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SASITHORN ANANTASOPON : AN INSURANCE CLAIM AND PRICING
MODEL USING INFINITE MIXTURE DISTRIBUTIONS. THESIS

ADVISOR : PROF. PAIROTE SATTAYATHAM, Ph.D. 116 PP.

CLAIM SEVERITY/CLASSICAL DISTRIBUTIONS/INFINITE MIXTURE

DISTRIBUTION/GENERALIZED LINEAR MODEL/PURE PREMIUM

The objective of this study is to construct a novel insurance claim model
employing infinite mixture distributions for individual data, and use the model for
pricing of insurance premiums. In this study, the insurance claim modeling consists of
two parts, namely, Simulations and Application which are explained as follows :

Simulations : the sample groups are simulated by a combination of claim
distributions which are Lognormal, Gamma and Weibull. Data sets were created using
MATLAB with 250 iterations. The parameter estimation used for both, classical and
infinite mixture distributions, is the Maximum Likelihood Estimate (MLE). Having
tested sample size by running numerous combinations of claim distributions and data
sizes, we found 99 combinations vyielding optimum sample sizes. Hence, we
introduced Kolmogorov-Smirnov test (K-S test) to match these samples with the
classical and infinite mixture distributions. The D —values of the infinite mixture
distributions showed lower errors, when compared with the classical distributions.

Application : Individual data of motor insurance claims for the year 2009 from
a non-life insurance company in Thailand were matched to the infinite mixture
distributions. The 1,296 observations could be fitted to an infinite mixture distribution

at a confidence level is 99%.



v

Insurance Pricing : to price the insurance premium, the Generalized Linear
Model (GLM) with response \./ariables of infinite mixtur.e distribution were utilized.
Three models were employed, inducing age, gender, and age and gender, respectively.
Evaluating Sum of Absolute Errors (SAE), Mean Absolute Errors (MAE) and Mean
Square Errors (MSE), we found that the model incorporating both age and gender
carries less error compared to the age model and the gender model individually. Then,
we use the results from the age and gender model to calculate insurance premiums
using multiplication of the means of Claim Severity and Claim Frequency. Finally,

the premium outcome is a fair individual insurance premium, without interference.
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CHAPTER |

INTRODUCTION

1.1 Introduction and Motivation

A primary attribute of the actuary has been the ability to successfully apply
mathematical and statistical techniques to insurance claim data, both in its analysis
and interpretation. The modeling of claims is an important task for claim estimation,
since a good estimation of a claim leads to good Insurance Pricing. Therefore, we
focus on two concerns of the actuary, which are Claim Modeling and Insurance
Pricing.

Claim Modeling means the ability to predict claims as accurately as possible
in order to estimate future company liabilities. There are two major methods to model
claims which are the modeling of Claim Severity and of Claim Frequency. Claim
Severity refers to the monetary claim on an insurance claim and is usually modeled as
a non-negative continuous random variable using mixed distributions, (Tes, 2009).
Whereas the Claim Frequency is the number of claims. The classical distributions can
not be fitted to arbitrary claim data.

In general, mixture models incorporate finite or infinite mixture distributions.
The finite mixture distribution is one of the methods used to obtain new probability
distributions. In the statistical literature, the finite mixture models emerged in the
1960s and 1970s. They were used for modeling of unobserved heterogeneity in the

population.



Many authors presented the modeling of finite mixture models, i.e.,
Mohamed, Ahmad and Noriszura (2010) who proposed a model of aggregate claims
based on a compound Poisson-Pareto distribution. Moreover, a paper of Sattayatham
and Talangtam (2012) presented finite mixture Lognormal distributions and applied
the models to motor insurance claims data. Mauro et al. (2012) proposed finite
mixture Skew Normal distributions and applied them to the insurance claim data set
of Danish fire losses. Recently, Erisoglu, Servi, Erisoglu and Calis (2013) used two
mixture gamma distributions for the estimation of heterogeneous wind data sets.

A finite mixture distribution is limited by the number of components (k),
which depends on the mean clustering. In order to solve this problem, we are
interested in employing infinite mixture distributions. One of the reasons for using an
infinite mixture model is to obtain new probability distributions and work with
unknown parameters which will be simpler than to work on finite mixture
distributions. Infinite mixture distributions are described in Hogg, Craig and McKean
(2005), Klugman et al. (2008) and Catherine, Merran, Nicholas and Brian (2011).

The modeling of claims leads to the pricing of insurance premiums. The

Insurance Pricing concepts compose a priori and a posteriori pricing, (David, 2015).

There are many other statistical methods, namely; expected value, standard deviation,
variance, semi- variance, Wang Transform, Esscher Transform and etc.

Traditionally, the expected (average) claim is the most widely used
measure to obtain the premium that is transferred from the insured or policyholder to
the insurer. The average claim measure leads to assigning a single insurance premium
rate. Such single rate insurance premiums are unfair for most customers since the risk

factors of policyholders, i.e., driver’s age, gender, marital status, type of car driven or



vehicle’s age, are different. To solve this problem, the insurance company should
define different rates of insurance premiums with fairer premiums. Since the group
samples for an insurance premium pricing have never agreed with the normal
distribution, in this Thesis, we then employ the Generalized Linear Model (GLM) to
analyse the sample cases. The GLM in general, has been developed from regression
models using response and covariate variables. The response variables come from a
distribution in the exponential family. Therefore, estimation of response variables
according to the principle of GLM uses a link function which depends on the
distribution of the response variables. Additionally, we introduce the Maximum
Likelihood Estimate (MLE) to estimate the model parameters. To trace back, the early
development of the GLM occurred in the 1970s and 1980s, and the GLM is well
explained by McCullagh and Nelder (1989), Dobson (2002), Jonge and Heller (2008).
Ohlsson and Johansson (2010) stipulated many important illustrations of how to use
GLMs in non-life Insurance Pricing. Haberman and Renshaw (1996) reviewed the

applications of generalized linear models to actuarial problems.

1.2 Historical Review

A substational number of Claim Models were derived by many authors who
have investigated and discussed Claim Severity and constructed some new
distributions  using infinite mixture distributions. Frangos and Karlis (2004)
investigated a model of Claim Size distribution which has Exponential-inverse
Gaussian distribution. The model is fitted to car accident claims data which comes
from a large Greek insurance company. Emilio et al. (2008) proposed a negative

binomial inverse Gaussian distribution (NBIG) which is applied to automobile



insurance. The NBIG distribution is preferred to the negative binomial and Poisson
distribution for computing automobile insurance premiums. Recently, Pacakova and
Zapletal (2013) proposed the Pareto distribution which is derived from the
Exponential and Gamma distributions. This model provides a better fit to the claim
amounts in compulsory third party liability of motor vehicles insured by some Czech
insurance company.

In Insurance Pricing, many authors investigated the risk factors of automobile
insurance for appropriate pricing, for example, Arthur (1994) used the GLM as a
comprehensive modeling tool for the study of the claims process (Claim Frequency
and Claim Severity) in the presence of covariates. In that context, he developed an
application of the motor insurance claims experience for a recent calendar year, and
later adopted by many leading U.K. insurance companies. Kart et al. (2000) explained
how a dynamic pricing system can be built for personal line insurance by using the
statistical technique of GLM for estimating the risk premiums. Roosvelt and Mostry
(2004) proposed that the GLM model should be used for determining claim
settlements and breaking down claim costs, according to the risk factors which
provide a logical analysis. Geoff and Serhat (2007) discussed the most frequent
mistakes made by companies beginning to build GLMs. Recently, Silvie and Lenka
(2014) proposed an estimate of annual Claim Frequency for vehicle insurance based
on GLM. The case study was based on 57,410 vehicles, and results confirm the
importance of three factors, which are age group of the policyholder, vehicle age, and

area of residence.



1.3 Objective and Overview of the Thesis

The objective of this study is to construct a novel insurance claim model
employing infinite mixture distributions for individual data, and use the model for
pricing of insurance premiums. In this study, the insurance claim modeling consists of
two parts, namely, Simulations and Application. In this study, we employ GLM for
stimulating infinite mixture distrition and use most likely estimstiom (MLE) to unveil
parameter estimations.

The Thesis consists of five chapters. Chapter Il presents the preliminaries and
some of the mathematical and statistical background used in this Thesis. Chapter Il
proposes the Claim Model, which is constructed from an infinite mixture distribution.
The MLE is provided for the estimation of the parameter of the distribution. We
executed numerical experiments of sample groups to be fitted to the infinite mixture
distribution. An application to observed data is given in this section. Chapter IV
presents the construction of a GLM, at which the response variables are modeled by
an infinite mixture distribution. A comparison of the results of the predicted values of
Claim Severity from all possible risk factors is also represented in this section. The
GLM has been applied to calculate the premium for the observed data. The
conclusions, discussion, and further research are shown in the last chapter.

The next chapter explains the basic knowledge of experimental statistics
which will be the fundament of the construction of the models in Chapter Il and

Chapter IV.



CHAPTER 11

PRELIMINARIES

In this chapter, we introduce the definitions and theories of some of the
mathematical and statistical material that will be useful for claim modeling and

insurance pricing in this research study.

2.1 Events and Probability Theory

We review the definitions of events and probability theory which can be found
in Brezeniak and Zastawniak (1999).
Definition 2.1 Let Q be a non-empty set. A o — field F on Q is a family of subsets
of Q such that

1. theemptyset g F ;

2. if B belongs to F, then so does the complement Q/B;

3. if B,B,,... is a sequence of set in F, then their union B, UB, U...also

belongs to F.
Definition 2.2 Let FF be a o — field on Q. A probability measure P isa
P: F—>[01]

such that

1. P(Q)=1;



2. if B,B,,... are pairwise disjoint sets (that is, B "B;=¢ fori=j )
belonging to F, then P(B,UB,U...)=P(B,)+P(B,)+...

The triple (Q,F.P) is called a probability space. A set belonging to F is called

an events.

2.2 Random Variables
Definition 2.3 If F is a o— field on Q, then a function X:Q — R is said to be F-
measurable if

(X € B) eF
for every Borel set B e ﬂ(R). If (Q,F,P) is a probability space, then such a function
X is called a random variable.
Definition 2.4 The o - field o(X) generated by a random variable X:Q—R
consists of all sets of the form (X €B), where B is a Borel setin R.
Definition 2.5 Every random variable X:Q — IR gives rise to a probability measure

Py (B): P(X € B)

on R defined on the o — field of Borel sets Be B(R). We call P, the distribution

of X.

2.3 Distribution Functions

We review the distribution function which can be found in Knight (1999).

Definition 2.6 Let X be a random variable on the probability space (Q.F,P). We

define F,:R —[0,1] by



F (X)=P(X <x)=P({0eQ:X (o) <x}).
The function F, is called the distribution function of X.

The distribution function satisfies the following basic properties :

1. If x<y then F(x)<F(y). (F isanon-decreasing function.)

2. If ydx then F(y)J F(x). (F is a right-continuous function although it

IS not necessarily a continuous function.)
3. XILrEOF(x):O; 1mF(x):1.
Definition 2.7 A random variable Y is discrete if its range is a finite or countably

infinite set. That is, there exists a set S={s,,s,,...} suchthat P(Y €S)=1.

Definition 2.8 The frequency function of a discrete random variable Y is defined by
f(y)=P(Y=Yy).

The frequency function of a discrete random variable is known by many other names,

such as probability mass function, probability function and density function.

Definition 2.9. A random variable X is called continuous if its distribution function

can be expressed as

for some integrable function f:R — [0,1] called the probability density function (pdf)

of X.

Note : If f isa pdf then

f(x)dx=1

é"—zS



o0

because [ f(x)dx=lim [ f (t)dt=limF (x)=1.

In the following, we refer to definitions of expected value and variance which
can be found in Hogg, Craig and McKean (2005).

Definition 2.10. Let X be a random variable. If X is a continuous random variable
with pdf f(x) and

j|x| f (x)dx <oo,

—o0

then the expectation of X is

If Y is a discrete random variable with pmf p(y) and
vl p(y)<ee,
y

then the expectation of Y is

E[Y]=2yn(y)

y

Definition 2.11. Let X be a random variable whose expectation exists. The mean
value u of X isdefindas u=E[X].

Definition 2.12. Let X be a random variable with finite mean x such that

E[(X —y)z} is finite. Then the variance of X is defined as E[(X —,u)z}. It is

usually denoted by o or by Var(X).

Then Var (X ) equals

o—efx-a e[ -2}
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and since E is a linear operator,
o’ =E[ X* |- 2uE[X]+ 4’
=E[ X?|-24 + 4
=E[X?]- 4.

Definition 2.13. (Moment Generating Function (mgf)). Let X be a random variable

X

such that for someh >0, the expectation of e” exists for —h <t <h. The generating

function of X is defined as function M (t):E(etX ) for —h <t <h. We will use the

abbreviation mgf to denote moment genrating function of a random variable.
In the following, we recall some distributions of random variables and
definitions of mixture models which can be found in Klugman, Panjer and Willmot

(2008).

2.4 Lognormal Distribution
A random variable X is said to be Lognormally distributed with parameters

u and o denoted by X ~LN(u,0), if:

CDF Fx(x):CD(InX_“; 1R, &0, x>0,

1 InX—pu ?
PDF fX(X):XG 2ﬁexp —%J,

Moment: E[Xk]:exp(k,u+%k20'2j.
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2.5 Exponential Distribution
A random variable X is said to be Exponentially distributed with parameter

6 denoted by X ~Exp(9), if:

CDF FX(x):l—e_g; 0>0, x>0.

e_?;(
PDF + iy (x)="-,

Moment: E| X" |=6"T'(k+1), k>-1.

2.6 Inverse Exponential Distribution
A random variable X is said to be Inverse Exponentially distributed with

parameter @ denoted by X ~ IExp(@), if:

CDF : Fx(x):e%; 6>0, x>0.

PDF : f,(x)= ,

Moment: E[X"]:@kr(l—k), k <1.

2.7 Inverse Pareto Distribution

A random variable X is said to be Inverse Pareto distributed with parameters

7 and 6 denoted by X ~ IPa(z,0), if:

CDF Fx(x):[—j; 7>0,6>0, x>0.
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X

PDF : f, (x)=—(x+6)ﬁl,

, —T<k<l.

k]:9kr(1+k)r(l—k)

I'(z)

0 (—k)!

E[Xk}:(r_l)...(ﬂk)

Moment: E [X

, if k is negative integer.

2.8  Mixture Models

Mixture Models are discrete or continuous weighted combinations of
distributions. One motivation for mixing is that the underlying phenomenon may

actually be composed of several phenomena that occur with unknown probabilities.

2.8.1 The Finite Mixture Models

Definition 2.14 A random variable X is a k— point mixture' of the random
variables V,,V,,...,V, ifits cdf is given by

F () =aF, (X)+a,FR, (x)+...+aF, (x),
whereall a; >0 and a,+a, +...+a =1.

