, a=12.,m. (3.6)

oL
The operator —— is called the Euler-Lagrange operator.

ou®
Similarly, one can obtain Fuler-Lagrange equations if £ is a differential

function of the second order, £ = L(x,u,u),u(2)). The Euler-Lagrange equa-

tions then have the form

oL oL
&= _ 9% _p.
Su® — Ou” Z(

oL oL
guz) + PinDiage)

% 1192

=0, a=1,2,...m.

In general, an Euler-Lagrange equation is in the following form

)
% =0, a=1,2,...m, (3.7)
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where the function £ = L(z,u,unq), @), ..,uw ) is a Lagrange function. The
Euler-Lagrange operator is then defined by the formal sum

. 0
+3 (=1)*D;,... D;, G (3.8)

821 Zl...is

50

ou®  Ou®

where D; is the total derivative with respect to z;, i.e.,

0 0 0 0
_ o o o W i=1,2 .., 3.9
Ox; T ou + Ui oug Uiy oug ;. toen " (3:9)

D;

and for every s the summation is supposed over the repeated indices 7;...15 running

from 1 to n.

3.2 Noether’s theorem

Consider a one-parameter group G, of point transformations,

T = o' (z,u;a), u® = YP*(x,u;a), i=12..,n a=1,2..m, (3.10)

with its infinitesimal generator

X = &z, u) g +7)°‘(:L'.,u)i. (3.11)

0x; U

Definition 1. An action integral

/Qﬁ(x,u(x), uy (), ..., upy(z))dz, QCR" (3.12)

is said to be invariant under the action of the group G of transformations (3.10) if

/E(x,u(w),u(l)(x),...,u(k)(x))dx:/E(x,u(x),u(l)(x),...,u(k)(x))dx (313)
Q

Q

where function wu(x) is transformed into @(z), Q@ C R™ is the domain obtained

from Q by transformations (3.10).

Lemma 1. An action integral (3.12) is invariant under the group G of point

transformations with infinitesimal operator (3.11) if and only if

X(L) + LD;(¢") = 0. (3.14)
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Consider a Lie infinitesimal operator

.o, 0 0 0
ngza +n 8a+ga Zmaa +... (3.15)

1112

where the first, the second and the higher-order prolongations are

¢ = Di(n") — u§ Di(&),

= D D (77 ) U?DizDi1(§j) — ug; DiQ(Sj)’

'5112 JU1

& =D ..Di (W) + s,

i1...05

s=1,2,...

]21 s ?
The function W¢ = g~ — & uf is called Lie’s characteristic function. Consider

the operator

, ‘ )
NZ:£Z+WQ

(3.16)

o Y

)
D o
5111? +ZDZ] Zq(W )(Su

s>1 11112...15

where the variational derivatives

)
— are obtained from (3.8) by replacing u® by

u;

the corresponding derivative uy', e.g.
) 0
=~ —eai b1 , (3.17)
oug ; b aum Js
The operator N? was introduced and called Noether operator in Ibragimov
(1985). The operators (3.15), (3.16) and (3.17) are connected by the following

theorem.

Theorem 1. (Noether Identity) The three operators (3.15), (3.16) and

(3.17) satisfy the identity

X + D;(¢) =W~ %qLDNZ (3.18)

Equation (3.18) is called Noether identity (see proof of this theorem in Ibragimov
(1999)). Ibragimov (1979) used this identity for simplifying the proof of Noether’s
theorem.

Noether’s theorem is a direct consequence of identities (3.18) and (3.14).
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Theorem 2. (Noether’s theorem) If the operator X given in (3.15) is ad-
mitted by the Euler-Lagrange equations (3.7) and satisfies the condition (3.14) of
the invariance of the variational integral (an action integral), then the vector
C = (C',...,C™) defined by

C'"=N'(L) (3.19)

is a conserved vector for equation (3.7).

Consider the identity of equation (3.18). Applying this identity to L, one
obtains
% « oL 7
XL+ D& =W*— + D;(N*(L)).

ou®

Taking into account equations (3.7) and (3.14), the vector with the components
C'=N'(L), i=1,...,n.
satisfies the conservation equation

— 0. (3.20)

D;(C") AN

Applying the operator (3.16) to L, the vector field C = (C',...,C™) in (3.19)

can be expressed as

Ci:fiﬁ—l—wa[g—;—l)j(%)+DjDk(aiZ§jk> —] .
+Dj(Wa)[§% —Dk(a‘zgk) +.] +DjDk(Wa)[ai§jk -]

If the invariance condition (3.14) is replaced by the divergence condition
X(L)+ LDy(¢") = Di(B"),  B'€ A, (3.22)
then the fundamental identity (3.18) leads to the conservation law

D;(CY)| =0

(3.7)
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where the conserved vector (3.19) is replaced by
C'=NY(L)- B, i=1,..,n (3.23)

The symmetry X satisfying condition (3.14) is called a wvariational symmetry
while a symmetry satisfying condition (3.22) is called a divergent symmetry.
The second identity is

5 5 ot o, .
I - 7 - -U,; 5 Dz ! 5
(i) + 5uk(aw gui ' Tk ) (3.24)

for 7=1,2,..m.

(X 4 D€~ Di(BY) = X

Applying this identity to the Lagrange function L, one obtains

5 , , 5L 6L ok oag ‘
e X Dz Y — Di Bz :X I =~ \=— — - W, Dl ! .
55 (X(L) + LDUE) = DiBY) = X(55) + 50 (55 = 5k + 0y Di€’)

oL
If the symmetry X satisfies condition (3.22) and —- = 0, then the above

ouk
L
X[ —
(52)

This latter equation shows that a variational (or divergent) symmetry is

equation is reduced to

=0. (3.25)
%:0

oL
admitted by the Euler-Lagrange equation on the invariant manifold — = 0.
U
oL
Here Sul 0 means that equations (3.25) are considered on the manifold Sui 0.
u U

Remark. The identity of equation (3.24) becomes simpler by representing
it in the case where a function £(x, u,p) does not depend on the second or higher
derivatives. The coefficients &' = £ (z,u) and n* = n*(z,u) are also considered

here. Identity (3.24) is valid in more general cases.



CHAPTER IV

EULER-LAGRANGE EQUATIONS

Recently, attention of scientist was attracted to the models with internal
inertia (Gavrilyuk and Shugrin, 1996; Gavrilyuk and Teshukov, 2001)

p+pdiviu) =0, pu+Vp=0, S=0,

ow ow o0 ,0W yrelid
p=pis W ZP((Tp T @((Tp) —dlv(a—p“)) - W

where, ¢ is time, V is the gradient operator with respect to the space vari-
ables, p is the fluid density, u is the velocity field, W(p,p,S) is a given po-
tential, the “dot” denotes the material time derivative: f = % = f; +uV f, and
%—‘2/ denotes the variational derivative of W with respect to p at a fixed value
of wu.

The complete group classification of equations (4.1) has already been ob-
tained by Siriwat, Kaewmanee, and Meleshko (2015) in the particular case where
the potential function W = W(p, p, S) satisfies condition W, # 0. Notice that
the case W, =0 corresponds to the gas dynamic equations.

The starting objective of the present study was to construct conservation
laws of one-dimensional equation of model (4.1) by applying Noether’s theorem
and using the complete group classification of Siriwat et al. (2015). Noether’s
theorem gives a procedure to find conservation laws for a system that admit a
variational principle. When a given differential equations system admits a varia-
tional principle, then the extremum of its action integral yield the Euler-Lagrange

equation. If one has a symmetry of the action integral, then one can obtain a

conservation law through an explicit formula that involves the infinitesimal of the
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symmetry and the Lagrangian of the action integral.

To show that system (4.1) satisfies a variational principle, one requires a
suitable Lagrangian. In this thesis, investigating for a suitable Lagrange func-
tion will be considered through three approaches, namely Shyglevskii’s approach,
Ibragimov’s approach and Lagrangian’s approach in Lagrangian coordinates (New-
comb, 1961). This chapter presents and discusses the concepts of each approach,
in order to investigate the Fuler-Lagrange equation.

To show the symmetries of the Euler-Lagrange equations leave the varia-
tional integral invariant needs 2 steps. The first step is to find an admitted Lie
group. The second step is to show that the variational integral is invariant under
the action of the admitted symmetries of the Euler-Lagrange equations such that

the condition (3.14) holds.

4.1 Shmyglevskii’s approach

This approach is named after Shmyglevskii (1980) even through the study
of differential equations with variational principles was started earlier by Bateman
(1929). Bateman derived various problems from variational principles including
the hydrodynamical equations for non-viscous compressible fluid by using a vari-

ational principle form

o / L dtdxdydz = 0,

in which the expression of the Lagrangian is

u2

L=p(5 = Ulp)+¢+nji)

where w is the velocity, p is the fluid density and U is the internal energy per
mass and f is the substantial derivative : g—{ +u-V.
Later on, Ito (1953) discovered that the internal energy U is not only a

function of p but also of the entropy S. The parameters 7 and p are con-
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served along the stream lines; such that the entropy is conserved in the reversible
adiabatic process. Ito obtained a variational problem with two additive conditions,

namely conservation of mass and entropy. The variational principle states that
U2
5/p(?—U(p,S)+gb+S/l) dtdxdydz =0, (4.2)

where ¢ and p play the roles of Lagrange’s multipliers, S is the entropy and U is
the internal energy depending on p and S. Varying variables p, u, ¢, p and S in
such a manner that the variations vanish on the boundary of the region of inte-
gration, he obtained the Euler-Lagrange equations

u=—Vp— SV,

u2

2
dp .
yn + div (pu) =0,
9(pS)

T + div (pSu) = 0.

Shmyglevskii (1980) presented the variational principle of gas dynamics. He
considered the variational principle in the same manner as Ito, and then verified

equations (4.3) with the thermodynamic equation
dU = TdS + Ldp (4.4)
p* '

where p is a pressure, and he obtained the Euler-Lagrange equation

\Y
D (4.5)
p
Accordingly to Shmyglevskii’s approach, the Lagrangian is
u? . .
L=p(5+o+Sn)—W(p,p,S). (4.6)

2
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By the variational principle, the Euler-Lagrange equations are

u=—Vyo—SVu+p 'W;Vp, (4.7a)

“; +o+Sp=W,- 8;? — div(Wyu), (4.7b)
i= W, (4.7¢)

p+ pdivu =0, (4.7d)

@ + div (pSu) = 0. (4.7¢)

Excluding p from equation (4.7e), one has
S =0. (4.8)
For the sake of simplicity, consider equation (4.7a) for the 1-dimension case,
u=p " "Wsps — 0z — Spta.

Differentiating this equation with respect to ¢ and x, one gets

W

_ 4,0 _
u = —p 2 pWips + p () oo + 07 Wipar — 0t — Stbte — Sttat,

ot
_ ., OW; U
Uy = —p 2P§Wi’ +p 1( (9Ip)pz +p IWﬁpac:c — Qaz — Sellz — Sllzz-
One obtains that
ow o oW
at
r — T x\ T a e ) W:c
Uy + uu P (p((Sp)_l—pax((Sp) )
ow
-1
=—p —) W
ow 0 .
where W, = p,W, + S, Ws — W;(puy)a, 5, = W, — EW,-, — div(W,u).
P
. ow .
Introducing p = P5, W, one obtains
p

pu + pr = 0. (4.9)

Equations (4.7d), (4.8) and (4.9) show that the one-dimensional equations of fluids
with internal inertia

p+ pu, =0, pi+p, =0, S =0,

ow ow 9 ,0W . OW
p=pyy W= P(a—p - a(ﬁ—p) - dlv(ﬁ—p“)) - W,
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can be derived from the Euler-Lagrange equation (4.7) corresponding to the La-
grangian (4.6) :

2

L= p(5 +¢+Sit) = Wip.p.S).

As an example, consider one of the models from Siriwat et al. (2015).

Applying Noether’s theorem to the model with the potential function
W = p~°p*n, (4.11)
equation (4.10) with (4.11) admit the generator
X =10 — u0,. (4.12)

One can check that this generator is a variational symmetry. Noether’s theorem

then gives the conservation laws
D,C*+ D,C* =0,

where
2

u — .
C'E tp —1p “np’ + ple + np),

3

U _3. _3. _ _9. _9.
C? = —tp— —tunp™>p* = 4t np ™ ppo + Atunp” " pra = 2tu”p™* pria + 20”0~ oy

+2tup 2 prugn—2tu’ p 2 g pat2tup T N pu+ 2tup 2Ny pe 2t p 3N pas+pul(e + ).

The underlined terms still contain the unknown functions ¢ and p which
act in the roles of Lagrangian multipliers. This example shows that this approach
can be applied to construct conservation laws. However, the Lagrangian multipli-

ers ¢ and p are not known, one therefore this approach is not suitable.

4.2 Ibragimov’s approach

Ibragimov established the conservation law method in Ibragimov
(2007a,2011). He defined an adjoint equation for a non-linear differential equa-

tion and constructed a formal Lagrangian for an arbitrary equation considered
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together with its adjoint equation. It is proven that the adjoint equation inherits
all symmetries of the original equation which means that application of Noether’s
theorem does not require existence of a classical Lagrangian. Ibragimov also ap-
plied his approach to construct conservation law for several equations such as
fourth-order nonlinear partial differential equations, lubrication equations (Bru-
zon, Gandarias, and Ibragimov, 2007), gas dynamics equations (Ibragimov, 2007b)
and Maxwell equations (Ibragimov, 2006).

Consider a system of sth-order differential equations

Fo@,u,uny, wo), - - ) =0, a =1,...,m (4.13)
with n independent variables z = (z',z%,...,2") and m dependent variables
u=(u,u? ..., u™). The adjoint system

. oL
FJ(,u, v, 001y, (1), W(2), V(2)s - - - Uls), U(s)) = S 0 yao =1,...,m (4.14)

inherits the symmetries of the system (4.13), where £ = v”Fs(z, u, U1y - - - Us))-

Namely, if the system (4.13) admits a point transformation group with a generator

S e, )

o (4.15)

then the adjoint system (4.14) also admits the operator (4.15). Then the quantities
0Fj
oug

1

C'=[¢Fs+ (n* —&us)=—=],  i=1,...,n, (4.16)

furnish a conserved vector C' = (C*,... C™) for the system (4.13).
Applying Ibragimov’s approach to equations (4.1), the formal Lagrangian

18
2

L= (R+%)(p—i—pux)+U(ut+uux+p_lpx)+P7'7, (4.17)

where R, U, and P are Lagrangian multipliers or adjoint functions. The fol-
lowing functions

U = pu, P:Wn_an(p+puw)’
(4.18)

_ ) ow )
R:p 1(p—|—W)+W,~m77 = ﬁ—FanT]
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satisfy adjoint system of equation (4.14).
Choosing the same example as in the first approach, the potential function

and the admitted generator are
W =p3p*n, X =t0; — u0,.

Applying Noether’s theorem, the conserved vectors are

1 1
Ch = —tupu, — pu® — ~tu’p + ~tu’p, + 1ltnp~*p* — 1ltunp™ s + Stunp > ppia

2 2
+ tun,p~* 7,
2 3, 9 3 o Log. 1 —3 .2 —4 -3 -3 .
C* = —§tu puy — §u p— Etu p+ étu Pz — Otnp " p uy + 23tunp~ " p7 4 8tunp” " puspy

— 4TtuPnp™ % pp + 8tuPnp P phuy + Llunp™>p° 4 5tu’ p=° o, — 8tu’p™> ppan,
+ 8tuPnp > pa(pu + upr) + 24tu’np pp?.
This approach is not suitable because the equations for U, P, and R are
more complicated than the original equations. For the multipliers U, P, and R
given above is just an example solution which means that the Lagrangian can be
found more and one can not say which one is the suitable Lagrangian and it also

takes more computation on finding.

4.3 Lagrangian’s approach

The Lagrangian map is applied here such that these Lagrangian coordinates

satisfy the variational principles, and the Euler-Lagrange equations can be found.

4.3.1 Lagrangian map

Let D(t) be the position of a medium at the moment of time ¢. The
particles are labeled by their initial position X in the reference space D(ty), the

motion of the continuum is defined as a diffeomorphism from D(ty) into D(t),
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v :D(ty) = D(t) :

r=p(X,t) € D(t).

Here, z isthe material point (or particle) of continuous medium which is obtained
as a result of movement of a fixed point X € D(ty). The set {z(t) | t > to} is
called the trajectory of the point X € D(ty).

The velocity u and the deformation gradient I are defined by

R0 t)’ r
ot

Oz Op(X,t)
C0X 90X

Let f be a function of position = and time ¢, representing some physi-
cal property of the movement. There are two ways of describing the field f given
on the moving continuous theorem. The first one is Fulerian description; it con-
sists of giving value of the field f of x in the position D(t) at time t, i.e.,
it has a value f(z,t). The second one is called Lagrangian description. This
field is a function of each particle X € D(t;) at time ¢, writing f(X,t). Coordi-
nates (X, t) are called material or Lagrangian coordinates and (z,t) are called
spatial or Eulerian coordinates.

To avoid possible confusion, we will use different notation for functions.
The corresponding families of f in the Eulerian coordinates will be denoted

by f(z,t) and in the Lagrangian coordinates will be denoted by f(X,t). The

functions f(x,t) and f (X,t) are related by the identity

~

f(X,t) :f(gO(X,t),t). (4'19)

In this approach, the velocity w, the density p and the entropy S are defined

as follows,

~ 0p(X,t)
Y

u

= (X, 1), pdetF = po(X), S = So(X), (4.20)

where po(X) is the reference density.
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Therefore functions w(z,t), p(x,t), and S(z,t) in Eulerian coordinates

can be written through the relation (4.20) in Lagrangian coordinates as follow

u(ap(X, t)7t) = ‘;Ot(Xa t)> p(@(X> t)vt)@X(Xv t) = pO(X),

S(p(X,1),1) = So(X).

(4.21)

4.3.2 Euler-Lagrange equations in Lagrangian coordinates

Newcomb (1962) was the first one who considered Lagrangian and Hamil-
tonian methods in gas dynamic equations which also can be found in Gavrilyuk
(1996, 2001). The presentation of the Lagrangian of fluids containing gas bubbles
(bubbly fluid) is

2

L5(t,,p,u,5,5) = p- = W(p,4,5) (4:22)

where W =W (p, p,S) is a given potential. Here L£F is presenting the Lagrange
function in Eulerian coordinates.
Applying the relations (4.21) between Eulerian and Lagrangian coordinates,

then the Lagrangian, £*, in Lagrangian coordinates is

2
£L<t7X7907p07gphng?gthWSO) = &ﬁ - W (—pia _p_;)@tXaSO(X)) . (423)
px 2 ¥Yx  Px

The present research considers the gas dynamics equations where the po-

tential function is W = W(p, S). Thus the studied Lagrangian is

2
£ X oo SX0) = = s (2500)) . a2

where £ = ¢xLL. The action integral is defined as

t1 t1
a:/ / Ededt:/ / L dX dt,
to DE(t) to DL (to)

and the Euler-Lagrange equations related to the Lagrangian can be obtained by

applying the variational principle, and it is in this following form:

5L

5, =0 (4.25)
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where
) 0 0 0 0 0 0
—=—-D;— —Dx—+D]—+DDxy——+Dx——+ ...,
dep i taSOt XaSOX tasﬁtt ! Xa%x X390XX

and D, and Dy are total derivatives with respect to the Lagrangian coordi-
nates. Moreover, the operators of total derivatives in Lagrangian and Eulerian

coordinates are

where, operators D,, D; are total derivative in Eulerian coordinates.
Simplifying equation (4.25) for the Euler-Lagrange equation with the La-

grangian (4.24), one obtains

P0x Woppx Po + Wos 0% p0Sox — Wappx x pg — WspsSox + @upspo = 0. (4.27)

Because of the relations between variables in Eulerian and Lagrangian co-

ordinates, one gets
Pt = Pl + U, PX = PXPx Sox = x5z, Pox = PrPx + PPXX-
Substituting them into (4.27), one has
p(uz+ uug) — SoWs + pSuWos + ppa W, = 0. (4.28)
Introducing p = p%—vg — W = pW, — W, one gets
Pe = Wy + pWoe — Wo = 0. W, + p[Woppa + WysSa] — [Wope + WsS, |

= pmepp + prWpS - SxWS

Finally, equation (4.28) becomes

p(uz + uuy) + p = 0. (4.29)
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The relation condition p(p(X,t),t)ex(X,t) = po(X), can be rewritten as the
mass conservation law

P+ upy + ugp = 0. (4.30)

Moreover, differentiating the relation condition S(@(X,t),t) = So(X), with re-
spect to t, one finds

Si+ 1Sy = Sy +uS, = 0. (4.31)

Therefore (4.29), (4.30), and (4.31) can be obtained from the Euler-Lagrange
equation (4.27) together with the relation condition (4.21). This means that the
Euler-Lagrange equation in Lagrangian coordinates reduces to a gas dynamic equa-
tions in Eulerian coordinates.

Consider the Euler-Lagrange equation (4.27) :

Pox Wopox o + 0% S0x Wospo = Wopox x py — Wk Sox + upxpo = 0.

Without loss of generality one can assume that p, = 1. In fact, consider the

change
X=g(X), A(X)=a(X)p(X), f=t G=gp S=5X). (432

Let X = h(X) be the inverse function of g(X): h(g(X)) = X. The above

transformation can be written as

po(X) = a(h(X))po(h(X))

and one obtains the following conditions :

po, = axh po(h(X)) + a(h(X))po I, So. = Soxh'.

The change in (4.32) maps a function (X, t) to the function ¢(X,#) = p(h(X), ),

and maps the potential function W = W(p,S) to the function W(p,S) =
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(X)) = W(M,So(h(ff))). If ' = «, one finds these fol-

pxh'

=

-
g\

i

lowing relations,

@ = P, ox = oxh, it = Pt Pxx = pxh" + pxxh', (4.33)

Wﬁﬁ = me WpS = WpS WS = Ws.

Substituting the Euler-Lagrange equation with all relations, one gets

— pox WisBxPo — 9% Wispo + Wiz x by + WspxSo, — G o
B 1
Y

+W,, (QOXh" + gOXXh’Q)OzQ,o% + WS¢§(h’3SOXh' — gottgoi(h’?’apO)

< — (axh po + apo W )Woppxh'apy — npﬁh’QSOXh’ngapo

2 2
aaxp " Popo
= - pp@XTO - prSOXTX - WpSSOg(SOXO‘PO

062 2
+ prSOXXTpO + Wsk Sox h' — oupXap

052[)390X h//
h'°
a2 aoy
R
°05

(6%
+ prSOXXT + Wk Soxh' = wuexapo.

+ W

OKQPOPOX

) 2 WPPSDX h/

= prQDXp?) ( - WpS‘:Dg( Sox AP0

As h'(g(X)) = a(X), the above equation becomes

—W,p0xPopox — Wos 0% Sox o+ Wopexxpy + WspSoy — @rppo = 0.

This means that (4.32) is an equivalence transformation. It does not change equa-
tion (4.27), it only changes the functions po(X).

In the particular case of an isentropic solution, ie. Sy(X) is a con-
stant, one can assume that po(X) is a constant by the transformation

with «(X) satisfying the condition

and one obtains that



Hence, the equation (4.27) transforms to

1
QOtt90§( — pr(PXX = 0, where W = W(gp_’ SO)
X

In the particular case where

1 1
—W,p(—, So) = k* = constant,
Px Yx

equation (4.34) becomes the wave equation, ¢; — k*pxy = 0.
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(4.34)

Moreover for pr(%{, So) = k*p3%, it can be written in Eulerian coordi-

nates as

pr(p7 SO) - kzpig'
Since p, = pW,,, one obtains
Pp = k2p72~

The pressure p in this case defines the Chaplygin gas.
From what was mentioned above, one can assume po(X)

W(p, So(X)) = W(p, X), then equation (4.27) can be changed to

<P_2><pr it prﬁpxx P WX903X + %t%@%( =0.

1, and

(4.35)

From here on; the tilde (7) symbol will be omitted. Since p = pW, — W, and

Wip,X) = W(chx’X)’ one finds

1 1
Wop = ;pm Wox = ;(px + WX)'

Substituting the above relations into equation (4.35), it changes to

O +Px + Doy xx = @u + Dxp=0.

Equation (4.36) takes the form of a one dimensional wave equation.

(4.36)

Consider the one dimensional wave equation presented in the following form

1t = Pas p=p(x, 0, ¢).
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There are several author who have studied the group properties of this type of equa-
tion. Ames, Lohner, and Adams (1981) demonstrated how a number of physical
problems from gas dynamics, shallow water waves, dynamics of a finite non-linear
string, elastic-plastic materials and electromagnetic transmission line satisfy the
quasilinear wave equation ¢y = [f(p)¢s]. for arbitrary f € C*(R), f > 0, f # 0.
Ames et al. also provided the symmetry group which are presented in several
cases of function f(¢). Baikov and Gazizov (1989) and Suhubi and Bakkaloglu
(1991) considered arbitrary function p = f(¢,) and Vinokurov and Nurgalieva
(1985) found the conservation law of this function p (see in Ibragimov (1993)).
For the case of polytropic gas such that p = —b(z)pl, v > 1, the symmetry
group was presented by Andreev, Kaptsov, Pukhnachov and Rodionov (1998). In
1987, Bluman and Kumei (1987) constructed a complete group classification of
the wave equation with p = —c(z)p,, whereas Grimshaw, Pelinovsky and Peli-
novsky (2010) showed the existence of traveling wave in the one-dimensional wave
equation with a spatially-variable wave speed ¢(z) and also provided the group
of point transformations of this equation.

