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การวิเคราะห์ขอ้มูลภาพเชิงวตัถุเป็นการวิเคราะห์ขอ้มูลภาพรูปแบบหน่ึงท่ีมีศกัยภาพสูง 

เน่ืองจากการวิเคราะห์ข้อมูลภาพเชิงวตัถุสามารถนํารูปลักษณ์ของวตัถุท่ีมีหลากหลายมาใช้

วิเคราะห์ร่วมกบัข้อมูลอ่ืนๆ วตัถุประสงค์หลักของการศึกษาคือ (1) เพื่อพฒันาแบบจาํลองและ 

การจาํแนกเชิงอรรถศาสตร์ด้วยการวิเคราะห์ความสามารถการแยกจากกันและค่าขีดแบ่งและ 

องคค์วามรู้ของผูเ้ช่ียวชาญเพื่อจาํแนกการใชป้ระโยชน์ท่ีดินและส่ิงปกคลุมดินในพื้นท่ีตน้แบบ (2) 

เพื่อประยุกต์แบบจาํลองและการจาํแนกเชิงอรรถศาสตร์ท่ีได้พฒันาข้ึนสําหรับการวิเคราะห์

ความสามารถของการถ่ายโอนเชิงพื้นท่ี และ (3) เพื่อดัดแปลงแบบจําลองและการจําแนก 

เชิงอรรถศาสตร์ท่ีไดพ้ฒันาข้ึนในพื้นท่ีตน้แบบสําหรับการวิเคราะห์ความสามารถของการถ่ายโอน

เชิงเวลา พื้นท่ีศึกษาครอบคลุม 3 อาํเภอของจงัหวดันครราชสีมา ประกอบดว้ย อาํเภอปักธงชยัและ 

วงันํ้ าเขียวซ่ึงเป็นพื้นท่ีตน้แบบ และอาํเภอครบุรีซ่ึงท่ีเป็นพื้นท่ีทดสอบ องค์ประกอบหลกัของวิธี

การศึกษา ประกอบดว้ย การสร้างแบบจาํลองและการจาํแนกเชิงอรรถศาสตร์ และการวิเคราะห์

ความสามารถของการถ่ายโอนเชิงพื้นท่ีและเชิงเวลา 

ผลการศึกษา พบว่า สามารถพฒันาการสร้างแบบจาํลองและการจาํแนกเชิงอรรถศาสตร์

ด้วยการวิเคราะห์ความสามารถการแยกจากกนัและค่าขีดแบ่งได้เป็นผลสําเร็จ และนําไปใช้ใน 

การจาํแนกการใช้ประโยชน์ท่ีดินและส่ิงปกคลุมดินจากขอ้มูลภาพจากดาวเทียม Landsat 8 ในปี 

พ.ศ. 2556 ประกอบดว้ย พื้นท่ีเมืองและส่ิงปลูกสร้าง นาขา้ว มนัสําปะหลงั ขา้วโพด ออ้ย ไมย้ืนตน้

และสวนผลไม ้พื้นท่ีป่าไม ้และแหล่งนํ้า ความถูกตอ้งโดยรวมและสัมประสิทธ์ิแคปปาของแผนท่ีท่ี

ไดรั้บมีค่าเท่ากบั ร้อยละ 84.24 และ 80.37 ตามลาํดบั จากค่าสัมประสิทธ์ิแคปปาท่ีได้รับมากกว่า

ร้อยละ 80 แสดงให้เห็นถึงความสอดคลอ้งความถูกตอ้งระหวา่งแผนท่ีการจาํแนกกบัขอ้มูลอา้งอิง

ทางภาคพื้นท่ีมีอยูสู่ง ความถูกตอ้งท่ีไดรั้บจากการศึกษาในคร้ังน้ีสามารถยอมรับไดอ้ยา่งชดัเจน เม่ือ

นาํไปเปรียบเทียบกบัผลการศึกษาอ่ืน ซ่ึงอาศยัตวัจาํแนกโดยอาศยักฎเกณฑ์ภายใตก้ารวิเคราะห์

ขอ้มูลภาพเชิงวตัถุ นอกจากน้ี พบว่า ความถูกต้องโดยรวมและสัมประสิทธ์ิแคบปาของแผนท่ี 

การจําแนกการใช้ประโยชน์ท่ีดินและส่ิงปกคลุมดินในปี พ.ศ. 2556 ภายใต้การวิเคราะห์

ความสามารถของการถ่ายโอนเชิงพื้นท่ีในพื้นท่ีทดสอบ มีค่าเท่ากับ ร้อยละ 83.25 และ 79.17 

ตามลําดับ จากผลลัพธ์ท่ีได้รับอนุมานได้ว่า สามารถถ่ายโอนแบบจาํลองการจาํแนกการใช้

ประโยชน์ท่ีดินและส่ิงปกคลุมดินท่ีไดพ้ฒันาข้ึนจากพื้นท่ีตน้แบบไปยงัพื้นท่ีทดสอบเพื่อจาํแนก
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การใช้ประโยชน์ท่ีดินและส่ิงปกคลุมดินได้ และผลจากการทดสอบค่าความแตกต่างของค่า

สัมประสิทธ์ิแคบปา พบวา่ ไม่มีความแตกต่างกนัอยา่งมีนยัสาํคญั ในขณะเดียวกนั พบวา่ ความถูกตอ้ง

โดยรวมและสัมประสิทธ์ิแคบปาของแผนท่ีการจาํแนกการใชป้ระโยชน์ท่ีดินและส่ิงปกคลุมดินในปี 

พ.ศ. 2557 จากขอ้มูลภาพจากดาวเทียมในพื้นท่ีตน้แบบ ภายใตก้ารวิเคราะห์ความสามารถของการ

ถ่ายโอนเชิงเวลา มีค่าเท่ากบั ร้อยละ 66.00 และ 57.83 ตามลาํดบั จากผลท่ีไดรั้บน้ีสามารถอนุมาน

ได้ว่า แบบจาํลองเชิงอรรถศาสตร์เพื่อการจาํแนกการใช้ประโยชน์ท่ีดินและส่ิงปกคลุมดินใน ปี 

พ.ศ. 2556 ในพื้นท่ีตน้แบบท่ีพฒันาข้ึน ไม่สามารถถ่ายโอนไดโ้ดยตรงสําหรับการจาํแนกการใช้

ประโยชน์ท่ีดินและส่ิงปกคุลมดินในปี พ.ศ. 2557 ในพื้นท่ีเดียวกัน โดยต้องทาํการดัดแปลง

แบบจาํลองเชิงอรรถศาสตร์ดว้ยวิธีการลองผิดลองถูกเพื่อเพิ่มความถูกตอ้งของแผนท่ีให้สูงข้ึน ซ่ึง

การปรับแกแ้บบจาํลองตอ้งใชเ้วลาและเป็นงานท่ีค่อนขา้งยุง่ยาก 

จากผลการศึกษาท่ีได้รับสามารถสรุปได้ว่า การสร้างแบบจําลองและการจําแนก 

เชิงอรรถศาสตร์โดยอาศัยการวิเคราะห์ความสามารถการแยกจากกันและค่าขีดแบ่ง สามารถ

นํามาใช้เป็นเคร่ืองมือใหม่ในการจาํแนกการใช้ประโยชน์ท่ีดินและส่ิงปกคลุมดินภายใต้การ

วเิคราะห์ขอ้มูลภาพเชิงวตัถุไดอ้ยา่งมีประสิทธิภาพ  
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OBJECT-BASED IMAGE ANALYSIS / SEMANTIC MODEL AND 

CLASSIFICATION / SEPARABILLITY AND THRESHOLD ANALYSIS / LAND 

USE AND LAND COVER CLASSIFICATION 

 

Object-based image analysis (OBIA) is the one of digital image analysis offers 

great potential since it has a very large feature basis for classification and additional 

data from other data sources can be readily integrated and used for analysis. Main 

objectives of the study are (1) to develop semantic model and classification with SEaTH 

and expert’s knowledge for LULC extraction in reference area; (2) to apply the 

developed semantic model and classification for spatial transferability analysis; and  

(3) to modify the developed semantic model and classification of reference area for 

temporal transferability analysis. Study area covers 3 districts of Nakhon Ratchasima 

Province include Pak Thong Chai and Wang Nam Khieo districts as reference area and 

Khon Buri district as testing area. Main components of the research methodology 

included semantic modelling and classification development, spatial transferability 

analysis and temporal transferability analysis.  

 As results, it was found that semantic modelling and classification with SEaTH 

analysis was successfully developed and applied to extract LULC data from Landsat 

image of 2013 which included urban and built-up area, paddy field, cassava, maize, 
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sugarcane, perennial trees and orchard, forest land, and water body. The obtained 

overall accuracy and Kappa hat coefficient of thematic LULC map were 84.24% and 

80.37 %, respectively. Based on Kappa hat coefficient more than 80%, it represents 

strong agreement/accuracy between the classification map and the ground reference 

information. The achieved accuracy proved to be acceptable when it was compared 

with other studies that applied rule-based classifier under OBIA. In addition, overall 

accuracy and Kappa hat coefficient of the thematic LULC of 2013 in testing area under 

spatial transferability analysis were 8 3 . 2 5 % and 7 9 . 1 7 %, respectively. This finding 

infers that the developed semantic model for LULC classification in reference area can 

be transferred to testing area for LULC extraction and it can provide indifferent 

accuracy based on pairwise Z test. Meanwhile, overall accuracy and Kappa hat 

coefficient of the thematic LULC map of 2014 from Landsat 8 image in reference area 

under temporal transferability analysis were 66.00% and 57.83%, respectively. This 

finding deduces that the developed semantic model for LULC classification in 2013 in 

reference area cannot be directly transferred for LULC extraction in 2014 at the same 

area. The developed semantic model required to modify by mean of trial and error 

method for increasing the thematic accuracy. The modification of semantic model is 

time consumption and tedious works.  

 In conclusion, it appears that semantic modelling and classification with SEaTH 

analysis can be efficiently used as new tools for LULC extraction under OBIA.  
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CHAPTER I 

INTRODUCTION 

 

1.1 Background problem and significance of the study 

 Image analysis of remotely sensed data is the science behind extracting 

information from the pixels within a scene or an image (Navulur, 2007). The 

advancement of feature recognition and advanced image analysis techniques facilitates 

the extraction of thematic information, for policy making support and informed 

decisions. The increased spectral variability among land covers in remotely sensed data 

demands classification algorithms based on the use of more spatial information that 

cannot be met with the conventional per-pixel image classification methods (Gao, 

2009). 

 In the past, most digital image classification was based on processing the entire 

scene pixel by pixel. This is commonly referred to as per-pixel classification (Jensen, 

2007). In summary, pixel-based classification methods can be considered under the 

term cluster analysis. In this case, the individual N-dimensional pixel vectors in an N-

dimensional feature space are analyzed, for example, with the aid of statistical methods, 

with fuzzy-logic techniques or with neural networks and assigned to a class. The feature 

to be classified is generally the spectral signature of a pixel (Nussbaum and Menz, 

2008). Until now pixel-based methods are still the most commonly used type of 

classification in remote sensing. Due to this fact, they are described in detail and 
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mathematically derived in the remote sensing textbook such as Thomas M. Lillesand, 

Ralph W. Kiefer and Jonathan W. Chipman (2004), Robert A. Schowengerdt (2007), 

James B. Campbell and Randolph H. Wynne (2011) and John A. Richards (2013). 

 In recent years, these purely pixel-based methods have increasingly reached 

their limits despite further developments. One reason is the fact that with increasing 

spatial resolution of the satellite data the (small) feature basis of spectral values often 

only provides insufficient results for classification. Furthermore, there is an increasing 

amount of additional data such as information from GIS systems or digital elevation 

models (DEMs). It appears meaningful for future investigations to integrate these 

additional data into satellite image analysis. Object-based image analysis offers great 

potential here, since it has a very large feature basis for classification and additional 

data from other data sources can be readily integrated and used for analysis (Nussbaum 

and Menz, 2008). 

 Blaschke (2010) reviewed OBIA for remote sensing, which aimed to delineate 

readily usable objects from imagery while at the same time combining image 

processing and GIS functionalities in order to utilize spectral and contextual 

information in an integrative way. The most common approach used for building 

objects is image segmentation, which dates back to the 1970s. Around the year 2000 

GIS and image processing started to grow together rapidly through object based image 

analysis (OBIA - or GEOBIA for geospatial object based image analysis). The pixel 

paradigm is beginning to show cracks and the OBIA methods are making considerable 

progress towards a spatially explicit information extraction workflow. This is required 

for spatial planning as well as for many monitoring programs. 
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 Horning, Robinson, Sterling, Turner, and Spector (2010) claimed that there are 

several advantages to this approach include: 

  (1) It runs much faster since the number of segments is much less than 

the number of pixels in an image; 

  (2) The relative scale of the segmentation output can be specified so 

different segmentation runs can be used to capture features of different sizes; 

  (3) The classification algorithm can use the spectral characteristics 

(the pixel values) of an image as well as a host of other segment characteristics that 

describe the segment such as mean value, standard deviation, shape of the segments, 

and dimensions of the segment. 

  (4) The resulting image does not suffer from the ''salt and pepper'' 

effect common to pixel-by-pixel classifiers. 

 In addition, in object-based image analysis, the “image object” is the central 

methodological element and as an object of investigation. To this end, image 

segmentation is conjoined with knowledge-based classification. Image segmentation 

decreases the level of detail, reduces image complexity. Segmentation produces image 

regions, and these regions, once they are considered “meaningful”, become image 

objects. A pixel as a technically defined unit can be interpreted in terms of its spectral 

behavior, in terms of the aggregation of spectral end-members, or in terms of its 

neighborhood. A pixel cannot be assigned a valid corresponding real-world object, but 

an image object can. Overcoming the pixel view and providing image objects that 

“make sense” opens a new dimension in rule-based automated image analysis; image 

objects can be labeled directly using a range of characteristics, including spatial ones, 
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or they can be used for modeling complex classes based on their spatial relationships, 

especially the use of rules based on expert knowledge explicit (Lang, 2008). 

 Therefore, semantic modelling and classification under object-based image 

analysis for land use and land cover (LULC) extraction is here developed in a reference 

area for spatial and temporal transferability analysis. The derived results are directly 

benefit to digital image analysts for extracting LULC information. 

 

1.2 Research objectives 

 The specific objectives for LULC extraction using with semantic model and 

classification under OBIA are as follows: 

  1) To develop semantic model and classification with SEaTH and 

expert’s knowledge for LULC extraction in reference area; 

  2) To apply the developed semantic model and classification of reference 

area for spatial transferability analysis; 

  3) To modify the developed semantic model and classification of 

reference area for temporal transferability analysis. 

 

1.3  Scope and limitation of the study and study area  

 1.3.1 Scope of the study 

  1) Landsat 8 (LDCM) data acquiring in 2013 are used to develop 

semantic model and classification with SEaTH and/or expert’s knowledge for LULC 

extraction in reference area. 
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  2) The derived semantic model and classification in reference area is 

directly applied to Landsat 8 (LDCM) data acquiring in 2013 in different area for spatial 

transferability analysis. 

  3) The derived semantic model and classification in reference area is 

modified to Landsat 8 (LDCM) data acquiring in 2014 in reference area for temporal 

transferability analysis. 

  4) An optimum pan-sharpening technique, which include (1) Ehlers 

fusion (EF), (2) Gram-Schmidt pan-sharpening (GS), (3) High Pass Filtering (HPF) (4) 

Modified IHS transformation (MIHS), and (5) Wavelet fusion (WT), is firstly identified 

for Landsat 8 (LDCM) data in 2013 based on average of universal image quality index 

(Q-average). Then an optimum four band combination dataset is evaluated using 

Optimum Index Factor (OIF) and Sheffield Index (SI) to reduce number of bands. Later, 

an optimum four band combination dataset of Landsat 8 in 2013 are used to develop 

semantic model and classification. Finally the developed semantic model and 

classification is further applied for spatial and temporal transferability analysis. 

  5) Recent land use data and land use classification system in 2011 of 

Land Development Department (LDD) is used as a guideline for LULC extraction 

under reference area and test areas for spatial and temporal transferability analysis. 

  6) Classification rules of semantic model and classification under 

OBIA are based on the extracted feature’s properties from SEaTH and/or an explicit 

expert’s knowledge. 

 1.3.2 Limitation of the study 

  Due to limitation of the existing LULC data in 2013, field survey in 2015 

and relevant very high spatial resolution image are used to assess accuracy for semantic 
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model and classification development in reference area and spatial and temporal 

transferability analysis. 

 1.3.3 Study area  

  The study area is a part of Nakhon Ratchasima province which consist 

of 32 districts. Herein two districts, namely Pak Thong Chai and Wang Nam Khieo 

districts are selected as reference area for semantic model and classification 

development for LULC in 2013 extraction and temporal transferability analysis for 

LULC in 2014 classification. In addition, Khon Buri district is chosen as testing area 

for spatial transferability analysis for LULC in 2013 extraction (Figure 1.1). 

  Nakhon Ratchasima province is located on the western end of the Khorat 

Plateau, separated from the Chao Phraya river valley by the Phetchabun and Dong 

Phaya Yen mountain ranges (Figure 1.2). It is 259 km from Bangkok and has an area 

of 20,494 sq. km, making it the biggest Thai province (Karnjanasin and Natthira, 2003). 

According to land use data of Land Development Department (LDD) in 2011, two main 

land use types in the study area are forest land (47.38%) and agricultural land (43.28%) 

as summary in Table 1.1 and Figure 1.3. 
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Figure 1.1 Study site and its reference and testing areas. 

 

 

Figure 1.2 Topographic data of Nakhon Ratchasima province and study area. 
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Table 1.1 Major land use types in the study area based on LDD data in 2011. 

Land use type 

(sq. km) 

Reference area Testing area 
Total Percent 

Pak Thong chai Wang Nam Khieo Khon Buri 

Urban and built-up area 62.49 49.77 50.22 162.48 4.18 

Agricultural land 584.82 371.53 726.44 1,682.79 43.28 

Forest land 269.83 548.89 1,023.52 1,842.24 47.38 

Water body 31.95 10.08 16.55 58.58 1.51 

Miscellaneous land 36.92 51.17 53.82 141.91 3.65 

Total 986.01 1,031.44 1,870.55 3,888.00 100.00 

 

 

Figure 1.3 Distribution of main land use types in 2011 of study area (LDD, 2011). 

  

 

 

 

 

 

 

 

 



9 

1.4 Benefit of the study 

 The benefits of the study have influenced with digital image analyst who are 

interested in OBIA as follows: 

 (1) Obtaining semantic model and classification with rule-based classifier for 

LULC extraction from remotely sensed data under OBIA. 

 (2) Knowing how to transfer the developed semantic model and classification 

in another area as spatial transferability analysis. 

 (3) Knowing how to modify the developed semantic model and classification 

in in the same site at different points of time as temporal transferability analysis. 

 

 

 

 

 

 

 

 



 

CHAPTER II 

BASIC CONCEPTS AND LITERATURE REVIEWS 

 

 Under this chapter, object-based image analysis (OBIA) with key related 

concepts and literature reviews are here described. 

 

2.1 Basic concepts of object-based image analysis 

 OBIA is one of alternative for extracting information. Every object is 

characterized by several features defined based on layer values, texture, shape and 

context of the object. Stefan Lang (2008) mentioned that OBIA applied an integration 

approach for information extraction including provision of units, regionalization, 

classification and interpretation (Figure 2.1). 

 

 
Figure 2.1 OBIA as an integrated approach (Lang, 2008). 
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 OBIA can be compared in a first approximation with visual perception. A part 

from pure color information, patterns result from other features such as texture, shape, 

size or from the relations between individual objects. In general a procedure similar to 

visual interpretation is also aimed by OBIA and the eCognition software frequently 

used for image analysis in particular. Although the complexity and performance of 

human perception is by no means reached, there are certain parallels. OBIA methods 

rank among the so called computer-vision techniques (Wilkinson, 1999).  

 Under OBIA, an object can be defined as a grouping of pixels of similar spectral 

and spatial properties. Thus, applying the object-oriented paradigm to image analysis 

refers to analyzing the image in object space rather than in pixel space, and objects can 

be used as the primitives for image classification rather than pixels. Image segmentation 

is the primary technique that is used to convert a scene or image into multiple objects. 

The object-oriented paradigm allows us to exploit all aspects of remote sensing, 

including spectral, spatial, contextual, textural, and temporal properties for feature 

extraction (Navulur, 2007).  

 For the same scene, objects can also be created at different sizes and at multiple 

levels from the same image (Figures 2.2 and 2.3). The advantage of this approach is 

that you can mask out objects of no interest at larger scales, and focus on extraction of 

features of interest to the end user. Furthermore, by creating objects at different levels, 

parent–child relationships can be leveraged to improve/enhance feature extraction 

process in various applications such as change detection (Navulur, 2007).  
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Figure 2.2 Structure of a hierarchical network. Braces indicate possible, fictitious 

semantics (Nussbaum and Menz, 2008). 

 

 

Figure 2.3 A hierarchical network of segmentation levels in eCognition Developer 

(Nussbaum and Menz, 2008). 

 

 For OBIA approach, an image to be analyzed is firstly segmented into individual 

image objects. The formed segments should well reflect the objects present in reality. 

Various methods can be used for segmenting. The objects can be then classified by 

heuristic methods or by knowledge-based techniques such as semantic networks. In 

knowledge-based systems, the rule base for classification is established via a feature 

combination. A part from the spectral signature, features such as shape, size, texture 

and neighborhood relations of the objects can additionally be used for object 
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description. A rating function is then used to allocate the objects to a number of classes 

according to their feature description. 

 OBIA integrates knowledge about the objects into the analysis. A differentiation 

is made here between declared knowledge (knowledge from various data sets), 

procedural knowledge (method for utilizing the data sets) and a priori knowledge 

(knowledge without relation to the analyzing data inventory). The investigations and 

analyses carried out in OBIA were performed against the background of a knowledge-

based, object-based image analysis, where all types of knowledge available about the 

study region are integrated into the process (Nussbaum and Menz, 2008). 

 For an operational workflow for OBIA, the image analysis software copies the 

way in which human perception functions. The human brain constructs an overall image 

from individual objects. The objects are related on the basis of a large number of 

features with empirical values, existing knowledge and the surrounding objects. In the 

first step, the image pixels from the image are grouped to form objects with the aid of 

a multiscale segmentation. The simultaneous formation of several levels of 

segmentation on different scales is possible and indeed desirable. These levels are then 

hierarchically linked to each other. Since image objects, image information and 

processes are present simultaneously on several scales and the relation between these 

scales is known, important additional information can be obtained for interpretation 

purposes and real-world objects of different sizes can be classified. After multiscale 

segmentation, the features and relations of the individual object classes are defined 

within a hierarchical network. This step is also termed semantic modelling. The 

semantic classification of the objects into object classes is then performed on the basis 

of this semantic model (Nussbaum and Menz, 2008) as shown in Figure 2.4. Herewith 
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major tasks of OBIA which consist of (a) image segmentation, (b) feature extraction 

and (c) semantic modelling and classification are here separately described as below. 

 

  

Figure 2.4 Workflow of object-based image analysis in eCognition Developer 

(Nussbaum and Menz, 2008). 

 

 2.1.1 Image Segmentation 

  Image segmentation refers to the process of decomposing an input image 

into spatially discrete, contiguous, nonintersecting, and semantically meaningful 

segments or regions. These regions are patches comprising relatively homogeneous 

pixels. These pixels share a higher internal spectral homogeneity among themselves 

than external homogeneity with pixels in other regions (Ryherd and Woodcock, 1996). 

Herein, specific image segmentation methods for digital image classification include 

segmentation based on multiple criteria and multi-scale image segmentation are here 

introduced. 
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  (1) Segmentation Based on Multiple Criteria Method 

   The pixel-, edge-, and region-based segmentation methods are 

limited in that the operation is based exclusively on one criterion, namely, pixel values 

in the multispectral domain. Thus, a huge amount of spatial information among pixels 

is wasted. This inability to make full use of the available spatial properties usually leads 

to poor segmentation outcomes, especially if the image has a fine spatial resolution. 

This deficiency may be overcome via three means: 

   First, by making use of more segmentation criteria. For instance, 

spatial relationship (e.g., contexture and shape) may be incorporated into segmentation 

by replacing the value of individual pixels that averaged in a neighborhood around each 

pixel.  

   Second, by making use of additional image characteristics other 

than pixel values (e.g., texture) as an extra criterion in the segmentation. The utility of 

texture in segmenting an image varies with the scene. Its use is the most beneficial for 

areas where the desired classes exhibit textural differences (Ryherd and Woodcock, 

1996). The addition of texture into spectral image segmentation brings out stronger 

benefits in threshold-based segmentation than in minimum size-based segmentation.  

   Third, multiple criteria such as shape and texture combined in one 

image segmentation (Hu et al., 2005). Shape can be depicted by such geometric 

parameters as compactness (C) and smoothness (S). The compactness criterion is 

especially important to consider in segmenting urban scenes where building roofs and 

adjacent roads share similar spectral values but have a very dissimilar shape. 

   There are different ways of calculating compactness (C) and 

smoothness (S). One way for compactness is to divide the de facto border length (l) by 
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the square root of the number of pixels comprising this image object (n) (Eq. 2.1) and 

smoothness is defined as the ratio of the de facto border length (l) to the shortest 

possible border length (b), or the border length derived from the bounding box of an 

image object parallel to the raster provided by the bounding box for an image object 

corresponding to the raster (Eq. 2.2). 

 𝐶𝐶 = 𝑙𝑙
√𝑛𝑛

 (2.1) 

 𝑆𝑆 = 𝑙𝑙
𝑏𝑏
 (2.2) 

   Both smoothness and compactness are combined linearly to define 

the shape homogeneity criterion that is invaluable in preventing the formation of fractal 

objects in urban areas. Homogeneity of image objects may be defined by the spectral 

and contextual information determined from such parameters as shape. Shape 

heterogeneity describes the change in an object’s configuration as measured by 

smoothness and compactness. The change in shape homogeneity accompanying a 

merge (Δhshape) is calculated using the following formulae: 

 ∆ℎ𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 =  𝜔𝜔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ ∆ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ ∙ ∆ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ (2.3) 

where 𝜔𝜔 smooth and 𝜔𝜔 compt stand for the weight for smoothness and compactness, 

respectively, with values between 0 and 1. The proper allocation of these two weight 

parameters allows adaptation of the heterogeneity definition to an application and 

determines the success of multiple segmentation; Δhcompt and Δhsmooth represent 

compactness heterogeneity and smoothness heterogeneity, respectively, both of which 

are governed by the number of pixels in objects before and after the merge, or 

 ∆ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ =  𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − (𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜−1 ∙ 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜−1 + 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜−2 ∙ 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜−2) (2.4) 
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 ∆ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − (𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜−1 ∙ 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜−1 + 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜−2 ∙ 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜−2) (2.5) 

where subscript merge refers to the merged object; nmerge denotes the number of pixels 

within the merged object; subscripts obj−1 and obj−2 refer to the two objects prior to 

the merge; nobj−1 and nobj−2 represent the number of pixels in objects 1 and 2, 

respectively, before the merge. Multiple segmentation criteria calculated from different 

parameters are usually combined to derive a compound fusion value (f). For instance, 

the shape heterogeneity criterion derived in Eq. 2.5 may be fused with the spectral 

heterogeneity criterion Δhcolor to calculate spatial heterogeneity. This combination 

minimizes the deviation derived from a compact or smooth shape (Benz, Hofmann, 

Willhauck, Lingenfelder, and Heynen, 2004). The fused value (f) is a weighted linear 

combination of spectral and shape heterogeneity. In fact, the similarity between any 

two regions j and k is calculated separately in each feature space used in the 

segmentation, or 

𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗(𝑓𝑓1,𝑓𝑓2, … ,𝑓𝑓𝑛𝑛) = �𝑊𝑊𝑖𝑖𝜌𝜌𝑖𝑖  =
𝑛𝑛

𝑖𝑖=1

𝜔𝜔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ ∆ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝜔𝜔𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 ∙ ∆ℎ𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 

=  𝜔𝜔 ∙ ∆ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + (1 − 𝜔𝜔) ∙ ∆ℎ𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 (2.6) 

where n denotes the total number of criteria used in segmentation; Wi refers to the 

weight assigned to the ith criterion ρi (e.g., shape, color, size, texture, and so on); wcolor 

and wshape stand for the weights assigned to the spectral and geometrical parameters, 

respectively. Their sum equals 1. The determination of these weights is based on the 

significance of the criterion in defining the regions. Spectral heterogeneity Δhcolor refers 

to the spectral variation induced by merging two image objects. Spectral or color 

heterogeneity is a weighted sum of standard deviation of pixel values within the 
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respective regions in a given spectral band, or the sum of the standard deviations of 

spectral values in each layer multiplied by its weight wc (Eq. 2.7). The color 

heterogeneity criterion ensures the generation of meaningful objects. 