Definition 2.15 A variable component mixture distribution has a distribution function

that can be written as

K
F(x)=Y a,F(x), Da=1 a>0 j=1..K, K=L2...
j=1

The words « Mixed ” and “ Mixture ” have been used interchangeably to refer to the type of

distribution described here as well as distributions that are partly discrete and partly continuous.
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2.8.2 The Infinite Mixture Models
The mixture of distributions is sometimes called compounding. Moreover, it

does not need to be restricted to a finite number of distributions.

Theorem 2.1 Let X have pdf f,, (x|4) and cdf F,, (x|2), where 4 is a paremeter

of X. X may have other parameters, however they are not relevant. Let 4 be a
realization of the random variable A with pdf fA(;t). Then the unconditional pdf of
X is

o (=] T (x12) £, (2)d2
where the integral has been taken over all values of 4 with positive probability. The

resulting distribution is a mixture distribution. The distribution function can be

determined from

X

Fe ()= [ £, (v]2) £ (2)d Ady

—o0

:” fun (¥]2) T, (2)dydA

=[P (x2) £, (1)1

Moments of the mixture distribution can be found from
E[X*]=E[E(X"|A)]

and, in particular,

Var (X )=E|Var(X|A) |+Var[ E(X[A)].
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2.9 Maximum Likelihood Estimation (MLE)

The method of maximum likelihood provides estimators which are usually

quite satisfactory and most frequently used in actuarial mathematics.

(Knight, 1999). Suppose that X=(X,,..., X, ) are random variables with joint
density or frequency function f(x:6) where 6e®. Given outcomes X=x, we
define the likelihood function

L(0)=f(x0);
for each possible sample x =(x,,..., ), the likelihood function L (&) is a real-valued
function defined on the parameter space ©.
Definition 2.16 Suppose that for a sample x=(x,,...,x,), L(8)is maximized (over
©)at =5(x):

supL(0)=L(S(x))

0O

(with S(x)e®). Then the statistic d=S(X) is called the maximum likelihood

estimatior (MLE) of 6.
Likelihood equations: If the range of the data does not depend on the data, the

parameter space € is an open set, and the likelihood function is differentiable with
respect to 0=(6},...,0,) over @, then the maximum likelihood estimate ¢ satisfies
the equations

aln L(é)
00,

=0 for k=1,...,p.

These equations are called the likelihood equations and In L(¢9) is called the

log- likelihood function.
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2.10 Linear Models

The standard reference for generalized linear models is McCullagh and Nelder
(1989).

A vector of observations X having n components is assumed to be a
realization of a random variable X whose components are independently distributed

with means p. The systematic part of the model is a specification for the vector p in
terms of a small number of unknow parameters £,,...,

p*

In the case of ordinary linear models, this specification takes the form

i (2.1)
where the Ss are parameters whose values are usually unknown and have to be
estimated from the data. If we index the observations by i, then the systematic part of

the model may be written
qukﬁzzﬁ@;ume, (2.2)

where z; is the value of the jth covariate for observation i. In matrix notation
(where pis nx1, z is nxp and B is px1) we may write
n=7p,
where Z is the model matrix and g is the vector of parameters.
The components of X are independent normal variables with constant variance
o’ and

E[X]=p where p=Z8. (2.3)
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2.11 The Components of a Generalized Linear Model
The Generalized Linear Model is an extension of classical linear models for
situations where the response has a non-normal distribution, for example, a Binomial,
Poisson, Gamma, inverse Gaussian, Exponential. Thus, a GLM consists of three
components:
1. The random component : The distribution of the response variable, X, (for
the ith of n independent sample observations) is a member of an
exponential family.

2. The systematic component : covariate z,,z,,...,z, produce a linear

p

predictor n given by
p
n:ZZijﬂj'
j=1
3. Link function : The relationship between the random and systematic
component. A smooth and invertible linearizing link function g() which
transforms the expectation of the response variable, s =E[Xi], to the
linear predictor :
g(ﬂi):']-
The classical linear models have a normal (or Gaussian) distribution in

component 1. and the identity function for the link in component 3. and the link

function in component 3. may become any monotonic differentiable function.

2.11.1 Exponential Family
The theory of generalized linear models is based on a set of probability

members of an exponential family. The exponential family can be written in the form
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(2.4)

for some specific functions a(-),b(-) and c(-). If d(x)=x, then the function is in
canonical form for the random variable X. Likewise, if e(9)=9, it is in canonical

form for the parameter 6. If the substitutions d(x)=x and e(6)=6 are made, the
above equation becomes

(x6—-b(0))

fy (x;0,¢):exp{ 209)

+c(x,¢)} (2.5)

We call 6 the canonical parameter, and ¢ the dispersion parameter or scale

parameter. If the distribution is parameterized in terms of the mean # of X, so that

@=g(u) for some function g, then g () is the canonical link.

2.11.2 Likelihood Functions for Generalized Linear Models
We assume that each component of X has a distribution in the exponential

family, taking the form

(x6—b(0))

fy (x;0,¢)=exp{ 209)

+c(x,¢)} (2.6)

We write 1(6,¢4;x)=log f, (x;0,¢) for the log-liklihood function considered as a

function of # and ¢, x being given. The mean and variance of X can be derived

easily from the well known relations.



and

We have from (2.6) that

) _(x@—b(@))+c )

(@)= o)
whence

a _(x=b'(9))

00  a(¢)
and

& _b'(0)

00" a(¢)

where prime denotes differentiation with respect to 6.

From (2.7) and (2.9) we have

so that

E(X)=p=b'(0).

Similarly, from (2.8), (2.9) and (2.10) we have

18

(2.7)

(2.8)

(2.9)

(2.10)
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:—b"(9)+var(X)
a(g)  a'(4)

so that

var(X)=b"(8)a(¢).
Thus the variance of X is the product of two functions ; one, b”(@),depends on the
canonical parameter (and hence on the mean) only and will be called the variance

function, while the other is independent of @ and depends only on ¢. The variance

function considered as a function of x will be written V ().

The function a(¢)is commonly of the form

where ¢, called the dispersion parameter, is constant over observations, and o is a

known prior weight that varies from observation to observation.

2.11.3 Link Functions

The link function relates the linear predictor n to the expected value u of a

datum x. In classical linear models the mean and the linear predictor are identical,

and the identity link is plausible in that both n» and x can take any value on the real
line. However, when we are dealing with counts and the distribution is Poisson, we

must have . >0, so that the identity link is less attractive, in part because  may be

negative while x# must not be. Models for counts based on independence in cross-
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classified data lead naturally to multiplicative effects, and this is expressed by the log

link, n=log &, with its inverse u=e".

For the binomial distribution we have 0< <1 and a link should satisfy the
condition that it maps the interval (0,1) on to the whole real line. We shall consider

three link functions, namely:

1. Logit

2. Probit
n=9(u)=" (u);
where @(-) is the Normal cumulative distribution function;
3. Complementary Log-Log
n=9(u)=log{~log(1- x)}.
The power family of link is important at least for observations with a positive

mean.

This family can be specified either by

(2.10a)

with the limiting value

n=log u; as4 —0, (2.10Db)
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or by
Lt a0,
logu; A=0.
The first form has the advantage of a smooth transition as 4 passes through zero, but

with either form special action has to be take in any computation with 4 =0.

2.11.4 Sufficient Statisfics and Canonical Links
Each of the distributions in the exponential family has a special link function
for which there exists a sufficient statistic equal in dimension to A in the linear
predictor n:Zzijﬂj. These canonical links, as they will be called, occur when
f=n,

where @ is the canonical parameter as defined in (2.5). The canonical links for

distributions in the exponential family are thus:

Normal n=9(u)=u
Poisson n=9(u)=log 4,
Gamma n=9g(u)=u"

inverse Gaussiann =g ()= .

Note that, if the distribution of the response varies, X, is a member of exponential

family in canonical form then g (,u) is called the canonical link function.
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The next chapter explains how to construct a claim model which will be an

infinite mixture distribution that is not a classical distribution.



CHAPTER Il

CLAIM MODELING

In this chapter, the infinite mixture distributions will be applied to match with
two sets of data. The first data sets comprises 99 sample groups generated from a
combination of Lognormal, Gamma and Weibull distributions (Stephen and Richard,
2011), in order to simulate insurance data and test work ability of our model. Then
our model is applied to the second data sets which consists of 1,296 actual insurance

observations.

Considering individual claim policies, let X,,1=L2,...,n. be the Claim
Severity of the i" claim. It is assumed that the random variables X, X,,..., X . are

independent and identically distributed (i.i.d.). Some assumptions and restrictions are
specified as follows:

Assumption 1: Claims Severity are non-catastrophic claims.

Assumption 2: No deductible and no reinsurance agreement.

Assumption 3: A recorded Claim Severity is equal to a 1,296 observation

Assumption 4: The claim distributions are skewed to the right.

Assume that the portfolio Claim Severity arises from the 99 sample groups,

e.g., combination of claim distributions which are Lognormal, Gamma and Weibull
derived by numerical experiments, as listed in subsection 3.3. Moreover, we employ
the probability density function (pdf) and the distribution function (df) of claim

distribution which are specified in Appendix C to fitting the 99 sample groups.
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3.1 Classical Distributions

Using the 1,296 observations of motor insurance claims from public non-life
insurance companies in Thailand, we fit this data to some classical distributions,
(Stephen and Richard, 2011) i.e., Exponential, Inverse Exponential and Lognormal.
The maximum likelihood estimation (MLE) is used to estimate the parameters in each

distribution.

3.1.1 The Model

(1) The probability density function (pdf) for the Exponential distribution is

f, (x):%exp (—gj; 0eR, x>0 (3.1)

(2) The pdf for the Inverse Exponential distribution is

fx(x)z)%exp (—gj; 0>0, x>0

(3.2)

(3) The pdf for the Lognormal distribution is

2
f (X)= ! exp (—MJ;HER,O'>O,X>O.

\/ZXG 20

(3.3)

3.1.2 Estimation for the Model

Let X,,i=12,...,n. be the Claim Severity of the i" claim. It is assumed that
the random variables X, X,,..., X are independent and identically distributed

(i.i.d.).
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Consider the Claim Severity {x},(i=12,...,n), paid for the i" contract. We

shall fit the data set {x} to the Exponential, Inverse Exponential and Lognormal

distributions. By MLE, we obtain estimators for the parameters ¢ and o as follows:
(1) With the probability density function (pdf) for the Exponential
distribution in (3.1), the likelihood function is
L | X;
L(@):H—expﬁ——'j; feR, x>0.
i 0 0

Then

Setting the partial derivatives to zero, we have

oInL(0)
00

oInL(g) -n 1Q
—— =Y x=0.
80 «9+92§X'

An estimator § for the parameter # can be obtained by solving the equation

olnL(6o A N
#:0 where  is given by: §=-"—,
06 n
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(2) With the pdf for the Inverse Exponential distribution in (3.2), the

likelihood function is

i1 X

L(0) =ﬁ%exp[—§}; 6>0, x>0.

Then

|m49)=mﬁ{%eﬂ{_g}}

Srieel5)

:nln9+ZIn{—12exp —QH

i1 | X X;

=ning+y {—ﬁ—ln xf}

i1 X

=n|n9—2{£+2|n xi}; 0>0, x>0.
im1 | X

. . _02InL(0)
Setting the partial derivatives 2 to zero, we have

alnL(ﬁ)_l_ n i_o
0 0 SFx

An estimator § for the parameter # can be obtained by solving the equation

oInL(0)
00

n

n .

Zi

i1 X

=0 where 4 isgivenby: 6 =
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(3) With the pdf for the Lognormal distribution in (3.3), the likelihood

function is

2
(o}

n Inx — @)
! exp{—( al )j;ﬁeR,a>O,X>0.

Then
Inx —0)
InL 0,0)=In ('—
o) H»\/ XO' L 206° J
n | - 2
=>In ! exp _—(nx, 28)
= 27TX.0 20
I
=-ninoc—-niny2x Z{Inx + n>2< 9) }
=—nlno—ﬂln27z—zn: 1 (Inx.—H)2
2 — ' 207 '
olnL(6 olnL(6,
Setting the partial derivatives " ( )and a( G) to zero,
(o2
we have

An estimator § and & for the parameter # and o can be obtained by solving these

two equations:

onL(0.0) o anL(.0) o
00 oo
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D Inx,

The solutions are § ==L
n

respectively.

3.1.3 Goodness of Fit Test

Goodness of Fit (GOF) test means that one measures the compatibility of a
random sample with a theoretical probability distribution function. One GOF test is
the K-S test, to decide whether a sample comes from a hypothesized continuous
distribution and that based on the Empirical Cumulative Distribution Function

(ECDF) which is written to
F, (x)zi[Number of observation <x].
n

The K-S test is defined by
D=sup | F, (x)-Fg () |,

where F; is the theoretical cumulative distribution of the distribution being tested.
The K-S test is defined by:

Hg : The data follow a specified distribution.

H, : The data do not follow a specified distribution.

Level of critical values: The hypothesis regarding the distributional form is rejected at
the chosen significance level («) if the test statistic D is greater than the critical
value obtained, see Table C.3 in Appendix C.4. Furthermore, we can calculate the

P —value from the D —value and translate the result of the hypothesis test.
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Those three classical distributions were applied to the 1,296 observations. An
analysis involving some comparisons are presented from the results of the statistical
tests.

Table 3.1 The fitting for classical distributions.

Distribution K-S tests Estimated
D —value P —value Parameter
Exponential 0.1961 <0.0100 0=1.766x10"
Inverse Exponential 0.0759 <0.0100 0 =4.190x10°
Lognormal 0.0466 <0.0100 6 =1.1804
0=8.9672

Table 3.1 shows the statistical test value for fitting the classical distributions to
the 1,296 observations. We found that none of those classical distributions could be

fitted to the 1,296 observations at significance level « =0.01, since the P —value is

less than 0.01. Hence we can reject the null hypothesis and conclude that the data set
does not follow these three classical distributions at a 99% confidence level.
Therefore, we selected non-classical distributions which may fit to the 1,296
observations. Next we employed the infinite mixture distribution in 3.2 as a candidate
to fit the data with Lognormal, Exponential and Inverse Exponential distributions.
Firstly, the K-S test verified that the Lognormal distribution is a better fit than the
Exponential and Inverse Exponential distributions. However, the Lognormal
distribution cannot derive a cdf. As a result, we have to ignore it. At last, we selected

the second best distribution, which is the Inverse Exponential distribution.

3.2 Infinite Mixture Model

This section describes the construction of infinite mixture distributions and an

estimation of parameters using MLE.
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We represent an insurance Claim Severity by the random variable X. Let
f, (X|0) denote the pdf of the insurance Claim Severity if the risk parameter is
known to be 6. The heterogeneity in the insurance portfolio is due to variability in the
parameter 6.

Let G(0)=P(©<0) be the cdf of ®, where © is the risk parameter viewed as

a random variable. G (@) is called the mixing distribution. Let g (&) be the pdf of ©.
Then

he (x) = [fx(x|0)g(0)d0, vxeR’,

is the unconditional pdf of X.