Notice that these authors studied the symmetry group just only in the
particular case of function p = —b(x)¢) when v > 1 or v = 1, (Chaplygin
gas); in this present study, we will construct the group classification of the Euler-
Lagrange equation which is reduced to one dimensional wave equation (4.36) for

arbitrary function of p = p(¢,,x), i.e.

o+ Dxp =0, p =p (s x).



CHAPTER V
APPLICATION OF GROUP ANALYSIS TO

THE EULER-LAGRANGE EQUATION

In this chapter the group analysis method is applied to construct the group
classification of a gas dynamic equation in Lagrangian coordinates with respect to
the arbitrary pressure function P = P(X,¢y) with the restrictions

Px #0, and P,, <0. The studied equation is
ou+ DxP = pu+ Px + P, pxx =0, (5.1)

where Dy is the total derivative with respect to the Lagrangian coordinates.

Suppose the form of an infinitesimal generator is
X =&, X, )0, + X (t, X, 0)0x +1°(t, X, ¢)0,, (5.2)

with the unknown coefficients &'(t, X, @), &X(t, X, ), and 7n%(t, X, ). The de-
termining equations will give conditions for solving for the coefficients of the gener-
ator X in order to obtain all possible generators which are admitted by equation

(5.1). The way to study consists of the two following steps.

Step 1. Find the equivalence transformations of equation (5.1).

Step 2. Find the admitted Lie group which is admitted for all arbitrary
elements and any specification of arbitrary elements.
5.1 Equivalence transformations of equation (5.1)

A transformation which transform equation (5.1) into an equation with the

same differential structure is called an equivalence transformation. The algorithm
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presented by Meleshko, S.V (1996) has been applied to construct an equivalence
Lie Group. This algorithm assumes dependence of all coefficients on all variables
including the arbitrary elements. Here, the arbitrary element in equation (5.1)
is the pressure function P = P(X,px) which depends on the independent vari-
able and the derivative of the dependent variable and in order to simplify the

equivalence Lie group, new dependent variables are introduced :
U= @y, and V= Py (5.3)
Hence P = P(X,v) and equation (5.1) can rewrite as
u; + Px + Pouox = 0. (5.4)
Moreover, a condition for the mixed derivatives
ux — vy =0 (5.5)

holds.
The independent variables are x; = X, x5 = t, the dependent variables
are u; = u,us = v, us = @ and P is the arbitrary pressure function. An

infinitesimal operator X° of the equivalence Lie group is presented as follows,
X¢ = €90, + (M0, +C"op
= X 0x + €0, 4 C"0u + "0y + (0, + (T Op,
with the coefficients
£ =" (X, tu,v,0,P), (Y =C9(X w0, P), (U =X tu 0,0, P),
where ¢ =1,2 and j7=1,2,3.
The prolonged operator is
X = X4 M0y, + (0, + (Pop,
= X+ (" 0y + ("0 + (" 0py + ("0, + (PX 0 + (¥ 0y,

+ (™ 0py + " Op, + (M Op, + (M Op, + (M2 0p,,



43

where the coefficients of the prolonged operator are obtained by using the prolon-
gation formulae
(Ve =D " =y, Dg €™ — uy,, D7 67,
¢ = D5 (7 = P, D 67 — Py, D567 — Py DS ¢ — P, D5 ¢ — PuyD5 ¢,
P = Dg ¢ — Py DS €7 — Py DS €% — Py DS ¢ — Py D5 (' — Py, D5 C,

Here, the operators are :
DS, = Oy, +uj,, 0y, +(Po, 41, Pu,)Op, D¢ = 0,,+P,,0p, ng = Oy, +P,,0p.

or their expression of the coefficients and operators are

("X = DSC" —ux DS EN —wDSE, (" = D" — ux DfeX — u D5,
(" = D5C" —uxDSES — D€, (" = D¢ — ux DX — v D5,
(% = D5CP — px DYEX — o DYE, (¥ = D¢ — ox DX — p, DEL,
(P = D%¢" — Px DX — PD%¢' — P,D%C" — P,D5 (" — P,D5C?,
(" = Dy¢" - PxD;¢X — RD§¢" — P,DiC" — P,Di¢" — P,D§¢?,

(" =De¢? — PxDig™ — PDiE! — P,DiC" = P,DC” — P,D5c?,

(" = De¢P — PxDie™ — PDiE" — P,DC" — P,DC” — P,DSC?,

(e = De¢P — PxDeeX — PDSE — PuDSC — PDSCY — PoDiC?,
D% = 0x +ux0, + vx0, + vx0, + (Px + ux P, + vx P, + vx P,)0p,

Dy = 0y + w0, + 00, + 90, + (Pr + u Py, + v Py + 0 P,) Op,

DS = dx + Px0p, D¢ = 9, + P,0p,

D¢ =0, + P,0p, D¢ =0, + P,0p, D%, =0, + P,0p.

The conditions that P = P(X,v) is an arbitrary function and does not depend
on t,u,p are

P,=0, P,=0, P,=0. (5.6)
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The determining equations of the equivalence Lie group are

)
¢ — ¢#] ls) = 0, [¢v — ¢¥x] lis) = 0, [¢ux —¢v] Iis) = 0, (5.7)

P _ P, _ P, _
¢ 5= % ¢ s = O ¢ s = %

¢l ¢ ox (P + POy =0
s

After substituting (%, (%, (X, (v, (%, (vx, (P, (ex, (Pe (P (P

¢Px, (P and transition onto the manifold (S) : u; = —Px — P,vyx, equation
(5.7) can be split with respect to the variables uyx, wvx, v, Px, P,. Thesym-
bolic computer Reduce program was applied here. After solving the determining

equations, the following basis of generators were obtained :

Xi = 0, X5 = Ox, X5 = 0,, X; = 0p, Xe =t0,,

X§ = 0, + Pop, XE& =19, — 2Pdp, X§ =10, — 2X0p,

X§ = XO0x + POp,
The following equivalence Lie group of transformations corresponding to these
basis generators will be applied to simplify the function P(X,px) in the process
of the group classification:

X¢ i t=t+a, X=X, p=¢, P=

XS t=t X=
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Here, a is the group parameter. Moreover, a particular case of pressure function,
P(X,¢x) = Pi(X)(ox + P(X))" + P5(X),

can be simplified by applying these equivalence Lie group of transformations
Xe i t=t, X=X, @p=ype', P =Pe @V P =Pt P;=Pse;
X t=te", X=X, ¢g=¢, Po=Pe? P,=P, Py=Pe?;
X tt=t, X=Xe @p=¢p, P =Pe*Y P,=Pe Py=P’;
X i t=t, X=X, p=¢+ta, Pob=P, P,=P, P3=DP—2aX;
X i t=t, X=X, ,p=¢, PP=P, P,=P, P3=P+a;

Xis i t=t, X=X, p=9p+((X)a, P,=P, P,=P,—('(X)a, P; = Ps;

where the function ((X) and « are arbitrary.

5.2 Admitted Lie group of equation (5.1)

The infinitesimal generators of one-parameter Lie groups admitted by equa-

tion (5.1) are sought in the form:
X = €(t, X, p)00 + €50 X 9)0x + 1°(t, X, )0, (5.5)
The prolonged infinitesimal generator of (5.8) is
X = X 4070, + 17X 0p + 17" 0y + 17X Dy + 175X Oy (5.9)

with the coeflicients
N =+ o, — 018, — ey — erox €l — ex&,
n°X = nx + @xn, — eroxtl — il — exEp — oxEX,
NP = nxx + 20x70x + PxTep + PxxNp = 2069xEpx — P Epy
— proxx€l, — 20x0ixEl, — il x — 20exEx — 2050

— ox€o, — 3oxoxx€) — Pxéxx — 20xxEX
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N9 = x4 ©xNpt + Pilox + PrPxTep + PixTle — ProxEl — Prébx — PxPIEL,
- 2S0t<PtX§; - SOXSOttffp - @tffx - SOtxff - Sﬁttfg( - 90?)(5;(; - Sﬁthfgx
— pioxEo, — ProxxE) — 2ox0ixE) — pxélx — Pxx&Y — pixéX,
Ot __ 2 2 _22t_3t_3 t t_2 t
N7 =N + 20Nt + CiMep + Punle — 20180 — Prup — 3PtPul, — iy — 2¢0ué;

— 2010x&0 — Proxo, — 2000exEy — Puex€y — oxE — 2pix &Y.
The generator of (5.8) is admitted by equation (5.1), if and only if,

[X(Q)F(taX790790xa SDttNPXX)} ‘(S) =0.

The last equation becomes

(174X Px x40 Poy x+0xx (67 Pox x 407 Poy oy ) 407X Py | ’(S) =0. (5.10)

This equation is called the determining equation. Here (.S) is the manifold defined
by the relation ¢, = —Px — P, pxx. Substituting the coefficients n#x, n#t, n#xx

and the derivative ¢, = —Px — P, ¢xx , one obtains

20t + 20xNpx Ppy + 90§<77wa¢>< + 90377%0 + oxnpPpy x

+oxoxxNePoxox +OxxNPox + PNy + Mt + Nxx Py

+nx Poyx + 0xxNx Poxox — 290355015 — 2010x8,x Py — @t@gfffpwpsox

— 010 — ProxE0 Py x — 0r0ox0xxEPoxox — Pr0xxE,Ppy
—QSOtXSDXSfDP@X - 380t<,0ttffp - Sﬂtfft - Q@ttff - thfchpsox - sotffowXX (5~11)

—0epxxEx Poxox — 200xEx Pox — 2010x60 — 2055, Pox — X & Pox

_SO?QDXfﬁp - @%{gfpsoxX - ‘P§(¢XX5§P¢xwx - SSOXQOXX&?P@X

—2<Pt90tX§§ - @X%t&f - (ngt)t( - 290tX§tX - @Xﬁi((xpcpx - 90X§§<(P@XX

—oxPxxEX Poyox — 20xxExX Poy + oxx& Poyx + X Pxx = 0.

The equation (5.11) can be split with respect to the parametric deriva-
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tives oy, wix, wxx. After splitting, one obtains these equations

20xMpx Py + 03N Pox + 0xMpPoyx — NoPx + Mt + Nxx Poyx Ppy x
+26 Px — 20%Ex Pox — X & Pox — PXE5 Poxx +0x65 Px — ox&iy
—oxExx Py — 0xEX Poyx +EXPxx =0,  (5.12a)
20xE0x Pox + 0580 Pox + xE0Ppxx — 36, Px + &y — 20t + Ex x P
+E5Poyx +20x80, =0, (5.12b)
Ny — 260 —ox&5, =0, (5.12¢)
to=0,  (5.12d)
oxElPo + & Po +6° =0, (5.12¢)

=0, (5.12f)

©
P +nx P, + 26IP, — @2 EXP —20xEXP
PxNel oxox T NxLoxpx tfox = PxSp Loxex PxSp Fox
—ox€x Poxox — 25 Poy + ¥ Poyx =0, (5.12g)

QOngDP‘PX‘PX T 2§;P<,0X + gé{P@X@X — O (512h)

As P(X,px) isan arbitrary function, one can split the above determining equa-
tions with respect to Px, P,., P, x, P, uy. A solution for the determining
equations is

gt:kla SX:O) n:k2t+k3

The generator corresponding to these coefficients compose a basis of the kernel of
admitted groups such that the kernel is admitted for all functions P(X,px) and

they consist of the generators
X1 =0, Xo = 0,, X3 = t0,.

Extensions of the kernel depend on the value of the function P(X, ¢x).
From equations (5.12c), (5.12d), and (5.12f), by a simple analysis, one

finds

gt X, ) = p€i(t, X) + & (¢, X),
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n(t, X, ) = &, +on' (6, X) + 1°(t, X).

Substituting and differentiating equations (5.12b) and (5.12e) with respect

to ¢, the relations
axpcpx =0 Gtt =0

are obtained. As F,, <0, then
EL(t) = thy + ko where kq, ko are constant.

Substituting all above relations into (5.12¢), then it becomes

fix(t,X) = _Pcpx(géx +90Xk1t+90xk2)

Differentiating this latter equation with respect to ¢x, one gets

Poyox (féx + kitox + kz@x) + P, (klt + k2> =0, (5.13)
and by taking linear combinations of equations (5.13) and (5.12h), one has

P, (kit + k) = 0. (5.14)

The latter equation implies that k; =0, and ky = 0. Equation (5.12h) becomes

Séxptpxtﬂx =0. (5'15)

The study of this equation can be separated in 2 cases: P,,,, # 0 and
Pooy = 0. If P,y = 0, then P(X,¢x) = a(X)px + b(X). This type of
pressure function is called the Chaplygin gas if a(X) and b(X) are constant
and the group classification of this case has already been obtained by Bluman and
Kumei (1986) and Grimshaw et al. (2010). Therefore in our study, we consider

the case

Poxex 7 0. (5.16)
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As P, # 0, one has from (5.15) that &, =0 which means that & = & (¢).

Substituting this relation, then equation (5.12b) gives

n'(t, X) = 5 (&, +n''(X)).

N —

Differentiating equations (5.12a) and (5.12g) with respect to ¢, one has
' =ky, &) = kat® + kst + ks,

where ks, ky, ks, and kg are constant. Moreover, one also derives equation (5.12g),

one finds
1
nx(t, X) = 5P <Pg0xg0x (2650 — kapx — 2katox — ksipx)

P (465 — 8kt — 4ks) — 26¥ Pyyx ).

Differentiating this equation with respect to @y, one gets

Poyorox (— 4EX Poy + 26X Py x + 8kt Py + 4ks P, ) 5,17

2
+P§0X Yx

(665 — k3 — 10kat — 5k5) — 26X P,y oy Poyoxx = 0.
Substituting and differentiating equation (5.12a) with respect to ¢ twice, one
derives
' (t, X) = 0" (X) + 0" (X) + t” (X) + 0™ (X),
where

77())(2:07 779?:0

such that 7°2 = k;, and 1% = kg where k; and kg are constants,

9 = g7 (= Koo Paso + s (= 9x Py = 4P0r) -
+2(E50x Poxox + 268 Pox = Poyx) ),
01 ka
oxPx
ks (4Psaxpcpxcpx<px - 5P3xsox) + 25)‘1{( - 2P<PXP%0X%0X80X + 3P£X«Px) (5 20)

"_QSX (P‘PXXPWXWX‘PX - PSOXSOXXPSOXSOX) - k3P<ZX@X =0,
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ks
o (4Pox Posoxox = 5Py ) = 0. (5.21)
PXPX

Moreover, substituting all conditions into (5.12a) again, one gets these following

conditions
ks = k4 8P, P, P 4P2_P 3P2 P 5.99
$ = 57 (Pox PoxxPoxpx = 4P Pooxx =3P Px).  (5.22)
PXPX
k
GP‘%;‘PX <8P£X“0X (PLPX Poxxx + PEXX) - 8P3XP£X4PXX o 3P<2X¢XPXX (5.23)

—4P, Poyox (4waXPs@XsoxX - PsowawxXX)) =0,

ﬁ%%__(fbxwaLXX<__SFLbexwxwx_%5fgxwx) (5.24)

PXPX
-+}gX(__4};X¢X}LX@XWXX_+8}2X¢XX}LX¢X¢X)> = 0.

To simplify the calculation, let us introduce a new constant kks which is k3 =
kks + ks and by taking a linear combination of equation (5.17) and (5.20), then

equation (5.17) becomes

Qk%(QP;X}bXWXWX__3}€X¢X)_%2€§(__2}2X}%X¢X@X +'3ngwx) (525)
—kk3 P2

WX¢X_%2€X(FZXX}2X¢X¢X__}LXWXX}LXWX)) =0.

Since P, # 0, one gets

kk3::f%i;;<2k5(2fbxfbx¢x¢x__3ng¢X)_%2§§(__2P2kaxwxwx

(5.26)
+3FﬁX¢X)_%2€X<F%XX}LX@X@X__FLXWXXFLXWX))'

Differentiating equation (5.26) with respect to X and ¢, one finds these two

conditions

4k5<FLX¢X@X(FQXXILX¢X__QIZXWXX}LX)_%ILX¢X¢XXI%X¢XEZX>
+2£))§Xpsoxsox < - 2P<px<pxsoxpsax + 3P<,§x<px) + 2£§P¢X¢XX (4Ps0xsaxsoxpwx - Pczx<px>
+2£X}%XWX([LX¢XWXP2XXX_%}bX¢X¢XX[LXX__ZQXWXXXFLXWX_%[€X¢XX>

_2§§FLX@X<FZXX}LX¢X¢X'_QILX@X¢XX}LX)'_4£X}bX¢XX}bxwxwxf@xX'::Q
(5.27)
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and

P

PXPX

+P P2 —2P? P

PXPXPX ™ oxpx PXPXPX S"X>

+2£§P¢X<ﬁx ( - 2P90X90X90X90XP90X - 2PSDXSOXSOXP‘PX‘PX>

+2£XPQXX(EZX¢X¢XWXPQX¢X"2}ﬁ )'%8§§fﬂ F@x

PXPXPX PXPXPX

+2£XP<PX<PX ( - P@X@X@XXP@X@X + 2P<PX<PX4PX P@X«PXX> = 0.

dks <P¢X P

PXPXPXPX

(5.28)

Substituting all relations, one finds &5y from (5.12a)

5})(()( = £§< - SPGDXPSOXXPSOXSOX - 2PXP¢’XP<PX<PX<PX + 2P£XP<PX<PXX + 3PXP<2X<,0X>
+2k; <2P<PXP<PXXP50X@X + PXPSOXPSOX@XWX - szXPsOXSOXX - 2PXP3X<,9X>
+£X (PSOXSOX (P‘PXP<PXXX + ngXX) - PSOXSOXX<PSOXPSDXX + PXP‘PX‘PX)

+PXP‘PXXP<PX<PXSDX el szwx (PXX + 2k7)>'
(5.29)

Differentiating equation (5.29) with respect to ¢y, one finds

5))({ (PtpxXP@xlpxPsox ( Y 2P%0XP4PX4PX4PX + 6P42X§0X)

+P?

PxPx
+P<§xpsoxs0x ( - 2PXP<PX<PX<PX<PX + 2P99XP39X‘PX‘PXX)
+2PAOXP</>X¢X¢X (PXP@waxsostX - PczxpsoxsoxX + 5PXP<ZX¢X)>

+2k;5 <P<PXXP<PX<PXP<PX (P@Xpsoxsoxtpx - 4P§X¢X)
+P3x<px
+PL§XP<PX<PX (PXPsoxwxwwx - Ps@xpwxwwxX)

+ ngXPSOXSDXX - 3PXPS§X<PX)

+§X(fbxfbx¢x(_'2PQXXXFﬁX¢X'%fﬁxxfbxwxwx)

+P<PXXP£X¢X( - 2PXP4PX4PX4PX + 2P<pXP<PX<PXX)

(- 3P2 P, pxx —6PxP?2

WX@X)

(2P2 P,eoxx +4PxP? )

PXPX

(5.30)
+P, P (- PxP,. P

x T oxpxex PXPXPX

+P§0XP<PXXP<PX<PX<PX (PXPWXWXSDX + Psox P‘PX‘PXX)

+P, P2 (- PxxP

PXT pxpx PXPXPX + PsoxpcpxsoxXX)

+P‘PX‘PX< B 2P£XXP‘2X‘PX + PXP@XPSDXXPWXWXWX@X

__p2 _ 2 2
PLPXP‘PXXPSDXSDX‘PXX P«pxpgpxngX
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F2P P x P2y + 2P P, ) )

PXPX

+2k7 P2

PXPX

(= PoP +2P2

X7 PXPXPX OxXPx

) =0

Taking a linear combination of equations (5.27) and (5.30), one finds

b = pr— (68 (Pox Poxox (= 3Poxx P2y oy + APx Pox Pooxoxion)

PXPX

+PXP@XP<PX4PX4PX (SP@XP@XS@XS@X + 2P£x<px) + szwx <2P£XP<PX<PXX + ?’PXP;X@X))
+2ks (P%OXPSDXVJX (2PSOXXP£X¢X - QPXP@XPSDXSD)(@X@X)

+PXP<PXP<PX<PX<PX (4P¢XP<PX<PX<PX - ngxgox) + chx@X ( - chxPWwaX - 2PXP£X¢X)>
+§X <P3 (P<PXP<PXXX + Pc,%XX) T PXRPXP@XX (PSOXLPXP%’X‘PX‘PX@X + 4P?

PxXPX SOXQOXQDX)

+PS47XXP¢27)(§0X (PXP<PX<PX99X - P@XPLPXSOXX) + ngsox ( - PXPLPXLPXX - PXXPSOXSDX)

_'_PXPAOXPWUPX (2P80X‘PXP<PX4PX<PXX - 4PS0X<PXXPS0X<PX<PX)
(5.31)
Let us introduce a new function
PR
[ = W. (5.32)
OxPx

After substituting function py(X,px) into all above conditions, the following
equations are the latest form, and they must be analyzed to find the solution
of the determining equation.

Equation (5.21) becomes

kq(4p11 — 5) = 0. (5.33)
Equation (5.23) becomes

k <P2 (8P, Py x +8P2 x — 3Pxx Pyyy) + 8P2_P?

+P‘pX‘PX( — 16, Poxx Poxoxx — 4P£XP<PX<PXXX)) =0
Equation (5.24) becomes

ks <P<pxsox ( —dpx Py + 4 Poyx — 5P<pxX)

(5.35)
42P, pix P (— Ay + 5)) —0.
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Equation (5.27) becomes

EX Pox Poxox <P</7X90X (4pp1,, 111 Px — 611, Px — 2p11x Py + i1 Py x)
P P ) + € (P2 (= 2411, i PxPocx + i1, P Py x
_Hlpéxx + 1 x Ppy Poxx + 2px i Px Ppy o — 311 x Px Ppyox (5.36)
+/”L1P4PXP<PXXX) - Pagx (vasoxpwxwxXX - chngXX)>

+2ks P, P? </£1¢XPX( — 2 + 3) + MlXPsax> = 0.

PXT oxPx

Equation (5.28) becomes

Zggg'ulsﬁxp‘ﬁ)( - 2k5M1¢XP<PX + SX( [ MLPXP@XX + H’lXPSOXSDX) =0. (5.37)
Equation (5.30) becomes

5))§Pgoxp<ﬂx<px <N1¢XPXPsox¢x( —dp + 6) + Poyox (2N1XP<px - NlpcpxX)
+P‘PXP80X80XX> + §X <PSZXSOX (2M1<PXM1PXPSOXX - 3N1¢XPXP¢XX
—p1x Py Pox x — 2t x 1 Px Ppyox + 311 x Px Py oy (5.38)
2 2 2
—1 Py Poyx xx + IulP@xX) T P@x (PSOXQOXP4PX4PXXX - P@X@XX)>
+2k5P‘PXP£X90X (M@XPX (2/,L1 — 3) — /'LlXPgox) =0.

Equation (5.22) becomes

ky
ks = 553 (8P¢XXP¢X¢XP¢X — 4P, o x P2 — 3PjX¢XPX>. (5.39)
PXPX

Equation (5.26) becomes

k3 = m <2€§P¢X¢Xpsox(_2ﬂl + 3) + 2k5p¢xs@xp<px(2ﬂl - 3) (5 40)
+2€X (PSDXXPSDXSDXILL]- — P‘,DX‘PXXP‘PX)> .
Equation (5.31) becomes
hr = 2P</2>X<P1XP<PX < %{P‘PX <4M1s0xP<PX¢XPWXPX — 3P x Ppxpx Pox
+2P,, o x P2, —2P2 , Pxpi+3P2 , Px) (5.41)

+2k5P<PX< — 2M130XP¢X<PXP<PXPX + 2P<PXXP§0X<PXPSOX — P‘PX‘PXXPQEX
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+P¥27X‘PXPX’L“ - 2P€3X§0XPX) + gX( - 2M190XP<PXXPSOX4.0XP¢XPX
+2u1 x P2 Poo Px + Py xxPoy oy P2

PXPX XPXT ox

P,

2 2
+P¢XXP Px _P¢XXP¢X¢XXP¢X

PXPX

+P¢XXP3X¢XPXM1_PtpxwxXPsoxwxP XPX P2 PXPXX)>'

PXPX

Differentiating equation (5.41) with respect to ¢y, one finds
§§PX pxex (P@X (4ILL1ADX§0XPX + 4'u1<PX pxX X‘PXX)
+M1<PXPXP¢X¢X< — 4y + 2)P<PX<PX (2M1XPSOX - H’lP‘;DXX))
+eX ( x Pox Poxex (2M1@XXP<PXCPX 210y p Poxx (5.42)

+ILL1§DXP4PXXP4PX4PX ( - 2P§0XXP€0X + 2M1PXP oxox T PXP@X@X)

2,
+P90X (PQDXSDX P<PX<PXXX gngoXX

+Po Pyyox (=241 Px Ppyoxx + 111x Poxx Poxox)

+P2 (= mxPxPoyoy — 1Py Poyxx + N1P¢XX)>

+2k5 Py Py (P@X (=211, 0 Px = 211 Poxx — fi1x Poxox)

111 PP (2 = 1)) = 0.
Further study of the determining equations is separated in several cases as indi-
cated in Figures 5.1-5.4. Details of solving the determining equations and finding
the function P(X, px) of all these cases are given in Appendix A, and results of
this analysis are summarized in Tables 5.1-5.2. Here details of the study of one of

the branches are presented. We start analyzing the branch choosing p,, # 0.

