

REDUCING PASSENGER TRAVEL FUEL COST

AND EMISSION: A CASE STUDY OF TANZANIA

COMMUTER TRAINS

Joachim Julius Mwambeleko

A Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Master of Engineering in Electrical Engineering

Suranaree University of Technology

Academic Year 2015

 การลดค่าเช้ือเพลงิในการเดนิทาง และลดการปล่อยมลพษิ: กรณศึีกษา
ของรถไฟในประเทศแทนซาเนีย

โจอะคมิ จูเลยีส มวมเบเลโก

วทิยานิพนธ์นีเ้ป็นส่วนหน่ึงของการศึกษาตามหลกัสูตรปริญญาวศิวกรรมศาสตรมหาบัณฑิต

สาขาวชิาวศิวกรรมไฟฟ้า

มหาวทิยาลัยเทคโนโลยสุีรนารี

ปีการศึกษา 2558

I

โจอะคิม จูเลียส มวมเบเลโก : การลดค่าเช้ือเพลิงในการเดินทาง และลดการปล่อยมลพิษ:
กรณีศึกษาของรถไฟในประเทศแทนซาเนีย (REDUCING PASSENGER TRAVEL FUEL
COST AND EMISSION: A CASE STUDY OF TANZANIA COMMUTER TRAINS)
อาจารยท่ี์ปรึกษา : รองศาสตราจารย ์ดร.ธนดัชยั กุลวรวานิชพงษ,์ 261 หนา้

งานวจิยัน้ีศึกษาความเป็นไปไดใ้นการลดค่าเช้ือเพลิงการลดมลภาวะส าหรับการเดินทาง

ของผูโ้ดยสารและการลดมลภาวะ โดยใชร้ถไฟฟ้าแบบใชแ้บตเตอร่ี (BEMUs: Battery Electric
Multiple Units) แทนรถไฟดีเซลซ่ึงวิง่ในระยะสั้น และใชร้ถไฟของประเทศแทนซาเนีย (Tanzania
commuter trains) เป็นกรณีศึกษา ความตอ้งการความรวดเร็วในการเดินทาง ปัจจยัดา้นส่ิงแวดลอ้ม
ราคาพลงังาน และการจราจรติดขดัท่ีเติบโตมากข้ึนเป็นประเด็นท่ีละเอียดอ่อนซ่ึงสามารถแกไ้ขได้
ดว้ยระบบการขนส่งท่ีย ัง่ยนื และมีประสิทธิภาพ เน่ืองดว้ยคุณสมบติัท่ีมีประสิทธิภาพสูง ค่า
เช้ือเพลิง และการปล่อยแก๊สมลภาวะต่อผูโ้ดยสารต่อกิโลเมตรต ่า รถไฟฟ้าเป็นหน่ึงในตวัเลือกท่ีดี
ท่ีสุดในปัจจุบนัต่อความทา้ทายในการช่วยการเดินทางในพื้นท่ีเมือง อยา่งไรก็ตามยงัมีการใชง้าน
รถไฟดีเซลในระบบรางปกติ (non-electrified railway) และยงัคงตอ้งใชเ้วลาในการปรับระบบราง
ปกติใหเ้ป็นระบบรางไฟฟ้าทั้งหมดระบบรางไฟฟ้าถูกน ามาใชก้บัระบบรางมากท่ีสุดในท่ีซ่ึงมี
การจราจรติดขดัมากพอท่ีจะคุม้กบัค่าใชจ่้ายท่ีสูงของระบบรางไฟฟ้า

ในการพยายามแกไ้ขปัญหาการขนส่งภายในเมือง Dar es Salaam ท่ีมีการจราจรติดขดั
รัฐบาลของประเทศแทนซาเนียเร่ิมตน้ใชง้านรถไฟดีเซลในเดือนตุลาคม ปี ค.ศ. 2012 หลงัจากการ
ปรับปรุงฟ้ืนฟูหวัรถจกัร และขบวนรถซ่ึงเคยน าไปใชง้านในพื้นท่ีชนบท การใหบ้ริการเดินรถมี
เฉพาะในตอนเชา้ ตอนเยน็ และชัว่โมงเร่งด่วนในวนัท างาน แต่เน่ืองดว้ยประสิทธิภาพของรถไฟต ่า
โดยเฉพาะอยา่งยิง่ในการเดินทางระยะสั้น ท่ีมีการจอดบ่อยคร้ัง ส้ินเปลืองเช้ือเพลิง น าไปสู่ปัญหา
ค่าใชจ่้ายในการเดินรถท่ีสูงมากข้ึน

เน่ืองดว้ยความกา้วหนา้ดา้นเทคโนโลยแีบตเตอร่ีในปัจจุบนั จึงสามารถใช ้ BEMUs แทน
รถไฟดีเซลในระยะทางสั้นๆได ้ ดงันั้นจึงสามารถลดค่าเช้ือเพลิงในการเดินทางของผูโ้ดยสาร และ
การปล่อยแก๊สมลภาวะได ้ งานวจิยัน้ีใชเ้ทคนิคปัญญาประดิษฐ์เพื่อหาความเร็วท่ีเหมาะสมท่ีสุด
สร้างแบบจ าลองของรถไฟใหเ้ป็น BEMU และจ าลองผลการเคล่ือนท่ีโดยใชค้วามเร็วท่ีเหมาะสม
ท่ีสุด วเิคราะห์การลดค่าเช้ือเพลิงในการเดินทางของผูโ้ดยสาร และการปล่อยแก๊สมลภาวะโดยใช้
รถไฟของประเทศแทนซาเนียเป็นกรณีศึกษา

เม่ือเทียบกบัรถไฟดีเซล TRL (Tanzania railways limited) พบวา่ BEMU สามารถลดค่า
เช้ือเพลิงในการเดินทางของผูโ้ดยสาร และการปล่อยแก๊สมลภาวะถึง 87.7% และ 70.89%

III

JOACHIM J. MWAMBELEKO : REDUCING PASSENGER TRAVEL

FUEL COST AND EMISSION: A CASE STUDY OF TANZANIA

COMMUTER TRAINS : THESIS ADVISOR : ASSOC. PROF.

THANATCHAI KULWORAWANICHPONG, Ph.D., 261 PP.

DIESEL TRAINS/BATTERY ELECTRIC MULTIPLE UNITS/OPTIMAL SPEED

PROFILE/PASSENGER TRAVELL FUEL COST AND EMISSION

This research studies the possibility of reducing passenger travel fuel cost

and emission by replacing diesel commuter trains operating on short distances with

Battery Electric Multiple Units (BEMUs), taking a case study of Tanzania commuter

trains. Growing mobility demand, environmental concerns, energy prices, and traffic

congestion in cities are becoming delicate issues that could be eased by more efficient

and sustainable transportation systems. Having high efficiency, low fuel cost and

emission levels per passenger kilometer, an electric train is currently one of the best

solutions to urban mobility challenges. However, there are still diesel trains operating

on non-electrified railway networks and it will take time to electrify the whole

network. Electrification is most often applied to railways where the density of traffic

movement is sufficient to justify the high fixed costs.

Trying to ease transport challenges within the congested city of Dar es

Salaam, the government of Tanzania introduced two diesel commuter trains in

October 2012; after the rehabilitation of the locomotives and coaches which were

used for up-country journeys. The commuter train service is available only in the

ACKNOWLEDGEMENTS

The work contained in this thesis has been made possible through the

generosity of several people in various ways.

I would like to express my deepest gratitude to my advisor, Assoc. Prof. Dr.

Thanatchai Kulworawanichpong for his overly support, enlightening guidance,

inspiration and encouragement throughout the course of this study, whilst allowing

me a free room to work on my own thoughts.

My sincere appreciation is extended to Assoc. Prof. Dr. Kitti Attakitmongcol

and Asst. Prof. Dr. Boonruang Marungsri who served on the thesis committee, for

their insightful and invaluable comments upon the success of this work.

It is my pleasure to express my sincere gratitude to all Electrical Engineering

students and staff for their love, kindness and support; and to TRL and TAZARA staff

for their invaluable cooperation during data collection.

I am very grateful to Suranaree University of Technology, for the scholarship

that covered my tuition fee during the period of the study.

I am greatly indebted to my lovely family on whose constant love and support

I have relied. In a very special way I thank my lovely mother who untiringly endured

all the hard times and difficulties supporting my studies. Finally, I would like to

express my gratitude to all whom I have failed to mention here, but have generously

supported me.

 Joachim Julius Mwambeleko

TABLE OF CONTENTS

 Page

ABSTRACT (THAI) ... I

ABSTRACT (ENGLISH) .. III

ACKNOWLEDGEMENTS .. V

TABLE OF CONTENTS ... VI

LIST OF TABLES ... XI

LIST OF FIGURES .. XIII

SYMBOLS AND ABBREVIATIONS ... XVI

CHAPTER

I INTRODUCTION ... 1

 1.1 Background .. 1

 1.2 Problem Definition .. 3

 1.3 Research Motivation .. 3

 1.4 Research Objectives .. 4

 1.5 Methodology .. 5

 1.6 Research Assumptions ... 5

 1.7 Scope and Limitations of the Study ... 6

 1.8 Expected Benefits .. 6

 1.9 Organization of the Thesis ... 7

VII

TABLE OF CONTENTS (Continued)

 Page

 II GENERAL REVIEW .. 8

 2.1 Introduction .. 8

 2.2 Traction Systems and Carbon Dioxide Emission 8

 2.3 Tanzania Commuter Trains... 9

 2.4 Batteries and their Applications in Electric Vehicles 12

2.4.1 Battery Parameters. .. 13

 2.4.2 Lead Acid Batteries ... 15

 2.4.3 Nickel–Metal Hydride Batteries 17

 2.4.4 Lithium-Ion Batteries .. 18

 2.4.5 Lithium Titanate Batteries in Public Transportation

 Systems ... 20

 2.4.6 Battery Electric Multiple Units 22

 2.4.7 Battery Electrical Model ... 25

 2.5 Electric Power Industry in Tanzania 27

 2.6 Train Mechanics .. 28

 2.6.1 Train Kinematics .. 28

 2.6.2 Train Dynamics .. 30

 2.6.3 Traction Energy Consumption Computation 34

 2.7 Induction Motor in Electric Traction Systems 36

 2.8 Regenerative Braking... 37

VIII

TABLE OF CONTENTS (Continued)

 Page

 2.9 Optimization Methods .. 38

2.9.1 Genetic Algorithm. ... 38

 2.9.2 Particle Swarm Optimization 41

 2.9.3 Differential Evolution ... 47

 III SPEED PROFILE OPTIMIZATION RESULTS 52

 3.1 Introduction .. 52

 3.2 Objective Function .. 53

 3.3 Routes and Train Details ... 55

 3.4 Optimal Speed Profile for TRL Route.................................... 57

 3.5 Optimal Speed Profile for TAZARA Route 61

 3.6 Discussion ... 67

 IV TRAM MOVEMENT RESULTS AND ANALYSIS 70

 4.1 Introduction .. 70

 4.2 Tram and Battery Details .. 71

 4.2.1 BEMU on TRL Route ... 72

 4.2.2 BEMU on TAZARA Route 79

 4.3 Passenger Travel Fuel Cost and Emission Analysis 86

 V CONCLUSION AND RECOMMENDATIONS 91

 5.1 Conclusion .. 91

IX

TABLE OF CONTENTS (Continued)

 Page

 5.2 Recommendations ... 92

REFERENCES ... 94

APPENDICES .. 103

APPENDIX A TANZANIA COMMUTER TRAINS TECHNICAL

 AND PERFORMANCE DATA 103

 A.1 TRL Commuter Train Data 104

 A.2 TAZARA Commuter Train Data 109

APPENDIX B OPTIMIZATION ALGORITHMS TESTING

RESULTS .. 114

B.1 Testing the Algorithms Using Ackley’s

Function ... 115

B.2 Testing the Algorithms Using Rastrigin’s

Function ... 119

B.3 Testing the Algorithms Using Rosenbrock’s

Function ... 122

APPENDIX C SPEED PROFILE OPTIMIZATION RESULTS 127

C.1 TRL Route .. 128

C.2 TAZARA route .. 156

APPENDIX D MATLAB CODE ... 192

D.1 Optimization... 193

X

TABLE OF CONTENTS (Continued)

 Page

D.2 BEMU Movement Simulation 234

D.3 Passenger Travel Fuel Cost and Emission

Analysis.. 243

APPENDIX E PUBLICATIONS ... 246

List of Publications .. 247

BIOGRAPHY ... 262

LIST OF TABLES

Table Page

2.1 Comparison of Li-ion batteries. ... 19

3.1 Stadler variobahn tram details ... 56

3.2 Tram parameters used in optimization ... 57

3.3 TRL route; speed profile values as optimized by GA.. 58

3.4 TRL route; speed profile values as optimized by DE .. 58

3.5 TRL route; speed profile values as optimized by PS ... 59

3.6 TRL route; the optimal speed profile values.. 59

3.7 TAZARA route; speed profile values as optimized by GA 62

3.8 TAZARA route; speed profile values as optimized by DE 63

3.9 TAZARA route; speed profile values as optimized by PS 64

3.10 TAZARA route; the optimal speed profile values ... 65

4.1 Tram details used in simulation ... 71

4.2 Lithium titanate battery details used in simulation .. 72

4.3 TRL route, odd direction, interstation and cumulative simulation results 76

4.4 TRL route, even direction, interstation and cumulative simulation results 79

4.5 TAZARA route, odd direction, interstation and cumulative simulation

 results .. 48

XII

LIST OF TABLES (Continued)

Table Page

4.6 TAZARA route, even direction, interstation and cumulative simulation

results ... 85

4.7 Electricity and diesel prices and emission factors ... 86

4.8 TRL diesel train operational data ... 87

4.9 TAZARA diesel train operational data .. 88

LIST OF FIGURES

Figure Page

1.1. BEMU block diagram .. 3

2.1 Railways in Tanzania ... 10

2.2 TAZARA commuter train, heading to Mwakanga.. 11

2.3 TRL commuter train, heading to Ubumgo-Maziwa. ... 11

2.4 TRL and TAZARA commuter trains’ routes ... 12

2.5 Lithium titanate battery in public transportation systems 21

2.6 British Rail battery powered rail car. ... 23

2.7 DB battery powered driving railcars .. 23

2.8 JR East Catenary and battery hybrid railcar EV-E301 24

2.9 Bombardier battery powered tram ... 25

2.10 Bombardier PRIMOVE batteries ... 25

2.11 Battery equivalent electric model .. 26

2.12 Typical Li-ion battery discharge curve .. 27

2.13 General train speed profile curve ... 28

2.14 Typical tractive force curve ... 29

2.15 Typical braking force curve ... 30

2.16 Free body diagram of an uphill moving train ... 31

2.17 Train energy consumption calculation flow chart ... 35

2.18 Genetic algorithm flow chart ... 41

XIV

LIST OF FIGURES (Continued)

Figure Page

2.19 Particle swarm algorithm flow chart .. 47

2.20 Differential evolution algorithm flow chart ... 51

3.1 Typical train speed profile ... 54

3.2 TRL and TAZARA commuter train routes .. 55

3.3 Stadler variobahn bidirectional tram .. 56

3.4 Optimal speed profile for TRL route ... 60

3.5 Tram power demand corresponding to the TRL route optimal speed

profile ... 60

3.6 Optimal speed profile for TAZARA route... 66

3.7 Tram power demand corresponding to the TAZARA route optimal speed

profile ... 66

4.1 Graphical user interface for BEMU simulation ... 71

4.2 TRL route, charging points installed at terminal stations 73

4.3 TRL route, odd direction, velocity and tractive force profiles 74

4.4 TRL route, odd direction, battery pack current and voltage, and tram

power demand profiles ... 74

4.5 TRL route, odd direction, distance travelled, net energy consumed and

battery state of charge profiles ... 75

4.6 TRL route, odd direction, tractive effort curves ... 75

4.7 TRL route, even direction, velocity and tractive force profiles 77

XV

LIST OF FIGURES (Continued)

Figure Page

4.8 TRL route, even direction, battery pack current and voltage, and tram

 demand profiles……………………………………………………….……..77

4.9 TRL route, even direction, distance travelled, net energy consumed and

battery state of charge profiles ... 78

4.10 TRL route, even direction, tractive effort curves .. 78

4.11 TAZARA route and charging points ... 80

4.12 TAZARA route, odd direction, velocity and tractive force profiles 80

4.13 TAZARA route, odd direction, battery pack current and voltage, and tram

power demand profiles ... 81

4.14 TAZARA route, odd direction, distance travelled, net energy consumed

and battery state of charge profiles ... 81

4.15 TAZARA route, odd direction, tractive effort curves 82

4.16 TAZARA route, even direction, velocity and tractive force profiles 83

4.17 TAZARA route, even direction, battery pack current and voltage, and tram

power demand profiles ... 84

4.18 TAZARA route, even direction, distance travelled, net energy consumed

and battery state of charge profiles ... 84

4.19 TAZARA route, even direction, tractive effort curves 85

4.20 Fuel cost per passenger kilometer ... 89

4.21 Carbon dioxide emission per passenger kilometer ... 90

SYMBOLS AND ABBREVIATIONS

BEMU = Battery Electric Multiple Unit

CO2 = Carbon Dioxide

DE = Differential Evolution

DoD = Depth of Discharge

EIA = Energy Information Administration

EMU = Electric Multiple Unit

ESR = Equivalent Series Resistance

EV = Electric Vehicle

EWURA = Tanzania Energy and Water Utilities Regulatory Authority

GA = Genetic Algorithm

HEV = Hybrid Electric Vehicle

IPEMU = Independently Powered Electric Multiple Unit

kph = Kilometer per hour

Li-ion = Lithium Ion

LTO = Lithium Titanate or Lithium Titanium Oxide

MEM = Tanzania Ministry of Energy and Minerals

min = Minutes

PbA = Lead Acid

PSO = Particle Swarm Optimization

SoC = State of Charge

XVII

SYMBOLS AND ABBREVIATIONS (Continued)

TAZARA = Tanzania and Zambia Railway Authority

TRL = Tanzania Railways Limited

TZR = Tanzania and Zambia Railway Authority

VOC = Open Circuit Voltage

VVVF = Variable Voltage Variable Frequency

CHAPTER I

INTRODUCTION

1.1 Background

 Mobility is an essential human need. Since the dawn of human activity; quick,

comfortable, and efficient means of transportation has always been a constant goal of

every organized society. The Watt steam engine and later the steam locomotive was

the major breakthrough in land transportation, in particular the railroad transportation.

Due to technology advancements, today’s railroad vehicles can be driven by internal

combustion engines, electric traction motors, or the combination of the two. The rail

transport is characterized by the guided movement of steel wheels on steel rails,

resulting to a metal-to-metal contact that considerably reduces rolling resistance

(Profillidis, 2006).

With the growing mobility demand, depletion of the limited petroleum

resources, environmental concerns, energy prices, and traffic congestion in cities; the

need for efficient and sustainable intracity transportation systems has never been more

critical than it is today. Thanks to public transportation systems that are often

proposed as a solution to problems caused by urban traffic congestion. Large scale

adoption of electric driven public transportation may be a sustainable solution not

only to urban traffic congestion but also to economic and environmental concerns in

transportation (Li and Lo, 2014), and (Egbue and Long, 2012).

2

In Dar es Salaam, the Tanzania's largest and highly congested city; most of the

intracity public transport is by minibuses. The minibuses tend to be extremely

overcrowded during morning and evening rush hours. Keen to ease transport

challenges within the city, the government of Tanzania introduced two diesel

commuter trains in October 2012; after the rehabilitation of the dilapidated

locomotives and coaches which were used for up-country journeys and then discarded

for years. The commuter train service is available in the morning and evening rush

hours of the working days. Unfortunately, attributed by trains’ low efficiency

especially in short journeys with frequent stops, high fuel consumption leading to

high operating cost has been a challenge (TAZARA), and (Nachilongo, 2013).

Electric trains being more efficient, fuel-cost effective and environmental

friendly than the traditional diesel trains are expected to reduce passenger travel fuel

cost and emission level. However, the existence of diesel trains is due to the fact that,

the railways in which they operate are not electrified. Not only in Tanzania, there still

exist several non-electrified railway networks around the globe, and it will take time

to electrify the whole network. Electrification is most often applied to railways where

the density of traffic movement is sufficient to justify the high capital and

maintenance costs. With the recent advancements in battery technology, this research

studies and analyses the potential of BEMUs (Figure 1.1) in reducing passenger travel

fuel cost and emission, taking Tanzania diesel commuter trains as a case study.

3

Figure 1.1 BEMU block diagram

1.2 Problem Definition

Electric multiple units (EMUs) are more efficient, fuel-cost effective and

environmentally friendly than the traditional diesel trains. In short distances, with

frequent stops, the efficiency of a traditional diesel train is even much lower than that

of an EMU. However, there still exist several diesel trains operating on non-electrified

railway networks, and it will take time to electrify the whole network. With the recent

advancements in battery technology, BEMU may be operated on short distances, non-

electrified railway networks. Thus, reduce passenger travel fuel cost and emission.

1.3 Research motivation

Despite all the advantages of an EMU over a traditional diesel train, diesel

trains still operate on non-electrified railway networks and it will take time to electrify

the entire network. Owing to their high power density, high energy density and

excellent stability, lithium titanate (LTO) batteries have emerged as the leading

candidates and proven success in vehicular applications. To a point that, battery

powered electric buses are nowadays increasingly being manufactured. A very

Battery Pack

Auxiliary load

VVVF

Converter

Traction

motor

Traction

motor

Traction

motor

Appropriate

DC voltage from a charging station

3~

=

4

interesting fact is that, a train having low coefficient of rolling friction, consumes less

energy per passenger kilometer than a bus for the same traffic.