3.2.1 The Model

An infinite mixture model is composed of Gamma as mixing distribution and
Inverse Exponential as mixed distribution. Let X be the Inverse Exponential random
variable with parameter 4. We want to mix an infinite number of Inverse Exponential
distributions, each with a different value of 8. We let the mixing distribution have a

pdf of @, namely, a Gamma with parameters & and g.

We begin with to the pdf of the Gamma distribution which is written as

9(0) = p 6““exp(-p0); a,p>0,6>0,

I'(a)

and mix it with the pdf of the Inverse Expontial distribution which is written as

fy (x|60) = %exp(—gj; 6>0, x>0,

to obtain the infinite mixture model written as :
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Fa+]) . )'[Hﬂfﬂ
X
_ B T(e+)
= er(a) (1+ﬂja+1
X
:an_ll;a,ﬁ>0,x>0. (3.4)
(1+ Bx)"

Observe that formula (3.4) is similar to the pdf of Inverse Pareto distribution

.pa(a,%].

In fact, the distribution of h, (x) is H (x):(l— A

px+1

j ; a, >0, x>0, whichis

the cdf of the Inverse Pareto distribution IPa(a,%j. Please see Appendix A for

further details.

3.2.2 Estimation for the Model

Considering the Claim Severity x, paid for the i" contract, we fit the

IPa[a,—] distribution in (3.4) to the 1,296 observations using MLE. The estimated



32

value of parameters & and g can be obtained by the following mothod.

Assume that X ~ IPa[a,%j with density

h =ﬂ; , 0’ 0.
« (X) (1+,Bx)’”l a,pf>0, x>

The likelihood function can be written as
n aﬂaxa—l
L(a,B) = —3
( ) ]i:L[(l-i-ﬂX)a 1
The log-likelihood function is in the form

E[ aﬂaxia—l

InL(e,p)

n a,, a-1
Q, X
= > 1In £%

T (L+8x)T

= nlna+nalnﬂ+(a—l)iln X, —(a+1)Zn:In(1+ﬂxi).

i=1

Hence, the partial derivatives of the log-likelihood function are

olnL(a.) n ” N
Toa g "MAr2 -2 e Ax)
oinL(a,f) _na X

B B (ml);lwxi'

The two estimations ¢ and ﬁ for parameters o and g can be obtained by solving

these two equations.

ﬂ+n|nﬂ+zn:lnxi—iln(l+ﬂxi)=0, (3.9)
(04 i=1 i=1
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na X
7—(0{ +1);1+ﬂxi =0. (3.6)

Because of the difficulty of solving (3.5)-(3.6) algebraically, we preferred to solve the
equations numerically by using the Newton-Raphson method to estimate parameters

a and B. We used MATLAB to do this work. These methods are explained in B.2.1

of Appendix B.

3.3 The Simulation

We have performed numerical experiments which MATLAB for the 99
sample groups, to fit using infinite mixture distributions.

The 99 sample groups were generated by simulations under the following
assumptions.

(1) Sample size

n: 200, 400, 600, 800, 1000, 1500, 2000, 4000, 10000, 30000 and 50000
for the groups of two mixed components.

n: 150, 450, 600, 750,1500, 3000, 9000,12000, 30000, 45000 and 60000

for the groups of three mixed components.
(2) The Simulated data

(2.1) Claim distributions used: Lognormal, Gamma and Weibull.

(2.2) The combination of claim distributions: The X; is generated based

on right skewed distributions according to sample size n. We assume that the

heterogeneity in the portfolio Claim Severity is due to variability in the parameters



and distributions. The group samples are

distributions as shown on Table 3.2.

Table 3.2 The mixed components.
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simulated by combination of the claim

Components Parameters Distribution
2 Lognormal/ Lognormal Lognormal/Gamma
Gamma/ Gamma Lognormal/Weibull
Weibull/ Weibull
Lognormal/ Lognormal/
3 Lognormal Lognormal/Gamma/Weibull

Gamma/ Gamma/ Gamma
Weibull/ Weibull/ Weibull

Each component mixed has the same number of claims, for details see section

C.3 of Appendix C. The simulations comprise 99 groups.

(3) The model of infinite mixture distributions

The model used for fitting to the sample groups is the infinite mixture

distribution. A classical distribution (Inverse Exponential distribution) is used as a

control to assess the performance of the infinite mixture distributions. To reach the

stablity of the results, we ran up to 250 iterations in the simulation.

A flowchart of the claim modelling process, is shown in the Figure 3.1.



1 Start )

Stage 1: Data size.
The restriction of data size.

/

Stage 2: The Simulated data.
The data set generated by simulation.

Stage 3: Parameter estimation.
Using MLE for classical distributions.

!

Stage 4: Fitting of model.
Assess the goodness of fit test by K-S test.

|

Stage 5: Record of results

Stage 6: Iteration 250

V

Stage 7: Record of results

Figure 3.1 The flowchart of the claim modeling process.
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Stage 8: Infinite mixture model.

Stage 9: Parameter estimation.
Using MLE for infinite mixture distributions.

Stage 10: Fitting of model.
Assess the goodness of fit test by K-S test.

Stage 11: Record of results

Stage 12: Iteration 250

4

Stage 13: Record of results

@

Figure 3.1 The flowchart of the claim modeling process (Continued).
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Stage 14:
Comparison
of models

Printing the results

Stage 15: Summation and Conclusion

4

Stage 16: Application and Evaluation

Figure 3.1 The flowchart of the claim modeling process (Continued).
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3.4 Simulation Results

The objective of our claim modeling is to assess whether the heterogeneous
portfolio Claim Severity data can be fitted to the infinite mixture distributions. The 99
sample groups were simulated by combinations of claim distributions, which are
Lognormal, Gamma and Weibull distributions. The parameter estimation was
performed by MLE for the classical (Inverse Exponential) and the infinite mixture
distributions. We referred K-S test as a statistical test, in which the symbols are
defined for explanation the following

D _CL mean D —value of classical distribution
D _IF means D —value of infinite mixture distribution
P _CL means P —value of classical distribution
P _IF means P —value of infinite mixture distribution

We present the value of D_CL,D_IF, P_CL and P _IF in tables. The

results are shown in the following tables.

Tables 3.3-3.6 show the values of D_CL, D_IF, P_CL and P_IF for
each sample size. The results are that the infinite mixture distribution can be suitable
for data mixed of Lognormal and Lognormal when n =200, 400, 600, 800,1000. We
found that for 94 groups the infinite mixture has a D —value in the K-S test which is
less than with the classical distributions. Although the infinite mixture may not be
suitable for the data sets, it can modified so that it sits better than some classical

distribution.



Table 3.3 The fitting distribution to 2 mixed components (parameters).
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2 mixed components n D CL D IF P CL P_IF
Lognormal/Lognormal 200 0.4542 0.0575 <0.01 >0.20
400 0.4490 0.0548 <0.01 >0.15
600 0.4451 0.0501 <0.01 >0.05
800 0.4494 0.0485 <0.01 >0.05
1000 0.4484 0.0475 <0.01 >0.01
1500 0.4490 0.0457 <0.01 <0.01
2000 0.4529 0.0446 <0.01 <0.01
4000 0.4538 0.0434 <0.01 <0.01
10000 0.4505 0.0423 <0.01 <0.01
30000 0.4511 0.0413 <0.01 <0.01
50000 0.4512 0.0413 <0.01 <0.01
Gamma/Gamma 200 0.4405 0.3294 <0.01 <0.01
400 0.4674 0.3266 <0.01 <0.01
600 0.4673 0.3259 <0.01 <0.01
800 0.4673 0.3256 <0.01 <0.01
1000 0.4673 0.3257 <0.01 <0.01
1500 0.4673 0.3253 <0.01 <0.01
2000 0.4673 0.3253 <0.01 <0.01
4000 0.4672 0.3253 <0.01 <0.01
10000 0.4672 0.3251 <0.01 <0.01
30000 0.4672 0.3250 <0.01 <0.01
50000 0.4672 0.3250 <0.01 <0.01
Weibull/Weibull 200 0.3859 0.1999 <0.01 <0.01
400 0.3865 0.1950 <0.01 <0.01
600 0.3866 0.1953 <0.01 <0.01
800 0.3823 0.1956 <0.01 <0.01
1000 0.3795 0.1969 <0.01 <0.01
1500 0.3789 0.1900 <0.01 <0.01
2000 0.3834 0.1934 <0.01 <0.01
4000 0.3784 0.1929 <0.01 <0.01
10000 0.3802 0.1919 <0.01 <0.01
30000 0.3816 0.1904 <0.01 <0.01
50000 0.3811 0.1905 <0.01 <0.01




Table 3.4 The fitting distribution to 2 mixed components.
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2 mixed components n D CL D IF P CL P_IF
Lognormal/Gamma 200 0.5588 0.2937 <0.01 <0.01
400 0.5759 0.2941 <0.01 <0.01
600 0.5448 0.2944 <0.01 <0.01
800 0.5578 0.2943 <0.01 <0.01
1000 0.5597 0.2944 <0.01 <0.01
1500 0.5605 0.2942 <0.01 <0.01
2000 0.5546 0.2940 <0.01 <0.01
4000 0.5674 0.2941 <0.01 <0.01
10000 0.5570 0.2941 <0.01 <0.01
30000 0.5577 0.2941 <0.01 <0.01
50000 0.5600 0.2942 <0.01 <0.01
Lognormal/Weibull 200 0.4649 0.1884 <0.01 <0.01
400 0.4664 0.1900 <0.01 <0.01
600 0.4623 0.1763 <0.01 <0.01
800 0.4635 0.1754 <0.01 <0.01
1000 0.4617 0.1758 <0.01 <0.01
1500 0.4608 0.1787 <0.01 <0.01
2000 0.4603 0.1767 <0.01 <0.01
4000 0.4606 0.1747 <0.01 <0.01
10000 0.4614 0.1745 <0.01 <0.01
30000 0.4608 0.1739 <0.01 <0.01
50000 0.4609 0.1739 <0.01 <0.01
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3 mixed components n D CL D IF P CL P_IF
Lognormal/Lognormal/ 150 0.3723 0.1272 <0.01 <0.01
Lognormal 450 0.3322 0.1143 <0.01 <0.01

600 0.3369 0.1193 <0.01 <0.01
750 0.3647 0.1122 <0.01 <0.01
1500 0.3415 0.1182 <0.01 <0.01
3000 0.3424 0.1167 <0.01 <0.01
9000 0.3561 0.1144 <0.01 <0.01
12000 0.3556 0.1141 <0.01 <0.01
30000 0.3634 0.1136 <0.01 <0.01
45000 0.3465 0.1134 <0.01 <0.01
60000 0.3427 0.1130 <0.01 <0.01
Gamma/Gamma/Gamma 150 0.4724 0.2388 <0.01 <0.01
450 0.4723 0.2386 <0.01 <0.01
600 0.4723 0.2386 <0.01 <0.01
750 0.4723 0.2386 <0.01 <0.01
1500 0.4722 0.2383 <0.01 <0.01
3000 0.4722 0.2383 <0.01 <0.01
9000 0.4722 0.2382 <0.01 <0.01
12000 0.4722 0.2382 <0.01 <0.01
30000 0.4721 0.2382 <0.01 <0.01
45000 0.4721 0.2382 <0.01 <0.01
60000 0.4721 0.2382 <0.01 <0.01
Weibull/Weibull/Weibull 150 0.4350 0.1548 <0.01 <0.01
450 0.4350 0.1548 <0.01 <0.01
600 0.4363 0.1508 <0.01 <0.01
750 0.4393 0.1531 <0.01 <0.01
1500 0.4382 0.1529 <0.01 <0.01
3000 0.4392 0.1517 <0.01 <0.01
9000 0.4361 0.1503 <0.01 <0.01
12000 0.4383 0.1506 <0.01 <0.01
30000 0.4368 0.1507 <0.01 <0.01
45000 0.4367 0.1506 <0.01 <0.01
60000 0.4367 0.1504 <0.01 <0.01
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Table 3.6 The fitting distribution to 3 mixed components.

3 mixed components n D CL D IF P CL P_IF
Lognormal/Gamma/ 150 0.3945 0.2357 <0.01 <0.01
Weibull 450 0.4177 0.2378 <0.01 <0.01

600 0.3861 0.2382 <0.01 <0.01
750 0.4301 0.2378 <0.01 <0.01
1500 0.4300 0.2375 <0.01 <0.01
3000 0.4241 0.2341 <0.01 <0.01
9000 0.4329 0.2354 <0.01 <0.01
12000 0.4322 0.2335 <0.01 <0.01
30000 0.4465 0.2342 <0.01 <0.01
45000 0.4471 0.2337 <0.01 <0.01
60000 0.4435 0.2335 <0.01 <0.01

3.5 An Application

Rehearsing to fit the 1,296 observations with the Inverse Pareto distribution

IPa(a,%J, we used the K-S test for testing of model fitting. The histogram for the

observations in log scale is illustrated in Figure 3.2.

Table 3.7 shows the statistical test value for fitting of the Inverse Pareto
distribution and the estimated parameters. The results of the K-S test reveal a P —
value for Inverse Pareto distribution of 0.0482 which is greater than 0.01. Hence, we
can conclude that the 1,296 observations can be fitted by the Inverse Pareto

distribution with a 99% confidence level. The estimated parameters for the Inverse

Pareto distribution are ¢ =4.7260 and ,3 =8.7870x10™*,

Table 3.7 The fitting of Infinite Mixture distribution.

Distribution K-S test Estimated
D—-value P —value Parameter
Inverse Pareto 0.0381 0.0482 =4.7260

aQ
/3 =8.7870x10™
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In Figure 3.3, the solid line shows the Empirical Cumulative Distribution Function
(ECDF) while the dashed line is the cdf of the Exponential distribution.

In Figure 3.4, the solid line shows the ECDF while the dashed line is the cdf of the
Inverse Exponential distribution.

In Figure 3.5, the solid line shows the ECDF while the dashed line is the cdf of the
Lognormal distribution.

In Figure 3.6, the solid line shows the ECDF while the dashed line is the cdf of the

Inverse Pareto distribution.
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Figures 3.7, 3.8, 3.9 and 3.10 showed the P-P plot for Exponential, Inverse

Exponential, Lognormal and Inverse Pareto distributions, respectively.

exponential P-P plot

1 . inverse exponential P-P plot
09 ook ‘ ‘ k ‘
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00 O.rl O.rZ 0.r3 0.r4 O.rS 0.r6 0.r7 O.rs 0.r9 1 G(:r - 0’1 0_’2 O.r3 O.rA 0.’5 0.’6 O.r7 O.rB 0.’9 1
Observed Observed
Figure 3.7 P-P plot for Exponential Figure 3.8 P-P plot for Inverse
Distribution. Exponential distributon.
lognormal P-P plot . inverse Pareto P-P plot
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Observed Observed
Figure 3.9 P-P plot for Lognormal Figure 3.10 P-P plot for Inverse Pareto
distribution. distribution.