5.3 Case p,, #0

By equation (5.37), assuming 4, # 0 ,and since P, # 0, then £§ can
be found:

1
§§§ = o P <2k5M1¢XP<pX + fX (MLpXPchX - ,ulXP@XSOX)> (5-43)
Hlpy Fox
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Next, consider equation (5.33), differentiating it with respect to @x, one has
k4 - 0

and

2k5“1<pxpsox (,UthPchX - M1xP¢X@X>
+£X <2M1§0XX/’[’1XPLPXP§0X<PX + 2#13XP¢X P, xx — /“sixpchX (5.44)
_2N1¢XM1XXP¢XP@X@X — 2'u1<pxlu1XP$0XP<px<pXX + ’ul%(PZX@X) —0.

Differentiating equation (5.43) with respect to @, one has

X <,LL1¢XP¢XX o Mlqusxv;x) 0. (5.45)
Px

QMIL,OXPSOX

Let A= <“1¢XP4’XX_“1XP¢XWX

5 ) . Consider equation (5.45), in order to analyze
ulWX Yx ox

the transformations, we will consider two cases: A #0 and A =0.

5.3.1 Case A#0

Considering equation (5.45), when A # 0, then &X = 0. In this case one

finds ks = 0 and a solution for the determining equations is

&=ksy, =0, pg=t"+0® ¥ =0, ¥ =0

This case has no extension of the kernels of admitted Lie algebras.

5.3.2 Case A=0

. . . . . 1258 P, X —MK1 P,
Considering equation (5.45), in this case ( XX PX £X WX) =0, one
Hlex Tex '

can introduce a function py = ps(X) such that

- 'ulngPsOXX - :ulXPLPXSOX

2M1wx}bx
From the latter equation one has
Ml%x(fbxx'_'2u2fbx>

PXPX
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Equation (5.44) reduces to the equation

stto + €5 (o +13) = 0. (5.48)

Differentiating equation (5.48) with respect to X, one gets

k5<2uzx + u%) +eX <u2xx + Bpa 2 + MS’) = 0. (5.49)

Equations (5.48) and (5.49) are algebraic linear homogeneous equations with re-
spect to ks and &X with the determinant jippo vy — 2u2%. If this determinant
is not equal to zero, then ks =0 and &% = 0. In this case there is no extension

of the kernel of admitted Lie algebras. Hence, one has to assume that

Haft2x x — 2N2§( = 0.

The general solution of this equation is ' (X) = 0, and p?(X) = —&

k1 X+ko’
where k; and ky are constants such that k? + k3 # 0.
Case s(X)#0
Substituting pa(X) = m into equation (5.43) and (5.48), they become
X
X §
e S
FEOIRRIURER S %,
and
B (ki X + k) + € ( =k +1) =0, (5.50)

e Casel k=1

Substituting k1 = 1 into equation (5.50), one gets ks =0, then

X = kg (X + k‘z). (5.51)

Equation (5.40) also becomes

k
= #( — 2P Ppyoxx (X + k)
PXTPXPX (5‘52)

+2M1P‘PX‘PX (PSOXX(X + k2) - 2P‘PX) + 6P<PXP90X90X>'

kks
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Let g = g(X, px) be such that

9= ;<_ 2P4PXP‘PX€0XX(X+'I€2)

Pox Poxex

+21LL1P<PX<PX (PGDXX(X + k2) - 2P<PX) + 6P<PXP<.0X<.0X>’

one can rewrite equation (5.52) as
kks = kog. (5.53)
Differentiating equation (5.53) with respect to X and ¢y, one has
kogx = 0, k9gyy = 0.

If g%+ gix # 0, one has kg = 0. In this case there is no extension of the kernel
of admitted Lie algebras. Hence, one has to assume that ¢ is constant.

As kks is constant, say ¢ = kks, the latter can be rewritten as

1
Poyoxx = 3P, (X + 1) <2N1Pgaxgox (Poxx(X 4 k2) = 2P, ) + Poypxpx (6 — 9))-

A similar study applies to equation (5.41), which can be also rewritten in the new

form

k7 = kokou,

or

1
P oxx = (- 2P

TP (X TP\~ 2P (X )" hag P P
px

+2u1 (P?

2 x(X + ko)? — 4P, Py x(X + ko) + AP )

(5.54)
+P<PXPSDXX(12]€2 — gX + 12X) + 2PXXP<Px<pX(X + k2)2
—Poyox (X + ko) (gPx — 4kos) + 2P£X (9 — 6)),

where ko, is constant.

Substituting all these relations into equation (5.18), it becomes

k
M = (= 2K2Pox = 2XPoyx = oxPrro (9= 2) +4Psy ). (5.59)

PXPX
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Since 1% only depends on X and for existence of extension of the kernel of

admitted Lie algebras one obtains that

nx = f(X)ko,
equation (5.55) provides that

1
P

X T Xy (R/JXSOX(_QSOX +2¢x —2f(X)) + 4Psax> (5.56)

where f(X) isa function of X only. Substituting (5.56) into (5.54), one derives

5 Poxox9(4—9) — 40x Py (ox + 9f (X))
+4f(X)Psox@x (QSOX - f(X)) +4px P,y (9—2)+ Sf(X)Psax (5.57)
+4Pxx (X + k2)® — (X + ko) (29Px — 8kos — 4f(X)P,,) = 0.

Notice that (X + k2)? # 0, one from equation (5.57), one can find

Pyy = ) ((pg(P@X@Xg(g —4) + 4px Poyoy (px + gf (X))

1
A4X + k)
~4f(X) Py ox (2x — F(X)) = 4pxPoy (9= 2) — 8f(X) P, (5:59)
(X + ky)(29Px — ko, — 4f(X)P<pX)).
Finally, the solution of the determining equations is
ky =0, ks =0, ks =0, kk3 = kyg, k7 = kokoy,

778? = f(X)k97 778(1 = 07 €t = kGa €X = kQ(X + k?)a

 2kgkogt? + 20t + 20" + kg
— : ,

n

for kyg =n° then, the generator corresponding to these coefficients is
X = kX' + kioX? + ko X

with the basis of generators

X' =0, X% =td,
(5.59)

X = (X + ky)0x + (hoit® + /f(X)dX + %)@0.
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Here the function P(X,px) satisfies the two equations (5.56) and (5.58).
Finding : Pressure function

Equation (5.56) can be rewritten as
20X + ko) Poyx + Poyoy (gpx(g —2)+ 2f(X)) =4P,, .
Thus, the general solution of equation (5.56) is
Py = (2)(X + ko)? (5.60)

where 7 = ox (X + k) — [ F(X)(X + ko) 1dX.
Integrating equation (5.60) with respect to @x we obtain the pressure function,

P(X,ox) = ¢(Z)(X + k2)* ™ + h(X) (5.61)

where ¢(Z) is such that ¢(Z) = (Z;(Z),. Substituting this function into (5.58),
one derives

2(X + ky)hxx — ghx + 4kos = 0.
To find the integral — [ f(X)(X + ko) 'dX, let us introduce the function
C(X)= —/f(X)(X + ky) X,
Then C'(X) = —f(X)(X + ko)™ ! or f(X)=—(X +kp)*"'C’(X). Consider
/f(X)dX =— / (X + ko) 'O (X)dX.
Integrating by-parts, one has
/f(X)dX = —[C(X)(X + ko)™ — / (a+ 1)(X + ko)*C(X)dX]
— X)X + k)™ 4 (a4 1) / C(X)(X + ky)*dX

= —C(X)(X + ko) + (2 + 1) F(X)
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where f(X) = [C(X)(X +ko)%dX or C(X)= (X + k)~ *f(X).

Therefore

- / FOX)(X + k)X = (X + ko)~ F(X),
/ FOAX = (X + k) () + (o + DF(X),

and hence, 7% = kg( (X 4 ko) (X)) + (a+ 1)f(X)).

Then generator in equation (5.59) can be rewritten as

X'=9, X% =10,
(5.62)
X = (X + k)x + (B8 = (X + 1) F(X) + (0 + D)(F(X) +9) )2,
where f = koy and 2(a+ 1) = g. The pressure function (5.61) can be written

as

P(X,px) = ¢(Z)(X + ko)™ + h(X) (5.63)
where Z = (X + ko)™ (px + f/(X)) and (X + ko)hxx — (a+ 1)hx +28 = 0.
By virtue of the equivalence transformations corresponding to the genera-

tors XS, X, it can be assumed that ky = 0 and f(X) = 0. The genera-

tor X3 in equation (5.62) is changed to
X0 = Xox + (B + (a +1)9)0,.

Later on the equivalence transformation corresponding to the operator X¢ will be
applied and this transformation allows one to simplify that § = 0. For o # —1,

the extension of the kernel and the related pressure function are

X4 = X@X + (CY + 1)@08¢, P(X, SDX) = ¢(Z)Xa+2 + h(X) (564)

where 7 = X %px and Xhxy — (o + 1)hx = 0. The result of this case is
presented in Table 5.1 as the model M;.
Further study of the determining equations of the other branches are pre-

sented in Appendix A.
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5.4 Results of the group classification

The result of the group classification of equation (5.1) is summarized in
Tables 5.1-5.2. The first column presents the number of the extension, forms of
the function P(X,¢x) are presented in the second column, and the extensions
of the kernel of admitted Lie algebra can be found in the third column. The

restrictions on functions and constants are given in the fourth column.

Table 5.1 Group classification of the equation ¢, + Dx P = 0.

No. P(X,px) Extensions Remarks
M, ®(Z)X+27 4 h(X) (7 — 1)t8; — XOx v 40,1,
Z=X"%x —(a+1)p0,

XR'(X) = (a+2y - DR(X)=0

My, ®(Z)e=9X 4 h(X) Btd, — Ox + apd, a#0
Z = e px
h'(X) = (28 —a)l'(X) =0

M; ®(Z)X*+ h(X) t0, + X Ox a#—1
Z =X ""px +(a+1)pd,

XB'(X) = (o — DI(X) =0

My ®(px) + BX + X2 dx — Yt20,, v, B#0
Ms  D(px) 10, + XOx + ¢0,, Ox
Mg X (% + Ezelo=R)X) (B+ a(y —1))t0,— a, B#0
290x +2(B —a)pd, 7 #0,1
a—pF#0
M; ePXpl (v = 1)0x — By, B#0

(v — 1)t — 2¢0,, v#0, 1
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Table 5.2 Group classification of the equation ¢4 + Dx P = 0 (continued).

No. P(z,¢,.) Extensions Remarks
My b(X)o% + kib™ (X))  (y(1+m+20) —m)td+ v#0,1
W(X) = % (291) X 0x + 2(yl — m)p0,, m # ~l
m # —1,
l, B #0,
My b(X)e% I(y=1)X0x + (I(v+1)+1)pd,, ~#0,1
V(X)) =% (v = 1)td, — 290, 1,B#0
My b(X)pk + k1 X2 (21 = 1)t0; + 201y X Ox+ v#£0,1
V(X) =pBX 2(20 — 1+ 17) 0, I, B, ki #0
My PXpy + b X2 —Btdy + 270x — 2P0, v #0,1
By k1 #0
My ki Xk + ke X! (v(1 — @) + a)td+ v #0,1
27X 0x + 2(7y + a)pd, ki, ka #0
a#—1,0
Yy+a#0
Mz By + k1 X? Ox = kit*0,, v#0,1, —2
t0p + v X0x + (v + 2)¢0, ki, B#0
My Boy’ + ki X? dx — k120, B,k #0
t0, — 3X0x — @0,
My Byy (v — Dty — 20, B#0
(v = 1)X0x + (v + 1)pd, v#0,1
My By’ Ox, 2X0x + 0, B#0
20, + td,, 20, + @0,
Mz b(X)py® t20; + 10,
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CHAPTER VI

CONSERVATION LAWS

6.1 Constructing Lagrangians

In this chapter we apply Noether’s theorem to construct conservation laws
of the gas dynamics equations in Lagrangian coordinates corresponding to the
pressure function P(X,¢x) presented in Tables 5.1- 5.2. The Lagrangian of the
gas dynamics equations in Lagrangian coordinates is

2
e

L(X prpx) = 2 = oxW(X, px0), (6.1)

where X is the Lagrangian mass coordinate .
The function W (X, ¢x) and the pressure function P(X,px) are related

as follows. Let

W(X,p)=W(X,p™"),  pX,p)=PX,p).

The relation is

p=pW, =W, (6.2)

and p = oy
Consider the function W (X, p) = W(X, p) + pg(X). Then

oW, =W = pW, - W.

This means that the function W (X, p) can be found up to the term p g(X). This
term will be omitted in the further study.
In order to construct the Lagrangian, one has to analyze a non-homogeneous

equation (6.2) for the potential function W (X, p). This equation can be solved by
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the method of variation of parameters, in which one assumes that

W(X’ P) = Pf(X, P)-

Differentiating the latest equation with respect to p and substituting it into equa-

tion (6.2) yields:
of _ 1
op

Hence
1
f(X,p) = ;pdp+g(X)-

Therefore, the general solution of the non-homogeneous equation (6.2) is

W(X,p) :p/p—lzp(X, p) dp. (6.3)

Consider the pressure function P(X,¢x) of the model M; which is pre-
sented in Table 5.1. The Lagrangian can be constructed by applying equation

(6.3) and the process is analyzed as follows
~ 1
W(X,p) = ;p(X, p)dp

=0 [ S(e@xe 1)) do

1

=p / S P(Z) X dp — h(X)
p

where Z = X~%p~ 1L

In the first integral term, one applies the change u = %. Then

1 1 X
—®(2) X dp = /—(ID )X )
/ P’ &) p? ( p )
= —/CD(u)Xﬂaﬂ)du
— —XQ(O“W)Cf)(u),
where ®(u) = [®(u)du or ®'(u) = ®(u). Therefore the potential func-

tion W(X,px) relating to the pressure function in M; is

W(X, ox) = —px ®(2)X* ) — h(X),
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where Z = X “px.

The potential functions of the other models can be solved in similar way.
The results are summarized in Tables 6.1-6.2. The first column gives the number
of models, the second column presents the pressure functions P(X, ¢x), and the
potential functions W(X,px) are shown in the third column. The restrictions
for constants are in the fourth column.

Table 6.1 The potential functions of the equation ¢, + Dx P = 0.

No. P(X,¢x) W(X,px) Remarks

M, ®(Z)X* 4+ h(X) —px1®(Z) X2 — h(X) v #0, 1,
Z =X "%x a# —1
XK(X) = (a4 27 = DI (X)

My ®(2)e@=0X L h(X) —px 1P~ XP(Z) — h(X) a#0
7 =e¥px

h(X) = (28 — )R/ (X)

My ®(2)X° + h(X) o B(Z) X2 — (X)) a1
Z =X"px
XB(X) = (= DH (X)
My ®(px)+ X +79X%  —px'®(px) — (BX +9X?) a, B#0
Ms  ®(px) —ox ' ®(px)
Ms " (¢x + 3@ DY) —px ' n(px)e’™ — FeX y=-1
— e exe’ — fpee v# -1
M;  ePXpl —ox tn (px)elX v=-1
—exe™ v# -1

Mg b(X)pk + k™ ™(X)  —pxIn(ox)b(X) — ki d™THX) ~v=-1

B(x) = £ A ekb(X) — RbTNX) Ay




70
Table 6.2 The potential functions of the equation ¢y + Dx P = 0 (continued).

No. P(X,¢x) W(X, ex) Remarks
My b(X)p) —ox " In (px)b(X) y=-1
X)) =% — G Pxb(X) v# -1
Mo bXOGE+EXE oy (x)b(X) — X2y =1
PO =X —lb(X) - kXT £
My X% + ki X2 —ox tn (px)e’X — k X2 v=-1
—(vil)w}eﬁx — b X2 v # -1

My kX + kX —kXex 'in(py) — kX y=-1

(7+1 XSOX — ky Xt v# -1
Mz Bok + ki X? —Boxtn(px) — k X2 v=-—1
—Fmex — kX v# -1
My Boy’ + ki X? §<P;(3 — ky X?
Ms By —Bex " In(px) v=-1
_(yi)(ﬂ}( v # -1
M B g%}s
M7 b(X)gp;(?’ %b<X)S0;<3

6.2 Conservation laws of equation (5.1)

Noether’s theorem is applied to derive conservation laws
DtCt + DXCX =

Using the kernel of the admitted Lie algebras X; = 0,, Xy = 0,, X3 = t0,,
one finds the conserved vectors which are already known as conservation laws of
energy, momentum and center of mass, respectively. It is very worthy to our study
to construct the conservation laws for the use of extensions of the kernel which they

have not yet been studied and found. Details of the study are given in Appendix
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B and results are summarized in Tables 6.3-6.8. The following details perform the
study of Model 1.

The extension of the kernel of admitted Lie algebras in M; is given by the
generator

Xy =(y—1td — X0x — (a+ 1)p0,.

Determining equation for vector B! is
YL+ L(Di&' + Dx&Y) = DB' + DxB? (6.4)

where Y is the extension of the generator X, B!'= B(t, X, p, ¢, ¢x), and
B? = B?(t,X,p,0,¢x). Equation (6.4) has to be satisfied for any func-
tion p(t, X).

Substituting the Lagrangian L into equation (6.4), one obtains

By = ouB,, — vixB,, — B,

—px B — wux B, —oxxB5, — By

(6.5)

—hxXox — 200+ 7+ 2)X**T9(Z)

200+ 7+ 2
—ahpx — (f)@D? + (7 —2)hex = 0.
Splitting equation (6.5) with respect to ¢u, @ix, @xx, one gets
1 2 1 2 _

BL =0, B’ =0, B. +B =0 (6.6)
20.B), + 2B} + 2px B2 + 2hx Xox + (2a + 7+ 2) X9 (Z) 6
6.7

+2ahox + (2a+ v +2)¢; — 2(y — 2)hex = 0.

Solving equation (6.6), one finds
B' = —pxhy + hs, B? = p;hy + hy,

where h; = h;(t, X, ). Substituting B' and B? into equation (6.7), and splitting

it again with respect to ¢ x and ¢y, one obtains the condition v = —2a—2. Solving



72

the latter equations, one derives

B' = —tox (XI'(X) + 3ah(X) + 4h(X)), 65)
B? = tg (XK (X) + 3ah(X) + 4h(X)). |

The symmetry is divergent. Using Noether’s theorem, the conserved vectors are

C* = X oxH(X) + (a+ 1) (o0 — toxh(X)) — (o + D)t}

— Xopiox + 20+ 3)tX 10 (2), 69)
6.9

1
CX =tXp W (X) + (a+ 1) (¢ + to) h(X) + 5Xgo? + X239(2)

+ ((a + 1) — (20 + 3)tpr — X¢X>X‘3°“4(I>’(Z).
Further details of the study on constructing the conservation laws of other exten-

sions of the kernel can be found in Appendix B.

6.3 Results of conservation laws

The conserved vectors in Lagrangian coordinates of the gas dynamic equa-
tions are summarized in Tables 6.3-6.8. The first column gives the number of the
model. The second column presents the conserved vectors C* and CX, and the

restriction of conditions can be found in the third column.
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Table 6.7 The conserved vectors in Lagrangian coordinates (continued).

No. C*and C¥ Remarks
My X1 =0x — kit?*0,
C' = prpx + kit + 2kt X ¢,
CX = 38p3% + Bhat’0x’ — 5907 — 2kt X o+
kit? X2
Mys X1 = (v — 1)t0, — 2¢0,,
C' =2BtInpx — 26t + 2pp; — tp? + 2X prox, v=-1
C¥ = 28X Inpx + 28(ppox — towpy') — X},
Ct = 2( — Btoy” + ppr — t4), v# -1, y=-3
CX =2Bp3> (¢ — 2tpy).
Xy = (v = 1)X0x + (v + 1)pd,
Ct=—28t, CX =283X. y=-1
C' = 2(— pp; — 2X %), v#-1, y=-1/3
CX = 1(X i} — Bopx " + BXY).
X3 =0x
C'=ppx, CX¥=—-Blnpx+p—3¢7 v=-1
Ct=wox, CX= (&)X — 3¢t v# -1
My Xi=0x
Ct=pipx, C¥=2Lp 2102

X3 = tzﬁt + thaSD,
Ct = 18207 + 10?7 — tpyp, + 21207,

CX = Bt(—p + toy) Py
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Table 6.8 The conserved vectors in Lagrangian coordinates (continued).

No. C%'and CX Remarks

Mg X4 =2t0; + ¢0,
C' = By’ — por + e},
CF = Box'(—p + 2tp1).
Mz C' = 3b(X)Ppx* + 5¢° — togr + 5%,

CX =th(X)(—¢ + tey) oy’

The following section provides conservation laws of the hyperbolic shallow
water equations. This models belong to the particular class model (1.1) considered

by Gavrilyuk and Teshukov (2001).

6.4 Hyperbolic shallow water equations

The one-dimensional hyperbolic shallow-water equations are
hy +uhy, + hu, =0, w + uu, + gh, =0,

where u is the velocity of the fluid and h is the location of the free surface.
Here g = 2v;. It is well-known that exchanging the depth h by p (density of a

gas), these equations describe one-dimensional isentropic gas flow
pr + upy + pu, =0, Uy + uty, + %px =0 (6.10)
with the pressure
p=mp" (6.11)
The admitted Lie algebra of equations (6.10) with (6.11) is infinite-

dimensional and defined by the generators (Szatmari and Bihlo, 2014 ; Chirkunov

and Pikmullina , 2014 ; Chirkunov, Dobrokhotov, Medvedec, and Minenkov, 2014)

Yi =10 +20,, Yo =10, + 0y, Y3 =20, +u0, + 2p0,,
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Yy = 2(z — 3tu)d, + 3t(2p — u?)0, + (v + 4p)d,, + 4pud,,
Yi = f(u, p)0 + g(u, p)0s,
where
Gu = uwfutpfo =0, gp —ufp + fu=0.
Choosing the function W(p) such that

Hp:=pW,—W  or W =myp’,

equations (6.10) are equivalent to the Euler-Lagrange equation

oL
<=0 6.12
i (6.12)
with the Lagrangian
1 _
L= pol5%1 = npoee ).
The Euler-Lagrange equation (6.12) is
@eou + 27 (powe e = 0. (6.13)
Here
4] 0 0 0 d 0 0
—=_—-D + D} + D; Dy + D} +...  (6.14)
Do Dpee

— D
Sp O opr  tOpe ' Opw

is the variational derivative. Because of the equivalence transformation
£ = a(xo) where o/(xg) = po(zo), one can assume pg = 1.

In our further study we will consider the Euler-Lagrange equation (6.13) in reduced

Lagrangian coordinates:
@?%t — 271¢¢e = 0. (6.15)
Calculations show that the Lie group admitted by equation (6.15) consists

of the transformations corresponding to the generators

X1 =0, Xo=0 Xz=0, X4=10,,
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X5 = t@t + 458& + 2@8@, X6 = <p8¢ + 353&
Functions 7' and T? are called densities of a conservation law if
(D:T" + DT?)

=0, (6.16)

where (S) is a system of studied equations, |S means that equation (6.16) is
identically satisfied for any solution of the system of equations (.5).

Assume that

T' =Tt & 0,1, 00), T? =T (1,0, ¢1, ¢e)-

Substituting the latter representation of the densities into equation (6.16), exclud-
ing ¢y found from equation (6.15), and splitting it with respect to ¢ and @ee,

one obtains the overdetermined system of equations:
Tops+ T} + Tope +T¢ =0,
T, +T;, =0, 2nT,, + T, =0.
The general solution of this system is
(T, T%) = ei(T}, TF) + o(T3, T3) + e5(T, T3) + (P, Q),

where ¢;, (i =1,2,3) are constant,

L =tor— o, T =tnp;”
Ty = ¢u(5tpr — 26 — 6) + 10mite; ',
T3 = o (271(5tpr — 260 — 3¢) + £¢7,
T3 = 671 ' (40w, + Epe(10In(pe) + 3) — 15¢) + 507 (Stipr — 3Epe — 9gp),

T3 = 16077t * + 30716010 (4t — 26 — 3i0) + 5EP},

and the functions P(py, ¢¢) and Q(py, ¢¢) satisfy the conditions

pip,g + Q@t = 07 @2@@5 + 271p4pt =0. (6].7)
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Notice that excluding Q(gpt,gpg) from the latter equations, one derives that the
function P(py, ¢¢) has to satisfy
2'71p<pt<pt - @2’]5905905 = 0. (6.18)
The conservation laws related with the densities (T}, 77?) and (P, Q) are
known in the theory of the gas dynamics equations. The conservation law cor-
responding to (T}, T?) is the center of mass conservation law (Ibragimov, 1985).
The conservation laws related with the densities (P, Q) are as follows. It is well
known (Whitham, 1974) that the hyperbolic shallow water equations (6.10) have
an infinite number of conservation laws in Eulerian coordinates:
D.P+ D,Q =0, (6.19)
where the functions P(u, p) and Q(u, p) satisfy the equations

Qu=uP, +pP,, Q,=27P,+uP,. (6.20)

As densities of conservation laws in Lagrangian coordinates and Eulerian coordi-

nates are related by the formulae
P=pP, Q=puP +Q,
one also obtains an infinite number of conservation laws in Lagrangian coordinates
with
P(pr, 0¢) = 9eP(or, 05 Y), Qlir, 0¢) = Qo 02 h) — 0P, 0.