∆ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = ∑ 𝜔𝜔𝑏𝑏�𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝜎𝜎𝑏𝑏,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − (𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜−1 ∙ 𝜎𝜎𝑏𝑏,𝑜𝑜𝑜𝑜𝑜𝑜−1 + 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜−2 ∙ 𝜎𝜎𝑏𝑏,𝑜𝑜𝑜𝑜𝑜𝑜−2)�𝑏𝑏  (2.7) 

where σb stands for the standard deviation within an object in band (b); wb denotes the 

weight assigned to band (Benz et al., 2004). This weight enables multi variant 

segmentation of an image based on spectral properties. The above calculation has many 

terms, the exact number being equal to the number of spectral bands of the image. The 

weight of shape and the image’s bands on the homogeneity of an object can be flexibly 

modified (Figure 2.5). The segmentation results may be adjusted in accordance with 

the desired application by assigning different weights to spectral and shape 

heterogeneity (Benz et al., 2004). 

 

 

Figure 2.5 Weighted component of the homogeneity criteria (Trimble Germany 

GmbH, 2011). 
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  (2) Multiscale (multiresolution) Image Segmentation 

   To successfully segment an image, it is imperative to take into 

account the scale at which the objects of interest occur in conjunction with the spatial 

resolution of the image. In most cases it is not possible to specify the exact scale level 

beforehand as there is no universally “ideal” scale for all features. This is especially 

true in urban areas where ground objects occur at a unique scale of their own. The 

appearance and characteristics of even the same type of objects vary with the scale of 

their rendition on satellite imagery. Segmentation of such objects must take place at 

multiscales. Scale is a unit less parameter related to image resolution. Thus, multiscale 

segmentation is synonymous with multiresolution segmentation. Analysis at 

multiresolution is necessitated by the fact that not all ground features occur at the same 

physical scale. The best segmentation result is achievable by segmenting an image at 

different scales (Burnett and Blaschke, 2003).  

   In multiresolution segmentation the input image is first segmented 

at a small scale by uniting the most similar objects, followed by a set of multiscale 

objects with their topological relationship fully obtained (Sun, Chen, and Li, 2006). 

During multiresolution segmentation the image is converted into object primitives that 

share a certain spectral behavior, shape, and context. These preliminary object features 

are then segmented at a higher level. 

   Multiresolution segmentation is a bottom-up region-merge 

starting with singular seed pixels, each of which is regarded as a potential region. In 

subsequent steps, these small regions are merged to form fewer big ones. A pair of 

neighboring image objects is evaluated to see if they meet the merging criteria. Whether 

adjoining objects should be merged is governed by the principle of homogeneity or lack 
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of it (i.e., heterogeneity). Namely, a merge should result in minimal growth in the 

selected heterogeneity criteria. Commonly used amalgamation criteria include area, 

perimeter, compactness, texture, and shape, all of which are derived from the 

segmented regions. Determination of their specific values is critical to achievement of 

segmentation results suitable for a particular type of application. Objects grow in size 

through successive iterations in which small objects are incrementally merged to form 

larger ones. This pairwise clustering is accompanied by an even and simultaneous 

growth of segments over a scene, and the calculation of the above indices for the newly 

formed objects. Such indices are applied to determining whether they should be 

amalgamated to form a large object after evaluation against a number of object 

properties. Expert knowledge may be involved in forming objects at different scales. 

As the merging process continues, the merged object becomes increasingly 

heterogeneous. Hence the heterogeneity criterion must be updated following every 

merge. It is imposed as a constraint on the merging process. The break-off criterion or 

the stop criterion is based on the relationship between these two objects and the 

comparison with the squared scale parameter. The merging process is terminated if all 

pixels have been assigned to regions or when the threshold derived from the user-

defined parameters is reached (Baatz and Schäpe, 2000). 

   The outcome of multiresolution image segmentation is affected by 

the scale parameter, the single layer weights, and the heterogeneity criteria. The scale 

parameter dictates the spatial extent within which pixel values are used to derive 

spectral heterogeneity in merging two regions. Its squared value internally determines 

the threshold for terminating the segmentation process. The extent of object growth also 

depends on the predefined break-off value. The broader this value, the bigger the 
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segmented object. Proper setting of the optimal breakoff value can overcome the 

limitation of pixel-based approaches in mapping large urban areas. 

   Multiresolution segmentation creates homogeneous image object 

primitives in a desired resolution, taking local contrasts into account without any prior 

knowledge (Blaschke and Hay, 2001). Multiresolution segmentation leads to a better 

understanding of the image content. A hierarchical network may be created to link 

image objects at different resolutions or scales. In this way the same image is 

represented at several resolutions (scales) simultaneously. The constructed hierarchy 

shows the horizontal neighbors (adjacent objects) of an image object at the same level, 

as well as their neighbors at other hierarchies. This multiscale representation enables 

differentiation of the same ground objects on several levels, hence increasing the 

reliability of their identification. If an image is segmented at multiresolution, it can be 

classified at different scales using the object-oriented method. 

   Summary of multiresolution concept by eCognition Developer 

software are presented in Figure 2.6 while an example of multiresolution image 

segmentation is displayed in Figure 2.7. 
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Figure 2.6 Multiresolution concept flow diagram (Trimble Germany GmbH, 2011). 

 

 

 

(a) (b) 

Figure 2.7 Example of multiresolution segmentation of THEOS data, Suranaree 

University of Technology. (a) Multi-resolution segmentation with scale of 

20, Color=0.9, Shape=0.1, Compactness and Smoothness = 0.5; (b) Color 

composite of THEOS data (Band 4, 3, 2). 
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  2.1.2 Feature extraction 

   As mentioned earlier, object-based image classification is a 

promising methodology as it is close to human perception. A typical object-based 

classification system starts with segmenting the image into smaller homogeneous 

regions (or image objects). These objects correspond to approximations of real-world 

objects. Every object is characterized by several features defined based on layer values, 

texture, shape and context of the object. This is where the possibility to automate the 

classification process becomes difficult. With a few input samples for every class and 

using the enormous object feature-space to our advantage, it is possible to automatically 

generate a rule base. However, the essential issue is to manage the huge information 

given by the color, shape, texture and context of the object. A good feature extraction 

is a basic prerequisite for successful work in OBIA. So SEaTH (SEparability and 

THresholds) which was introduced by Nussbaum and Menz (2008) for feature 

extraction are here summarized. 

  (1) SEaTH (SEparability and Thresholds) 

   The feature extraction tool of SEaTH identifies separability and 

thresholds characteristic features with a statistical approach based on training objects. 

These training objects represent a small subset out of the total amount of image objects 

and should be representative objects for each object class. The statistical measure for 

determining the representative features for each object class is the pairwise separability 

of the object classes among each other. Subsequently, SEaTH calculates the thresholds 

which allow the maximum separability in the chosen features. 

   The identification of the characteristic features is a problem of 

probability density estimation. On the basis of representative training data for each 
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object class, the probability distribution for each class can be estimated and used to 

calculate the separability between two object classes. Under the assumption of normal 

probability distributions, the Bhattacharyya distance (B) can be used as a suitable 

separability measure. Bhattacharyya distance is justified as a measure of separability 

from the Bayesian decision rule for misclassification probability as: 

𝐵𝐵 = 1
8

(𝑚𝑚1 −𝑚𝑚2)2 2
𝜎𝜎12+𝜎𝜎22

+ 1
2
𝑙𝑙𝑙𝑙 �𝜎𝜎1

2+𝜎𝜎22

2𝜎𝜎1𝜎𝜎2
� (2.8) 

where mi and σi , i =1,2, are the mean and the variance, respectively, for the two feature 

distributions. If the means coincide, the first term in vanishes, whereas the second term 

vanishes if the two feature distributions have equal variances 

   Figure 2.8 shows the probability distribution exemplified for two 

object classes (C1 and C2) and three notional feature (A, B and C). In feature A both 

object classes show a partial separability, this means that there is an area where the 

probability distributions of the object classes (C1 and C2) overlap in their feature 

characteristic. Given feature B this overlap is so large that its use for classification 

would result in a huge object misclassification rate. This feature therefore provides poor 

separability relative to object classes C1 and C2. The ideal case is represented by feature 

C. Here the object classes have no overlap in the feature characteristic it is therefore 

well-suited for classification: the feature has complete separability. 
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Figure 2.8 Examples of probability distributions (Nussbaum and Menz, 2008). 
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   A more useful measure for separation in classification contexts is 

the Jeffries–Matusita distance (J) which has, unlike Bhattacharyya distance, a finite 

dynamic range. This allows a better comparison of the feature analysis results to 

identify that feature which has the best separability. The Jeffries–Matusita distance 

measures the separability of two classes on a scale [0−2] in terms of Bhattacharyya 

distance (B) as: 

 𝐽𝐽 = 2(1 − 𝑒𝑒−𝐵𝐵) (2.9) 

   Complete separability of the two classes with respect to the 

analyzed feature is indicated by 𝐽𝐽 = 2. On the basis of the training objects used, there 

will be no misclassifications if this feature is used for classification. The lower 𝐽𝐽 is, the 

worse is the separability and the higher the number of misclassified objects. SEaTH 

calculates the separability for any number of given object classes and object class 

combinations. 

   Besides determining the features separating optimally the object 

classes among each other, it is essential to know also the decision threshold for the 

maximum separability. The knowledge of the optimum threshold is necessary for the 

assembly of a ruled-based classification model. 

   The optimum threshold is also calculated by SEaTH. A Gaussian 

probability mixture model of the form 

 𝑝𝑝(𝑥𝑥) = 𝑝𝑝(𝑥𝑥|𝐶𝐶1)𝑝𝑝(𝐶𝐶1) + 𝑝𝑝(𝑥𝑥|𝐶𝐶2)𝑝𝑝(𝐶𝐶2) (2.10) 

is fit to the frequency distribution of a feature for two object classes 𝐶𝐶1 and 𝐶𝐶2 where 

p(x|C1) is a normal distribution with mean, mC1 and variance, σ𝐶𝐶1
2  and similarly for 
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𝑝𝑝(𝑥𝑥|𝐶𝐶2). The decision threshold which minimizes the error probability is obtained by 

solving 

 𝑝𝑝(𝑥𝑥|𝐶𝐶1)𝑝𝑝(𝐶𝐶1) = 𝑝𝑝(𝑥𝑥|𝐶𝐶2)𝑝𝑝(𝐶𝐶2) (2.11) 

for x. Taking logarithms, 

 1
2𝜎𝜎𝐶𝐶2

2 (𝑥𝑥 − 𝑚𝑚𝐶𝐶2)2 − 1
2𝜎𝜎𝐶𝐶1

2 (𝑥𝑥 − 𝑚𝑚𝐶𝐶1)2 = 𝑙𝑙𝑙𝑙𝑙𝑙 �𝜎𝜎𝐶𝐶1
𝜎𝜎𝐶𝐶2

∗ 𝑝𝑝(𝐶𝐶2)
𝑝𝑝(𝐶𝐶1)� = 𝐴𝐴 (2.12) 

𝑥𝑥1(2) = 1
𝜎𝜎𝐶𝐶1
2 −𝜎𝜎𝐶𝐶2

2 �𝑚𝑚𝐶𝐶2𝜎𝜎𝐶𝐶12 −  𝑚𝑚𝐶𝐶1𝜎𝜎𝐶𝐶22 ± 𝜎𝜎𝐶𝐶1𝜎𝜎𝐶𝐶2�(𝑚𝑚𝐶𝐶1 − 𝑚𝑚𝐶𝐶2)2 + 2𝐴𝐴(𝜎𝜎𝐶𝐶12 − 𝜎𝜎𝐶𝐶22 )� (2.13) 

   The relevant solution of the two can be determined by requiring 

that it lies between the two means m1, m2 of the probability distributions. Thus, for the 

example in Figure 2.9, 𝑥𝑥1 is the correct choice. Since the distributions are only partially 

separated, there will be some misclassifications when using this feature for 

classification of unknown object classes. Given the validity of the normal 

approximation assumption, SEaTH will minimize their number. If the probabilities are 

not normally distributed, the calculated separability for this feature is low, i.e. it will 

not be used for classification purposes. This thus ensures that only very good features 

are taken into consideration. 

   In practice, to identify the best features for the classification 

SEaTH calculates the separability and the corresponding threshold for every object 

class combination and for every feature. Any number of object classes and features can 

be analyzed. An interpretation of the results allows a fast preparation of a classification 

model, with statistically optimized features and thresholds. SEaTH makes it possible to 

analyze a large number of features for object description in a short time. 
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Figure 2.9 Threshold identification (Nussbaum and Menz, 2008) 

 

  2.1.3 Semantic Modelling  

   The major function of sematic modelling is to maintain the domain 

knowledge for representing spatial semantics associated with image databases. Queries 

at this level are generally descriptive in nature, and focus mostly on semantics and 

concepts present in image databases. For most of the applications, semantics at this 

level are based on “spatial events” describing the relative locations of multiple objects. 

Such semantics are used for high-level indexing and content-based retrieval of images. 

An example involving such semantics is a range query which involves spatial concepts 

such as close by, in the vicinity, larger than, etc. The most common applications 

employing spatial semantics and content-based retrieval based on range queries are map 

databases and geographic information systems (GIS). This type of systems is 

extensively used in urban planning and resource management scenarios. In clinical 

radiology applications, relative sizes and positions of objects are critical for medical 

diagnosis and treatment (Al-Khatib et al., 1999). 
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   Under OBIA, an object can be described by characteristic features 

such as its spectral signature, shape, size, texture and neighborhood relations to other 

objects. These representative features enable a later classification into object classes. 

For semantic modelling, these typical features of the object classes must first be 

determined and combined in a semantic model (Nussbaum and Menz, 2008). 

   Nussbaum and Menz (2008) mentioned that the model is 

constructed as a rule-based semantic network, which constitutes a form of knowledge 

presentation. The advantage of a network is the possibility of a hierarchical arrangement 

and the inter-linkage of all information on the objects. The individual object class in 

the model is termed node. Concepts provide the generic description of the object 

classes. The implementation of this concept in the satellite scene under consideration is 

called instances. 

   The nodes of the network are linked to each other by edges. These 

edges describe the relations between neighboring, lower or upper objects. In technical 

terms, these relations can be broken down into hierarchical, topological, optional and 

obligatory relations. Hierarchical and topological relations result from the structural 

relations between the objects, whereas optional and obligatory relations are determined 

via the minimum and maximum number in the relations of the network.  

   The features of an object class are described by attributes. They 

have a measured value and a value range to which methods for calculation are allocated. 

The knowledge inherent in a semantic network can be separated into declared and 

procedural knowledge. Declared knowledge contains the concepts and relations, 

whereas procedural knowledge comprises the methods for calculating the concept 
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attributes and for evaluating the concepts and relations. The procedural knowledge thus 

determines the order of the analysis, which can be presented by a set of rules.  

   This rule base contains a condition and an action part. The 

condition verifies whether there is a new interpretation state for the neighboring node 

in the semantic network and the action part adapts this state accordingly. If there are 

several conditions characterizing an object class, they are linked by (logical) operators 

[e.g. and, or, not]. (Nussbaum and Menz, 2008) 

   The semantic modelling in eCognition consists of a feature 

analysis for the image objects obtained in the multiscale segmentation with the 

subsequent formation of a network of rule-based semantic features. In eCognition there 

are a large number of predefined features for describing object properties. Furthermore, 

user-defined features, so-called customized features can be set up. The membership of 

image objects in object classes is defined via so-called membership functions of the 

features (see Figure 2.10). This means that it is a member of a certain object class 

depending on the feature intensity of an image object. The dynamic range of these 

functions is [0, 1] in eCognition and is plotted on their axes. The x-axis indicates the 

respective feature intensity. Membership can either be defined as a fixed threshold 

value or as a fuzzy logic threshold value. In the case of fixed threshold values, an image 

object either belongs to object class [1] or it does not [0]. The membership functions 3, 

4, 9 and 12 from Figure 2.10 can be used here. In the case of a fuzzy logic threshold 

value, membership of a class varies depending on the feature intensity so that an object 

may belong to two object classes. The object is then assigned to that object class to 

which it has the highest membership value. Typical membership functions based on 

fuzzy logic are the shapes 1, 2, 5 and 6 in Figure 2.10. Twelve membership functions 
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are already predefined in eCognition. Furthermore, any functions required can be 

interactively set up and modified. 

 

Figure 2.10 Membership functions in eCognition 8.7 (Nussbaum and Menz, 2008). 

 

   The feature analysis has the task of identifying characteristic 

features for the individual object classes. Once these typical features have been 

determined classification rules are drawn up for each object class. The object classes 

defined via classification rules by means of feature intensity are combined to form a 

hierarchical network, the class hierarchy the class hierarchy has the following possible 

relations. 

   Inheritance: It permits the formation of parent classes and child 

classes. The parent class passes on its feature descriptions to the children (1st 

 

 

 

 

 

 

 

 



32 

generation) who can themselves also have child classes (2nd generation). The 2nd 

generation inherits the features of the parents and the first generation of children. 

   Groups: Classes which have a semantic relation can be combined 

to form groups.  

   Structure: Object classes can be combined to form structural 

groups as a basis for the classification-based segmentation. 

  2.1.4 Semantic Classification 

   After multiscale segmentation with subsequent semantic 

modelling, the semantic classification is performed, dividing the image objects into 

object classes. The semantic classification determines whether or not an object belongs 

to a certain object class on the basis of its significance. A rating function determines a 

level of confidence by comparing the individual features of the object to be classified 

with the attributes. This confidence level provides information about whether the object 

belongs a class, so that the rating various approaches (Nussbaum and Menz, 2008). 

   As mentioned above in semantic modelling, the representative 

features of the object classes are determined with the associated threshold value and 

implemented in a semantic model. This is then the basis for the classification. 

Membership of objects in certain classes is then regulated via classification rules with 

fixed threshold values. In general, fixed threshold values can determine class 

membership or else threshold values based on fuzzy logic. A fuzzy set A is 

characterized by its membership function μA, which assigns to every element in the 

reference set X a real number in a closed interval (0,1) (Tizhoosh, 1998) as: 

 A=(x, μA (x)) |x ∈ X (2.14) 
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   This contrasts with the classical logical sets in which only 

elements with the membership value of 0 or1 can be given, i.e. whether the object 

belongs to the class described (value=1) or not (value=0). In fuzzy set theory, on the 

other hand, the object may be a member of various classes. It is finally assigned to the 

object class with which it has the greatest membership. 

In practice, a classification model with fixed threshold values is 

used for the classification. For example, if an object exceeds a certain boundary in the 

feature under consideration then it no longer belongs to the described object class. The 

modelled features and threshold values are statistically optimal due to the analysis with 

SEaTH for feature extraction. 

 

2.2 Literature Reviews 

 OBIA have been applied to classify LULC since delivery of very high spatial 

remotely sensed image and releaese of eCognition software. Relevant application of 

OBIA to this study are here reviewed and summarized as below. 

 Khamphilung, Strobl, and Tiede (2013) used object-based image analysis for 

rural land use/land cover classification based on village forms and shapes in 

Northeastern, Thailand. QuickBird pan-sharpened imagery with spatial resolution of 

0.6 meter was used in this study. A multiresolution segmentation algorithm was firstly 

used for creating image objects from heterogeneous pixel values. Then, land use was 

classified into 8 classes based on the classification system of LDD, Thailand (e.g. 

urban/built-up land, agricultural area, forest land, water and rangeland). A rule-based 

classifier with membership function was used for the classification. The final results 

consisted of 2 classes: non-village and residential. This study demonstrates that OBIA 
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with topographic variables produces better classification results than OBIA with 

spectral information only. The overall accuracy was about 70%  and Kappa index of 

agreement was 0.64. 

 Ceccarelli et al. (2013) proposed an approach for generating land cover 

information from single-date Landsat 7 images integrating pixel-based and object-

based classifiers in two study areas: Oristano Province and region of Campania. The 

process consisted of (a) pre-processing; (b) segmentation; (c) classification based on 

radiometric properties and integration with textural properties and vegetation indices. 

The rule-set of OBIA was developed in Oristano area and used for the classification of 

the whole Region of Campania with minor changes. The obtained overall accuracy was 

87% in Oristano and 88% in Campania region. 

 Wu, Cheng, Shi, Miao and Xu (2013) presented OBIA for building seismic 

vulnerability assessment using high-resolution remote sensing imagery. The main 

objective is to investigate how to extract building attributes from high resolution remote 

sensing imagery using OBIA to accurately and conveniently assess building seismic 

vulnerability by the combination of in situ field data. A general framework for the 

assessment of building seismic vulnerability is presented in Figure 2.11 included (1) 

the extraction of building information using OBIA, (2) building height estimation, and 

(3) the support vector machine based building seismic vulnerability assessment. The 

results show that all 48 buildings among the study area have been well detected with an 

overall accuracy of 80.67 % and the mean error of heights estimated from building 

shadow is less than 2 m. 

 Campbell and Congalton (2012) applied OBIA by using rule set to extraction 

land cover change. They provided a generalized framework for land cover change 
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analysis through the creation of atmospheric correction and topographic normalization 

models and the development of an object-based land cover change rule set. They also 

explored the accuracy of a range of segmentation parameters and a new principal 

component analysis (PCA) change detection method. Herein two selected Landsat 5 

TM data in 2006 and 2011 were used to perform image differencing and resulted as 

input data. The result suggested that segmentation with relatively small scale parameter 

and complete influence of color over shape produced the most accurate classification. 

This method resulted in an overall accuracy of 80.32%. 

 Laiberte, Browning and Rango (2012) compared three feature selection methods 

for object-based classification of sub-decimeter resolution UtraCam-L imagery. In this 

study they evaluated three feature selection methods, (1) Jeffries–Matusita distance (J), 

(2) classification tree analysis (CTA), and (3) feature space optimization (FSO) for 

object-based vegetation classifications with sub-decimeter digital aerial imagery in arid 

rangelands of the southwestern U.S. They assessed strengths, weaknesses, and best uses 

for each method using the criteria of ease of use, ability to rank and/or reduce input 

features, and classification accuracies. For the five sites tested, J resulted in the highest 

overall classification accuracies for three sites, while CTA yielded highest accuracies 

for two sites. FSO resulted in the lowest accuracies. CTA offered ease of use and ability 

to rank and reduce features, while J had the advantage of assessing class separation 

distances. 
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Figure 2.11 The general framework of building seismic vulnerability assessment (Wu, 

Cheng, Shi, Miao and Xu, 2013). 
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 Myint, Gober, Brazel, Grossman-Clarke, and Weng (2011) compared pixel-

based versus object-based classification of urban land cover extraction using high 

spatial resolution imagery. They employed five different classification procedures with 

the object-based paradigm that separates spatially and spectrally similar pixels at 

different scales. The classifiers to assign land covers to segmented objects were used in 

the study included membership functions and the nearest neighbor classifier (Figure 

2.12). The object-based classifier achieved a highest overall accuracy (90.40%), 

whereas the most commonly used decision rule, namely maximum likelihood classifier, 

produced a lower overall accuracy (67.60%). This study demonstrated that the object-

based classifier was better than the classical per-pixel classifiers. Furthermore, this 

study examined application of different parameters for segmentation and classification. 

 Shruthi, Kerle, and Jetten (2011) applied OBIA to extract gully erosion features 

from satellite imagery, using a combination of topographic, spectral, shape (geometric) 

and contextual information obtained from IKONOS and GEOEYE-1 data. A rule-set 

was developed and tested for a semi-arid to sub-humid region in Morocco. Figure 2.13 

demonstrated overview of the method for gully feature extraction. The percentage of 

gully feature area indicated negligible overestimations between the reference area and 

the OBIA area in two sub-watersheds (0.03% and 1.77%).They also observed that finer 

gully related edges within the complex gully systems were better identified semi-

automatically than was possible by manual digitization, suggesting higher detection 

accuracy. OBIA gully mapping is quicker and more objective than traditional methods, 

and is thus better suited to provide essential information for land managers to support 

their decision making processes, and for the erosion research community. 
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Figure 2.12 A flowchart demonstrating the overall procedure to generate final output 

(Myint, Gober, Brazel, Grossman-Clarke, and Weng, 2010). 
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Figure 2.13 Overview of the method of gully feature extraction (Shruthi, Kerle, and 

Jetten, 2010). 

 

 Zhou, Huang, Troy and Cadenasso (2009) presented object-based land cover 

classification of shaded areas by comparison study of three methods for land cover 

classification from high spatial resolution imagery in an urban environment. Method 1 

combined spectral information in shaded areas with spatial information for shadow 

classification. Method 2 applied a shadow restoration technique, the linear-correlation 

method, to create a “shadow-free” image before the classification. Method 3 used 

multisource data fusion to aid in classification of shadow. Decision rule for land cover 

classification of three methods presented in Figure 2.14. The results indicated that 

Method 3 achieved the best accuracy, with overall accuracy of 88 %. 
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Figure 2.14 The class hierarchy, and its associated features and rules used for land 

cover classification (Zhou, Huang, Troy and Cadenasso, 2009). 

 

Eddy et al. (2008) used hybrid segmentation technique for the modified 

chlorophyll absorption in reflectance index (MCARI) designed to be responsive to both 

chlorophyll variation and resistant to non-photosynthetic material effects. This 

segmentation was used to separate vegetation from background. They used a new 

hybrid segmentation with Artificial Neural Network (HS-ANN) method and compared 

to standard maximum likelihood classification for improving crop/weed species 

discrimination in Site-Specific Herbicide Management (SSHM) in Precision 

Agriculture. Herewith, very high spatial resolution (1.25 mm) ground-based 

hyperspectral image data required development of a simple efficient vegetation index 
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(MCARI) threshold segmentation to separate vegetation from soil for classification. 

The HS-ANN consistently outperformed MLC in both single date and multi-temporal 

classifications. Higher class accuracies were obtained with multi-temporally trained 

ANNs (84 to 92 percent overall), with improvements up to 31 percent over MLC. 

 Liu, Pattey, and Nolin (2008) applied OBIA with high resolution SAR images 

for homogeneous zone delineation within field. The fuzzy k-mean classifier be applied 

for classification approach. Image segmentation procedure were classified as basic 

processing units using SAR data by eCognition software. Results were evaluated using 

analysis of variance and variance reduction of soil electrical conductivity (EC), leaf 

area index (LAI), and crop yield. The object-based approach provided better results 

than a pixel-based approach. The variance reduction in LAI, and soil EC varied with 

SAR acquisition time and incidence angle. Although the variance reduction of yield 

was not as significant as that of LAI and EC, average yield among the delineated zones 

were different in most cases. The SAR data classification produced interpretable 

patterns of soil and crop spatial variability, which can be used to infer within field 

management zones. 

 Zhou and Wang (2008) used OBIA for extraction of impervious surface areas 

from high spatial resolution imagery. They developed an algorithm of multiple agent 

segmentation and classification (MASC) that includes sub-models of segmentation, 

shadow-efface, MANOVA (Multivariate Analysis of Variance) -based classification, 

and post-classification. The segmentation sub-model replaced the spectral difference 

with heterogeneity change for regions merging. Shape information was introduced to 

enhance the performance of impervious surface areas (ISA) extraction. The shadow-

effect sub-model used a split-and-merge process to separate shadows and the objects 
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that cause the shadows. The MANOVA-based classification sub-model took into 

account the relationship between spectral bands and the variability in the training 

objects and the objects to be classified. Existing GIS data were used in the classification 

and post-classification process. The MASC successfully extracted ISA from high 

spatial resolution airborne true-color digital orthophoto and space-borne QuickBird-2 

imagery in the testing areas, and then was extended for extraction of high spatial 

resolution ISA in the State of Rhode Island. 

In addition, an identified data and classification algorithm for OBIA from 

literature reviews are here synthesized as summary in Table 2.1. 

 

Table 2.1 Summary of literature reviews for OBIA. 

Title      Authors      Used data Classification algorithm 
Village forms classification by 
object-based image analysis 

Khamphilung, 
Strobl, and Tiede 
(2013) 

QuickBird pan-
sharpened 

A rule-based classifier with 
membership function used for the 
classification. 

Land cover data from Landsat 
single-date imagery: an approach 
integrating pixel-based and object-
based classifiers 

Ceccarelli et al., 
(2013) 

Landsat 7 (ETM+) The rule-set of OBIA applied for 
generating land cover information from 
single-date by images integrating pixel-
based and object-based classifiers in 
two study areas  

An object-based image analysis for 
building seismic vulnerability 
assessment using high-resolution 
remote sensing imagery 

Wu, Cheng, Shi, 
Miao and Xu  (2013) 

WorldView-2 The thresholding from expert 
knowledge applied for rule-based 
creation using for classification. 