This chapter has described the construction of the infinite mixture model, and

the next chapter is to use the results of this model to price an insurance premium.



CHAPTER IV

INSURANCE PRICING

Premium determination is a primary task in the insurance industry: to conduct
business and also to make it competitive in the market. Pricing of the insurance is
based on risk factors such as driver’s age, gender, marital status, type of car driven or
vehicle age which involves constitutional rights and actuarial fairness.

In practice, the linear models are often inadequate because response variables
rely on normal distribution. The Claim Severity or loss distributions are defined on
the positive real line, especially the fat-tailed and skewed right distribution, whereas
the Claim Frequency based on a discrete distribution is a natural approach for
counting data and making non-negative observations, (Tes, 2009). Referring to
Ohlsson and Johansson (2010), by far the most practical solution to linearise the non-
life motor insurance is the generalized linear model (GLM). In other words, the GLM
drops that restriction and provides a more suitable solution to this problem. The GLM
is an extension which allows the model to follow the distribution, rather than other
normal distributions.

Pure Premium can determine from two components which are frequency and
severity distributions of the potential claims. To price the insurance premium, it is
necessary to take the mean of the frequency and the severity distribution which
produces the pure premium:

Frequency x Severity = Pure Premium
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In insurance premium pricing, the GLM is often used to estimate premiums for
different individual characteristics of the insured person, including the characteristics
of the car.

In this study, data consists of the Claim Severity for each policy and several
characteristics of the insured person, such as age and gender. Each policy is assumed
to have only one claim. Therefore, the expected value of Claim Frequency equals 1.

The aim of this research is to solve the problem of insurance pricing of motor
insurance claims using the observations from the public non-life insurance companies
in Thailand, where the data of Claim Severity are modeled by an Inverse Pareto
distribution. We employed GLM and mainly focused on the types of a) age and b)
gender, which are the two major rating factors.

Our work in this section is to organize as follows: Section 4.1 presents the
Testing of Data beginning with testing normality in 4.1.1, nonlinearity in 4.1.2 and
introduction of nonlinear model Generalized Linear Model (GLM) in 4.1.3. In Section
4.2, we refer to the concept of GLM employing Inverse Pareto in 4.2.1. In the next
section 4.2.2, we present the estimation of GLM employed Inverse Pareto, followed
by and its corresponding results in section 4.3. In other word, these sections using the
materials and methods for calculating the predicted values of Claim Severity, since it
shows the construction of a GLM where the response is modeled by Inverse Pareto
distribution. Moreover, a comparison of the results from all the factors concerned is
also presented in 4.3. Finally, pricing of the insurance premium for different
individual characteristics of the insured person are presented in the Application for

Prediction of the Insurance Premium in section 4.4.
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4.1 The Test of Data

We classify the data set by testing normality, nonlinearity and then explain the

Generalized Linear Model (GLM) in Section 4.1.1-4.1.3.

4.1.1 Test for Normality
Test for Normality by using the Shapiro Wilk Test, and found that p-Value <

e-16 < 0.05. Thus, the distribution is not a normality.

4.1.2 Test for Nonlinearity
(1) Test for Unit root using the following:
(@) Augmented Dickey-Fuller Test, and found that p-Value = 0.01 < 0.05.
Hence, the distribution is a nonlinearity.
(b) Phillips-Perron Test, and found that p-Value = 0.01 < 0.05. Hence, the
distribution is a nonlinearity.
(2) Test for trend stationarity using Kwiatkowsk — Phillips — Schmidt — Shin
(KPSS) Test, and found that p-Value = 0.01 > 0.05 Hence, the distribution is a
nonlinearity.

We will use Program R for test Normality and Nonlinearity (see Appendix D).

4.1.3 The Generalized Linear Model (GLM)
The objective of both linear models and GLM are to express the relationship

between an observed response variable, X, and a number of covariates, z. Both

models view the observations X, X,,...,X, as realizations of the random variables



49

X Xy, X, Thus, X represents a vector of the random variables X,,..., X..

Xy
Whose observations are of the form

X

n

For the classical linear model in the form, the components of X have independent

normal distributions with constant variance o?and
p -
E[X,]=x where s =>zp;i=1..n
j=1

GLM is the extended version of linear model. It allows the population means
depend on a linear predictor via a nonlinear link function, transforming between
response and covariate variables.

The goal of building a successful model, however, lies in selecting the suitable
link function to use.

For example

Assume that X; ~ Poisson( z; ).

p
so that g(z4)=log()="> 7,8, is canonical link.
j

p
The mean of X, is x =exp(z zij,b’jj. This will ensure that all of the predicted
j

values are positive. The log link is the most suitable link function to use. The
canonical links often have good properties, so the choosing of the link function should
be based on prior expectation. Alternativly, some other software packages used to
predict the values are availabe, i.e., GLIM, R, S-PLUS, SAS, Stata, Genata, SYSTAT,
etc. However, those software are not suited to the simulation of the Inverse Pareto

distribution.
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As previously mentioned, the predicted values by the GLM technique provide
a response random variable, X, that has a distribution in the exponential family.

In connecting to this work from Chapter IlI, we refer to the claim data which
has been fitted with Inverse Pareto distribution. Finally, we define a flowchart of the

premium calculation that leads to pricing the insurance premium.
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Y

Stage 1: Infinite Mixture Model

4

Stage 2: Test for Normality and Nonlinearity
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Stage 3: Construct a Generalized Linear Model
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Figure 4.1 The flowchart of the premium calculation.
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4

Figure 4.1 The flowchart of the premium calculation (Continued).
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4.2 Construction of a Generalized Linear Model

We explain the Inverse Pareto model in 4.2.1 and the Estimation for the
model in 4.2.2.
Definition 4.1 (Klugman et al., 2008) Suppose a parametric distribution has

parameters u and &, where 4 is the mean and ¢ is a vector of additional

parameters. Let its cdf be F(x|,u,¢9). The mean must not depend on the additional

parameters and the additional parameters must not depend on the mean. Let z be a

vector of covariates for an individual, Let £ be a vector of coefficients, and let 7 ()
and c(y) be functions. The generalized linear model then states that the random

variable, X, has as its distribution functions.
F(X|z,0)=F(x|m0),
where u is such that n(u):c(,b”z).

Let z:(zl,...,zn)T be the column vector of the z values andﬁz(ﬁl,...,ﬂp)T

the column vector of coefficients.

4.2.1 The Inverse Pareto Model

Assume that X ~InversePareto[a,%j, abbreviated to X ~IPa(a,%j,

with density

hx(x|a,ﬁ):ﬂ' a,f>0,x>0

(1+ ﬁX)a+l !

and distribution function (cdf)
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1 a
Hy (X|e. B) = {1— ﬂHJ :

Consider the moment of X,

E[xk]:F(“+kk)r(1_k), —a<k<l.
BT(a)
Approximate E[X] with E[Xk]When for k close to 1. E[X] does not exist.

We estimate the value of E|[ X* | when k is equal to 0.1,0.2, ..., 0.9, 091, ..., 0.99.

We show k =0.95.

E[xe]- I'(« +zgi)rr(s)— 0.95)

Approximate T'(a+0.95) by TI'(a+1) whenae[0.001, 2]. Therefore, the

approximation error is not over 0.10.

['(a+1)r(0.05) «T'(0.05)
,BO'QSF(O() o ﬁo.gs

ol (0.05)

Thus, E| X°% |= 5

In this thesis, we assume that mean or expected value of an Inverse Pareto distributed

ol (0.05)

random variable X with parameters « and % are given by o

Next, we construct a GLM for the observations for some non-life insurance
public companies in Thailand when the Claim Severity is modeled on Inverse Pareto

distribution.
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1 . T
None of the two parameters « and — in the Inverse Pareto distribution

I'(0.05
reflect the mean. To make the mean one of the parameters, we can set u = %
) ) ) ﬂﬂo.gs
or, equivalently, replacin with .
| Y, TEPIEING @ W T (0.08)
The cdf is now
lUﬁO.QS
1 r(0.05)
H(x{u,f)=|1-
(X]es. ) ( Bx+1

and the pdf is

0.95 B { uB** 71}
up ﬁr(o.os) X 1(0.05)

r(0.05)

h(x|, )=

0.95
Lﬂ}

1+ ﬁx)[r(O-OS)

By definition, one may link the covariates to the mean by using n(x)=x and

c(B"z)=exp(B"z). Setting n(u)=c(B"z) ,then u=exp(B'z).
Note that it is expected that all of the predicted values are positive.

For each observation, the Inverse Pareto distribution uses the parameter
directly, while the parameter « is derived from the value of g and the covariates for

that observation.
Our interest lies in investigating the risk factors that affect the Claim Severity
for each policy and specifically the risk factors that correspond to the insured person.
The data consist of the Claim Severity for each policy which we want to
predict and several characteristics of the driver are based on two rating variables: age

of driver and gender of driver.
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(@) Let X,,..., X, be the Claim Severities of n independent claims. These are

considered to be random quantities.

(b) Let z,, be the age of the driver and let and z,, be the gender of driver (e.g.

the i" element of z,is 1 when the i" observation is women, and 0 if men).

These are considered as fixed quantities.
The matrix notation presents as follows:

(@) Let X be the n dimensional column vector of response variables;
T
X=(Xypee X))

(b) Let £ be the p dimensional column vector of coefficients;
T
B=(B-nB,) -

.
(c) Let z be the p dimensional column vector of covariates; z:(zl,...,zp) .

The design matrix is

AR RERY
Ly Iy Zy,
an Zn2 an

If z, =1 then £ is intercept of the model.

Under the GLM, the mean of X, is

E[X,]= =exp{jz::ﬂ}zij}.

We are interested in investigating factors that affect the Claim Severity for

each policy by considering separation in 3 cases as follows:

Case 1: considering the age of the driver (z,) by substitution s =exp(8,z, + ,z,)
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Case 2: considering the gender of the driver (z;) by substitution

Hi = exp(ﬂlzil + ﬂSZiS)

Case 3: considering the age (z,)and gender(z,) of the driver by substitution

M= eXp(,Blzil + 5.z, + ﬁ32i3)

4.2.2 Estimation for the Inverse Pareto Model

Considering the amount {x},(i=12,...,n), paid for the i" contract. We
shall fit the data set {x} to the Inverse Pareto distributions. By MLE, we obtain

estimations for parameter £, 5, 5, and S, as follows:

The pdf for the Inverse Pareto distribution is

0.9 uﬁ0.95 #ﬂO.QS .
pp ﬁr(o.os) _X{r(o.os) 1}

r(0.05)

hy (X[, B) =

/Iﬂo.%

(1+ ﬂx){r(o.os)ﬂj
Its likelihood function can be written as

wp ﬂﬁlié}-és) X_[ﬁigosﬁ]
T(005)” "
i= mﬂ}

(1+ Bx, )L(o-os)

L(x|u. B) =

i=1

The log-likelihood function is in the from

wh 0 ﬂ;?g.és) X'[?ég.ols)_l]
'(0.05) '
0% )

(1+ 8%, )[F(O%)+ }

(4.

In L(x|y,,6’)=iZ:l:In
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Casel: By substitution 4 =exp(,z,+ f3,z,)in (4.1)

e(ﬁ12i1+ﬂzziz)ﬂ0-95
r(0.05)

efititPatiz g095 [eﬁlliﬁﬂzziz J

i 1(0.05) r(0.05)

In L(x|y,ﬂ):gln

efitinPatiz g0 95 }

(1+ Bx, ){F(O%)

Hence, the partial derivatives of the log-likelihood function are

O LGuf) _go6n
op Y
et hits 005 gtttz g o iy g & XETE
1+ pBx;
1 n
_0_95eﬂlzi1+ﬂzz|2 -0.05 In 1+ X
r(0.05); £ In( i 0) .
.05) x;
+O.95ﬁ’0-05eﬁ12i1+ﬁ22i2 In X, — u
1+ Bx

0.95 0.95
( il) w(zil)eﬁlzi”ﬁzz" +ﬂ—(zil)eﬂ12i1+ﬂzzi2 In Xi

oInL(x|uB) & ‘ +r(o.os) I'(0.05)
b, = __B” B+t
F(005) (z,)e In(1+ Bx;)

I ﬁo.gs Inﬂ Pizin+Pati; |
(2:)+ r(0.05) (a)e )
aln L(X|ﬂ,ﬂ) — \ ﬁo-% AiZis+Poiz

op, _21: +r(o.05)(e )(za)in

_ﬂ Bizin+Potiy
r(0.05)(e )(ziz)ln(1+ﬂxi)

The three estimates 4,3, and 3, for parameters S,/ and f3, can be obtained by

solving these three equations.
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etttz §005 () QB te g0%5 |n B _ e/ttt y, 5090 |
1+ BX;
n 1 :
0.95— —0.95¢/t%ut etz 37005 | (1 : =0
5 + F(005)% e B In( +ﬁx£))05
+0.95570%gAtu A% |n . _L(005)%
| 1+ pBx; ]
...(42)
0.95 0.95
(Zi1)+ IB Inﬁ( )eﬂlzil+ﬂzzi2 + ﬁ (Zil)eﬁﬂn*’ﬂzziz In X
n I'(0.05) I'(0.05)
; ﬂo.gs =0 ...(4.3)
“F(oog) ) @)
I ﬂo % In ﬂ ﬁl i1+ PaZiz |
(Ziz)+W( )( )
i + ﬂ0-95 (eﬂlzil+ﬂzzi2 )(2_2)|n X. =0
=| T(0.05) ' '
_ ﬂo'%_(eﬂﬂil*/’zzi2 )(z,)In(1+ Bx,)
I'(0.05) ' '
L _ ..(4.4)
Case2: By substitution s =exp(5,z, + £,z;5)in (4.1)
eAiL+Pti3 g0.95 eAzin+Fati3
R = r(/:.osl)} [ T(0.05) 1]
" r'(0.05) g %
In L(X|,Ll,ﬁ) = Zln efitin+ i 095
= (1+ Bx, ){ r(0.05) }
Hence, the partial derivatives of the log-likelihood function are
ol
M = 0_95£+
op
i Aizin+Psis 0.95 ]
eﬁlzi1+ﬂ32i3ﬂ70'05 + 0.95eﬂ1Zi1+ﬂ3Zi3ﬁ’0-05 In ﬁ _ e n ﬁ)iﬂ
1 y _ Aza+bstis 005 10 (1 |
F(005)% 0.95¢e A% In(1+ Bx;)

I'(0.05)x;

+0.9557 %Attt |n x — Ty
+ B,




oInL(x[w, B) & I'(0.05) I (0.05)
6ﬂ1 ) =1 _ ﬂO.gs BiZin+Bszis
F(O.OS)(Z”)e In(1+ Bx,)
I ﬂOI% In ﬂ BizintPsZis |
(2)+ I(0.05) (Z”)(e )
oInL(x|wmp) Q&