This thesis work therefore, applies artificial intelligence techniques to search

for a tram’s optimal speed profile, models the tram as a BEMU, simulates its

movement, and analyzes reduction in passenger travel fuel cost and emission, taking

Tanzania diesel commuter trains as a case study.

1.4 Research objectives

The main objective of this research work is to study the possibility of BEMUs

to provide passenger travel services in short distances, non-electrified railway

networks and hence reduce passenger travel fuel cost and CO2 emission. That is, the

research attempts to answer the question “Is it possible for BEMUs to provide

passenger travel services in short distances, non-electrified railway networks?, and

should that be possible, by how much will they reduce fuel cost and CO2 emission per

passenger kilometer?”. In so doing, the research takes a case study of Tanzania diesel

commuter trains, and considers a short distance as a distance not greater than 30 km.

To achieve the main objective, the research is composed of the following

specific objectives:-

a) To collect the performance data of the two Tanzania diesel commuter trains.

b) To establish tram’s optimal speed profiles. As the two Tanzania commuter

trains have different routes, this is to be done for each route.

c) To model the tram as a BEMU and simulates its movement in each route.

d) To analyze by how much the BEMU reduces passenger travel fuel cost and

emission as compared to the Tanzania diesel commuter trains.

5

1.5 Methodology

Aiming at reducing passenger travel fuel cost and emission taking a case study

of the two Tanzania diesel commuter trains, data related to the trains’ performances

are collected. Through available literatures, train kinematics and dynamics, electric

traction systems and, global optimization methods are studied. Differential evolution

(DE) and particle swarm optimization (PSO) algorithms are developed using

MATLAB®. An EMU to be used in the study is chosen and then the MATLAB® built

in genetic algorithm (GA) and, the developed DE and PSO algorithms are used to

search for tram’s optimal speed profiles taking into account, speed, time, and

acceleration constrains. The speed profiles are compared and the best is taken.

The tram is then modelled as a BEMU, and based on the best speed profiles,

tram movement is simulated. Given the diesel and electricity prices in Tanzania, and

CO2 emission factors; it is finally analyzed, to what extend the BEMU reduces

passenger travel fuel cost and CO2 emission.

1.6 Research Assumptions

This research is guided by the following assumptions:

a) Tram’s gradient force is negligible.

Dar es Salaam is in a coastal zone which has a fairly flat terrain, and the two

commuter train routes are fairly flat. This makes train’s gradient force to be

very low.

b) A chosen tram is (i) powered by lithium titanate batteries, (ii) capable of

regenerative braking and, (iii) can operate on either of the two commuter train

routes.

6

c) Charging points have been installed at every terminal station, and at some of

the selected intermediate stations as desired, such that, when the tram arrives

at a charging station, a connection is made very fast and charging process

begins.

1.7 Scope and Limitations of the Study

Carbon dioxide makes up 95% of all transportation-related greenhouse gas

emissions. Relatively small amounts of methane and nitrous oxide are also emitted

during fuel combustion. As far as emissions are concerned, this research takes into

account only the carbon dioxide emission.

Moreover, to the extent that costs are concerned, this research focuses on fuel

cost per passenger kilometer which is the main contributing factor to operating cost.

To what extent a BEMU reduces passenger travel fuel cost, will be a way forward to

analyze as to whether or not, the BEMUs are a cost effective alternative to diesel

trains, serving short distances.

1.8 Expected Benefits

Results from this research will serve as guidelines to policy makers, city

authorities and other stakeholders to make policies and plans, and take actions that

will reduce passenger travel fuel cost and emission level.

7

1.9 Organization of the Thesis

The thesis comprises of five chapters. Background of the study, problem

description, objectives, methodology, scope and significance of the research are

presented in Chapter I.

Chapter II gives a brief review on traction systems, batteries, train kinematics

and dynamics, induction motors and regenerative braking, and optimization.

Information on Tanzania commuter trains and Tanzania electric power industry are

also given in Chapter II.

In Chapter III, artificial intelligence techniques are applied to search for

optimal speed profiles, and the best profiles are chosen to be used in tram movement

simulation.

Tram movement simulation results are presented, analyzed and discussed in

Chapter IV. And finally, a conclusion and recommendations are given in Chapter V.

CHAPTER II

GENERAL REVIEW

2.1 Introduction

Reducing traffic congestion, passenger travel fuel cost and emission is

definitely a primary concern of every city authority. Public transport such as trains,

significantly reduce traffic congestion. Replacing diesel commuter trains with

independently powered electric multiple units (IPEMUs) will more than likely reduce

not only traffic congestion but also passenger travel fuel cost and emission. In this

chapter various aspects about IPEMUs and diesel commuter trains are presented and

briefly discussed. Information concerning Tanzania commuter trains and electric

power industry are also presented in this chapter.

2.2 Traction Systems and Carbon Dioxide Emission

Carbon dioxide makes up 95% of all transportation-related greenhouse gas

emissions resulting from the combustion of petroleum-based products. Diesel fuel

releases approximately 2.68 kg of CO2 per liter burned in an internal combustion

engine (ICE). The Nobel Prize winning 2007 intergovernmental panel on climate

change report concluded that greenhouse gas emissions must be reduced by 50% to

85% by 2050 in order to limit global warming to four degrees Fahrenheit, thereby

avoiding many of the worst impacts of climate change (Hodges, 2010).

9

Some of the methods to reduce CO2 emission and hence mitigating the global

warming as suggested by (Abu-Rub, et al., 2014) are:

 Promote all energy consumption in electrical form. Centralized fossil

fuel power stations can effectively use emission control strategies;

 Extensively promote environmentally clean renewable energy systems;

 Replace internal combustion engine (ICE) vehicles by electric

vehicles; and

 Promote mass transportation, particularly electric trains and buses.

Apart from reducing CO2 emission, electric traction systems have several

other advantages over the traditional diesel traction systems. Advantages of electric

trains over diesel trains as given in (Steimel, 2008) include:

 Possibility of energy recovery when braking, less wear of brake shoes;

 Possible overload of electric machinery can be utilized;

 Easier maintenance, lower maintenance cost, higher number of

operational hours; and

 Low energy cost, generally a cheaper traction unit.

As the saying goes, there are two sides to every coin. The disadvantage to

electric trains is the high initial cost for catenaries and power-supply network. This is

the obvious reason why some diesel trains are still in operation.

2.3 Tanzania Commuter Trains

Tanzania railway system comprises of two networks operated by two

companies. Tanzania-Zambia Railway Authority (TAZARA or TZR), operates a

single track 1067 mm gauge railway network from Dar es Salaam port, Tanzania to a

10

town of Kapiri Mposhi Zambia. And Tanzania Railways limited (TRL) operates the

other single track 1000 mm gauge railway network from Dar es Salaam port to the

inland as shown in Figure 2.1.

Figure 2.1 Railways in Tanzania (Wikipedia, 2015)

Following the traffic congestion and traveling hardships in the congested

Tanzanian commercial city of Dar es Salam; the government of Tanzania introduced

two diesel commuter trains in October 2012. Services are provided only in the

morning and evening rush hours of the working days, by TAZARA (or TZR) and

TRL using part of their respective railway networks. TAZARA commuter train

(Figure 2.2) serves a route of 21 km from TAZARA Dar es Salaam main station to

Mwakanga, while TRL commuter train (Figure 2.3) serves a route of 12.05 km from

Dar es Salaam Central station to Ubungo-Maziwa as shown in Figure 2.4.

TRL network: 1000 mm gauge

TAZARA network: 1067 mm gauge

11

Figure 2.2 TAZARA commuter train, heading to Mwakanga

Figure 2.3 TRL commuter train, heading to Ubumgo-Maziwa

12

Figure 2.4 TRL and TAZARA commuter trains’ routes

The trains were introduced after the rehabilitation of the dilapidated

locomotives and coaches which were discarded for years. Attributed by low efficiency

of the locomotives and coaches especially in short journeys with frequent stops; high

fuel consumption leading to high operating cost has always been a challenge. The

TRL commuter train was reported to have caused a loss of approximately US$

334000 by November 2013, operating at a loss of approximately US$ 1000 per day

(Nachilongo, 2013).

2.4 Batteries and their Applications in Electric Vehicles

Generally a battery is an assemblage of cells electrically connected in series

and/or parallel to provide the desired voltage and current. The cells consist of positive

and negative electrodes in an electrolyte. It is the chemical reaction between the

12.05 km

TRL route

21 km

TZR route

TZR

Station

Ubungo-Maziwa

Mwakanga

Central

Station

13

electrodes and the electrolyte which generates direct current (DC) electricity. In the

case of secondary (or rechargeable) batteries the chemical reaction can be reversed by

reversing the current, and the battery returned to a charged state. In primary (or non-

rechargeable) batteries, the chemical reaction is non-reversible (Larminie and Lowry,

2012).

In this section, battery parameters and three leading battery types: lead-acid

(PbA), nickel metal hydride (Ni–MH) and, lithium-ion (Li-ion) batteries are briefly

discussed. Information on battery electric multiple units (BEMUs) and, battery

electrical model used in this thesis work are also briefly presented in this section.

2.4.1 Battery Parameters

Some of the basic definitions and aspects in the field of batteries

include the following:

 Capacity (C) and C-rate

The battery capacity specifies the amount of electric charge a fully

charged battery can supply before it is fully discharged. A more general unit for

battery capacity is ampere-hour (Ah). A battery of 𝑚 Ah can supply 1A current for 𝑚

hours or in theory
𝑚

𝑥
 A for 𝑥 hours. But in general, the battery capacity is dependent

on discharge rate. Generally the higher the discharge rate, the lower capacity the

battery will have, a degree to which the capacity is reduced will depend on the battery

chemistry (battery type). The charge and discharge current of a battery is measured in

C-rate, in order to normalize it against the battery capacity; if 𝑚 is the battery

capacity in Ah, 𝑛C rate will be equal to 𝑛𝑚 A (Mi., et al, 2011).

14

 State of Charge (SOC) and Depth of Discharge (DoD)

Battery state-of-charge (SoC) is the percentage of charge available

from a battery relative to the entire capacity of the battery. On the other hand, depth-

of-discharge (DoD) is the percentage of charge drawn from the battery relative to the

entire battery capacity. The DoD parameter is often used in discharge pattern

recommendations. A battery manufacturer might recommend not to exceed a certain

level of DoD (depending on the type of the battery chemistry) in relation to battery

lifetime issues (Abu-Rub., et al, 2014). If a battery is charged or discharged at Cr C-

rate (in computer simulation the current and hence Cr is negative during charging and

positive during discharge), from time to to t then, its SoC can be expressed as

      
0

0 100%

t

r

t

SoC t SoC t C d    (2.1)

where SoC(to) is the initial SoC (SoC at time to).

 Power and energy ratios

Maximum power that a battery can deliver and nominal energy that

can be stored in the battery are often expressed in per unit mass or volume of the

battery. These ratios are important technological aspects in applications such as

electric traction. Specific power [W/kg] is the maximum available battery power per

unit mass and, power density [W/m3] is the maximum available battery power per unit

volume. The higher the ratios, the faster the battery can give and take energy. Specific

power and power density determine the battery weight and size required to achieve a

given charge or discharge rate. Specific energy [Wh/kg] is the nominal battery energy

15

per unit mass and, energy density [Wh/m3] is the nominal battery energy per unit

volume. Along with the energy consumption of a vehicle, specific energy determines

battery weight and energy density determines battery size required to achieve a given

electric range.

 Ampere-Hour (or Charge) Efficiency and Energy Efficiency

The chemical reactions inside the battery during charge and discharge

are not ideal and there are always losses involved. In other words, not all the energy

used to charge the battery is available during discharge. Some of this energy is wasted

in other forms of energy dissipation such as heat energy dissipation. Ampere-hour

efficiency is the ratio between the electric charge given out during discharging a

battery and the electric charge needed for the battery to return to the previous SoC.

The typical values of charge efficiency range from 65 to 90%. The efficiency depends

on various factors such as the battery type, temperature, and rate of charge. This

parameter may be mentioned by other names such coulombic efficiency or charge

acceptance. On the other hand, energy efficiency is the ratio of electrical energy

supplied by a battery to the amount of charging energy required for the battery to

return to its previous SoC. The efficiency decreases considerably if a battery is

discharged and charged very quickly, it also reduces as the battery ages. Typically, the

energy efficiency of a battery is in the range of 55–95% (Abu-Rub., et al, 2014) and

(Mi, et al, 2011).

2.4.2 Lead Acid Batteries

PbA batteries are relatively old technology that maintains 40–45% of

the battery market, mainly due to their extensive use as starting, lighting, and ignition

(SLI) batteries in automobiles, trucks, and buses. They are also attractive for hybrid

16

electric vehicles (HEVs) and energy storage applications owing to their relatively

high round-trip efficiencies of 75–80%. However, for electric vehicles (EVs), more

robust PbA batteries that withstand deep cycling and use either a gel or adsorbed glass

mat (AGM) rather than a liquid electrolyte are used. Valve regulated lead acid

(VRLA) batteries are modern PbA designs that immobilize the electrolyte using either

highly porous and absorbent mats or a fumed silica gelling agent (Rahn and Wang,

2013) and (Larminie and Lowry, 2012)

In the PbA cells, the negative plates have a spongy lead as their active

material, while the positive plates have an active material of lead dioxide. The plates

are immersed (either fully or partially) in an electrolyte of dilute sulfuric acid. The

sulfuric acid combines with the lead and the lead oxide to produce lead sulfate and

water, electrical energy being released during the process. Both electrode reactions

result in the formation of lead sulfate. The electrolyte gradually loses the sulfuric acid,

and becomes more dilute. When being charged, the electrodes revert to lead and lead

dioxide. The electrolyte also recovers its sulfuric acid, and the concentration rises.

The overall chemical reaction for the lead acid battery is given as

arg

2 2 4 4 2arg
PbO Pb 2H SO 2PbSO 2H O

disch e

ch e
   (2.2)

A gas phase (when hydrogen and oxygen are released, leading to loss

of electrolyte) may be present in the cell if it is overcharged or over-discharged. The

formation of gas phase is a side reaction that is not desirable and can lead to unsafe

conditions and/or reduced battery life. Lead-acid batteries can last a long time if they

are charged and discharged properly. (Rahn and Wang, 2013), (Larminie and Lowry,

2012) and (Mi., et al, 2011). Lead, sufuric acid and plastic containers being

17

considerlably inexpensive, makes PbA batteries relatively cheap. But, their main

disadvantge with regard to electric traction is that, they have low power and energy

ratios, and they and not abuse tolerant.

2.4.3 Nickel–Metal Hydride Batteries

The Ni–MH batteries offer higher performance at higher cost than

VRLA batteries. They have very good cycle life and capacity, can be recharged very

fast and, are safe and abuse tolerant. They have been heavily used in HEV

applications, including the Toyota Prius. The disadvantages of Ni–MH batteries are

high self-discharge rate and poor charge acceptance capability (low charge efficiency)

at elevated temperatures (Rahn and Wang, 2013) and (Husain, 2003).

In the Ni-MH cell, the positive electrode contains nickel hydroxide as

its principal active material and the negative electrode is mainly composed of

hydrogen-absorbing nickel alloys. The cell has an electrically insulating separator, an

alkaline electrolyte (e.g., a solution of potassium hydroxide, KOH), and a vented

metal case. During discharge, nickel oxyhydroxide (NiOOH) is reduced to nickel

hydroxide (Ni(OH)2) in the positive electrode and in in the negative electrode, metal

hydride (MH) is oxidized to the metal alloy (M); and during charge; the electrodes

revert to nickel oxyhydroxide and metal hydride. The overall reversible chemical

reaction for the Ni-MH battery cell is given as

arg

2arg
MH+NiOOH M+Ni(OH)

disch e

ch e
 (2.3)

The basic principle is a reversible reaction in which hydrogen is

bonded to the metal and then released as free hydrogen when required. An interesting

feature of the Ni-MH cell is that, the composition of the electrolyte does not change

18

during charge or discharge – both water and OH- ions are created and used at exactly

the same rate. The result is that the internal resistance and open-circuit voltage of the

cell are much more constant during discharge than with PbA batteries (Rahn and

Wang, 2013) and (Larminie and Lowry, 2012).

2.4.4 Lithium-Ion Batteries

Definitely a battery suitable for an electric vehicle (EV) is the one with

high power and energy ratios, low self-discharge rate, low energy cost per cycle life

and, abuse tolerant (high safety level). With convectional battery technologies (which

have low power densities) such as lead-acid batteries; battery-supercapacitor hybrid

systems including high energy batteries and high power supercapacitors can be used.

Supercapacitors have higher power densities and longer cycle life than batteries.

However, they are heavy (have low energy density) and have high self-discharge

rates. Besides, following the development in Li-ion battery technologies, Li-ion is the

most energy- and power-dense battery type. Features of Li-ion batteries are improving

while prices decrease. Thus, a suitable battery can be used rather than a

supercapacitor in order to maintain high power (Dincer, et al., 2015).

Lithium metal has high electrochemical reduction potential (3.045 V)

and the lowest atomic mass (6.94), which shows promise for a battery of 3 V cell

potential when combined with a suitable positive electrode. The negative electrode of

a convectional Li-ion cell is made from carbon in the form of graphite or coke. The

positive electrode is a lithium metallic oxide such as lithium cobalt oxide, lithium iron

phosphate and lithium manganese oxide. The electrolyte is lithium salt in organic

solvent. Li-ions (Li+) alternatively move into and out of host lattices during charging

and discharging cycles. This fundamental mechanism has led to the Li-ion battery’s

19

nick-name of “rocking-chair” battery. During cell discharge, the Li+ are released from

the negative electrode and travels through the electrolyte toward the positive

electrode. In the positive electrode, the lithium ions are quickly incorporated into the

lithium compound material. The process is completely reversible; the overall

reversible chemical reaction occurring in a Li-ion cell is

arg

1 2arg
Li C Li M O C LiM O

disch e

x x y z ych e  (2.4)

Unlike PbA and Ni-MH batteries, the Li-ion batteries have a much

lower self-discharge rate, thus greatly increasing idle period capabilities. These

bateries also have longer cycle life (Husain, 2003) and (Mi., et al, 2011)

The family of Li-ion batteries is vast, most common Li-ion batteries

include lithium cobalt oxide (LCO), lithium manganese oxide (LMO), lithium nickel

manganese cobalt oxide (NMC), lithium nickel cobalt aluminum oxide (NCA),

lithium iron phosphate (LPO) and lithium titanate (LTO). A comparison between

these Li-ion battery types is given in Table 2.1

Table 2.1 Comparison of Li-ion batteries (Stroe, et al., 2015).

Battery

type

Specific

capacity

[mAh/g]

Nom. Voltage

[V]

Energy density

[Wh/kg]

Cycle life

[cycles]

LCO 140 3.7 110 – 190 500 – 1000

LMO 146 3.8 100 – 120 1000

NMC 145 3.6 100 – 170 2000 – 3000

NCA 180 3.6 100 – 150 2000 – 3000

LPO 170 3.3 90 – 115 ˃ 3000

LTO 170 2.2 60 – 70 ˃ 5000

20

LTO battery is a new generation of Li-ion battery which uses lithium

titanate oxide (Li4Ti5O12) as negative electrode instead of graphite. The nanoparticles

of lithium titanate oxide increase the electrode-electrolyte contact area and reduce the

diffusion distance for lithium ions and electrons, thus reduce the polarization

resistance and allow the quick charging and discharge (up to 10C rate) of lithium

titanate cells. Lithium titanate oxide also saves other advantages, such as superior

safety, outstanding cycling stability, negligible volume expansion in

charging/discharging processes, excellent low temperature performance, low toxicity

and low material cost. These remarkable advantages have made LTO battery a leading

candidate for fast charging and power assist vehicular applications (Stroe, et al., 2015),

(Liu, et al., 2015), and (Yao, et al., 2014).

A disadvantage of lithium-titanate batteries is that they have a lower

cell voltage, which leads to a lower energy density than conventional lithium-ion

battery technologies. However, this lower cell voltage prevents lithium deposition,

even under overcharge conditions or with longer cycling, which results in enhanced

safety and long life (Stroe, et al., 2015), and (Horiba, 2014).

2.4.5 Lithium Titanate Batteries in Public Transportation Systems

Opportunity charging in public transportation systems, such as large

capacity articulated electric bus project TOSA (Figure 2.5a), is using the LTO

batteries high charging rate capability to partly recharge the batteries at selected bus

stops in a record time of 15 seconds while passengers get on and off the bus. At the

end of the bus line a 3 to 4 minutes ultrafast-charge is made to fully recharge the

batteries (TOSA, 2013), and (ABB Communications, 2013).

21

Škoda Perun HP electric bus (Figure 2.5b) is using a 78 kWh LTO

battery pack. The battery pack can be recharged quickly (within 5-8 minutes) to the

full capacity and the bus is ready to run other 30 km (Škoda Transportation). With

LTO batteries the Volvo 7900 Electric bus (Figure 2.5c) is also using opportunity

charging to fast recharge the batteries to full capacity (4 x 19 kWh) within 6 minutes

(Volvo). The Volvo 7900 Electric Hybrid is also using LTO batteries, with

opportunity charging the bus runs on electricity for 70% of a normal route, cuts

energy consumption by 60% and reduces CO2 emissions by 75% (Volvo). Shown in

(Figure 2.5d), is a 27.4 kg, 1.4 kWh (24 V, 60 Ah) Altairnano LTO battery which

complies with the UN 3090, UN 3480 transportation specifications (Altairnanno).

(a) TOSA articulated battery bus

(TOSA, 2013).