Landsat-based land cover change 
analysis in Northerastern Oregons’s 
Timeber-resource-dependent 
communities 

Campbell and 
Congalton (2012) 

Landsat 5 (TM)  Topographic normalization models, and 
the development of an object-based 
land cover change applied rule set to 
extraction land cover change with using 
PCA change detection method based on 
image differencing of two Landsat 
images  

A comparison of three feature 
selection methods for object-based 
classification of sub-decimeter 
resolution UltraCam-L imagery 

Laiberte, Browning 
and Rango. (2012) 

UltraCam-L digital 
mapping imagery  

They evaluated three feature selection 
methods, (1) Jeffreys–Matusita distance 
(JM), (2) classification tree analysis 
(CTA), and (3) feature space 
optimization (FSO). Classification 
separate by vegetation class using 
nearest neighbor classifier which be 
applied for three method.  

Per-pixel vs. object-based 
classification of urban land cover 
extraction using high spatial 
resolution imagery 

Myint, Gober, 
Brazel, Grossman-
Clarke, and Weng 
(2011) 

QuickBird image Pixel-based used statistics for selected 
land-cover classes namely maximum 
likelihood, object-based classifier with 
nearest neighbor algorithm, expert 
knowledge and decision rule for 
classification. 
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Table 2.1 (Continued)  

Title      Authors      Used data Classification algorithm 
Object-based gully feature 
extraction using high spatial 
resolution imagery 

Shruthi, Kerle, and 
Jetten (2011). 

IKONOS and 
GEOEYE-1 data. 

Segmented by chessboard 
segmentation. A rule-set was developed 
for gully feature extraction 

Object-based land cover 
classification of shaded areas in 
high spatial resolution: a 
comparison study 

Zhou, Huang, Troy 
and Cadenasso 
(2009) 

Color-infrared digital 
aerial image data from 
Emerge Inc. 

Method 1 combined spectral 
information in shaded areas with spatial 
information for shadow classification. 
Method 2 applied a shadow restoration 
technique Method 3 used multisource 
data fusion to aid in classification of 
shadow. Final classify shaded objects 
using rule-based classification with 3 
method. 

Hybrid segmentation artificial 
neural network classification  of 
high resolution hyperspectral 
imagery for site-specific herbicide 
management in agriculture 

Eddy, Smith, Hill, 
Peddle, Coburn, and 
Blackshaw (2008) 

The hyperspectral 
camera system was 
situated on a boom 
arm, mounted on a flat-
bed truck and centered 
at 1 m target distance 

Applied new hybrid segmentation 
artificial neural network (HS-ANN) 
method and compare the results with 
standard maximum likelihood 
classification (MLC) 

Object-based classification of high 
resolution SAR images for within 
field homogeneous zone delineation 

Liu, Pattey, and 
Nolin (2008) 

CV-580 SAR Data A bottom up region merging procedure 
used for segmentation. Unsupervised 
fuzzy k-mean applied for classification 

Extraction of impervious surface 
areas from high spatial resolution 
imagery by multiple agent 
segmentation and classification 

Zhou and Wang 
(2008) 

QuickBird-2 satellite The MANOVA-based classification 
took into account the relationship 
between spectral bands and the 
variability in the training objects and 
the objects to be classified. GIS data 
were used in the classification and post-
classification process. 

 

 

 

 

 

 

 

 

 



 

CHAPTER III 

EQUIPMENT AND RESRACH METHODOLOGY 

 
Equipment and details of research methodology including (1) data collection and 

preparation; (2) semantic modelling and classification development; (3) spatial 

transferability analysis and (4) Temporal transferability analysis are here explained in 

this chapter. 

 

3.1 Equipment  

  Equipment include hardware and software which are used in this study is 

summarized in Table 3.1 as below: 

Table 3.1 List of hardware and software. 

Equipment Application Source 

Hardware 

GPS Ground surveying 

Personnel 

Tablet, notebook, desktop 
computer Data analysis and documentation 

Digital camera Ground surveying 

Laser printer Document and map printing  

Software 
 

ERDAS Imagine Digital image processing 

Remote sensing 
laboratory, SUT 

RSI ENVI Digital image processing 

ESRI ArcMap Spatial analysis and map production 

Definiens eCognition Developer Object-based image analysis 

MS Excel SEaTH analysis 

MS Word Documentation 

Google Earth Accuracy assessment Google Inc. 
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3.2 Research methodology 

 Framework of research methodology consists of one common task, data 

collection and preparation and three components: (1) semantic modelling and 

classification development (2) spatial transferability analysis and (3) temporal 

transferability analysis as shown in Figure 3.1. Details of common task and research 

components are separately described in the following sections. 

 

 

Figure 3.1 Framework of research methodology. 

  

1. Image segmentation by multiresolution  

2. Feature extraction by SEaTH  

3. Semantic modelling 

4. Semantic classification 

Spatial transferability analysis 

Semantic Modelling and Classification Development 

Semantic model and classification 
for LULC in 2013 extraction 

Site: Test area 

Semantic model and classification 
for LULC in 2014 extraction 

Site: Reference area 

1. Landsat 8-LDCM in 2013 and 2014 collection 

2. Geometric verification and study area extraction 

3. Optimum pan-sharpening processing 

4. Optimum band combination selection 

Data Collection and Preparation 

Temporal transferability analysis 
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3.2.1 Data collection and preparation 

 Landsat 8 LDCM data at Level 1 (path 128, row 50) in 2013 and 2014 are firstly 

downloaded from USGS website (www.glovis.usgs.gov) and then converted from zip 

format to be image format for geometric data verification as shown Figure 3.2. Spectral 

sensor characteristics of Landsat 8 LDCM is summarized in Table 3.2. After that, the 

verified Landsat 8 data are extracted spectral subset for MS band 2-7 and PAN band 8 

and spatial subset covering study area as result shown in Figure 3.3. The main task for 

data preparation includes optimum pan-sharpening processing and optimum band 

combination selection are briefly described as below. 

 

  
(a) (b) 

Figure 3.2 Composite image of Landsat 8 (Band 5, 4, 3): (a) Date 9 December 2013 

and (b) Date 12 December 2014. 
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Table 3.2 Landsat 8 spectral sensor characteristics. 

Spectral Band Wavelength Resolution 

Band 1 – Coastal / Aerosol 0.433 – 0.453 μm 30 m. 

Band 2 – Blue 0.450 – 0.515 μm 30 m. 

Band 3 – Green 0.525 – 0.600 μm 30 m. 

Band 4 – Red 0.630 – 0.680 μm 30 m. 

Band 5 – Near Infrared 0.845 – 0.885 μm 30 m. 

Band 6 – Short Wavelength Infrared 1.560 – 1.660 μm 30 m. 

Band 7 – Short Wavelength Infrared 2.100 – 2.300 μm 30 m. 

Band 8 – Panchromatic 0.500 – 0.680 μm 15 m. 

Band 9 – Cirrus 1.360 – 1.390 μm 30 m. 

Band 10 – Long Wavelength Infrared 10.30 – 11.30 μm 100 m. 

Band 11 – Long Wavelength Infrared 11.50 – 12.50 μm 100 m. 

(Source: USGS, www, 2014). 
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(a) (b) 

  
(c) (d) 

Figure 3.3 Spatial and spectral subset of Landsat 8 acquired on 9 December 2013 (a) 

MS image (Band 5, 4, 3), (b) PAN image and Landsat 8 acquired on 12 

December 2014 (c) MS image (Band 5, 4, 3), (d) PAN image. 
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  (1) Optimum pan-sharpening processing 

   Pan-sharpening processing for Landsat 8 data in 2013 and 2014 

are firstly separately conducted using the selected methods which can provide more 

than 3 bands of pan-sharpened image included EF, GS, HPF, MIHS, and WT. Herein, 

multispectral bands of Landsat-8 included band 2 (B), 3 (G), 4 (R), 5 (NIR), 6 (SWIR), 

and 7 (SWIR) and 8 (PAN) are used in pan-sharpening process. The characteristic of 

the selected pan-sharpening methods is summarized in Table 3.3. After that the derived 

pan-sharpened image of Landsat 8 data in 2013 and 2014 are separately evaluated 

image quality using the Universal Image Quality Index (Q) developed by Wang and 

Bovik (2002) as: 

 𝑄𝑄 =  𝜎𝜎𝑥𝑥𝑥𝑥
𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦

∗ 2𝑥̅𝑥𝑦𝑦�
(𝑥̅𝑥2)+(𝑦𝑦�2) ∗

2𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦
𝜎𝜎𝑥𝑥2+𝜎𝜎𝑦𝑦2

  (3.1) 

Herewith x is pixel value of original image and y is test image, where 

 𝑥̅𝑥 =  1
𝑁𝑁
∑ 𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=1 , 

 𝑦𝑦� = 1
𝑁𝑁
∑ 𝑦𝑦𝑖𝑖𝑁𝑁
𝑖𝑖=1  ,  

 𝜎𝜎𝑥𝑥2 = 1
𝑁𝑁−1

∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2𝑁𝑁
𝑖𝑖=1 ,  

 𝜎𝜎𝑦𝑦2 = 1
𝑁𝑁−1

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑁𝑁
𝑖𝑖=1  , 

 𝜎𝜎𝑥𝑥𝑥𝑥 =  1
𝑁𝑁−1

∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)𝑁𝑁
𝑖𝑖=1  

   The dynamic range of Q is [-1 to 1]. The best achievable value is 

consequently 1 whenever 𝑦𝑦𝑖𝑖 = 𝑥𝑥𝑖𝑖, i.e. the original image and the test image are identical. 

Q can be rewritten as a combination of three factors: 

 𝑄𝑄 =  𝜎𝜎𝑥𝑥𝑥𝑥
𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦

∗ 2𝑥̅𝑥𝑦𝑦�
(𝑥̅𝑥2)+(𝑦𝑦�2) ∗

2𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦
𝜎𝜎𝑥𝑥2+𝜎𝜎𝑦𝑦2

 (3.2) 
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   The first factor in the Eq. 3.2 gives the correlation coefficient of 𝑥𝑥 

and 𝑦𝑦. This factor measures the degree of linear agreement and in the ideal case (two 

images are identical) is thus = 1 and if there is no correlation then = 0. The second factor 

compares the means of the two images. The range of values is between 0 and 1. The 

third factor finally examines the variance of the two images. In this case the dynamic 

range is also [0, 1]. In conformity with the correlation, mean value and variance, these 

three factors provide a value of 1 and thus 𝑄𝑄 is also equal to 1 (Wang and Bovik, 2002). 

Therefore, method which provides the highest average 𝑄𝑄 values is considered as an 

optimum pan-sharpening process to apply for Landsat 8 data. 

 

Table 3.3 Characteristics of selected pan-sharpening algorithm. 

Method Basic characteristics Reference 

Ehlers fusion 

(EF) 

This method is based on IHS transformation coupled with Fourier 

domain filtering.  

Klonus and Ehlers 

(2009) 

Gram-Schmidt 

pan-sharpening 

(GS) 

This method is firstly simulated a panchromatic band from lower 

spatial resolution spectral bands. Then Gram-Schmidt transformation 

is performed on the simulated panchromatic band and the spectral 

bands and replaced the high spatial resolution panchromatic band 

with the first Gram-Schmidt band. Finally, inverse Gram-Schmidt 

transformation is performed to generate a pan-sharpened image. 

Laben and Brower 

(2000) 

High pass 

filtering (HPF) 

This method involves a convolution using high pass filter on PAN 

image and merging the result with MS image. 

Gangkofner et al. 

(2008) 
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Table 3.3 (Continued). 

Modified 

intensity hue 

saturation 

transform 

(MIHST) 

This method was firstly proposed by Siddiqui (2003). It allows 

combining multispectral image with panchromatic image more than 

three bands at a time. The method works best when there is significant 

overlap of wavelengths of combining images (Nikolakopoulos, 

2008). 

Nikolakopoulos 

(2008) 

Siddiqui (2003) 

Wavelet 

transform (WT) 

This method is a modification of the work of King and Wang (2001). 

The process involves separating original image into different image 

components by wavelet decomposition and substituting their 

components between MS and PAN image components to produce a 

pan-sharpened image. 

Klonus and Ehlers 

(2009) 

King and Wang 

(2001) 

 

  (2) Optimum band combination selection 

   The derived pan-sharpened data which produced using an 

optimum pan-sharpening method is further used to identify an optimum four band 

selection by the Optimum Index Factor (OIF) developed by Chavez et al., (1982) and 

Sheffield Index (SI) developed by Sheffield (1985). Both OIF and SI, which are based 

on the amount of total variance and correlation and covariance, respectively within and 

between various band combinations, can be easily applied to any multispectral remote 

sensing dataset.  

   The algorithm used to compose OIF for any subset of four band 

combination is 

 𝑂𝑂𝑂𝑂𝑂𝑂 = ∑ 𝑠𝑠𝑘𝑘4
𝑘𝑘=1

∑ 𝐴𝐴𝐴𝐴𝐴𝐴(𝑟𝑟𝑗𝑗)4
𝑗𝑗=1

 (3.3) 

where sk is the standard deviation for band 𝑘𝑘 , and 𝑟𝑟𝑗𝑗 is the absolute value of the 

correlation coefficient between any two of the four bands being evaluated. Standard 
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deviation represents the discrete degree. The more value, it will be the more radiation 

intensity difference and the less of the absolute value of the correlation coefficient, the 

less of repeated degree (Debdip and Girls, 2013). 

  While, algorithm uses to compute SI for any subset of four band 

combination is: 

 𝑆𝑆𝑆𝑆 = �𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝�  (3.4) 

where, �𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝�is the determinant of the covariance matrix of subset size 𝑝𝑝𝑝𝑝𝑝𝑝. The 

band combination that results in the largest determinant is selected for the optimum 

four band combination. 

 3.2.2 Component I: Semantic modelling and classification development 

  The semantic model which creates a form of knowledge to present and 

determine features of classes with associate to threshold value in the model. The 

workflow of Component I: Semantic modelling and classification development is 

shown in Figure 3.4. Herewith, three major tasks after preprocessing include (1) 

multiresolution segmentation, (2) feature extraction, and (3) semantic modelling and 

classification development are implemented. 

  (1) Multiresolution segmentation: The optimized pan-sharpening data 

of Landsat 8 in 2013 are segmented using multiresolution algorithm under eCognition 

software. Herewith multilevel scale and optimum weighting for color and shape is 

applied. The multilevel scale is examined between 25 and 100 meanwhile weight of 

color are varied between 0.5- 0.7 and weight for smoothness and compactness of shape 

is 0.5. 
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  (2) Feature Extraction. In this study SEaTH (Separability and 

Thresholds) technique is used for feature extraction. For separability, all pairwise of 

two object classes are firstly computed spectral distance using J distance (Eq. 2.9) based 

on selected feature characteristics such as spectral value, geometry, and texture. After 

that threshold value based on Gaussian probability mixture model are then calculated 

to identify the optimum value for the maximum separability in the chosen features (Eq. 

2.12). 

  (3) Semantic modelling and classification development. Under this 

step major tasks are processed as following  

   - Semantic Modelling: The model is constructed as a rule-based 

semantic network, which constitutes a form of knowledge presentation. The statistical 

measure for determining the representative features for each object class is the pairwise 

separability of the object classes among each other. Most outstanding features from 

SEaTH analysis are used to draw up for each object class. 

   - Semantic Classification: The representative features of the object 

classes which determined with the associated threshold value from semantic modelling 

is implemented in a semantic classification. Membership of objects in certain classes is 

then regulated via classification rules with fixed threshold values. In this study, fixed 

threshold values are used to determine continuous class membership. The final product 

is LULC map. 
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Figure 3.4 Workflow of Component I: Semantic modelling and classification 

development. 

Multiresolution segmentation 

Feature Extraction by SEaTH 

Separability calculation by J distance 

Threshold identification 

Scale (25) 

Color (0.9) 

Shape (0.1) 
Compactness (0.5) 

Smoothness (0.5) 

Semantic modelling 

Land use and land cover map 

Accuracy assessment 

Data collection and preparation 

Semantic classification 

Semantic model and classification development 

Acceptance Model 

OA and Kappa hat >= 80 % 

Spatial Transferability analysis Temporal Transferability analysis 
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   - Accuracy assessment. Standard measurement for accuracy 

assessment includes overall accuracy and Kappa hat coefficient of agreement is 

evaluated for the classified LULC map in reference. Herewith overall accuracy and 

Kappa hat coefficient for acceptance the semantic modelling and classification is equal 

or greater than 80 percent before applying the developed semantic model in spatial and 

temporal transferability analysis. 

  For accuracy assessment, number of sample points, in general, is firstly 

estimated and sampling scheme is then selected for sample point allocation. In this 

study, number of sample point for accuracy assessment is calculated based on binomial 

probability distribution theory suggested by Fitzpatrick-Lins (1981) as: 

 
2

))((2

E

qpZN =  (3.5) 

where P is the expected percent accuracy of the entire map, 

 q  is 100 – p 

 E is the allowable error 

 Z is 2 from the standard normal deviate of 1.96 for the 95% two side 

confidence level. 

Meanwhile stratified random sampling is chosen to allocate sample points.  

 3.2.3 Component II: Spatial transferability analysis 

  Spatial transferability analysis is used to determine whether the 

developed semantic model and classification can be transferred to other site. Basically, 

spatial transferability should be easily applied when characteristic of test area is similar 

to reference area. In this study, a developed semantic model in Component I is directly 
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applied for spatial transferability analysis in testing area. Herewith accuracy assessment 

are also conducted to confirm the accuracy of the spatial transferability. Fundamentally, 

the accuracy values from Component I and II should no significant difference if the 

biophysical characteristics of two test sites are similar. In this study, significant 

different of accuracy between Component I and II is tested using standard normal 

distribution or Z statistics (Pairwise Z test) as: 

 𝑍𝑍 = |𝐾𝐾1�−𝐾𝐾2� |

�𝑣𝑣𝑣𝑣𝑣𝑣� (𝐾𝐾1)�+𝑣𝑣𝑣𝑣𝑣𝑣� (𝐾𝐾2)�
 (3.6) 

where Z  is normalized and standard normal distribution 

  𝐾𝐾1� is KHAT for Component I 

  𝐾𝐾2� is KHAT for Component II 

  𝑣𝑣𝑣𝑣𝑣𝑣� (𝐾𝐾1)� is variance of KHAT for Component I 

  𝑣𝑣𝑣𝑣𝑣𝑣� (𝐾𝐾2)� is variance of KHAT for Component II 

Meanwhile, variance of KHAT is calculated by: 

𝑣𝑣𝑣𝑣𝑣𝑣� (𝐾𝐾)� = 1
𝑛𝑛
�𝜃𝜃1(1−𝜃𝜃1)

(1−𝜃𝜃2)2 + 2(1−𝜃𝜃1)(2𝜃𝜃1𝜃𝜃2−𝜃𝜃3)
(1−𝜃𝜃2)3

+ (1−𝜃𝜃1)2(𝜃𝜃4−4𝜃𝜃2
2)

(1−𝜃𝜃2)4
�  (3.7) 

where 

  𝜃𝜃1 = 1
𝑛𝑛
∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑘𝑘
𝑖𝑖=1  

  𝜃𝜃2 = 1
𝑛𝑛2
∑ 𝑛𝑛𝑖𝑖+𝑛𝑛+𝑖𝑖𝑘𝑘
𝑖𝑖=1  

  𝜃𝜃3 = 1
𝑛𝑛2
∑ 𝑛𝑛𝑖𝑖𝑖𝑖(𝑛𝑛𝑖𝑖+ + 𝑛𝑛+𝑖𝑖)𝑘𝑘
𝑖𝑖=1  

  𝜃𝜃4 = 1
𝑛𝑛3
∑ ∑ 𝑛𝑛𝑖𝑖𝑖𝑖(𝑘𝑘

𝑗𝑗=1 𝑛𝑛𝑗𝑗+ + 𝑛𝑛+𝑖𝑖)2𝑘𝑘
𝑖𝑖=1  

Under pairwise Z test, given the null hypothesis H0: ( 𝐾𝐾1� - 𝐾𝐾2�) = 0, and the alternative 

H1 : ( 𝐾𝐾1� - 𝐾𝐾2�)  ≠ 0, H0 is accepted if Z < Zα/2, where α/2 is the confidence level of the 
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two-tailed Z test and the degrees of freedom are assumed to be infinity (Congalton and 

Green, 2009). 

 3.2.4 Component III: Temporal transferability analysis 

  Temporal transferability analysis is a process to verify consistency of the 

developed semantic model with features and threshold values on satellite data in the 

same site at different points of time. It has been shown that the features identified by 

SEaTH are characteristic of the individual object classes and can also be transferred 

over considerable periods of time. In practice, some features can be taken over 

completely and the threshold values might be used with minor modification, especially 

phonological change of vegetation (Nussbaum and Menz, 2008). Similarly to spatial 

transferability analysis, a developed semantic model in Component I is examined and 

modified for temporal transferability analysis in reference area in different year. In 

addition, significant different of accuracy between Component I and III is also tested 

using pairwise Z test to confirm the accuracy of temporal transferability. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

Major results of three main components of the research methodology included 

(1) preprocessing data product, (2) semantic modelling and classification development, 

(3) spatial transferability analysis and (4) temporal transferability analysis are described 

and discussed in this chapter. 

 

4.1 Preprocessing data product 

 Major preprocessing data products included optimum pan-sharpening method 

of Landsat 8 imagery and optimum four band combination dataset are summarized and 

discussed as below. 

 4.1.1 Optimum pan-sharpening method of Landsat 8 imagery 

  The products of pan-sharpening of two Landsat 8 data of 2013 and 2014 

are separately displayed in Figures 4.1 and 4.2, respectively. It was found that four pan-

sharpening methods except MIHST can provide good brightness and contrast image in 

both dataset and they visualized similar to an original MS image and their spatial 

resolution are better than the original one. In case of MIHST, its pan-sharpened image 

is quite different from other methods. The false color composite of the vegetated areas 

displayed as dark purple. 
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  The Q average values for the pan-sharpened image of Landsat 8 data in 

2013 and 2014 are presented in Tables 4.1 and 4.2, respectively. It revealed that WT 

displayed the best result for Landsat 8 data of 2013 with value of 0.97 and followed by 

EF, HPF, GS and MIHST with value of 0.96, 0.96, 0.90 and 0.85, respectively. At the 

same time, WT also displayed the best result for Landsat 8 data of 2014 with value of 

0.96 and followed by HPF, EF, GS and MIHST with value of 0.95, 0.95, 0.90 and 0.83, 

respectively. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4.1 False color composite of original Landsat 8 data in 2013 and their pan-

sharpened images, band 4, 5 and 3 (RGB): (a) original data (b) EF, (c), 

GS, (d) HPF, (e) MIHST and (f) WT. 

 

 

 

 

 

 

 

 



61 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4.2 False color composite of original Landsat 8 data in 2014 and their pan-

sharpened images, band 4, 5 and 3 (RGB): (a) original data (b) EF, (c), 

GS, (d) HPF, (e) MIHST and (f) WT. 
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Table 4.1 Comparison of the image quality from different pan-sharpening methods 

for Landsat 8 data of 2013 based on Q-average value. 

Landsat 8 data in 2013 

Band 
Q and Q-average of various pan-sharpening methods 

EF GS HPF MIHST WT 

2 0.979113093 0.926665028 0.965599674 0.974766308 0.967333112 

3 0.975474832 0.916928814 0.96314923 0.969882 0.965402081 

4 0.985886392 0.916492895 0.961095247 0.982436987 0.964434155 

5 0.893648333 0.89570461 0.935498599 0.256437685 0.999480745 

6 0.965246499 0.879480797 0.954033955 0.921912278 0.966184355 

7 0.964259823 0.890923556 0.954702699 0.979397667 0.96435536 

Sum 5.763628973 5.426195701 5.734079403 5.084832921 5.827189809 

Q-average 0.960604829 0.90436595 0.955679901 0.847472153 0.971198301 

Ranking 2 4 3 5 1 

 

Table 4.2 Comparison of the image quality from different pan-sharpening methods 

for Landsat 8 data of 2014 based on Q-average value. 

Landsat 8 data in 2014 

Band 
Q and Q-average of various pan-sharpening methods 

EF GS HPF MIHST WT 

2 0.962327303 0.914067036 0.961363078 0.96565798 0.95844202 

3 0.950411819 0.90406116 0.959765429 0.959314374 0.95655615 

4 0.976433924 0.909337998 0.958655979 0.978554287 0.955951358 

5 0.896365233 0.886733067 0.933863549 0.172631192 0.998828408 

6 0.966972553 0.875525052 0.95441916 0.902345738 0.954582022 

7 0.954143398 0.889063419 0.95537031 0.972864788 0.953944634 

Sum 5.706654231 5.378787731 5.723437504 4.951368359 5.778304592 

Q-average 0.951109038 0.896464622 0.953906251 0.82522806 0.963050765 

Ranking 3 4 2 5 1 
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  As results, the most appropriate method for pan-sharpening Landsat 8 

data is WT and the possibly appropriate methods may include HPF, EF, and GS. This 

possibility is useful when software availability is considered. On contrary, the least 

appropriate method for pan-sharpening producing from Landsat 8 data is MIHST. Q 

value of band 5 (SWIR) from MIHST for year 2013 and 2014 was rather low (with 

value of 0.25 and 0.17, respectively) when it was compared with other bands. This 

result directly effects to Q average value of MIHST method. 

  The major cause for identifying the most and least pan-sharpening 

method (WT and MIHST) based on spectral authenticity may be possible due to 

algorithm and data. Nikolakopoulos (2008) claimed the MIHST method works best 

when there is significant overlap of wavelengths of combining images. 

 4.1.2 Optimum four band combination dataset 

  The OIF and SI values of four band combination for two derived pan-

sharpened image from WT method are separately summarized in Tables 4.3 and 4.4, 

respectively. It demonstrated that the combination of band 3 (G), 4 (R), 5 (NIR) and 6 

(SWIR) from pan-sharpened Landsat 8 data in 2013 provided the highest OIF and SI 

value with value of 32.38 and 989,934,354.93, respectively while the combination of 

band 2 (B), 3 (G), 4 (R) and 7 (SWIR) provided the lowest OIF and SI values with value 

of 12.35 and 4,059,983.93, respectively. These results show that the best band 

combination from pan-sharpened Landsat 8 data of 2013 should be band 3 (G), 4 (R), 

5 (NIR) and 6 (SWIR). 

  On contrary, it revealed that the combination of band 4 (R), 5 (NIR), 6 

(SWIR) and 7 (SWIR) from pan-sharpened Landsat 8 data of 2014 provided the highest 
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OIF value with value of 21.95 but the combination of band 3 (G), 4 (R), 5 (NIR) and 6 

(SWIR) provided the highest SI value with value of 44,036,757.71 and the combination 

of band 2 (B), 3 (G), 4 (R) and 7 (SWIR) provided the lowest OIF and SI values with 

value of 8.31 and 185,153.04, respectively.  

  Though, these results show a common best band combination from both 

pan-sharpened Landsat 8 data when it was justified based on SI is band 3 (G), 4 (R), 5 

(NIR) and 6 (SWIR). Nevertheless, this common best band combination does not agree 

with OIF value. However, the first rank: band 4 (R), 5 (NIR), 6 (SWIR) and 7 (SWIR) 

and second rank: band 3 (G), 4 (R), 5 (NIR) and 6 (SWIR) based on OIF value have no 

significant difference with value of 0.30067. This cannot be compared with the 

significant difference of SI with value of 25,212,713.72 between the first rank: band 3 

(G), 4 (R), 5 (NIR) and 6 (SWIR) and second rank: band 4 (R), 5 (NIR), 6 (SWIR) and 

7 (SWIR) based on SI value (see Tables 4.4 and 4.5). 

  As results, the most optimum four band combination from Landsat 8 

pan-sharpened data is band 3 (G), 4 (R), 5 (NIR) and 6 (SWIR) and the least optimum 

four band combination is band 2 (B), 3 (G), 4 (R) and 7 (SWIR). This finding is similar 

to the previous work of Debdip and Girls (2013) who applied OIF for three band 

combination of Landsat 5 data. They found the best three band combination of Landsat 

5 data was band 1 (B), 4 (NIR) and 5 (SWIR) and the least three band combination was 

band 1 (B), 2 (G), and 3 (R). 
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Table 4.3 OIF values of possible four band combination of pan-sharpened image from 

pan-sharpened Landsat 8 data of 2013 and 2014. 