(2)+ 2108 ;)

IBO.QS P
+—F(0.05)(e ) (2,)In X

3 ﬁogs_(eﬁlzil*ﬁazis)(zig)ln(1+ﬂxi)

0.95
eﬂ11i1+ﬁ3zi3 + ﬂ

I'(0.05)

(Zil ) eﬂ11i1+ﬁ3zi3 In X
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The three estimates £, 3, and S, for parameters S,/ and S, can be obtained by

solving these three equations.

o stis 7005 1, QB /s 5008 |y ﬁ—w
1+ Bx;
0.95£+ 1 Z _0.95eﬁ12i1+ﬂ3z|3ﬁ—0.05 In (1+,3Xi) 0
F(0.0S) — RN
+O_95ﬂ_0'05eﬂ12|l+ﬁ32i3 In X, — u
L 1+ X |
...(4.5)
095 In y B 0.95 o
n (Zi1)+ ?(0_05€(Zi1)eﬂ1 i1+ BsZis +%(Zil)eﬂl i1+ BaZiz In X,
; ﬂ°-95 =0 ...(4.6)
oI s
— ﬂ0_95 Inﬂ ﬂ12i1+ﬂ32i3 -
(Zi3)+ F—(0.0S) (Zis)(e )
=0. .(47)

0.95

r(0.05)

N ﬂ Bizin+Bazi
Z +F(0 05)(9 )(zig)lnxi

(eﬁlz'1+ﬁ3z'3 )(zis)ln (1+ 8x)
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Case3: By substitution s =exp(,z, + 5,2, + B:2;3) in (4.1)

e(ﬁ12i1+ﬂzziz+ﬂszi3)ﬂ0.95
I'(0.05)

ol Aitintfatiz+ fgtis) B0 [e(/ﬁzi1+ﬂzliz+ﬁ31i3) 505 j

V. 1/(0.05) 1(0.05)

In L(x|y,ﬂ)=§ln

Azin+Boti2+3ti3) 505 }
+1

o
(1+ % ){r(o-os)

Hence, the partial derivatives of the log-likelihood function are

oInL(x|u B)
oB

~0.952 ¢

Zi1+BoZin + a2 0.95
eﬂl 17P2%i2%P3 3Xiﬂ
1+ Bx

eﬁlzi1+ﬁzziz+ﬁazi3ﬂ*0-05 +0.95eﬁ12i1+ﬁ22i2+ﬂ3zi3ﬂ’o-os In ﬂ_

L a
r(0.05) Z

= '(0.05)x
1 _0_95eﬁ12i1+ﬁ22|2+ﬂ32|3ﬂ—0-05 In (1+ ﬂxi)+ 0_95ﬂ—0-05eﬂlzi1+ﬂzziz+ﬂ32i3 In X — ( ) I

1+ Bx

ﬁ0.95 Inﬂ Piziy+PoZir+PaL ﬂO'% PiZin+PoZin+ Pl
. _ i1t P2%iz tPaliz . i1t P2%i2 T Patis | .
oInL (x|, B) Zi (2)+ I(0.05) (z.)e +r(o.05)(z'1)e "

aﬂl =1 ﬂo.gs
I'(0.05)

(Zil)eﬂlzil+ﬂzz'2+'ﬁ32'3 |n(1+ ﬂxi)

— ﬂo_gs In,B pATS Y ﬂ0.95 Bt Byt ot
. LAN— i1t P22i2 T P3%i3 . i1t P24i2 3|3| g
onL(xlup) «| ) Foos) %)° " (005 %)® n
6132 =1 ﬂo.gs
I'(0.05)

(Zi2 ) eﬂﬂu*’ﬁzziz*‘ﬂszis In (1+ ﬂxi )

ﬁ0.95 In ﬁ Prizis+Bozin+ Pz ﬂO.% PrizintBaZin+ P32
) 7. ettt P2tz T Petia Z.. ettt T s%s |0 X
oInL(x[wB) & (2)+ r(o.os)( ) +r(o.05)( <) '

8133 — ﬁo.gs
I'(0.05)

(ZiS ) eﬂﬂu*’ﬁzziz*'ﬂsziz In (1+ ﬂxi )

The four estimates 3, 3, 3, and j, for parameters S, B, 3, and f3, can be obtained

by solving these four equations.
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0.95 +
B
Bitis+PaZia+Pstiz -0.05 Bitin+PrZio+Pslis —0.05 _eﬂ12i1+ﬂ22i2+ﬂ3zmxiﬂ0lgs
L e B +0.95 B 7Ing T+ hx )
F(OOS) i=1 _O_95eﬂlzi1+ﬂzzi2+ﬁazisﬂ—0-05 In (1+ ﬂxi)+ 0_95ﬂ—0-05eﬂlzi1+ﬂzziz+ﬂszi3 In X — I_1((')05) X
1+ B
.(4.8)
ﬂO'% In ﬂ PiZin+PoZin+fal ﬂ0.95 PizZis+PoZio+ P
) — * (z i1 P252TP35s o I (7. i1+ P24i2 3|3| .
an () (0.05) (2.)¢ b r(o.os)(z'l)e %
=1 ﬁ0-95 (Z- )eﬂlzu*'ﬁzziz*'ﬁszus In (1+ ﬁx) B (49)
r(0.05)" ™" '
B 0.95 0.95
( i2)+ ﬁ In'B(Ziz)eﬂziﬁﬂzziz‘*’ﬂﬂis +ﬂ—(2i2)eﬂ12‘1+ﬂ22‘2+ﬁ32‘3 In Xiw
n I'(0.05) I'(0.05)
> o =0 ..(4.10)
i=1 .
— (Zi )eﬂﬂu*ﬂzz.z*ﬁsz.s |n(1+ ﬁxi)
| T(0.05)" |
0.95 0.95
( i3)+ﬂ Inﬂ(Zis)eﬂlzi1+ﬁzzi2+ﬁ3zi3 + ﬁ (Zis)eﬁlzi1+ﬁzzi2+ﬁ32i3 In X,
$ r(0.05) r'(0.05) )
i= ﬂo-% ZintPozip+ Paliz B (411)
= F(0.05)(zi3)e”1 Ptiatlsts In (14 B;)

Because of the difficulty of solving (4.2)-(4.4), (4.5)-(4.7) and (4.8)-(4.11), with

MATLAB, we solve the equations numerically using the Newton-Raphson method to
estimate parameters 3, 3, 5, and f,. These methods are explained in B.2.2, B.2.3 and

B.2.4 of Appendix B.
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4.3 Results
Table 4.1 shows the estimate of parameters £, 4, 5, and S, for casesl, 2 and 3.

Table 4.2 shows the SAE, MAE and MSE of Claim Severity for casesl, 2 and 3.

We proved that Case 3, selecting both the age and the gender of the driver,
yields the minimum values of SAE, MAE and MSE. For all value of k, Case 3
presents the best solution, followed by the results of Case 1 and Case 2. In this study,
having tested the k value, we found that the most fitting for GLM employed Pareto
model is where k =0.80 because the minimum values of SAE, MAE and MSE. The
data consists of the Claim Severity for each policy and several characteristics of the
insured person, such as age and gender. Each policy is assumed to have only one
claim. Therefore, the expected value of Claim Frequency is equal to 1.

This aim of this research is to solve the problem of insurance pricing of motor
insurance claims using the observations from the public non-life insurance companies
in Thailand, where the data of Claim Severity are modeled by an Inverse Pareto
distribution. We employed GLM and mainly focused on the types of a) age and b)
gender, at which are two major rating factors.

Therefore, the age of the driver has more effect on Claim Severity than the
gender of the driver.

We can see that increasing the number of risk factors results in decreasing the
SAE, MAE and MSE. Therefore, we use the expected value of Claim Severity for

both the age and gender to the constitution in calculating the pure premium.



Table 4.1 The estimate of parameters 3, 5, 5, and S, for cases 1, 2 and 3.

k Case Consider Parameter
B By P, B

0.10 Age 0.0097 11.0009  -0.0084

Gender 0.0085 11.0006 -0.0150

Age and Gender 0.0110 46356  -0.0067  -0.0087
0.20 Age 0.0097 11.0015  -0.0084

Gender 0.0085 11.0010 -0.0150

Age and Gender 0.0007 3.2056  -0.0048  -0.0208
0.30 Age 0.0097 10.0073  -0.0084

Gender 0.0085 10.0051 -0.0148

Age and Gender 0.1727 7.6537  -0.0073  -0.0064
0.40 Age 0.0097 10.0133  -0.0084

Gender 0.0008 4.7660 0.0001

Age and Gender 0.2179 8.1064  -0.0073  -0.0063
0.50 Age 0.0077 11.0083  -0.0084

Gender 0.0161 11.8047 0.1990

Age and Gender 0.0005 57110  -0.0047  -0.0219
0.60 Age 0.0067 10.0428  -0.0083

Gender 0.0078 10.0354 -0.0137

Age and Gender 0.0740 8.3812  -0.0072  -0.0066
0.70 Age 0.0067 10.0938  -0.0082

Gender 0.0068 10.0740 -0.0125

Age and Gender 0.0638 8.8959  -0.0072  -0.0067
0.80 Age 0.0070 9.4124  -0.0073

Gender 0.0065 9.4532 -0.0013

Age and Gender 0.0092 9.2827  -0.0070  -0.0077
0.90 Age 0.0127 10.7769  -0.0079

Gender 0.0058 11.2173 -0.0088

Age and Gender 0.0203 10.4978  -0.0070  -0.0072
0.91 Age 0.0006 10.7742  -0.0057

Gender 0.0060 12.0928 -0.0125

Age and Gender 0.0765 10.7654  -0.0073  -0.0065
0.92 Age 0.0146 10.9696  -0.0076

Gender 0.0055 10.7429 0.0026

Age and Gender 0.0307 10.8368  -0.0071  -0.0069
0.93 Age 0.0044 11.4161  -0.0075

Gender 0.0002 11.3410 -0.0075

Age and Gender 0.0105 14.6688  -0.1199  -0.2485
0.94 Age 0.4520 11.2278  -0.0073

Gender 1.4256 11.1270 0.0300

Age and Gender 0.0917 10.7836  -0.0073  -0.0064
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Table 4.1 The estimate of parameters5,5,5, and pB, for cases 1, 2 and 3

(Continued).

k Case Consider Parameter
B By B, P

0.95 Age 0.0205 11.3959 -0.0070

Gender 0.4446 11.2589 0.0298

Age and Gender 0.0042 11.3154 -0.0063 -0.0088
0.96 Age 1.30x10? 12.1005 -0.0074

Gender 0.0087 12.2754 -0.0051

Age and Gender 0.0498 11.7006 -0.0070 -0.0070
0.97 Age 6.55x10? 12,5070 -0.0074

Gender 0.0113 12.3899 0.0008

Age and Gender 0.2958 12,1000 -0.0079 -0.0132
0.98 Age 5.37x10° 12.6416  -0.0074

Gender 0.0102 12.5794 0.0054

Age and Gender 0.1030 12.4781 -0.0070 -0.0060
0.99 Age 0.0008 13.2945  -0.0048

Gender 0.0096 13.0006 0.7010

Age and Gender 0.0091 13.1738 -0.0067 -0.0080




Table 4.2 The SAE, MAE and MSE of Claim Severity for cases 1, 2 and 3.

K Cases SAE MAE MSE
0.10 Age 47,849,391.49 36,920.83 2,413,361,350.76
Gender 64,829,822.08 50,023.01 3,405,287,643.18
Age and Gender 22,786,388.98 17,582.09 2,016,096,314.81
0.20 Age 47,877,911.52 36,942.83 2,414,780,329.70
Gender 64,875,081.36 50,044.04 3,447,286,306.55
Age and Gender 22,864,046.68 17,654.76 2,018,675,914.51
0.30 Age 47,935,002.93 36,986.88 2,417,625,104.27
Gender 64,922,709.67 50,094.68 3,452,037,612.09
Age and Gender 20,190,926.12 16,119.54 1,964,236,179.39
040 Age 21,897,432.33 16,896.17 1,705,708,087.87
Gender 22,738,315.22 17,545.00 2,014,812,535.18
Age and Gender 19,994,345.22 15,427.74 1,935,256,427.79
0.50 Age 48,202,337.23 37,193.16 2,431,021,563.78
Gender 178,900,886.19 138,040.81 20,037,427,889.27
Age and Gender 22,565,320.02 17,411.51 2,010,098,139.62
0.60 Age 22,269,672.20 17,183.39 1,704,670,576.50
Gender 26,500,854.43 20,448.19 1,731,662,136.35
Age and Gender 19,376,714.90 14,951.17 1,911,156,748.23
0.70 Age 49,689,942.21 38,341.00 2,507,023,474.23
Gender 66,716,690.95 51,478.93 3,584,721,748.93
Age and Gender 18,316,858.49 14,033.38 1,851,289,453.03
0.80 Age 46,863,050.61 36,159.76 2,366,009,158.11
Gender 48,375,509.26 37,326.78 2,452,070,913.98
Age and Gender 18,173,807.27 14,023.00 1,793,032,546.72
0.90 Age 39,146,772.53 30,205.84 2,040,966,505.28
Gender 81,954,773.38 63,236.71 4,880,944,140.57
Age and Gender 31,246,470.59 24,123.82 1,810,586,651.30
091 Age 42,109,255.76 32,491.71 2,152,191,562.75
Gender 210,340,106.33 162,299.46 27,158,872,375.02
Age and Gender 39,359,761.95 30,370.19 2,048,229,901.21
0.92 Age 47,718,763.95 36,820.03 2,405,557,076.69
Gender 50,213,699.63 38,745.14 2,531,419,820.99
Age and Gender 42,441,632.32 32,748.17 2,166,407,468.00
0.93 Age 76,143,692.43 58,752.85 4,868,270,787.57
Gender 93,741,058.31 72,331.06 6,082,736,406.04
Age and Gender 56,049,225.54 43,247.88 4,614,773,011.84
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Table 4.2 The SAE, MAE and MSE of Claim Severity for cases 1, 2 and 3

(Continued).

K Cases SAE MAE MSE
0.94 Age 62,895,835.58  48,530.74 3,313,532,325.02
Gender 76,361,594.66  58,920.98 4,371,851,430.74
Age and Gender  40,050,534.12  30,903.19 2,073,483,552.98
0.95 Age 75,961,985.01  58,612.64 4,349,540,732.77
Gender 87,977,841.49  67,884.14 5,474,576,599.09
Age and Gender ~ 71,207,968.47  54,944.42 3,943,117,041.99
0.96 Age 160,054,575.94  123,498.90  16,162,478,279.39
Gender 256,956,246.85  198,268.71  40,128,583,220.86
Age and Gender ~ 104,996,388.95  81,015.73 7,428,165,351.74
097 Age 247,736,566.97  191,154.76  37,594,516,256.59
Gender 291,270,513.24 22474577  51,355,487,389.70
Age and Gender ~ 155,485,746.86  119,973.57  15,311,728,378.15
0.98 Age 285,814,251.10  220,535.69  49,796,058,829.97
Gender 356,719,113.69  275,246.23  76,691,793,702.71
Age and Gender ~ 242,950,487.33  187,461.80  36,160,870,453.48
0.99 Age 623,765,849.24  481,480.94  233,535,757,437.03
Gender 915,060,088.95  706,064.88  547,583,902,818.15
Age and Gender  506,582,034.38  392352.66  155,818,864,966.15
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4.4  The Application for Prediction of the Insurance Premium

The preceding sections show the construction of GLM. In the following
section we are interested in determining the pure premium.