Equations (6.20) become (6.17).

6.4.1 Applications of symmetries for deriving conserva-

tion laws.

Direct checking shows that the symmetries X;, X5 and X3 satisfy (3.22)
with (B!, B?) = 0, and the symmetry X, is a divergent symmetry with the vector

(B, B?) = (,0). The symmetries X5, X¢ and X, do not satisfy equation (3.22).
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Using the generators X;, Xo, X3 and Xy, Noether’s theorem allows one to
derive conservation laws

DT" + DT? = 0,

where the densities of the conservation laws T, T are presented in Table 6.9.

Table 6.9 Conservation laws of the hyperbolic shallow-water equations.

T T? Remark
X1 @f 2ot 2meneg” energy
Xo e 2'yl<pgl —¢?/2  (Whitham, 1974)
X3 Y 9052 momentum
Xy tpr—o yltgogQ center of mass

Remark. The system of modified one-dimensional shallow-water equations stud-

ied in Szatmari and Bihlo (2014),
Pt + upy + puy =0, ut—i—uum—kg(l—%%) pPe =0,
where H is constant, can be rewritten in form (1.1) with the potential function
W =yp(p+2H Inp).
The Euler-Lagrange equation is
Peon — 2mpee(1+ Hyg) = 0.
Remark. The one-dimensional shallow-water equations with arbitrary bottom
e+ ((n+ H)u), =0, u+uu, + gn, =0, (6.21)
where H = H(x) can be changed, by setting

n=p-—H,
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to

P +upy + puy =0, wp + uuy + 291p, = 271 H'. (6.22)

Group analysis of equations (6.21) is given in Aksenov and Druzhkov (2016). The

potential function W for equations (6.22) can be chosen as follows

W =yip(p — 2H(z)),

and the Euler-Lagrange equation is

P — 2npee(1+ H'(0)pf) = 0.



CHAPTER VII

FLUIDS WITH INTERNAL INERTIA

This chapter is focused on the group classification of a class of dispersive

models (Gavrilyuk and Teshukov, 2001)

o+ pdiv(u) =0, pi+Vp=0, S=0, 71)
p=p% —W=p(G — 5(%5) — div(G5u) =W,

where t is time, V is the gradient operator with respect to space variables, p
is the fluid density, u is the velocity field, W (p, p, S) is a given potential, “dot”
denotes the material time derivative: f = % = fi+uVf and %_12/ denotes the vari-
ational derivative of W with respect to p at a fixed value of u. The method used
in Siriwat and Meleshko (2012) (as well in Hematulin, Meleshko and Gavrilyuk
(2007); Siriwat and Meleshko (2008)) followed the classical approach developed
in Ovsiannikov (1978) for the gas dynamics equations. In contrast to the gas
dynamics equations, this method becomes very complicated and cumbersome for
the group classification of equations (7.1) with Wg # 0. In Siriwat and Meleshko
(2012), a complete group classification of the one-dimensional equations (7.1) for a
particular case where the function W = W (p, p, S) satisfies the condition Wg,; = 0
was performed. It is worth to notice that the used approach did not take into ac-
count the algebraic properties of the admitted Lie group. On the other hand the
knowledge of algebraic structure of admitted Lie groups allow essentially simplify

the group classification.
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7.1 Some results of Siriwat and Meleshko (2012)

For the sake of completeness it is necessary to review here some results of
Siriwat and Meleshko (2012).
The basis of generators of the equivalence Lie group consists of the gener-

ators

X¢ =0y, XS =0, X§=10,+ 0y, X§ =t0; + 20y,
X¢ =t0, + 2p0, — u0,, X§ = 0w, X¢ = —ud, + pd, — Wow +t0,,

X§ = pp(S)ow, X§ = pg(p,S)ow, X5y = h(S)0s,

where the functions g(p, S), p(S) and h(S) are arbitrary. Here only the essential
part of the operators X¢, (i = 5,6,...,10) is written.

Since the equivalence transformations corresponding to the operators X¢ |
X§, X5, X§,X§ and X7, are applied for simplifying the function W in the process of
the group classification, let us present these transformations. Because the function

W depends on p, p and S only, the transformations of these variables are presented:

Xe: p=pe*, g =pet, S'=08, W' =W,

X§: p=np, p=p, S =5, W'=W + a;

Xe: p=pe*, p=p S =85, W'=We %

Xe: fd=p  f=p S=85 W=pp(Sa+W
X§: p=np, p=p S =28, W' = ph(p,S)a+ W

Xio: p=p,  p=p S=qSa), W=W;
Here a is the group parameter. The group classification is performed up to this
set of equivalence transformations.
The kernel of admitted Lie algebras is determined for all functions

W(p,p,S) and it consists of the generators

X =0, Xo=0,, X3=10,+ 0.
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Table 7.1 Functions W (p, p, S) such that equations (7.1) admit projective

transformations.

W(p,p,S) Extensions Remarks

My qop=?p* + p*S Xy, X4 —250s, X5— X

My p2p2S+qpPSt X, Xs—Xs, Xo— (k+1)X4+2S0s q #0
My pp*S+ p*u(S) X, X5 — Xe W # S
My p=2p*S Xp, Xy, X5 —Xg, Xg+ 2505

Extensions of the kernel depend on the value of the function W (p, p, S). They can

only be operators of the form
kp Xy + kaXy + ks X5 + ke X6 + (Os,
where ¢ = ((5) and
Xy =10y —u0, — p0y, X5 = 20, + 2t0; —ud, — 2p0;, X¢ = p0, + p0y,

X, = tx0, + t°0; + (x — ut)d, — tpd, — (p + 3tp)9;

Since the function W(p, p, S) depends on p, the term with 0, is also presented in
the generators.
In Siriwat and Meleshko (2012), it is shown that if the function W (p, p, S)

is not equivalent to one of the functions presented in Table 7.1, then k, = 0.

7.1.1 Group classification of equations (7.1) with £k, =0

In the present study we focus on the case where k, = 0. In this case one

can reduce the determining equations®. to the equation

kepg, + pg (ke — ka — 2ks) + Cgs = g(2ks — ko) + p~*(pp + ©), (7.2)

*Equations (2)—(7) of Siriwat and Meleshko (2012)
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where g = (p~'W),, the constant ¢ and the function ¢(S) are arbitrary and
obtained during the integration. Relations between the constants k4, ks, k¢ and
¢(S) depend on the function W (p, p, S).

Notice that the study given in Siriwat and Meleshko (2012) analyzes the
case where W5 = 295 + pgys = 0. Application of an algebraic approach allows

us to omit this restriction.

7.1.2 Algebraic properties of admitted Lie algebras
The commutator table of the Lie algebra Lg = { X3, Xo, X3, X4, X5, X¢} is

X1 X Xy Xy X5 Xe

X110 0 0 0 X1 0
Xy 0 0 —-X; —Xo —X5 0
X3 0 Xy 0 X3 2X3 0
X410 Xy —=X3 0 0 0
X5 | X1 =Xz —2X3 0 0 0

X6 | 0 0 0 0 0 0

The Lie algebra { X7, Xo, X3} is a kernel of admitted Lie algebras, the Lie algebra
{X4, X5, X6} is an Abelian subalgebra. The generator X, belongs to the center
for any function ((S). Since the Lie algebra { X, Xs, X3} composes the kernel of
admitted Lie algebras, then the basis generators of an admitted Lie algebra related

with the generators Xy, X5, X4 and X, can be chosen in the form
BXe + qXs + 7 Xa + Xc. (7.3)

The latter generators also compose a Lie algebra.
Notice that if ¢ # 0 for one of the basis generators, then for this generator’ one

can assume that ¢ = 1.

TOnly for a single basis generator: for other basis generators the function ¢ = ¢(.9).
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7.1.3 Strategy of further study

In the approach used in Siriwat and Meleshko (2012) it was tried to find the
coefficients 3, ¢, v and ( of the basis generators simultaneously with the function
W(p, p,S) by solving the determining equations. This led to a complicated and
cumbersome study.

It is well known that the set of admitted generators composes a Lie alge-
bra (Ovsiannikov, 1978): the property to compose a Lie algebra is automatically
satisfied for solutions of the determining equations.

The idea of the algebraic approach used in the present paper is to separate
the study of group classification into two steps. In the first step one makes a
preliminary study of possible coefficients of the basis generators using the require-
ment of admitted generators to compose a Lie algebra. In the second step one
substitutes these coefficients of each basis generator of the Lie algebra into the de-
termining equation (7.2). Solving the obtained system of equations, the function
W(p,p,S) and additional restrictions for the coefficients of the basis generators
are obtained.

Here we have to notice that the function ¢(S) and the constant ¢ can be
different for each basis generator.

Let us also notice that if one can choose basis generators such that two of

them have the form

G1(9)0s, C2(S5)0s, (7.4)

then this case is reduced to W = 0. Indeed, since the generators (7.4) are basis
generators, then (; # 0 and (;¢5 — ({¢2 # 0. By virtue of the equivalence trans-
formation related with Xf,, one can assume that (; = 1 and ¢} # 0. Substituting

the coefficients of the generators (7.4) into (7.2) one obtains the equations

gs = p 2 (per + 1), plwa — Gapr) + 2 — oer = 0. (7.5)
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Splitting the second equation with respect to p, and then with respect to S, one

finds that
w9 = (ap1, ¢1 =0, c3=0.

Integration of the first equation (7.5) gives
9=pp 0+,
where ¢/(S) = ¢1(S) and f = f(p, p). Hence,

Wip, p,S) = pp(S) + f(p, p) + phip, S).

where h(p, S) is an arbitrary function of the integration, and f(p, p) = f,(p, p). Us-
ing the equivalence transformations corresponding to X§ and X§, one can assume
that v = 0 and h = 0, which means that Wg = 0.

In the preliminary study of Lie algebras of dimension more than 1, it is
sufficient for our goals to use classifications of two- and three dimensional Lie
algebras. These classifications are well-known*. For the sake of completeness they
are presented in Appendix C.

Further study depends on the dimension of a Lie algebra composed by the

generators of the form (7.3).

7.2 Results of the group classification of equations (7.1)

The result of the group classification of equations (7.1) with Wg # 0 is
summarized in Tables 7.2-7.4. The representation of the function W(p,p,S) is
simplified by equivalence transformations.

The first column in Tables 7.2-7.4 presents the number of the extension,

forms of the function W(p, p, S) are given in the second column, extensions of the

tSee for example in Ibragimov (1996)
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kernel of admitted Lie algebras are in the third column, restrictions for constants

are in the fourth column. Details of the study are presented in Appendix D.

Table 7.2 Group classification of a class of dispersive models (7.1).

No. W(p,p,S) Extensions Remarks
My qop=°p* + p*S X,, Xy —250s, X5— X
My p=3p2S + q1p3S* Xp, X5 — X, q1 # 0
Xo — (k+1)X4+ 2505
Mz p=2p*S + p*u(S) Xp, X5 — Xe W # @St p#0
M, p=3%S X, X1, X;-— X
X6 + 250g
Ms  p*¢(pp”,S) —(a+B8)Xa+(B+2)Xs ala—1)#£0
+Xs
Mg ¢(pp™",5) = qoIn(p) 27(Xy — X5) + X5+ 2X6
Mz pg(pp®,S) +pln(p)y(S)  —(a+1)(Xs— X5) + X
Ms  pln(p)o(p, S) Xs
My p*9(p,S) Xy + 5(20%1))(5 ala—1) #0
Mo &(p,S) +In(p)(qo + p(S)) —Xa+ X5 Q¢ #0
My e*(pe, pe?) —(a+ )Xy + (B+5H)Xs a#0
+X6 + 0s
My d(pe®, pe=7%) + qoS 29(Xy — X5) + X5
+2(X¢ + Os)
My e*Sp(p, pelt=2)9%) (—a—2)X; +2X5+20s a#0
My é(p, pe’) + qoS — X4+ X5+ 0s
Mys e ¢(p, pe®) X4+ 0s
M hip)p2+aS Os, —3X4+2X5+259s  ha #0
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7.3 Green-Naghdi models

The models (7.1) were derived by Gavrilyuk and Shugrin (1996) and Gavri-

lyuk and Teshukov (2001) using the Lagrangian

2

L=p5—Wip.p). (7.6)

The Green-Naghdi model corresponds to the potential W = v,p* — vpp?. In par-
ticular, the potential for classical hyperbolic shallow water equations is determined
by the condition ~ = 0.

The Green-Naghdi system is used to model highly nonlinear weakly dis-
persive waves propagating at the surface of a shallow layer of a perfect fluid. In

Eulerian coordinates these equations are

pr+ ups + puy =0,
t (7.7)

plug + uty +271p5) = 2 (p* (Uar + Utler — u3))),

where p is the water depth, u is the horizontal velocity, g is the gravity and ¢ is the
ratio of the vertical length scale to the horizontal length scale. For ¢ = 0 equations
(7.7) become the classical hyperbolic shallow water equations corresponding to
hydrostatic pressure distribution as considered in the previous section. Here g =

27 and y = £2/6 are introduced for convenience.

7.4 Conservation laws of Green-Naghdi models

The admitted Lie algebra of the Green-Naghdi equations is four-dimensional

and determined by the generators (Bagderina and Chupakhin, 2005)
Yi=0, Yo=0,, Ys=10,+ 0y, Yi=10+ 220, + u0, + 2p0,.

System (7.7) has four associated conservation laws (Gavrilyuk, Kalisch, and
Khorsand, 2015):

DAT! + DTF =0, (i=0,1,2,3), (7.8)
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where

"Tyo= p, VI =pu,
Iy = pu,

ITY = 29p*(uf — Ullge — uew) + p(U® + 71p)

T3 = gp(2mp+ P +29p%),

Ty = ypu(2yp’(3uf — 2utiyy — 2ug,) + U + 471p)

Ty = u— %(P3uz)xa

ITy = %uz + vp(—2putty, — 3puZ — 6p uny) + 271p,
which describe the conservation of mass (i = 0), momentum (i = 1), and energy
(1 = 2) due to the surface wave motion. The fourth conservation law (i = 3) can
be interpreted in terms of a concrete kinematic quantity related to the evolution

of the tangent velocity at a free surface (Gavrilyuk et al., 2015).

Here we also note that if
dalh 1l * NP,

then

Dt(Tt §tr Da:f) + Da:(Tm A th) = O,

for any function f.

7.4.1 The Green-Naghdi equations in Lagrangian coordi-

nates

One can check that choosing the Lagrangian

er

£:p02

+ 008 (VP — Mel)

the Green-Naghdi equations are equivalent to the Euler-Lagrange equation (3.7)

oL

5, =0 (7.9)



95

J
where u = @y, p = po(f)gpgl, p= —po(ﬁ)gogngtg and 5o is the variational derivative
¥

(6.14). The Euler-Lagrange equation (7.9) in reduced coordinates has the form:

2 (P2 ouee — Apepespus — Apepicprce + 1007 e ) (7.10)

+03 (27106 — Pipu) = 0.
7.4.2 Conservation Laws of Green-Naghdi Model in La-
grangian Coordinates

Calculations show that the symmetries X7, X5 and X3 are variational.
Applying Noether’s theorem®, one finds the following conservation laws.

For the generator X; = 0;:

1 —4
Tl — é%g _ Voe(Pepree Piepee) n ﬂ’

5
4 e (7.11)
T2 = NPt UPrpue — pupre)
v Ve
For the generator X, = 0¢:
-9
T 2 phof L 7(@5%&@4 Prepe)
, , ¢ (7.12)
T2 L P VPug X <N
fa 5 :
2 Pe P
For the generator X3 = 0,:
—4
TV = — g+ 7(@5%55@5 907559055)7
¢ (7.13)

72 JPue N

Y ¥E

The symmetry X, = t0,, is divergent, with

(Bl7 B2) = (90’0)7

*Because of the presence of mixed derivatives in the Lagrangian, for using Noether’s theorem

one has to rewrite the Lagrangian in a symmetric form Ibragimov (2014).
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and provides the conservation law:

VE(Pepree — dpiepee)

Tl = —tht + 5 )
e (7.14)
72 = Vtus —pie) it
¥ ¥

The generator X5 = t0; + 4£0: + 2¢0,, is not divergent, hence, does not provide a

conservation law.

7.4.3 Relations between conservation laws in Lagrangian

and Eulerian coordinates

The operators of total derivatives in Lagrangian and Eulerian coordinates

are related as follows

D¢ = e Dy,
(7.15)
D, = oD, + Dy,

where (7) is used in order to distinguish time in Eulerian coordinates from time
in Lagrangian coordinates. Because the variables p(¢, z) and u(t, z) are considered
in Eulerian coordinates, omitting ~in further study is not misleading.

Let 7" and 7?2 be the conserved vector in Lagrangian coordinates:
DT + DT? = 0.
By the definition of velocity u = ¢; and density p = gpgl, one has that

—1
Uy = @tg%pg )
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and
DT' + DT? = Dy(pepT?) + DeT?
= pie(pT") + pe Dy (pT") + DeT?
= vy T+ e (uDz(pT ')+ Di(pT 1)) + e D, T
= o0 T+ ¢ (Dx(puTl) —uy(pT") + Di(pT 1)) + e D, T?
— (pree" = ) T + e (DapuT* + T) + Dy(pT"))
— e (DalpuT +T2) + Di(pT")).

Thus, the conserved vector in Eulerian coordinates is
T = pT", T = puT" + T (7.16)

In order to derive representations of the obtained conservation laws in Eu-

lerian coordinates one can use the following relations:
pr=1u, e =p"", e =p e, Pu=Ully + U, Pee = —pPap
Pree = p 7 (Ura: ~ przpil)7 e = p (Uum + ul + Uxt)7
Ot = Upy + Uy + 2Utyy + uui + UglUy, Peee = p~ (3P;2¢P_1 - pmz)7

Pitee = PfS (P (utxa: + UlUggey + 3“1}“3@) — UlUgy — uz - uxt) .

Therefore, the corresponding generators in Eulerian coordinates become as follows.

For the generator X; = 0;:

1
T' = Spu’ = 3quttapyp® — Yuttaep® + 19" = UT; — (P ut ),

1
T = u(ﬁpuz — 3V Uy P p? — 2VUULLp” + 271p2> + fyp3( — Uy + uui + uxut).

(7.17)
By virtue of the equivalence transformation the last term in 7" can be moved to
.
For the generator X, = O¢:

T = u — Y(Ugep® + 4ppatiz) = T4 + Y(p*Up)a,
2 (7.18)

u
T"=3- 2V Uz p* — YUiap® — AYPPatitiy + 271
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The term y(p*u,), in T* can be moved to the coefficient T”. Hence, this conser-
vation law is equivalent to (7.8)j;=s.

For the generator X3 = 0,:

T = —pu + ’V(pguw)z - ngt + '7(p3U:c):c7

(7.19)
" = p(2vuump2 + Ve p? + 3Yppatitty — Y1 — u2)~
This conservation law is also equivalent to the conservation law to (7.8);=1.
For the generator X, = td,:
7.20

Ty = p(u(z — ut) + 7t (2utlyy + Usy + u2) — Y0 Uy + 3Yptpruitiy — Y1pt).
For the gas dynamics equations (v = 0) this conservation was obtained in Ibrag-

imov (1985) and it is called the center of mass conservation law. For the Green-

Naghdi equations (y # 0) we also call it by the same name.



CHAPTER VIII

CONCLUSIONS

The equations of fluids in Lagrangian coordinates are considered in this the-
sis. With a natural Lagrangian, the equations of fluids in Lagrangian coordinates
have the form of an Fuler-Lagrange equation and Noether’s theorem is allowed
to be applied for constructing conservation laws. Three types of these models are
studied: the gas dynamics equations, the hyperbolic shallow water equations and
the Green-Naghdi model.

For the one-dimensional gas dynamics equations the complete group classi-
fication in Lagrangian coordinates with respect to the pressure function P(X, px)
with the restrictions P, ,, # 0 and Px # 0 is obtained. The kernel of admitted
Lie algebras is determined for all function P (X, ¢x). Extensions of the kernel de-
pend on the value of the function P(X,px). These extensions of the kernel are
found by solving the conditions given by the determining equations. The group
classification separates this model into 17 different classes presented in Table 1.

Using Noether’s theorem the kernel of admitted Lie algebra X, X,, X3,
for an arbitrary potential function W (p, S) gives rise to the well-known conserva-
tion laws; the energy, the momentum, and the center of mass, respectively. For
the extensions, first we needed to find the potential function corresponding to the
function P(X, ¢x), and then Noether’s theorem was applied for deriving conser-
vation laws. The results of the study of constructing conservation laws of the
one-dimensional gas dynamics equations are presented in Table 3. The hyperbolic
shallow water equations is a particular case of the one-dimensional isentropic gas

flow with the pressure p = v;p?. Using Noether’s theorem to derive conservation
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laws we obtained new conservation laws which have no analog in Eulerian coordi-
nates. The derivation of the conservation laws of these models are performed in
Chapter VI.

The group classification of one-dimensional nonisentropic equations of flu-
ids with internal inertia are obtained in the particular case where the potential
function W = W (p, p, S) satisfies the condition W, # 0, and is performed in Chap-
ter VII. The Green-Naghdi model corresponds to the potential W = ~;p? — vpp?.
Using Noether’s theorem a new conservation law in Lagrangian coordinates of the

Green-Naghdi equations is found.
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APPENDIX A
APPLICATION OF GROUP ANALYSIS TO

EULER-LAGRANGE EQUATION

A1l Case p,, #0
e Case Il Kk #1

Consider equation (5.50) when k; # 1. One has

ks (k1 X + ko)

G g (A1)

As X #£0, it leads to ks # 0. Substituting all relations into equation (5.40), it

becomes

ks
k’k’g - X 2P P X(le + kg)
(k1 — D) Ppy Poxox ( gy (A.2)

+6P<PXP<PX<PX + 2M1P<PX<PX (waX(le + k2) - QP@X))'

Let g1 = g1(X,px) such that

9= (kl—l)Pwl)(P¢X¢X ( - 2Ps0XP<px<pxX(k1X + kz) + 6P<PXP<px<px

+2p1 Py y o x (PAOXX(le + ko) — QP‘PX)>’

one can rewrite equation (A.2) as
kkg = k5g1. (A3)
Differentiating equation (A.3) with respect to X and ¢y, one has

k‘5g1X = 0, ]{3591(;,)( = 0.
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Since ks # 0, hence, g; is constant. As kk3 is constant, say ¢g; = kk3, the

latter can be written as

. B 1
PXXX T 9P, (kX + ky)

<2:“1P<Px<px (PsoxX(le + ko) — 2Pgox)

+P,

[25¢

PSOXSOX((l - kl)gl + 6))

Substituting all relations into equation (5.18), it becomes

ks
— 2P, ki X + Kk
2(k1 — 1) Poypx < puxll ? (A.4)

_gl(kl - 1)(IDXP<PXSOX + 2¢XP@X@X + 4P‘PX>7

00 __
nx =

Since 7" only depends on X and for existence of extension of the kernel of

admitted Lie algebra, one obtains that

77())?:]{5f1(X)-

Equation (A.4) provides that

1
Py g s
XX T 9k X + ko)

F2Pyox (ox — fi(X) +211(X)) + 4P, )

(91(1 3 kl)‘PXRpx@x
(A.5)

where f1(X) is a function of X only.
A similar study can be performed for equation (5.41), which can be also

written in the new form

k7 = kskoy,
or

1 , B
Pxx = I (4f1(X)P¥,X(k1X + ko) (1 — ky)

4k X + ko)?
Py (9% (krgi(krgr — 291 — 4) + (1 +2)°)

+4ox [1(X) (kigi (b — 2) — 2k + g1 +2) + 4f2(X) (k1 + 1)?) (A.6)
+2( = 291(k1 = 1)ox Py + 4P, (¢x — [1(X) (k1 — 1))

+PX]€1(91 — 2) (le + ]{2 — X — 1) + 4k04(k1X + kg)(l — kl))),
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where ko, is constant.

Finally, a solution of the determining equations is

]{?4 = 0, /{38 = O, k?l{??) = I{?5gl, k}7 = k’5]€04, 7’]2(0 = fl(X)k?5,

ks(k1 X + kK
=0, € = kst + ke, §X:M7
ki —1
2k5k’04t2 + /{:590(91 + 2) + leot —+ 27]00

n: 2

For kip = n"', the generator corresponding to these coefficients is
X - k6X1 + k’l()XQ + k’5X3

with the basis of generators

X'=9, X? =19,

kX + k +2
X* =10, + 1]{1_120)& (kout® +/f u)aw

Here the function P(X,px) satisfies (A.5) and (A.6).
Finding : Pressure function

Rewrite equation (A.5)

251X + ko) Pox = Paspn (324 011 = k) + 2A(X)(1 = k) ) = 4Py,

To simplify the extensions of kernel in this case, one has to separate into two

cases: k1 #0 and k; =0.

o ky #0

The general solution of equation (A.5) for ki # 0 is

ko 2
P, = o(Z2)(X + kl)k : (A.8)
where Z = px(X + kQ — kl D ff1 WX + Z—f)_o‘_ldX. Integrate equation

(A.8) with respect to ¢x to obtain a pressure function,

P(X., ¢x) = $(Z)(X + 7k2)* ™" + h(X) (A.9)
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where 6(2) = $(2)', Z = px (X +7ka) ™ — (1=7) [ fi(X)(X + yha) >~ 1dX and

v = % Substituting this function into (A.6), one derives
(X + vho)hxx = hx(a + 2y — 1) + 2ky(y — 1).