Band 

combination 

Pan-sharpened Landsat 8 data of 

2013 

Pan-sharpened Landsat 8 data of 

2014 

OIF value Ranking OIF value Ranking 

2,3,4,5 29.62363 2 19.550498 4 

2,3,4,6 15.18227 5 9.32851469 5 

2,3,4,7 12.34569 6 8.30909777 6 

3,4,5,6 32.38322 1 21.6874493 2 

3,4,5,7 28.76582 4 20.9533679 3 

4,5,6,7 29.02805 3 21.9504101 1 

 

Table 4.4 SI values of possible four band combination of pan-sharpened image from 

pan-sharpened Landsat 8 data of 2013 and 2014 

Band 

combination 

Pan-sharpened Landsat 8 data of 

2013 

Pan-sharpened Landsat 8 data of 

2014 

SI value Ranking SI value Ranking 

2,3,4,5 53,198,355.79 4 2,630,416.14 4 

2,3,4,6 28,673,107.18 5 544,662.33 5 

2,3,4,7 4,059,983.93 6 185,153.04 6 

3,4,5,6 989,934,354.93 1 44,036,757.71 1 

3,4,5,7 140,150,013.33 3 14,483,014.73 3 

4,5,6,7 180,547,654.20 2 18,824,043.99 2 

 

4.2 Semantic modelling and classification development for LULC 

classification 

 Major results and findings of semantic modelling and classification 

development for LULC extraction in reference area included (1) image segmentation 
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by multiresolution segmentation; (2) feature extraction by SEaTH analysis; (3) 

semantic model, (4) semantic classification, and (5) accuracy assessment are described 

and discussed as below. 

 4.2.1 Image segmentation by multiresolution segmentation 

  The derived pan-sharpened imagery of Landsat 8 in 2013 were 

partitioned for image objects using multiresolution segmentation under eCognition 

software with the scale factor of 25 and color parameter of 0.9 and compactness of 0.5 

as result shown in Figure 4.3 and Table 4.5. The minimum image object size as 

minimum mapping unit (MMU) is about 21 x 21 sq. m. The extracted image object with 

their feature properties are further used as input data for training samples selection and 

their feature properties identification for feature extraction by SEaTH analysis. 

 

 

Figure 4.3 Image objects of pan-sharpened Landsat 8 data of 2013 by multiresolution 

segmentation. 
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Table 4.5 Parameter setting of multiresolution segmentation and number of the derived 

image objects. 

Scale Color weight 

Shape weight = 0.1 Number of image 

objects Compactness Smoothness 

25 0.9 0.5 0.5 39,038 

 

 4.2.2 Feature extraction by SEaTH analysis 

  SEaTH analysis, which are used to extract separability value and to 

identify an optimum threshold value, was here applied on all possibly pairwises 

between two identified LULC classes based on the selected 94 features of image objects 

as summary in Table 4.6. Herewith, basic features included brightness value and its 

standard deviation, ratio and texture characteristics of image objects were selected to 

characterize LULC classes. 

  Under SEaTH analysis, basic statistical values include mean, standard 

deviation and variance are firstly extracted from 10 sample areas (image objects) for 10 

LULC classes, which include 1) urban and built-up area (UR), 2) paddy field type I 

(PD1), 3) paddy field type II (PD2), 4) cassava type I (CA1), 5) cassava type II (CA2), 

6) maize (MA), 7) sugarcane (SU), 8) perennial trees and orchard (PO), 9) forest type 

I (FO1), 10) forest type II (FO2), 11) forest type III (FO3), and (12) water body (WA). 

(See example of sample area in Figure 4.4) Average mean and variance values of all 

selected features for 12 LULC classes is presented in Tables 4.7 and 4.8, respectively. 

Figure 4.5 shows an example of average mean and variance of brightness feature of 

LULC classes. 
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Urban and built-up area (UR) Paddy field type I (PD1) 

  
Paddy field type II (PD2) Cassava type I (CA1) 

  

Cassava type II (CA2) Maize (MA) 

Figure 4.4 Sample area selected image object for SEaTH analysis of 12 LULC types. 
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Sugarcane (SU) Perennial trees and Orchard (PO) 

  
Forest type I (FO1) Forest type II (FO2) 

  
Forest type III (FO3) Water body (WA) 

Figure 4.4 (Continued) 
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Table 4.6 List of selected 94 features for SEaTH analysis.  

No Features 
1 Brightness 
2 Layer 1 
3 Layer 2 
4 Layer 3 
5 Layer 4 
6 Max. diff. 
7 Std Layer 1 
8 Std Layer 2 
9 Std Layer 3 

10 Std Layer 4 
11 Pixel-based Layer 1 (Ratio layer 1) 
12 Pixel-based Layer 2 (Ratio layer 2) 
13 Pixel-based Layer 3 (Ratio layer 3) 
14 Pixel-based Layer 4 (Ratio layer 4) 
15 GLCM Homogeneity (all dir.) 
16 GLCM Homogeneity (all dir.) Layer 1 
17 GLCM Homogeneity (all dir.) Layer 2 
18 GLCM Homogeneity (all dir.) Layer 3 
19 GLCM Homogeneity (all dir.) Layer 4 
20 GLCM Mean (quick 8/11) (all dir.) 
21 GLCM Mean (quick 8/11) (all dir.) Layer 1 
22 GLCM Mean (quick 8/11) (all dir.) Layer 2 
23 GLCM Mean (quick 8/11) (all dir.) Layer 3 
24 GLCM Mean (quick 8/11) (all dir.) Layer 4 
25 GLCM Dissimilarity (all dir.) 
26 GLCM Dissimilarity (all dir.) Layer 1 
27 GLCM Dissimilarity (all dir.) Layer 2 
28 GLCM Dissimilarity (all dir.) Layer 3 
29 GLCM Dissimilarity (all dir.) Layer 4 
30 GLCM Entropy (all dir.) 
31 GLCM Entropy (all dir.) Layer 1 
32 GLCM Entropy (all dir.) Layer 2 
33 GLCM Entropy (all dir.) Layer 3 
34 GLCM Entropy (all dir.) Layer 4 
35 GLCM Ang. 2nd moment (all dir.) 
36 GLCM Ang. 2nd moment (all dir.) Layer 1 
37 GLCM Ang. 2nd moment (all dir.) Layer 2 
38 GLCM Ang. 2nd moment (all dir.) Layer 3 
39 GLCM Ang. 2nd moment (all dir.) Layer 4 
40 GLCM StdDev (all dir.) 
41 GLCM StdDev (all dir.) Layer 1 
42 GLCM StdDev (all dir.) Layer 2 
43 GLCM StdDev (all dir.) Layer 3 
44 GLCM StdDev (all dir.) Layer 4 
45 GLCM Contrast (all dir.)  
46 GLCM Contrast (all dir.) Layer 1 
47 GLCM Contrast (all dir.) Layer 2 
48 GLCM Contrast (all dir.) Layer 3 
49 GLCM Contrast (all dir.) Layer 4 
50 GLCM Mean (all dir.) 
51 GLCM Mean (all dir.)Layer 1 
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Table 4.6 (Continued). 

No Features 
52 GLCM Mean (all dir.)Layer 2 
53 GLCM Mean (all dir.)Layer 3 
54 GLCM Mean (all dir.)Layer 4 
55 GLCM Correlation (all dir.) 
56 GLCM Correlation (all dir.) Layer 1 
57 GLCM Correlation (all dir.) Layer 2 
58 GLCM Correlation (all dir.) Layer 3 
59 GLCM Correlation (all dir.) Layer 4 
60 GLCM Homogeneity (quick 8/11) (all dir.) 
61 GLCM Homogeneity (quick 8/11) (all dir.) Layer 1 
62 GLCM Homogeneity (quick 8/11) (all dir.) Layer 2 
63 GLCM Homogeneity (quick 8/11) (all dir.) Layer 3 
64 GLCM Homogeneity (quick 8/11) (all dir.) Layer 4 
65 GLCM Contrast (quick 8/11) (all dir.) 
66 GLCM StdDev (quick 8/11) (all dir.)  Layer 1 
67 GLCM StdDev (quick 8/11) (all dir.)  Layer 2 
68 GLCM StdDev (quick 8/11) (all dir.)  Layer 3 
69 GLCM StdDev (quick 8/11) (all dir.)  Layer 4 
70 GLCM Dissimilarity (quick 8/11) (all dir.) 
71 GLCM Dissimilarity (quick 8/11) (all dir.)  Layer 1 
72 GLCM Dissimilarity (quick 8/11) (all dir.)  Layer 2 
73 GLCM Dissimilarity (quick 8/11) (all dir.)  Layer 3 
74 GLCM Dissimilarity (quick 8/11) (all dir.)  Layer 4 
75 GLCM Entropy (quick 8/11) (all dir.) 
76 GLCM Entropy (quick 8/11) (all dir.)  Layer 1 
77 GLCM Entropy (quick 8/11) (all dir.)  Layer 2 
78 GLCM Entropy (quick 8/11) (all dir.)  Layer 3 
79 GLCM Entropy (quick 8/11) (all dir.)  Layer 4 
80 GLCM Ang. 2nd moment (quick 8/11) (all dir.) 
81 GLCM Ang. 2nd moment (quick 8/11) (all dir.) Layer 1 
82 GLCM Ang. 2nd moment (quick 8/11) (all dir.) Layer 2 
83 GLCM Ang. 2nd moment (quick 8/11) (all dir.) Layer 3 
84 GLCM Ang. 2nd moment (quick 8/11) (all dir.) Layer 4 
85 GLCM Contrast (quick 8/11) (all dir.) Layer 1 
86 GLCM Contrast (quick 8/11) (all dir.) Layer 2 
87 GLCM Contrast (quick 8/11) (all dir.) Layer 3 
88 GLCM Contrast (quick 8/11) (all dir.) Layer 4 
89 GLCM Contrast (quick 8/11) (all dir.) Layer 1 
90 GLCM Correlation (quick 8/11) (all dir.) 
91 GLCM Correlation (quick 8/11) (all dir.) Layer 1 
92 GLCM Correlation (quick 8/11) (all dir.) Layer 2 
93 GLCM Correlation (quick 8/11) (all dir.) Layer 3 
94 GLCM Correlation (quick 8/11) (all dir.) Layer 4 
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Table 4.7 Average mean value from 10 training areas of 94 features for 12 LULC classes. 

No Features UR PD1 PD2 CA1 CA2 MA SU PO FO1 FO2 FO3 WA 

1 Brightness 62.2390 91.1600 74.8200 72.3200 58.6630 61.2810 66.5540 53.5650 42.2820 50.0920 65.5660 11.7337 

2 Layer 1 52.1650 88.1340 65.6600 24.6000 42.7690 43.6730 32.8600 25.6650 9.3432 11.4363 13.5292 36.8360 

3 Layer 2 98.9760 115.6260 134.0560 163.8910 94.6290 83.0180 163.6020 119.7870 110.7570 133.0870 165.5690 7.0998 

4 Layer 3 71.6400 119.2220 76.2700 80.4990 72.0050 89.0620 57.0580 55.9070 41.1360 47.0020 68.6530 2.5905 

5 Layer 4 26.1720 41.6550 23.2900 20.2880 25.2510 29.3720 12.7020 12.8980 7.8954 8.8432 14.5110 0.4044 

6 Max. diff. 1.1720 0.8587 1.4825 1.9823 1.1665 0.9857 2.2694 1.9963 2.4352 2.4807 2.3330 3.0450 

7 Std Layer 1 13.3600 6.8731 8.1803 3.5590 5.8203 4.6740 4.8978 3.6122 2.5627 1.9017 3.9232 1.4111 

8 Std Layer 2 13.0640 6.6970 9.8896 16.9046 12.7386 8.7649 12.5979 5.7207 9.7303 7.3421 14.1760 1.8367 

9 Std Layer 3 12.7840 7.5198 7.4839 3.9745 6.0711 6.7510 6.5824 4.1774 4.2288 3.1007 7.0606 1.2756 

10 Std Layer 4 6.9144 3.1684 3.3258 1.6310 2.4276 3.0576 2.7408 2.1489 1.4971 1.1392 2.3887 0.4694 

11 Pixel-based  Layer 1 0.2093 0.2416 0.2187 0.0853 0.1851 0.1780 0.1232 0.1194 0.0551 0.0569 0.0513 0.7713 

12 Pixel-based  Layer 2 0.3980 0.3173 0.4485 0.5659 0.4000 0.3391 0.6150 0.5593 0.6552 0.6643 0.6315 0.1523 

13 Pixel-based  Layer 3 0.2877 0.3269 0.2550 0.2785 0.3066 0.3631 0.2142 0.2611 0.2431 0.2347 0.2619 0.0664 

14 Pixel-based  Layer 4 0.1050 0.1142 0.0778 0.0703 0.1083 0.1197 0.0476 0.0602 0.0466 0.0442 0.0553 0.0100 

15 GLCM Homogeneity (all dir.) 0.1472 0.2815 0.2888 0.3377 0.3368 0.3442 0.3850 0.3939 0.3103 0.3827 0.2216 0.6675 

16 GLCM Homogeneity (all dir.)   Layer 1 0.1023 0.2157 0.2230 0.3001 0.2404 0.2942 0.3373 0.3329 0.2990 0.3745 0.2252 0.5926 

17 GLCM Homogeneity (all dir.)   Layer 2 0.2368 0.3648 0.3245 0.2679 0.2956 0.3370 0.3100 0.3450 0.2914 0.3184 0.2546 0.7291 

18 GLCM Homogeneity (all dir.)   Layer 3 0.1005 0.2073 0.2344 0.3478 0.2673 0.2472 0.3180 0.3052 0.2596 0.3378 0.1803 0.5991 

19 GLCM Homogeneity (all dir.)   Layer 4 0.1815 0.3585 0.3767 0.4907 0.4167 0.4065 0.4746 0.4548 0.4595 0.5407 0.3728 0.7902 

20 GLCM Contrast (all dir.) 70.8090 20.1490 22.1430 11.5943 11.0403 11.8226 12.6997 11.1749 11.2349 5.9740 24.7120 3.5349 

21 GLCM Contrast (all dir.) Layer 1 168.0340 39.4120 40.6620 20.3410 36.1820 22.9188 26.7096 27.8480 10.5014 5.8611 20.7260 4.4395 

22 GLCM Contrast (all dir.) Layer 2 124.9140 25.1090 86.3860 239.7410 160.3160 72.4070 116.1380 29.3090 81.6290 45.2210 202.2950 26.3538 

23 GLCM Contrast (all dir.) Layer 3 163.6500 49.3090 39.2940 9.3705 20.6314 29.6150 34.6352 29.2450 16.3907 8.2258 36.8400 5.6472 

24 GLCM Contrast (all dir.) Layer 4 42.9020 10.1344 8.7847 3.3486 5.5086 7.3810 8.3476 7.8364 3.0779 1.8035 5.6095 0.8534 

25 GLCM Dissimilarity (all dir.) 6.1720 3.1668 3.2601 2.4780 2.4074 2.3879 2.3003 2.1513 2.5581 1.8881 3.8123 0.9144 
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Table 4.7 (Continued). 
No Features UR PD1 PD2 CA1 CA2 MA SU PO FO1 FO2 FO3 WA 

26 GLCM Dissimilarity (all dir.) Layer 1 9.4565 4.4346 4.4989 3.0474 4.1695 3.1750 3.0912 3.0761 2.5611 1.9172 3.5861 1.188 

27 GLCM Dissimilarity (all dir.) Layer 2 7.3220 3.1481 5.3652 9.7892 7.4848 4.8590 6.1254 3.4593 5.9352 4.4419 9.3823 1.175 

28 GLCM Dissimilarity (all dir.) Layer 3 9.4263 4.8072 4.3369 2.2740 3.3108 3.7855 3.4648 3.3604 3.1484 2.2497 4.7425 1.253 

29 GLCM Dissimilarity (all dir.) Layer 4 4.8539 2.2519 2.1274 1.3432 1.7418 1.8979 1.7285 1.7665 1.3939 1.0636 1.8795 0.474 

30 GLCM Entropy (all dir.) 6.5429 5.6225 5.6513 5.2810 5.1552 5.0066 4.8263 4.3853 5.1139 4.5149 5.9715 2.454 

31 GLCM Entropy (all dir.) Layer 1 7.3004 6.2242 6.3593 5.1608 6.0112 5.3935 5.1460 4.8734 4.6485 4.0815 5.4288 2.979 

32 GLCM Entropy (all dir.) Layer 2 6.9366 5.8657 6.3329 7.1812 6.8625 6.0119 6.4216 5.7006 6.7957 6.2551 7.2123 2.543 

33 GLCM Entropy (all dir.) Layer 3 7.2750 6.3225 6.1617 5.0761 5.8011 5.9669 5.3552 5.2205 5.4422 4.7954 6.3620 2.840 

34 GLCM Entropy (all dir.) Layer 4 6.2275 4.7714 4.7849 3.7140 4.3506 4.5926 3.9644 3.9753 3.5480 3.0425 4.3738 1.353 

35 GLCM Ang. 2nd moment (all dir.) 0.0021 0.0061 0.0063 0.0080 0.0093 0.0111 0.0158 0.0235 0.0095 0.0169 0.0037 0.154 

36 GLCM Ang. 2nd moment (all dir.) Layer 1 0.0009 0.0032 0.0028 0.0097 0.0040 0.0081 0.0120 0.0176 0.0142 0.0252 0.0064 0.093 

37 GLCM Ang. 2nd moment (all dir.) Layer 2 0.0016 0.0051 0.0037 0.0013 0.0021 0.0051 0.0030 0.0056 0.0022 0.0034 0.0013 0.148 

38 GLCM Ang. 2nd moment (all dir.) Layer 3 0.0010 0.0030 0.0037 0.0094 0.0051 0.0042 0.0104 0.0114 0.0067 0.0129 0.0025 0.118 

39 GLCM Ang. 2nd moment (all dir.) Layer 4 0.0029 0.0145 0.0149 0.0380 0.0199 0.0172 0.0393 0.0386 0.0426 0.0693 0.0179 0.401 

40 GLCM Mean (all dir.) 61.911 90.5000 74.1320 71.7480 58.364 61.010 66.2010 53.4240 41.9110 49.6800 65.0000 11.52 

41 GLCM Mean (all dir.)Layer 1 52.147 87.7980 65.4250 24.9310 42.529 43.640 33.1420 26.0700 9.3418 11.4413 13.5506 36.85 

42 GLCM Mean (all dir.)Layer 2 99.152 115.554 133.282 162.787 95.307 83.715 162.845 119.717 110.765 132.907 165.004 7.465 

43 GLCM Mean (all dir.)Layer 3 71.663 118.772 76.1120 80.3570 72.011 88.923 57.5860 56.3160 41.1340 46.9700 68.4630 2.788 

44 GLCM Mean (all dir.)Layer 4 26.170 41.4360 23.2630 20.3790 25.160 29.266 13.0070 13.1580 7.8945 8.8387 14.4750 0.492 

45 GLCM StdDev (all dir.) 8.5013 5.4692 5.8676 4.5629 4.2201 4.0304 4.4700 3.0688 3.6444 2.7552 5.9425 1.420 

46 GLCM StdDev (all dir.) Layer 1 13.494 7.3875 8.4742 4.1887 6.2862 5.1704 5.5804 4.6380 2.6124 1.9640 3.9731 1.750 

47 GLCM StdDev (all dir.) Layer 2 13.305 7.0029 10.9722 18.3090 14.319 9.7184 13.6010 6.1399 9.9956 7.6838 15.2430 3.256 

48 GLCM StdDev (all dir.) Layer 3 12.969 8.2839 7.9904 4.1813 6.3328 7.1666 7.3333 5.1199 4.3147 3.2016 7.3508 1.793 

49 GLCM StdDev (all dir.) Layer 4 7.0223 3.5140 3.5500 1.7980 2.5738 3.3174 3.2069 2.6643 1.5358 1.1831 2.4369 0.628 

50 GLCM Correlation (all dir.) 0.7151 0.8123 0.8176 0.8480 0.8285 0.7992 0.8203 0.6436 0.7707 0.7646 0.8098 0.465 

51 GLCM Correlation (all dir.) Layer 1 0.7386 0.7971 0.8475 0.6391 0.7427 0.7647 0.7894 0.5996 0.4780 0.4814 0.5936 0.557 
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Table 4.7 (Continued). 

No Features UR PD1 PD2 CA1 CA2 MA SU PO FO1 FO2 FO3 WA 

52 GLCM Correlation (all dir.) Layer 2 0.8001 0.8645 0.8008 0.8006 0.7879 0.7923 0.8393 0.7819 0.7859 0.7868 0.7583 0.595 

53 GLCM Correlation (all dir.) Layer 3 0.7172 0.7993 0.8347 0.8516 0.8575 0.8441 0.8270 0.6715 0.7551 0.7687 0.8125 0.439 

54 GLCM Correlation (all dir.) Layer 4 0.7536 0.7651 0.8101 0.6943 0.7695 0.8188 0.7818 0.6786 0.5768 0.5910 0.7288 0.285 

55 GLCM Homogeneity (quick 8/11) (all dir.) 0.1469 0.2804 0.2874 0.3351 0.3342 0.3424 0.3843 0.3916 0.3096 0.3819 0.2204 0.667 

56 GLCM Homogeneity (quick 8/11) (all dir.) Layer 1 0.1019 0.2148 0.2219 0.2978 0.2383 0.2929 0.3369 0.3314 0.2987 0.3741 0.2249 0.592 

57 GLCM Homogeneity (quick 8/11) (all dir.) Layer 2 0.2343 0.3616 0.3211 0.2629 0.2888 0.3340 0.3081 0.3426 0.2893 0.3166 0.2504 0.728 

58 GLCM Homogeneity (quick 8/11) (all dir.) Layer 3 0.1001 0.2064 0.2333 0.3467 0.2652 0.2463 0.3175 0.3036 0.2593 0.3371 0.1797 0.598 

59 GLCM Homogeneity (quick 8/11) (all dir.) Layer 4 0.1808 0.3570 0.3750 0.4877 0.4149 0.4049 0.4735 0.4526 0.4591 0.5403 0.3728 0.789 

60 GLCM Contrast (quick 8/11) (all dir.) 72.165 21.1430 23.2550 12.2213 12.168 12.365 14.5515 11.8662 11.3372 6.0763 25.2250 3.555 

61 GLCM Contrast (quick 8/11) (all dir.) Layer 1 171.19 41.1430 42.2230 21.3960 38.279 24.085 29.5381 29.5720 10.5161 5.8744 20.7440 4.461 

62 GLCM Contrast (quick 8/11) (all dir.) Layer 2 127.84 29.1440 91.8930 255.662 178.33 75.652 122.295 31.9130 82.7080 46.5750 208.459 26.71 

63 GLCM Contrast (quick 8/11) (all dir.) Layer 3 166.49 52.6510 40.8830 9.6770 22.428 31.056 40.4465 30.8150 16.4841 8.2897 37.3490 5.663 

64 GLCM Contrast (quick 8/11) (all dir.) Layer 4 43.860 10.7947 9.0458 3.4704 5.7258 7.7838 9.1753 8.1829 3.0855 1.8081 5.6210 0.854 

65 GLCM Dissimilarity (quick 8/11) (all dir.) 6.2148 3.2112 3.3108 2.5257 2.4718 2.4245 2.3469 2.1959 2.5685 1.8980 3.8459 0.916 

66 GLCM Dissimilarity (quick 8/11) (all dir.)  Layer 1 9.5308 4.4901 4.5563 3.1126 4.2669 3.2261 3.1368 3.1304 2.5630 1.9197 3.5877 1.191 

67 GLCM Dissimilarity (quick 8/11) (all dir.)  Layer 2 7.4203 3.2703 5.5234 10.0932 7.8547 4.9704 6.2565 3.5383 5.9847 4.4923 9.5623 1.183 

68 GLCM Dissimilarity (quick 8/11) (all dir.)  Layer 3 9.4877 4.8987 4.3932 2.2970 3.3902 3.8404 3.5506 3.4268 3.1553 2.2564 4.7676 1.255 

69 GLCM Dissimilarity (quick 8/11) (all dir.)  Layer 4 4.8940 2.2911 2.1496 1.3640 1.7642 1.9272 1.7610 1.7965 1.3957 1.0651 1.8802 0.475 

70 GLCM Entropy (quick 8/11) (all dir.) 6.5475 5.6388 5.6654 5.2999 5.1836 5.0150 4.8348 4.4092 5.1176 4.5215 5.9798 2.455 

71 GLCM Entropy (quick 8/11) (all dir.)  Layer 1 7.3074 6.2366 6.3659 5.1885 6.0319 5.4019 5.1502 4.8913 4.6467 4.0805 5.4277 2.981 

72 GLCM Entropy (quick 8/11) (all dir.)  Layer 2 6.9515 5.8900 6.3561 7.2067 6.8976 6.0326 6.4325 5.7157 6.8050 6.2663 7.2334 2.546 

73 GLCM Entropy (quick 8/11) (all dir.)  Layer 3 7.2791 6.3387 6.1746 5.0814 5.8195 5.9714 5.3617 5.2429 5.4435 4.7975 6.3629 2.842 

74 GLCM Entropy (quick 8/11) (all dir.)  Layer 4 6.2375 4.7909 4.7961 3.7351 4.3667 4.6021 3.9745 3.9965 3.5461 3.0409 4.3659 1.354 

75 GLCM Ang. 2nd moment (quick 8/11) (all dir.) 0.0021 0.0060 0.0063 0.0079 0.0091 0.0110 0.0157 0.0232 0.0095 0.0168 0.0037 0.154 

76 GLCM Ang.2nd moment (quick 8/11)(all dir.)Layer 1 0.0009 0.0032 0.0028 0.0095 0.0039 0.0080 0.0120 0.0174 0.0142 0.0253 0.0064 0.093 

77 GLCMAng.2ndmoment(quick 8/11)(all dir.)Layer 2 0.0016 0.0050 0.0036 0.0013 0.0020 0.0050 0.0029 0.0055 0.0022 0.0034 0.0013 0.145 
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Table 4.7 (Continued). 

No Features UR PD1 PD2 CA1 CA2 MA SU PO FO1 FO2 FO3 WA 

78 GLCM Ang2ndmoment(quick 8/11)(all dir.)Layer 3 0.0010 0.0030 0.0037 0.0094 0.0050 0.0042 0.0104 0.0113 0.0067 0.0129 0.0024 0.118 

79 GLCMAng2nd moment(quick 8/11)(all dir.)Layer 4 0.0029 0.0144 0.0148 0.0375 0.0197 0.0171 0.0392 0.0382 0.0427 0.0693 0.0181 0.401 

80 GLCM Mean (quick 8/11) (all dir.) 61.915 90.4670 74.0860 71.7160 58.418 61.037 66.2090 53.4400 41.9100 49.6760 65.0130 11.53 

81 GLCM Mean (quick 8/11) (all dir.) Layer 1 52.093 87.7550 65.411 25.0140 42.454 43.648 33.1990 26.1140 9.3392 11.4495 13.5796 36.84 

82 GLCM Mean (quick 8/11) (all dir.) Layer 2 99.242 115.579 133.10 162.54 95.586 83.847 162.697 119.685 110.7640 132.8840 164.9790 7.4724 

83 GLCM Mean (quick 8/11) (all dir.) Layer 3 71.6660 118.6940 76.1090 80.3600 72.0500 88.9070 57.6660 56.3500 41.1330 46.9690 68.4890 2.7893 

84 GLCM Mean (quick 8/11) (all dir.) Layer 4 26.1500 41.4050 23.2720 20.4080 25.1400 29.2540 13.041 13.1780 7.8936 8.8407 14.4870 0.4927 

85 GLCM StdDev (quick 8/11) (all dir.) 8.5163 5.5354 5.9182 4.5858 4.2922 4.0396 4.5851 3.1480 3.6462 2.7670 5.9491 1.4239 

86 GLCM StdDev (quick 8/11) (all dir.)  Layer 1 13.5360 7.4658 8.4881 4.2934 6.3815 5.2206 5.7458 4.7833 2.6078 1.9620 3.9701 1.7553 

87 GLCM StdDev (quick 8/11) (all dir.)  Layer 2 13.3800 7.1535 11.1476 18.5790 14.6790 9.8098 13.7376 6.2611 10.0225 7.7460 15.3950 3.2787 

88 GLCM StdDev (quick 8/11) (all dir.)  Layer 3 13.0030 8.4316 8.0455 4.1774 6.3778 7.1753 7.5125 5.2328 4.3107 3.2015 7.3297 1.7965 

89 GLCM StdDev (quick 8/11) (all dir.)  Layer 4 7.0586 3.5833 3.5647 1.8200 2.5948 3.3377 3.2710 2.7125 1.5332 1.1814 2.4207 0.6291 

90 GLCM Correlation (quick 8/11) (all dir.) 0.7099 0.8081 0.8121 0.8409 0.8196 0.7925 0.8155 0.6374 0.7686 0.7625 0.8059 0.4676 

91 GLCM Correlation (quick 8/11) (all dir.)  Layer 1 0.7347 0.7929 0.8421 0.6406 0.7369 0.7576 0.7890 0.5971 0.4740 0.4783 0.5918 0.5577 

92 GLCM Correlation (quick 8/11) (all dir.)  Layer 2 0.7974 0.8548 0.7942 0.7924 0.7773 0.7872 0.8354 0.7741 0.7840 0.7839 0.7556 0.5971 

93 GLCM Correlation (quick 8/11) (all dir.)  Layer 3 0.7135 0.7944 0.8296 0.8462 0.8497 0.8364 0.8218 0.6667 0.7529 0.7669 0.8082 0.4383 

94 GLCM Correlation (quick 8/11) (all dir.)  Layer 4 0.7506 0.7609 0.8051 0.6907 0.7651 0.8114 0.7784 0.6738 0.5732 0.5879 0.7236 0.2878 
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Table 4.8 Average variance value from 10 training areas of 94 features for 12 LULC classes. 