(b) Škoda Perun HP electric bus (Škoda

Transportation)

 (c) Volvo 7900 Electric bus (Volvo)
(d) Lithium titanate battery (Altairnanno).

Figure 2.5 Lithium titanate battery in public transportation systems

22

Researches are still going on to further improve battery performance at

low cost. In August 2015, a team of researchers from Tsinghua University, China;

Massachusetts Institute of Technology and University of Wisconsin-Milwaukee,

USA; revealed new findings in Li-ion battery technology that would increase battery

cycle life, energy and power densities at low cost. These new findings which

incorporate nano-scaled aluminum core with adjustable interspace and titanium oxide

layer (AL/TiO2) as anode, have been reported in a publication by (Li, et al., 2015).

It is very interesting that, owing to low coefficient of rolling resistance

rail transit consumes less energy per passenger kilometre than road transport for the

same traffic. Authours in (Mwambeleko, et al., 2015) present a publication that

compares net traction energy consumption of a tram and a trolley bus; and conclude

that, owing to the low rolling resistance the tram consumes only 57 percent of the

energy consumed by the trolleybus per passenger kilometer. The author in (Profillidis,

2006) points out that; owing to the low rolling resistance, rail transport consumes less

energy than road transport for the same traffic. This implies that, if the LTO batteries

have proven success powering the electric buses, such as the articulated battery

powered electric bus TOSA, they will prove even more success powering battery

electric multiple units. And if battery powered buses are cost effective, then BEMUs

will be even more cost effective.

2.4.6 Battery Electric Multiple Units

There have been various attempts to utilize battery powered railcars,

notably British Rail operated a two car electric railcar (Figure 2.6) powered by a

series of lead acid batteries on Deeside in Scotland from 1958 to 1962. Designed to

take advantage of cheap hydroelectric power, the railcar successfully operated for a

23

period of about four years prior to closure of the Deeside branch (UK Tram, 2012).

Between 1955 and 1995 Deutsche Bahn (DB) railways successfully operated

electric railcars (Figure 2.7) utilising lead-acid batteries (Wikipedia, 2015). Despite

the relatively old battery technology, these battery railcars were successful. Over the

past two decades battery technology has greatly improved.

Figure 2.6 British rail battery powered rail car (UK Tram, 2012).

Figure 2.7 DB battery powered driving railcars (Wikipedia, 2015)

In May 2011, a Munich Stadler variobahn tram was reported to set a

new world record by driving 16 km on a single charge of a 380 kg Li-ion battery pack

24

(Stadler, 2011). In Japan, the East Japan Railway Company (JR East) has been

developing and testing “catenary and storage battery hybrid train system” since 2011.

By March 2015, the EV-E301 series electric railcar (Figure 2.8) was in commercial

operation capable of driving on a 20.4 km non-electrified section (Karasuyama line),

using Li-ion batteries (Hirose, et al., 2012), and (Shiraki, et al., 2015).

Figure 2.8 JR East Catenary and battery hybrid railcar EV-E301(Shiraki, et al.,

2015).

In November 2015 Bombardier battery powered tram (Figure 2.9) set a range

record when it successfully completed a 41.6 km catenary-free test run, the tram uses

‘PRIMOVE’ battery system (Figure 2.10) which has been developed by Bombardier

using nickel manganese cobalt (NMC) Li-ion cells (Bombardier Transportation,

2015).

25

Figure 2.9 Bombardier battery powered tram (Bombardier Transportation, 2015)

(a) Bombardier 49 kWh, 660 kg

PRIMOVE battery

(b) Bombardier 30 kWh, 360 kg

PRIMOVE battery

Figure 2.10 Bombardier PRIMOVE batteries (Bombardier Transportation, 2015)

It was reported in (Škoda Transportation, 2013) that “In the case of

trams for the Turkish city of Konya, Škoda is going to use high-performance batteries

with nano-lithium-titanium technology. The batteries are always recharged during

tram operation under the trolley in just a few minutes.”

2.4.7 Battery Electrical Model

There exist numerous techniques by which a battery electrical model

can be derived. For this thesis work, the Thevenin equivalent battery model as shown

in Figure 2.11 was considered sufficient. The battery model consists of an ideal

26

battery with open-circuit voltage VOCBatt in series with a constant equivalent series

resistance ESRBatt. From the given battery model, the output voltage UBatt will drop

with increase in discharge current and rise with the increase in charge current due to

voltage drop across the resistor ESRBatt. The output voltage UBatt is then given as

 ESRBatt Batt Batt BattU VOC I  (2.5)

where 𝐼𝐵𝑎𝑡𝑡 is the battery current which is positive during discharge and negative

during charging.

Figure 2.11 Battery equivalent electric model

As mentioned in section 1.6, in this thesis work the tram is assumed to

be powered by lithium titanate batteries. A typical discharge curve of a Li-ion battery

is shown in Figure 12. When the battery is fully charged its open-circuit voltage is

higher than the nominal voltage. And, when the battery discharges, the open-circuit

voltage drops exponentially to a certain level slightly above the nominal voltage

where it stays fairly constant to about 80% DoD (depending on the rate of discharge).

And when the battery is fully discharged its open-circuit voltage will be slightly lower

VOCBatt

ESRBatt
+

-

UBatt

27

than the nominal voltage. Thus the open-circuit voltage of a Li-ion battery stays

reasonably constant throughout the discharge circle.

Figure 2.12 Typical Li-ion battery discharge curve

2.5 Electric Power Industry in Tanzania

The electricity supply industry in Tanzania is dominated by the Tanzania

Electric Supply Company Limited (TANESCO), which is a vertically integrated

utility, wholly owned by the government. TANESCO owns and operates the

interconnected main grid (220 kV, 132 KV and 66 kV) connecting the major load

centres (EWURA, 2015). As of May 2014, Tanzania’s total installed generation

capacity was 1,583 MW; composed of hydro 561 MW (35 %), natural gas 527 MW

(34 %) and liquid fuel 495 MW (31 %) power plants; and the system losses were

19%. TANESCO also imports power from Uganda (10 MW), Zambia (5 MW) and

Kenya (1MW) (MEM, 2014).

28

2.6 Train Mechanics

A clear understanding of the properties of motion of objects, forces and

torques and, their effect on motion is a prerequisite to understand train movement and

energy consumption. In this section the theory behind train kinematics, train dynamics

and traction energy consumption are briefly presented.

2.6.1 Train Kinematics

Train kinematics can be well understood from its speed profile curve

drawn as speed versus time as shown in Figure 2.13. The slope of the curve represents

acceleration or deceleration as the case may be, and area under the curve gives the

distance travelled. The speed profile curve generally consists of four operating modes

namely: i) accelerating or motoring mode, ii) constant speed or cruising mode, iii)

coasting or freewheeling mode and, iv) braking mode.

Figure 2.13 General train speed profile curve

Normally when a train starts moving, it accelerates with a constant

acceleration to a certain speed called base speed vb. From the base speed to maximum

29

desired speed vm tractive power is kept constant and tractive force reduces inversely

to speed, till it balances that due to resistance to the train motion (Steimel, 2008), and

(Rajput, 2006). To avoid slipping, the tractive force is always kept lower than or equal

to the maximum allowable force, depending on the adhesion between the driving

wheels and the track. A typical tractive force curve is shown in Figure 2.10.

Figure 2.14 Typical tractive force curve

When the tractive force balances the forces opposing the motion, the

train moves with a constant speed (zero acceleration) drawing constant power. As a

technique to minimize tractive energy consumption, before brakes are applied,

tractive power is disconnected and the train is left to move with its own kinetic

energy, this is called coasting or freewheeling. The train speed starts decreasing on

account of resistance to motion. Coasting has long been recognized as one of the

techniques to save energy, though it increases interstation run time (Rajput, 2006),

and (Goodman, 2008).

Finally, brakes are applied and the train is brought to a stop. As with

the tractive force, braking force is also limited to a maximum allowable force. A

30

typical braking force curve is as shown in Figure 2.15, the negative implies braking

(force in the opposite direction to motion). Modern trains use regenerative braking to

recapture train’s kinetic energy. Some trains just use rheostatic braking, where the

braking energy is dissipated in a bank of resistors as heat. As opposed to friction

braking dynamic braking (regenerative or rheostatic braking) has proven to minimize

maintenance cost of the braking system (Jiang, et al., 2014).

Figure 2.15 Typical braking force curve

2.6.2 Train Dynamics

Just like any other vehicle, train’s movement calculations are governed

by the Newton’s laws of motion. A free body diagram showing the forces acting upon

an uphill moving train is shown in Figure 2.16.

31

Figure 2.16 Free body diagram of an uphill moving train

The relationship between the forces is expressed as

 T R

dv
F m F

dt
  (2.6)

 R RR grad dragF F F F   (2.7)

where FT is the vehicle tractive force (N), FR is the net resistance force against the

vehicle’s motion (N), FRR is the vehicle rolling resistance force (N), Fdrag is the

aerodynamic drag force (N), Fgrad is the vehicle gravitational (gradient) force (N), m is

the vehicle effective mass (kg), dv is the change in velocity (m/s) and dt is the change

in time (s) (Mwambeleko, et al, 2015).

The vehicle effective mass takes into account the rotary allowance and

passenger load. Due to the fact that, when a train accelerates along a track the total

mass (tare mass + passenger or freight mass) is accelerated linearly but the rotating

parts are also accelerated in a rotational sense. The parts involved are usually the

wheelsets, gears and motors, the effect of the latter being magnified by the gear-ratio

32

squared (assuming the motors are geared to rotate faster than the wheels, which is

normally the case). It is usual to express this rotational inertia effect as an increase in

the effective linear mass of the train called the 'rotary allowance' and expressed as a

fraction of the tare weight of the train. Thus, the train effective mass m is given as

   _ 1tare pass frm m m   (2.8)

where mtare is the tare mass, 𝜆 is the rotary allowance and mpass_fr is the passenger or

freight load. The value of the rotary allowance varies from 0.05 to 0.15 depending on

the number of motored axles, the gear ratio and the type of car construction.

(Goodman, 2008) and (Kulworawanichpong, 2003)

2.6.2.1 Aerodynamic drag, Fdrag

The aerodynamic resistance force results from three basic

effects: i) the pressure different in front and behind the vehicle, ii) skin friction

representing the surface roughness of the vehicle body and iii) internal flow of air

entering the internal parts of the vehicle. It is common to express the aerodynamic

resistance force in the basic form as

 21

2
drag air d f airF C A V

(2.9)

where
air is the air density (kgm-3),

dC is an aerodynamic drag coefficient, Af is the

projected vehicle frontal area (m2) and, Vair is the speed of air relative to the vehicle

body (ms-1) (Kulworawanichpong and Punpaisarn, 2014).

33

The density of air does of course vary with temperature,

altitude and humidity. However, a value of 1.25 kgm−3 is a reasonable value to use in

most cases (Larminie and Lowry, 2012).

2.6.2.2 Gradient force, Fgrad

Gradient force is the force needed to drive a vehicle along the

slope, which is simply the component of the vehicle weight that acts along the slope.

It is positive when the vehicle is moving uphill and negative when the vehicle is

moving downhill, mathematically expressed as

 gradF mgsin  (2.10)

where m is the vehicle effective mass (kg), g is the acceleration due to gravity

(9.81ms-2) and,  is the slope angle.

2.6.2.3 Rolling Resistance Force, FRR

Rolling resistance is the resistance to motion of the rotating

parts. At the most elementary level the rolling resistance force is mathematically

expressed as

 µRRF mg (2.11)

where mg is the wheel load and µ is the rolling resistance coefficient. In some

literatures, Equation (2.9) and Equation (2.11) are combined in one equation

expressing the resistance to motion due to aerodynamics and coefficient of rolling

friction as a function of velocity, which is called Davis’ equation as in (Gillespie,

1992), and (Lu, et al., 2013).

34

2.6.2.4 Tractive force, FT:

A train moves through the application of tractive force FT

which is produced at a driving wheel-rail interface; it is normally restricted in such a

way _T T MaxF F , where _T MaxF is the tractive force beyond which slipping occurs as

previously discussed. The maximum tractive force depends on the adhesion between a

driving wheel and a rail, the greater the adhesion the greater the maximum tractive

force. Usually the force needed to start slipping is greater than that needed to continue

slipping.

 2.6.3 Traction Energy Consumption Computation

In a computer simulation, the approach to calculate the tractive energy

consumed by a train travelling from one station to the next is as summarized in step

(i) through step (vii) below

I. Variables are initialized, e.g. t = 0; v(t) = 0; s(t) = 0;

II. Train acceleration is determined;

III. At every time step (dt), a value of velocity (v) and change in

distance (ds) are calculated as v u adt  and

2 0.5ds udt adt  , where u and v are previous and current

velocities respectively and a is the acceleration;

IV. Resistance forces (FRR, Fgrag and, Fgrad) are calculated, and then

the tractive force (
FT) is obtained;

V. The output mechanical tractive power (MTP), and input

electrical tractive power (ETP) are calculated as MT FP T v and

MT
ET

P
P


 respectively and then electrical tractive energy

35

consumption (
TE) is computed as T ETE P dt ; where  is the

input electrical tractive power (
ETP) to the output mechanical

tractive power (
MTP) conversion efficiency;

VI. The data are stored; and

VII. The values of time (t), velocity (u), and distance (s) are updated

as t t dt  , u v and s s ds  respectively.

VIII. The cycle (step II to step VII) repeats till a vehicle reaches a

stopping point.

These procedures are presented in a flow chart in Figure 2.17.

Figure 2.17 Train energy consumption calculation flow chart

Initialize variables

e.g. t=0; v = 0

𝑆 ≥ 𝑆𝑠𝑡𝑜𝑝?

Calculate acceleration,

velocity and distance.

STOP

Calculate mechanical power,

electrical power, and electrical

energy.

Update time, velocity

and distance.

No

Yes

Load train

parameters

START

Store data

Calculate the forces.

36

2.7 Induction Motor in Electric Traction Systems

The asynchronous or induction motor- especially in the robust form with

squirrel cage rotor has always been the “work horse” of electric drive technology and

thus the ideal traction means for railway technical engineers (Steimel, 2008).

The induction motor can be operated in three modes: motoring, generating,

and plugging. If the stator terminals are connected to a three-phase supply, the stator

windings will produce rotating magnetic field and the rotor will rotate in the direction

of the stator rotating magnetic field. This is the natural (motoring) mode of operation.

If the speed of rotor is higher than the synchronous speed (due to either the inertial of

a drive system e.g. a vehicle going downhill or, decrease in synchronous speed e.g.

when frequency of the supply is lowered) and the rotor rotates in the same direction as

the stator rotating field, the motor will produce a generating torque—that is, a torque

acting opposite to the rotation of the rotor (or acting opposite to the stator rotating

magnetic field).

In electric traction, it is this this regenerative mode of the induction motor that

is used to provide dynamic braking. The motor may be fed from a variable-frequency

drive (VFD) or a variable-voltage-variable-frequency (VVVF) supply to control speed

of the drive system. To stop the drive system, the frequency of the supply is gradually

reduced, such that the instantaneous speed of the drive system is higher than the

synchronous speed. As a result, the generating action of the induction motor will

cause the power flow to reverse and the kinetic energy of the drive system will be fed

back to the supply. If the drive system is required to stop very quickly, changing the

motor’s terminal phase sequence will cause the stator rotating field to rotate opposite

to the rotation of the rotor, producing the plugging operation (Sen, 2014).

37

2.8 Regenerative Braking

Generally there are two main types of braking in traction systems: dynamic

(electric) braking and the more traditional friction braking. In dynamic braking, as a

traction motor is turned into a generator, the generating torque provides the necessary

braking force. Depending on how the generated current is used, the dynamic braking

can be either rheostatic or regenerative braking. In rheostatic braking, the current is

dissipated in banks of resistors. This type of braking is valuable on heavy-haul diesel-

electric locomotives and some dc fed (either by third rail or catenary) electric trains

that do not have sufficient onboard storage facilities, running on routes with extensive

down grades. When regenerative braking is employed, instead of dissipating the train

kinetic energy in the bank of resistors as heat energy, this energy is either feed back to

the grid, or stored in the storage facilities such as capacitors and batteries. These

storage facilities may be installed onboard (in the train) and/or at a stopping station.

Recent studies have shown that up to 40% of the energy supplied to electrical

rail guided vehicles could be recovered through regenerative braking. The more

frequently a train stops, the more it can benefit from regenerative braking. Apart from

energy saving, regenerative braking reduces the need for friction brakes, and offer

substantial savings in brake maintenance. The full-stop commuter services at

Birmingham and Manchester in the United Kingdom are able to use regenerative

braking. With regenerative braking being enabled, their disk brake pad life was

around 18 months; when the electric braking was switched off, the pad life reduced to

18 days (Barrero, et al., 2008), and (Jiang, et al., 2014).

38

2.9 Optimization methods

In engineering practice, optimization is an act, process, or methodology of

finding the best value(s) of the decision variable(s) under given conditions which

define a set of available alternatives. Optimization normally aims at minimizing

system cost, operational cost, or required effort. In some cases optimization may also

aim at maximizing profit. A function of the decision variables is written to reflect

what is to be optimized, and optimization techniques are used to search for the best

values of the decision variables.

Optimization methods are mainly classified as traditional (or classical) and

modern. Traditional optimization methods such as golden search, Newton Raphson,

and steepest descent have no ability to escape from a local optimal, once any optimum

point (be it local or global) is found, the methods do converge. In most cases, that

optimum point will be the one closest to the starting point. On the other hand the

modern optimization methods have great ability to escape from the local optimal and

converge to a global optimal. This section discusses the following modern

optimization methods: Genetic algorithms (GAs), Particle swarm optimization (PSO),

and differential evolution (DE).

2.9.1 Genetic Algorithm

Genetic Algorithms (GAs) were first presented systematically by J.

Holland in 1992. But, the idea of evolutionary computing was introduced in the 1960s

by I. Rechenberg in his work “Evolution strategies” which was then developed by

others (Holland, 1992) and (Sanghvi., et al, 2014).

GAs are inspired by the laws of natural selection and genetics. Thus

they use the concept of Darwin’s theory of evolution, which is based on the rule of

39

survival of the fittest (Vas, 1999). To solve a problem, GAs randomly initialize a

population of individuals (chromosomes) and probabilistically modifies the

population by three genetic operators: reproduction (selection), crossover and

mutation. In such a way the population number is maintained with the fittest

survivals. The GAs involve three basic steps i) Population initialization, ii) Fitness

evaluation, and iii) New generation formation, summarized as follows:

I. Given a solution space, individuals (possible-solutions) are

randomly created. An individual is characterized by fixed-

length binary bit string which is called a chromosome.

II. The individuals are evaluated by means of fitness function

III. The new generation is then formed by applying the three

genetic operators

 First a selection (reproduction) operator is applied where

evaluated individuals are selected with probability proportional

to their fitness values; the most commonly used technique is the

‘roulette wheel selection’ where the probability of an individual

to be selected is  

1

 ; 1, 2, ,i
i n

k

k

f
P k n

f


  


 where n is the

population size, and fi the fitness function. The selected

individuals are reproduced (copied one or more times to obtain

a mating pool) such that the population number is maintained.

 Secondly individuals in the mating pool are paired randomly to

obtain couples (parents) and the crossover operator is applied.

40

 Crossover operator is then followed by a mutation operator.

The mutation rate is normally kept low so that good

chromosomes are preserved. Mathematically the mutation

ensures that, given any population, the entire search space is

connected (Vas, 1999).

IV. The cycle repeats form step ii until convergence. In computer

simulation it is a common practice to use two parameters to

decide if the convergence criterion is satisfied. These

parameters are usually called tolerance function (TolFun) and

stall generation limit (StallGenLimit). If the change in objective

function value is less or equal to the TolFun, StallGenLimit

times for consecutive iterations; then the algorithm stops.

Maximum number of iterations and maximum allowed run time

are normally integrated with the convergence criterion such that

any of the three can stop the algorithm.

The GA flowchart can be presented as shown in Figure 2.18.

41

Figure 2.18. Genetic algorithm flow chart

2.9.2 Particle Swarm Optimization

Particle swarm optimization (PSO) is an intelligent optimization

algorithm, originally developed by Kennedy and Eberhart in 1995. The algorithm was

developed based on the behavior of a colony or swarm of insects, such as ants,

termites, bees, and wasps; a flock of birds; or a school of fish. The particle swarm

optimization algorithm mimics the behavior of these social organisms. The word

particle denotes, for example, a bee in a colony or a bird in a flock. Each individual or

particle in a swarm behaves in a distributed way using its own intelligence and the

collective or group intelligence of the swarm. As such, if one particle discovers a

good path to food, the rest of the swarm will also be able to follow the good path

instantly even if their location is far away in the swarm. Optimization methods based

on swarm intelligence are called behaviorally inspired algorithms as opposed to the

Initiate population

Stop

Evaluate fitness of individuals

Apply a mutation operator and

generate a new generation

Is convergence

criteria satisfied?

Select the fittest individuals

and create a mating pool

Pair the individuals and apply

crossover operator

Yes

No

42

genetic algorithms, which are called evolution-based procedures (Zhang and Wei,

2009) and (Rao, 2009).

Like GA, PSO algorithm is based on population; it can be used to solve

many complex optimization problems, which are nonlinear, non-differentiable and

multi-modal. Unlike GA, PSO algorithm does not rely on genetic operators like

selection, crossover and, mutation operators to operate individuals; it optimizes the

population through information exchange among individuals. The most prominent

merit of PSO is its fast convergence speed. In addition, PSO algorithm can be realized

simply for less parameters need adjusting (Zhang and Wei, 2009) and (Yan., et al,

2013).