To find the integral —(1—7) [ fi(X)(X + vko)~* 1dX, let us introduce the func-
tion
Cx) = ~(1=7) [ AWK + 9y ax,

then C'(X) = —(1-7)fi(X)(X+7ks)" > or  fi(X) = 7= (X +7k2)* ' C"(X).

Consider
/ fi(X)dX = % / (X + ko) C(X)dX.

Integrating by-parts, one has

[ AAX = = (OO0 + 3k = [ o+ DX + k) CX)AX)

= ﬁ( — O(X)(X + vko)* ™ + (a + 1) /(J(X)(X + 7/@)%1)()
— (- GO0 + 987 + 0+ (X))

where f(X) = [ C(X)(X + 7k)dX or C(X)= (X + vks)~f, (X).

Therefore

—(1=9) [ GO +9ke) 71X = (X 4 3ke) 7 (X),

J AGOAX = (= (X 98 () + (o + D)),

and hence n% = 116_—57( — Xfll(X) +(a+1)f (X)). The generators of equation

(A.7) become

Xlzat, X2:t8¢
3 _ 4 4 —X k)
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_ 91+t2 _ o+l
where 8= ko, and %= = s

The pressure function in equation (A.9) can also be written as
P(X,px) = ¢(Z2) X + h(X) (A.11)

where Z = X"*(px + f{(X)) and Xhxx = (a+2y—1)hx + (26(y —1)).
By virtue of the equivalence transformations corresponding to the genera-
tor X§, X, itcanbeassumed that ky =0, fy(X) = 0. The generator X° in
equation (A.10) is changed to

-X 1
X3 =10, + ﬁaX + m(ﬁ(’y — Dt = (a+ 1)90)8@'

Later on the equivalence transformation corresponding to the operator Xg¢ is
applied and this transformation allows one to simplify to f = 0. For a # —1 and

v # 0, 1, the extensions of the kernel and the related pressure function are

X4 = (’)/ =y 1)t8t ' X@X — (O{ + 1)(,0&,9,
(A.12)
P(X, px) = ¢(Z)X* " + h(X)
where Z = X %pxy and Xhxx = (a+2y—1)hy.
Notice that the solution of (5.64) is a particular case of (A.12) when vy = 1.

Thus the general form of the solution of these two cases is presented in Table 5.1

as model M;.

.]{31:0

Substitute k; = 0 into equation (A.5). The general solution of this equa-
tion is

P(X,¢x) = ¢(Z)e®P =X L p(X) (A.13)
where 8#0, &(Z)= [¢p(Z)dZ, and Z = pxe®X + B [ fi(X)e*XdX.

Substituting this pressure function into (A.6), one derives

hXX = hx(26 - Oé) + 2ﬁ’}/
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Using a similar study as in the previous case to simplify 8 [ f1(X)e**dX, one

gets
B / FAX)e*XdX = X F(X).
and
/fl(X)dX = %(Ja/(X) +af1(X)).

Hence, n% = %5( fl/(X )+ afi(X )). The generators in equation (A.7) become

X' =0, X? =10,
(A.14)
< -
X? =Bt — 0x + (B + f1 (X) + a(f1(X) + ¢))0,.
The pressure function in equation (A.13) is written as
P(X, px) = §(Z2)e® = + h(X) (A.15)

where Z = X (ng + f{(X)) and hxx = hX(Qﬁ — a) + 207.
By virtue of the equivalence transformations corresponding to the generator X{
and X, it can be assumed that f(X) =0, and ~ = 0.

The extension of the kernel and the related pressure function are

X5 = Bt0; — Ox + apd,, P(X,px)=¢(2)e®9X L h(X) (A.16)

where Z = ey, hxx = hX(QB — a) where [, a # 0. The result of this

case is labelled as M, in Table 5.1.

Case [n(X)=0

Substituting all conditions and p2(X) =0 into equation (5.43), it becomes

£¥ = ks. Solving the latter equation, one gets
X = ks X + k. (A.17)

Remark. : As ¢¥ #0, then ksX + kg # 0. Equation (5.40) becomes

2(ks X + ko)

kk3 =
P, P,

(P@XXP@X@X/“ - PADX@XXPAOX)' <A~18>

XPX



116

Let g2 = g2(X, ¢x) such that

P,
P = (P<PXXP<PX<PXIU’1 _P<px<pXXP<pX)7 (Alg)

PXPX

g2 =

one can rewrite equation (A.18) as

ks X + k
iy — 2 Pj 0)92 (A.20)

(2.4

By equation (A.19), one finds

P@X@X (P‘PXXP‘PXIMI - 92)
P2 ’
Px

PLPXAOXX =

Differentiating this equation with respect to px and comparing the result

with (P,

oxoxox )X, one derives
—QQWXP¢X + 2P, 092 = 0.
Solving this latter equation, one gets two solutions :
92(X, px) = W(X)PZ,, 92(X, 0x) = 0.
Substitution all relation into equation (5.36), it becomes
ks(Xhx 4+ h) + kehx = 0. (A.21)
Differentiate equation (A.21) with respect to X, one gives

k’5<XhXX—|—2hx) + kohxx = 0. (A.QQ)

Equations (A.21) and (A.22) are algebraic linear homogeneous equations with
respect to ks and kg with determinant hhxx — 2h%. If this determinant is not
equal to zero, then k5 =0 and kg9 = 0. In this case there is no extension of the

kernel. Hence, one has to assume that

hhxx — 2h% = 0.
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The general solution of this equation is h'(X) = 0, and h?(X) = kzlx—1+k2 where
ki and ko are constant such that k% + k3 # 0.
Case I h(X) #0

Substituting h(X) = into equation (A.21), one gets

1
k1 X +ko

k5l€2 - kgkl == O <A23)

To analyze the extensions of the kernel, one has to split into 2 cases: k; # 0 and

ki = 0.
o k1 #0
As ky # 0, from equation (A.23), one can find
ks
ko = —k
9 kfl 59
and

k ks (k1 X + ks)
X ke Xt g 2
§ 5X + ] 5 o

Substituting all conditions into equation (5.41) and performing a study of this

equation similar to the previous cases, it can be rewritten in new form

k’7 = k5k’03
or
1
Pooxx = <P2 X252 — X224 o Xk
ex XX P (X + k)2 gDXX(M 1 1t 2 ARk

—2Xk1k2 —+ /,leg — kg) -+ PXXPgoxgaX (le —+ k’z)Q
4Py Poxc (= XE2 — kaky — Xky — k) (A24)
+Px Py oy (XK + kiks — Xki + ko)

P (2X K305 + 2k okos) )
where koz is constant. Substituting all these relations into equation (5.18), it

becomes

—k
7% = P—5 (PWX (kX + ky) + @XPWWX). (A.25)
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Since 1% only depends on X and for the existence of extension of kernel of

admitted Lie algebras, one obtains that

X = f2(X)ks.
Equation (A.25) provides that

—Pyyoy (ox + k1 f2(X))
P — PXPX A.26
PxX ki X + ko ’ (A.26)

where f5(X) is a function of X only. Substituting (A.26) into (A.24), one de-

rives
1
Pxx=——F—— (1 X — X))k P,, — k1P
T X 1 ky)? (X4 ) (= Fox (X Po — P (A.27)
+Px — 2k1ko3) + Poyoy (9% + 2k fo(X)px + K 22 (X >))~
Finally, a solution of the determining equations is
2 ko
ky =0, kg =0, kk3 = —ks, k7 = kosks, kg = —ks,
]{?1 kl
ks(k1 X + K
W =0(Xks, =0 &=kt+hs, €= 5<1k—12)
. k5]€1]{503t2 —+ 1{55“{31 = ].)QO =5 7701,1{31t g ’I’]OOkl
For kip = n"', then the generator corresponding to these coefficients is
X = ks Xy + ke Xy + k10 X3
where
X1 - 3t, X2 - tago
A.28)
ki X + ky+1 (
Xy =10, + (%)8)( + <k03t2 + /fg(X)d.fC + ( ll: )<p) Dy.
1 1

Here the function P(X,px) satisfies two equations (A.27) and (A.26).
Finding : Pressure function

Solving (A.26), one gets a general solution

P(X,¢x) = ¢(Z)(X + aka)® + h(X) (A.29)
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where ¢(Z) = [@(2)dZ, 7 = px(X + aky)™ — [ fo(X)(X + aky) > 1dX.

Substituting this equation into (A.27), one derives
(X + Oékg)hXX = hx(Od — 1) — 2k03.
A similar study as in previous cases, gives

_ / FA(X)(X + ako)"1dX = (X + k)~ o (X),

and
/fQ(X)dX = (X 4 ak) 2 (X) + (o + 1) fo(X)
and 7% = k5< XA (X)+ (a+1) f;(X)) . therefore the generator in equation
(A.28) can be written as
X' =9, X% =t0,
X3 =10, + (X 4 aky)dx + (/%2 +(a+1)(p+ (X)) (A.30)
~ (X +aky) [ (X)),

where [ = kos. The pressure function in equation (A.29) becomes

where Z = (X + aky)™*(px + /(X)) and (X + aks)hxx = hx(a —1) — 28.
By virtue of the equivalence transformations corresponding to the generators X§
and X7;, it can be assumed that ky =0, f2(X) = 0. The equivalence transfor-
mation corresponding to the operator X¢ is also used and this transformation
allows one to simplify that [ = 0.

For the condition « # —1, the extensions of kernel and the pressure func-

tion are

Xo =10+ XOx + (o + 1)gd,,  P(X,0x) = (Z2)X* + h(X)
(A.32)

where Z =X"%pxy and Xhxy =hx(a—1).

The result of this case is presented in Table 5.1 as the model Ms5.
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e k1 =0
Substituting k; = 0 into equation (A.23), one gets
ksks = 0.
Assume ko # 0 then these relations

2
k?5 = 0, kk3 = k—k’g, fX = kg where k’g 7é 0
2

are obtained. Substituting all conditions into (5.41) and with a similar study as

in the previous cases for this equation, it can be rewritten in the new form
k7 = k’ngZg
or

1
PSOXXX = W(sz)(]@(,ul - 1) o P‘PXPS@XX
X

(A.33)
ML (PXXkQ — Px + 2k2k03>>
where kos is constant. Substituting all relations into (5.18), it becomes
00 —ky
X =1 <k2P<pXX + @XPgoxgox) (A.34)
2L oxpox
A similar study for (A.34) as performed in the previous cases gives
nx = fs(X)ko
and provides that
_P ko fs(X
PgoXX _ PXPX (90)]22 2 3( )) : (A.35)

where f3(X) is a function of X only. Substituting (A.35) into (A.33), one de-

rives

1
Pxxx = k_§< - f3XX(X)k§P<PX + 3k§f3X(X)P<PX<PX (QOX + k2f3(X))
_90_2XP<PX<,0X90X (SOX + BkaS(X)) - P@X@X@Xk%f32(X) (330)( + kaS(X))

_(pXP<PXSOX (SOX + 2k2f3(X)) - Psoxsoxkg (f32(X) - 1))a
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and

1
Pxx = ﬁ( - fSX(X)kgpwx + 90?)(P90X<PX + ks (PX - 2k2k03)
2

(A.36)
+k2f3<X)PS0XS0X (290)( + kaB(X))>
Finally, a solution of the determining equations is
2
k4 = O, k’5 = 0, kg = O, kk3 = k—kg, k7 = kngg,
2
nx =fs(Xke, k=0, =k, & =k,
. k‘gk’gkOth + k9§0 + 7701]{,'2t + nook'g
n= ey
with ko = n°!; then the generator corresponding to these coefficients is
X = kGXl + klOXQ + l{?ng
with
)(1 = 8t, X2 = ta@
(A.37)

X% = O + (host? + /f3(X)dx + (%))@,.

Here the function P(X,¢x) satisfies the two equations (A.35) and (A.36).
Finding : Pressure function

Solving equation (A.35), one derives the general solution

P(X,px) = ¢(Z2)e** + h(X) (A.38)

where @(Z) = [¢(2)dZ, Z = pxe X — [ f3(X)e *¥dX. Substituting this

equation into (A.36), one finds
hXX = OéhX — 2k03.

Performing a similar study as in the previous cases for finding — [ f3(X)e **dX,

one gets

—/fg(X)eaXdX = e’o‘ngl(X)
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and
/f3(X)dX = —JF3/(X) + af3(X).

Hence, n° = ko( — fgl(X) + afg(X)) and the generators in (A.37) become

X'=0, X% =td,
(A.39)

X% = 0y + (B8 = FX)(X) + a((X) + ) )2,
where [ = kos and the pressure function in equation (A.38) can also be written

as
P(X,px) = ¢(Z)e*™ + h(X) (A.40)
where 7 = e*aX(gox + fé(X)) and hxx = ahx — 20.
By virtue of the equivalence transformations corresponding to the generators X7
and X¢ allows us to assume that f3(X) =0 and £ =0.
Therefore when « # 0, the extension of the kernel and the pressure func-

tion are

X = dx + apd,, P(X, 0x) = ¢(2)e** + h(X) (A.41)

where 7 = e X

vx and hxx = ahx.
Consider equation (A.16) and (A.41), one notices that (A.41) is a particular
case of (A.16) when 5 =0 with —a = &. Thus the general form of these two

cases with the related pressure function is given as model M, in Table 5.1.

Case I1 h(X)=0

Substituting h(X) = 0 into equation (A.20), one finds
kk3 = 0,
and

—P,

PXPX
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Performing a similar study as in previous cases for (A.42), one obtains
n% = f1(X)(kos X + koy),

and provides that

PsDXX - _f4(X)P<PX<PX (A'43>

where f4(X) is a function of X only. Integrating equation (A.43) with respect
to x, one obtains

Px = = fi(X) Py + g11(X). (A.44)
Substituting all relations, one finds

B —k‘s(anX +g11) — g11xko

kr = (A.45)
2
Differentiating equation (A.45) with respect to X, one gets
]{?5( - gllXXX — 2911X) - gllXkag =0. (A46)
Differentiating equation (A.46) with respect to X, one gets
k5( —JguxxxX — 3911XX) — Jrixxxhko =0. (A.47)

Equations (A.46) and (A.47) are algebraic linear homogeneous equations with
respect to ks and kg with the determinant 211y xxg11x — 3911 xx 2. If this de-
terminant is not equal to zero, then k5 =0 and k9 = 0. In this case there is no

extension of the kernel. Hence, one has to assume that

2011 xxx911x — 3911)()(2 = 0.

4

The general solution of this equation is gi; (X) =0 and ¢} (X) = (—)2
k1 X+ko

where k1 and ky are constant such that k% + k2 # 0.
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Case II.1 g1 x(X)#0

Substituting g1 (X) = m, into (A.46), it becomes
—4ksky + 4kgky = 0. (A.48)
One has to study in 2 cases : k; # 0 and k; = 0.
o ki #0

As k; # 0, equation (A.48) and (A.45) give

]{?2 —]{703
ky 2

ks.

Finally, a solution of the determining equations is

—k’Og ]{?2

k4 — 0, k?g — 0, kk?) = O, k7 — :I{Z5, ]{?9 — —]{35,
2 Kk
ki X +k
nx = (1k—12)94(X)k55, nx =0 & = kst + ke
é_X k?5(k51X + k’g) —k5k503t2 + 2k5§0 + 2’[’]01t + 27’]00
= ¥ ’]7 E—=
kq 2

with ko = n°!, then the generator corresponding to these coefficients is
X = keX' + kioX* + ks X°

with

———)ox (A.49)

Here the function P(X,px) satisfies these two equations (A.43) and (A.44).
Finding : Pressure function

Solving equation (A.43), one gets the general solution

P(X, ox) = ¢(Z) + h(X) (A.50)
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where ¢(Z) = [¢(2)dZ, Z = px — [ ga(X)dX. Substituting this function into

(A.44), one finds
E2h(X) = k2 (kosX + kog) — 41n (k1 X + ko).
Consider [ f4(X)dX = —g'(X), one obtains
[ xneoax = -xg0x0) + 3x),

and

where o = kil (#0), and S = k.
Hence the generator in equation (A.49) can be written as
Xl - (9t, X2 — ta@
X* =10+ (X ) dx + (=98 + ¢ + (= XF(X) + §(X)
~ By (X)),

where v = 2kos. Equation (A.50) can also be written as

P(X,ox) = ¢(Z) + h(X)

where Z =¢x + 3 (X) and h(X)=2(7X —2a°In (X +af)) («#0).

(A.51)

(A.52)

By virtue of the equivalence transformations corresponding to the genera-

tors X¢, X§, and X¢, one can assume that §(X) =0, y=0, and 5 =0.

Therefore the extensions of kernel and the pressure function are

where Z = px, hM(X)=—4a’In X (a#0).

(A.53)
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Notice that the result in this case is a particular form of the result in (A.32)
when placing « = 0. Therefore the general form of these two cases is presented

as model M; in the Table 5.1.
[ ] k?l = 0

Substituting k; = 0 into equation (A.48) and (A.45), and supposing

that ko # 0, one obtains

Finally, the solution of the determining equations is
k4 - 0, k’g = O, k’k3 = O, k’5 = 0, k’7 - —2k9,

nxX = fi(X)ko, k=0 &=k & =k,

—2kot? 4+ ko Ol + ky?n®0
n= k22

with ko = n°!; then the generator corresponding to these coefficients is
X = kX' + k1o X? + ko X°

with

—2t?
X' =4, X? =10, X3 =0y + (W + /f4(X)dx>&P. (A.54)
2

Here the function P(X,px) satisfies the two equations (A.43) and (A.44).
Finding : Pressure function

Solving (A.43), one derives the general solution
P(X, px) = ¢(Z) + h(X) (A.55)

where Z = ¢y — [ f4(X)dX. Substituting this equation into (A.44), one finds

2X*?
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Consider [ f4(X)dX = §(X), then
1 = ko [ F(X0)AX = kg (X),

and the generator of equation (A.54) can be written as

Xl = at7 X2 = ta@’ X3 — aX + ( _ ,th + g(X>)aLp <A56)

where v = —2; (y#0). For B = kos, the equation (A.55) can also be written

koo?

as

P(X,ox) = ¢(Z) + BX +1X*
(A.57)
By virtue of the equivalence transformations corresponding to the genera-

tor X{; one can assume that g(X) = 0.

The extensions of the kernel and its related pressure function are

X7 = 0x — 170, P(X,px) = d(Z) + BX +~vX? (A.58)

where Z = px with 7 # 0. In the Table 5.1, this is model Mj.

Case I1.2 g;1x(X)=0
This case g11x(X) = 0 means that ¢1(X) = koy;, for some con-

stant koj;. Substituting g¢11(X) = koy; into (A.45), one finds

—k
ky = 71k5.

Finally, a solution of the determining equations is

—k
ka=0,  ks=0,  kk3=0, kr=—rhs, ¥ =) (ks X + ko),

. —k5k1t2 + 2]55(,0 -+ 2t7701 + 2’[700
B 2

nx =0, ¢ = kst+k, &% = ks X +ko, Ui
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with k9 = n°!, then the generator corresponding to these coefficients is
X = ks X'+ ko X? 4 kg X? + ko X*
with
X'=9, X? =19,
X? =10, + X0x + (%lﬁt2+g0+/Xf4(X)dX>&p (A.59)
X*=0x + / f1(X)dX0,.
Here the function P(X,px) satisfies the two equations (A.43) and (A.44).

Finding : Pressure function

Solving (A.43), one derives the general solution
P(X,¢x) = ¢(Z) + h(X) (A.60)
where Z = px — [ fu(X)dX. Substituting this equation into (A.44), one finds
RX) = ki X + k.

Consider C(X) = — [ f4(X)dX; one obtains [ X f4(X)dX = —X§'(X) + §(X)
where §(X) = [ C(X)dX, which gives the generator in equation (A.59) of form
X'=94, X? =19,
X? =10, + X0x + (%ﬁﬁ +p—X7(X)+ g(x))aw (A.61)
X' =0x —§(X)0,
where [ = ko;. By virtue of the equivalence transformation corresponding to the
generators X{; and X§, it can be assumed that §(X) = 0, and § = 0. In
this case, there are two extensions of the kernel which are related to the following

pressure function

where Z = px. In the Table 5.1, this is model M;.
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A.2 Case p, =0

Consider equation (5.37)

2£§((M1<pxps@x - 2k5lulchP<PX + gX( - MllPXPSDXX + lulXP‘PX‘PX) = 0.

Substituting 1, = 0 into this equation, it becomes
¥ tx Poxox = 0. (A.63)

As P, ., # 0, then the latter equation holds when assuming in 2 cases:

pix #0 and pix =0.

A.2.1 Case piy=0

From equation (A.63), as P,.,, # 0, and assuming & # 0

then p;x =0 that is
w1 = ki, where k; is a constant.

Finding : Pressure function

Construct the pressure function by solving equation (5.32)

P<PX<PX<PX PSOX
P 2

PXPX

Since (PP“’X ) =1- P”]ffw, then (PP‘PX ) = 1 — py. Integrating the
Px X

PXPX PxXPX PXPX

latter equation with respect to ¢x, one gets

P,
Pi = —m)ex +a
PXPX
P<PX<PX — 1 a = a
Pow (1= m)(px +a(X)) 1= m
where g7 # 1. The pressure function is
- B 1 ~ b(X
P(X.x) = BX) (o + (X)) T 4 o(X), () = )
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Let v = ﬁ +1. As P,, # 0, then v # 0. The general form of the pressure

function can be written as
P(X,0x) = b(X)(px +a(X)) +e(X),  7#0,L  (A64)

Moreover one finds P, ., = y(y—1)b(X)(a(X)+¢x)""2, as Pyyp, #0, then
this condition
(v = Db(X) # 0

is obtained. Substituting the pressure function, P into equation (5.36), it becomes

—26¥bxb + 2§X( —bxxb+ b_QX)
B*(y — 1)

From this equation, one can study in 2 cases: bx # 0 and bx = 0.

—0. (A.65)

Case bx #0

Assuming bx # 0, then (A.65) becomes
SX( —bxxb+ b%)

| = X A.66
Integrating equation (A.66) with respect to X, one obtains
X b
& =ku— (A.67)
bx

with the relations ki3 #0 and b # 0 (as &% # 0). Substituting all conditions

into (5.33), one finds
kay(y +3) (v = Db(X)(a(X) + ¢x)” = 0.
Once consider v+ 3 #0, and as y(y — 1)b(X) # 0, one gets
ky = 0.
Substituting all conditions into equation (5.42), it becomes
2ksbx cxxY(—y + 1) + ki ((a + ox) bxxxbxb(y — 1)
—2(a + ox) Wyxb(y = 1) + (a + px)bxxbi (v = 1) = 2bxxexxb(y — 1) (A68)

+b§(CX)((’)/ — 1) — bXCXXXb(7 — 1)2> =0.
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Differentiating equation (A.68) with respect to ;
Fri(a+ ox)y (bxbxb = 265 xb + byxb ) = 0.
Since ki1 # 0, and by # 0, one derives

bxx (2bxxb — b3
bxxx = xx ;be x) : (A.69)
e

Finding the extension of the kernel in this case, one has to consider 2 cases

. bxx#o and bXXZO

Case I bxx #0

Solving equation (A.69), the general solution is
bx = b ko,,

where [; is constant and since by # 0 then ko, # 0. Therefore equation

(A.68) changes to
—2/65561’)/16026)()( + l{11< - CXX)(b(’y T2 1) — bBICXxk02<261 — 1)) =0. (A?O)

Differentiating equation (A.70) with respect to X, one gets

—2ksykosb™ (exxxb + Bhoab™ exx) + ki ( — exxxxb®(y — 1) AT

—koob” exxx (v — 261 — 2) — ko3 Bib* exxx (281 — 1)) = 0.
Equations (A.70) and (A.71) are algebraic linear homogeneous equations with re-
spect to ks and ki; with the determinant ~(y — 1)k02b51+1(X)(cXXXXcXX —
Ay — koo(B1 — 1)b51*10XXXcXX). If this determinant is not equal to zero,
then k5 = 0 and kj; = 0 (which contradicts our condition kj; # 0). Hence,

one has to assume that

(v — Dkood™ 1 (X) (exxxxexx — Gkxx — koo (81 — DV lexxxexx) = 0.
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Since (v —1)b(X) #0 and ko, # 0, it yields

2 ~1
CxXXXCXX — Cxxx — koo(B1 — Db exxxexx = 0.

To solve the latter equation, one has to determine 2 cases: cxxx # 0 and

CxXxx — O

Case I.1 cxxx #0

Let us consider

CXXXX  CxXXX kos(B1 — 1)1 = 0. (A.72)
CXXX CXX

To complete the analysis, one has to consider 2 cases: f; =1, and [y # 1.