No Features UR PD1 PD2 CA1 CA2 MA SU PO FO1 FO2 FO3 WA 

1 Brightness 5.93348 17.58349 20.97233 7.5738 25.5669 11.22168 9.63385 6.86714 7.21922 17.175 42.8048 40.3266 

2 Layer 1 62.43398 29.60654 71.94327 8.0347 53.2467 10.30389 20.69960 15.19901 3.57645 2.8184 10.2752 548.103 

3 Layer 2 136.8587 23.67758 43.41089 169.80 365.736 24.90628 56.36748 38.25249 46.3787 118.43 261.258 17.9641 

4 Layer 3 16.89658 37.24673 19.99311 3.6439 49.1224 41.81855 17.72993 7.80069 10.8823 14.436 48.8931 2.50346 

5 Layer 4 15.65544 6.68385 2.78607 1.2780 2.47834 5.89148 2.96235 1.46911 0.70991 0.5950 2.62894 0.19148 
6 Max. diff. 0.06438 0.00026 0.00610 0.0164 0.06460 0.00055 0.01285 0.00914 0.00674 0.0014 0.00363 0.26531 

7 Std Layer 1 2.12804 0.96065 4.49271 0.5216 0.74018 2.02160 4.96062 1.00387 0.13633 0.0469 0.22250 0.13577 

8 Std Layer 2 5.25714 2.58424 7.11835 14.853 3.69962 7.97967 16.51873 1.04448 3.79713 1.9519 4.56083 4.60989 

9 Std Layer 3 2.01667 1.42625 2.30525 0.4331 1.93005 1.35182 15.52165 0.77369 0.59839 0.1557 0.62594 0.27510 

10 Std Layer 4 0.53583 0.20863 0.44331 0.0255 0.15290 0.51746 2.39000 0.25783 0.06102 0.0155 0.06806 0.03727 

11 Pixel-based Layer 1 0.00081 0.00003 0.00031 0.0001 0.00186 0.00004 0.00019 0.00016 0.00009 0.0000 0.00009 0.01439 
12 Pixel-based Layer 2 0.00243 0.00008 0.00031 0.0007 0.00274 0.00040 0.00056 0.00038 0.00031 0.0000 0.00011 0.00584 

13 Pixel-based Layer 3 0.00008 0.00005 0.00004 0.0000 0.00003 0.00011 0.00010 0.00011 0.00007 0.0000 0.00007 0.00188 

14 Pixel-based Layer 4 0.00020 0.00002 0.00001 0.0000 0.00013 0.00002 0.00003 0.00002 0.00001 0.0000 0.00000 0.00010 

15 GLCM Homogeneity (all dir.) 0.00033 0.00092 0.00212 0.0013 0.00106 0.00176 0.00268 0.00288 0.00277 0.0007 0.00124 0.00454 

16 GLCM Homogeneity (all dir.) Layer 1 0.00025 0.00056 0.00155 0.0002 0.00096 0.00198 0.00389 0.00421 0.00193 0.0008 0.00093 0.00382 

17 GLCM Homogeneity (all dir.) Layer 2 0.00010 0.00071 0.00112 0.0001 0.00057 0.00245 0.00074 0.00050 0.00061 0.0002 0.00027 0.00751 
18 GLCM Homogeneity (all dir.) Layer 3 0.00017 0.00067 0.00146 0.0004 0.00129 0.00086 0.00344 0.00333 0.00203 0.0011 0.00083 0.00549 

19 GLCM Homogeneity (all dir.) Layer 4 0.00063 0.00117 0.00216 0.0003 0.00176 0.00258 0.00543 0.00432 0.00231 0.0007 0.00150 0.00910 

20 GLCM Contrast (all dir.) 487.8361 17.15037 74.72642 22.531 11.9514 33.76514 77.26862 14.62262 22.8373 2.2602 56.9720 19.8753 

21 GLCM Contrast (all dir.) Layer 1 3094.888 65.65415 334.5973 24.740 138.012 240.9644 665.32471 201.4225 11.7130 1.1276 30.3886 9.02350 

22 GLCM Contrast (all dir.) Layer 2 619.9752 131.5033 1100.324 8434.6 2843.03 1661.435 4561.6113 83.96025 1389.75 229.59 4664.14 1890.38 

23 GLCM Contrast (all dir.) Layer 3 2357.238 152.8144 255.32458 2.61026 35.68402 152.95307 1105.55233 126.75781 40.37211 3.45056 93.82309 40.60748 
24 GLCM Contrast (all dir.) Layer 4 191.02533 5.33850 12.05526 0.36060 3.31448 14.94232 62.79196 13.43445 0.80229 0.08471 2.05089 0.66350 

25 GLCM Dissimilarity (all dir.) 0.79732 0.13698 0.47210 0.21922 0.09633 0.22750 0.45758 0.12290 0.30299 0.04489 0.37991 0.16846 

 

 

 

 

 

 

 

 

 

 



 
77 

Table 4.8 (Continued). 

No Features UR PD1 PD2 CA1 CA2 MA SU PO FO1 FO2 FO3 WA 

26 GLCM Dissimilarity (all dir.) Layer 1 2.10807 0.21905 0.92785 0.06681 0.44346 0.70540 1.74800 0.51173 0.18782 0.03395 0.25515 0.10263 

27 GLCM Dissimilarity (all dir.) Layer 2 0.39116 0.33269 1.58339 3.54737 1.71354 2.36823 3.04035 0.26978 2.05983 0.46468 2.88862 1.35380 

28 GLCM Dissimilarity (all dir.) Layer 3 1.65501 0.42969 0.76906 0.03559 0.25826 0.46564 2.30689 0.39515 0.39111 0.06914 0.46428 0.24152 

29 GLCM Dissimilarity (all dir.) Layer 4 0.49575 0.07510 0.15933 0.01019 0.07474 0.18086 0.50947 0.12188 0.04499 0.00829 0.06231 0.06385 

30 GLCM Entropy (all dir.) 0.04861 0.08462 0.18778 0.18078 0.10590 0.11381 0.30192 0.12828 0.20954 0.10353 0.07250 0.30068 

31 GLCM Entropy (all dir.) Layer 1 0.05484 0.05514 0.14697 0.03757 0.08418 0.21732 0.39772 0.25274 0.08795 0.04349 0.05146 0.23169 

32 GLCM Entropy (all dir.) Layer 2 0.04959 0.08938 0.16951 0.07557 0.07896 0.31060 0.11629 0.05109 0.15765 0.08384 0.04406 0.61976 

33 GLCM Entropy (all dir.) Layer 3 0.04612 0.08418 0.12995 0.04837 0.18540 0.09134 0.51153 0.20721 0.14488 0.05312 0.04757 0.29583 

34 GLCM Entropy (all dir.) Layer 4 0.04517 0.07683 0.13390 0.02390 0.08445 0.17636 0.52239 0.20647 0.09030 0.03192 0.04689 0.37540 

35 GLCM Ang. 2nd moment (all dir.) 0.00000 0.00000 0.00001 0.00001 0.00001 0.00001 0.00005 0.00009 0.00002 0.00003 0.00000 0.00723 

36 GLCM Ang. 2nd moment (all dir.) Layer 1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00004 0.00012 0.00002 0.00003 0.00000 0.00152 

37 GLCM Ang. 2nd moment (all dir.) Layer 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00683 

38 GLCM Ang. 2nd moment (all dir.) Layer 3 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 0.00004 0.00004 0.00001 0.00001 0.00000 0.00393 

39 GLCM Ang. 2nd moment (all dir.) Layer 4 0.00000 0.00001 0.00003 0.00003 0.00003 0.00004 0.00036 0.00038 0.00020 0.00016 0.00002 0.05335 

40 GLCM Mean (all dir.) 5.22752 17.51433 20.72102 7.06260 24.06694 11.11307 10.48179 6.82398 7.15901 17.07893 40.73533 40.20319 

41 GLCM Mean (all dir.)Layer 1 58.66942 29.62260 70.37683 7.85352 49.87785 10.51431 20.95391 14.97511 3.59307 2.85972 10.34689 545.92428 

42 GLCM Mean (all dir.)Layer 2 132.48380 22.39092 41.45524 158.37045 341.16825 25.70772 58.20081 38.07693 45.64923 116.02007 244.70325 21.42905 

43 GLCM Mean (all dir.)Layer 3 14.76618 38.09586 20.85402 3.52247 46.52045 41.93951 20.01072 7.28494 10.89156 14.43822 46.63693 3.24318 

44 GLCM Mean (all dir.)Layer 4 14.52036 6.82614 2.94929 1.24657 2.30220 5.87212 3.52913 1.45457 0.71844 0.60682 2.56158 0.25097 

45 GLCM StdDev (all dir.) 1.20321 0.67048 2.61593 1.41756 0.64146 0.65069 3.33830 0.32292 0.60642 0.28021 0.66570 0.98734 

46 GLCM StdDev (all dir.) Layer 1 2.36152 1.06646 4.71306 0.59187 0.82266 2.90306 7.45281 1.15470 0.13280 0.04716 0.20599 0.42892 

47 GLCM StdDev (all dir.) Layer 2 4.02667 2.89739 5.84911 15.95710 4.72952 8.55520 17.30435 1.00907 3.98526 2.23541 5.36725 12.00341 

48 GLCM StdDev (all dir.) Layer 3 1.96650 1.68197 2.42611 0.41461 1.72931 1.67639 18.91460 0.97847 0.60783 0.16040 0.64830 1.09051 

49 GLCM StdDev (all dir.) Layer 4 0.53252 0.25557 0.47151 0.03308 0.17513 0.69282 3.32477 0.37112 0.05856 0.01407 0.06617 0.10678 

50 GLCM Correlation (all dir.) 0.00466 0.00071 0.00272 0.00090 0.00148 0.00430 0.00455 0.00421 0.00051 0.00552 0.00096 0.05004 
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Table 4.8 (Continued). 

No Features UR PD1 PD2 CA1 CA2 MA SU PO FO1 FO2 FO3 WA 

51 GLCM Correlation (all dir.) Layer 1 0.00264 0.00098 0.00099 0.00465 0.00230 0.00559 0.00344 0.01611 0.01432 0.00836 0.00262 0.01611 

52 GLCM Correlation (all dir.) Layer 2 0.00152 0.00062 0.00285 0.00194 0.00058 0.00439 0.00094 0.00302 0.00105 0.00126 0.00162 0.03161 

53 GLCM Correlation (all dir.) Layer 3 0.00406 0.00101 0.00096 0.00088 0.00135 0.00213 0.00421 0.00510 0.00238 0.00319 0.00142 0.03775 

54 GLCM Correlation (all dir.) Layer 4 0.00335 0.00189 0.00114 0.00113 0.00092 0.00292 0.00553 0.00546 0.01185 0.00484 0.00207 0.03372 

55 GLCM Homogeneity (quick 8/11) (all dir.) 0.00034 0.00093 0.00212 0.00135 0.00113 0.00180 0.00270 0.00288 0.00277 0.00073 0.00126 0.00455 

56 GLCM Homogeneity (quick 8/11) (all dir.) Layer 1 0.00026 0.00057 0.00152 0.00026 0.00102 0.00201 0.00393 0.00418 0.00190 0.00089 0.00093 0.00382 

57 GLCM Homogeneity (quick 8/11) (all dir.) Layer 2 0.00010 0.00082 0.00115 0.00016 0.00056 0.00253 0.00080 0.00050 0.00063 0.00023 0.00032 0.00750 

58 GLCM Homogeneity (quick 8/11) (all dir.) Layer 3 0.00018 0.00068 0.00144 0.00049 0.00135 0.00087 0.00349 0.00331 0.00202 0.00113 0.00083 0.00549 

59 GLCM Homogeneity (quick 8/11) (all dir.) Layer 4 0.00066 0.00123 0.00213 0.00037 0.00192 0.00261 0.00555 0.00430 0.00227 0.00075 0.00150 0.00911 

60 GLCM Contrast (quick 8/11) (all dir.) 523.141 22.95009 84.16441 23.71750 20.03817 41.89930 147.94257 14.57495 23.26586 2.52704 60.28701 20.12300 

61 GLCM Contrast (quick 8/11) (all dir.) Layer 1 3376.54 97.89169 358.22242 30.01798 184.77401 282.02716 1066.1033 187.8643 11.56239 1.15053 30.59147 9.12560 

62 GLCM Contrast (quick 8/11) (all dir.) Layer 2 612.138 366.18538 1185.1384 8715.9064 4888.4368 1774.6276 5461.7540 159.5403 1422.1511 263.208 4942.3131 1960.3605 

63 GLCM Contrast (quick 8/11) (all dir.) Layer 3 2536.16 237.37608 259.79158 2.97660 57.15860 165.17792 2042.6364 124.0346 40.64427 3.80055 98.38343 40.62012 

64 GLCM Contrast (quick 8/11) (all dir.) Layer 4 217.314 8.61061 12.22333 0.44703 4.45072 17.36209 93.64939 12.95795 0.79053 0.08729 2.10856 0.66328 

65 GLCM Dissimilarity (quick 8/11) (all dir.) 0.82860 0.14905 0.48815 0.22680 0.13065 0.25826 0.55636 0.12768 0.30663 0.04804 0.39607 0.16940 

66 GLCM Dissimilarity (quick 8/11) (all dir.) Layer 1 2.23566 0.24501 0.93752 0.07062 0.53628 0.78644 1.98456 0.50439 0.18536 0.03443 0.25494 0.10325 

67 GLCM Dissimilarity (quick 8/11) (all dir.) Layer 2 0.34644 0.53736 1.64459 3.63587 2.24991 2.52804 3.45692 0.31792 2.10383 0.50113 3.08352 1.37706 

68 GLCM Dissimilarity (quick 8/11) (all dir.) Layer 3 1.72632 0.52116 0.77154 0.03700 0.32817 0.49338 2.74279 0.40656 0.39164 0.07316 0.47704 0.24155 

69 GLCM Dissimilarity (quick 8/11) (all dir.) Layer 4 0.54081 0.09144 0.15874 0.01112 0.08970 0.19748 0.58119 0.12259 0.04438 0.00849 0.06278 0.06383 

70 GLCM Entropy (quick 8/11) (all dir.) 0.04788 0.08650 0.18724 0.18297 0.11815 0.11758 0.30337 0.12890 0.21100 0.10630 0.07163 0.30171 

71 GLCM Entropy (quick 8/11) (all dir.) Layer 1 0.05604 0.05614 0.14725 0.03611 0.09044 0.22627 0.40412 0.25153 0.08665 0.04317 0.05192 0.23189 

72 GLCM Entropy (quick 8/11) (all dir.) Layer 2 0.04703 0.09843 0.16844 0.07801 0.07906 0.31911 0.12029 0.05344 0.16001 0.08554 0.04502 0.61981 

73 GLCM Entropy (quick 8/11) (all dir.) Layer 3 0.04536 0.08873 0.12820 0.04859 0.19727 0.09502 0.52197 0.20694 0.14480 0.05582 0.04612 0.29597 
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Table 4.8 (Continued). 

No Features UR PD1 PD2 CA1 CA2 MA SU PO FO1 FO2 FO3 WA 

74 GLCM Entropy (quick 8/11) (all dir.) Layer 4 0.04760 0.08150 0.13301 0.02511 0.09426 0.18509 0.53696 0.20542 0.08917 0.03278 0.04591 0.37537 

75 GLCM Ang. 2nd moment (quick 8/11) (all dir.) 0.00000 0.00000 0.00001 0.00001 0.00001 0.00001 0.00005 0.00008 0.00002 0.00003 0.00000 0.00721 

76 GLCM Ang. 2nd moment (quick 8/11) (all dir.) Layer 1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00004 0.00011 0.00002 0.00003 0.00000 0.00151 

77 GLCM Ang. 2nd moment (quick 8/11) (all dir.) Layer 2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00681 

78 GLCM Ang. 2nd moment (quick 8/11) (all dir.) Layer 3 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 0.00004 0.00004 0.00001 0.00001 0.00000 0.00391 

79 GLCM Ang. 2nd moment (quick 8/11) (all dir.) Layer 4 0.00000 0.00002 0.00003 0.00003 0.00003 0.00004 0.00036 0.00037 0.00020 0.00017 0.00002 0.05332 

80 GLCM Mean (quick 8/11) (all dir.) 4.96425 17.55540 20.67472 7.01140 23.84744 11.00556 10.69254 6.81124 7.14198 17.07552 40.44767 40.19324 

81 GLCM Mean (quick 8/11) (all dir.) Layer 1 57.68396 29.73743 69.91859 7.80374 49.52143 10.48068 21.08648 14.82703 3.59205 2.85961 10.48729 545.98064 

82 GLCM Mean (quick 8/11) (all dir.) Layer 2 131.43633 21.95892 41.84651 157.00108 336.81778 26.01149 58.70916 37.80767 45.28347 115.80469 239.13823 21.45433 

83 GLCM Mean (quick 8/11) (all dir.) Layer 3 14.17027 38.68680 20.68559 3.53856 46.04187 42.08120 20.83883 7.40756 10.89631 14.43217 46.70061 3.24579 

84 GLCM Mean (quick 8/11) (all dir.) Layer 4 14.13873 6.90425 2.90788 1.24357 2.30936 5.88698 3.66608 1.46491 0.71999 0.60701 2.61749 0.25091 

85 GLCM StdDev (quick 8/11) (all dir.) 1.20992 0.71387 2.68923 1.39935 0.73767 0.70920 3.87822 0.31926 0.61151 0.28724 0.63199 0.99958 

86 GLCM StdDev (quick 8/11) (all dir.) Layer 1 2.41869 1.20531 4.75504 0.59409 0.96633 3.19669 9.33982 1.01398 0.13068 0.04671 0.20978 0.43134 

87 GLCM StdDev (quick 8/11) (all dir.) Layer 2 3.70758 3.47525 6.20902 15.70852 5.85794 8.41966 18.14851 1.28997 4.04060 2.32227 5.27396 12.22956 

88 GLCM StdDev (quick 8/11) (all dir.) Layer 3 1.99656 1.85705 2.41913 0.40459 1.83632 1.74817 21.52678 0.95500 0.60718 0.16682 0.60168 1.09433 

89 GLCM StdDev (quick 8/11) (all dir.) Layer 4 0.55826 0.28815 0.46830 0.03583 0.19699 0.74062 3.71934 0.36772 0.05802 0.01429 0.06290 0.10681 

90 GLCM Correlation (quick 8/11) (all dir.) 0.00492 0.00065 0.00251 0.00094 0.00128 0.00394 0.00416 0.00445 0.00052 0.00567 0.00117 0.04765 

91 GLCM Correlation (quick 8/11) (all dir.) Layer 1 0.00298 0.00101 0.00086 0.00448 0.00232 0.00549 0.00333 0.01612 0.01420 0.00841 0.00296 0.01643 

92 GLCM Correlation (quick 8/11) (all dir.) Layer 2 0.00164 0.00109 0.00258 0.00219 0.00074 0.00438 0.00096 0.00305 0.00107 0.00140 0.00182 0.03133 

93 GLCM Correlation (quick 8/11) (all dir.) Layer 3 0.00425 0.00093 0.00102 0.00094 0.00111 0.00220 0.00381 0.00484 0.00237 0.00326 0.00166 0.03806 

94 GLCM Correlation (quick 8/11) (all dir.) Layer 4 0.00361 0.00178 0.00124 0.00114 0.00113 0.00290 0.00527 0.00530 0.01189 0.00489 0.00234 0.03293 
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Figure 4.5 Average mean and standard deviation of brightness feature of LULC 

classes. 

 

  These statistical data of each feature of LULC class are then used to 

calculate separability using Jeffries-Matusita distance (Eq. 2.9) of all possibly pairwises 

between two LULC classes. In this study, the separability value of any pairwise LULC 

classes that provides separability value equal or greater than 1.3 are selected to calculate 

the threshold value (Eq. 2.13). The feature which has the calculated threshold value 

between mean values of two considered classes are here considered as candidate 

features for semantic modelling and classification. Table 4.9 shows an example of 

candidate features may be used to classify forest land type I (FO1) from others LULC 

classes. In general, the most dominate features with widely range threshold value are 

selected for semantic modelling and classification. In case of forest land type I (FO1), 

Brightness, Layer 3 and Layer 4 as top three dominant features, which were presented 
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in 10 of 11 pairwise are firstly selected for separating (classifying) forest land type I 

(FO1) from other classes. Then threshold values of 10 pairwise (forest land type I and 

others classes) are reconsidered to identify an optimum threshold value by comparison 

range between threshold value and mean of forest land type I. After that it may be 

required to add some more features to minimize fuzzy between forest land type I with 

others vegetation classes. (See final feature extraction for forest land type I (FO1) in 

Figure 4.6 and Table 4.10). 

 

Table 4.9 Candidate features may be used to classify forest land type I (FO1) from 

others LULC classes. 

LULC pairwise J Distance Member 
function 

Average 
Mean 

Threshold 
value 

Forest type I and Urban and Built-up area 
Brightness 2.00 Descending 42.282 52.735 
Layer 1 2.00 Descending 9.343 17.827 
Layer 3 2.00 Descending 41.136 54.76 
Layer 4 1.99 Descending 7.895 11.225 
Max.diff. 1.99 Ascending 2.435 2.118 
StdLayer 1 2.00 Descending 2.563 4.773 
StdLayer 3 2.00 Descending 4.229 7.279 
StdLayer 4 2.00 Descending 1.497 2.88 
Pixel-based Layer 1 2.00 Descending 0.055 0.095 
Pixel-based Layer 2 2.00 Ascending 0.655 0.586 
Pixel-based Layer 3 1.92 Descending 0.243 0.264 
Pixel-based Layer 4 1.98 Descending 0.047 0.058 
GLCMHomogeneity (all dir.) 1.82 Ascending 0.31 0.192 
GLCMHomogeneity (all dir.) Layer 1 1.98 Ascending 0.299 0.156 
GLCMHomogeneity (all dir.) Layer 2 1.42 Ascending 0.291 0.254 
GLCMHomogeneity (all dir.) Layer 3 1.92 Ascending 0.26 0.138 
GLCMHomogeneity (all dir.) Layer 4 2.00 Ascending 0.46 0.278 
GLCMContrast (all dir.) 1.77 Descending 11.235 22.962 
GLCMContrast (all dir.) Layer 1 1.91 Descending 10.501 20.999 
GLCMContrast (all dir.) Layer 3 1.89 Descending 16.391 35.202 
GLCMContrast (all dir.) Layer 4 1.91 Descending 3.078 5.848 
GLCMDissimilarity (all dir.) 1.90 Descending 2.558 3.965 
GLCMDissimilarity (all dir.) Layer 1 1.99 Descending 2.561 4.194 
GLCMDissimilarity (all dir.) Layer 3 1.99 Descending 3.148 5.242 
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Table 4.9 (Continued). 

LULC pairwise J Distance 
Member 
function 

Average 
Mean 

Threshold 
value 

GLCMDissimilarity (all dir.) Layer 4 1.99 Descending 1.394 2.217 
GLCMEntropy (all dir.) 1.76 Descending 5.114 6.056 
GLCMEntropy (all dir.) Layer 1 2.00 Descending 4.649 6.128 
GLCMEntropy (all dir.) Layer 3 1.98 Descending 5.442 6.603 
GLCMEntropy (all dir.) Layer 4 2.00 Descending 3.548 5.114 
GLCMAng.2nd moment (all dir.) 1.50 Ascending 0.01 0.003 
GLCMAng.2nd moment (all dir.) Layer 1 1.90 Ascending 0.014 0.002 
GLCMAng.2nd moment (all dir.) Layer 3 1.76 Ascending 0.007 0.001 
GLCMAng.2nd moment (all dir.) Layer 4 1.91 Ascending 0.043 0.005 
GLCMMean (all dir.) 2.00 Descending 41.911 52.675 
GLCMMean (all dir.) Layer 1 2.00 Descending 9.342 18.037 
GLCMMean (all dir.) Layer 3 2.00 Descending 41.134 55.267 
GLCMMean (all dir.) Layer 4 2.00 Descending 7.895 11.334 
GLCMStdDev (all dir.) 1.93 Descending 3.644 5.687 
GLCMStdDev (all dir.) Layer 1 2.00 Descending 2.612 4.73 
GLCMStdDev (all dir.) Layer 3 2.00 Descending 4.315 7.439 
GLCMStdDev (all dir.) Layer 4 2.00 Descending 1.536 2.917 
GLCMCorrelation (all dir.) Layer 1 1.37 Descending 0.478 0.652 
GLCMHomogeneity (quick8/11) (all dir.) 1.81 Ascending 0.31 0.192 
GLCMHomogeneity (quick8/11) (all dir.) 
Layer 1 1.98 Ascending 0.299 0.156 

GLCMHomogeneity (quick8/11) (all dir.) 
Layer 2 

1.40 Ascending 0.289 0.252 

GLCMHomogeneity (quick8/11) (all dir.) 
Layer 3 

1.92 Ascending 0.259 0.138 

GLCMHomogeneity (quick8/11) (all dir.) 
Layer 4 2.00 Ascending 0.459 0.279 

GLCMContrast (quick8/11) (all dir.) 1.77 Descending 11.337 23.106 
GLCMContrast (quick8/11) (all dir.) Layer 1 1.90 Descending 10.516 20.809 
GLCMContrast (quick8/11) (all dir.) Layer 3 1.89 Descending 16.484 35.174 
GLCMContrast (quick8/11) (all dir.) Layer 4 1.90 Descending 3.086 5.77 
GLCMDissimilarity (quick8/11) (all dir.) 1.90 Descending 2.569 3.977 
GLCMDissimilarity (quick8/11) (all dir.) 
Layer 1 1.99 Descending 2.563 4.17 

GLCMDissimilarity (quick8/11) (all dir.) 
Layer 3 

1.98 Descending 3.155 5.24 

GLCMDissimilarity (quick8/11) (all dir.) 
Layer 4 

1.99 Descending 1.396 2.198 

GLCMEntropy (quick8/11) (all dir.) 1.76 Descending 5.118 6.064 
GLCMEntropy (quick8/11) (all dir.) Layer 1 2.00 Descending 4.647 6.119 
GLCMEntropy (quick8/11) (all dir.) Layer 3 1.98 Descending 5.444 6.609 
GLCMEntropy (quick8/11) (all dir.) Layer 4 2.00 Descending 3.546 5.098 
GLCMAng.2nd moment (quick8/11) (all dir.) 1.50 Ascending 0.009 0.003 
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Table 4.9 (Continued). 