In multivariable optimization context, the swarm is assumed to be of

specified or fixed size with each particle located initially at random locations in the

multidimensional design (solution) space. Each particle having two characteristics: a

position and a velocity; wanders around in the solution space and remembers the best

position (in terms of the food source or objective function value) it has discovered.

The particles communicate information on good positions to each other and adjust

their individual positions and velocities based on the information received on the good

positions. Thus the behavior of the swarm is based on a combination of three simple

factors:

i. Cohesion—stick together

ii. Separation—don’t come too close

iii. Alignment—follow the general heading of the swarm

The PSO algorithm therefore, simulates a random search in the design

space for the optimal value of the objective function. As such, gradually over many

43

iterations, the particles go to the target (or optimal value of the objective function)

(Rao, 2009).

If the search space is d-dimensional, the ith particle of the swarm can

be represented by a d-dimensional position vector as
1 2(, , ,)i i i idx x x x  . The

velocity of the particle is denoted by
1 2(, , ,)i i i idv v v v  . The best visited position of

the ith particle is presented as  1 2 , , . . . , ibest i i idP P P P and the best position explored

so far is presented as  1 2 , , . . . , gbest g g gdP P P P (Lazinica, 2009).

The velocity (vi) and position (xi) of the ith particle are updated using

Equation (2.12) and Equation (2.13) respectively.

    , 1 1 2 2 i new i ibest i gbest iV v c r P x c r P x     (2.12)

 , , i new i i newx x V  (2.13)

where 𝑐1 and 𝑐2 are positive acceleration constants (or learning factors) to control the

influence of the cognitive and social information respectively and, 𝑟1and 𝑟2 are

random numbers uniformly distributed between 0 and 1. Some researchers have

shown that setting 𝑐1 and 𝑐2 equal to 2 gets the best overall performance.  is the

inertia weight which shows the effect of previous velocity vector on the new vector

(Sadri and Suen, 2006), and (Lazinica, 2009).

Actually, the original PSO algorithm did not include the inertia weight

𝜔, and it was found that usually the rate of decrease of particle velocities is not good

enough to converge the particles to an optimal position as the iterative process

44

progresses. Some of the particles could easily miss or skip the optimal position

increasing the total computational time. The inertia concept was then introduced for

the first time by Shi and Eberhart in 1999 to dampen the velocities over time (or

iterations), enabling the swarm to converge more accurately and efficiently.

Usually, the value of  is assumed to decrease linearly from 0.9 to 0.4

as the iterative process progresses. Thus, in the jth iteration the value of  can be

given as

   j initial initial final

max

j

j
      (2.14)

or, in some literature it is given as

   max
j initial final final

max

j j

j
   

 
   

 
 (2.15)

 where jmax is the maximum number of iteration. When 0j  , (if generation or

iteration counting starts from zero) the value of j will be equal to
initial , that is 0.9

and, when maxj j , the value of j will be equal to final , that is 0.4. A larger value

of 𝜔 promotes global exploration and a smaller value promotes a local search (fine

tuning), this can be realized from Equation (2.12) and Equation (2.13). PSO

algorithms with Linearly Decreasing Inertia Weight are commonly abbreviated as

LDIW-PSO (Rao, 2009) and (Adewumi and Arasomwan, 2014).

 Apart from linearly reducing the value of the inertia weight  ,

another technique used to converge the particles in PSO algorithm is to set the

45

maximum velocity of the particles and reduce its value as the iterative process

progresses. Using such a technique, the inertia weight  is normally assigned a

constant number between 0 and 1. The authors in (Chan and Tiwari, 2007) have

shown that, the algorithm will have a better chance to converge if the following two

conditions are satisfied.

1 2

1 2

0 4

()
 1 1

2

c c

c c


  

 

  


 (2.16)

Over the years, several improvements to PSO algorithm have been

proposed and proven successfully in various applications. Some of these

improvements are presented in publications by (Yan., et al, 2013), (Zhang and Wei,

2009), (Liang., et al, 2010), (Mei., et al, 2010) and (Adewumi and Arasomwan, 2014).

Generally, the PSO algorithm can be summarized as follows:

I. Given a solution space, N particles of the swarm are randomly

initialized. There is no generally accepted number of

particles needed in the optimization process. However, 20 –

50 particles are commonly used in literature (Adewumi and

Arasomwan, 2014). A small swarm size will reduce the total

number of function evaluations needed to find a solution.

But with too small swarm size it is likely to take longer to

find a solution or, in some cases, the algorithm may not be

able to find a solution at all. Initially all particles have zero

velocity, as iterations progress all particles will be moving

towards the optimal point with a velocity given by the velocity-

46

updating function, different PSO algorithms have different

velocity-updating functions, the common function used to

update the particle velocities is given in Equation (2.12);

II. For each particle, its fitness value  if x is computed using its

current position ix . The computed fitness value is compared to

the particle’s best value achieved so far  ibestf P ;

III. Particle’s best position and value are updated if the particle’s

current position ix is better than its best position found so far

 ibestf P . That is, assuming it is a minimization problem, then;

        ; then i ibest ibest i ibest iif f x f P P x and f P f x  

IV. The best fitness of all particles are compared, and the particle

with the best of the best fitness is considered to be at the global

best position  gbestP ;

V. Velocity of each particle is updated; and

VI. Each particle is moved to a new position.

VII. The cycle repeats form step II to step VI, until convergence

criterion is satisfied. As previously mentioned, in computer

simulation it is a common practice to use two parameters to

define the convergence criterion. These parameters are usually

called tolerance function (TolFun) and stall generation limit

(StallGenLimit). If the change in objective function value is

less or equal to the TolFun, StallGenLimit times for

47

consecutive iterations; then the algorithm stops. Maximum

number of iterations or maximum allowed run time are

normally integrated with the convergence criterion to stop the

algorithm.

The PSO algorithm procedure is shown as a flow chart in Figure 2.19.

Figure 2.19 Particle swarm algorithm flow chart

2.9.3 Differential Evolution

Differential evolution (DE) proposed by Storn and Price in 1995, is a

very simple but very powerful stochastic global optimizer for continuous search

Initialize particles

Is 𝑓(𝑥𝑖) better

than (𝑃𝑖𝑏𝑒𝑠𝑡) ?

Stop

Compute fitness value 𝑓(𝑥𝑖)

of each particle

 𝑃𝑖𝑏𝑒𝑠𝑡 = 𝑋𝑖

𝑓(𝑃𝑖𝑏𝑒𝑠𝑡) = 𝑓(𝑋𝑖)

Determine the global best position

(Pgbest)

Is convergence

criterion satisfied?

Move the particles to new position

Update velocity of each particle

No Yes

Yes

No

48

domain. It has been proven a robust global optimizer and has been successfully

applied to many global optimization problems with superior performance in both

widely used benchmark function and real-world applications. Like all Evolutionary

Algorithms (EAs), DE is a stochastic population-based search method that employs

repeated cycles of recombination and selection to guide the population towards the

vicinity of global optimal. However, the DE algorithm is unique in the sense that it

uses a differential mutation operator (before crossover) to perturb parent vectors in the

current generation. A parent vector from the current generation is called target vector,

a mutant vector obtained through the differential mutation operation is known as

donor vector and finally an offspring formed by recombining (crossing over) the

target with the donor vector is called trial vector.

A one-to-one greedy selection scheme between the trial vectors and the

target vectors produces parent vectors of the next generation. Depending on the way

the parent vector is mutated to generate the donor vector and eventually the trial

vector, there exist many trial vector generation strategies and consequently many DE

variants. The conceptual and algorithmic simplicity, high convergence characteristics

and robustness of DE has made it one of the popular techniques for real-valued

parameter optimization (Jeyakumar and Velayutham, 2009) and, (Das and Suganthan,

2011).

One of the most frequently used mutation strategy is the

DE/rand/1/bin, according to which; DE starts by randomly creating a population of N

individuals in a d-dimensional solution space. In the current iteration the ith individual

of the population is represented by a d-dimensional vector as

, 1, , 2, , , ,(, , ,)i g i g i g d i gx x x x  , where 𝑔 is the current iteration (generation), if G is the

49

maximum number of generations then, 1, 2, , g G  and 1, 2, , i N  . Once the

population is initialized; DE employs repeated cycles of mutation, crossover and

selection to guide the population towards a global optimal.

According to DE/rand/1/bin version, DE creates a mutant vector ,i gv

for each target vector by adding a weighted difference between two randomly selected

vectors ,l gx and ,m gx to a third randomly selected vector ,k gx as

 , , , , ()i g k g l g m gv v v v   (2.17)

where i k l m   . The mutation (scaling) factor η is a positive user defined real

number, typically < 1, used to avoid search stagnation (Chengfu, et al., 2012), and

(Ahadzadeh and Menhaj, 2014).

Following the mutation phase, to enhance diversity in the searching

process, the crossover operation is performed on ,i gx (target vector) and ,i gv (mutant

vector) to generate a trial vector , 1, , 2, , , ,(, , ,)i g i g i g d i gu u u u  . Binomial (uniform) is the

most commonly used crossover method in DE, in which the number of trial vector

parameters inherited from the mutant vector has a (nearly) binomial distribution. The

scheme may be outlined as

, ,

, ,

, ,

i j g

i j g

i j g

v if rand Cr or j jrand
u

x otherwise

 
 


 (2.18)

where i ϵ [1,2,…, N], j ϵ [1, 2,…, d], rand is a uniformly distributed random number in

the interval 0 to 1, jrand is a randomly selected integer from 1 to d and Cr is

50

crossover probability in the interval 0 to 1 (Das and Suganthan, 2011) and,

(Ahadzadeh and Menhaj, 2014).

There after the selection operator is applied to compare the fitness

values of the target vector xi,g and the trial vector ui,g and determine which of the two

vectors survives for the next generation (g+1). If it is a minimization problem, the

scheme may be outlined as

   , , ,

, 1

,

i g i g i g

i g

i g

u if f u f x
x

x otherwise


 
 


(2.19)

If the trial vector (child) ui,g has a fitness value smaller than or equal to

that of the target vector (parent) xi,g it replaces the corresponding in the next

generation, otherwise the parent survives to the next generation.

Generally, the DE algorithm can be summarized as follows:

I. Given a solution space, individuals (possible-solutions) are

randomly initialized;

II. Fitness values of the individuals are determined;

III. The new generation is then formed by applying mutation,

crossover and selection operators;

 Firstly a mutation operator is applied, and mutant

vectors (donors) are obtained,

 Secondly a crossover operator is applied between

mutant vectors and parent vectors to obtain trial vectors

(children),

51

 Crossover operator is then followed by a selection

operator which determines which individuals from

children and parents’ population survive to the next

generation.

IV. Step II and III are repeated until convergence criterion is

satisfied. Like in GA and PSO algorithms, tolerance function

(TolFun) and stall generation limit (StallGenLimit) parameters

are normally used to define convergence criterion. Maximum

number of iterations and maximum allowed run-time are

normally integrated with the convergence criterion such that

any of the three that is reached first, will stop the algorithm.

The basic DE algorithm procedure is presented in Figure 2.20

Figure 2.20 Differential evolution algorithm flow chart

Initiate population

Stop

Evaluate fitness of individuals

Select which individuals survive

to the next generation

Is convergence

criteria satisfied?

Obtain a mutant vector

Obtain trial vectors

Yes

No

CHAPTER III

SPEED PROFILE OPTIMIZATION RESULTS

3.1 Introduction

Optimal train designing aiming at minimizing train weight, auxiliary loads,

aerodynamic and frictional forces without sacrificing passenger comfortability and train’s

passenger carrying capacity is definitely the best thing to do; in order to minimize energy

consumption per passenger-kilometer. However, given train parameters; energy

consumed by a train travelling from one station to the next, and eventually one terminal to

the other is far from being fixed. Since the number of stops and subsequent speed profiles

(driving cycles) have an immense influence on energy demand.

In this chapter, the summarized speed profile optimization results are presented.

The optimization was done in MATLAB® environment using three optimization

algorithms: MATLAB® built in GA and, developed DE and PSO; which had been tested

using three benchmark functions: Ackley’s, Rosenbrock’s and, Rastrigin’s functions; and

proven successful. The algorithms testing results are presented in appendix B. Given the

two routes: TRL and TAZARA (TZR); the three optimization techniques were then used

to search for optimal speed profiles for each route taking into account time, velocity and

acceleration constrains. Comparing the obtained optimal speed profiles, the best speed

profile for each route was established. The optimization results for every section

(interstation distance) of each route are presented in appendix C. It should be noted that,

in the appendix B and appendix C the MATLAB® built in GA, plots only the mean and

53

the best value of the fitness function, while the developed DE and PSO were

programed to plot the worst, mean, and best values of the fitness function. The worst

fitness value was added in the plot for the purpose of this thesis work so as to evaluate

(i) How much energy would have been consumed with the worst speed profile and,

(ii) the convergence of the individuals (or particles). For each algorithm, the number

of individuals (or particles) was set to 50, and the number of maximum iteration was

also set to 50 as it can be seen in the “Options.m” file in appendix D. For a particular

iteration if the worst and mean fitness values are not plotted that means at least one of

the individuals (or particles) was invalid (did not comply with all the constrains) and

hence it was discarded (its fitness value was set to infinite).

3.2 Objective Function

In minimizing energy to be consumed by a tram travelling form one station to

the next, the objective function was written as

   ()

stop

start

t

R

t

ma t F v t
y min AL dt



 
  

 
 (3.1)

 Subject to

13.9mv 

0.3 0.6a 

(0.4 1) ; point b point mb v b v  

150 / 1

 1 20 /
bs

km if distance km
t

km otherwise


 


54

where 𝑡𝑠𝑡𝑎𝑟𝑡 is the time at which the tram starts moving from its current station, 𝑡𝑠𝑡𝑜𝑝

is the time at which the tram stops at the next station, m is the tram effective mass

(kg), a is the acceleration (m/s2), FR is the force opposing the motion (N), η is the

electrical – mechanical tractive power conversion efficiency, v is the velocity (m/s),

AL is the auxiliary load, dt is the change in time (s); vm is the maximum velocity

(m/s), bpoint is the braking point, vb is the braking velocity (m/s), and tbs is the

traveling time between stations (sec).

The objective was to obtain optimal values of three parameters: maximum

velocity (Vm), starting acceleration (𝑎), and braking point (bpoint) as shown in Figure

3.1. The optimal values of these parameters define the optimal speed profile hence,

minimum energy consumption.

Figure 3.1 Typical train speed profile

bpoint

Vm

𝒂

55

3.3 Routes and Train Details

The two routes’ stations and distances between them are as shown in Figure

3.2. The TRL route covers 12.05 km from Central Station to Ubungo-Maziwa with a

total of eight (8) stations; and the TAZARA route covers 21 km from TAZARA

Station to Mwakanga with a total of ten (10) stations.

Figure 3.2 TRL and TAZARA commuter train routes

For this research work a Stadler variobahn bidirectional tram as shown in

Figure 3.3 was chosen. The tram specifications are given in Table 3.1. In this thesis,

this catenary fed tram is assumed to be powered by lithium titanate batteries.

56

(a) Operating via catenary supply

(b) Construction overview

Figure 3.3 Stadler variobahn bidirectional tram (Stadler, 2014)

Table 3.1 Stadler variobahn tram details

Attribute Value

Maximum vehicle speed 70 km/h

Passenger capacity

56 Sitting

312

256 Standing (8 pers/m2)

Tram weight 38800 kg

Catenary’s voltage 600/750 V

Drive/ Powered wheel /trailer wheel 8 x 45 kW/8/4

Vehicle length/ width/ height 29.62 m /2.3 m/3.35 m

Gauge 1000 mm

57

Taking average weight of a person as 60.7 kg , train rolling resistance

coefficient as 0.006, and aerodynamic drag coefficient as 0.6 (Barrero, et al., 2008),

tram parameters used in optimization were taken as given in Table 3.2.

Table 3.2 Tram parameters used in optimization

Attribute Value

Vehicle effective weight

(0.11 rolling allowance, passenger load, batteries)

62830 kg

Rolling resistance coefficient 0.006

Aerodynamic drag coefficient 0.6

Frontal area 7.7 m2

Energy conversion efficiency 0.6

Average auxiliary load 10 kW

3.4 Optimal Speed Profile for TRL Route

As mentioned earlier, GA, DE and PSO optimization techniques were used to

search for the optimal values of the maximum velocity, starting acceleration, and

braking point. Comparing the obtained speed profiles, the best speed profile for the

TRL route was established. The optimization results for TRL route were as presented

in Table 3.3 through Table 3.6 and, in Figure 3.4. Figure 3.5 was plotted just to give a

clue to the size of the required power source.

58

Table 3.3 TRL route; speed profile values as optimized by GA

Table 3.4 TRL route; speed profile values as optimized by DE

From -To S1-S2 S2-S3 S3-S4 S4-S5 S5-S6 S6-S7 S7-S8

Distance(km) 1.41 2.17 2.16 2.16 1.43 0.7 2.02

Maximum velocity (km/h) 44.07 39.08 39.29 39.22 42.56 33.95 40.64

Stating acceleration (m/s
2
) 0.54 0.54 0.51 0.53 0.50 0.49 0.54

Braking point 0.58 0.40 0.40 0.40 0.61 0.91 0.40

3.45 4.88 4.86 4.86 3.49 2.08 4.57

2.82 4.34 4.32 4.32 2.86 1.75 4.04

28.19

24.44Total travelling time (min)

Stations

Parameters

Energy consumed (kWh)

Travelling time (min)

Total energy consumed (kWh)

From -To S1-S2 S2-S3 S3-S4 S4-S5 S5-S6 S6-S7 S7-S8

Distance(km) 1.41 2.17 2.16 2.16 1.43 0.7 2.02

Maximum velocity (km/h) 45.05 39.11 39.34 39.19 44.91 35.62 40.68

Stating acceleration (m/s
2
) 0.50 0.53 0.52 0.54 0.54 0.53 0.49

Braking point 0.56 0.40 0.40 0.40 0.55 0.82 0.40

3.44 4.88 4.86 4.86 3.47 2.02 4.57

2.82 4.34 4.31 4.32 2.86 1.75 4.04

28.09

24.44Total travelling time (min)

Stations

Parameters

Energy consumed (kWh)

Travelling time (min)

Total energy consumed (kWh)

59

Table 3.5 TRL route; speed profile values as optimized by PSO

Table 3.6 TRL route; the optimal speed profile values

From -To S1-S2 S2-S3 S3-S4 S4-S5 S5-S6 S6-S7 S7-S8

Distance(km) 1.41 2.17 2.16 2.16 1.43 0.7 2.02

Maximum velocity (km/h) 44.47 39.11 39.33 44.15 41.70 35.91 42.40

Stating acceleration (m/s
2
) 0.40 0.54 0.48 0.30 0.42 0.48 0.39

Braking point 0.65 0.40 0.40 0.40 0.70 0.81 0.40

3.55 4.88 4.86 4.90 3.59 2.02 4.58

2.82 4.34 4.32 4.32 2.86 1.75 4.04

28.38

24.44Total travelling time (min)

Stations

Parameters

Energy consumed (kWh)

Travelling time (min)

Total energy consumed (kWh)

From -To S1-S2 S2-S3 S3-S4 S4-S5 S5-S6 S6-S7 S7-S8

Distance(km) 1.41 2.17 2.16 2.16 1.43 0.7 2.02

Maximum velocity (km/h) 45.05 39.11 39.34 39.19 44.91 35.62 40.68

Stating acceleration (m/s
2
) 0.50 0.54 0.52 0.54 0.54 0.53 0.49

Braking point 0.56 0.40 0.40 0.40 0.55 0.82 0.40

3.44 4.88 4.86 4.86 3.47 2.02 4.57

2.82 4.34 4.31 4.32 2.86 1.75 4.04

DE PSO DE DE DE DE DE

28.09

24.44Total travelling time (min)

Travelling time (min)

Stations

Parameters

Energy consumed (kWh)

Optimization Method

Total energy consumed (kWh)

60

(a) Optimal speed (kph) against time (s) for TRL route

(b) Optimal speed (kph) against distance (km) for TRL route

Figure 3.4 Optimal speed profile for TRL route

Figure 3.5 Tram power demand corresponding to the TRL route optimal speed profile

61

3.5 Optimal Speed Profile for TAZARA Route

In a similar fashion to what was done with the TRL route, the same was done

with the TAZARA route. The GA, DE and PSO optimization techniques were used to

search for the optimal values of the maximum velocity, starting acceleration, and

braking point. Comparing the obtained speed profiles, the best speed profile for

TAZARA route was established. The optimization results for TAZARA route were as

presented in Table 3.7 through Table 3.10 and, in Figure 3.6. Figure 3.7 was plotted

just to give a clue to the size of the required power source.