Case I.1a [ =1
Substituting f; = 1 in to (A.72), one can find the general solution of
equation (A.72) as

k
c( Xl E; i;l "3 X + kos X + kog
kos

where kos, kos, kos, kog are constant and kos # 0. Next, we will consider

the value of kos which is koy =0 and kos # 0.

o kos #0

Substituting ¢(X) into (A.70), one derives

_ k?u( — ]{/’02(’)/ — 1)2 — ]{/’03(’)/ — 1)3)

k
’ 2vkoa(y — 1)
and
k:n( —axy — akoy + k:03)
¥ = : A73
Nx 7]{:02 ( )

Performing a similar study as in previous cases for equation (A.73), one can rewrite
it as

7]9? = k11f5(X>
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where f5(X) is a function of X only. Equation (A.73) provides that

—a(X)koy + a(X)koz — vkoags(X)
S .

ad(X) =

Finally, a solution of the determining equations is

kii( — koy — k -1
ky =0, ks =0, k3 = 0, s — 11( 09 — kos(y ))

2")/k02 ’
k11k03]€05
7= Tog’ 778?:95()()]9117 779(1 = 0.
: k?llt( — k’OQ — k}Og(’Y — ].)) =+ 2]{56’71’902 X ]{?11
§ - ) 5 = 7
2vko ko,
ki1koskosyt? + 2ki1¢( — kos + koz) + 2tvkoon + 2vkoan™
77 fr—y

2vkoy

with ko = n°!; then the generator corresponding to these coefficients is
X = keX' + kioX* + bk X°

with

X' =0, X?=t0,

t( — koy — kos(y — 1) 1
2 Eon O + k—OQaX (A.74)

]{?03/{305 2 —k'OQ + kOg /
¢ X dX)a .
( 2o, ¥ IHTMAAGIA0 &+ 95(X) ”

Letting koy = 3, kos = a, kog =0, and [g5(X)dX = g(X) then the basis

X? =

generator X3 in equation (A.74) can be written as

1 « - o ~

—1 o Qo
57)

and the pressure function is

P(X, ox) = b(X)(a(X) + ¢x)" + ¢(X)

a'(X):@(a—ﬁ)—ﬁg'(X), b(X) = ki ™,
(A.76)

k
o(X) = a—i X 4 ks X



134

where k1 #0, a#0, [#0, and ~#0, 1.
By virtue of the equivalence transformation corresponding to the genera-
tors X¢, and X§, it can be assumed that a(X) =0 and k3 =0.

For a— 3 # 0 the extension of the kernel and the pressure function are

X10 = (5 + Oé(’)/ - 1))t8t - 2’}/8)( + 2(/3 — O&)@aw

I (A.77)
. BX( Y 2 (a=P)X

P(X,¢x) = ke (goX + k1a2€ )

The result of this case is presented in Table 5.1 as model M.

[} k?04:0

Substituting koy = 0, then

00 k’u( —ax(y—1) — ak02) — 2kosksa
e (v — ko

and it can be written as

96(X)k11 — 26Lk’02k5
koa(y — 1)

00 _
Nx =

where gg(X) is a function of X only. This equation provides

—(koya(X) +96(X)).

@(X) = =

Finally, a solution of the determining equations is

—k05
2(y - 1)
kll

01 t X
) Nx ) g 5 65 g k)OQ

k’4 = O, k‘g = 0, kk3 = 0, ]{37 = (kll + 2’7]{5),

00 _ 96(X)k11 — 2akoqks
Nx =
koa(y — 1)
_ —kukost®  kup  ykoskst®  2ksp
20-1) -1 v—1 v—1

+ t7701 + 7700

with k9 = n°t. The generator corresponding to these coefficients is

X = ke X'+ ko X2 + k X2 + ks X
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Letting ko, = 8, kog = «a, kog = 0, ¥ = v —1, [g(X)dX = g(X)
and [ a(X)dX = a(X), the basis generators can be written as
X!t =9, X% =10,
3 1 2 ~
X% — 0y + 5< — Bhot? — 2(Bp — g(X)))ag, (A.78)
4 1 ~ 2 ~
X =to; + 5(— k2(7+ 1)t — 2(a+90)>8<p
and the pressure function with a(X), b(X), and ¢(X) becomes
P(X,ox) = b(X)(@'(X) +ox)"* + ¢(X)
—(pa/(X) + g (X))
,")'/

a'(X) = : b(X) = ke, (A.79)

c(X) = ko X + k3
where k1 #0 f#0, and ¥ #0 — L
By virtue of the equivalence transformation corresponding to the opera-
tor Xf;, X5, and X¢, it can be assumed a(X) = 0, §(X) = 0, k3 = 0, and
ko = 0.
For letting v = 4 + 1, the extensions of kernel of admitted Lie group and

the pressure function are

X = (’Y - 1)8X - 5%08@ X2 = (’Y - 1)15375 - 290@) <A~80)
P(X,px) = kleﬁXW}(

where (3 # 0, and v # 0, 1. The result of this case is presented in Table 5.1 as
model M.
Case I.1b [, #1

Solving equation (A.72), one obtains the solution
c(X) = kogb® 4+ kos X + kog

where c¢; is constant and ¢; # 0. To analyze the solutions of this equation, one

has to split into 2 cases : kos # 0 and koy = 0.
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[} /{ZO4%0

For kos # 0, one obtains

—axbh N a(X) (e — 1)>7

00
iy <
Nx 11 kOQ v

Performing a similar study for this equation as previously, it can be rewritten as

779? = k1197(X)a

where g¢7(X) is a function of X only. This equation also provides

. ]{?Ogbﬁl_l
y

d(X) () (er = 1) = 797(3))-

Finally, a solution of the determining equations is

y k11(01’7 +ca - 1) _ ki1kos

k4 - 07 kS - 07 kk3 , k,? (51 _'_C]_ o 1)’
Y 2
k
% = g7(X)kus, n% =0, X = k‘&blfﬁl,
02
¢kt
§ :%<—2’Y(51—1)+01(1—7)—1>+k6,
ko
n:k”(TslerCl_1)t2+%(—7ﬁ1+7+01—1)>+tn°1+7700

with k9 = n°t. The generator corresponding to these coefficients is
X = keX' + k1o X + ki X°.
Letting koo = B, ¢t — 1 =m, 1 —1 =1, kog = k1, kos = kg, kog = ks,
and [ g7(X)dX = g(X), finally, the basis generators are
X'=9, X? =10,
XP=(-l+-—- )t + —0x + (=t (I +m+1) (A.81)

2y 2 ;] 2
+(—1+ %)@JFQ(X))@,

m  (m+1) bt <k2

and the pressure function is

P(X, ox) = b(X)(a(X) + ¢x)7 + c(X)
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() = 2 (ma(x) = 9/()). H00 =

c(X) = kb™ ™ 4 ko X + ks
where 5#0, v#0,1, [ #0, and m # —1.

(A.82)

By virtue of the equivalence transformations corresponding to the opera-
tors X¢;, X§ and X§ one can assume a(X) =0, ko =0, and k3 =0.
For m =# ~vl, therefore, the extensions of the kernel and the pressure func-
tion are
X1z = (Y(1 4+ m+20) —m)td, + (291) X 0x + 2(y1 — m)ed,

-1

P(X,px) = b(X) (¢} + MI"(0). V(X = 2%

where [, 8, #0, v#0, 1, and m # —1. In Table 1, this is model Ms.
[} k?04 =0

Substituting ko, = 0, one obtains

00 ku< —axb(X)(y — 1) — a(X)bP koy (251 — 1)) — 2ksa(X)b ko,
L bPrkoy(y — 1) '

Performing a similar study for this equation as previously, one can rewrite it as

2a(X)
v—1

n% = gs(X)ki — ks,

and it provides

o kOQbﬁl_l (X)

@(X) = =

() (1= 261) + (1= 7)s(X))

where ¢g(X) is function of X only. Finally, a solution of the determining equa-
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tions is

2ki1 (= 2B — 1) =y + B1) + 2ks (1 — ~?)
(v-1)° |

b — koskii (—*(B1 — 1) + 3 (281 — 3) + v(3y — 261) — v + B1) — 2kosyks (v — 1)3

by =0, ks=0, kk3=

! 2(y—1)"

2a(X pl-h
R U R TRV M

n =k (=728 + 97 =7 + Bu) (kost® + 2) + 2ks (1 — 7) (vkost? + 2¢)

772? = QS(X)k?u -

4 25,7701 4 7]00

with k9 = n°t. The generator corresponding to these coefficients is
X = kX' + k1o X + ki X° + ks X7

Letting koy = 8, i — 1 =1, v — 1 =7, kos = k1, kog = ka, [ gs(X)dX = §(X),

and [ a(X)dX = a(X), finally, the basis generators and the pressure are

X1 =0, Xo = tacp
bil 1 9 ~
X; = FaX + %( — (kit? +20) (vl + 20+ 1) + 279(X)>3<p (A.83)

Xy =19, + %( = kt* (v +1) —2(a(X) + go))@,

P(X, px) = b(X)(@(X) + x)" + c(X)

~1I ﬁbl ~/ ~/
d'"(X)="—( - @ +1d(X)—~7 (X)),

(X) 7( ( )a'(X) —vg'( )) s
V(X) = BoT, e(X) = k1 X + ky

where 5 #0, ¥#0, —1, and [ # 0.
By virtue of the equivalence transformations corresponding to the opera-
tors X¢;, X§ and X§, one can assume that a(X) =0, k; =0 and ke =0.
For 441 =1, the extensions of the kernel and the pressure function are
Xy =1l(y—-1)X0x + (l(fy +1)+ 1)90%,
Xi5 = (y = 1)td, — 290, (A.85)

P(X,px) =b(X)pk, where b7(X) = —IBX,
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where [, 5, #0, and ~ # 0, 1. In Table 5.1, this is model M.

Case 1.2 cxxx =0

The general solution of this equation is
(X)) =X’ + X+ c1,C2,c3 are constant.

Substituting ¢(X) into equation (A.68), one obtains

&1
v—1

(ki (1= 281) = 29k ) = 0.

We will consider 2 cases : cxx #0 and cxx = 0.

Case I.2a cxx #0

For cxx # 0 thatis ¢; # 0, such that one finds

_1-2

k
5 2

kll-

Substituting all relations then

00 —akaﬁl (. CL(X) (2B1 — 1)
X = k'11< kOQ Y >

Performing a similar study for this equation as previously, it can be written as
778? = go(X)k11

and it provides

o k02b,31—1 (X)

a'(X) S

(a0 (1= 281) = g0(X))

where ¢o(X) is a function of X only.

o S #1
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For () # 1, there are relations of a(X), b(X), ¢(z) as follows :

d(X) = %bﬂll(a(X)(l —20) — vgg(X)>

V(X) = b (X)kos o(X) =1 X? + X +e3
and a solution of the determining equations is

_ kll(l _ 261) o

ki=0, ks=0, ks 5 =0

k7 = kn (%(1 — A1) (20X +e) - CIZ;Bl )v 1% = go(X)ku,

A

n= k11t2((1 ‘251)(201)( + o) — (/:—;2)191-61) + kn($) (v ) —26+1)
+ tn°! +

with kg = n°t. The generator corresponding to these coefficients is
X = ke X'+ k1o X + k11 X°.

Lettlng kOQ = 6, 1-— 61 = l, C1— ]{71, Co = kQ, C3 = ]{53, and fgg(X)dX = g(X)

or go(X) = §'(X), finally, the basis generators and the pressure function can be

written as
Xt =0, X2 =10,
2l — 1 b 12
S (= hel s . !
X = (S5 )0t G0x + (55 (28R X + 15k — 2kt (A.86)
@ )
n ;(l’y ol 1) + g(X))QO
and

P(X, ox) = b(X)(a(X) + ¢x)" + ¢(X)

/ sy -
d(X)="—(a(X)(20 - 1) =77 (X)),

(X) > (( )( ) —d'( )) s
V(X) = pBb, c(X) = k1 X%+ ke X + ks

where f#0, v#0,1, [ #0 and k; #0.
By virtue of the equivalence transformations corresponding to the opera-

tors X5, X§ and X§, one can assume a(X) =0, kp =0, and k3 =0.
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Therefore the extensions of the kernel and the pressure function are
Xig = (2 — 1)t0, + (291) X Ox + (2(20 — 1) + 217y) 0,
P(X,0x) =b(X)pk + k1 X*  where b(X)=18X,
B #0, v#0, 1 and k; # 0. In Table 5.2, this is model M.
e /1 =1
Substituting ; = 1, and solving equation by = bkoy, one gets

b(X) = cyeko2 ¥,

The condition for a(X), such that a'(X) = =£22(a(X) + ygo(X)) is obtained.

~

Finally, a solution of the determining equations is

—k —k
ky =0, ks =0, kk3 = — ks = — L
g 2y
—ki1cC
by = k” LR =gk, 0¥ =0,
02
—kiit + 29k k cot?
g=ETR = e k(2 5+t ™
27y koo koy v

with k9 = n°t. The generator corresponding to these coefficients is

X = ke X'+ kio X2+ k1 X3,

Lettlng k‘OQ = ﬁ, Ccl = ]{51, Cy = k‘g, C3 = ]{33, Cy = k‘4, and fgg(X)dX = g(X) or

g9(X) = §'(X), then the basis generators and the pressure function can be written

X' =9, X% =10,
) (A.88)
3 t 1 k’gt (2 ~
X 2—315 + Bax ( - (7 ;) + (X))ap
and
P(X, px) = b(X)(a(X) + ox)7" + c(X),
/() = 2 (al) +17(X), (A.89)
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where 5#£0, v#0,1, k1 #0 and k4 # 0.
By virtue of the equivalence transformations corresponding to the opera-
tors X¢;, X§ and X¢§, one can assume a(X) =0, ky =0, and k3 =0.

Therefore the extensions of the kernel and the pressure function are

Xi7 = —Btoy + 2v0x — 2B¢0,, P(X,pox) = eﬁXgo} + ki X2 (A.90)

where 5 #0, v#0, 1 and k; # 0. In Table 5.2, this is model M.

Case I.2b cxx =0

This case is considering cxx = 0; substituting c¢; =0, one gets

—bihA 28, — 1

2(1(X)]{?5
k02 X ( A~ 1 - ’

v—1

Ugcozkn<

Ja(x))
Performing a similar study for this equation as previously, one can rewrite it as

2a(X)
v—1

nx = gio(X)kn — ks,

and it provides

. k?OQbBl_l

a'(X) o

(G(X)(l —268) + (1— 7)910(X)>-

where ¢19(X) is function of X only. To find conditions for function b(X), one

has to consider 2 cases : ;1 =1 and S; # 1.

e /=1

For B, =1, one obtains the conditions for a(X), b(X) and ¢(X) as fol-

lows :

]{?02
I—v

a'(X) = ( )a(X) — koago(X), b(X) = cae, o(X) = X + cs.
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A solution of the determining equations is

2]{511(1 - ’7) + 2]{55 (1 — ’}/2)

ky =0, ks = 0, kk3 = > ,
(v—1)
3 3
—kiica(y — 1) — 2k5yce (v — 1 2a(X
= ol VBl o) ey - 225,
2(y—1) v—1
k
ny =0 ¢ = kst + ke, 5X=k—j)12,
kll (1 — "}/) (tQCQ -+ 2()0) + k'5(1 — "}/) (2152762 —+ 4@)
n= + ! +

2(y— 1)

with ko = n°!; then the generator corresponding to these coefficients is
X =keX" 4 k1o X? + k11 X° + ks X

Letting koo = 8,1 — v =7, co = k1, c3 = kg, ¢4 = k3, [ g10(X)dX = §(X) and

[ a(X)dX = a(X) then the basis generators and the pressure function become

X' =9, X? =10,
1 ki t?
3+ - 1 f
X3 = 58X+ (9(X) +—27 + ’y)a“” (A.91)

and

(A.92)
(d’(X) . ?g’(X)), b(X) = kse®™X, (X)) = kX + ko

where 5 #0, ¥#0,1, and k3 #0.
By virtue of the equivalence transformations corresponding to the operators X{s,
X§ and  X§, one can assume @' (X) =0, ky = 0, and ky = 0.

For 1 — 4 = =, therefore, the extensions of the kernel and the pressure
function are

X1=(1=7)0x +Bpdy,  Xo=(1—7)t0+ 2¢0,
(A.93)
P(X,px) =™ o],

where [ # 0, and v # 0, 1. This case is equivalent to the generator of equation

(A.80).
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o S #1

For 1 # 1, then the condition for a(X), b(X) and b(X) are given as

09 £1—1
¢() = P2 (a0 (1= 28) + (1= Don(0)).
V(X) = kogb™, c(X) =X +c3

and a solution of the determining equations is

2k (=728 —1) =7+ B) + 2ks(1 —°)

k?4 = 0, k?g = 0, k?k??) — 9 9
(v—1)
4 3 2 3
o kuee (=" (B = 1) + 9726 = 3) +39” — 298 — 7 + B) — 2ksyca(y — 1)
7T — 4 )
2(7 — 1)
2a(X k bl—ﬁl
W= gk — 28 0 gkt ke =M
v—1 koo
cot? + 20

n= kn<m) ( —B6(1+7) + 7) - Vlf’ . (cmf2 + 2go) + ™+,

with k9 = n°"; then the generator corresponding to these coefficients is
X = ke X' + k1o X7 + ki X° + ks X1

Letting ko, = 8, v =1 =7, fi =1 =1, o = k1, c3 = ko, [ g10(X)dX = §(X)
and [a(X)dX = a(X), then the basis generators and the pressure function can

be written as

Xt =9, XQZtaso
X3 = b—_laX + i((lﬁt? +20)(—1—-20-71) + 2%7(X))<9 (A.94)
BT 2y : |

X* =19, - %((& + 1) kit® +2(p + a(X)))ap
and
P(X, ¢x) = b(X)(@'(X) + ox)7" + ¢(X),

a(x) =2 () @+ 1) =57(X)),  VX) =B (X),  (A95)
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where §#0, ¥#0, —1, and [ # 0.
By virtue of the equivalence transformations corresponding to the opera-
tors X¢;, X§ and X¢§, one can assume a(X) =0, k; =0, and ko =0.

For 4 + 1 = ~, therefore, the extensions of the kernel and the pressure

function are

X1=1U(y—1)X0x+ (I(y+1) + 1)¢d,, Xy = (v — 1)td, — 20, (4.96)

P(X, px) = b(X)px where b7'(X) = —I8X,
[, B # 0, and v # 0, 1. This case is equivalent to the generator in equation
(A.85).

Case II bxx =0

This case is considering bxy = 0; solving this equation gives
b(X) = koo X + ko, kos, kos  are constant.
After substituting b(X) = koo X + kos into equation (A.68), it becomes
k11 (cXXX (k02X + k03) (1 — 7) + cXXk02> — 2ksex xvkoy = 0. (A.97)
Differentiating equation (A.97) with respect to X, then
k11 (cXXXX (k;02X + k’03) (1 — 7) —cxxxkoa(y— 2)> — 2kscxxxvkoy = 0. (A.98)

Equations (A.97) and (A.98) are algebraic linear homogeneous equations with

respect to k5 and ky; with the determinant

’}/(’}/ — 1)k02 <CXXXXcXX (kOQX —+ kOg) — C%(XX (kOgX + ]CO;),) + kOQCXXXcXX).

If this determinant is not equal to zero, then k5 =0 and kj; = 0 (which contra-

dicts our condition kj; # 0). Hence, one has to assume that

CxXXXXCXX (]COQX + ]{303) — cg(XX (l{?OQX + kOg) + kOgCXXXCXX = O <A99)
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There are 2 assumptions to determine solutions of this equation: cxxx # 0 and

CxXxXXx — 0.

Case II.1 cxxx #0

From equation (A.99), assuming cxyx # 0 one obtains
CXXXXcX)((kIOQX + k’Og) - C%(XX (k?OQX + kIOg) + k:ochXXcXX =0.

Integrating this equation with respect to X, one solution is obtained as

koy

k
c(X) = kos <X + k_o;),) + kogX + kor, koy, kos, kog, ko;  are constant.
02

e koy #0, and Fkos #0

Substituting ¢(X), one derives

k11< — v3koy + 293 + 3% koy — 572 — 3vkoy + 4 + koy — 1)
ks =

29(y — 1)?
and
00 kn( —axvkoo X — axvkos + a(X)koskoy — a(X)lwg)
= vkoy '
Moreover 7% can be written as
n% = g1 (X)k11, g11(X) is function of X only,

and it provides

koy (a(X)k04 —a(X) — 7911(X)>

d(X) = 7(1<:02X + k03)

A solution of the determining equations is

kuy (Ykos + Koy — 1
ks =0, ks = 0, ks — Pl 047 o1 ),

. k?llk’OG (k04 — 1)
= 5 ,

kﬁu( — Ykoy + 2y + kog — 1)
k5 = 27 ) k7

nx = g1 (X)ki, nx = 0.




147

¢ (—Ykos+ 27y + koy—1 x (ko2 X + ko

(I o (R ey
kog(kos — 1

n:kn(—%( ‘;4 )t2+%(v+k04—1))+tn°1+n°°

with ko = n°!; then the generator corresponding to these coefficients is
X == k’ﬁXl ‘|— ]'{floXZ ‘l‘ k’lng.

Letting koy = ki, kos = ka, kog = ks, koy — 1 = o, £ = 3, and [ g1,(X)dX =

g(X), then the basis generators and the pressure function can be written as

X =9, X? =td,
1
X3 _ %(7(1 —q) +a>t8t+ (X + B)ox (A.100)
k3o « N
+ (%tQ +o(1+ ;) + g(X))ag,,

and

aa(X) — 7' (X)
WX (a0

DX) =k (X +8), oX)=k(X+8)"" + kX,

P(X, ox) = b(X)(a(X) +¢x)" +c(X),  d(X)=

where k1 #0, ko #0, a#0, -1, and ~#0, 1.
By virtue of the equivalence transformations corresponding to the opera-
tors X¢, X§ and X§ one can assume a(X) =0, k3=0 and 5 =0.

For v + a # 0, therefore, the extensions of the kernel and the pressure

function are

Xis = (7(1 — @) + a)td; + 27X 0x + 2(7 + a)gd,
(A.102)

P(X, px) = X(lw} n k:ZX"‘>
where a # —1, 0, v# 0, 1, v+ a # 0, ki, ks # 0. In Table 1, the result of
this case is presented as model M.

Remark. Either ko, = 0 or kos = 0 lead a contradiction to the condition

cxxx # 0.
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Case I1.2 cxxx =0

The general solution of cxxx =0 is
c(X) = koy X? + kos X + kog,

where koy, kos, and kog are constant. Substituting ¢(X) into equation (A.97),

one gets

]{]04(’}/ — 1)2(k11 — 2]{5’)/) =0.
[} k?04 7& 0

Since v # 0,1 and assuming ko4 # 0, then

kll

ks = —.
5 2

Substituting all relations, n% is

kn( — aX’y(kOQX + k03) + kow(X))
Ykos

nx =
which can be rewritten in the following form,
1% = gia(X)kur.

This equation also provides

koo (a(X) —1912(X))
ad(X) =
fy(kozX + kog)

where ¢12(X) is function of X only. Finally, a solution of the determining equa-

tion is
2 1 k
Bi=0, k=0, k= (T )k, ks = ol
gl 2y
koskos — 2kosko
kr = ( 2 ’ 4)ku; ?79(0 = g12(X) k11, 779(1 =0,
2]{302
kit koo X + k
eh= "2 4 ke, I <02—+03)k11,
2y ko,

t2
n= k11< (k02k05 — 2k03ko4) + E(V + 1)) + 70t 4 %
2]{302 ¥
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with k19 = n°!; then the generator corresponding to these coefficients is
X = kX' + k1o X + kn X°.

Letting koy = ki, koy = ky, kos = ks, kog = ky, 22 = 3, and [ g12(X)dX = §(X),

) koo
then the basis generator can be written as
X'=9, X? =10,
, ; L ks 1 ) (A.103)
X' = 50+ (X + 00 + (25~ kaf) +0(14+2) +5(X)) 2,

and the pressure function with the conditions for a(X), b(X), and ¢(X) is

P(X, px) = b(X)(a(X) +ox)" +c(X) (X)) = ,

WX)=k(X+8), oX)=kX>+kX+k
where ki #0, ko #£0, and v#0, 1.
By virtue of the equivalence transformations corresponding to the opera-
tor X5, X§ and X§ one canassume a(X) =0, k3=0, ky=0 and [ =0.

Therefore the extensions of the kernel and the related pressure function are

Xy = 10, +29X0x + 204 1)20,,  P(Xipx) = X (kg + kX)) (A105)

where v # 0, 1, —1, and ky, ko # 0. This case is a particular case of equation
(A.102) when a = 1. Thus the general form of these two equations (A.102) and

(A.105) is given in Table 5.2 as a model Mjs.

[} /{304:0

If koy = 0, there exists extensions of the kernel and its corresponding

pressure function as follows

X3 = t8, + 29 X0x +2(v + 1)d,,  P(X,px) =k Xok (A.106)

where v # 0, 1, —1, and k; # 0. This case is given in Table 5.2 as a model Mjq,.



150

Case bx =0

Substituting P(X, px) = b(X) (px+a(X)) +c¢(X), p,, =0, andbx =0

or b(X) = koq, where ko, # 0, one obtains the relation

265 cxx — 2ksexxy + Eexxx (1 —7)

=T = 0. (A.107)

Construct &§ by assuming cxx # 0.

Case I cxx #0, cxxx =0

Assuming cxy # 0 , one can find &%,

X = 2ksexxy +2§XCXXX (v—1) 7
CxXx
such that
EX =Ty X + ko
and
c(X) = kos X* + koy X + kos, where koz # 0.

Substituting all relations into equation (5.34), it becomes

koo (a(X) + ¢x)” (a(X)axx (v +3) + pxaxx (y +3) (A108)

+axy(y+2) — 3a§(> — 6kos(y — 1)<a(X) + gOX)Q = 0.