LULC pairwise J Distance 
Member 
function 

Average 
Mean 

Threshold 
value 

GLCMAng.2nd moment (quick8/11) (all dir.) 
Layer 1 

1.91 Ascending 0.014 0.002 

GLCMAng.2nd moment (quick8/11) (all dir.) 
Layer 3 1.76 Ascending 0.007 0.001 

GLCMAng.2nd moment (quick8/11) (all dir.) 
Layer 4 

1.91 Ascending 0.043 0.005 

GLCMMean (quick8/11) (all dir.) 2.00 Descending 41.91 52.796 
GLCMMean (quick8/11) (all dir.) Layer 1 2.00 Descending 9.339 18.079 
GLCMMean (quick8/11) (all dir.) Layer 3 2.00 Descending 41.133 55.421 
GLCMMean (quick8/11) (all dir.) Layer 4 2.00 Descending 7.894 11.366 
GLCMStdDev (quick8/11) (all dir.) 1.93 Descending 3.646 5.696 
GLCMStdDev (quick8/11) (all dir.) Layer 1 2.00 Descending 2.608 4.701 
GLCMStdDev (quick8/11) (all dir.) Layer 3 2.00 Descending 4.311 7.433 
GLCMStdDev (quick8/11) (all dir.) Layer 4 2.00 Descending 1.533 2.896 
GLCMCorrelation (quick8/11) (all dir.) Layer 
1 1.35 Descending 0.474 0.645 

Forest type I and Paddy Field type I 
Brightness 2.00 Descending 42.282 61.415 
Layer 1 2.00 Descending 9.343 29.725 
Layer 3 2.00 Descending 41.136 68.603 
Layer 4 2.00 Descending 7.895 16.225 
Max.diff. 2.00 Ascending 2.435 1.117 
StdLayer 1 1.98 Descending 2.563 3.777 
StdLayer 3 1.50 Descending 4.229 5.575 
StdLayer 4 1.86 Descending 1.497 2.102 
Pixel-based Layer 1 2.00 Descending 0.055 0.176 
Pixel-based Layer 2 2.00 Ascending 0.655 0.432 
Pixel-based Layer 3 2.00 Descending 0.243 0.289 
Pixel-based Layer 4 2.00 Descending 0.047 0.077 
GLCMContrast (all dir.) Layer 1 1.89 Descending 10.501 19.441 
GLCMContrast (all dir.) Layer 3 1.56 Descending 16.391 28.246 
GLCMContrast (all dir.) Layer 4 1.78 Descending 3.078 5.168 
GLCMDissimilarity (all dir.) Layer 1 1.77 Descending 2.561 3.465 
GLCMDissimilarity (all dir.) Layer 4 1.58 Descending 1.394 1.776 
GLCMEntropy (all dir.) Layer 1 1.97 Descending 4.649 5.523 
GLCMEntropy (all dir.) Layer 4 1.79 Descending 3.548 4.182 
GLCMAng.2nd moment (all dir.) Layer 1 1.67 Ascending 0.014 0.005 
GLCMAng.2nd moment (all dir.) Layer 4 1.43 Ascending 0.043 0.022 
GLCMMean (all dir.) 2.00 Descending 41.911 60.905 
GLCMMean (all dir.) Layer 1 2.00 Descending 9.342 29.668 
GLCMMean (all dir.) Layer 3 2.00 Descending 41.134 68.255 
GLCMMean (all dir.) Layer 4 2.00 Descending 7.895 16.143 
GLCMStdDev (all dir.) Layer 1 1.99 Descending 2.612 3.893 
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Table 4.9 (Continued). 

LULC pairwise J Distance 
Member 
function 

Average 
Mean 

Threshold 
value 

GLCMStdDev (all dir.) Layer 3 1.66 Descending 4.315 5.861 
GLCMStdDev (all dir.) Layer 4 1.92 Descending 1.536 2.196 
GLCMCorrelation (all dir.) Layer 1 1.74 Descending 0.478 0.724 
GLCMContrast (quick8/11) (all dir.) Layer 1 1.82 Descending 10.516 18.849 
GLCMContrast (quick8/11) (all dir.) Layer 3 1.48 Descending 16.484 28.082 
GLCMContrast (quick8/11) (all dir.) Layer 4 1.69 Descending 3.086 5.048 
GLCMDissimilarity (quick8/11) (all dir.) 
Layer 1 1.77 Descending 2.563 3.466 

GLCMDissimilarity (quick8/11) (all dir.) 
Layer 4 

1.56 Descending 1.396 1.774 

GLCMEntropy (quick8/11) (all dir.) Layer 1 1.98 Descending 4.647 5.523 
GLCMEntropy (quick8/11) (all dir.) Layer 4 1.79 Descending 3.546 4.181 
GLCMAng.2nd moment (quick8/11) (all dir.) 
Layer 1 

1.68 Ascending 0.014 0.005 

GLCMAng.2nd moment (quick8/11) (all dir.) 
Layer 4 1.43 Ascending 0.043 0.022 

GLCMMean (quick8/11) (all dir.) 2.00 Descending 41.91 60.865 
GLCMMean (quick8/11) (all dir.) Layer 1 2.00 Descending 9.339 29.624 
GLCMMean (quick8/11) (all dir.) Layer 3 2.00 Descending 41.133 68.097 
GLCMMean (quick8/11) (all dir.) Layer 4 2.00 Descending 7.894 16.106 
GLCMStdDev (quick8/11) (all dir.) Layer 1 1.98 Descending 2.608 3.85 
GLCMStdDev (quick8/11) (all dir.) Layer 3 1.67 Descending 4.311 5.872 
GLCMStdDev (quick8/11) (all dir.) Layer 4 1.92 Descending 1.533 2.19 
GLCMCorrelation (quick8/11) (all dir.) Layer 
1 

1.73 Descending 0.474 0.719 

Forest type I and Paddy Field type II 
Brightness 2.00 Descending 42.282 54.401 
Layer 1 2.00 Descending 9.343 19.795 
Layer 2 1.56 Descending 110.757 122.571 
Layer 3 2.00 Descending 41.136 56.108 
Layer 4 2.00 Descending 7.895 13.087 
Max.diff. 2.00 Ascending 2.435 1.947 
StdLayer 1 1.79 Descending 2.563 3.497 
StdLayer 4 1.69 Descending 1.497 2.03 
Pixel-based Layer 1 2.00 Descending 0.055 0.113 
Pixel-based Layer 2 2.00 Ascending 0.655 0.552 
Pixel-based Layer 4 2.00 Descending 0.047 0.064 
GLCMContrast (all dir.) Layer 1 1.38 Descending 10.501 16.609 
GLCMEntropy (all dir.) Layer 1 1.91 Descending 4.649 5.402 
GLCMEntropy (all dir.) Layer 4 1.64 Descending 3.548 4.113 
GLCMAng.2nd moment (all dir.) Layer 1 1.63 Ascending 0.014 0.005 
GLCMAng.2nd moment (all dir.) Layer 4 1.31 Ascending 0.043 0.023 
GLCMMean (all dir.) 2.00 Descending 41.911 53.926 
GLCMMean (all dir.) Layer 1 2.00 Descending 9.342 19.86 
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Table 4.9 (Continued). 

LULC pairwise J Distance 
Member 
function 

Average 
Mean 

Threshold 
value 

GLCMMean (all dir.) Layer 2 1.53 Descending 110.765 122.254 
GLCMMean (all dir.) Layer 3 2.00 Descending 41.134 55.868 
GLCMMean (all dir.) Layer 4 2.00 Descending 7.895 13.002 
GLCMStdDev (all dir.) Layer 1 1.81 Descending 2.612 3.555 
GLCMStdDev (all dir.) Layer 3 1.41 Descending 4.315 5.638 
GLCMStdDev (all dir.) Layer 4 1.77 Descending 1.536 2.097 
GLCMCorrelation (all dir.) Layer 1 1.85 Descending 0.478 0.765 
GLCMCorrelation (all dir.) Layer 4 1.47 Descending 0.577 0.747 
GLCMContrast (quick8/11) (all dir.) Layer 1 1.40 Descending 10.516 16.702 
GLCMContrast (quick8/11) (all dir.) Layer 4 1.30 Descending 3.086 4.579 
GLCMEntropy (quick8/11) (all dir.) Layer 1 1.92 Descending 4.647 5.401 
GLCMEntropy (quick8/11) (all dir.) Layer 4 1.66 Descending 3.546 4.116 
GLCMAng.2nd moment (quick8/11) (all dir.) 
Layer 1 

1.64 Ascending 0.014 0.005 

GLCMAng.2nd moment (quick8/11) (all dir.) 
Layer 4 1.33 Ascending 0.043 0.023 

GLCMMean (quick8/11) (all dir.) 2.00 Descending 41.91 53.908 
GLCMMean (quick8/11) (all dir.) Layer 1 2.00 Descending 9.339 19.881 
GLCMMean (quick8/11) (all dir.) Layer 2 1.52 Descending 110.764 122.123 
GLCMMean (quick8/11) (all dir.) Layer 3 2.00 Descending 41.133 55.902 
GLCMMean (quick8/11) (all dir.) Layer 4 2.00 Descending 7.894 13.032 
GLCMStdDev (quick8/11) (all dir.) Layer 1 1.81 Descending 2.608 3.544 
GLCMStdDev (quick8/11) (all dir.) Layer 3 1.44 Descending 4.311 5.653 
GLCMStdDev (quick8/11) (all dir.) Layer 4 1.78 Descending 1.533 2.098 
GLCMCorrelation (quick8/11) (all dir.) Layer 
1 

1.86 Descending 0.474 0.764 

GLCMCorrelation (quick8/11) (all dir.) Layer 
4 1.45 Descending 0.573 0.741 

Forest type I and Cassava type I 
Brightness 2.00 Descending 42.282 57.124 
Layer 1 1.99 Descending 9.343 15.51 
Layer 2 1.93 Descending 110.757 129.462 
Layer 3 2.00 Descending 41.136 66.032 
Layer 4 2.00 Descending 7.895 13.197 
Max.diff. 1.79 Ascending 2.435 2.254 
Pixel-based Layer 2 1.73 Ascending 0.655 0.619 
Pixel-based Layer 3 1.73 Descending 0.243 0.26 
Pixel-based Layer 4 1.93 Descending 0.047 0.055 
GLCMMean (all dir.) 2.00 Descending 41.911 56.879 
GLCMMean (all dir.) Layer 1 1.99 Descending 9.342 15.69 
GLCMMean (all dir.) Layer 2 1.93 Descending 110.765 129.377 
GLCMMean (all dir.) Layer 3 2.00 Descending 41.134 66.099 
GLCMMean (all dir.) Layer 4 2.00 Descending 7.895 13.291 
GLCMCorrelation (all dir.) 1.32 Descending 0.771 0.805 
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Table 4.9 (Continued). 

LULC pairwise J Distance 
Member 
function 

Average 
Mean 

Threshold 
value 

GLCMMean (quick8/11) (all dir.) 2.00 Descending 41.91 56.881 
GLCMMean (quick8/11) (all dir.) Layer 1 1.99 Descending 9.339 15.732 
GLCMMean (quick8/11) (all dir.) Layer 2 1.93 Descending 110.764 129.293 
GLCMMean (quick8/11) (all dir.) Layer 3 2.00 Descending 41.133 66.082 
GLCMMean (quick8/11) (all dir.) Layer 4 2.00 Descending 7.894 13.31 
GLCMStdDev (quick8/11) (all dir.) Layer 1 1.34 Descending 2.608 3.199 

Forest type I and Cassava type II 
Brightness 1.77 Descending 42.282 48.192 
Layer 1 1.99 Descending 9.343 16.462 
Layer 3 1.97 Descending 41.136 51.259 
Layer 4 2.00 Descending 7.895 13.967 
Max.diff. 2.00 Ascending 2.435 2.117 
StdLayer 1 1.92 Descending 2.563 3.576 
StdLayer 4 1.31 Descending 1.497 1.878 
Pixel-based Layer 1 1.85 Descending 0.055 0.081 
Pixel-based Layer 2 1.99 Ascending 0.655 0.589 
Pixel-based Layer 3 2.00 Descending 0.243 0.282 
Pixel-based Layer 4 2.00 Descending 0.047 0.061 
GLCMContrast (all dir.) Layer 1 1.51 Descending 10.501 17.094 
GLCMDissimilarity (all dir.) Layer 1 1.31 Descending 2.561 3.228 
GLCMEntropy (all dir.) Layer 1 1.87 Descending 4.649 5.337 
GLCMAng.2nd moment (all dir.) Layer 1 1.52 Ascending 0.014 0.006 
GLCMMean (all dir.) 1.79 Descending 41.911 47.926 
GLCMMean (all dir.) Layer 1 1.99 Descending 9.342 16.592 
GLCMMean (all dir.) Layer 3 1.97 Descending 41.134 51.431 
GLCMMean (all dir.) Layer 4 2.00 Descending 7.895 14.101 
GLCMStdDev (all dir.) Layer 1 1.95 Descending 2.612 3.701 
GLCMStdDev (all dir.) Layer 4 1.41 Descending 1.536 1.939 
GLCMCorrelation (all dir.) Layer 1 1.42 Descending 0.478 0.659 
GLCMCorrelation (all dir.) Layer 4 1.31 Descending 0.577 0.719 
GLCMContrast (quick8/11) (all dir.) Layer 1 1.49 Descending 10.516 17.013 
GLCMDissimilarity (quick8/11) (all dir.) 
Layer 1 

1.32 Descending 2.563 3.236 

GLCMEntropy (quick8/11) (all dir.) Layer 1 1.87 Descending 4.647 5.332 
GLCMAng.2nd moment (quick8/11) (all dir.) 
Layer 1 

1.53 Ascending 0.014 0.006 

GLCMMean (quick8/11) (all dir.) 1.80 Descending 41.91 47.954 
GLCMMean (quick8/11) (all dir.) Layer 1 1.99 Descending 9.339 16.592 
GLCMMean (quick8/11) (all dir.) Layer 3 1.97 Descending 41.133 51.477 
GLCMMean (quick8/11) (all dir.) Layer 4 2.00 Descending 7.894 14.092 
GLCMStdDev (quick8/11) (all dir.) Layer 1 1.94 Descending 2.608 3.663 
GLCMStdDev (quick8/11) (all dir.) Layer 4 1.39 Descending 1.533 1.933 
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Table 4.9 (Continued). 

LULC pairwise 
J 

Distance 
Member 
function 

Average 
Mean 

Threshold 
value 

GLCMCorrelation (quick8/11) (all dir.) Layer 1 1.41 Descending 0.474 0.653 
Forest type I and Maize 

Brightness 1.99 Descending 42.282 50.784 
Layer 1 2.00 Descending 9.343 22.111 
Layer 2 1.87 Ascending 110.757 94.914 
Layer 3 2.00 Descending 41.136 57.455 
Layer 4 2.00 Descending 7.895 13.473 
Max.diff. 2.00 Ascending 2.435 1.309 
StdLayer 4 1.45 Descending 1.497 1.947 
Pixel-based Layer 1 2.00 Descending 0.055 0.13 
Pixel-based Layer 2 2.00 Ascending 0.655 0.507 
Pixel-based Layer 3 2.00 Descending 0.243 0.296 
Pixel-based Layer 4 2.00 Descending 0.047 0.076 
GLCMEntropy (all dir.) Layer 4 1.30 Descending 3.548 4.001 
GLCMMean (all dir.) 1.99 Descending 41.911 50.459 
GLCMMean (all dir.) Layer 1 2.00 Descending 9.342 22.037 
GLCMMean (all dir.) Layer 2 1.85 Ascending 110.765 95.469 
GLCMMean (all dir.) Layer 3 2.00 Descending 41.134 57.397 
GLCMMean (all dir.) Layer 4 2.00 Descending 7.895 13.476 
GLCMStdDev (all dir.) Layer 4 1.49 Descending 1.536 1.995 
GLCMCorrelation (all dir.) Layer 1 1.33 Descending 0.478 0.648 
GLCMCorrelation (all dir.) Layer 4 1.34 Descending 0.577 0.731 
GLCMMean (quick8/11) (all dir.) 1.99 Descending 41.91 50.487 
GLCMMean (quick8/11) (all dir.) Layer 1 2.00 Descending 9.339 22.05 
GLCMMean (quick8/11) (all dir.) Layer 2 1.85 Ascending 110.764 95.605 
GLCMMean (quick8/11) (all dir.) Layer 3 2.00 Descending 41.133 57.376 
GLCMMean (quick8/11) (all dir.) Layer 4 2.00 Descending 7.894 13.472 
GLCMStdDev (quick8/11) (all dir.) Layer 4 1.48 Descending 1.533 1.988 
GLCMCorrelation (quick8/11) (all dir.) Layer 1 1.32 Descending 0.474 0.642 
GLCMCorrelation (quick8/11) (all dir.) Layer 4 1.32 Descending 0.573 0.725 

Forest type I and Sugarcane 
Brightness 2.00 Descending 42.282 53.566 
Layer 1 1.99 Descending 9.343 16.387 
Layer 2 2.00 Descending 110.757 135.933 
Layer 3 1.79 Descending 41.136 48.223 
Layer 4 1.63 Descending 7.895 9.567 
Pixel-basedLayer 1 1.97 Descending 0.055 0.083 
Pixel-basedLayer 3 1.41 Ascending 0.243 0.23 
GLCM Mean (all dir.) 2.00 Descending 41.911 52.931 
GLCM Mean (all dir.) Layer 1 2.00 Descending 9.342 16.45 
GLCM Mean (all dir.) Layer 2 2.00 Descending 110.765 135.278 
GLCM Mean (all dir.) Layer 3 1.78 Descending 41.134 48.237 
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Table 4.9 (Continued). 

LULC pairwise 
J 

Distance 
Member 
function 

Average 
Mean 

Threshold 
value 

GLCM Mean (all dir.) Layer 4 1.63 Descending 7.895 9.59 
GLCM Correlation (all dir.) Layer 1 1.55 Descending 0.478 0.68 
GLCM Mean (quick8/11) (all dir.) 2.00 Descending 41.91 52.869 
GLCM Mean (quick8/11) (all dir.) Layer 1 2.00 Descending 9.339 16.449 
GLCM Mean (quick8/11) (all dir.) Layer 2 2.00 Descending 110.764 135.103 
GLCM Mean (quick8/11) (all dir.) Layer 3 1.77 Descending 41.133 48.199 
GLCM Mean (quick8/11) (all dir.) Layer 4 1.62 Descending 7.894 9.584 
GLCM Correlation (quick8/11) (all dir.) Layer 1 1.57 Descending 0.474 0.68 

Forest type I and Perennial trees and Or char d 
Brightness 1.79 Descending 42.282 47.987 
Layer 1 1.95 Descending 9.343 14.815 
Layer 3 1.89 Descending 41.136 49.09 
Layer 4 1.89 Descending 7.895 9.979 
Max.diff. 1.90 Ascending 2.435 2.231 
Pixel-basedLayer 1 1.97 Descending 0.055 0.083 
Pixel-basedLayer 2 1.93 Ascending 0.655 0.609 
Pixel-basedLayer 4 1.49 Descending 0.047 0.052 
GLCMEntropy (all dir.) Layer 2 1.56 Ascending 6.796 6.118 
GLCMAng.2ndmoment (all dir.) Layer 2 1.45 Descending 0.002 0.004 
GLCMMean (all dir.) 1.81 Descending 41.911 47.73 
GLCMMean (all dir.) Layer 1 1.96 Descending 9.342 14.977 
GLCMMean (all dir.) Layer 3 1.92 Descending 41.134 49.434 
GLCMMean (all dir.) Layer 4 1.92 Descending 7.895 10.097 
GLCMCorrelation (all dir.) 1.33 Ascending 0.771 0.733 
GLCMEntropy (quick8/11) (all dir.) Layer 2 1.54 Ascending 6.805 6.135 
GLCMAng.2ndmoment (quick8/11) (all dir.) 
Layer 2 1.42 Descending 0.002 0.004 

GLCMMean (quick8/11) (all dir.) 1.82 Descending 41.91 47.737 
GLCMMean (quick8/11) (all dir.) Layer 1 1.96 Descending 9.339 15.005 
GLCMMean (quick8/11) (all dir.) Layer 3 1.92 Descending 41.133 49.424 
GLCMMean (quick8/11) (all dir.) Layer 4 1.92 Descending 7.894 10.101 
GLCMStdDev (quick8/11) (all dir.) Layer 1 1.43 Descending 2.608 3.254 
GLCMCorrelation (quick8/11) (all dir.) 1.34 Ascending 0.769 0.73 

Forest type I and Forest type II 
Layer 2 1.11 Descending 110.757 120.018 
GLCMContrast (all dir.) Layer 1 1.01 Ascending 10.501 7.318 
GLCMContrast (all dir.) Layer 4 1.03 Ascending 3.078 2.207 
GLCMMean (all dir.) Layer 2 1.11 Descending 110.765 119.956 
GLCMContrast (quick8/11) (all dir.) Layer 1 1.01 Ascending 10.516 7.342 
GLCMContrast (quick8/11) (all dir.) Layer 4 1.03 Ascending 3.086 2.217 
GLCMMean (quick8/11) (all dir.) Layer 2 1.11 Descending 110.764 119.932 

Forest type I and Forest type III 
Brightness 1.89 Descending 42.282 49.349 
Layer 2 1.85 Descending 110.757 127.749 
Layer 3 1.93 Descending 41.136 50.228 
Layer 4 1.93 Descending 7.895 10.216 
StdLayer 1 1.46 Descending 2.563 3.174 
StdLayer 3 1.61 Descending 4.229 5.631 
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Table 4.9 (Continued). 

LULC pairwise J Distance 
Member 
function 

Average 
Mean 

Threshold 
value 

StdLayer 4 1.57 Descending 1.497 1.932 
Pixel-basedLayer 4 1.45 Descending 0.047 0.052 
GLCMEntropy (all dir.) Layer 1 1.34 Descending 4.649 5.081 
GLCMEntropy (all dir.) Layer 3 1.38 Descending 5.442 6.005 
GLCMEntropy (all dir.) Layer 4 1.44 Descending 3.548 4.017 
GLCMMean (all dir.) 1.90 Descending 41.911 49.007 
GLCMMean (all dir.) Layer 2 1.86 Descending 110.765 127.827 
GLCMMean (all dir.) Layer 3 1.93 Descending 41.134 50.297 
GLCMMean (all dir.) Layer 4 1.93 Descending 7.895 10.229 
GLCMStdDev (all dir.) Layer 1 1.50 Descending 2.612 3.23 
GLCMStdDev (all dir.) Layer 3 1.68 Descending 4.315 5.811 
GLCMStdDev (all dir.) Layer 4 1.61 Descending 1.536 1.974 
GLCMEntropy (quick8/11) (all dir.) Layer 1 1.35 Descending 4.647 5.077 
GLCMEntropy (quick8/11) (all dir.) Layer 3 1.39 Descending 5.444 6.009 
GLCMEntropy (quick8/11) (all dir.) Layer 4 1.44 Descending 3.546 4.012 
GLCMMean (quick8/11) (all dir.) 1.90 Descending 41.91 49.019 
GLCMMean (quick8/11) (all dir.) Layer 2 1.87 Descending 110.764 127.888 
GLCMMean (quick8/11) (all dir.) Layer 3 1.93 Descending 41.133 50.302 
GLCMMean (quick8/11) (all dir.) Layer 4 1.93 Descending 7.894 10.22 
GLCMStdDev (quick8/11) (all dir.) 1.31 Descending 3.646 4.79 
GLCMStdDev (quick8/11) (all dir.) Layer 1 1.50 Descending 2.608 3.221 
GLCMStdDev (quick8/11) (all dir.) Layer 3 1.70 Descending 4.311 5.823 
GLCMStdDev (quick8/11) (all dir.) Layer 4 1.61 Descending 1.533 1.969 

Forest type I and Water Body 
Brightness 1.99 Ascending 42.282 32.992 
Layer 1 1.43 Descending 9.343 12.749 
Layer 2 2.00 Ascending 110.757 46.922 
Layer 3 2.00 Ascending 41.136 15.128 
Layer 4 2.00 Ascending 7.895 2.979 
StdLayer 1 1.41 Ascending 2.563 1.986 
StdLayer 2 1.69 Ascending 9.73 5.952 
StdLayer 3 1.84 Ascending 4.229 2.492 
StdLayer 4 1.87 Ascending 1.497 0.925 
Pixel-basedLayer 1 2.00 Descending 0.055 0.11 
Pixel-basedLayer 2 2.00 Ascending 0.655 0.559 
Pixel-basedLayer 3 1.98 Ascending 0.243 0.213 
Pixel-basedLayer 4 1.93 Ascending 0.047 0.037 
GLCMHomogeneity (all dir.) 1.98 Descending 0.31 0.468 
GLCMHomogeneity (all dir.) Layer 1 1.96 Descending 0.299 0.422 
GLCMHomogeneity (all dir.) Layer 2 2.00 Descending 0.291 0.391 
GLCMHomogeneity (all dir.) Layer 3 1.96 Descending 0.26 0.39 
GLCMHomogeneity (all dir.) Layer 4 1.84 Descending 0.46 0.574 
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Table 4.9 (Continued). 

LULC pairwise J Distance 
Member 
function 

Average 
Mean 

Threshold 
value 

GLCMDissimilarity (all dir.) 1.53 Ascending 2.558 1.634 
GLCMDissimilarity (all dir.) Layer 1 1.61 Ascending 2.561 1.785 
GLCMDissimilarity (all dir.) Layer 2 1.62 Ascending 5.935 3.339 
GLCMDissimilarity (all dir.) Layer 3 1.52 Ascending 3.148 2.104 
GLCMDissimilarity (all dir.) Layer 4 1.72 Ascending 1.394 0.97 
GLCMEntropy (all dir.) 1.94 Ascending 5.114 3.896 
GLCMEntropy (all dir.) Layer 1 1.79 Ascending 4.649 3.994 
GLCMEntropy (all dir.) Layer 2 2.00 Ascending 6.796 5.348 
GLCMEntropy (all dir.) Layer 3 1.96 Ascending 5.442 4.359 
GLCMEntropy (all dir.) Layer 4 1.87 Ascending 3.548 2.8 
GLCMAng.2ndmoment (all dir.) 1.68 Descending 0.01 0.02 
GLCMAng.2ndmoment (all dir.) Layer 1 1.65 Descending 0.014 0.025 
GLCMAng.2ndmoment (all dir.) Layer 2 1.87 Descending 0.002 0.004 
GLCMAng.2ndmoment (all dir.) Layer 3 1.74 Descending 0.007 0.013 
GLCMAng.2ndmoment (all dir.) Layer 4 1.62 Descending 0.043 0.073 
GLCMMean (all dir.) 1.99 Ascending 41.911 32.687 
GLCMMean (all dir.) Layer 1 1.43 Descending 9.342 12.756 
GLCMMean (all dir.) Layer 2 2.00 Ascending 110.765 49.515 
GLCMMean (all dir.) Layer 3 2.00 Ascending 41.134 16.366 
GLCMMean (all dir.) Layer 4 2.00 Ascending 7.895 3.255 
GLCMStdDev (all dir.) Layer 4 1.44 Ascending 1.536 1.138 
GLCMCorrelation (all dir.) 1.44 Ascending 0.771 0.729 
GLCMHomogeneity (quick8/11) (all dir.) 1.98 Descending 0.31 0.467 
GLCMHomogeneity (quick8/11) (all dir.) 
Layer 1 

1.96 Descending 0.299 0.422 

GLCMHomogeneity (quick8/11) (all dir.) 
Layer 2 2.00 Descending 0.289 0.391 

GLCMHomogeneity (quick8/11) (all dir.) 
Layer 3 

1.96 Descending 0.259 0.39 

GLCMHomogeneity (quick8/11) (all dir.) 
Layer 4 

1.84 Descending 0.459 0.573 

GLCMDissimilarity (quick8/11) (all dir.) 1.53 Ascending 2.569 1.638 
GLCMDissimilarity (quick8/11) (all dir.) 
Layer 1 1.62 Ascending 2.563 1.79 

GLCMDissimilarity (quick8/11) (all dir.) 
Layer 2 

1.62 Ascending 5.985 3.363 

GLCMDissimilarity (quick8/11) (all dir.) 
Layer 3 

1.53 Ascending 3.155 2.108 

GLCMDissimilarity (quick8/11) (all dir.) 
Layer 4 1.72 Ascending 1.396 0.973 

GLCMEntropy (quick8/11) (all dir.) 1.94 Ascending 5.118 3.898 
GLCMEntropy (quick8/11) (all dir.) Layer 1 1.79 Ascending 4.647 3.997 
GLCMEntropy (quick8/11) (all dir.) Layer 2 2.00 Ascending 6.805 5.348 
GLCMEntropy (quick8/11) (all dir.) Layer 3 1.96 Ascending 5.444 4.36 
GLCMEntropy (quick8/11) (all dir.) Layer 4 1.87 Ascending 3.546 2.802 
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Table 4.9 (Continued). 

LULC pairwise J Distance 
Member 
function 

Average 
Mean 

Threshold 
value 

GLCMAng.2ndmoment (quick8/11) (all dir.) 1.68 Descending 0.009 0.02 
GLCMAng.2ndmoment (quick8/11) (all dir.) 
Layer 1 

1.65 Descending 0.014 0.025 

GLCMAng.2ndmoment (quick8/11) (all dir.) 
Layer 2 1.87 Descending 0.002 0.004 

GLCMAng.2ndmoment (quick8/11) (all dir.) 
Layer 3 1.74 Descending 0.007 0.013 

GLCMAng.2ndmoment (quick8/11) (all dir.) 
Layer 4 

1.62 Descending 0.043 0.073 

GLCMMean (quick8/11) (all dir.) 1.99 Ascending 41.91 32.694 
GLCMMean (quick8/11) (all dir.) Layer 1 1.43 Descending 9.339 12.753 
GLCMMean (quick8/11) (all dir.) Layer 2 2.00 Ascending 110.764 49.633 
GLCMMean (quick8/11) (all dir.) Layer 3 2.00 Ascending 41.133 16.368 
GLCMMean (quick8/11) (all dir.) Layer 4 2.00 Ascending 7.894 3.253 
GLCMStdDev (quick8/11) (all dir.) Layer 4 1.43 Ascending 1.533 1.138 
GLCMCorrelation (quick8/11) (all dir.) 1.43 Ascending 0.769 0.727 

 

 4.2.3 Semantic modelling 

  Semantic modelling, which is constructed as a rule-based semantic 

network was here created for representing spatial semantics associated with image 

databases by selecting the most dominant features with wider range. The developed 

semantic model for LULC extraction in reference area with pan-sharpened Landsat 8 

data of 2013 for Layer 1 (Band 4), Layer 2 (Band 5), Layer 3 (Band 6) and Layer 4 

(Band 3) is presented in Figure 4.6 and Table 4.10. The rule-based semantic model was 

directly migrated to eCognition software for LULC classification. 
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Figure 4.6 Graphical semantic model for LULC extraction in reference area with Landsat 8 data of 2013. 
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Table 4.10 Semantic model for LULC extraction in reference area with Landsat 8 data 

of 2013 in table form. 