Pure Premium can determine from two components which are frequency and
the severity distributions of the potential claims. In our work, we assume each policy

has only 1 claim, As a result, the expected value of the Claim Frequencies is equals to

1 (i.e. E[Yl] :1). On the other hand, the distribution chosen for modeling severity is

the Inverse Pareto distribution. For pricing some insurance, taking the mean of the
frequency and the severity distribution produces the pure premium. The model can be

written the following form:

Frequency=E[Y,]=1,
p
Severity =E[ X, ]:exp(z 2, B; ]
j

Pure Premium = E[Y, [xE[X,]= exp(i zij,BjJ.

Consequently, the response of the pure premium will be equal to the expected
value of the Claim Severity because the expected value of Claim Frequency is equal
to 1.

The previous chapter demonstrated the construction of the infinity mixture
model that supported the pricing of insurance premium in this Chapter IV. Having

achieved the major parts of the Thesis, the Conclusion follows in the next Chapter.



CHAPTER V

CONCLUSIONS

This thesis is divided into two parts which are, firstly, the claim modeling for
an infinite mixture model and, secondly, the pricing of insurance premiums using
GLM which is based on an infinite mixture model for response variables. To verify
the concepts, we have used the observations of motor insurance claims for the year

2009. The conclusion, discussion and further research are as follows.

5.1 Claim Modeling

5.1.1 Conclusion

For the simulations: the group samples are simulated by 99 sample groups of
the combination of claim distributions, i.e., Lognormal, Gamma and Weibull
distributions. Having stimulated the models, we found that the error is significantly
less than that of the classical distribution. For the Application: the classical models,
namely, Exponential, Inverse Exponential and Lognormal have been used by actuaries
to fit the observations. Having used K-S test for these three classical models, the yield
cannot meet the standard of goodness of fit. Finally, we attempted to find a solution
by constructing an infinite mixture distribution which becomes superior to that of
Inverse Pareto distribution. Thus, the set can be fitted to the modified Inverse Pareto

distribution as shown by the K-S test at a significance level of « =0.01.
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5.1.2 Discussion and Further Research

An infinite mixture model was investigated in this research study which can be
fitted to motor insurance claims. The infinite mixture model is useful for some
modeling of unobserved heterogeneity in the population and for reducing the problem
of the number of components (k) in a finite mixture model.

In further research, a new model can be constructed of infinite mixture
distributions which are appropriate to our claim data set. (Please see Appendix E. for
the new models) They can be applied to many fields, such as financial data, stock data

and for other practical purposes.

5.2 Insurance Pricing

5.2.1 Conclusion

For the application of the observations, all insurance premiums are based on
the GLM which incorporates many risk factors. We found that increasing the number
of risk factors resulted in decreasing the SAE, MAE and MSE. Therefore, the
expected value of Claim Severity that considers both age and gender is an appropriate
model to use for calculating pure premiums. The expected value of Claim Frequency
is equal to 1. Therefore, the response of the pure premium will be equal to the

expected value of the Claim Severity.

5.2.2 Discussion and Further Research
In insurance pricing, the GLM is one methodology which can provide the
determination of a pure premium which is dependent on two components, frequency

and severity distributions of the potential claims. However, the price of motor
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insurance policies depends on individual characteristics, such as driver’s age, gender,
marital status, type of car driven and the age of the vehicle. During the work, we has
tried to modify the alternative software packages, i.e., GLIM and R.

Further research resulting from this research study should focus on a

generalized linear model with other distributions than the exponential family.
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APPENDIX A

THE CUMULATIVE DISTRIBUTION FUNCTION

This section presents the cdf of the Inverse Pareto distribution IPa(a, ij

The Cumulative Distribution Function
The pdf of Inverse Pareto distribution IPa(a%) is

a,a-1
h(x)= afi "X ca, >0, x>0,

(1+px)

Thus,

Let t =(1+ /) then 7 =(t%f) JIf 2 =0=>t=1, ifz =x=>t=/x+1

We get dt = fdz then dz :%dt.
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The cdf of Inverse Pareto distribution IPa(a,%] is H(x)= (1
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)
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APPENDIX B

NEWTON RAPHSON METHODS

This section presents the Newton-Raphson Method (See Steven (2007)).

B.1 Newton Raphson Method

Newton’s (or Newton- Raphson) method can be used to approximate the roots
of any linear or non-linear equation of any degree. This is an iterative (repetitive

procedure) method.
The tangent line (slope) to the curve y = f(x) at the point (x,, f (x,)).

We assume that the slope is neither zero nor infinite. Then, the slope (first

derivative) at X = X, is

y—f(x)= f'(x)(x-x) ...(B.1)
The slope crosses the x-—axis at x=x, and y=0. Since this point

(xz, f (xz)):(xz,o) line on the slope line, it satisfies (B.1). By substitution,

0—f(x)= f'(x%)(%—x)

and in general,
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B.2 Newton Raphson Method for Several Variables

(Sebah and Gourdon, 2001) The Newton-Raphson Method is used for

estimation of 6, and 6, for é’l and éz where 6, and 6, are the parameter of the

distribution function.

By The Newton-Raphson Method, starting from the Taylor series of g, and

g, around the point (6,,,6,,), the initial values of €, and 6, are obtained by the Least

Square Method and computed in iteration until they converge to the constants (él, 92).
We consider the Taylor series from g, and g, around the point (6,,,6,,).
9:(6,6,) = 91(010:020)+ 911(0h0: 020 X, — 0o )+ G12(Gh0, 020 XO: — o)

92(61’ 62) = 92(910’ ‘920)"' 921(‘910' ‘920)(‘91 _‘910)"' 922(‘910' 920)(6’2 _920)

Such that
900 0) = 00 5 0)_(600) 172
11Y2) 10 ¥20
0l ) = 540N g 0)- 0,0,) ) H
11Y2) 10' ™20

By the Least Square Method, we obtain
911(91 - 910)1L 912(62 - 920) = -0,

921(91_910)"'922(92 _920) =-0,

{911 glzj||:01_910:| _ {_91}
Oy U2 6> — 0y -0,
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_91_ _ |:010}+{911 912}1 {_ 91}
_02 i ‘920 921 922 - gz
910} \ 1 {922 —912}{—91}
011922 = 912921 | 921 O, -0,

{01} _ {010} I 1 {912'92 _gzz'gl}
92 920 011922 = 9129211 92:°91 =911 9

T 1
RS
L ]

I
1
o

Hence,
01 = 010 + ;(912'92_922'91)
911922 - g12 921
1
02 = ‘920 + —(921‘91_911'92)

01192 — 91292
By the Newton-Raphson technique, all parameters are simultaneously
estimated for each term. The iteration procedure is applied until the values of the
parameters do not change or converge to the constants. Finally, we get the estimation

value of (6,,6,) to be (é’l,éz)where d,and 6,, are the initial parameters to @, and 4, .

Newton-Raphson Method for 3 and 4 variables using the same principle.
In Chapter 1llI, from (3.5)-(3.6), we preferred to solve the equations

numerically by using the Newton-Raphson method to estimate parameter « and S.

B.2.1 The inverse Pareto distribution

Assume that X ~ IPa(a,%) with density

ao-1
h(x)= X . 4550 x>0.

(1+ ﬂX)lHl !

The likelihood function can be written as follows:
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n aﬂaxa—l .

NN————: «,>0, x>0.
'1(1—|—ﬂ )a+1 ﬁ

L(a f) =
The log-likelihood function is in the form

InL(e, B) = nina + nalnﬂ+(a—1)zn:In X —(c +1)iZ;:In(1+ﬂxi)

i=1
From this the partial derivatives of the log-likelihood function follow:

onl(a,p) n SR -
—, - a+n|nﬁ+§lnxi iZl:ln(1+ﬁxi)

o
op B iz 1+ X

olnL(a, ) _ na ( +1)Z”: X

The two estimations ¢ and f for parameters « and S can be obtained by solving

these two equations.

E+n|nﬁ+znllnxi—anln(ljt,é’xi)=0 ...(B.2)
(04 i=1 i=1
?_ o+ 1 Izl:l+ﬂx ...(B.3)

Therefore we solve the B.2 and B.3 by the numerical method using Newton-

Raphson, for the estimation parameters « and .
By Nevvton-Raphson; 01 925 O11 9220 91
Let 6, =a, 6, = f

(9 9): 8|nL(a,ﬂ)
b 20,

- ﬂ+n|nﬁ+znlln X, —Zn:m(“/’)xi)
a i=1 i=1

O InL(e, B)

911(91’92) = 526’1



0
a

- 2 mewng( 1)

n

_ -na X
-5 +(a+l)§‘(l+ﬁ><i)2

& InLa,p)

921(6,.0,)= 0,,(6,,6,) = 00,00,

n c .
- G_(Z+nlnﬂ+i§|n X —izzl:ln(1+ﬂxi)j =

—N
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s=load ('D:DATA\Programming\OLAY Program\Data5

SS=ZerosS; z=zZeros; mMS=zeros;
Lss=zeros;

n=1296;

for i=1:n
ss(i)=s(i,1);

end

z=sort (ss);

Fm—mmmmmm—————— MLE of InverseExponential ---
e

a_ss=zeros;
for i=1:n
a ss(i)=1/ss(i);

end

Lss=a_ss;
M=n/sum(Lss)

% ____________________________________________
F¥=zeros;
for i=1:n

FF(1)=exp (-M/z (1))
end

FM=zeros;

for k=1:n
FM(k)=k/n;
end

DIF=FM-FF
D=Max (DIF)

.txt!')
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% _______________________________________________________ -
F—————————- Newton Raphson Of New Distribution

% _______________________________________________________ -
Parl=-100;

Par2=-100;

F===================== Set initial wvalue

v=0.000011;

M=0.52286;

F—mm e ——————— gl,gll,gl2,g21,92,922 —-—-———-

niter = 0;

while ((abs (M-Parl)>0.00001) || (abs(v-Par2)>0.

DET=0;

gl=0;g11=0;912=0;921=0;92=0;9g22=0;
Xgl=0;Xg2=0;Xgll=0;Xgl2=0;Xg21=0;Xg22=0;

if niter==

M=M;
vV=V;
else

M=Parl;
v=Par?2;

end

GG1=0;GGl_1=0;b _b=zeros;c_c=zeros;

for i=1:n

b_b(i)=log(z(i));
c c(i)=log(l+v*z (1))

end

GGl=sum (b b) ;
GGl l=sum(c_c);

Xgl= n/M+n*log (v)+GGl-GGl 1;
Xgll= -n/(M"2);

GG2=0;d _d=zeros;

for i=1:n

d d(i)=z(1)/ (1+v*z(i));

end

GG2=sum(d_d) ;

Xg2=

for i=1:n

e e(i)=

(n*M) /v—- (M+1) *GG2;
GG22= 0; e _e=zeros;

(z(1)72)/(1+v*z (1)) "2;

00001))
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end

GG22=sum(e_e);
Xg22= (-n*M)/ (v"2)+ (M+1) *GG22;
GG21= 0; f f=zeros;

for i=1:n

f f(i)=z(1)/(1+v*z(i));

end

GG2l=sum(f f);
Xg2l= n/v-GG21;
Xgl2=Xg21l;

% _______________________________________________________ -

gl=Xgl ;
gll=Xgll;
gl2=Xgl2;
g21=Xg21l;
g2=Xg2;

g22=Xg22;

DET=(gll*g22)-(gl2*g2l);

% _______________________________________________________ -

Parl= M + ((gl2*g2)-(g22*gl))/DET
Par2= v +((gl*g2l)-(g2*gll))/DET

niter = niter + 1

diff Parl=abs (M-Parl)
diff Par2=abs(v-Par2)

end

iteration = niter

disp ('===== Parl & Par2 ====
digits (10)

disp (vpa (Parl)) ;
disp (vpa (Par2));



FF new=zeros;

Parl
Par2

for i=1:n
al=Par2*z (i) +1;
bl=1/al;
cl=1-bl;
dl=cl”Parl;
FF new (i)=dl;
end

FF new;

F——————————————- K-S test of new distribution------—----—---—-
FM=zeros;
for k=1:n
FM(k)=k/n;
End
DIF=FM-FF new;

D new=Max (DIF)

D $ to comparison
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In Chapter IV, from (4.2)-(4.4), (4.5)-(4.7) and (4.8)-(4.11), we preferred to

solve the equations numerically by using the Newton-Raphson Method to estimate

parameters g, 5, 5, and f;.

B.2.2 Newton Raphson Method for estimation of 5,5 and g,.

The three estimation f,4and g, for parameters 3,5, and S, can be

obtained by solving these three equations.

005 005 eﬂﬂu*ﬁzzuz X-ﬂo'% ]
eﬂlliﬁﬁzlizﬁ* X +O.95eﬁlzi1+ﬁzzi2ﬂ’ X Inﬁ— i

1+ X

—0.95eA% /2% B0% n (1+ Bx; ) =0

'(0.05)x,
1+ X

005N 1 3
B T(005)5

+0.953 " PeAtntAt In x. —

...(B.4)
w Bizin+Bolis 50.95 Bizi+PoZiz
( il) F(0.05) (le)e +r(0l05)(zll)e In XI

=1 ﬁ0-95 ) pPizathtiz )
—F(0.0S) (z,)e In(1+Bx)

...(B.5)

"l Ziy+ o 0% 21+ BoZ;
(zi2)+’i(o—.g£(zi2)(eﬂl wl '2)+ p (eﬂl e '2)(zi2)ln X;

=0

i=1 _ ﬂ0-95 Bizin+Botiz
T(005) (e )(ziz)ln(1+,3xi)

...(B.6)

Therefore we solve the (B.4) - (B.6) by the numerical method using Newton-Raphson,

for the estimation parameters 3, 4, and S,.