62

F
ro

m
 -

T
o

S
1
-S

2
S

2
-S

3
S

3
-S

4
S

4
-S

5
S

5
-S

6
S

6
-S

7
S

7
-S

8
S

8
-S

9
S

9
-S

1
0

D
is

ta
n
ce

(k
m

)
1

2
1

2
3

2
6

2
2

M
ax

im
um

 v
el

o
ci

ty
 (

k
m

/h
)

3
5
.3

1
3
9
.3

2
3
3
.7

1
4
0
.3

8
3
5
.3

2
4
0
.6

1
3
5
.4

2
4
0
.6

8
4
0
.6

7

S
ta

tin
g

ac
ce

le
ra

tio
n

(m
/s

2
)

0
.5

4
0
.4

8
0
.5

1
0
.4

8
0
.5

3
0
.5

1
0
.5

3
0
.5

1
0
.4

8

B
ra

k
in

g
p
o
in

t
0
.5

0
0
.4

5
0
.5

5
0
.4

2
0
.4

1
0
.4

1
0
.4

0
0
.4

1
0
.4

1

2
.4

0
4
.5

4
2
.4

2
4
.5

3
6
.6

4
4
.5

3
1
3
.0

5
4
.5

3
4
.5

3

2
.5

0
4
.0

0
2
.5

0
4
.0

0
6
.0

0
4
.0

0
1
1
.0

8
4
.0

0
4
.0

0

4
7
.1

7

4
2
.0

8
T

o
ta

l t
ra

ve
lli

ng
 t
im

e
(m

in
)

S
ta

ti
o
n
s

P
ar

am
et

er
s

E
ne

rg
y

co
ns

um
ed

 (
k
W

h)

T
ra

ve
lli

ng
 t
im

e
(m

in
)

T
o
ta

l e
ne

rg
y

co
ns

um
ed

 (
k
W

h)

T
a
b

le
 3

.7
 T

A
Z

A
R

A
 r

o
u
te

;
sp

ee
d
 p

ro
fi

le
 v

al
u
es

 a
s

o
p
ti

m
iz

ed
 b

y
 G

A

63

F
ro

m
 -

T
o

S
1
-S

2
S

2
-S

3
S

3
-S

4
S

4
-S

5
S

5
-S

6
S

6
-S

7
S

7
-S

8
S

8
-S

9
S

9
-S

1
0

D
is

ta
n
ce

(k
m

)
1

2
1

2
3

2
6

2
2

M
ax

im
um

 v
el

o
ci

ty
 (

k
m

/h
)

3
6
.1

4
4
0
.7

7
3
6
.4

8
4
0
.7

8
3
5
.4

2
4
0
.7

7
3
5
.5

3
4
0
.8

0
4
0
.7

7

S
ta

tin
g

ac
ce

le
ra

tio
n

(m
/s

2
)

0
.4

9
0
.5

2
0
.5

4
0
.5

4
0
.5

0
0
.5

0
0
.5

1
0
.4

8
0
.5

1

B
ra

k
in

g
p
o
in

t
0
.4

8
0
.4

0
0
.4

7
0
.4

0
0
.4

0
0
.4

0
0
.4

0
0
.4

0
0
.4

0

2
.4

0
4
.5

2
2
.4

0
4
.5

2
6
.6

3
4
.5

2
1
3
.0

5
4
.5

2
4
.5

2

2
.4

9
4
.0

0
2
.5

0
4
.0

0
6
.0

0
4
.0

0
1
1
.0

6
4
.0

0
4
.0

0

4
7
.1

0

4
2
.0

5
T

o
ta

l t
ra

ve
lli

ng
 t
im

e
(m

in
)

S
ta

ti
o
n
s

P
ar

am
et

er
s

E
ne

rg
y

co
ns

um
ed

 (
k
W

h)

T
ra

ve
lli

ng
 t
im

e
(m

in
)

T
o
ta

l e
ne

rg
y

co
ns

um
ed

 (
k
W

h)

T
a
b

le
 3

.8
 T

A
Z

A
R

A
 r

o
u
te

;
sp

ee
d
 p

ro
fi

le
 v

al
u
es

 a
s

o
p
ti

m
iz

ed
 b

y
 D

E

64

F
ro

m
 -

T
o

S
1
-S

2
S

2
-S

3
S

3
-S

4
S

4
-S

5
S

5
-S

6
S

6
-S

7
S

7
-S

8
S

8
-S

9
S

9
-S

1
0

D
is

ta
n
ce

(k
m

)
1

2
1

2
3

2
6

2
2

M
ax

im
um

 v
el

o
ci

ty
 (

k
m

/h
)

3
6
.3

6
4
0
.7

7
3
6
.4

8
4
0
.8

5
3
7
.3

7
4
0
.7

7
3
5
.6

7
4
0
.7

7
4
0
.7

7

S
ta

tin
g

ac
ce

le
ra

tio
n

(m
/s

2
)

0
.5

1
0
.5

1
0
.5

4
0
.4

8
0
.3

0
0
.5

1
0
.3

0
0
.5

0
0
.4

9

B
ra

k
in

g
p
o
in

t
0
.4

8
0
.4

0
0
.4

8
0
.4

0
0
.4

0
0
.4

0
0
.4

0
0
.4

0
0
.4

0

2
.4

0
4
.5

2
2
.4

0
4
.5

2
6
.6

6
4
.5

2
1
3
.0

7
4
.5

2
4
.5

2

2
.5

0
4
.0

0
2
.5

0
4
.0

0
5
.9

9
4
.0

0
1
1
.2

1
4
.0

0
4
.0

0

4
7
.1

4

4
2
.1

9
T

o
ta

l t
ra

ve
lli

ng
 t
im

e
(m

in
)

S
ta

ti
o
n
s

P
ar

am
et

er
s

E
ne

rg
y

co
ns

um
ed

 (
k
W

h)

T
ra

ve
lli

ng
 t
im

e
(m

in
)

T
o
ta

l e
ne

rg
y

co
ns

um
ed

 (
k
W

h)

T
a
b

le
 3

.9
 T

A
Z

A
R

A
 r

o
u
te

;
sp

ee
d
 p

ro
fi

le
 v

al
u
es

 a
s

o
p
ti

m
iz

ed
 b

y
 P

S
O

65

F
ro

m
 -

T
o

S
1
-S

2
S

2
-S

3
S

3
-S

4
S

4
-S

5
S

5
-S

6
S

6
-S

7
S

7
-S

8
S

8
-S

9
S

9
-S

1
0

D
is

ta
n
ce

(k
m

)
1

2
1

2
3

2
6

2
2

M
ax

im
um

 v
el

o
ci

ty
 (

k
m

/h
)

3
6
.1

4
4
0
.7

7
3
6
.4

8
4
0
.7

8
3
5
.4

2
4
0
.7

7
3
5
.5

3
4
0
.8

0
4
0
.7

7

S
ta

tin
g

ac
ce

le
ra

tio
n

(m
/s

2
)

0
.4

9
0
.5

2
0
.5

4
0
.5

4
0
.5

0
0
.5

0
0
.5

1
0
.4

8
0
.5

1

B
ra

k
in

g
p
o
in

t
0
.4

8
0
.4

0
0
.4

7
0
.4

0
0
.4

0
0
.4

0
0
.4

0
0
.4

0
0
.4

0

2
.4

0
4
.5

2
2
.4

0
4
.5

2
6
.6

3
4
.5

2
1
3
.0

5
4
.5

2
4
.5

2

2
.4

9
4
.0

0
2
.5

0
4
.0

0
6
.0

0
4
.0

0
1
1
.0

6
4
.0

0
4
.0

0

D
E

D
E

D
E

D
E

D
E

D
E

D
E

D
E

D
E

4
7
.1

0

4
2
.0

5

T
o
ta

l e
ne

rg
y

co
ns

um
ed

 (
k
W

h)

T
o
ta

l t
ra

ve
lli

ng
 t
im

e
(m

in
)

S
ta

ti
o
n
s

P
ar

am
et

er
s

E
ne

rg
y

co
ns

um
ed

 (
k
W

h)

M
et

ho
d

T
ra

ve
lli

ng
 t
im

e
(m

in
)

T
a
b

le
 3

.1
0
 T

A
Z

A
R

A
 r

o
u
te

;
th

e
o
p
ti

m
al

 s
p

ee
d
 p

ro
fi

le
 v

al
u

es

66

(a) Optimal speed (kph) against time (s) for TAZARA route

(b) Optimal speed (kph) against distance (km) for TAZARA route

Figure 3.6 Optimal speed profile for TAZARA route

Figure 3.7 Tram power demand corresponding to the TAZARA route optimal speed

profile

67

3.6 Discussion

From the optimal speed profiles for TRL and TAZARA routes, the following

can be observed:-

 Though the differences in the best objective function values were very

small (in fact immeasurably small), DE seemed to outperform GA and

PSO. Looking at it from another angle, the fact that the best objective

function values were very close (almost the same) implies that, the

found position (variable vector), was real the best position in the given

solution space.

 As explained previously, the MATLAB® built in GA, plots the mean

and the best value of the fitness function, while the developed DE and

PSO were programed to plot the worst, mean, and best values of the

fitness function. And, invalid individuals were discarded (their fitness

values were set to infinite). Since DE does a one-to-one greedy

selection between the trial vectors and the target vectors to generate

parent vectors for the next generation as explained in section 2.9.3; the

only way an invalid individual will go to the next generation is if it was

compared to another invalid individual, otherwise all individuals in the

next generation will be valid and there will be no infinite value of a

fitness function. This is why; in most cases DE plots all the three

values: the worse, the mean, and the best fitness values while, GA and

PSO plots only the best fitness values due to the presence of an infinite

value in a given iteration as it can be realized in appendix C. This is

68

also a reason for DE to perform better than GA and PSO especially if a

function is noisy. However, if a function is not noisy, PSO has a better

chance to outperform DE and GA due to the fact that the swarm will be

easily directed towards the global optimal, this can be realized in

appendix B.

 Seeing that in most cases, DE plots all the three values: the worse, the

mean, and the best fitness values, the significance of optimization can

be well realized from DE fitness value plots as given in appendix C.

For example in Figure C.2, the difference between the worst and best

value is about 1 kWh.

 The longer the interstation distance, the higher the energy

consumption, and travelling time. This is very obvious.

 With the same interstation distances; the optimal speed profile, energy

consumption, and travelling time were also more or less the same. This

implies that there was a single global optimal and the optimization

method(s) was good enough to find it.

 With short interstation distance, the entire time band was used. For the

same time constrain; acceleration and deceleration time loss makes

time more critical if the interstation distance is short.

 For very short interstation distances, coasting was preferred over

cruising, i.e. going to high speed and then free-wheel (coast) was better

than going to average speed and cruise. This may also imply that the

69

longer the coasting the less the energy consumed, that’s why in most

cases the entire time band was utilized.

 If time constrain is tight, decreasing the starting acceleration or

maximum speed, or both; will decrease the peak power on the

expense of decreasing the coasting time, which will result to increase

in energy consumption. Depending on how much is the increase in

energy consumption, this may be done if the power source has low

power density. However, for this thesis work that was unnecessary.

CHAPTER IV

TRAM MOVEMENT RESULTS AND ANALYSIS

4.1 Introduction

In this chapter tram movement simulation results are presented and discussed

alongside the passenger travel fuel cost and emission. Having got the best speed

profiles for each of the two tram routes (in chapter III), the tram was then modelled as

a BEMU and simulated using MATLAB®. For each route there are two directions,

these directions were termed as odd and even. A direction is odd if a tram is moving

away from the city (main station), and even if the tram is moving towards the city

center. And for convenient purposes, stations were named as S1, S2,…Sn, where S1 is

the main station, in this case the terminal station in the city. Charging points were

assumed to be installed at every terminal station and at some of the intermediate

stations of the TAZARA route as desired. If an intermediate station is not a charging

station, the tram stops (dwells) for one minute, and if it is a charging station, the tram

dwells for one minute plus time reserved. Time reserved is the difference between

maximum allowed time window and the actual time used. At a terminal station the

tram dwells for ten minutes within which batteries are charged to full charge. To

easily change the route and direction during the simulation, a graphical user interface

as shown in Figure 4.1 was created

71

Figure 4.1 Graphical user interface for BEMU simulation

4.2 Tram and Battery Details

Tram and battery details used in the simulation were as given in Table 4.1 and

Table 4.2 respectively.

Table 4.1 Tram details used in simulation

Attribute Value

Tram effective weight 62830 kg

Rolling resistance coefficient 0.006

Aerodynamic drag coefficient 0.6

Frontal area 7.7 m2

Energy conversion efficiency 0.6

Average auxiliary load 10 kW

Passenger capacity 312

72

Table 4.2 Lithium titanate battery details used in simulation (Altairnanno)

Attribute Value
Remarks

(Battery pack value)

Voltage range/nominal 17 - 27.5 V / 24 V 459 - 742.5 V / 648 V

Nominal capacity 60 Ah 120 Ah

Typical discharge energy

 at 1C rate,25°C, CCCV charging
1.4 kWh 77.76 kWh

Maximum continuous

charge/discharge current
360 A / 360 A 720 A / 720 A

Pulse charge/discharge current (10

sec pulse)
Up to 600 A Up to 1200 A

Internal impedance 4 mΩ 54 mΩ

Weight 27.4 kg 1480 kg

Life characteristics

Cycle life at 2C charge and 2C discharge,

100% DoD, 25°C

>16,000 to 80% initial

capacity

Cycle life at 2C charge and 2C discharge,

100% DoD, 55°C

>4,000 to 80% initial

capacity

A battery pack consisted of two (2) modules in parallel, where a single module

consisted of twenty seven (27) batteries in series. Thus, the battery pack had a

nominal energy capacity of 77.76 kWh at 648 V. At a charging station batteries are

charged at 4.5C rate if the SoC is below 80%, and at 3C rate otherwise.

4.2.1 BEMU on TRL Route

As shown in Figure 4.2, the TRL route is 12.05 km long running from

Central-station (S1) to Ubungo-maziwa (S8). Charging points were assumed to be

installed at the terminal stations S1 and S8, where batteries are fully charged. Tram

73

movement from S1 to S8 was termed as odd direction while that from S8 to S1 was

termed as even direction as previously explained. Simulation results for the odd

direction in which the tram starts moving from S1 with fully charged batteries all the

way to S8 (stopping for one minute at each intermediate station), were as presented in

Figure 4.3 through Figure 4.6, the simulation results are also given in Table 4.3.

When the tram reaches at a terminal station S8, batteries are fast charged to full

charge within ten minutes. As previously mentioned, batteries are charged at 4.5C

rate if the SoC is below 80%, and at 3C rate otherwise. This can be seen in Figure 4.4

and Figure 4.5.

Figure 4.2 TRL route, charging points installed at terminal stations

74

Figure 4.3 TRL route, odd direction, velocity and tractive force profiles

Figure 4.4 TRL route, odd direction, battery current and voltage, and tram power

demand profiles.

75

Figure 4.5 TRL route, odd direction, distance travelled, net energy consumed and

battery state of charge profiles

Figure 4.6 TRL route, odd direction, tractive effort curves

76

Table 4.3 TRL route, odd direction, interstation and cumulative simulation results

As the track was assumed to be flat, the simulation results for the even

direction as presented in Figure 4.7 through Figure 4.10 and in Table 4.4 were similar

to the ones in the odd direction, but flipped left to right. The tractive effort curves

remain completely the same. It should be noted that, before changing direction the

battery pack has to be fully charged at a terminal station. Terminal station dwell time

is an important parameter of system performance, service reliability and quality. In

this thesis work, the terminal dwell time was set to ten minutes.

From -To S1-S2 S2-S3 S3-S4 S4-S5 S5-S6 S6-S7 S7-S8

Distance(km) 1.41 2.17 2.16 2.16 1.43 0.7 2.02

Maximum velocity (km/h) 45.05 39.11 39.34 39.19 44.91 35.62 40.68

Stating acceleration (m/s
2
) 0.50 0.54 0.52 0.54 0.54 0.53 0.49

Braking velocity (km/h) 25.33 15.64 15.74 15.68 24.84 29.06 16.27

3.44 4.88 4.86 4.86 3.47 2.02 4.57

3.61 5.04 5.02 5.02 3.64 2.19 4.73

3.61 8.65 13.67 18.70 22.33 24.53 29.26

2.82 4.34 4.31 4.32 2.86 1.75 4.04

3.82 5.34 5.32 5.32 3.86 2.75 14.04

3.82 9.16 14.47 19.79 23.65 26.40 40.44

Stations

Parameters

Time between stations (min)

Time between stations plus dwelling

time (min)

Cumulative time (min)

Net energy consumed between

stations (kWh)

Net energy consumed between

stations plus dwelling (kWh)

Cumulative net energy consumed

(kWh)

77

Figure 4.7 TRL route, even direction, velocity and tractive force profiles

Figure 4.8 TRL route, even direction, battery current and voltage, and tram power

demand profiles.

78

Figure 4.9 TRL route, even direction, distance travelled, net energy consumed and

battery state of charge profiles.

Figure 4.10 TRL route, even direction, tractive effort curves

79

Table 4.4 TRL route, even direction, interstation and cumulative simulation results

4.2.2 BEMU on TAZARA Route

As shown in Figure 4.10, TAZARA route is 21 km long (9 km longer

than the TRL route) running from Tazara-Station (S1) to Mwakanga (S10). Charging

points were assumed to be installed at the terminal stations: S1 and S10 (where

batteries are fully charged) and at three of the intermediate stations: S5, S7 and S8.

(where batteries are partially charged). Simulation results for the odd direction (S1 to

S10) were as presented in Figure 4.11 through Figure 4.15 and, in Table 4.5.

From -To S8-S7 S7-S6 S6-S5 S5-S4 S4-S3 S3-S2 S2-S1

Distance(km) 2.02 0.7 1.43 2.16 2.16 2.17 1.41

Maximum velocity (km/h) 40.68 35.62 44.91 39.19 39.34 39.11 45.05

Stating acceleration (m/s
2
) 0.49 0.53 0.54 0.54 0.52 0.54 0.50

Braking velocity (km/h) 16.27 29.06 24.84 15.68 15.74 15.64 25.33

4.57 2.02 3.47 4.86 4.86 4.88 3.44

4.73 2.19 3.64 5.02 5.02 5.04 3.61

4.73 6.92 10.56 15.58 20.61 25.65 29.26

4.04 1.75 2.86 4.32 4.31 4.34 2.82

5.04 2.75 3.86 5.32 5.32 5.34 12.82

5.04 7.79 11.65 16.97 22.28 27.62 40.44

Time between stations plus dwelling

time (min)

Cumulative time (min)

Stations

Parameters

Net energy consumed between

stations (kWh)

Net energy consumed between

stations plus dwelling (kWh)

Cumulative net energy consumed

(kWh)

Time between stations (min)

80

Figure 4.11 TAZARA route and charging points

Figure 4.12 TAZARA route, odd direction, velocity and tractive force profiles

81

Figure 4.13 TAZARA route, odd direction, battery pack current and voltage, and

tram power demand profiles.

Figure 4.14 TAZARA route, odd direction, distance travelled, net energy consumed

and battery state of charge profiles

82

Figure 4.15 TAZARA route, odd direction, tractive effort curves

Table 4.5 TAZARA route, odd direction, interstation and cumulative simulation

results

From -To S1-S2 S2-S3 S3-S4 S4-S5 S5-S6 S6-S7 S7-S8 S8-S9 S9-S10

Distance(km) 1 2 1 2 3 2 6 2 2

Maximum velocity (km/h) 36.14 40.77 36.48 40.78 35.42 40.77 35.53 40.80 40.77

Stating acceleration (m/s
2
) 0.49 0.52 0.54 0.54 0.50 0.50 0.51 0.48 0.51

Braking velocity (km/h) 17.42 16.31 17.29 16.31 14.17 16.31 14.21 16.32 16.31

2.40 4.52 2.40 4.52 6.63 4.52 13.05 4.52 4.52

2.56 4.69 2.56 4.69 6.80 4.69 13.37 4.69 4.69

2.56 7.26 9.82 14.51 21.31 26.00 39.38 44.07 48.76

2.49 4.00 2.50 4.00 6.00 4.00 11.06 4.00 4.00

3.49 5.00 3.50 5.01 7.00 5.00 13.00 5.00 14.00

3.49 8.50 12.00 17.00 24.00 29.00 42.00 47.00 61.00

Time between stations plus dwelling

time (min)

Cumulative time (min)

Stations

Parameters

Net energy consumed between

stations (kWh)

Net energy consumed between stations

plus dwelling (kWh)

Cumulative net energy consumed

(kWh)

Time between stations (min)

83

Just like with the TRL route, as the track was assumed to be flat, the

simulation results for the even direction as presented in Figure 4.16 through Figure

4.20 and in Table 4.6 were similar to the ones in the odd direction, but flipped left to

right. Tractive effort curves also remain completely the same. The only difference that

can noted is that, in even direction the interstation charging takes longer at S7 (and

not at S8 as it was the case with odd direction), due to time reserved travelling from

S8 to S7. Before changing direction, the tram dwells at a terminal station for ten

minutes and the battery pack is fully charged.

Figure 4.16 TAZARA route, even direction, velocity and tractive force profiles

84

Figure 4.17 TAZARA route, even direction, battery current and voltage, and tram

power demand profiles

Figure 4.18 TAZARA route, odd direction, distance travelled, net energy consumed

and battery state of charge

85

Figure 4.19 TAZARA route, even direction, tractive effort curves

Table 4.6 TAZARA route, even direction, interstation and cumulative simulation

results

From -To S10-S9 S9-S8 S8-S7 S7-S6 S6-S5 S5-S4 S4-S3 S3-S2 S2-S1

Distance(km) 2 2 6 2 3 2 1 2 1

Maximum velocity (km/h) 40.77 40.80 35.53 40.77 35.42 40.78 36.48 40.77 36.14

Stating acceleration (m/s
2
) 0.51 0.48 0.51 0.50 0.50 0.54 0.54 0.52 0.49

Braking velocity (km/h) 16.31 16.32 14.21 16.31 14.17 16.31 17.29 16.31 17.42

4.52 4.52 13.05 4.52 6.63 4.52 2.40 4.52 2.40

4.69 4.69 13.37 4.69 6.80 4.69 2.56 4.69 2.56

4.69 9.38 22.76 27.45 34.25 38.94 41.50 46.19 48.75

4.00 4.00 11.06 4.00 6.00 4.00 2.50 4.00 2.49

5.00 5.00 13.00 5.00 7.00 5.00 3.50 5.00 12.50

5.00 10.00 23.00 28.00 35.00 40.00 43.50 48.50 60.99

Time between stations plus dwelling

time (min)

Cumulative time (min)

Stations

Parameters

Net energy consumed between

stations (kWh)

Net energy consumed between stations

plus dwelling (kWh)

Cumulative net energy consumed

(kWh)

Time between stations (min)

86

On TRL route the tram consumes approximately 29.3 kWh net energy

on either direction and, on TAZARA route the net energy consumption is

approximately 48.8 kWh on either direction. In fuel cost and emission analysis a

charger efficiency of 0.9 was included, so that the analysis is based on the energy

received from the grid. Energy recaptured from regenerative braking is very low,

almost negligible as the tram starts breaking at very low speed.