LULC classes 
Membership function and threshold value 
Membership 

function 
Left 

border 
Right 

border 
Urban and built-up area 

GLCM Dissimilarity (quick 8/11) (all dir.) Descending 2.5 6.2 
GLCM Dissimilarity Layer 3 (all dir.) Ascending 5.08 9.42 
GLCM Dissimilarity Layer 4 (all dir.) Ascending 2.63 4.85 
GLCM Mean Layer 3 (all dir.) Ascending 71.662 77.25 
Standard deviation Layer 1 Ascending 3.4 13.36 
Standard deviation Layer 4 Ascending 1.99 6.914 

Paddy field Type I 
Brightness Ascending 50 91.16 
GLCM Mean (quick 8/11) (all dir.) Ascending 50.996 90.467 
GLCM Mean Layer 4 (all dir.) Ascending 16.143 41.436 
Mean Layer 4 Ascending 6.396 41.655 
Ratio Layer 1 Ascending 0.14 0.242 

Paddy field Type II 
Mean Layer 1 Ascending 47.85 65 
Mean Layer 2 Ascending 66 134.05 
Mean Layer 3 Ascending 56.107 76.27 
Mean Layer 4 Ascending 18.841 23.29 

Cassava Type I 
Brightness Ascending 53.897 72.32 
GLCM Mean (quick 8/11) Layer 4 (all dir.)  Descending 6.67 20.408 
Max. diff Ascending 0.985 3.29 
Mean Layer 1 Descending 24.6 46.43 
Mean Layer 4 Ascending 5.963 20.288 
Ratio Layer 4 Ascending 0.07 0.097 

Cassava Type II 
Brightness Descending 58.663 67.079 
GLCM Mean Layer 4 (all dir.) Ascending 6.63 25.16 
Max. diff Descending 1.665 2.306 
Mean Layer 1 Ascending 16.462 42.769 
Mean Layer 2 Descending 94 143 
Mean Layer 4 Ascending 5.823 25.251 
Ratio Layer 3 Descending 0.307 0.325 
Standard deviation Layer 1 Descending 5.82 8.655 
Standard deviation Layer 2 Ascending 7.56 12.738 

Maize 
GLCM Mean (quick 8/11) Layer 4 (all dir.) Ascending 5.443 29.254 
GLCM Mean Layer 2 (all dir.) Ascending 43.868 83.715 
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Table 4.10 (Continued). 

LULC classes Membership function and threshold value 
Membership function Left border Right border 

Mean Layer 2 Ascending 41.985 83.018 
Mean Layer 4 Ascending 13.473 29.372 
Ratio Layer 1 Descending 0.178 0.212 
Ratio Layer 3 Ascending 0.326 0.363 

Sugarcane 
Mean Layer 1 Ascending 21.634 32.86 
Mean Layer 2 Ascending 143.32 163.6 
Mean Layer 3 Descending 57.058 73.06 
Mean Layer 4 Descending 12.702 24.3 

Perennial trees and orchard 
GLCM Dissimilarity (quick 8/11) Layer 2 (all 
dir.) Descending 3.5 5.439 

GLCM Mean Layer 3 (all dir.) Ascending 24 56 
GLCM Mean Layer 4 (all dir.) Descending 13 22 
Mean Layer 1 Descending 25 51 
Mean Layer 3 Ascending 21 55 
Standard deviation Layer 3 Ascending 2.39 4.17 

Forest land type I 
Brightness Descending 42.282 53.566 
Mean Layer 3 Ascending 15.128 41.136 
Mean Layer 4 Ascending 2.97 7.895 
Ratio Layer 4 Descending 0.047 0.0758 

Forest land type II 
GLCM Mean Layer 1 (all dir.) Descending 11.441 17.44 
Mean Layer 1 Descending 11.436 22.553 
Mean Layer 4 Ascending 3.468 8.843 

Forest land types III 
Max. diff. Descending 2.21 2.33 
Mean Layer 1 Ascending 13.529 22.73 
Mean Layer 4 Descending 3.431 14.511 
Ratio Layer 1 Ascending 0.051 0.1747 

Water Body 
Mean Layer 2 Descending 7.09 31.77 
Mean Layer 3 Descending 2.59 37.9 
Mean Layer 4 Descending 0.404 6.39 

 

  As results, it can be observed that the required number of features among 

LULC classes varies between 3 and 9. Herewith, cassava type II (CA2) requires the 
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highest number of features while forest land type 2 (FO2) and water body (WA) 

requires the lowest number of features. 

 4.2.4 Semantic classification of LULC in 2013 in reference area 

  The semantic classification, which determines whether or not an object 

belongs to a certain object class on the basis of its significance, was here performed 

under eCognition software. The original LULC classification without LULC 

reclassification is shown in Figure 4.7 while the final LULC classification with LULC 

reclassification for 8 LULC classes: urban and built-up area, paddy field, cassava, 

maize, sugarcane, perennial trees and orchard, forest land, and water body is shown in 

Figure 4.8. Additionally field photographs of 8 LULC type is displayed in Figure 4.9. 

Meanwhile area and percentage of final LULC classification in 2013 in reference area 

is summarized in Table 4.11. 

 

 

Figure 4.7 Distribution of original LULC classification for year 2013 in reference area. 
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Figure 4.8 Distribution of final LULC classification for year 2013 in reference area. 
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Urban and built-up area Paddy field 

  
Cassava Maize 

  
Sugarcane Perennial tree and orchard 

  
Forest land Water body 

Figure 4.9 Ground photograph of 8 LULC type. 
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Table 4.11 Area and percentage of LULC classification for year 2013 in reference area. 

No. LULC class Area in sq.km Percent 

1 Urban and built-up area (UR) 223.27 10.77 

2 Paddy field (PD) 329.46 15.89 

3 Cassava (CA) 309.77 14.94 

4 Maize (MA) 324.18 15.64 

5 Sugarcane (SU) 112.47 5.42 

6 Perennial trees and orchard (PO) 22.84 1.10 

7 Forest land (FO) 733.56 35.39 

8 Water body (WA) 16.37 0.78 

9 Unclassified (UC) 0.57 0.03 

Total 2,072.49 100.00 

 

As results, the dominant LULC class was forest land, which covered area 

of 733.56 sq. km or 35.39%. Meanwhile the dominant agricultural classes were paddy 

field, maize, and cassava which covered area of 329.46, 324.18, and 309.77 sq. km or 

15.89%, 15.64% and 14.94%, respectively.  

Additionally, the final LULC classes in 2013 of reference area is 

reclassified into 5 major land use classes of LDD, namely urban and built-up area, 

agricultural land, forest land, water body and miscellaneous land for comparison with 

the existing land use data in 2011 of LDD as result shown in Table 4.12 and Figure 

4.10. As results, it was found that areas of both land use class are somewhat different 

due to different methods for extraction land use and LULC data but land use and LULC 

pattern of both data are similar.  

Consequently, there are some observations to address about area and its 

change. Herein, area of urban and built-up area by OBIA is higher than visual 

interpreted land use data of LDD because urban and built-up area by OBIA includes 
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farmhouse, landfill, active or abandoned soil/sand pits that are assigned as 

miscellaneous land by LDD. Likewise, area of agricultural land by OBIA is higher than 

land use data of LDD because rangeland and scrub as miscellaneous land by LDD is 

included in agricultural land by OBIA. In contrast, area of the classified forest land by 

OBIA is lower than land use data of LDD because forest land of LDD includes 

disturbed forest that is not classified by OBIA. Similarly, area of water body by OBIA 

is lower than land use data of LDD because it does not include farm ponds of LDD. 

 

Table 4.12 Comparison of LDD’s land use data in 2011 and LULC data in 2013 by 

OBIA in reference area. 

Land use class 

Area in sq. km 

Land use data in 2011 by LDD LULC data in 2013 by OBIA Difference 

Urban and built-up area 115.32 223.27 107.95 

Agricultural land 982.44 1108.71 126.27 

Forest land 841.06 733.56 -107.50 

Water body 43.18 16.37 -36.81 

Miscellaneous land 90.49 0.57 -89.92 

Total 2,072.49 2,072.49 0.00 
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(a) (b) 

Figure 4.10 Land use and LULC pattern comparison: (a) land use data in 2011 by LDD 

(b) LULC data in 2013 by OBIA. 

 

 4.2.5 Accuracy assessment of thematic LULC map of 2013 in reference area 

  Thematic LULC data of 2013 in reference area which are derived from 

semantic classification was assessed accuracy based on the existing high spatial 

resolution images in 2013 and 2014 from Google Earth of Google Inc. and ground 

survey in 2015. Number of sample points, which was calculated based on the binomial 

probability distribution theory with the expected accuracy of 85% at the allowable error 

of 5%, was 203 points. The distribution of sample point with stratified random sampling 

is presented in Figure 4.11. Detail of sampling point for accuracy assessment in 

reference area is presented in Table 1 of Appendix A. Herewith, overall accuracy and 

Kappa hat coefficient of thematic LULC map in 2013 in reference area are around 
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84.24% and 80.37%, respectively. In the meantime, producer’s accuracy (PA), which 

infers about omission error, varied between the lowest value of 57.89% for sugarcane 

and the highest value of 100% for water body. Meanwhile, user’s accuracy (UA), which 

infers about commission error, varied between the lowest value of 64.29% for cassava 

and the highest value of 100% for water body. Detail of accuracy assessment as error 

matrix with PA and UA is presented in Table 4.13. 

  As results, it was found that both accuracy values are higher than the 

defined accuracy for acceptance semantic modelling and classification, overall 

accuracy and Kappa hat coefficient are equal or higher than 80%. According to 

Fitzpatrick-Lins (1981), Kappa hat coefficient more than 80% represents strong 

agreement or accuracy between the classification map and the ground reference 

information.  

  In addition, the derived accuracy obtained in this study with overall 

accuracy at 84.24% and Kappa hat coefficient at 80.37% proved to be acceptable when 

it was compared with other studies that applied rule-based classifier under OBIA as 

summary below.  

  Campbell and Congalton (2012), who applied OBIA for LULC 

classification with Landsat-5 image, obtained an overall accuracy at 80%.  

  Myint et al. (2011), who applied OBIA for urban land cover extraction 

with QuikBird data, achieved an overall accuracy at 90%. 

  Khamphilung et al. (2013), who applied OBIA for village forms 

classification with QuikBird pan-sharpened image, obtained an overall accuracy and 

Kappa hat coefficient at 70% and 64%, respectively. 
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  Wu et al. (2013), who applied OBIA for building seismic vulnerability 

assessment with WorldView-2 imagery, achieved an overall accuracy at 80% 

  Zhou et al. (2013), who applied OBIA for land cover classification of 

shaded areas with color-infrared digital aerial image data from Emerge, attained an 

overall accuracy at 88%. 

  Ceccarelli et al. (2013), who applied OBIA for LULC classification with 

Landsat 7 image, obtained an overall accuracy and Kappa hat coefficient at 86% and 

75%, respectively.  

 

 

Figure 4.11 Distribution of sample points for accuracy assessment of thematic LULC 

map in 2013. 
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Table 4.13 Error matrix and accuracy assessment of LULC of 2013 in reference area. 

Classified LULC class 
Reference data 

Row Total PA UA 
UR PD CA MA SU PO FO WA 

Urban and built-up area 17 3 0 0 0 0 0 0 20 89.47% 85.00% 

Paddy field 1 26 0 3 0 0 0 0 30 65.00% 86.67% 

Cassava 0 2 18 0 8 0 0 0 28 90.00% 64.29% 

Maize 1 8 1 19 0 1 0 0 29 86.36% 65.52% 

Sugarcane 0 1 1 0 11 0 0 0 13 57.89% 84.62% 

Perennial trees and orchard 0 0 0 0 0 7 2 0 9 87.50% 77.78% 

Forest land 0 1 0 0 0 0 69 0 70 97.18% 98.57% 

Water body 0 0 0 0 0 0 0 4 4 100.00% 100.00% 

Column Total 19 40 20 22 19 8 71 4 203   

Overall accuracy 84.24% 

Kappa hat coefficient 80.37% 

 

4.3 Spatial transferability analysis 

 The result and finding of spatial transferability analysis, which is applied to 

determine whether the developed semantic model and classification can be transferred 

to testing area in the same year, is here described and discussed. 

 4.3.1 Semantic classification of LULC in 2013 in testing area 

  A semantic model for LULC extraction which was developed in Pak 

Thong Chai and Wang Nam Khieo districts, Nakhon Ratchasima province is directly 

applied for spatial transferability analysis in Khon Buri district of Nakhon Ratchasima 

province. The result of original LULC classification without LULC reclassification for 

spatial transferability analysis is shown in Figure 4.12 while the final LULC 

classification with reclassification for 8 LULC classes: urban and built-up area, paddy 

field, cassava, maize, sugarcane, perennial trees and orchard, forest land, and water 

body is summarized as area and percent of LULC classes in Table 4.14 and displayed 

in Figure 4.13.  
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Figure 4.12 Original LULC classification of 2013 of spatial transferability analysis. 

 

Table 4.14 Area and percentage of final LULC classification of 2013 for spatial 

transferability analysis. 

No. LULC class Area in sq.km Percent 

1 Urban and built-up area 106.11 5.67 

2 Paddy field 159.82 8.54 

3 Cassava 372.40 19.91 

4 Maize 152.42 8.15 

5 Sugarcane 2.28 0.12 

6 Perennial trees and orchard 50.75 2.71 

7 Forest land 936.97 50.09 

8 Water body 87.93 4.70 

9 Unclassified 1.88 0.10 

Total 1,870.55 100 
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Figure 4.13 Final LULC classification of 2013 of spatial transferability analysis. 

 

  As results, the most dominant LULC type was forest land, which covers 

area of 936.97 sq. km or 50.09%. Meanwhile the dominant agricultural classes were 

cassava which covered area of 372.40 sq. km or 19.91%. Also, final LULC classes in 

2013 of testing area is reclassified into 5 major land use classes of LDD: urban and 

built-up area, agricultural land, forest land, water body and miscellaneous land for 

comparison with land use data in 2011 of LDD as result shown in Table 4.15 and Figure 

4.14. Herewith, areas of land use classes are slightly different according to different 

methods for extraction land use and LULC data with explanation as mentioned in the 

previous section. In addition, land use and LULC pattern from LDD and OBIA in 
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testing area was similar. The area of water surface over reservoirs and dams in 2011 

and 2013 is rather different due to the temporal change. 

 

Table 4.15 Comparison of LDD’s land use data in 2011 and LULC data in 2013 by 

OBIA 

Land use class 
Area in sq. km 

Land use data in 2011 by LDD LULC data in 2013 by OBIA Difference 

Urban and built-up area 50.22 106.11 55.89 

Agricultural land 726.44 737.67 11.23 

Forest land 1,023.52 936.97 -86.55 

Water body 53.82 87.38 33.56 

Miscellaneous land 16.55 1.88 -14.67 

Total 1,870.55 1,870.55 0.00 
 

  
(a) (b) 

Figure 4.14 Comparison of land use data 2011 by LDD and LULC in 2013 by OBIA: 

(a) by LDD (b) by OBIA. 
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 4.3.2 Accuracy assessment of thematic LULC map in 2013 in testing area 

  Similarly to accuracy assessment of LULC data in reference area, 203 

sample points based on binomial probability distribution theory with the expected 

accuracy of 85% at the allowable error of 5% and stratified random sampling as shown 

in Figure 4.15 was applied to access accuracy of thematic LULC data in testing area 

based on the existing high spatial resolution images in 2013 and 2014 from Google 

earth of Google Inc. and ground survey in 2015. Detail of sampling point for accuracy 

assessment in testing area is presented in Table 2 of Appendix A. It was found that 

overall accuracy and Kappa hat coefficient of thematic LULC in 2013 of testing area 

in Khon Buri district for spatial transferability analysis was around 83.25% and 79.17%, 

respectively. In the meantime, PA varied between the lowest value of 58.33% for 

sugarcane and the highest value of 95.83% for forest land and UA varied between the 

lowest value of 47.06% for urban and built-up area and the highest value of 100% for 

water body. 

  The result revealed that both accuracy values showed a strong agreement 

between the classification map and the ground reference information according to 

Fitzpatrick-Lins, (1981) and it can be comparable with accuracy assessment of thematic 

LULC map deriving from semantic model in reference area. Detail of accuracy 

assessment as error matrix with PA and UA is presented in Table 4.16 
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Figure 4.15 Sample points distribution for LULC data of 2013 accuracy assessment 

under spatial transferability analysis. 

 

Table 4.16 Error matrix and accuracy assessment of LULC of 2013 of spatial 

transferability analysis in testing area. 

Classified LULC class 
Reference data Row 

Total 
PA UAs 

UR PD CA MA SU PO FO WA 

Urban and built-up area 8 0 3 3 0 0 0 3 17 72.73% 47.06% 
Paddy field 1 15 1 1 3 0 2 1 24 68.18% 62.50% 
Cassava 2 0 31 1 1 0 0 0 35 83.78% 88.57% 
Maize 0 6 0 14 0 0 0 0 20 73.68% 70.00% 
Sugarcane 0 1 1 0 7 0 0 0 9 58.33% 77.78% 
Perennial trees and orchard 0 0 0 0 0 12 1 0 13 92.31% 92.31% 
Forest land 0 0 1 0 1 1 69 0 72 95.83% 95.83% 
Water body 0 0 0 0 0 0 0 13 13 76.47% 100.00% 
Column Total 11 22 37 19 12 13 72 17 203   
Overall accuracy 83.32% 
Kappa hat coefficient 79.17% 
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  In addition, result of pairwise Z test between Kappa hat coefficient of 

reference area and testing area showed that accuracy of LULC extraction in both areas 

are not significantly different for the 100% two side confidence level (see Table 4.17). 

This finding infers that the developed semantic model and classification for LULC 

extraction in reference area can be transferred to testing area for LULC classification 

and it can provide indifferent accuracy. 

 

Table 4.17 Pairwise Z test of Kappa hat coefficient value for LULC extraction by 

semantic model and classification between reference area and testing area. 

Pairwise Z test 
Kappa 

hat 
Variance 

Z-

Statistic 

Two-side confidential level 

of critical value 

90% 95% 100% 

LULC data in reference area 0.803717 0.00096 
0.101257 1.65 1.96 2.58 

LULC data in testing area 0.799232 0.00100 

 

4.4 Temporal transferability analysis 

 Likewise spatial transferability analysis, result and finding of temporal 

transferability analysis, which is examined to verify the consistency of the developed 

semantic model and classification can be applied in the same area at different points of 

time, is here described and discussion. 

 4.4.1 Semantic classification of LULC in 2014 in reference area 

  A developed semantic model for LULC extraction, which derived from 

Landsat 8 data of 2013 in Pak Thong Chai and Wang Nam Khieo districts, was directly 

adopted to classify LULC classes from another Landsat 8 data of 2014. The result of 

original LULC classification without semantic model modification and reclassification 
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for temporal transferability analysis is shown in Figure 4.16 and the final LULC 

classification with reclassification for 8 LULC classes: urban and built-up area, paddy 

field, cassava, maize, sugarcane, perennial trees and orchard, forest land, and water 

body is presented in Table 4.18 and Figure 4.17. As results, it revealed that semantic 

model and classification can extract small amount of water body, which is generally 

easy to classify by few features. The most dominant LULC class was forest land, which 

covers area of 638.43 sq. km or 30.80%. Meanwhile the dominant agricultural class 

was paddy field which covered area of 340.45 sq. km or 16.43%. Also, area of 

unclassified was 16.11 sq. km or 0.78%. 

  In addition, accuracy assessment for the final LULC map of 2014 

without semantic model modification using 203 ground reference data in 2013 of 

reference area is summarized in Table 4.19. It was found that overall accuracy and 

Kappa hat coefficient for temporal transferability analysis without semantic model 

modification was only 46.30% and 34.48%, respectively. The Kappa hat coefficient 

less 40% represents poor agreement or accuracy between the classification map and the 

ground reference information as suggestion by Fitzpatrick-Lins (1981). 
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Figure 4.16 Original LULC classification of 2014 of temporal transferability analysis 

without semantic model modification. 

 

Table 4.18 Area and percentage of LULC classification of year 2014 of temporal 

transferability analysis without semantic model modification. 

No. LULC class Area in sq.km Percent 

1 Urban and built-up area 298.83 14.42 

2 Paddy field 340.45 16.43 

3 Cassava 273.90 13.22 

4 Maize 273.59 13.20 

5 Sugarcane 0.08 0.00 

6 Perennial trees and orchard 231.00 11.15 

7 Forest land 638.43 30.80 

8 Water body 0.10 0.00 

9 Unclassified 16.11 0.78 

Total 2,072.49 100.00 
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Figure 4.17 Final LULC classification of 2014 of temporal transferability analysis 

without semantic model modification. 

 

Table 4.19 Error matrix and accuracy assessment of LULC of 2014 of temporal 

transferability analysis without semantic modification. 

Classified LULC class 
Reference data Row 

Total 
PA UA 

UR PD CA MA SU PO FO UC 

Urban and built-up area 7 4 1 7 1 1 3 0 24 31.58% 17.65% 

Paddy field 4 12 0 3 2 0 7 0 28 31.58% 30.77% 

Cassava 4 12 14 2 7 0 3 0 42 10.00% 7.41% 

Maize 4 6 4 8 1 1 0 0 24 46.15% 36.36% 

Sugarcane 0 0 0 0 0 0 0 0 0 n.a% n.a 

Perennial trees and orchard 0 2 0 1 1 5 9 2 20 20.00% 11.11% 

Forest land 0 4 1 1 3 1 48 2 61 57.75% 87.23% 

Unclassified 0 0 0 0 4 0 1 0 5 n.a  n.a  

Column Total 19 40 20 22 19 8 71 4 203     

Overall accuracy 46.30% 

Kappa hat coefficient 34.48% 
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  Herewith, the major problems of temporal transferability analysis is the 

change of spectral data of LULC classes between 2013 and 2014. In this study spectral 

data of major LULC classes of 2013 and 2014 was quite different due to phenological 

change of biological and physical features. Figure 4.18 demonstrates an example of 

phenological change of biological features of various LULC classes between 2013 and 

2014. Herein, color composite image of Band 5 (NIR), 6 (SNIR), and 3 (Green) as RGB 

of paddy field appears as white and light orange color in 2013 looks as light blue and 

light magenta in 2014. Likewise, orange color of sugarcane in 2013 appears as magenta 

in 2014 while maize field in 2013 with blue color looks as light green in 2014. 

Meanwhile Figure to 4.19 shows the temporal change of physical features over water 

body. Area of water surface over reservoirs and dams in 2013 and 2014 are quite 

different and water body with dark blue color in 2013 appears as light blue in 2014. 

Nussbaum and Menz (2008), who applied temporal transferability analysis for building 

detection based on the derived semantic model and classification of reference area in 

2002 for year 2003 and 2004 at Nuclear Fuel Research and Production Centre 

(NFRPC), Esfahan of Iran, suggested that thresholding values of spectral features, such 

as spectral data or NDVI, that changes over period of times, should be modified in the 

reference model. 

  Consequently, modification of Landsat 8 data and semantic model for 

LULC extraction of 2014 is required under temporal transferability analysis. In this 

study, histogram matching was firstly applied to fit histogram of Landsat data in 2014 

with Landsat data in 2013 as result shown in Figure 4.20. Then the some selected 

spectral features of semantic model were modified by trial and error for LULC 

extraction under temporal transferability analysis. 
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  The modified semantic model for LULC extraction of temporal 

transferability analysis for Landsat 8 data of 2014 with histogram matching is presented 

in Table 4.20.  

 

  
Paddy field in 2013 Paddy field in 2013 

  
Sugarcane in 2013 Sugarcane in 2014 

  
Maize in 2013 Maize in 2014 

Figure 4.18 Landsat 8 color composite image comparison between 2013 and 2014 due 

to phenological change of biological features of various LULC classes. 
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Water body in 2013 Water body in 2014 

Figure 4.19 Landsat 8 color composite image comparison between 2013 and 2014 due 

to phenological change of physical features of reservoirs and dams 
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 Band 4 (R)  

   

 Band 5 (NIR)  

   

 Band 6 (SWIR)  

   

 Band 3 (Green)  

Pan-sharpened Landsat 8 data 

in 2013 as reference image 

Pan-sharpened Landsat 8 data 

in 2014: Before histogram 

matching 

Pan-sharpened Landsat 8 data 

in 2014: Before histogram 

matching 

 

Figure 4.20 Comparison of histogram data of Landsat 8 data in 2014 before and after 

histogram matching with Landsat 8 data in 2013 as reference data. 
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Table 4.20 Modified semantic model for LULC extraction of temporal transferability 

analysis with Landsat 8 data in 2014. 

LULC classes 

Membership function and threshold value 
Membership 

function 
Left border 

Right 
border 

Urban and built-up area 
GLCM Dissimilarity (quick 8/11) (all dir.) Ascending 2.5 6.2 
GLCM Dissimilarity Layer 3 (all dir.) Ascending 7.4* 9.42 
GLCM Dissimilarity Layer 4 (all dir.) Ascending 2.63 4.85 
GLCM Mean Layer 3 (all dir.) Descending 71.662 75* 
Standard deviation Layer 1 Ascending 3.4 13.36 
Standard deviation Layer 4 Ascending 1.99 6.9144 

Paddy field Type I 
Brightness Ascending 50 91.16 
GLCM Mean (quick 8/11) (all dir.) Ascending 40* 90.467 
GLCM Mean Layer 4 (all dir.) Ascending 10* 41.436 
Mean Layer 4 Ascending 6.396 41.655 
Ratio Layer 1 Ascending 0.14 0.2415 

Paddy field Type II 
Mean Layer 1 Ascending 47.85 65 
Mean Layer 2 Ascending 110 134.05 
Mean Layer 3 Ascending 56.107 76.27 
Mean Layer 4 Ascending 18.841 23.29 

Cassava Type 1 
Brightness Ascending 45* 72.32 
GLCM Mean (quick 8/11) Layer 4 (all dir.)  Ascending 6.67 20.408 
Max. diff Descending 0.985 3* 
Mean Layer 1 Descending 24.6 42* 
Mean Layer 4 Ascending 5.963 20.288 
Ratio Layer 4 Descending 0.07 1* 

Cassava Type II 
Brightness Descending 58.663 67.079 
GLCM Mean Layer 4 (all dir.) Ascending 6.63 25.16 
Max. diff Descending 1.665 2.306 
Mean Layer 1 Ascending 16.462 42.769 
Mean Layer 2 Descending 94 143 
Mean Layer 4 Ascending 5.823 25.251 
Ratio Layer 3 Descending 0.307 0.315* 
Standard deviation Layer 1 Descending 5.82 10* 
Standard deviation Layer 2 Ascending 5* 12.738 

Maize 
GLCM Mean (quick 8/11) Layer 4 (all dir.) Ascending 5.443 29.254 
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Table 4.20 (Continued). 

LULC classes 
Membership function and threshold value 

Membership 
function 

Left border Right border 

GLCM Mean Layer 2 (all dir.) Ascending 43.868 83.715 
Mean Layer 2 Ascending 41.985 83.018 
Mean Layer 4 Ascending 9* 20* 
Ratio Layer 1 Ascending 0.111 0.178 
Ratio Layer 3 Ascending 0.326 0.3631 

Sugarcane 
Mean Layer 1 Ascending 18* 32.86 
Mean Layer 2 Ascending 110* 163.6 
Mean Layer 3 Descending 57.058 73.06 
Mean Layer 4 Descending 12.702 24.3 

Perennial trees and orchard 
GLCM Dissimilarity (quick 8/11) Layer 2 
(all dir.) 