Differentiating equation (A.108) with respect to ¢x, then

k02k4 (CL(X) + QOX)773 (M

6 ) (“XX(“(X) +x) +ak (v - 2)) — 0 (A.109)

is obtained. To consider v + 3 # 0, one will consider two cases as follows :

Case I.1 axx(a(X)+px)+ak(y—2) #0
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In this case, one obtains k;=0 and after substitution one can find all so-

lutions of the determining equations as follows :

k04

ks =0, kk3 = 2ks (v + 1), ky = —koskiy + 771@5
ng(o:k5(—aX’yX+2a(X)> — axki, % =0
&' = kst + ks, §X =7 Xks + ku,

k
77:]611<—k’03t2> —l—k‘5< ()2[17152_}_()0(7_}_2)> +t7701+7700

with k9 = n°!; then the generator corresponding to these coefficients is
X = keX' + kioX? 4+ ki X° + ks X*.

Letting koy = 3, kos = ki, koy = ko, kos = ks, and [ a(X)dX = a(X), the basis

generators and the pressure function can be written as

X' =9, X2 =10, X' = oy + (= kit = @(X))0,
X* =10, +vX0x + (%7152 +o(v+2) —v(Xd(X) —a(X)) (A.110)
+ 2&(X)>8@,
and
P(X,px) = B(a(X) +px) + k1 X? + ko X + k3 (A.111)

where §#0, v#0,1, =3, and k; # 0.
By virtue of the equivalence transformations corresponding to the opera-
tors X¢;, X§ and X¢§, one can assume a@'(X) =0, k=0, and k3 =0.

For ~v # —2, therefore, the extensions of the kernel and the pressure func-

tion are

X19 = t@t + "YX(?X + (’}/ + 2)(,0(990, XQO = @X — kthQ,,?
(A.112)

P(X,px) = Bk + k1 X?
where 5 #0, v# 0,1, =2, =3, and k; # 0. The result of this case is given in

Table 5.2 as model M;s.
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Case 1.2 axx(a(X)+¢x)+ak(y—2) =0
Solving equation axx (a(X) + ¢x) + a% (¥ —2) = 0, one gets 2 general

solutions, i.e., ax #0 and ax = 0.

Case ax #0

The solution of equation axx (a(X) + gpx) + a% (7 — 2) =0 is
2—y .
ax = kog(a(X) +¢x)” ', kog is a constant.

Substituting and considering v + 3 # 0, and applying the equivalence transfor-
mation corresponding to the generator X7, and this transformation allows to

assume a(X) = 0. Then

779? = k’5( e k’OG’YXSD?(_W) - kOﬁ@%{ﬂk’ll

and one obtains 1% = k5< > kOﬁXTQ%P?X_v) — kog X 0% "k11. Moreover, a solution

of the determining equations is

k
ky = 0, ks = 0, Kk = 2ks(y + 1), kr = —koskyy + %m

-

n% = ks <2a(X) — kogy X (a(X) + ng) 7) ~ kog (a(X) + @X)2—wk117 n% =0,

ft = k5t + kﬁa £X = ’ka‘5 + k117

k
77=/€11(—k03t2> +k5< 0247?524-%0("}/—’—2)) +tn01+7700

with k9 = n°"; then the generator corresponding to these coefficients is
X - ]{36X1 + k’loXQ + k11X3 + ]{Z5X4.

Letting kos = 3, kog = ky, koy = ks, kos = k3, kog = 0, finally, the basis generator

and the pressure function can be written as

X' =0, X? =10, X3 =0x — kyt?0,
" (A.113)
X* =10, +~vX0x + (%ﬁ +o(v+ 2))@0
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and

P(X,px) = B¢k + ki X? + kX + Ky (A.114)

where 5 #0, v#0,1 and k; # 0.
By virtue of the equivalence transformation corresponding to the generators X§
and Xg, one can assume ko =0 and k3 = 0.

For ~ # —2, therefore the extensions of the kernel and the pressure func-

tion are

X1 = 8)( — k1t28¥,7 XQ = t@t + 7X8X + (")/ + 2)g08¢
(A.115)

P(X,ox) = Bk + k1 X°
where v #0, 1, =2, —3, and k; # 0. This case is equivalent to the generator in

equation (A.112)

Case ax =0
If ax =0, then a(X) = kos and a solution of the determining equations

is given as follows :

k
ky =0, ks =0, /{:k3:2k5(fy—|—1), k7=—/€03k,’11—|—%fyk5
779(0 = 2kogks, 779(1 =0, é‘t = kst + ke, §X — Xk + ki,

k
n = /m( — kOth) + k5( 0247:52 +o(v+ 2)) + ™ 4 %,

with k9 = n°!, then the generator corresponding to these coefficients is
X - k‘(le —|— klOXQ —|— kllX3 —|— k’5X4.

Letting koy = 3, koz = ki, koy = ks, kos = k3, kog = k4, then the basis generator

and the pressure function can be written as

X, =0, Xy =10, X3 = 0x — kit?0,
(A.116)

Xy =10, +vX0x + (%—7152 +o(v+2)+ 2k4X>8@
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and

P(X,0x) = Blox + ka) + ki X? + ko X + ks (A.117)

where 5 #0, v#0,1 and k; # 0.
By virtue of the equivalence transformation corresponding to the genera-
tors X{;, X5 and X¢, one can assume ko =0, k3 =0, and k4 = 0.

For ~ # —2, therefore the extensions of the kernel and the pressure func-

tion are

X1 = 8)( — k1t28@, X1 = t@t + ’)/XaX + (’7 + 2)@08¢
(A.118)
P(X,px) = Bk + ki X?
where 0 # 0, v #£ 0,1, =2, —3, and k; # 0. This case is equivalent to the

generator in equation (A.112).

e 7+3=0
Substituting v = —3, there exists a solution of the determining equations
as
ky = 0, kg = 0, k3 = —4ks, by = —kogky — Sk
n%Y = —axki + k5(3XaX + 2a(X)), n% =0, & = kst + kg,
¢X = —3Xks + kn, n = —kikost® — 3k04t2k5 — ks + tn® + 0.

with k9 = n°"; then the generator corresponding to these coefficients is
X = ke X1+ k10Xo + k11 X3 + k5 X4
The pressure function is given by
P(X,px) = koz(a(X) + ¢x)" + ko3 X + kos X + kos.

Letting kos = 8, kos = ki, koy = ks, kos = ks and [a(X)dX = a(X) or

a(X) = a'(X), finally, the basis generators and the pressure function can be written
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as
X, =0, X, =t0, X5 =0x — (kit* + @' (X)) 0,
o (A.119)
Xy = 10, — 3X0x + S — o+ X (X) - a(x)) 0,
and
P(X,ox) = Blox + @ (X)) 4+ ki X2 + ko X + ks (A.120)

where [ # 0, and k; # 0.
By applying the equivalence transformations corresponding to the genera-
tors X¢;, X§ and X¢, one can assume ko =0, k3 =0, and &'(X)=0.

Then the extensions of the kernel and the pressure function are

Xo1 = Ox — k11?0, Xog = t0; — 3X0x — 0, (A.121)

P(X,px) = Box’ + ki X?

where [ # 0,and ky # 0. This case is presented as a model M, in Table 5.2.

Case Il cxx =0
The general solution of cxy = 0 is ¢(X) = kosX + koy.  Substituting

all conditions into (5.33), one gets
k4k027(7 + 3) (7 — 1) (a(X) + @X)W = 0.

Case II.1 ~+3#0
Since v(y—1) #0, (a(X)%—ch)W#O, and koy #0, then Fk4=0.

Substituting all relations into (5.29), it becomes X% =0, that is

X = koX + ki1, kg, ki1 1is constant (and not equal to zero).
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A solution of the determining equations is

—2k5 (7% — 1) + 2ko (7 — 1)

k4 = 07 kg - O, kk3 =

(v=1)° |
" —2ksvkos (v — 1)3 + kokos (v* — 29% + 2y — 1)
T = 4 )
2(v=1)
—2a(X 2a(X
U())(():—kllax+k?5( 7_(1))+k9<_aXX+7(_1)>7 ny =0
gt = k:5t + k67 €X = k9X + kllv
— Fo(y+1
n= <fyk03t2 + 290) RRCA Il (r+1) <k03t2 + 2<p) + 0% + ™
v—1 2(7— 1)

with k9 = n°!, then the generator corresponding to these coefficients is
X = ke X' + kioX? + ks X° + ko X' + k11 X°.

The pressure function is
P(X,ox) = kos(a(X) + px)” + kos X + ko,.

Letting koy = f3, kog = k1, kog = ko, v —1 = 3(X) and [ a(X)dX = a(X), finally,

the basis generators and the pressure function can be written as

X' =9, X?=t0,

3 1 ~ 2/=
X* =10, = = (2(p + (X)) + kit (3 +1) )0,

gl
9 (A.122)
X4 = X0y + (%) (2(g0 +a(X)) + k1t2) 0,
X? =0y —d(X)d,
and
P(X,ox) = Blex + @' (X)) + ki X + ky (A.123)

where 5 #0, and ky #0 and 5 #0, —1.
By applying the equivalence transformations corresponding to the genera-

tors X¢;, X§ and X¢, one can assume k; =0, k=0, and a(X)=0.
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Therefore, for ¥4+ 1 = =, the extensions of the kernel and the pressure

function are

Xog = (v — 1)t0, — 2¢0,, Xog = (v = 1)X0x + (v + 1)pd,,
(A.124)
Xo5 = Ox, and P(X,¢x) = Bey,

where 5 #0, and ~ # 0, 1. In Table 5.2, this case is presented as a model M5

Case I1.2 v+3=0

Substituting v = —3 one gets a solution of the determining equations
kg — _kg?’k‘*, kk3 = —ks + ko, kr — _3:;03 ks + %kg
%Y = —axky + a(g()]% + %( —2Xax — a(X)), nx = a(X)ks.
€' = kat® + kst + ke, X = koX + ki1,

and the generator corresponding to these coefficients is
X = ks X' 4 ke X + ki1 X? 4 ko X' + ks X°.
The pressure function is given as
P(X, ox) = koy(a(X) + px)® + ko3 X + koy.

Letting ko, = 3, kos = ki, koy = ks, and [a(X)dX = a(X), then the basis

generators and the pressure function can be written as

X' =9, X?=0x —d(X)0,,
X 2
X? = Xox + (—X&’(X) Il iw + kf )aw,
L2 (A.125)
X* =120, + (a(X) +o— %)t@w,
X 2
X7 =10, + (a( ;* s 3’“5 )9,

and

P(X,px) = Blex + (X)) + k1 X + &y (A.126)
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where [ # 0. By applying the equivalence transformations corresponding to the
generators Xi;, X§ and X§, onecanassume k; =0, ky =0, and a'(X) =0.
Therefore the extensions of the kernel and the pressure function are
Xog = Ox, Xo7 = 2X0x + 0,
Xog = 120, + tpd,, Xag = 28, + 0, (A.127)
P(X,px) = Bpy’

where [ # 0. In Table 5.2, this case is presented as a model M.

A.2.2 Case iy #0

As p1yx # 0, by equation (A.63), one assumes £* = 0. Substituting i, =

0 and ¢¥ = 0 into equation (5.36), it becomes

As pyx # 0, one gets
/C5 B O
Construct the pressure function by solving equation (5.32)

P P,
@X@X@XQWX ::NlLX)a

P,

PXPX

the general form of pressure function is
P(X,0x) = b(X)(ox +a(X)) +o(X),  7#1L  (A129)

For P(X,px)=b(X)(ex+a(X))"+c(X), since P, ,, #0, then one obtains

condition
(v = Db(X) #0.

Moreover, equation (5.33) becomes

vy = Dy + 3)b(X) (a(X) + ¢x) ks = 0.
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Casel ~+3#0
Assuming v+ 3 # 0 and since y(y — 1)b(X) # 0, then k; = 0 and a

solution of determining equations is

kk3 =0 ks =0, kr; =0, ks=0 2% =0, n% =0
& = ke, ¥ =0, n=tn" +n"
with kg = 0 and ki = n°. Then the generator corresponding to these

coefficients is

X = k’ﬁXl -+ k‘gXQ + k10X3.

In this case there exists no any extension of the kernel.

Case IT ~v+3=0

Substituting v = =3, i, =0, X =0, and P(X,px), then equa-
tion (5.34) is changed to

k4CXX = 0.

For cxx #0

Assuming cxx # 0 then ks =0 and a solution of the determining equa-

tions is
kk3 =0 ks =0, kr =0, ks =0, nx =0, nx = 0.
¢ = ks, X =0, n=tn" +n"

This case does not have any generator extension.
For cxx =0
The general solution of cxx =0 is ¢(X) = ko1 X + ko,. Substituting all

relations, one obtains a solution of the determining equations as

—koik
k3 =0 ks = 0. kr =0, g = o1

n¥ =0, % = a(X)ky & = kut® + ke, ¢ =0,

—kot?
o1 k‘4 + thk’4 -+ tnm + 7]00-

’]7:
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with k9 = n°; then the generator corresponding to these coefficients is
X - k‘ﬁXl + klOXQ + l{?4X3.

Letting ko; = k1, koy = ko, and [a(X)dX = a(X), then the basis generators
and the pressure function are presented as

2
1

P oot d(X))taw (A.130)

X, = 0, Xy =0, X; = 20, + (

and

P(X,px) =b(X)(px + @ (X)) + k1 X + ko. (A.131)

By virtue of the equivalence transformations corresponding to the genera-
tors X¢, X§, X§, one can assume that a(X) =0, k; =0, and kg =0.

Therefore the extensions of the kernel and the pressure function are

X30 = 120, + t0,, P(X,px) =b(X)px . (A.132)

The result of this case is presented in Table 5.2 as the model M.



APPENDIX B

CONSERVATION LAWS

Details of constructing the conservation laws of the gas dynamic equations
for all extensions of the kernel of the admitted Lie algebras are presented here.
The extension of the kernel in M; is given by the generator
X5 = BtO; — Ox + apd,.
Substituting the Lagrangian into equation (6.4), one obtains
—SOtB}p - @ttBét - ‘PtXB;;X - Btl
—px B2 —@ix B2, — oxx B2, — B%
—pxH(X) + (@~ )6 + (a + B)oxh(X)
+e?F=9XQ(Z) (20 — B) = 0.
Solving equation (B.1) for B‘, one finds the condition [ = 2a, and it satisfies
B' = —tox (W (X) = 3ah(X))), B? =t (W'(X) — 3ah(X)).
This symmetry is divergent. Using Noether’s theorem, the conserved vectors are
C' = —tpx ' (X) — 20te* ¥ ®(Z) — apipy + atoxh(X) + aty] — grpx,
CX =t (X) — aph(X) — atoh(X) + %g@? + %P (2)
+ < — ap + 20ty — wx)e3aX<1>'(Z)-
The extension of the kernel in Mj is given by the generator
Xo =10, + X0x + (a+1)p0,.
Substituting the Lagrangian into equation (6.4), one obtains
—o B, — ouBy, — eix By, — Bl — ox B2 — ¢ix Bl — pxx B, — B

(B.2)
+Xpxh (X) + 2(a + 1) X**®(Z) + (a + 1)} + (a + 2)pxh(X) = 0.
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Solving equation (B.2) for B?, one finds the condition o = —1, which satisfies
B' =tpx (M (X) + h(X))), B? = —t, (W'(X) + h(X)).

The symmetry is divergent. Using Noether’s theorem, the conserved vectors are

1 t
1 1

! t !
CX = —tXpW(X) — 5)@03 — Yc1>(Z) + (ygot + ox)P'(2).

The extension of the kernel in M), is given by the generator
X7 = 8X — 7t2a¢,.
Substituting the Lagrangian into equation (6.4), one finds
—oBL — ouBl, — ¢ixB,, — B} — oxB2 — ¢ix B,
—oxxB., — Bx + fox — 2yt + 27X ox = 0.
Solving equation (B.3) then vectors B’ are derived
B! = 2ytX vy, B? = —2vtX, + Be.
This symmetry is divergent. Using Noether’s theorem, then the conserved vectors

are

C' = prpx + 1 + 29t X px,
1
C% = By + Byt X — S — 2t X oy + X7 = (2)
+ (px +71*)P'(2).

The extension of the kernel in Mj is given by the generator
XS = 8X — 7252680‘
Substituting the Lagrangian into equation (6.4), one gets

—¢iB, = ouBy, —pux By, — By — ox B — pix B, (B.4)

—pxxBl, — B + ¢} +20(Z) = 0.



163

In this case one can not find vector Bi; therefore this case does not provide
conservation laws.

Next consider the extension of the kernel in Ms, which is given by the
generator

X = Ox.

The determining equation for vector B is
B! B! B! + B} B? B? B2 +Bx=0. (B5
1B, + puby, + Qix Dy, + Dy +ox D, + oix by, +@xxb,, + bx =0. (B.5)

Solving this equation, one finds B! = 0 and B? = 0. This symmetry is called a
variational symmetry and the conservation laws are

—1
C! = pupx, CHl- 7@? — O(px) + ox®'(2).

The extension of the kernel in Mg is given by the generator
X0 = (5 +aly = 1))15@ —270x +2(8 — a)d,.
There are 2 cases to be considered, which are v = —1 and ~ # —1.
Case 1. v=-1, W(X,px)=—py In(px)e* — X,

Substituting the Lagrangian into equation (6.4), one gets

BX

]{?2 a €
—By+ (e S (B — oxx)) Bl = i Bl B!

k
—SOXBi - SOtXBZt - SDXXBZX — B} — a—i(2a —38)e* px (B.6)

(20~ 38y +2(a— Her¥ - E g
2a

Solving the above equation for a particular condition 5 = 5, one finds

2aX
B'=0 and B? = —e 5 . The conserved vectors are

2 o
=5 (20‘2“H pxe T 4 2hkatoxe™™ + alpp, — ol + 3ozsot90X>,
2aX

1
c* = S0y <ozeT( — 6px Inpx + 2ap — datp; + 3g0X)
X

+ 2kpe™X (gogoX — 2tgptgpx) — 3ag0§gox).



164

Moreover, for another condition S = 2, one obtains
B' = 2(—2ate®™X + appr — prox),

L ——

1
op ((2ag0X Inpyx + 2a2g0)62°‘X + 2kypox e + ozgpfgox).
X

Using Noether’s theorem, the conserved vectors are

Ct = —date®™, CX = 2¢%X,

Case 2. v# —1, W(X,px)= _%eﬂx’ _ %eaX

Here, the determining equation for vector B’ is

—4,0th10 - SottB;;t - @tXB;X - Btl

—SOXB?p (Y (PtXBZt - SOXXBZX - ng

(38— a(y+3) +28(a — 7))6,3X(p}(+1 (B.7)

( v+1
_ 2
+k2(3ﬁi—(27+3))eo‘xgox + (38— aly+ 3))% = 0.

Solving this equation for a particular case [ = @, one gets a variational sym-

metry such that B' =0 and B? = 0. Using Noether’s theorem, the conserved

vectors are

2y ,,—20%,  «
ot — 3_34«7 f‘l)teww}ﬂ — 2kstioxe™™ — a’pp, + Py} — 3apipx),
_6 o o
¥ = (R ¢ (0% g+ 2k (20— )
+ 3a<pt2).

The extensions of the kernel in M; are given by the generators

X = (7 - 1)8X - 5%08@ Xig = (’Y - 1)t8t - 2903¢~

In this case we will consider 2 cases, v = —1 and v # —1.

Case 1. v=-1, W(X,px)=py In(px)e’X



165

I Xu=(y—1)0x — Bpd,,
Substituting the Lagrangian into equation (6.4), one gets

Bl (= EEXYX B Bl Bl o BE — B,
px vk (B.8)

—@XXBiX — B} — B(2Inpx + 1)65X — Bp? = 0.
Solving equation (B.8), one finds Xj; is not divergent. Hence, it does not provide
a conservation law.
II. Xy = (y—1)t0, — 2¢0,,
The determining equation for vector B° is

8
_Sptleo + <_ - @);X)eng;t - SOtXB;X - B — SOXBZ - SOtXBsit
Yx Px (B.9)

—goXXBfOX .Sy - 2(1ngpx + 1)eﬁX —¢? =0.

This extension generator is not divergent either.

Case 2. 7v# —1, W(X,px)= _(ffmeﬁx

I Xu=(y—1)0x — B0y,

The determining equation is

—pBL + (Bok + 9% “oxx)e’ Bl — oixBL, — B} — px B2

9 (B.10)
ﬂ y+1 _BX

_WtXBit - SOXXBiX — B - ﬁ@x e’ — i = 0.

In this case one cannot find B, thus a conservation law cannot be constructed.
II. X12 = (’7 — 1)t8t - QQOa@,

The determining equation is

—o B, — ouB;, — ¢ix B, — B —¢x B2 — 0ix B2,

(B.11)
2 2 v+3 +1 _BX Y+3\ o _

_SOXXB¢X — By — (ﬁ)@( e - (T)% =0.

For the condition v = —3, there exists a variational symmetry and the conserved
vectors are
2eX < — 2t )
2 ¥ Pt
C' = —2< — te"X + ppipk — t¢?¢§(>, X = 5 :
Px Px
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The extension of the kernel in Mg is given by the generator
Xiz = (Y14 m+20) —m)td, + (291) X 0x + 2(71 — m)p0,
There are 2 cases of the Lagrangian to be considered : v = —1 and v # —1.
Case 1. 7y=—1, W(X,px)=—px' In(px)b(X) — ¢(X)

Substituting the Lagrangian into equation (6.4), one gets

_SOtBi, - QDttB;t - SOtXB:gX — B} — ‘;DXB?D - SOtXBit - QOXXBiX
—B% — k1(4l 4 2m — 1)px b (z) — (41 + 2m — 1) In pxb(X) (B.12)
1
—2mb(X) — (2l + m)p? + §go§ = 0.

Solving the above equation, one finds the condition m = 4l_—_21, which is satisfied

when B! = t(4l — 1)b(X) and B? = 0. Using Noether’s theorem, one derives
the conserved vectors as
C' = 2(1 — Dk 28X 20xb2 (X) + 2(1 — Dt In oxb(X) + (41 — 1)tb(X)
+ (1= 2D — (1= Dt} = 21X pypx,
OX = | 282X 2b3 (X) ((1 — ) —2(1 — l)tgot)

1-2] 2(1 =1
+ (<p—)gob(X) - %hptb()() +2Xb(X)(Inpx — 1) + X}
X X

Case 2. ~v# -1, W(X,px)= —(fol)b(X) —c(X)

The determining equation for the vectors B! is

_QOtB; - SOttBi;t - SOtXBi;X - Btl - SOXBZ - QOtXth - SOXXBZX - Bg{

1
+—1<k‘1 (72(4l —-m — 1) + 47[ — 47m —y— 3m)§0Xbm+1(X)
H ., (B.13)
+(y* (4l —m — 1)+4’yl—4’ym—7—3m)%

+(4yl —ym — v — 3m)<p}+1b(X)) =0.
In this case, the symmetry is not divergent, hence, it can not provide a conservation

law.
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The extensions of the kernel in My are given by the generators
X =1y = 1)X0x + (I(y+ 1) + 1)¢d,, X5 = (v — 1)td; — 2¢0,.
There are 2 cases of the Lagrangian to be considered : v = —1 and v # —1,
Case 1. v=—1, W(X, px)=—¢x In(px)b(X)

I Xyu=Il(y—1)X0x+ (I(v+1) +1)¢d,

Substituting the Lagrangian into equation (6.4), one gets

—¢iBy — puB,, — vix By, — B — ox Bl — pix BS, — pxx Bl

(B.14)
—B% —2(1 — 1) Inpxb(X) + (21 4+ 1)b(X) — (I — 1)¢; = 0.
For the particular condition [ = 1, one obtains B! = E—;”(t and B? = 0. The
conserved vectors are
Ct = —pp, — 2X pyp —i C’X:;2h1<p —|—Xg02+l(ng_lcp_1—|—2)
t t¥X 5X 9 6 X t 5 X .
II. X15 = (’)/ — 1)t6t - 230654;
The determining equation is
—SOtB; - ‘;OttB;;t - SDtXBi;X - Btl T~ ‘PXB?O - SOtXBZt - ‘PXXBzX (B.15)

—B% —2(lnpx +1)b(X) — ¢} = 0.
In this case the symmetry is not divergent, therefore conservation laws cannot be

obtained.

Case 2. v# —1, W(X, px)=——5b(X)

The determining equation is

—SOtBi - QDttB;t - SDtXBi;X - Btl - QDXB?D - SOtXBit - QDXXB?DX

IV+1+2\ 4y 3yl +1+2
v+ 1 )WX 0+ (3

(B.16)

—B§(+( )i =0.
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The symmetry satisfying this case is a variational symmetry and the conserved

vectors are found as

1—

Y
Ct = 2X
(37 —7) (P9 + 2X i),
3y 1 1)-30+D)/2
oX — ( ,7:_ : (25X)(37+1)/2((1 _ 72%030}( +2y(1 — W)XQOZ(H)
v—1 2
X2,
+ (37 + 1) t

II. X15 = (’y — l)t(‘?t — 2ap8¥,

The determining equation is

—pix By, — B} —@xB} —wix B}, — pxx B2, — B%

—@tB; - SOttB;t
(B.17)
Y+3\ 441 Y+3\ o
—(— b(X)— (—— =0.
For the particular condition v = —3, there exists a variational symmetry such

that B! =0 and B? =0, and the conserved vectors are

C* = 2037 (— th(X) + vk — 19 %), CX =2b(X) (¢ — 2tpr) Py

The extension of the kernel in M, is given by the generator
Xig = (20 = 1)t0; + 217X 0x +2(20 — 1 + 1) @0,
This model has 2 cases of the Lagrangian, when v = —1 and v # —1.
Case 1. v=-1, W(X,px)=—¢% In(ox)b(X)— kX2
Substituting the Lagrangian into equation (6.4), one gets
—¢By = puB,, — oix By, — By —¢x B} — oix By, — pxx B, (B.15)
—BY —3Inpxb(X) +2(20 — 1)b(X) — 3k X?px — ggof =0. |

The symmetry is not divergent, then it can not provide a conservation law.