By Newton-Raphson; 9,, 9,, 95, 911, 912 = 9210 %15 = 311 9200 925 =350 Jase
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Let 6 =24, 6,=0, 6,=5,

oInL(xX|u, ) oInL(x|uB)

91(6’1"92’03):

26, o

oInL (x| p)
op
Bizin+PBoti; 0.95

. ) eﬂﬂu*ﬁzzuzﬂ—o-% +O-95€ﬂ12'1+ﬁ22'2ﬂ_0'05 In ﬂ— e Xiﬁ

:0'95,8+1"(0 05) 1+ Bx;
i=1 _0.95eﬂ12i1+ﬂ22i2ﬂ’0-05 In (1+ ﬂxi)+ 0.95ﬂ*0.05eﬁ12i1+ﬂ22i2 In X, — r:(LOOﬁS) X;
+ PX

o*InL(x|w, 8) & InL(x|u, )

9:(6 02,6 ) = 0000 8o
1 1

o*InL(x|u, B)

p53p =-0.95n4"

(_O_OSﬁ’l-OS)eﬂlziﬁﬂzziz + 0.95eﬂlzi1+ﬁzzi2 (ﬂ*l-05 _0.05ﬂfl.05 In ﬂ)_

. ¢ (1+ Bx )2
-0.05
[(0.05) 15| _0.g5eh: (—i 7 )’(‘ ~0.0557% In(1+ A )]
~0.047587 e/ Pehe |n x, + r(008)(x)°
I ()
°InL(x|um, B) *InL(x|u, B
912(91’92’93): ( | ) ( | ) =0, (‘91’92'9)

06,00, 0B.0p

ﬂ70.05 ( )eﬁlziﬁ'ﬁzliz + 0.95ﬂ*0-05 (Zli )eﬁlzil+ﬂ22i2 In ﬁ
d%In L(X|y,ﬂ 1 095
opop - r(0.05) Z 1ﬂ+ﬁx 2y )& —0.95(% (2 )R In (14 px,)

+0.95457°% (7, ) e/ /%2 In x
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O*InL(x|u, ) _ 0" InL(x|u. B)
00,00, op,0P

913(91'92’03) g (01’02’0)

ﬂ*o-os( )eﬂlli1+ﬁzzi2 + 0.95ﬂ*0-05 (ziz)eﬂlzu*‘ﬁzziz In ﬂ
82InL X,U,ﬂ 1 095 2 4Bz _ 74+,
aﬁ’(a|ﬂ - r(0.05) Z 1ﬂ+ﬂx e —0.955 7 (2, )R In (L4 )
2

+0.95457°% (z,, ) /™52 In

a _d

g (01’02’03’9) 80 %
1

ﬁo .95 In IB . ﬂ0.95 B2t Byt
. il 2402 i il 2412 I .
- r(o. 05)( 1)e +r(o.05)(z'1)e n%

aﬂl = ~ ﬁ0.95
r(0.05)

(z,)e? 2% In(1+ Bx;)

A
00,00, 0BIp,

02 ('91’92’93) =

p7Ing (z,) ePurhen P (z,)" e+ Inx,
o2 & T(0.05) r(0.05)" ™ |

8ﬂ18ﬂ1 = ~ ﬁ0.95
I'(0.05)

(z,)" &% %52 In(1+ B, )

0,)- ol &
00,00, 0p,08,

923(491,92 =03 (91!‘92"93)
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ﬁO.QS In ﬁ Bizin+Bozis ﬁ0-95 Bizin+Prziz
o N W(Zil)(zm)e +F(O_05)(Zil)(zi2)e Inx

(z4)(z, )™ %% In(1+ Bx;)

aﬂzaﬁl = ﬂo.gs
I'(0.05)

ol ol
g3(91,92,03)=£=£
3 2

ﬂ0.95 In IB Pizin+ P ﬂ0.95 Bizi1+ Pz
. . ittP2Zi2 . i1t P2Zi2 | .
a Q& (22)+ I'(0.05) (22)e " r(o.os)(Z'Z)e .

aﬂz = ﬂo.gs
I'(0.05)

(Ziz)eﬂlzi1+ﬁzzi2 |n(1+ ﬂxi)

%l %l
9:(6,.6,.0,) = 20.00. o°p
3 3 2

0.95 0.95
2 ﬂ In ﬂ (Ziz )2 eﬂlzilJrﬂzZiz = ﬂ (Ziz )2 eﬂlzilJrﬂZziZ In Xi
o2l &| r(0.05) '(0.05)

62,32 =1 ﬁo.gs
I'(0.05)

(Zi2)2 phiti+ Btz In(L+ Ax,)

B.2.3 Newton Raphson Method for estimation of 5,5 and ;.

The three estimations 3, ,Bl and [3’2 for parameters g, and p,can be

obtained by solving these three equations.

Bizi+Bazis 0.95 7]
eﬁ12i1+ﬁ32i3ﬂ*0-05 + 0.95eﬁlzi1+ﬂ32i3ﬂ*0-05 In ﬂ _ e N ﬁxiﬂ
+ Xi
n 1 .
0.95—+ —0.95eA% Pt g005 |9 (14 By =0
o) F(0.05) i P ( P '0)05
I'(0. X
+0.95 80P/ttt n x %)%
i 1+ Bx; |

...(B.7)
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o In Zi1+ Bz 0.9 24 Bl
] (Zil)+%(zil)e'ﬁl i1+ B i3 4 ﬁ (Zil)eﬂl i1t PaZia |I’lXi

= ﬁ0.95
(0.05)

=0

(z,)e” 5% In(1+ Bx;)

...(B.8)
095 | e 095 21+ 537,
e
=0
i=1 _%(eﬂlziﬁ'ﬁﬂm)(Zis)ln(1+ﬁxi)
...(B.9)

Therefore we solve the (B.7) - (B.9) by the numerical method using Newton-Raphson,

for the estimation parameters g, f, and f..

By Nevvton-Raphson; 015 921 93y 911s 912 = 9215 913 = 9310 9221 923 = 9325 Jss-

Let 6, =45, 6,=p,, 0,=p5;

o d
a.,0,,0,)=—=—
gl( 1V 3) 00, op
oInL(x|u B)
op
et 005 gBeheatits 9% g & KB
- : n 1+ Bx
=0.95—+ Z
S r(os),

—0.95e/4% % B0 In (1+ Bx, ) +0.95 87 FeAmn A% In x, —
1+ Bx;

%l %l
911(01”92’03) - 06,06 - opop
1 1
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oInL(x|u B)
opop
(-0.0587+% et 10,95/ % (g% —0.0587% In p’)_

ey [ 09587 —0.05°% ()
' (1+ B, )2

—-0.05
I'(0.05) = _0.95¢/Au+ s [ﬂ—x —0.0587% In(1+ Bx, )J
1+ Bx;

2
_0l0475ﬂ’1~05eﬂ12i1+ﬂ32i3 In Xi + FE](-)-:);)X( ))(Iz)

O InL(x[w, B) *IL(x|u,pB)
06,06, PP

912(‘91"92"93)= 2921(91"92'93)

B (z,)elm s 1.0.9587°% (7, )e s In B
d%In L(x|,u,,8) 1 Z“: ,B°95x
0p.0p r(0.05)%| 1+ ,Bx

+0.953 %% (z, ) /™ #% Inx,

eﬂﬂ i1+ Palis —0. 95ﬂ*0 .05 ( il)eﬂ12il+ﬂ32i3 In (1+ ﬂxi )

O*InL(x[uB) 0" InL(x|uB)
06,00, opsoB

913(91"92’03): =0 (81’02’0)

’3*0-05( )eﬂlzi1+ﬂ3zi3 _,_0_95’3*0-05(Zis)eﬂlziﬁﬂszia Inpg
O’ InL(x|u, g 1 0.95 rfr . e
aﬁ(a|ﬂ - r(0.05) Z 1ﬂ+,8x 1a) €745 —0.95 70 (z,,) €7 In(1+ X, )
3

+0.9587°% (z,,) €A% In x

oInL(x|u, B) oInL(x|u,pB)
06, OB

9, (01’92103) =
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w PiZin+PaZis ﬂOIQS Bz + Pt
oln L(X|IL[,IB)_ZH: (Zil)+ 1—‘(005) (Zil)e +r(0.05)(zi1)e |I']Xi
op, B ) 130.95

r(0.05)

(z,)e”* %% In(1+ Bx;)

o*InL(x|u,B) o InL(x|u p)

6,0,,0,)=
S0 )= 0,20, B,

ﬁ0-95|nﬁ( ) )2 eﬁlzn*’ﬁszis + ﬂ0-95 (Z- )2 eﬂ12i1+ﬂ3zi3 In x
o*InL(x|u, ) @& | T(0.05) " r(0.0s)* " '

aﬁlaﬁl _ ﬁ0-95 2 \Bitin+Patis
F(O.OS)(Z”) e In(1+5x)
0..(0,6,,6) = o%InL (x| B) 90 In L (x|, B) 0.(6,6,0,)

00,00, 0p:0p:

ﬂo.95 Inpg Py IBO.95 .
oL (xf) T00m) () ()€™ 4 o (2) ()% I
8ﬂ3aﬂ1 ) B ﬂ0.95
r(0.05)

(z,)(Z5) ™5 In (1+ Bx;)

oInL (x| B) oInL(x|w B)

6.,0,,6,)=
93(1 2 3) 26, 2B,

180-95 In B Bitin+Patis ﬂ A+ fatia
w_i (Zi3)+ F(OOS) (Zi3)e +I‘*(0.05)(Zi3)e In Xi
op;, & %
r(0.05)

(z,,) e %% In(1+ Bx;)

o InL(x|u, B) &*InL(x|up)
9:(6,.6,.0,)= =
33( 172 3) 603893 aZﬂS

ﬂ0.95 Inﬂ( _ )2 phtuthitis | 50.95 (Z- )2 ehruthlis |0y

o°InL(x|u, ) & | T(0.05) " r(0.05)" " '
aZﬂS - ; ﬂo.es

- 1(0.05)

(2,)" €% In(1+ Bx,)
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B.2.4 Newton Raphson Method for estimation of g, 4,5, and f,.

The four estimations 3, 4, 3,and g3, for parameters £, /3,3, and f3,. can be

obtained by solving these four equations.

0.951 +
B
. eﬂ12i1+ﬁzziz+ﬂszla ﬁ*0-05 + O_95eﬁ12i1+ﬁzzuz+ﬁszi3ﬂ*0-05 |n ﬂ _ eﬂ2i1+ﬂ2£i2+22i): Xiﬁo.gs
n + .
' =0
F(OOS) i=1 _0.95eﬁlzi1+ﬂzl.z+ﬂ32.3ﬂ*0-05 In (1+ ,BXi)-f' 0_95ﬂ*0-05eﬁ12|1+/322iz+ﬂ32|3 In X, _m
1+ B
...(B.10)
/80.95 Inﬂ Zi1+Bo 2o+ Palis ﬂ0-95 WZin+Paliat Palis
) (Zi1)+ F(OOS) (Zil)eﬁ1 A A +W(Zil)eﬁ P A In X
= ﬂo.gs =0
_ F(O 05) (Zil)eﬂlzilJr/’)zZuz*ﬂSZﬁ In (1+ ﬂxl )
...(B.11)
095 |n | | 0.95 P
. | (Z2) ﬁr(o osf (2 Jeinerte & rﬁ) 05) (2, )25 Inx
£ ﬂ0.95 - 0
"l - r(0.05) (zi,) e %% In (1+ Bx;)
...(B.12)

0.95 0.95
(Zi3)+ 'B In’B(ZiB)eﬂlZil"'ﬁZZiz*'ﬂsZis + ,B (Zia)eﬁlzi1+ﬁzzi2+ﬂ3zi3 In Xi
3 r(0.05) r(0.05) y
Sl o P
T

...(B.13)
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Therefore we solve the (B.10) — (B.13) by the numerical method using Newton-

Raphson, for the estimation of the paramaters g, 3, 3, and f,.

By Newton Raphson; 915 921 930 945 G110 912 = 9215 G153 = G315 G1s = G410 9220 925 =03
U24 = 94219330 930 = Juzr Gua-

Let elzﬂ, szﬂ]j 93:ﬂ2’ 04:ﬂ3

ol ol
0.(6,6,,0,0,)=2- =2
1 11 Y2131 ¥4 891 aﬂ
olnL( x|,
M = 0952 +
op B
eﬂ12i1+ﬁzziz+ﬂ31i3 ﬂ*0-05 + 0.95eﬂ12i1+ﬂ22i2+ﬂ32i3 ﬁ*0-05 In ﬂ _ eﬂlzm—ﬂﬂi2+’6’3Zi3Xiﬂo'95
1 Zn: 1+ X
I'(0.05) 4z I'(0.05)x
( ) _0_956ﬂﬂil+ﬁzzi2+ﬁ32i3ﬂ’0-05 In (1+ ﬂxi ) + O_95ﬂ‘0-05eﬁ12i1+ﬁ22i2+ﬂ31i3 In X, _u

1+ Bx;

_&InL(x|w. B) & InL(x|w B)
0006,  opop

911(‘91’921‘931‘94)

o°InL (x|, B)

o ~0.95n4"

(_0.05ﬂ—1.05)eﬂlz,1+ﬂzz,2+ﬂazi3 +0.95eAut Ptz tfitis (ﬂ—l.OS _ 0.05,371'05 In ﬂ)
_eﬂ12i1+ﬁzziz+ﬂ32i3 X. [O'QSﬂOlOS — 0_05ﬂ0'95 (Xi )J

) ' (1+Bx, )2
1 ﬁ—O.OSX.
I'(0.05) 3| —0.95eAu At | 25 _0,0587% In(1+ fx, )
1+ Bx

2

*InL(X|w ) *InL(x|uB)

6.,0,,0,0,)=
912(1 2103 4) 26,00, 08P

= 921(01’92"93’04)



o*InL(x|u, B)
op.op
B (7, ) el its 10,95 8700 (7, )/ttt it In B
_ 1 n ﬁo 95X. Bizin+Botin+Balis 0.05 B+t Bt |
_F(0.0S) = 1+ X ( )e —0.954 ( il)e n(1+ﬂxi)

+095ﬂ -0.05 ( il)eﬂlzi1+ﬂzzi2+ﬁ32i3 In X;

O*InL(xX|, ) _ 0" InL(x|uB)
00:00, 0P.0P

913(91’02’93'94): =0, ((91,92,493,49 )

o%InL(x|u, B)
0p,0p8

5% (Zi2 ) gl ezt hita () Q5 3009 (Ziz ) gl fetiathits |y 3

1 n ﬂO.QSXi

~ 1(0.05) le 1+ px,

+O.95ﬂ*0-05 (Ziz ) eﬁlzi1+ﬂzzi2+ﬂ3zi3 In X;

O*InL(X|u, B) _ 0" InL(x|u,B)

(ZiZ ) eﬁlz|l+ﬂzzi2+ﬂ32i3 N 0_95ﬂ*0-05 (Ziz ) eﬂlzi1+ﬁ22|2+ﬁ3zi3 In (1+ ﬂxi )

O (‘91’92103’04)

- 9.(6.,6,,6,,6,)

00,00, oJiXa)is
opsop
ﬂ70.05 ( i3 ) eﬁ12.1+ﬂ22,z+ﬂ32,3 + 0.95570.05 (Zis)eﬂlzi1+ﬁzzlz+ﬂazi3 In ﬂ
n 0 95
0 05 Z 1+ ﬂx |3 e/312i1+ﬂ22i2+ﬂ32i3 _ 0.95ﬂ—0.05 (Zig)eﬂlzi1+ﬂzzi2+ﬂ3zi3 In (1+ ﬂXi )

+0_95ﬂ*0 .05 ( i3)eﬂ12i1+ﬂzzi2+ﬁazi3 In X;

oInL(x|u,B) oInL(x|u B)
00, OB

9,(6.6,.6,,6,)=
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( |1) ﬂo * Inﬂ( ) ehtntPotiztPatis ﬁO.QS—) (Zil)eﬁlziﬁﬁzziﬁﬁ3Zi3 In x.

onL(xup) & T(008) r(0.05 |
aﬂ i= 0.9 Zin+PoZin+ 37
1 1 _FI(B().OS)(Zil)eﬂl i1+ Paliz +Falis In(1+ﬂxi)

o*InL (x|, B) o InL(x|u p)

6,,6,,6,,0,)=
922( 11 Y2 3 4) 892002 8ﬂlaﬂ1

180-95 Inﬂ( _ )2 phitithrtiot Btz | ﬂ0.95 (Z- )2 ehruthtia+Blis |0y
o*InL(x|u, ) &| I(0.05) r(0.05)* " !