4.3 Passenger travel fuel cost and emission analysis

To analyze passenger travel fuel cost and emission, electricity and diesel prices

and emission factors as given in Table 4.3 were used.

Table 4.7 Electricity and diesel prices and emission factors

Attribute Value

Diesel
Price (US$/liter) 1

CO2 Emission (kg /liter burn) 2.68

Electricity
Price (US$ / kWh) 0.082

CO2 Emission (kg/kWh distributed) 0.52

As according to the Tanzania Energy and Water Utilities Regulatory Authority

(EWURA), the diesel price in Dar es Salaam in the month of August 2015 was

approximately. US$ 1 (EWURA, 2015). On the other hand, the electricity price in

Tanzania as given by Tanzania Electric Supply Company Limited (TANESCO) is

approximately. US$ 0.082 per kWh, for a customer type T3_MV (TANESCO, 2014).

Diesel fuel releases approximately. 2.68 kg of CO2 per liter burned and, as of May

2014, the CO2 emission per kWh distributed in Tanzania was approximately. 0.52 kg;

taking kg-CO2/kWh emission factors from natural gas and liquid fuel power plants as

0.549 and 0.817 respectively (EIA, 2015).

87

Extracted from appendix B, TRL and TAZARA diesel trains’ operational data

are as summarized in Table 4.4 and Table 4.5 respectively.

Table 4.8. TRL diesel train operational data

Train Schedule and Occupancy

Morning Evening

Time Direction
Percentage

Full
Time Direction

Percentage
Full

05:00 Odd 0 % 16:00 Odd 90 %

06:00 Even 90 % 17:00 Even 60 %

07:00 Odd 50 % 18:00 Odd 100 %

08:00 Even 100 % 19:00 Even 50 %

09:00 Odd 60 % 20:00 Odd 80 %

10:00 Even 80 % 21:00 Even 40 %

Train Performance

Passenger carrying capacity
720 Sitting

1440
720 Standing (8 per/m2)

Train average full 960 Passengers (66.67 %)

Average fuel consumption

(Litres of diesel)

1125 liters per day

7.85 liters /km (93.75 liters/one way trip)

Average journey time 45 minutes

Average station stopping time 3 minutes

88

Table 4.9. TAZARA diesel train operational data

Train Schedule and Occupancy

Morning Evening

Time Direction
Percentage

Full
Time Direction

Percentage

Full

04:45 Odd 0 % 16:00 Odd 30 %

05:25 Even 100 % 17:00 Even 20 %

06:40 Odd 20 % 18:05 Odd 90 %

07:40 Even 100 % 19:10 Even 30 %

08:45 Odd 20 % 20:10 Odd 90 %

09:45 Even 30 % 21:10 Even 10 %

Train Performance

Passenger carrying capacity
640 Sitting

1200
560 Standing (8 per/m2)

Train average full 540 Passengers (45 %)

Average fuel consumption

(Liters of diesel)

840 liters per day

3.3333 liters /km (70 liters/one way trip)

Average journey time ≥ 50 minutes

Average station stopping time ≥ 2 minutes

Thus, fuel cost and emission per passenger kilometer were as given in Figure

4.13 and Figure 4.14 respectively. Compared to TRL train, the BEMU reduces fuel

cost and CO2 emission per passenger kilometer by 87.7%, and 70.89 % respectively.

And compared to TAZARA train the BEMU reduces fuel cost and CO2 emission per

passenger kilometer by 75.6 %, and 42.25 % respectively.

From Table 4.4 and Table 4.5 it ca be seen that, TAZARA train has lower

diesel consumption per passenger kilometer than TRL train; i.e. TAZARA train has

89

higher fuel efficiency than TRL train. This is the reason why compared to TRL train,

the BEMU reduces more fuel cost and CO2 emission per passenger kilometer than

when compared to TAZARA train. From Figure 4.13 and Figure 4.14, it can be seen

that the BEMU fuel cost and emission per passenger kilometer are lower on TRL route

than they are on TAZARA route. One of the reasons is that the TRL route has higher

ridership than TAZARA route.

Figure 4.20 Fuel cost per passenger kilometer

90

Figure 4.21 Carbon dioxide emission per passenger kilometer

CHAPTER V

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

This research has been driven by the facts that electric trains are more

efficient, fuel-cost effective and environmental friendly than the traditional diesel

trains and, battery technology has advanced and proven success in vehicular

applications. The research therefore, is built upon three main pillars: optimal speed

profile, BEMU and, passenger travel fuel cost and emission.

To minimize amount of energy required to move a tram from one station to the

next, and eventually one terminal to the other, speed profile optimization was done.

Three optimization methods were used, from which an optimal speed profile was

established. As the tram was to be powered by batteries which have limited energy

capacity, optimization was vital.

Modeled as a BEMU, tram movement was simulated, and it was found that a

648 V, 120 Ah LTO battery pack is quite sufficient to power the tram with 312

passenger capacity, and approximately. 63 ton effective weight, along a 12 km route

and 21 km route. On the 21 km route, partial charging at some of the intermediate

stations as passengers get on and off the tram was found to be convenient, so as to

keep the battery pack at high state of charge, above 50%.

92

Compared to TRL diesel train, the BEMU was found to reduce fuel cost and

emission per passenger kilometer by 87.7 percent, and 70.89 percent respectively.

And compared to TAZARA diesel train, the BEMU was found to reduce fuel cost and

emission per passenger kilometer by 75.6 percent, and 42.25 percent respectively.

These reductions are significant; policy makers, city authorities and other

stakeholders are thereby called to consider the results from this research when making

policies and plans for city transport systems.

5.2 Recommendations

Further improvement on this research would be to:

(i) Include within a case study, a diesel train with a very good

efficiency and/or, model and simulate a diesel train assuming very

good efficiency;

(ii) Include a design of suitable charging infrastructures for the

intermediate and terminal stations;

(iii) Analyze which is a better option between: (a) charging at

intermediate stations so as to minimize battery pack size and,

(b) increasing the battery pack size so that charging takes place only

at terminal stations;

(iv) From (ii) above, if option ‘a’ is better than ‘b’, then evaluate

whether it is convenient or not to set different dwell times, for

different intermediate stations according to the average number of

commuters at a station, so that, intermediate charging stations are

the ones where a tram dwells for long;

93

(v) Evaluate whether it is convenient or not to have a short catenary

system installed at every intermediate station to allow the tram

accelerate while drawing power from the catenary. A short catenary

at every intermediate station will make every intermediate station a

charging station and significantly reduce the battery pack size.

Batteries will be mainly used during cruising; and

(vi) Include investment cost and other operational costs such as

maintenance cost, and estimate a break-even point.

REFERENCES

ABB Communications. (2013, May 30). Large-capacity, flash-charging, battery-

powered pilot bus takes to the street. Retrieved September 17, 2015, from

http://www.abb.com/cawp/seitp202/9315e568e4c6a1f8c1257b7400302fcd.asp

x

Abu-Rub, H., Malinowski, M., and Al-Haddad, K. (2014). Power Electronics for

Renewable Energy Systems, Transportation and Industrial Applications .

West Sussex, United Kingdom: John Wiley & Sons Ltd.

Adewumi, A. O., and Arasomwan, A. M. (2014). Improved Particle Swarm

Optimization based on Greedy and Adaptive Features. 2014 IEEE

Symposium on Swarm Intelligence (SIS) (pp. 1 - 6). Orlando, FL: IEEE.

Ahadzadeh, B., and Menhaj, M. B. (2014). A Modified Differential Evolution

Algorithm Based on a New Mutation Strategy and Chaos Local Search for

Optimization Problems. Proceedings of the 2014 4th IEEE International

eConference on Computer and Knowledge Engineering (ICCKE) (468 -

473). Mashhad.

Altairnanno. (n.d.). 24 V 60 Ah Battery Module. Retrieved December 30, 2015,

from http://www.altairnano.com/products/battery-module/

Barrero, R., Mierlo, J. V., and Tackoen, X. (2008). Energy savings in Public

Transport. IEEE Vehicular Technology Magazine,Vol.3(3): 26-36.

Bombardier Transportation. (2015). Trams and e-buses PRIMOVE battery

optimised for maximum performance and lifetime. Berlin, Germany.

95

Bombardier Transportation. (2015, November 3). Bombardier’s Battery Powered

Tram Sets Range Record. (Bombardier) Retrieved February 11, 2016, from

http://www.bombardier.com/en/media/newsList/details.BT-20151103-

Bombardiers-Battery-Powered-Tram-Sets-Range-Record-

01.bombardiercom.html

Chan, F. T., and Tiwari, M. K. (2007). Swarm Intelligence, Focus on Ant and

Particle Swarm Optimization. Vienna: INTECH.

Chengfu, S., Haiyan, Z., and Liqing, C. (2012). Improved differential evolution

algorithms. Proceedings of the 2012 IEEE International Conference on

Computer Science and Automation Engineering (CSAE) (142 - 145).

Zhangjiajie.

Das, S., and Suganthan, P. N. (2011). Differential Evolution: A Survey of the State-

of-the-Art. IEEE Transactions on Evolutionary Computation. Vol.15(1):

4-31.

Dincer, I., Colpan, C. O., and Ezan, M. A. (2015). Progress in Clean Energy,

Volume 2: Novel Systems and Applications. Springer.

Egbue, O., and Long, S. (2012). Barriers towide spread adoption of electric vehicles:

Ananalysis of consumer attitudes andperceptions. Energy Policy. Vol.48:

717-729.

EIA. (2015, March 30). Frequently Asked questions. (Energy Information

Administration (EIA)) Retrieved January 31, 2016, from

https://www.eia.gov/tools/faqs/faq.cfm?id=74&t=11

EWURA. (2015). Electricity. Retrieved February 7, 2016, from EWURA Web site:

http://144.76.33.232/?page_id=130

96

EWURA. (2015, August 5). Cap Prices for Petroleum Products with Effect from

5th August 2015. Dar es Salaam, Tanzania.

Gillespie, T. D. (1992). Fundametals of vehicle dynamics. Warrendale, PA ,

Pennsylvania: Society of Automotive Engineers.

Goodman, C. (2008). Overview of electric railway systems and the calculation of

train performance. Electric Traction Systems. Manchester.

Griffiths, P. (2012, September 5). Technology Briefing Paper Catenary Free Tram

Operation. United Kingdom.

Hirose, H., Yoshida, K., & Shibanuma, K. (2012). Development of Catenary and

Storage Battery Hybrid Train System. Proceedings of the IEEE-Electrical

Systems for Aircraft, Railway and Ship Propulsion (ESARS). 2012.

Hodges, T. (2010, January). Public Transportation’s Role in Responding to

Climate Change. United States of America.

Holland, J. H. (1992). Genetics Algorithms: Computer programs that "evolve" in

ways that resemble natural selection can solve complex problems even their

creators do not fully understand. Scientific American, 66-72.

Horiba, T. (2014). Lithium-Ion Battery Systems. Proceedings of the IEEE 102(6),

939 - 950.

Husain, I. (2003). Electric and Hybrid Vehicles Design Fundamentals.

Washington, D.C., United States of America: CRC Press LLC.

Jeyakumar, G., and Shunmuga, V. C. (2009). A Comparative Performance Analysis

of Differential Evolution and Dynamic Differential Evolution Variants.

97

Proceedings of the IEEE-World Congress on Nature & Biologically

Inspired Computing (463 - 468). Coimbatore.

Jiang, Y., Liu, J., Tian, W., Shahidehpour, M., and Krishnamurthy, M. (2014). Energy

Harvesting for the Eletrification of Railway Stations. IEEE Electrification

Magazine, Vol.2(3): 39-48.

Kulworawanichpong, T. (2003). Optimising AC Electric Railway Power Flows

With Power Electronic Control: PhD Thesis. The University of

Birmingham.

Kulworawanichpong, T., and Punpaisarn, S. (2014, May). Dynamic Simulation of

Electric Bus Vehicle. The Standard International Journals (The SIJ).

Vol.2(3): 99-104.

Larminie, J., & Lowry, J. (2012). Electric Vehicle Technology Explained (2nd ed.).

West Sussex,, United Kingdom: John Wiley & Sons Ltd.

Lazinica, A. (2009). Particle Swarm Optimization. Vienna, Austria: In-Tech.

Li, S., Niu, J., Zhao, Y. C., So, K. P., Wang, C., Wang, C. A., et al. (2015). High-rate

aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life

and ultrahigh capacity. Nature communications, 1-7.

Li, X., and Lo, H. K. (2014). An energy-efficient scheduling and speed control

approach for metro rail operations. Transportation Research Part B. Vol.64:

73–89.

Liang, S., Song, S., Kong, L., and Cheng, J. (2010). An Improved Particle Swarm

Optimization Algorithm and Its Convergence Analysis. 2010 Second

International Conference on Computer Modeling and Simulation (pp. 138

- 141). Sanya, Hainan: IEEE.

98

Liu, S., Jiang, J., Shi, W., Zeyu, M., Wang, L. Y., & Guo, H. (2015). Butler–Volmer-

Equation-Based Electrical Model for High-Power Lithium Titanate Batteries

Used in Electric Vehicles. IEEE Transactions on Industrial Electronics,

62(12), 7557-7568.

Liu, S., Jiang, J., Shi, W., Zeyu, Ma., Wang, L. Y., and Guo, H. (2015). Butler–

Volmer-Equation-Based Electrical Model for High-Power Lithium Titanate

Batteries Used in Electric Vehicles. IEEE Transactions on Industrial

Electronics. Vol.62(12): 7557-7568.

Lu, S., Hillmansen, S., Ho, T. k., and Robert, C. (2013, June). Single Train Trajectory

Optimization. IEEE Transactions On Intelligent Transportation Systems.

Vol.12(2), 743-750.

Mashadi, B., & Crolla, D. (2012). Vehicle Powertrain Systems. United Kingdom:

Wiley.

Mei, C., Liu, G., & Xiao, X. (2010). Improved particle swarm optimization algorithm

and its global convergence analysis. 2010 Chinese Control and Decision

Conference (CCDC) (pp. 1662 - 1667). Xuzhou: IEEE.

MEM. (2014, June 30). Tanzania Electricity Supply Industry Reform Strategy

and Roadmap 2014 - 2015. Dar es Salaam Tanzania.

Mi, C., Masrur, M. A., and Gao, D. W. (2011). Hybrid Electric Vehicles: Principles

and Applications with Practical Perspectives. West Sussex: John Wiley &

Sons, Ltd.

Mwambeleko, J. J., Kulworawanichpong, T., and Greyson, K. A. (2015). Tram and

trolleybus net traction energy consumption comparison. Proceedings of the

99

IEEE 18th International Conference on Electrical Machines and Systems

(ICEMS2015). Pattaya.

Nachilongo, H. N. (2013, November 11). A train ride worth Sh2m loss.

(Mwananchi Communications Ltd) Retrieved June 5, 2015, from

http://www.thecitizen.co.tz/News/A-train-ride-worth-Sh2m-loss/-

/1840392/2068448/-/acnhks/-/index.html

Profillidis, V. (2006). Railway Management and Engineering - Third Edition. Wey

Court East: Ashgate Publishing Limited.

Rahn, C. D., and Wang, C.-Y. (2013). Battery Systems Engineering. West Sussex:

John Wiley & Sons, Ltd.

Rajput, R. (2006). Utilisation of Electrical Power: Including Electrical Drives and

Electric Traction. New Delhi: Laxmi Publications (P) ltd.

Rao, S. S. (2009). Engineering Optimization Theory and Practice (4th ed.). New

Jersey, United States of America: John Wiley & Sons, Inc.

Sadri, J., and Suen, C. Y. (2006). A Genetic Binary Particle Swarm Optimization

Model. Proceedings of the IEEE Congress on Evolutionary Computation,

(656-663). Vancouver.

Sanghvi, R. C., Vashi, A. S., Patolia, H. P., and Jivani, R. G. (2014). Multi-Objective

Optimization of Two-Stage Helical Gear Train Using NSGA-II. Journal of

Optimization, 1-8.

Sen, P. C. (2014). Principles of Electric Machines and Power Electronics. Ontario:

John Wiley & Sons Inc.

100

Shiraki, N., Tokito, K., & Yokozutsumi, R. (2015). Propulsion system for catenary

and storage battery hybrid electric railcar series EV-E301. Proceedings of the

IEEE-International Conference on Electrical Systems for Aircraft,

Railway, Ship Propulsion and Road Vehicles (ESARS). Aachen.

Škoda Transportation. (2013, May 6). Škoda transportation will deliver catenary-

free trams to turkey. Retrieved January 4, 2016, from Škoda Transportation

Web site: http://www.skoda.cz/en/press-room/news/skoda-transportation-will-

deliver-catenary-free-trams-to-turkey/

Škoda Transportation. (n.d.). The Electric Skoda Perun HP. (Škoda Transportation)

Retrieved September 17, 2015, from

http://www.skoda.cz/cs/produkty/elektricke-a-hybridni-autobusy/elektrobus-

skoda-hp-perun/

Stadler Pankow GmbH. (2011, May 25). Battery-powered tram for Munich

produced by Stadler Pankow GmbH sets a new world record. Retrieved

January 5, 2016, from http://www.stadlerrail.com/en/news/2011/05/25/tram-

without-overhead-line-a-new-world-record/

Stadler Rail Group. (2014, July 5). Low-floor light rail vehicle, type Variobahn for

BOGESTRA. Bussnang, Switzerland.

Steimel, A. (2008). Electric Traction - Motive Power and Energy Supply. Munich:

Oldenbourg Industrieverlag GmbH.

Stroe, A.-I., Swierczynski, M., Stroe, D.-I., and Teodorescu, R. (2015). Performance

Model for High-Power Lithium Titanate Oxide Batteries based on Extended

Characterization Tests. Proceedings of the IEEE- Energy Conversion

Congress and Exposition (ECCE). Montreal, QC.

101

TANESCO. (2014, June 1). Tariffs. Retrieved June 25, 2015, from

http://www.tanesco.co.tz/index.php?option=com_docman&task=cat_view&gi

d=36&Itemid=221

TAZARA. (n.d.). Passenger Services. Retrieved December 22, 2015, from

http://tazarasite.com/?page_id=106

TOSA. (2013). Flash Mobility. Clean City. Smart Bus. (TOSA) Retrieved

September 17, 2015, from http://www.tosa2013.com/en#/

Vas, P. (1999). Artificial intelligence based electrical machines and drives:

Application of fuzzy, neural, fuzzy-neural, and genetic algorithms based

techniques. New York, United States: Oxford University Press.

Volvo. (n.d.). The all-new Volvo 7900 Electric – go where people want to go.

(Volvo) Retrieved January 5, 2016, from

http://www.volvobuses.com/bus/global/en-

gb/products_services/buses/City%20buses/volvo_7900_electric/Pages/introdu

ction.aspx

Volvo. (n.d.). Volvo 7900 Electric Hybrid - silent, clean and available. (Volvo)

Retrieved January 5, 2016, from http://www.volvobuses.com/bus/global/en-

gb/products_services/buses/City%20buses/volvo_7900_electric_hybrid/Pages/

introduction.aspx

Wikipedia. (2015, April 1). Rail transport in Tanzania. Retrieved December 5,

2015, from Wikipedia Website:

https://en.wikipedia.org/wiki/Rail_transport_in_Tanzania

102

Wikipedia. (2015, Novermber 21). Battery electric multiple unit. (Wikipedia)

Retrieved January 6, 2016, from Wikipedia Web Site:

https://en.wikipedia.org/wiki/Battery_electric_multiple_unit

Yan, X., Wu, Q., Liu, H., and Huang, W. (2013). An Improved Particle Swarm

Optimization Algorithm and Its Application. IJCSI International Journal of

Computer Science Issues, 316-324.

Yao, L. W., Aziz, J., Kong, P. Y., Idris, N., & Alsofyani, I. (2014). Modeling of

Lithium Titanate Battery for Charger Design. Proceedings of the IEEE

Australasian Universities Power Engineering Conference (AUPEC) (1-5).

Perth: IEEE.

Zhang, J.-w., & Wei, X. (2009). An Improved Particle Swarm Optimization

Algorithm and its Application for Solving Traveling Salesman Problem. 2009

World Congress on Computer Science and Information Engineering (pp.

612 - 616). Los Angeles, CA: IEEE.

APPENDIX A

TANZANIA COMMUTER TRAINS TECHNICAL AND

PERFORMANCE DATA

104

A.1 TRL Commuter Train Performance Data

105

106

107

108

109

A.2 TAZARA Commuter Train Performance Data

110

111

112

113

APPENDIX B

OPTIMIZATION ALGORITHMS TESTING RESULTS

115

B.1 Testing the Algorithms Using Ackely’s Function

The Ackley’s function is given as

 𝑓(𝑥) = −𝐴𝑒𝑥𝑝 (−𝐵√
1

𝑛
∑ 𝑥𝑖

2

𝑛

𝑖=1

) − 𝑒𝑥𝑝 (
1

𝑛
∑ 𝑐𝑜𝑠(𝐶𝑥𝑖)

𝑛

𝑖=1

) + 𝐴 + 𝑒𝑥𝑝 (1) (B.1)

where 𝑛 is the number of variables and, 𝐴, 𝐵 and 𝐶 are constant numbers. Shown in

Figure B.1 is the Ackley’s function plotted in two dimensional space. The function

has a global minimum at 𝑥 = 0 where 𝑓(𝑥) = 0.