Descending 3.5 5.439 

GLCM Mean Layer 3 (all dir.) Ascending 49* 56 
GLCM Mean Layer 4 (all dir.) Descending 13 19* 
Mean Layer 1 Descending 25 51 
Mean Layer 3 Ascending 21 55 
Standard deviation Layer 3 Ascending 3* 4.1699 

Forest land type I 
Brightness Descending 42.282 53.565 
Mean Layer 3 Ascending 15.128 41.136 
Mean Layer 4 Ascending 2.97 7.8954 
Ratio Layer 4 Descending 0.047 0.0758 

Forest land type II 
GLCM Mean Layer 1 (all dir.) Descending 11.441 25* 
Mean Layer 1 Descending 11.436 22.553 
Mean Layer 4 Ascending 3.468 8.8432 

Forest land types III 
Max. diff. Descending 2.21 2.33 
Mean Layer 1 Ascending 13.529 22.73 
Mean Layer 4 Descending 3.431 14.511 
Ratio Layer 1 Ascending 0.051 0.1747 

Water Body 
Mean Layer 2 Descending 7.09 31.77 
Mean Layer 3 Descending 2.59 37.9 
Mean Layer 4 Descending 0.404 60 

Note: * Modified thresholding value. 
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  The result of original LULC classification with the modified semantic 

model and without reclassification for temporal transferability analysis is shown in 

Figure 4.21 and the final LULC classification with reclassification for 8 LULC classes: 

urban and built-up area, paddy field, cassava, maize, sugarcane, perennial trees and 

orchard, forest land, and water body is shown in Figure 4.22 and Table 4.21. As results, 

all assigned classes under semantic model with modification were here classified. The 

most dominant LULC class was forest land, which covers area of 730.39 sq. km or 

35.24%. Meanwhile the dominant agricultural class was cassava which covered area of 

383.63 sq. km or 18.51 percent. Additionally, unclassified area was decreased to be 

1.83 sq. km or 0.09%. 

 

Figure 4.21 Original LULC classification of 2014 of temporal transferability analysis 

with the modified semantic model of reference area in 2013.  
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Figure 4.22 Final LULC classification of 2014 of temporal transferability analysis 

with modified semantic model of reference area in 2013. 

 

Table 4.21 Area and percentage of LULC classification of year 2014 of temporal 

transferability analysis with semantic model modification. 

No. LULC class Area in sq.km Percent 

1 Urban and built-up area 173.94 8.39 

2 Paddy field 379.90 18.33 

3 Cassava 383.63 18.51 

4 Maize 253.71 13.24 

5 Sugarcane 32.31 1.56 

6 Perennial trees and orchard 98.06 4.73 

7 Forest land 730.39 35.24 

8 Water body 18.71 0.9 

9 Unclassified 1.83 0.09 

Total 2,072.49 100 
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  In addition, accuracy assessment of the final LULC map of 2014 with 

semantic model modification based on 203 ground reference of 2013 in reference area 

is summarized in Table 4.22. It was found that accuracy of thematic LULC map of 

temporal transferability analysis with the modified semantic model had been improved 

with overall accuracy and Kappa hat coefficient of 66.00% and 57.83%, respectively. 

Additionally, PA varied between the lowest value of 26.32% for urban and built-up 

area and the highest value of 100% for water body and UA varied between the lowest 

value of 35.71% for urban and built-up area and the highest value of 100% for water 

body. According to Fitzpatrick-Lins (1981), Kappa hat coefficient values between 40 

to 80% represents moderate agreement or accuracy between the classification map and 

the ground reference information. 

 

Table 4.22 Error matrix and accuracy assessment of LULC of 2014 for temporal 

transferability analysis with semantic model modification. 

Classified LULC class 
Reference data Row 

Total PA UA 
UR PD CA MA SU PO FO WA 

Urban and built-up area 5 5 0 2 0 0 2 0 14 26.32% 35.71% 

Paddy field 7 23 1 5 1 0 0 0 37 57.50% 62.16% 

Cassava 3 2 17 5 9 2 3 0 41 85.00% 41.46% 

Maize 4 10 0 9 0 0 0 0 23 40.91% 39.13% 

Sugarcane 0 0 2 1 9 0 0 0 12 47.37% 75.00% 

Perennial trees and orchard 0 0 0 0 0 4 3 0 7 50.00% 57.14% 

Forest land 0 0 0 0 0 2 63 0 65 88.73% 96.92% 

Water body 0 0 0 0 0 0 0 4 4 100.00% 100.00% 

Column Total 19 40 20 22 19 8 71 4 203   

Overall accuracy 66.00% 

Kappa hat coefficient 57.83% 
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  Furthermore, result of pairwise Z test between Kappa hat coefficient of 

thematic LULC map of 2013 and 2014 in reference area showed that accuracy of LULC 

extraction of temporal transferability analysis are significantly different for the 90% 

two side confidence level (see Table 4.23). This finding infers that the developed 

semantic model for LULC of 2013 extraction cannot be directly transferred for LULC 

in 2014 classification although they are the same area. Herein, the developed semantic 

model required to modify by mean of trial and error for increasing the thematic 

accuracy. The modification of semantic model is time consumption and tiresome 

works. 

 

Table 4.23 Pairwise Z test of Kappa hat coefficient value for LULC extraction by 

modified semantic model and classification in the same area in different 

years. 

Pairwise Z test Kappa hat Variance 
Z-

Statistic 

Confidential level of critical 

value 

90% 95% 100% 
LULC data of 2013 0.803717 0.00096 

4.523715 1.65 1.96 2.58 
LULC data of 2014 0.578300 0.001522 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER V 

CONCLUSION AND RECOMMENDATION 

 

 Under this chapter, image pre-processing products and three main results 

which were reported according to objectives in the study included (1) to develop 

semantic model and classification with SEaTH and expert’s knowledge for LULC 

extraction in reference area; (2) to apply the developed semantic model and 

classification of reference area for spatial transferability analysis; and (3) to modify the 

developed semantic model and classification of reference area for temporal 

transferability analysis are here separately concluded and recommended for future 

research and development. 

 

5.1 Conclusion 

 5.1.1 Optimum pan-sharpening method of Landsat 8 

  The Q average method is used to evaluate pan-sharpening methods for 

Landsat 8 image include EF, GS, HPF, MIHST, and WT. The most appropriate method 

for Landsat 8 data pan-sharpening processing is WT and the possibly appropriate 

methods include HPF, EF, and GS. This possibility is useful when software availability 

is considered. On contrary, the least appropriate method for pan-sharpening producing 

from Landsat 8 data is MIHST. 
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 5.1.2 Optimum four band combination dataset of Landsat 8 

  OIF and SI are used to identify an optimum four band selection of the 

derived pan-sharpened Landsat 8 image. The most optimum four band combination of 

Landsat 8 data for bands reduction with low correlation is band 3 (G), 4 (R), 5 (NIR) 

and 6 (SWIR) and the least optimum four band combination is band 2 (B), 3 (G), 4 (R) 

and 7 (SWIR). 

 5.1.3 Development of semantic model and classification for LULC 

extraction. 

  Semantic modelling and classification with SEaTH analysis is 

successfully developed for LULC extraction in Pak Thong Chai and Wang Nam Khieo 

districts, Nakhon Ratchasima province as reference area. The extracted LULC in 2013 

from the pan-sharpened Landsat 8 image include urban and built-up area, paddy field, 

cassava, maize, sugarcane, perennial trees and orchard, forest land, and water body. 

The obtained overall accuracy and Kappa hat coefficient of thematic LULC map are 

84.24% and 80.37%, respectively and PA ranges between 57.89% and 100% and UA 

varies between 64.29% and 100%. Kappa hat coefficient more than 80% represents 

strong agreement or accuracy between the classification map and the ground reference 

information. Finally, the achieved accuracy proved to be acceptable when it was 

compared with other studies that applied rule-based classifier under OBIA. 

 5.1.4 Application of semantic model and classification for spatial 

transferability analysis. 

  Overall accuracy and Kappa hat coefficient of thematic LULC of 2013 

in Khon Buri district as testing area based on the developed semantic model in reference 

area are 83.25% and 79.17%, respectively with PA between 58.33% and 95.83% and 
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UA between 47.06% and 100%. The result demonstrates strong accuracy between the 

classification map and the ground reference information. Additionally, result of 

pairwise Z test between Kappa hat coefficients of reference and testing areas shows 

accuracy of thematic LULC data from both areas are not significantly different at the 

100% confidence level. This finding concludes that the developed semantic model and 

classification for LULC extraction in reference area can be transferred to testing area 

for LULC classification and it can provide indifferent accuracy. 

 5.1.5 Application of semantic model and classification for temporal 

transferability analysis. 

  Overall accuracy and Kappa hat coefficient of the final LULC map of 

2014 with the modified semantic model of the reference area in 2013 are 66.00% and 

57.83%, respectively while PA varies between 26.32% and 100% and UA varies 

between 35.71% and 100%. Based on Kappa hat coefficient value it represents 

moderate accuracy between the classification map and the ground reference 

information. Result of pairwise Z test between Kappa hat coefficient of thematic LULC 

map of 2013 and 2014 in same area shows that accuracy of LULC classification under 

temporal transferability analysis are significantly different for the 90% two side 

confidence level. This finding infers that the developed semantic model for LULC 

classification in 2013 in reference area cannot directly be transferred for LULC 

classification in 2014 in the same area. Herewith, the developed semantic model 

required to modify by mean of trial and error for increasing the thematic accuracy. The 

modification of semantic model is time consumption and tiresome works. 

 In conclusion, it appears that semantic modelling and classification with SEaTH 

analysis can be efficiently used as new tools for LULC extraction under OBIA. In order 
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to obtain initial information from recent remotely sensed data, spatial and temporal 

transferability analysis can be made available in a fast and simple manner. 

 

5.2 Recommendation 

 In this study, semantic modelling and classification with SEaTH analysis under 

OBIA was applied to extract LULC. The possibly expected recommendations could be 

made for further studies as follows: 

  (1) In the study, LULC classification system was modified from the 

existing land use classification system and land use data in 2011 of LDD. It was found 

that many LULC classes had been changed in 2013. Therefore, the preliminary field 

survey should be conducted as soon as possible after remotely sensed data is available 

for LULC classification. 

  (2) Basic object features, which include spectral response, shape, size, 

texture, and the customized features such as vegetation indices, should be carefully 

selected for feature extraction under SEaTH analysis. Because many features can be 

transferable over a long periods of time and places such as buildings and infrastructure 

but some features may be change over a short periods of time or many places such as 

vegetation. These characteristics are directly related with spatial and temporal 

transferability analysis. 

  (3) Number of training samples should be increased according to the 

proportional area of LULC classes, instead of equally number of samples as in this 

study. Additionally, variance among training samples of any LULC class should be 

minimal. Because if there is an overlap between two classes, it can assign wrong class 

due to commission or omission errors. 
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  (4) Semantic modelling and classification with SEaTH analysis and 

spatial and temporal transferability analysis should be examined in another reference 

and testing areas for verification accuracy. Because the developed semantic model and 

classification can be prepared available in a fast and simple manner for updating LULC 

data that are, in general, required by various government agencies and private sectors. 
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APPENDIX 

 

Table 1 Detail of sampling point for accuracy assessment in reference area. 

No. X Y Ground reference class 
1 156386.5 1597192 Cassava  
2 157481.5 1603447 Cassava 
3 139676.5 1601512 Cassava 
4 152111.5 1628212 Cassava 
5 146816.5 1590412 Cassava 
6 142601.5 1601587 Cassava 
7 174161.5 1618807 Cassava 
8 143831.5 1592377 Cassava 
9 164246.5 1590697 Cassava 
10 158051.5 1622212 Cassava 
11 177956.5 1610992 Cassava 
12 183641.5 1625047 Cassava 
13 165821.5 1615042 Cassava 
14 182696.5 1612342 Cassava 
15 187346.5 1624702 Cassava 
16 178046.5 1636072 Cassava 
17 172181.5 1638472 Cassava 
18 179126.5 1639927 Cassava 
19 167966.5 1587337 Cassava 
20 143756.5 1614637 Cassava 
21 172376.5 1623457 Urban and Built-up area 
22 171206.5 1633747 Urban and Built-up area 
23 164651.5 1591012 Urban and Built-up area 
24 160301.5 1619227 Urban and Built-up area 
25 173456.5 1625842 Urban and Built-up area 
26 151691.5 1600747 Urban and Built-up area 
27 170051.5 1618012 Urban and Built-up area 
28 141461.5 1596517 Urban and Built-up area 
29 169916.5 1620622 Urban and Built-up area 
30 182606.5 1620592 Urban and Built-up area 
31 179066.5 1630762 Urban and Built-up area 
32 165626.5 1591387 Urban and Built-up area 
33 160196.5 1594852 Urban and Built-up area 
34 178436.5 1623112 Urban and Built-up area 
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Table 1 (Continued). 

No. X Y Ground reference class 
35 168371.5 1590022 Urban and Built-up area 
36 151511.5 1591972 Urban and Built-up area 
37 172211.5 1606042 Urban and Built-up area 
38 182606.5 1620592 Urban and Built-up area 
39 179066.5 1630762 Urban and Built-up area 
40 155336.5 1595017 Maize 
41 142961.5 1600807 Maize 
42 169541.5 1631902 Maize 
43 160466.5 1598797 Maize 
44 155006.5 1594147 Maize 
45 143651.5 1613992 Maize 
46 151631.5 1590487 Maize 
47 166331.5 1587622 Maize 
48 171161.5 1588282 Maize 
49 183641.5 1633087 Maize 
50 143471.5 1596652 Maize 
51 182276.5 1631707 Maize 
52 157166.5 1602682 Maize 
53 188081.5 1631842 Maize 
54 151871.5 1595632 Maize 
55 181481.5 1638997 Maize 
56 146966.5 1613782 Maize 
57 151601.5 1591432 Maize 
58 139466.5 1599097 Maize 
59 167246.5 1634242 Maize 
60 186116.5 1628017 Maize 
61 171041.5 1626877 Maize 
62 159656.5 1601542 Forest 
63 162191.5 1603912 Forest 
64 165911.5 1610617 Forest 
65 176831.5 1588822 Forest 
66 155936.5 1604167 Forest 
67 171176.5 1595122 Forest 
68 148181.5 1625467 Forest 
69 159851.5 1600087 Forest 
70 149246.5 1615282 Forest 
71 182591.5 1588942 Forest 
72 155861.5 1613977 Forest 
73 171116.5 1607497 Forest 
74 172031.5 1602457 Forest 
75 158171.5 1610032 Forest 
76 156281.5 1617457 Forest 
77 142661.5 1590637 Forest 
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Table 1 (Continued). 

No. X Y Ground reference class 
78 155396.5 1615192 Forest 
79 156986.5 1616107 Forest 
80 166661.5 1595602 Forest 
81 154256.5 1618072 Forest 
82 161561.5 1605382 Forest 
83 151451.5 1614307 Forest 
84 166211.5 1613017 Forest 
85 150281.5 1626082 Forest 
86 172271.5 1618282 Forest 
87 139316.5 1595707 Forest 
88 161681.5 1603522 Forest 
89 165116.5 1602832 Forest 
90 164801.5 1606777 Forest 
91 166181.5 1606537 Forest 
92 169901.5 1609747 Forest 
93 166346.5 1630177 Forest 
94 159266.5 1609717 Forest 
95 176951.5 1600072 Forest 
96 161081.5 1610302 Forest 
97 180776.5 1640287 Forest 
98 168926.5 1609387 Forest 
99 162191.5 1587232 Forest 
100 169586.5 1594522 Forest 
101 190676.5 1623097 Forest 
102 171026.5 1602337 Forest 
103 164111.5 1611022 Forest 
104 170981.5 1596007 Forest 
105 170126.5 1607092 Forest 
106 154586.5 1620262 Forest 
107 169886.5 1607047 Forest 
108 140351.5 1598197 Forest 
109 170171.5 1604092 Forest 
110 172916.5 1615687 Forest 
111 151286.5 1589197 Forest 
112 170441.5 1594372 Forest 
113 160871.5 1607512 Forest 
114 169601.5 1608832 Forest 
115 139436.5 1600957 Forest 
116 149771.5 1607947 Forest 
117 165836.5 1601752 Forest 
118 169886.5 1593877 Forest 
119 174701.5 1592392 Forest 
120 174071.5 1581667 Forest 
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Table 1 (Continued). 

No. X Y Ground reference class 
121 179291.5 1637527 Forest 
122 149141.5 1624102 Forest 
123 158276.5 1607212 Forest 
124 172331.5 1589767 Forest 
125 162761.5 1597597 Forest 
126 172511.5 1617322 Forest 
127 152381.5 1616902 Forest 
128 181361.5 1590637 Forest 
129 161291.5 1609912 Forest 
130 153191.5 1592257 Forest 
131 180191.5 1610842 Forest 
132 175121.5 1613737 Forest 
133 146801.5 1597852 Paddy Filed 
134 185141.5 1615717 Paddy Filed 
135 186416.5 1628917 Paddy Filed 
136 178586.5 1607932 Paddy Filed 
137 153431.5 1627687 Paddy Filed 
138 156221.5 1605967 Paddy Filed 
139 182396.5 1641652 Paddy Filed 
140 182306.5 1641322 Paddy Filed 
141 169271.5 1589752 Paddy Filed 
142 182096.5 1639867 Paddy Filed 
143 151286.5 1597717 Paddy Filed 
144 175451.5 1597882 Paddy Filed 
145 178046.5 1577602 Paddy Filed 
146 165356.5 1617142 Paddy Filed 
147 176636.5 1627237 Paddy Filed 
148 177581.5 1631362 Paddy Filed 
149 184346.5 1619587 Paddy Filed 
150 176276.5 1604497 Paddy Filed 
151 158486.5 1625812 Paddy Filed 
152 185231.5 1634302 Paddy Filed 
153 172451.5 1620262 Paddy Filed 
154 170741.5 1614712 Paddy Filed 
155 182966.5 1638247 Paddy Filed 
156 167276.5 1613062 Paddy Filed 
157 165686.5 1623277 Paddy Filed 
158 179216.5 1602907 Paddy Filed 
159 163991.5 1620592 Paddy Filed 
160 179561.5 1616332 Paddy Filed 
161 176486.5 1630582 Paddy Filed 
162 181091.5 1618582 Paddy Filed 
163 178346.5 1642357 Paddy Filed 
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Table 1 (Continued). 

No. X Y Ground reference class 
164 186566.5 1627792 Paddy Filed 
165 174836.5 1635277 Paddy Filed 
166 143231.5 1596187 Paddy Filed 
167 180086.5 1628662 Paddy Filed 
168 176516.5 1629772 Paddy Filed 
169 166736.5 1616647 Paddy Filed 
170 169646.5 1636147 Paddy Filed 
171 183491.5 1622272 Paddy Filed 
172 142121.5 1594807 Paddy Filed 
173 184676.5 1628272 Sugarcane 
174 189611.5 1622977 Sugarcane 
175 153416.5 1602097 Sugarcane 
176 159431.5 1591702 Sugarcane 
177 151856.5 1629202 Sugarcane 
178 144941.5 1628287 Sugarcane 
179 165941.5 1589362 Sugarcane 
180 161861.5 1589467 Sugarcane 
181 143876.5 1601572 Sugarcane 
182 148811.5 1597147 Sugarcane 
183 147566.5 1601032 Sugarcane 
184 180626.5 1639282 Sugarcane 
185 150761.5 1599697 Sugarcane 
186 143456.5 1619167 Sugarcane 
187 146411.5 1596337 Sugarcane 
188 145676.5 1610977 Sugarcane 
189 147686.5 1618057 Sugarcane 
190 144401.5 1616632 Sugarcane 
191 177896.5 1641667 Sugarcane 
192 155126.5 1609957 Water Body 
193 160361.5 1623097 Water Body 
194 160706.5 1622407 Water Body 
195 153056.5 1606252 Water Body 
196 152531.5 1594522 Perennial  trees and Orchard 
197 181451.5 1612282 Perennial  trees and Orchard 
198 175991.5 1602127 Perennial  trees and Orchard 
199 173756.5 1634902 Perennial  trees and Orchard 
200 164171.5 1628257 Perennial  trees and Orchard 
201 165221.5 1616752 Perennial  trees and Orchard 
202 172841.5 1640422 Perennial  trees and Orchard 
203 155816.5 1604962 Perennial  trees and Orchard 
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Table 2 Detail of sampling point for accuracy assessment in testing area. 

No. X Y Ground reference class 
1 208223.0 1601000 Cassava 
2 198995.0 1593950 Cassava 
3 208668.6 1606550 Cassava 
4 202083.6 1597055 Cassava 
5 216798.6 1591085 Cassava 
6 203688.6 1612775 Cassava 
7 201573.6 1611980 Cassava 
8 208278.6 1609115 Cassava 
9 196878.6 1592630 Cassava 
10 193263.6 1600910 Cassava 
11 201453.6 1590545 Cassava 
12 211878.6 1586990 Cassava 
13 216078.6 1606595 Cassava 
14 197913.6 1607345 Cassava 
15 201123.6 1599395 Cassava 
16 213093.6 1593560 Cassava 
17 196968.6 1595450 Cassava 
18 196518.6 1594310 Cassava 
19 213948.6 1609130 Cassava 
20 202833.6 1617125 Cassava 
21 188853.6 1610840 Cassava 
22 211638.6 1588790 Cassava 
23 217878.6 1602365 Cassava 
24 207963.6 1611005 Cassava 
25 212688.6 1608275 Cassava 
26 217953.6 1610975 Cassava 
27 214833.6 1607000 Cassava 
28 188598.6 1618430 Cassava 
29 209118.6 1601570 Cassava 
30 199473.6 1602965 Cassava 
31 200148.6 1613735 Cassava 
32 192378.6 1620635 Cassava 
33 195033.6 1605590 Cassava 
34 184248.6 1612175 Cassava 
35 211413.6 1592495 Cassava 
36 189378.6 1607045 Cassava 
37 213198.6 1612580 Cassava 
38 206419.0 1595450 Urban and Built-up area 
39 206445.0 1595460 Urban and Built-up area 
40 209523.6 1603250 Urban and Built-up area 
41 198899.0 1607710 Urban and Built-up area 
42 192170.0 1603420 Urban and Built-up area 
43 192003.6 1614455 Urban and Built-up area 
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Table 2 (Continued). 

No. X Y Reference 
44 193248.6 1609505 Urban and Built-up area 
45 209343.6 1587800 Urban and Built-up area 
46 205323.6 1609265 Urban and Built-up area 
47 199743.6 1606340 Urban and Built-up area 
48 201633.6 1608200 Urban and Built-up area 
49 199175.0 1595370 Maize 
50 192543.6 1613660 Maize 
51 182418.6 1605215 Maize 
52 191748.6 1607660 Maize 
53 195438.6 1602050 Maize 
54 181803.6 1599395 Maize 
55 203763.6 1602545 Maize 
56 216273.6 1594085 Maize 
57 181218.6 1599890 Maize 
58 199563.6 1601960 Maize 
59 207813.6 1591070 Maize 
60 211683.6 1601465 Maize 
61 194013.6 1602185 Maize 
62 204048.6 1601180 Maize 
63 202683.6 1602065 Maize 
64 189873.6 1607645 Maize 
65 202683.6 1602020 Maize 
66 198031.0 1600710 Maize 
67 195558.6 1596335 Maize 
68 192033.6 1584485 Forest 
69 202518.6 1571450 Forest 
70 182478.6 1580510 Forest 
71 181938.6 1579490 Forest 
72 204843.6 1586150 Forest 
73 199173.6 1578350 Forest 
74 205083.6 1577780 Forest 
75 215103.6 1569035 Forest 
76 189378.6 1592195 Forest 
77 186813.6 1586615 Forest 
78 187893.6 1567625 Forest 
79 187758.6 1588715 Forest 
80 193998.6 1569590 Forest 
81 200898.6 1581680 Forest 
82 191943.6 1579640 Forest 
83 187428.6 1578155 Forest 
84 209133.6 1576940 Forest 
85 189333.6 1577480 Forest 
86 209043.6 1585385 Forest 
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Table 2 (Continued). 

No. X Y Reference 
87 204843.6 1570460 Forest 
88 201783.6 1571570 Forest 
89 204168.6 1571390 Forest 
90 212388.6 1574345 Forest 
91 203118.6 1566320 Forest 
92 207303.6 1565300 Forest 
93 202038.6 1575410 Forest 
94 202668.6 1584695 Forest 
95 191868.6 1564940 Forest 
96 185568.6 1580720 Forest 
97 199668.6 1571525 Forest 
98 207543.6 1573370 Forest 
99 202563.6 1579730 Forest 
100 205098.6 1579490 Forest 
101 193278.6 1570790 Forest 
102 208038.6 1580390 Forest 
103 186513.6 1571300 Forest 
104 202533.6 1571150 Forest 
105 192363.6 1572845 Forest 
106 179073.6 1583045 Forest 
107 178653.6 1583315 Forest 
108 177558.6 1573250 Forest 
109 203193.6 1571105 Forest 
110 209913.6 1580075 Forest 
111 198858.6 1573850 Forest 
112 194868.6 1583285 Forest 
113 192078.6 1575905 Forest 
114 211158.6 1580105 Forest 
115 190353.6 1590605 Forest 
116 209433.6 1581155 Forest 
117 209148.6 1571315 Forest 
118 187113.6 1580480 Forest 
119 197658.6 1579460 Forest 
120 212343.6 1576700 Forest 
121 193308.6 1574705 Forest 
122 205248.6 1563845 Forest 
123 196113.6 1572935 Forest 
124 211293.6 1573985 Forest 
125 204393.6 1585235 Forest 
126 212838.6 1568570 Forest 
127 179763.6 1577675 Forest 
128 181923.6 1576745 Forest 
129 199113.6 1568330 Forest 
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Table 2 (Continued). 

No. X Y Reference 
130 212823.6 1577420 Forest 
131 211053.6 1580585 Forest 
132 208743.6 1578335 Forest 
133 213018.6 1577405 Forest 
134 208698.6 1573430 Forest 
135 201183.6 1582595 Forest 
136 206778.6 1589930 Forest 
137 205788.6 1600730 Forest 
138 192993.6 1616120 Forest 
139 193833.6 1599485 Forest 
140 216813.6 1605560 Paddy Field 
141 213873.6 1598810 Paddy Field 
142 200658.6 1597970 Paddy Field 
143 201663.6 1597610 Paddy Field 
144 192363.6 1609970 Paddy Field 
145 198981.0 1593920 Paddy Field 
146 203343.6 1609970 Paddy Field 
147 191043.6 1613375 Paddy Field 
148 204588.6 1598420 Paddy Field 
149 206898.6 1605680 Paddy Field 
150 187323.6 1616615 Paddy Field 
151 199069.0 1602230 Paddy Field 
152 197992.0 1608030 Paddy Field 
153 200853.6 1608425 Paddy Field 
154 190758.6 1614905 Paddy Field 
155 198543.6 1610315 Paddy Field 
156 198453.6 1609610 Paddy Field 
157 200703.6 1598450 Paddy Field 
158 193248.6 1614710 Paddy Field 
159 191253.6 1617485 Paddy Field 
160 188058.6 1606160 Paddy Field 
161 207093.6 1597070 Paddy Field 
162 216648.6 1610630 Sugarcane 
163 209403.6 1593230 Sugarcane 
164 192888.6 1618745 Sugarcane 
165 203613.6 1605485 Sugarcane 
166 194178.6 1606445 Sugarcane 
167 194478.6 1602800 Sugarcane 
168 183468.6 1601315 Sugarcane 
169 216768.6 1604660 Sugarcane 
170 214758.6 1613585 Sugarcane 
171 183813.6 1601390 Sugarcane 
172 211953.6 1606460 Sugarcane 
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Table 2 (Continued). 

No. X Y Reference 
173 219543.6 1609730 Sugarcane 
174 201406.0 1596390 Water Body 
175 192156.0 1603410 Water Body 
176 188928.6 1600925 Water Body 
177 200478.6 1593185 Water Body 
178 186978.6 1599695 Water Body 
179 202998.6 1592405 Water Body 
180 199678.0 1593900 Water Body 
181 205323.6 1591190 Water Body 
182 200688.6 1594520 Water Body 
183 200808.6 1593815 Water Body 
184 206510.0 1594140 Water Body 
185 189093.6 1597520 Water Body 
186 202593.6 1593275 Water Body 
187 189483.6 1600175 Water Body 
188 201918.6 1594085 Water Body 
189 202278.6 1594985 Water Body 
190 207183.6 1600640 Water Body 
191 190263.6 1603565 Perennial  trees and Orchard 
192 199188.6 1598315 Perennial trees and Orchard 
193 188973.6 1595600 Perennial  trees and Orchard 
194 193413.6 1601480 Perennial  trees and Orchard 
195 195393.6 1593500 Perennial  trees and Orchard 
196 181818.6 1609115 Perennial  trees and Orchard 
197 203253.6 1602605 Perennial  trees and Orchard 
198 190263.6 1594655 Perennial  trees and Orchard 
199 190008.6 1596125 Perennial  trees and Orchard 
200 186798.6 1600925 Perennial  trees and Orchard 
201 183378.6 1601690 Perennial  trees and Orchard 
202 183858.6 1597550 Perennial  trees and Orchard 
203 202788.6 1596875 Perennial  trees and Orchard 
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