8,315,31 - =Ll 180'95
I'(0.05)

(z,) /PPt In (14 fx,)

O*InL(x|w, B) @ InL(x|u B)
00,00, BB

923(91'921‘93’04): 2932(6’1’02'93"94)

o*InL(x|u B)
OB,0p,
ﬂ095 |nﬂ )2+ BoZin+ Patia ﬂ0.95 Y21+ PaZin+PaZiz
) 005) ( )( |2)eﬂ G +1_,(0.05)(le)( )eﬂ PrehieInyg

_Z 095

- W(Zil)(ziz)

eﬂﬂu*ﬂﬂ.z*ﬂﬂ.a In (1+ ﬂxi)

O*InL(x|, ) _ 0" InL(x|uB)
06,06, 0B,0p,

924(01102’83’84) =0, (91,92,93,9)
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0% InL(x|u, B)
9B:08,

18095 Inﬂ ﬂz_ +ﬂ Z: +ﬂ Z: ﬁogS 1812' +ﬁ Z: +ﬂ Z
. . WZintPaZin +Pali . . i1t P2Zi2 3|3|
n | I(0.05) (2)(22)e +r(o.05)(Z )(za)e n

. 0.95
|- rﬁ).OS) (Zi1)(Zia)e'/}lzmﬂzzmﬂ:ﬂi3 In (1+ P )

oInL(x|w,B) oInL(x|u pB)
o0, o,

93(‘91’92’93’94):

0.95 0.95
( > ) ﬂ In ﬂ (Zi2 ) eﬂﬂu*’ﬁzziz*'ﬂsz.s + ﬁ (Ziz )eﬂlzu‘*‘ﬁzziz*'ﬁzzis In X

dln L(x|,u,ﬂ)zzn: w2) I'(0.05) I'(0.05)
op, =i Bitn+Botio+otis
—F(O.OS)(ZiZ)e In(1+ 8%)

_*InL(x|wB) InL(x|u pB)
- 86000, B,
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APPENDIX C

DISTRIBUTION

This section presents some special probability distributions, including
definitions, criteria and material for our simulation and model fitting. We briefed from
some references, that are as follows:

1) Klugman, S.A., Panjer, H.H. and Willmot, G.E. (2008). Loss Models: From
Data to Decisions.

2) http://www.math.uah.edu.

3) http://en.wikipedia.org/wiki/P-P plot.

4) http://wiki.math.yorku.ca.

C.1 Loss Distributions

C.1.1 Lognormal distribution

A random variable X is said to be Lognormal distributed with parameter .

and o denoted by X ~ LN (z,0).

CDF : Fx(x)ch('”x_“); [eR, o>0, x>0,

2
1 exp[——(lnx_;u) ]
Xo 27w 20

Moment: E[Xk]:exp(ky+%kzazj.

PDF : f,(x)=
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C.1.2 Gamma Distribution

A random variable X is said to be Gamma distributed with parameter &

denoted by X ~Gamma(«,6).

CDF Fx(x):l“(a;gj; a,0>0, x>0.

PDF @, (x)=—2 exp(_éj
- 0°T () 0

“T(a+k)

Moment: E[ijzer(a) . k>-a.

C.1.3 Weibull Distribution

A random variable X is said to be Inverse exponentailly distributed with

parameter @ and 7 denoted by X ~Wei(6,7).

CDF FX =1- exp[ (é)} 0,7>0, x>0.

PDF fX(x)zr(X)/(H)T exp(—gjr

Moment: E[xk]=9kr(a+5], K>—a.
T

C.2 Skewness Newton
Suppose that X is a real-valued random variable for the experiment. We will
let x=E[X] and o *=var(X).

The skewness of X is the third moment of the standard score of X :
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skew( X )= EH%)T

The distribution of X is said to be positively skewed when the probability density
function has a long tail to the right, if the distribution is negatively skewed then the
probability density function has a long tail to the left. A symmetric distribution is

unskewed. (A normal distribution has a skewness equal t00.)

C.3 The Simulation

The simulated data by combinations of claim distributions. Each component
mixed has the same number of claims. The simulated data by composed parameters of
claim distributions as shown on Table C.1 and Table C.2.

Table C.1 The 2 mixed components.

Parameters Distributions
Lognormal/Lognormal Lognormal/Gamma
(,u:5,0'=2),(,u:6,0=l) (,u:5,a:2),(a:60000,,3:3)
Gamma/Gamma Lognormal/Weibull

(a=2500, f=1), («=50000, 5=3)  (u=6,0=1),(c=2500, r=1)
Weibull/Weibull
(c=2000, 7 =2), (c=60000, z=3)
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Table C.2 The 3 mixed components.

Parameter Distributions
Lognormal/ Lognormal/ Lognormal Lognormal/ Gamma/ Weibull
(£=6,0=1),(£=80=2), (1=8,0=2), (a=2000, f=1),
(,u:10,0'=3) (C=80000,z':4)

Gamma /Gamma/ Gamma

(a =2000, g :1), (a =40000, g = 2),
(a =80000, S =1)

Weibull/ Weibull/ Weibull

(c =2000, 7= 2), (c =60000, 7 = 3),
(c =80000, 7 = 4)




C.4 Levels of Singnificance for the K-S Test.
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Table C.3 below lists the singnificance level («) for a test statistic Das

employed in the K-S test.

Table C.3 The level of significance for D.

Sample Level of significance () for D
size (n) 0.2 0.15 0.1 0.05 0.01
1 0.900 0.925 0.950 0.975 0.995
2 0.684 0.726 0.776 0.842 0.929
3 0.565 0.597 0.642 0.708 0.828
4 0.494 0.525 0.564 0.624 0.733
5 0.446 0.474 0.510 0.565 0.669
6 0.410 0.436 0.470 0.521 0.618
7 0.381 0.405 0.438 0.486 0.577
8 0.358 0.381 0.411 0.457 0.543
9 0.339 0.360 0.388 0.432 0.514
10 0.322 0.342 0.368 0.410 0.490
11 0.307 0.326 0.352 0.391 0.468
12 0.295 0.313 0.338 0.375 0.450
13 0.284 0.302 0.325 0.361 0.433
14 0.274 0.292 0.314 0.349 0.418
15 0.266 0.283 0.304 0.338 0.404
16 0.258 0.274 0.295 0.328 0.392
17 0.250 0.266 0.286 0.318 0.381
18 0.244 0.259 0.278 0.309 0.371
19 0.237 0.252 0.272 0.301 0.363
20 0.231 0.246 0.264 0.294 0.356
25 0.210 0.220 0.240 0.270 0.320
30 0.190 0.200 0.220 0.240 0.290
35 0.180 0.190 0.210 0.230 0.270
Over 35 1.07 1.14 1.22 1.36 1.63
Jn Jn Jn Jn Jn
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C.5 P-Pplot.

In statistics, a P-P plot (probability-probability plot or precent-precent plot) is
used to see if a given set of data follows some specified distribution. It should be

approximately linear if the specified distribution is the correct model.
A P-P plot compares the theoretical cumulative distribution function, F ()
of the specified model with the empirical cumulative distribution function (ECDF) of

data. The ECDF, F, (x) is defined as the proportion of non-missing observations less

than or equal to x, so that Fn(xi)=l.
n



APPENDIX D

THE TEST OF DATA

In Chapter IV, we will use Program R to test for Normality and

Nonlinearity.
Program R

> rm(list=Is())
> library(tseries)
> data <- read.table("Claim_data.txt", header = TRUE)
>y <- as.ts(data$)
> #Test for Normality
> shapiro.test(y)
Shapiro-Wilk normality test
data: y
W =0.95441, p-value < 2.2e-16

> #Computes the Augmented Dickey-Fuller test for the null that x has a unit root.
> adf.test(y)
Augmented Dickey-Fuller Test
data: y
Dickey-Fuller =-11.519, Lag order = 10, p-value = 0.01
alternative hypothesis: stationary
Warning message:
In adf.test(y) : p-value smaller than printed p-value

> #ComputestheKwiatkowski-Phillips-Schmidt-Shin (KPSS) test for the null
hypothesis that x is level or trend stationary.
> kpss.test(y)
KPSS Test for Level Stationarity
data: y
KPSS Level = 0.14183, Truncation lag parameter = 8, p-value = 0.1
Warning message:
In kpss.test(y) : p-value greater than printed p-value
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> #Computes the Phillips-Perron test for the null hypothesis that x has a unit root.

> pp.test(y)
Phillips-Perron Unit Root Test
data: y

Dickey-Fuller Z (alpha) = -1283.4, Truncation lag parameter = 7, p-value= 0.01
alternative hypothesis: stationary

Warning message:

In pp.test(y) : p-value smaller than printed p-value



APPENDIX E

NEW DISTRIBUTION

In this section, we present some new models for the claim modeling. An

infinite mixture distribution is the methods used to obtain new distributions.

E.1 Loss Distributions
Lognormal distribution
A random variable X is said to be Lognormally distributed with parameter

u and o denoted by X ~ LN (z,0).

2
PDF : fx(x|u,a)=xmlEeXp£_(ln;<;2ﬂ) } LER 6>0,X>0,

Exponential distribution
A random variable ® is said to be Exponentially distributed with parameter

6 denoted by ® ~ Exp(0).

PDF : g(u) = %exp(—%); 0>0,u>0.
Thus
1 1(log, x—p)" | 1 ( uJ
f = A "de” ) | i
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Consider

27z ox 6 20° 0

Let

_ 2
y = 4 |09eX+0/9, u = oy+log, x—c’/6

O
_ 2
u=0->y-= og, x+0'/6
o

M =0—>Y = ©
94 o du = ody
dy

- .. e
X o “27[ 9—Iogx+az/:p 262 0

S 2 /Y 2
h(x)_l 1 1 1 {_(Iogx—oy—logx+o/49) _oy+|ogx—a/¢9:lo_dy

- —-._— .= e
X N2rxr 6 P 20 0

—logx+c2/6
o

1 1 1 T {_@Z/H—zoy)z_oy+logx—o—2/9}dy

o 4/p2 o 3 2,,2 2
_1 11 Iexp _(0/0 2032//49+ay)_oy+logx co?/0 dy
X 27 0 20 6

—logx+c2/0

2 [—0(04/02—203y/0+02y2)—202(ay+log X—O'Z/H)}
exp > dy
1o 200

—logx+o?
o
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111
X «fZ;z o
o 4 3y p2y2 9.3y, o, 2 4
exp{ c*/0+205°y — 05’y 22‘ y—20°logx+20 /Q}dy
—Iogx+o-2/¢9 200

11 1 ]Zexp —6o°y? dy exp| — o _202logx+ 20"°
X 27 0 2/ 26002 260%c° 260c? 20%c*

11 1 R —y? o’ logx
- —. . e d e —_
X 0 J2rx Iog><J:raz/j7<p|: 2 :| y Xp’:zez 0

1 [ o? logx —logx+c?/0
it 2 M po)—p| 222 /Y
0 207 o }{ () ( o

2 1 = 2
O P (i P e e RSl
X 0 20 o

_ x‘[;é] o (;@22) {1_ CD( * Iog x; JZ/QH

X | =

Thus, the pdf of Lognormal-Exponential distribution LN —E(c,8) is

0= sl ) ol 22

E.2 Laplace-Gamma Distribution
Laplace distribution
A random variable X is said to be Laplace distributed with parameter x and

f denoted by X ~LN ().



PDF

Casel. x—u

Case2. u—x ,

fe (X, B) =

X > L.

X < AL

Gamma distribution

2p B

} ueR, p>0,xeR.
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A random variable ® is said to be Gamma distributed with parameter ¢ and o

denoted by ® ~ Gam(«, o).

PDF

Hence;

Casel. x—u ,

g(u) =

X> u

o

o

I(e)

1.

exp|—op] ™

o,a>0,u>0.

% r(za) { exp —X_T”} exp|—ou|u* " du
Sl
e
N
sl el
“ 2 epor‘?Zﬂ: exp{_”(HﬂGﬂﬂ e
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5o
= —exp|—|o
2 B
Compare Gamma (pdf) with parameter « and (

5 ) 7
=—o0 exp| —
2/ 1+0p Jij

_ L[ 0B ) gl X
28 \1+0p B

Thus, the pdf of Laplace-Gamma distribution La—-G (o, 8, ) is

AR

r — i _
h(x) = J'— exp{—’u—x} G—EXp[—o;u],u“ "du

I(a)

- S e 0| e
Sl
R
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Compare Gamma (pdf) with parameter « and (

57 a1 3]
—0 exp| ——
2p3 off+1 /]

1 (B ol X
28\ of+1 B

Thus, the pdf of Laplace-Gamma distribution La—-G (o, 8, ) is
h(x): i O-_ﬂ exp _1 .
20 \of+1 yoj

E.3 Exponential — Erlang Distribution

of +1)
s

Exponential distribution

A random variable X is said to be Exponentially distributed with parameter
denoted by X ~ Exp( ).
PDF : f(x|p)=pe™; u>0x>0.

Erlang distribution

A random variable © is said to be Erlang distributed with parameter k and A

denoted by © ~ Erlang (k, 4).
= 22 et k>0 k isinteger, >0, u>0.

Consider



115

(=4n)

= Jue. Aue

= ZE = g
; (k=mr "
0 gk k=l-1 (—px—Au)
_ J'/% )2 € d,u
! (k—1)!
w(X+l)k+1 ﬂ(k+1)—1e—y(x+/1) /Lk Kl
= _[ _1\1 d/,l _ l' k+1
) (k+1-1)! (k=1)! (x+4)
A¥ k! A¥k

(k_l)!.(X+ﬂ,)k+l = (X+ﬂ,)k+l.

Ak

Thus, the pdf of Exponential-Erlang distribution E —Erlang(k, 1) is (1)
X+

k+1 *
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