Figure B.1 Ackley’s function plotted in two dimensional space

During the testing, values for 𝑛, 𝐴, 𝐵 and 𝐶 were set as 𝑛 = 3, 𝐴 = 20,

𝐵 = 0.2 , and 𝐶 = 2𝜋 . And, 𝑥𝑖 ∈ [−5 10]. Other settings related to the

optimization algorithms can be found in the ‘Options.m’ function given in appendix D

116

As shown in Figure B.2, the Ackley’s function and all the three optimization

algorithms were selected, and when the program was executed, the optimization

testing results were as presented in Figure B.3 through Figure B.6.

The MATLAB® built in GA plots the best and mean fitness values, and the

developed DE and PSO plot the best, mean and the worst fitness values. The worst

fitness value was added in the plot for the purpose of this thesis work so as to evaluate

(i) what were the worst possible combination of the variables (in speed profile

optimization) and (ii) the convergence of the individuals (or particles).

Figure B.2 Ackley’s function and all the three optimization algorithms selected

117

Figure B.3 Ackley’s function, GA fitness value plot

Figure B.4 Ackley’s function, DE fitness value plot

118

Figure B.5 Ackley’s function, PSO fitness value plot

Figure B.6 Ackley’s function; GA, DE and PSO optimal values

119

B.2 Testing the Algorithms Using Rastrigin’s Function

The Rastrigin’s function is defined as

 𝑓(𝑥) = 𝐴𝑛 + ∑[𝑥𝑖
2 − 𝐴𝑐𝑜𝑠(2𝜋𝑥𝑖)]

𝑛

𝑖=1

 𝑤ℎ𝑒𝑟𝑒 𝑥 = [𝑥1, … , 𝑥𝑛] ∈ ℝ𝑛 (B.2)

where 𝐴 is a constant number. Shown in Figure B.7 is the Rastrigin’s function plotted

in two dimensional space. The function has a global minimum at 𝑥 = 0 where

𝑓(𝑥) = 0.

Figure B.7 Rastrigin’s function plotted in two dimensional space

During the testing, values for 𝑛 and 𝐴 were set as 𝑛 = 3 (testing with three

variables) and 𝐴 = 10 . And, 𝑥𝑖 ∈ [−5 10]. As mentioned previously, other

settings related to the optimization algorithms can be found in the ‘Options.m’

function given in appendix D.

120

As shwon in Figure B.8, Rastrigin’s function and all the three optimization

algorithms were selected, and when the program was executed, the optimization

testing results were as presented in Figure B.9 through Figure B.12.

Figure B.8 Rastrigin’s function and all the three optimization algorithms selected

Figure B.9 Rastrigin’s function; GA, DE and PSO optimal values

121

Figure B.10 Rastrigin’s function, GA fitness value plot

Figure B.11 Rastrigin’s function, DE fitness value plot

122

Figure B.12 Rastrigin’s function, PSO fitness value plot

B.3 Testing the Algorithms Using Rosenbrock’s Function

 The Rosenbrock’s function is defined as

 𝑓(𝑥) = ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2]

𝑛−1

𝑖=1

 𝑤ℎ𝑒𝑟𝑒 𝑥 = [𝑥1, … , 𝑥𝑛] ∈ ℝ𝑛 (B.3)

Shown in Figure B.13 is the Rosenbrock’s function plotted in two dimensional space.

The function has a global minimum at 𝑥 = 1 where 𝑓(𝑥) = 0.

123

Figure B.13 Rosenbrock’s function plotted in two dimensional space

During the testing, the values for 𝑛 was set as 𝑛 = 3 (testing with three

variables) and, 𝑥𝑖 ∈ [−5 10]. As mentioned previously, other option settings related

to the optimization algorithms can be found in the ‘Options.m’ function given in

appendix D.

As shwon in Figure B.14, Rosenbrock’s function and all the three optimization

algorithms were selected, and when the program was executed, the optimization

testing results were as presented in Figure B.15 through Figure B.18.

124

Figure B.14 Rosenbrock’s function and all the three optimization algorithms selected

Figure B.15 Rosenbrock’s function, GA fitness value plot

125

Figure B.16 Rosenbrock’s function, DE fitness value plot

Figure B.17 Rosenbrock’s function, PSO fitness value plot

126

Figure B.18 Rosenbrock’s function; GA, DE and PSO optimal values

NOTE:

From these testing results, it can be seen that the three optimization algorithms were

in most cases able to find a global minimum. The algorithms were therefore found to

be sufficient enough to be used in the research

APPENDIX C

SPEED PROFILE OPTIMIZATION RESULTS

128

C.1 TRL Route

The MATLAB® built in GA, developed DE, and PSO algorithms were used to

search for optimal speed profile for TRL route. The optimization results for each

section (interstation distance) of the route are presented in this section.

C.1.1 TRL Route; S1-S2

Speed profile optimization results for TRL route, from S1 to S2 were as

presented in Figure C.1 through Figure C.7.

Figure C.1 TRL route, S1 to S2 GA fitness value plot

129

Figure C.2 TRL route, S1 to S2 DE fitness value plot

Figure C.3 TRL route, S1 to S2 PSO fitness value plot

130

Figure C.4 TRL route, S1 to S2 GA, DE and PSO optimal values

Figure C.5 TRL route, S1 to S2 the best speed profile, velocity against time

131

Figure C.6 TRL route, S1 to S2 the best speed profile, velocity against distance

Figure C.7 TRL route, S1 to S2 power demand corresponding to the best speed

profile

132

C.1.2 TRL Route; S2-S3

Speed profile optimization results for TRL route, from S2 to S3 were as

presented in Figure C.8 through Figure C.14.

Figure C.8 TRL route, S2 to S3 GA fitness value plot

Figure C.9 TRL route, S2 to S3 DE fitness value plot

133

Figure C.10 TRL route, S2 to S3 PSO fitness value plot

Figure C.11 TRL route, S2 to S3 GA, DE and PSO optimal values

134

Figure C.12 TRL route, S2 to S3 the best speed profile, velocity against time

Figure C.13 TRL route, S2 to S3 the best speed profile, velocity against distance

135

Figure C.14 TRL route, S2 to S3 power demand corresponding to the best speed

profile

136

C.1.3 TRL Route; S3-S4

Speed profile optimization results for TRL route, from S3 to S4 were as

presented in Figure C.15 through Figure C.21.

Figure C.15 TRL route, S3 to S4 GA fitness value plot

Figure C.16 TRL route, S3 to S4 DE fitness value plot

137

Figure C.17 TRL route, S3 to S4 PSO fitness value plot

Figure C.18 TRL route, S3 to S4 GA, DE and PSO optimal values

138

Figure C.19 TRL route, S3 to S4 the best speed profile, velocity against time

Figure C.20 TRL route, S3 to S4 the best speed profile, velocity against distance

139

Figure C.21 TRL route, S3 to S4 power demand corresponding to the best speed

profile

140

C.1.4 TRL Route; S4-S5

Speed profile optimization results for TRL route, from S4 to S5 were as

presented in Figure C.22 through Figure C.28.

Figure C.22 TRL route, S4 to S5 GA fitness value plot

Figure C.23 TRL route, S4 to S5 DE fitness value plot

141

Figure C.24 TRL route, S4 to S5 PSO fitness value plot

Figure C.25 TRL route, S4 to S5 GA, DE and PSO optimal values

142

Figure C.26 TRL route, S4 to S5 the best speed profile, velocity against time

Figure C.27 TRL route, S4 to S5 the best speed profile, velocity against distance

143

Figure C.28 TRL route, S4 to S5 power demand corresponding to the best speed

profile

144

C.1.5 TRL Route; S5-S6

Speed profile optimization results for TRL route, from S5 to S6 were as

presented in Figure C.29 through Figure C.35.

Figure C.29 TRL route, S5 to S6 GA fitness value plot

Figure C.30 TRL route, S5 to S6 DE fitness value plot

145

Figure C.31 TRL route, S5 to S6 PSO fitness value plot

Figure C.32 TRL route, S5 to S6 GA, DE and PSO optimal values

146

Figure C.33 TRL route, S5 to S6 the best speed profile, velocity against time

Figure C.34 TRL route, S5 to S6 the best speed profile, velocity against distance

147

Figure C.35 TRL route, S4 to S5 power demand corresponding to the best speed

profile

148

C.1.6 TRL Route; S6-S7

Speed profile optimization results for TRL route, from S6 to S7 were as

presented in Figure C.36 through Figure C.42.

Figure C.36 TRL route, S6 to S7 GA fitness value plot

Figure C.37 TRL route, S6 to S7 DE fitness value plot

149

Figure C.38 TRL route, S6 to S7 PSO fitness value plot

Figure C.39 TRL route, S6 to S7 GA, DE and PSO optimal values

150

Figure C.40 TRL route, S6 to S7 the best speed profile, velocity against time

Figure C.41 TRL route, S6 to S7 the best speed profile, velocity against distance

151

Figure C.42 TRL route, S6 to S7 power demand corresponding to the best speed

profile

152

C.1.7 TRL Route; S7-S8

Speed profile optimization results for TRL route, from S7 to S8 were as

presented in Figure C.43 through Figure C.49.

Figure C.43 TRL route, S7 to S8 GA fitness value plot

Figure C.44 TRL route, S7 to S8 DE fitness value plot

153

Figure C.45 TRL route, S7 to S8 PSO fitness value plot

Figure C.46 TRL route, S7 to S8 GA, DE and PSO optimal values

154

Figure C.47 TRL route, S7 to S8 the best speed profile, velocity against time

Figure C.48 TRL route, S7 to S8 the best speed profile, velocity against distance

155

Figure C.49 TRL route, S7 to S8 power demand corresponding to the best speed

profile

156

C.2 TAZARA Route

The MATLAB® built in GA, developed DE, and PSO algorithms were used to

search for optimal speed profile for TAZARA route. The optimization results for each

section (interstation distance) of the route are presented in this section.

C.2.1 TAZARA Route; S1-S2

Speed profile optimization results for TAZARA route, from S1 to S2

were as presented in Figure C.50 through Figure C.57.

Figure C.50 TAZARA route, S1 to S2 GA fitness value plot

157

Figure C.51 TAZARA route, S1 to S2 DE fitness value plot

Figure C.52 TAZARA route, S1 to S2 PSO fitness value plot

158

Figure C.53 TAZARA route, S1 to S2 GA, DE and PSO optimal values

Figure C.54 TAZARA route, S1 to S2 the best speed profile, velocity against time

159

Figure C.55 TAZARA route, S1 to S2 the best speed profile, velocity against

distance

Figure C.56 TAZARA route, S1 to S2 power demand corresponding to the best

speed profile

160

C.2.2 TAZARA Route; S2-S3

Speed profile optimization results for TAZARA route, from S2 to S3

were as presented in Figure C.57 through Figure C.63.

Figure C.57 TAZARA route, S2 to S3 GA fitness value plot

Figure C.58 TAZARA route, S2 to S3 DE fitness value plot

161

Figure C.59 TAZARA route, S2 to S3 PSO fitness value plot

Figure C.60 TAZARA route, S2 to S3 GA, DE and PSO optimal values

162

Figure C.61 TAZARA route, S2 to S3 the best speed profile, velocity against time

Figure C.62 TAZARA route, S2 to S3 the best speed profile, velocity against

distance

163

Figure C.63 TAZARA route, S2 to S3 power demand corresponding to the best

speed profile

164

C.2.3 TAZARA Route; S3-S4

Speed profile optimization results for TAZARA route, from S3 to S4

were as presented in Figure C.64 through Figure C.70.

Figure C.64 TAZARA route, S3 to S4 GA fitness value plot

Figure C.65 TAZARA route, S3 to S4 DE fitness value plot

165

Figure C.66 TAZARA route, S3 to S4 PSO fitness value plot

Figure C.67 TAZARA route, S3 to S4 GA, DE and PSO optimal values

166

Figure C.68 TAZARA route, S3 to S4 the best speed profile, velocity against time

Figure C.69 TAZARA route, S3 to S4 the best speed profile, velocity against

distance

167

Figure C.70 TAZARA route, S3 to S4 power demand corresponding to the best speed

profile

168

C.2.4 TAZARA Route; S4-S5

Speed profile optimization results for TAZARA route, from S4 to S5

were as presented in Figure C.71 through Figure C.77.

Figure C.71 TAZARA route, S4 to S5 GA fitness value plot

Figure C.72 TAZARA route, S4 to S5 DE fitness value plot

169

Figure C.73 TAZARA route, S4 to S5 PSO fitness value plot

Figure C.74 TAZARA route, S4 to S5 GA, DE and PSO optimal values

170

Figure C.75 TAZARA route, S4 to S5 the best speed profile, velocity against time

Figure C.76 TAZARA route, S4 to S5 the best speed profile, velocity against

distance

171

Figure C.77 TAZARA route, S4 to S5 power demand corresponding to the best speed

profile

172

C.2.5 TAZARA Route; S5-S6

Speed profile optimization results for TAZARA route, from S5 to S6

were as presented in Figure C.78 through Figure C.84.

Figure C.78 TAZARA route, S5 to S6 GA fitness value plot

Figure C.79 TAZARA route, S5 to S6 DE fitness value plot

173

Figure C.80 TAZARA route, S5 to S6 PSO fitness value plot

Figure C.81 TAZARA route, S5 to S6 GA, DE and PSO optimal values

174

Figure C.82 TAZARA route, S5 to S6 the best speed profile, velocity against time

Figure C.83 TAZARA route, S5 to S6 the best speed profile, velocity against

distance

175

Figure C.84 TAZARA route, S4 to S5 power demand corresponding to the best speed

profile

176

C.2.6 TAZARA Route; S6-S7

Speed profile optimization results for TAZARA route, from S6 to S7

were as presented in Figure C.85 through Figure C.91.

Figure C.85 TAZARA route, S6 to S7 GA fitness value plot

Figure C.86 TAZARA route, S6 to S7 DE fitness value plot

177

Figure C.87 TAZARA route, S6 to S7 PSO fitness value plot

Figure C.88 TRL route, S6 to S7 GA, DE and PSO optimal values

178

Figure C.89 TAZARA route, S6 to S7 the best speed profile, velocity against time

Figure C.90 TAZARA route, S6 to S7 the best speed profile, velocity against

distance

179

Figure C.91 TAZARA route, S6 to S7 power demand corresponding to the best speed

profile

180

C.2.7 TAZARA Route; S7-S8

Speed profile optimization results for TAZARA route, from S7 to S8

were as presented in Figure C.92 through Figure C.98.

Figure C.92 TAZARA route, S7 to S8 GA fitness value plot

Figure C.93 TAZARA route, S7 to S8 DE fitness value plot

181

Figure C.94 TAZARA route, S7 to S8 PSO fitness value plot

Figure C.95 TAZARA route, S7 to S8 GA, DE and PSO optimal values

182

Figure C.96 TAZARA route, S7 to S8 the best speed profile, velocity against time

Figure C.97 TAZARA route, S7 to S8 the best speed profile, velocity against

distance

183

Figure C.98 TAZARA route, S7 to S8 power demand corresponding to the best speed

profile

184

C.2.8 TAZARA Route; S8-S9

Speed profile optimization results for TAZARA route, from S8 to S9

were as presented in Figure C.99 through Figure C.105.

Figure C.99 TAZARA route, S8 to S9 GA fitness value plot

Figure C.100 TAZARA route, S8 to S9 DE fitness value plot

185

Figure C.101 TAZARA route, S8 to S9 PSO fitness value plot

Figure C.102 TAZARA route, S8 to S9 GA, DE and PSO optimal values

186

Figure C.103 TAZARA route, S8 to S9 the best speed profile, velocity against time

Figure C.104 TAZARA route, S8 to S9 the best speed profile, velocity against

distance

187

Figure C.105 TAZARA route, S8 to S9 power demand corresponding to the best

speed profile

188

C.2.9 TAZARA Route; S9-S10

Speed profile optimization results for TAZARA route, from S9 to S10

were as presented in Figure C.106 through Figure C.112.

Figure C.106 TAZARA route, S9 to S10 GA fitness value plot

Figure C.107 TAZARA route, S9 to S10 DE fitness value plot

189

Figure C.108 TAZARA route, S9 to S10 PSO fitness value plot

Figure C.109 TAZARA route, S9 to S10 GA, DE and PSO optimal values

190

Figure C.110 TAZARA route, S9 to S10 the best speed profile, velocity against time

Figure C.111 TAZARA route, S9 to S10 the best speed profile, velocity against

distance

191

Figure C.112 TAZARA route, S9 to S10 power demand corresponding to the best

speed profile

APPENDIX D

MATLAB CODE

193

D.1 Optimization

The MATLAB® scripts presented in this section were used to test the

optimization algorithms and search for optimal speed profiles.

D.1.1 OptimizationTest.m

 This script starts up the GUI from which the function to be used in the

testing and the optimization algorithm (s) to be tested can be selected. The

‘MainTest.m’ file is then called to proceed with the algorithm (s) testing.

function varargout = OptimizationTest(varargin)
% OPTIMIZATIONTEST MATLAB code for OptimizationTest.fig
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @OptimizationTest_OpeningFcn, ...
 'gui_OutputFcn', @OptimizationTest_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end

% --- Executes just before OptimizationTest is made visible.
function OptimizationTest_OpeningFcn(hObject, eventdata, handles,

varargin)
% hObject handle to figure

% Choose default command line output for OptimizationTest
handles.output = hObject;

axes(handles.axes_Optimize) % Make current axes
imshow('A_photo_Optimize.png')
set(0, 'DefaultUIControlFontSize', 8);
% addpath([pwd '/DE_and_PSO_Testing']);
set(handles.radiobutton_All_3,'Value',1);
handles.Algorithm = 4;
set(handles.radiobutton_Ackley,'Value',1);
handles.Testfnc = 1;

% Update handles structure
guidata(hObject, handles);

194

% --- Outputs from this function are returned to the command line.
function varargout = OptimizationTest_OutputFcn(hObject, eventdata,

handles)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes when selected object is changed in uipanel_algorithms.
function uipanel_algorithms_SelectionChangeFcn(hObject, eventdata,

handles)

% disp(get(hObject,'Tag'));
AlgorithmTag = get(hObject,'Tag');
switch AlgorithmTag
 case 'radiobutton_GA'
 handles.Algorithm = 1;
 case 'radiobutton_DE'
 handles.Algorithm = 2;
 case 'radiobutton_PSO'
 handles.Algorithm = 3;
 case 'radiobutton_All_3'
 handles.Algorithm = 4;
end
% Update handles structure
guidata(hObject, handles);

% --- Executes when selected object is changed in uipanel_Testfcn.
function uipanel_Testfcn_SelectionChangeFcn(hObject, eventdata,

handles)

% disp(get(hObject,'Tag'));
TestfncTag = get(hObject,'Tag');
switch TestfncTag
 case 'radiobutton_Ackley'
 handles.Testfnc = 1;
 case 'radiobutton_Rastrigin'
 handles.Testfnc = 2;
 case 'radiobutton_Rosenbrock'
 handles.Testfnc = 3;
end
% Update handles structure
guidata(hObject, handles);

function pushbutton_Run_Callback(hObject, eventdata, handles)

Optm_Algothm2Test = handles.Algorithm;
Optm_Testingfnc = handles.Testfnc;
save ('VarStoreGui.mat', 'Optm_Algothm2Test','Optm_Testingfnc','-

append')
MainTest

% --- Executes on button press in pushbutton_Exit.
function pushbutton_Exit_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton_Exit (see GCBO)

195

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
delete (gcf)
return

D.1.2 MainTest.m

This script calls the function to be used in the testing (that function

may or may not be plotted, depending on the value of the Plotindex), it also calls the

optimization algorithm(s) to be tested

%{
 Written by Joachim J. Mwambeleko
 LU 25/Aug/2015

Testing the developed PSO and DE codes alongside the MATLAB built in

GA.