Case 2. v# -1, W(X,px)= _(;%1)5()() — k1 X?
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The determining equation for vector B° is

_<:0th10 - SOttB;t - SOtXB;X - Btl - SOXB?O - SOtXBit - SOXXBZX - Bg{ ( )
B.19
1 1

+3(2l(y+1) —1) ((ﬁ)w}“b()() + §go§ + ki X%px) = 0.

For a particular condition [ = one obtains B® = 0. This symmetry is

1
2+

variational and the conserved vectors are

t g 8 2Y 02, v 2y+2 v+l
@il TR

+ (Y?(y +3) + 37 + 1) (4o, — 2t + 4X pox + 4kt X px)),

v X o) % 92y tl
Ay + 1) ((2(’7 T 1)) (v+1)B°X Px (SO - t%ﬁ) (B.20)

5 2Y _ p2 v 2942 A+l
X Y+ Y
+ (2(7 + 1)) b o

X =

+ (Vv +3) + 3y + 1) (4k1 X — 4t X o — 265)).

The extension of the kernel in M, is given by the generator
Xi7 = =pt0 4+ 290x — 2B¢0,.
This model has 2 cases of the Lagrangian, when v = —1 and ~ # —1.
Case 1. v=-1, W(X,px)=—¢% In(px)e’* — kX2
Substituting the Lagrangian into equation (6.4), one gets

_SOtBSID o spttBQIOt - QOtXB;X - Bt1 - QDXBLZ - SOtXB?Dt - QDXXB?DX (B 21)

—B% = B(3Inpx +2)e™ — ki (36X +4) Xox — ?s&? —0.

In this case the symmetry is not divergent, hence, it can not provide a conservation

law.

Case 2. v # -1, W(X,px)= —(ﬁ_{l)eﬂx — bk X?

The determining equation is

—SDtB; - SpttB;t - QDtXBSl@X - Btl - SOXBi - QDtXBZt - SOXXBZX - ng ( )
B.22

3 3
_(%)¢}+1egx - 7590? — 3k X% px + 4k X px = 0.
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In this case the symmetry is not divergent, hence, it can not provide a conservation
law.

The extension of the kernel in M5 is given by the generator
Xis = (7(1 — @) + @)td, + 27X 0x + 2(y + )0,
This model has 2 cases of the Lagrangian when = —1 and v # —1.
Case 1. yv=-1, W(X,px)=—-kXey In(px)— kXt
Substituting the Lagrangian into equation (6.4), one gets
—piBy, — ouBj, — ¢ix B, — B} — ox B2 — pix B2, — oxx B2, — B

: (B.23)
+(20 = 5) (kapx X' + ks X In o + §gof) +2ak X = 0.

For the condition o = 2 one finds B! = 5k1tX and B? = 0. The con-

Nt

served vectors are

O = —4kgt Xy — 4kt X Inpx — 3, + 2tp? — 2X pox + Skt X,

3k X
CX = —3ky X720 + kot X %0, + 2k X2 In oy — 227
25
Ayt X
X P o X2,
Px
Case 2. 7# -1, W(X,px) = —hX 25 — kpXoH

The determining equation for vector B° is

_SDthla - SOttB;t - QDtXB;x - B; - SDXB?O - ‘PtXB?az - SOXXBZX - Bx

. ) 1 (B.24)
+(a7+3a+57)(( )Xo —l—l{:gXaHgoX—l——gof) =0.
v+ 1 2
The symmetry is a variational symmetry for the condition « = ;—J‘z The con-
served vectors are given as follow
t_ (_2/527(37 — 1)) }(Jrl _ (21{327(37 — 1))tX3’;Cl‘;/ ox
(y+ D +3) v+3
29(y—2) 1By =1\, 5
— (———= —)t 2vX
( T3 )ewr + ( — Jtor + 27X pipx,
—2k1y(y — 2) 2k17(3v — 1)
CX = (— ) Xy ——————2 )t X %
(g ) Xeex + (g )Xk
2k17%\ o i1 2kay(y — 2) ., 3=11 2kyy(3y — 1) 3—dy
+(—=) X - (————) X o+ (——————)tX 73 .
(7+1) rx ( v+3 ) 4 ( v+3 ) 7t
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The extensions of the kernel in M3 are given by the generators
Xig =10, + 7X0x + (v + 2)0,, Xoo = Ox — kit?0,,.
This model has 2 cases of the Lagrangian, when v = —1 and ~ # —1.
Case 1. v=—1, W(X, pox)=—Box In(px)— kX?

I X9 =10 +~vX0x + (7+2)¢d,

The determining equation for vector B° is

—‘PtBl - SOttBlt T SOtXBl - B/ — SOXBQ
® ¥ Px 3 2 (B.25)
—(,Dthit - SOXXBZX - Bg( + 26 = 0.

Solving the above equation for B?, one obtains a divergent symmetry. Using

Noether’s theorem, the conserved vector are

1
C' = —Btlnpx + 26t — pp; + 5“}9? - Xoipx — kitX?px,
1
C¥ = BX Inpx — Bex (¢ —ter) = BX = ki X?p + S X + kit X 7.
II. X20 = (9)( by k1t284p

The determining equation is

—SOtBl —QOttBlt —QOtXB1 _Btl _QOXBQ _SOtXB2t
® ® X ® ® (B.26)
—pxx Bl — BY — 2k (tpr — Xpx) = 0.

Solving this equation, one finds
B' =2kt X px, B? = —2kitX ;.

The conserved vectors are obtained as

C' = pipx + kit + 2kt X o,

1
CX =—PBlneox +p+ klﬂtzgp)_(l — §g0f — 2kt X, + k22X

Case 2. v# -1, W(X,px)= —(ifi‘) — kb X?
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I X9 =10 +~vX0x + (74 2)pd,
The determining equation is

—¢iBy — puB,, — wix By, — Bi — ox Bl — pix BZ, — pxx B2,

3(v+1)
2

(B.27)
—B% +380%" + ¥} +3(y + Dk XPox = 0.

In this case the symmetry is not divergent, therefore conserved vectors can not be
constructed.

II. X20 - 8)( - k1t23¢

The determining equation is

—p By — SOttBlt —oix B, — B} — SDXBQ
%2 ¥ (2 t ¥ (B.28)

_SDtXBQQOt — SOXXB?OX P Bg( - 2]61 (tht - XQOX) = 0.
Solving the above equation, one obtains a divergent symmetry such that

B'' = 2kitXpx and B? = —2ktX¢, and the conserved vectors

C' = pipx + kit o; + 2kt X o,

By 1
cX = ﬁgp}“ 4 BRytpl — 5%2 — 2kt X ¢ + K22 X2

The extensions of the kernel in M, are given by 2 generators. The first
generator is

X21 - (9X - k1t2a§0,
Substituting the Lagrangian into equation (6.4), one gets

1 1 1 1 2 2
—otB, —ouB,, —pixB,, — By —pxB, — pix By,
@ ® Px t @ ¢ (B.29)

—(,DXXBiX — Bg(— - 2k31(t(,0t - X(,DX> =0.
Solving this equation, one finds a divergent symmetry where B! = 2kt X oy

and B? = —2ktXy,. Using Noether’s theorem, one finds

C' = prpx + kit’or + 2kt X px,

3 _ 1
Cc* = 5590)(2 + ﬁk1t2<PX3 - 590? — 2kt Xy + k%thQ-
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For the second generator
Xop = t0, — 3X0x — ¢0,,
the determining equation of the symmetry of equation is
~oBL — uBl, — ¢uixBL, — Bl — px B2 — pix B2,
3 (B.30)

3
_QDXXBSZDX - Bg( + 90—2 - 330? - 6]{51X2(px =0.
X

This generator is not divergent, therefore a conserved vector does not exist.

The extensions of the kernel in M5 are given by the generators
Xog = (v — 1)t0; — 20, Xoy = (v —1)X0x + (v + 1)¢0,, Xo5 = Ox.
This model has 2 cases of the Lagrangian, when 7= —1 and v # —1.
Case 1. v=-1, W(X,px)= By In(px)

I X23 = (’}/ — 1)75(9, = 290890

Substituting the Lagrangian into equation (6.4), one gets

Boxx
—%B; = 5 leot W (thB;X - Btl - SDXBi
Yx (B.31)
—pix B2, ~pxx B2, — By —28Inpx — 28 — ¢ =0,
Solving the above equation, one obtains a divergent symmetry such that
B'=2(-ft+ Xopx), B =X(-28lnpx —¢}).
Using Noether’s theorem, the conserved vectors are
C' = 2BtInpx — 2Bt + 2pp, — tor + 2X 0,
C* = —28X Inpx + 28¢5 (¢ — ter) — X¢f.
II. Xo = (y—1)X0x + (v +1)pd,
The determining equation for vector B’ is
s
~puB, = PEEBL — Bl — B! — px B}
X (B.32)

_SDtXBZt — SOXXBZX — B} —28lnpx + 26— ¢} = 0.
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The symmetry is divergent, as one finds
B'=2(-Bt+Xpwx), B>=X(-28lnpx —¢; +48).
The conserved vectors are
Ct = —2pt, C* =28X.

III X25 = aX

The determining equation is

e By, + puB,, + oix B, + Bl + ¢x B2+ oixB), + oxx Bl + Bx = 0. (B.33)

This symmetry is a variational symmetry where B = 0 and the conserved vec-

tors are

1
C = prox, CXZ_ﬂlHSOXWLB_Q‘P?-

’
Case 2. v # -1, W(X,px) = —(ifr’i)

I X23 = (”}/ — 1)t8t 7 2(,08Lp

The determining equation is

—o B, — ouB,, = ¢ix B}, — B/ — ox B> — po1x B,

B.34
—oxx B2 — 2_5(7"‘3)@%1_(74'3)902:0 ( )
XX Pox X v4+1 X 2 ¢ '
For the condition v = —3, one obtains a variational symmetry and the conserved
vectors are given as follows,
C' = 2( — Btoy’ + v — toy), C¥ = 28p%° (v — 2tpr).
The determining equation is
—QOtB; - SDttBiat - QDtXB;X - Btl - chBi - (;DtXBfot
(B.35)

5(3v+1)> s <3v+1)¢3 _o.

2 2
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Solving this equation, for the condition ~+ = —%, one finds a variational symmetry

and the conserved vectors are

2 2 _
C' = §<_§090t_2X90t90X>7 cr = g(XsO?—ﬁsosoxl/3+BXs0§(/3>-
III X25 — aX
The determining equation is
—SOtBl - %tBlt - %XB1 - Btl - QOXB2 - SOtXBQt
P @ px ¢ P (B.36)

_SDXXBAQDX - Bg( =0.
This symmetry is a variational symmetry and the conserved vectors are

X <5_7> 1 Lo,

CtIQOtﬁPX, = 1 Px 5%-

The extensions of the kernel in Mg are given by the generators
X26 = aX, X27 = 2X8X + @8@, ng = t28t + tgo('?q, X29 = 2t8t + (,084)0

I. X26 - 8)(
Substituting the Lagrangian into equation (6.4), one gets
piBy + puBy, + pix By + B 4 ox Bl + pix B, + oxx B} + By = 0. (B.37)

This symmetry is a variational symmetry and the conserved vectors are

3 1
C' = pipx, c* = 5580)(2 - 5%0?-

II. X27 == 2X8X + Cpacp

The determining equation for vector B° is

Boxx
—SOthlo — @2 Bglot — gOtXB}OX — Btl - QOXBi
X 28 (B.38)
—oix B2, — oxx B2, — B — 2 +2¢; = 0.
X

In this case, the symmetry is not divergent, hence, it can not provide a conservation

law.
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II1. X28 = t2at + t@a@

The determining equation for vector B° is

SOtB; + SpttBi;t + SOtXBi,X + B + SOXBZ
(B.39)
+90tXBit + SDXXBZX + B% — w1 = 0.
The symmetry is divergent where B! = ‘%2, B? = 0 and the conserved vectors
are

1 _ —
=3 (882652 + 67 =ty + 27, O = Bt(—p + to) o’

1V. X29 = 2t8t + (,08%0

The determining equation for vector B° is

SOtleo + %tleat + SOtXB;X + B + SOXBZ -+ WtXB?pt + SOXXBZX + B% =0. (B.40)

Solving this equation, one finds a variational symmetry and the conserved vectors

are
C* = Bt~ pps + te?, C™ = B(—p + 2to) ey,

The extension of the kernel in M7 is given by the generator
X30 = t20t + tgo@sp
Substituting the Lagrangian into equation (6.4), one gets

%Bl + SOttBlt + %ﬁXBJL + Btl + QDXBz
© © ox © (B.A1)

+oix B2, + oxx Bl + Bx — oo = 0.

Solving this equation, one obtains B! = 5‘;—2, and B? = 0 and the conserved

vectors are

1 _ 1 1 _
Cf = S Ppx" + 59" —tew + 519}, CF = th(X)(—p + te) oy



THE CLASSIFICATIONS OF TWO- AND

THREE-DIMENSIONAL LIE ALGEBRAS

APPENDIX C

In an appropriate basis, every two-dimensional Lie algebra will have a com-

mutator table as one of the following two forms:

L(2,1) :

€1

€9

€1 €2
0 0 |
0

L<272) : €1

Here e; are the basis vectors of a Lie algebra.

L(3,1):

L(3,3):

L(3,5) :

€2

€1 €2
0 €1
0

All three-dimensional Lie algebras are exhausted by the list:

€1 €y e3 €1 €2 €3
er] 0 0 0 er] 00 e
L(3,2,p) : , o< p[ <1,
ey 0 e € 0 pes
€3 0 €3 0
€1 €2 €3 €1 €2 €3
€1 0 0 €1 €1 0 0 per — €
,  L(3,4,p): p=>0,
€9 0 €1+ € €9 0 €1 +pes
€3 0 €3 0
€1 €2 €3 €1 ey e3
€1 0 €1 262 €1 0 €3 —E€2
, L(3,6) : ,
€2 0 €3 €9 0 €1
es3 0 es 0



L(3,7) :

e1 ey e3
e1] 0 e O
€9 0 O
es 0

L(3,0):

e1 ey e3
er| 0 0 O
€9 0 O
es 0
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APPENDIX D
THE GROUP CLASSIFICATION OF

EQUATION (7.1)

D.1 One-dimensional Lie algebras

The function ¢(S5) in the basis generator (7.3) of a one-dimensional Lie
algebra can be reduced to one of the two cases: either ( = 0 or ( = 1. This can be
done by virtue of the equivalence transformation related with the generator X{,.
The set of possible basis generators of one-dimensional Lie algebras is exhausted

by the following generators
C=0: X¢+gXs+7Xy, Xs+7Xy, Xy

(=1: Xe¢+qXs+7X4+0s, Xs+7X4+0s, Xy+0s
In the second step one has to substitute the coefficients of each genera-
tor into the determining equation (7.2) and solve it with respect to the function
W(p, p,S). Here we present the calculations of the case where X4 + ¢ X5 + vXy.
The study of the other cases is similar and is summarized in Tables 7.2-7.5.

Substituting
ky =1, ks = q, ke =1, ¢=0
into equation (7.2), one obtains
pgp + pgp(1 =7 —2q) = g(2¢ — 1) + p*(pp + k). (D.1)
The characteristic system of equations is

dp dp dg

1L p(l=v—2q) gR¢—1)+p2(pp+k)
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Invariants of the characteristic system of equations depend on the vanishing of the
expression

(Y + (v +4q) —1/2).
If (v+q)((v+¢q) —1/2) # 0, then the solution of (D.1) is

pp(S) k
(v+q) " 2(7+q)—1> ’

90, S) = PP 3L 8) + (2

where the function 5 is an arbitrary function. Integrating the function g(p, p, S),

one finds

k
W(p, p,S) = pt= 204D p(ppr+2a-1 g pe(S) |

’ )_2(7+Q> 2(7+q)—1+ph<p’s>’

where h(p,S) is an arbitrary function of the integration. Using the equivalence
transformations corresponding to X¢, X¢ and X§, one gets that the system of

equations (7.1) with the function

W (p,p, S) = p' 20H D (ppr+271 S)
admits the generator

Xe +¢Xs +7Xs, (v+a)((v+@)—1/2) #0.

Similarly, one finds that for the function

W(p, p,S) = ¢(pp™'%,5) = go In(p),
the extension of the kernel of the admitted Lie algebra is defined by the generator

Xo+qX5 4+ (—q+1/2) Xy,
and for the function
W(p,p,S) = po(pp™ ", S) + pIn(p)e(S)

the admitted generator is

Xo + q( X5 — Xy).

Here ¢y and (S) are arbitrary.
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D.2 Two-dimensional Lie algebras

Since for the basis generators
X = 1 Xe + 1 X5 + 11Xy + X¢, Y = 32 X6 + X5 + 72Xy + X,

their commutator is

[X? Y] = [XCNX@]?
substituting the commutator into the equation
[X, Y] = pX,

one has

[XCUXCQ] =P (51X6 + Q1X5 + ’)/1X4 —+ XCl) ,
where p = 0 or p = 1. From these conditions one finds that
Gl CiG = 16, (D.2)

and
pbi=0,  pu=0,  pn=0. (D.3)

Let us consider the case where p = 1. For this case one finds that the basis

of the Lie algebra consists of the generators
X =X, Y = 3 X6 + 2 X5 + 12Xy + X¢,,

where (; # 0. By virtue of equivalence transformations, one can assume that

¢; = 1. The general solution of equation (D.2) is
G =5+ ¢,

where the constant ¢y can be assumed to be zero. Thus, in the case p = 1 the Lie

algebras have the form:

{85, BXG + qX5 + ’7X4 + Sas} (D4)
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The set of such Lie algebras is exhausted by the following list
1. 0s, X+ qX5+vX4+ 0s 2. g, X5+ vX4+ S0s
3. 0s, X4+ S0g 4. 0g, SO0g.
Let us consider the case p = 0. For this case equation (D.2) becomes
GG = (G =0. (D.5)
Notice that if (2 + (3 # 0, then one can assume that ¢; = 1. In this case equation

(D.5) gives that (, = k(;. Hence, one also can assume that ¢ = 0. Thus, Lie

algebras in this case have the following forms
{81 X6 + 1 X5 + 71Xy + 05, Bo X6 + 2 X5 + 72 X4}, (D.6)

{1 X6 + 1 X5 + 11X4, B2 X6 + 2 X5 + 72 X4} (D.7)
The set of all possible Lie algebras of the forms (D.6) and (D.7) is exhausted
by the list
G=1: qXs+nXs+0s, Xe+ q@Xs+ 72Xy,
: PiXe + 711 Xa+ 0s, X5+ 72Xy,
P biXe + 1 X5 + 05, Xy,
G=0: aXs+7mXy, Xo+ @Xs+ 72Xy,
Xy, Xs.
Similar to the one-dimensional Lie algebras, further obtaining of the func-
tion W (p, p,S) consists of solving the determining equations (7.2) where the co-
efficients are defined by the obtained Lie algebras. Results of these studies are

summarized in Tables 7.2-7.5.

D.3 Three-dimensional Lie algebras

Let the basis generators of a three-dimensional Lie algebra be

X=X+X,, Y=Y+X,  Z=77+Xq,
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where
X =BiXe+aXs+mXs, YV =0Xe+@Xs+7Xe, Z=03X6+qsXs+73Xs.

Notice that

X.,Y]=0, [X.,Z]=0, [Y,Z]=0. (D.8)

Let us first study the Abelian Lie algebra. In this case one has
(X, Y]=0, (X, Z] =0, Y, Z] =0,
which means that
GG —CG=0, G&G—G=0, GG —(GG=0. (D.9)
If (2 + (2 + (2 = 0, then the basis of this Lie algebra is
Xy, X, Xg.

This case is reduced to W; = 0.

If, for example, (; # 0, then one can assume that (; = 1 and, hence,

G2 = c1, (3 = g,

where ¢; and ¢, are constant. Without loss of generality one can assume that
c¢1 = 0 and ¢ = 0. Hence, the list of all possible Abelian three-dimensional Lie
algebras consists of the following Lie algebras
G=1: qXi+0s, Xo+@Xy, X5+ qXy,
D BXs+0s, Xe+ X5, Xy,
=0 : Xe¢+0s, X5, Xu,
: Oy, X5, X4
Let us study three-dimensional non-Abelian Lie algebras. In the case L(3,1)

one has

[X7Y]:O7 [X,Z]:O, D/,Z]:X,
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which means that

GG =R =0, GG—0G=0 GG—G0GG =G (D.10)

and

Because of (D.8), one has that X =0. Hence, ¢; # 0, and one can assume that
¢; = 1. Equations (D.10) become contradictory.

In the case L(3,2,p), (0 < |p| < 1) one obtains
[X,Y] =0, (X, Z] = X, Y, Z] = pY,
which means that

GG =Gk =0, G&—=_G=70a, (G — GG =Dpt. (D.11)

and

(X,Y]=0, [X.Z]=X, [V, Z]=pY.

Because of (D.8), one has that X =0and Y = 0. Hence, (1(» # 0, and one can
assume that ¢; = 1. Equations (D.11) give that ¢, is constant, which contradicts
the property that X, Y and Z are basis generators of the Lie algebra.

Similar contradictions are obtained for L(3,3) and L(3,4,p). Indeed, for

L(3,3) one has
X.Y]=0, [X.Z=X, [V.Z=X+Y

or

GG—GG=0, GG-GG=0, G&G—GG==0+C. (D.12)

and
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Hence, X =0 and Y = 0. Similar for L(3,4,p):
[(X,Y]=0, [X.Z]=pX-Y, [YZ]=X+pY, (p=0),
which means that

GG — GG =0, G&—GG=pG—C, GG — GGk =G +pG (D.13)

and

(X,Y]=0, [X,Z]=pX-Y, [V.Z]=X+pY.

Because of (D.8), one also has that X =0and Y = 0. Hence, in both these cases
(1(2 # 0, and one can assume that (; = 1. Equations (D.12) and (D.13) give that
(s is constant, which contradicts the property that X, Y and Z compose a basis
of the Lie algebra.

Let us consider the algebra L(3,5). In this case one has
(X, Y=X, [X.Z]=2v, [V.Z]=2%,
which means that
GG — GG =Gty GG — GG =2G, GG — GG =G (D.14)

and

X.Y]=X, [X,Z]=2Y, [Y.Z]=2Z.

Because of (D.8), one has that X = 0, Y =0and Z = 0. Hence, (1((3 # 0, and,

for example, ¢; = 1. The general solution of equations (D.14) is
(o =95+ ¢y, C3:5’2+2013+c%.
Thus, the basis generators are
X=0s, Y=0850s,  Z=5%0;.

As noticed in the previous section in this case Wg = 0.
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For the Lie algebra L(3,6):
(X, Y] =2, (X, Z] =Y, Y, Z] = X,
which mean that

GG — GG =0G, ¢ —(G= -0, G —(=C, (D.15)

and

Because of (D.8), one has that X =0, Y =0 and Z = 0. Hence, (1(2(3 # 0, and
assuming that (; = 1, one obtains the general solution of the first two equations

of (D.15)
(o = ¢18in(S) + ¢y cos(9), (3 = ¢1 cos(S) — co8in(9)

and the contradiction ¢} + ¢34+ 1 = 0.

Let us study the Lie algebra L(3, —1):
X,Y]=X, [X,Z]=0, [V,Z]=0,
which mean that
GG —GG =0 GG—0G=0, GG—GG=0, (D.16)

and

Hence, X = 0 and one can assume that ¢; = 1. Solving equations (D.16), one

finds that the basis generators have the form
X =05, Y =250s5+ X6+ X5+ 71Xy, Z=73Xe+@pXs+ 13X,

Thus, one only needs to study Lie algebras with the following basis gener-

ators

X =05, Y =885, Z=5%s, (D.17)
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and
X =0y, Y =505+ B2Xe+ 2 X5 + 12 Xu, Z = P3X6+ @3 X5 + 73X

According to the remark in the previous section for the case (D.17) one can
assume that Ws = 0. Hence, for the non-Abelian three-dimensional Lie algebras

the list of possible Lie algebras is
L. 05, SOs+ X5+ 72Xy, X+ qX5+ 13Xy,

2. 0g, S0s+ [2Xs + 712Xy, X5+ 73Xy,

3. Os, SOs + [aXe + 2 X5, Xy
D.4 Lie algebras of dimension greater than 3

If the dimension of the Lie algebra is greater or equal to 4, then one can
either choose the basis generators such that two of the generators have the form
(7.4) or the admitted Lie algebra is four-dimensional and the basis generators can

be chosen such as
X4+ G(S)0s, X5+ (2(S)0s, Xe+ (3(5)0s, Os. (D.18)

Substituting the coefficients of the generators (D.18) into (7.2) one obtains reduc-

tion to the case either where Wy = 0 or W; = 0.
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