%}

clear all;clc; close all
global Obj
Plotindex = 2;
LV = load('VarStoreGui.mat', 'Optm_Algothm2Test','Optm_Testingfnc');
TestingFcn = LV.Optm_Testingfnc;
switch TestingFcn
 case 1
 Obj = @Ackley_fn; PlotAckley_fn(Plotindex)
 case 2
 Obj = @Rastrigin_fn; PlotRastrigin_fn(Plotindex)
 case 3
 Obj = @Rosenbrock_fn; PlotRosenbrock_fn(Plotindex)
end
nvars = 3;
LB = [-5 -5 -5];
UB = [10 10 10];

if length (LB)~= length (UB)
 error (' LB & UB should have equal length')
elseif nvars ~= length (LB)
 error (' nvars should be equal to the baundary size')
end
if min(UB-LB)<0
 error (' The UB is invalid, one or more UB(i) < LB(i)')
elseif min(UB-LB)== 0
 warning (' One or more UB(i) = LB(i)')
end
fprintf(['\nFunction Used in the Test: ' func2str(Obj),'\n\n'])

%------------ Select Which Algorithm to Test -----------------%
Optm_Algothm_2Test = LV.Optm_Algothm2Test;
switch Optm_Algothm_2Test
 case 1

196

 options = struct ;
 options = Options(options);
 np = options.PopSize; ng = options.Generations;
 opts = gaoptimset('Display','off','Generations',ng,...
 'PopulationSize',np,'PlotFcns',@gaplotbestf);

 [xop_ga,fop_ga,flag] =

ga(Obj,nvars,[],[],[],[],LB,UB,[],opts);
 fprintf (' Method: GA \n'),...
 fprintf ('Optimal postn: %2.3f %2.3f %2.3f \n',xop_ga);
 fprintf ('Fitness Value: %4.4f \n\n',fop_ga);
 msg = deoutputmsg(flag);
 disp (msg)

 case 2
 [xop_dev, fop_dev, flag] = dev(Obj,nvars,LB,UB);
 fprintf (' Method: DE \n'),...
 fprintf ('Optimal postn: %2.3f %2.3f %2.3f \n',xop_dev);
 fprintf ('Fitness Value: %4.4f \n\n',fop_dev);
 msg = deoutputmsg(flag);
 disp (msg)

 case 3
 [xop_pso, fop_pso, flag] = pso(Obj,nvars,LB,UB);
 fprintf (' Method: PSO \n'),...
 fprintf ('Optimal postn: %2.3f %2.3f %2.3f \n',xop_pso);
 fprintf ('Fitness Value: %4.4f \n\n',fop_pso);
 msg = deoutputmsg(flag);
 disp (msg)

 case 4
 %---------------------------- GA ------------------
 options = struct ;
 options = Options(options);
 np = options.PopSize; ng = options.Generations;
 opts = gaoptimset('Display','off','Generations',ng,...
 'PopulationSize',np,'PlotFcns',@gaplotbestf);

 [xop_ga,fop_ga,flag] =

ga(Obj,nvars,[],[],[],[],LB,UB,[],opts);
 msg = deoutputmsg(flag);
% fprintf ('GA: %s \n',msg)

 %---------------------- DE --------------------------
 [xop_dev, fop_dev, flag] = dev(Obj,nvars,LB,UB);
 msg = deoutputmsg(flag);
% fprintf ('DE: %s \n',msg)

 %---------------------- PSO ------------------------
 [xop_pso, fop_pso, flag] = pso(Obj,nvars,LB,UB);

 msg = deoutputmsg(flag);
% fprintf ('PSO: %s \n',msg)

 %-----------Table Summary--------------%

197

 Summary = table(['GA ';'DE ';'PSO'],[xop_ga; xop_dev;

xop_pso],...
 [fop_ga; fop_dev; fop_pso],...
 'VariableNames',{'Method' 'Optimals' 'Fval'});
 fprintf ('\n'); disp(Summary); fprintf ('\n');
end

Ackley_fn.m

This is the Ackley’s function

function y = Ackley_fn(x)

% min f(0,0,...n) = 0; U can use n-varaibles
a = 20; b = 0.2; c = 2*pi;
s1 = 0; s2 = 0;
n = length(x);
for i=1:n;
 s1 = s1+x(i)^2;
 s2 = s2+cos(c*x(i));
end
y = -a*exp(-b*sqrt(1/n*s1))-exp(1/n*s2)+a+exp(1);
end

PlotAckley_fn.m

This function plots the Ackley’s function in two dimensional space if the input

is greater than one

function PlotAckley_fn(Plotindex)

if Plotindex < 1
 return
end

xp= (-10:0.1:10); yp=xp;
[X,Y]=meshgrid(xp,yp);
[row,col]=size(X); Z = zeros (col,row);

for l=1:col
 for h=1:row
 Z(h,l)=Ackley([X(h,l),Y(h,l)]);
 end
end
figure (94)
surfc(X,Y,Z);
% shading interp
title('Ackley function','FontSize',14)

198

 function fx = Ackley(xyp)
 n = 2;
 a = 20; b = 0.2; c = 2*pi;
 s1 = 0; s2 = 0;
 for i=1:n;
 s1 = s1+xyp(i)^2;
 s2 = s2+cos(c*xyp(i));
 end
 fx = -a*exp(-b*sqrt(1/n*s1))-exp(1/n*s2)+a+exp(1);
 end
end

Rastrigin_fn.m

This is the Rastrigin function

function y = Rastrigin_fn(x)
% min f(0,0,...n) = 0;

n = length(x);
s1 = 0; a = 10;
for i = 1:n
 s1 = s1 + (x(i)^2 - a*cos(2*pi*x(i)));
end

y = a*n + s1;

end

PlotRastrigin_fn.m

This function plots the Rastrigin function in two dimensional space, if its input

is greater than one.

function PlotRastrigin_fn(Plotindex)
if Plotindex < 1
 return
end
xp= (-10:0.1:10); yp=xp;
[X,Y]=meshgrid(xp,yp);
[row,col]=size(X); Z = zeros (col,row);
for l=1:col
 for h=1:row
 Z(h,l)=Rastrigin([X(h,l),Y(h,l)]);
 end
end
figure (95)
surfc(X,Y,Z);
title('Rastrigin function','FontSize',14)

199

 function fx = Rastrigin(xyp)
 n = 2;
 s1 = 0;
 for i = 1:n
 s1 = s1 + (xyp(i)^2 - 10*cos(2*pi*xyp(i)));
 end
 fx = 10*n + s1;
 end
end

Rosenbrock_fn.m

This is the Rosenbrock function

function y = Rosenbrock_fn(x)

% min f(a,a^2,...n) = 0;

n = length(x); a = 1; b = 100;
s1 = 0; s2 = 0;
for i = 1:n-1
 s1 = s1 + (a-x(i))^2;
 s2 = s2 + ((x(i+1)-x(i)^2))^2;
end

y = s1 + b*s2;

end

PlotRosenbrock_fn.m

This function plots the Rosenbrock function in two dimensional space, if its

input is greater than one.

function PlotRosenbrock_fn(Plotindex)

if Plotindex < 1
 return
end

xp= (-2:0.1:2); yp = (-1:0.1:3) ;
[X,Y]=meshgrid(xp,yp);
[row,col]=size(X); Z = zeros (col,row);

for l=1:col
 for h=1:row

200

 Z(h,l)= Rosenbrock([X(h,l),Y(h,l)]);
 end
end
figure (95)
surfc(X,Y,Z);
% shading interp
title('Rosenbrock function','FontSize',14)

 function fx = Rosenbrock(xyp)
 n = 2; a = 1; b = 100;
 s1 = 0; s2 = 0;
 for i = 1:n-1
 s1 = s1 + (a-xyp(i))^2;
 s2 = s2 + ((xyp(i+1)-xyp(i)^2))^2;
 end
 fx = s1 + b*s2;
 nd
end

dev.m

This is the developed DE algorithm script.

function [bestmem,bestfval,exitflag] = dev(Obj,nvars,LB,UB)
tic
%{
 Written by Joachim J. Mwambeleko
 ** Last Update 22/ Aug / 15 **
Comments are warmly welcome via (mwambejoachim@hotmail.com)
%}

if ~exist('LB','var'), LB = [] ; end
if ~exist('UB','var'), UB = [] ; end

if isempty(LB) || isempty(UB)
 error ('This programs needs finite LB and UB\n');
end

options = struct ;
options = Options(options);
np = options.PopSize; Cr = options.CrossoverFactor;
F = options.ScallingFactor;
if (np < 5)
 np = 5; options.PopSize = np;
 fprintf(['\n NP increased to minimal value ' num2str(np) '\n']);
end
if options.Generations < 10
 options.Generations = 10;
 options.StallGenLimit = 0.8 * options.Generations ;
 fprintf(['\n NG increased to minimal value ',...
 num2str(options.Generations) '\n']);
end

201

if ((Cr < 0) || (Cr > 1))
 Cr = 0.5;
 fprintf('\n Cr [0,1]; set to default: 0.5');
end
if ((F < 0) || (F > 1))
 F = 0.5;
 fprintf('\n Scalling-factor[0,1]; set to default: 0.7');
end

%-------------- Initiate the population & other Vectors -------------

-
[x, fx, ~, ~] = psointpop(nvars,LB,UB,options); % x: target vectors
v = zeros (np ,nvars); %mutant vectors
u = zeros (np ,nvars); %children vectors
x_nextg = zeros (np ,nvars); %Initiate Next generation
fu = ones(np, 1)* inf; %Initiate fit_val for children
ftval = ones(np, 1)* inf; %Initiate fit_val for valid gen_members
idmut = zeros (1,3); % index for mutation [k,l,m]
[bestfval, idbestfval]= min(fx);
bestmem = x(idbestfval,:);
StallCounter = 0; exitflag = nan;

% --------------------------- Start Iterating ------------------
for ng = 1: options.Generations
 % Pick indexes for random vectors & generate mutant vector matrix
 for i = 1:np
 idmut(1) = randi(np);
 while (idmut(1)==i)
 idmut(1) = randi(np); % get k ~= i
 end
 idmut(2) = randi(np);
 while ((idmut(2)==idmut(1))||(idmut(2)==i))
 idmut(2) = randi(np); % get l ~= k, ~= i
 end
 idmut(3) = randi(np);
 while

((idmut(3)==idmut(2))||(idmut(3)==idmut(1))||(idmut(3)==i))
 idmut(3) = randi(np); % get m ~= l, ~= k, ~= i
 end
 v(i,:) = x(idmut(1),:)+ F*(x(idmut(2),:)-x(idmut(3),:));
 end %---> for i = 1:np

 %---
 % CrossOver the mutant vectors and the target vectors
 for i = 1:np
 for j = 1:nvars
 if rand ()<= Cr || j == randi(nvars)
 u(i,j) = v(i,j);
 else
 u(i,j) = x(i,j);
 end
 % Children (u) bnd_concstrain
 if u(i,j) > UB (j)
 u(i,j) = UB (j);
 elseif u(i,j) < LB (j)
 u(i,j) = LB (j);
 end

202

 end
 end
 %---
 % Select individuals from U and X for the next generation
 for i = 1:np
 fx(i,1) = Obj(x(i,:));
 fu(i,1) = Obj (u(i,:));
 if fu(i,1)<= fx(i,1)
 x_nextg(i,:) = u(i,:);
 ftval(i,1) = fu(i,1);
 else
 x_nextg(i,:)= x(i,:);
 ftval (i,1) = fx(i,1);
 end
 end
 ftvalworst = max(ftval); % The worst value
 ftvalmean = mean(ftval); % The mean value
 [ftvalmin, idbestmem] = min(ftval); % The best value
 if min(ftvalmin) <= bestfval % That'll b obvious
 bestmem = x_nextg(idbestmem,:);
 change_bestfval = bestfval - ftvalmin;
 bestfval = ftvalmin;
 end
 if change_bestfval <= options.TolFun
 StallCounter = StallCounter + 1;
 else
 StallCounter = 0; % Accumulate only if they are consecutive
 end
 %------------------ Update the population -------------------
 x = x_nextg;
 %------------------- Intermidiate Display --------------------
 if strcmpi(options.DispInterval,'final')
 % Display nothing, wait for o/p msgs
 elseif isfinite(options.DispInterval) && options.DispInterval > 0
 if (rem(ng,options.DispInterval) == 0)
 fprintf('\n Gen: %d, Bestmem: [%s]', ng,num2str(bestmem))
 fprintf(' Bestfval: %f, F: %1.1f, Cr: %1.1f \n',...
 bestfval,F,Cr);
 end
 end
 %------------------- Plot gfbest -------------------------
 if rem (ng,options.PlotInterval) == 0
 figure (90)
 plot

(ng,ftvalworst,'ro',ng,ftvalmean,'b+',ng,bestfval,'kx'),hold on
 title ('Differential Evolution','FontSize',14)
 xlabel ('Generation')
 ylabel ('Fitness value')
 xlim([1 options.Generations])
 hold on
 end
 % ---------------------- ExitFlags ------------------------
 if StallCounter >= options.StallGenLimit, exitflag = 1; break,

end
 timer = toc;
 if timer > options.TimeLimit, exitflag = -5; break, end
 if bestfval <= options.FitnessLimit, exitflag = 5; break, end
 if isnan (exitflag), exitflag = -1; end

203

 if ng == options.Generations, exitflag = 0; end

end %--> for ng = 1: options.Generations

%--------------------- If hybrid activated ----------------------
if options.Hybrid == 1
 X0 = bestmem;
 OPT = optimoptions('fmincon','Display', 'off');
 [X,FVAL] = fmincon(Obj,X0,[],[],[],[],LB,UB,[],OPT);
 if FVAL < bestfval
 untuned = bestfval;
 bestfval = FVAL;
 bestmem = X;
 tuned = bestfval;
 fprintf ('\nFine-tuned from %7.9f to %7.9f',untuned,tuned)
 plot (ng,bestfval,'*c','LineWidth',6)
 else
 fprintf ('\nHybrid was activated but, there was no

improvement\n')
 end
end %---> if options.Hybrid == 1
legend('Worst fitness','Mean fitness','Best fitness')
hold off % At the end of plotting you would like to HOLD OFF
return

 pso.m

This is the developed PSO algorithm script which was used in speed profile

optimization.

function [gbest,gfbest,exitflag] = pso(Obj,nvars,LB,UB)
tic
%{
 written by Joachim J. Mwambeleko
 ** LU 17/ Aug / 15 **
 ** Appreciations to Dr T.Kulworawanichpong **
NOTE:
Given that w = particle inertia
 C1 = SelfAttraction
 C2 = SolcialAttraction
 1) 0 < (C1 + C2) < 4
 2) ((C1 + C2)/2) - 1 < w < 1
If conditions 1 and 2 are satisfied, the pso will have a better

chance to converge.
%}

if ~exist('LB','var'), LB = [] ; end
if ~exist('UB','var'), UB = [] ; end

if isempty(LB) || isempty(UB)
 error ('Sorry this programs needs finite LB and UB\n');
end

204

options = struct ;
options = Options(options); % Load options.

if options.PopSize < 5
 options.PopSize = 5;
 fprintf(['\n NP increased to minimal value ',...
 num2str(options.PopSize) '\n']);
end
if options.Generations < 10
 options.Generations = 10;
 options.StallGenLimit = 0.8 * options.Generations ;
 fprintf(['\n NG increased to minimal value ',...
 num2str(options.Generations) '\n']);
end

% --------------------- Check swarm stability ----------------
w = options.Inertia;
C1 = options.SelfAttractin; C2 = options.SocialAttraction;
if (C1 + C2 >= 4 || C1 + C2 <= 0)
 msg = 'The swarm may not converge: ' ;
 msg = [msg 'The condition "0 < (C1 + C2) < 4" was not met'] ;
 warning('%s :Consider adjusting C1 and/or C2',msg)
end

if (w >= 1 || ((C1 + C2)/2) - 1 >= w)
 msg = 'The Swarm may not converge: ' ;
 msg = [msg 'The condition "((C1 + C2)/2) - 1 < w < 1" was not

met'];
 warning('%s: Consider adjusting w or C1 & C2',msg)
end
%---------------- Decide on the method -------------------------
LDIW_a = 1; LDIW_b = 1; DVlim = 0;
ImproveConvergency = 1;
if DVlim == 1
 LDIW_a = 0; LDIW_b = 0;
elseif (LDIW_a == 1 || LDIW_b == 1)
 DVlim = 0;
 j_max = options.Generations;
 w_initial = 0.9; w_final = 0.4;
 w = w_initial;
end
%---------------- Initiate the population -----------------------
[x, lfbest, gfbest, gbest] = psointpop(nvars,LB,UB,options);

StallCounter = 0; exitflag = nan;
%---------- Move particles checking Bounds & V_limit -----------
lbest = x;
fx = lfbest;
np = options.PopSize;
v = zeros(np,nvars);

for ng = 1: options.Generations
 R = rand(1,2);
 GBEST = ones(np,1)*gbest;

205

%--------Update velocities take all particles at once----------
 % v_update option 1

 v = w*v + C1*R(1)*(lbest-x)+ C2*R(2)*(GBEST-x);
 %{
$$$ Improvement by Li & Shi "An IPSO algorithm for pattern
synthesis of phased arrays" r1 & r2 may all be too low or
too high, so take only r1 randomly, and substitute r2 by (1- r1)
 %}
 % v_update option_2
 % v = w*v + C1*R(1)*(lbest-x)+ C2*(1-R(1))*(GBEST-x);

 %--------- Check velocities then update position --------------
 vl = options.VelocityLimit;
 v(v > vl)= vl;
 v(v < -vl) = -vl;
 %disp(v)
 x_prv = x;
 x = x + v;
 %---------------- Check the xs agaist UB & LB ------------
 for col = 1:nvars
 x (:,col)= min(x(:,col),UB(col)); %### NOTE: min->UB
 x (:,col)= max(x(:,col),LB(col)); % max->LB
 end
 %disp(x)
 %----------------------- Get the scores --------------------
 fx_prv = fx;
 for p = 1:np
 fx (p,1) = Obj(x(p,:));

 %-------- Improvement update to better positions ------
 if ImproveConvergency ==1;
 if fx(p,1) > lfbest(p,1)
 maxrepeat = 1;
 for repeat = 1:maxrepeat
 % x(p,:) = rand*rand* x(p,:); % mutate
 x(p,:) = rand*x(p,:); % mutate
 for col = 1:nvars
 x (p,col)= min(x(p,col),UB(col)); % UB & LB
 x (p,col)= max(x(p,col),LB(col));
 end

 %_# Altenatively just through the particle into
 % the sln space
 % x(p,:)= rand*(UB-LB)+ LB;

 fx (p,1) = Obj(x(p,:)); % re-calculate

 if fx(p,1) < lfbest(p,1)
 break
 elseif repeat == maxrepeat
 if rand > rand*(1-ng/options.Generations)
 x(p,:) = x_prv (p,:); % Return to...
 % prvoius location
 fx (p,1) = fx_prv(p,1);
 end
 end
 end

206

 end
 end
 %------------ Check if you can update lbest ------------

 if fx(p,1) < lfbest(p,1)
 lfbest(p,1) = fx(p,1);
 lbest(p,:) = x(p,:);
 end
 fxmean = mean(fx);
 fxworst = max(fx);
 end
 %--------------------- Get gbest --------------------------
 [gfbest_new, idgfbest] = min(lfbest);
 change_gfbest = gfbest - gfbest_new ;
 gfbest = gfbest_new;
 gbest = lbest(idgfbest,:);
% gbest = x(idgfbest,:);

 if change_gfbest <= options.TolFun
 StallCounter = StallCounter + 1;
 else
 StallCounter = 0; % Accumulate only if they are consecutive
 end

 %------------------reduce vl as ng increases---------------
 %_# Altenatively one could reduce the inertia weight linearly
 if DVlim == 1
 if ng == round (0.5*options.Generations)
 options.VelocityLimit = 0.8 * options.VelocityLimit;
 elseif ng == round (0.7*options.Generations)
 options.VelocityLimit = 0.8 * options.VelocityLimit;
 elseif ng == round (0.9*options.Generations)
 options.VelocityLimit = 0.8 * options.VelocityLimit;
 end
 end
 %------------reduce ineria weight w as ng increases-----------
 %_# Altenatively one could reduce velocity
 if (LDIW_a == 1 || LDIW_b == 1)
 j = ng; % Update j
 if LDIW_a == 1
 w_j= w_initial-(w_initial-w_final)*j/j_max ;
 elseif LDIW_b == 1
 w_j= (w_initial-w_final)*(j_max-j)/j_max + w_final;
 end
 w = w_j; % Update w
 end
 %--------------- Intermidiate Display -----------------------
 if strcmpi(options.DispInterval,'final')
 % Display nothing, wait for o/p msgs
 elseif isfinite(options.DispInterval) && options.DispInterval > 0
 if (rem(ng,options.DispInterval) == 0)
 fprintf('\n Gen: %d, Bestmem: [%s]', ng,num2str(gbest))
 fprintf('Bestfval: %f, vel_lim: %1.1f, Inertia: %1.1f

\n',...
 gfbest,options.VelocityLimit,options.Inertia);
 end
 end

207

 %------------------ Plot gfbest ----------------------------
 if rem (ng,options.PlotInterval) == 0
 figure (91) %('Name','Particle Swarm','NumberTitle','off')
 plot (ng,fxworst,'ro',ng,fxmean,'b+',ng,gfbest,'kx')
 title ('Particle Swarm','FontSize',14)
 xlabel ('Generation')
 ylabel ('Fitness value')
 xlim([1 options.Generations]) % x-axis limit.
 hold on
 end
 % --------------------- ExitFlags ---------------------------
 if StallCounter >= options.StallGenLimit, exitflag = 1; break,

end
 timer = toc;
 if timer > options.TimeLimit, exitflag = -5; break, end
 if gfbest <= options.FitnessLimit, exitflag = 5; break, end
 if isnan (exitflag), exitflag = -1; end
 if ng == options.Generations, exitflag = 0; end

end %--->g = 1: options.Generaions

%---------------------- If hybrid activated ----------------------
if options.Hybrid == 1
 X0 = gbest;
 OPT = optimoptions('fmincon','Display', 'off');
 [X,FVAL] = fmincon(Obj,X0,[],[],[],[],LB,UB,[],OPT);
 if FVAL < gfbest
 untuned = gfbest;
 gfbest = FVAL;
 gbest = X;
 tuned = gfbest;
 fprintf ('\nFine-tuned from %7.7f to %7.7f',untuned,tuned)
 plot (ng,gfbest,'*c','LineWidth',6)
 else
 fprintf ('\nHybrid was activated but, there was no

improvement')
 end
end %---> options.Hybrid == 1
legend('Worst fitness','Mean fitness','Best fitness')
hold off % At the end of plotting you would like to HOLD OFF
return

psointpop.m

This function randomly initializes the population (for both DE and PSO)

within the given solution space

function [x, lfbest, gfbest, gbest] = psointpop(nvars,LB,UB,options)
%{
 written by Jojo Pidosa Joachim
 ** LU 17/ Aug / 15 **
%}
%---------------------- Initialize particles -----------------------
global Obj

208

np = options.PopSize;
x = zeros (np,nvars); % Initialize memory
lfbest = ones(np,1)*inf; % Column vector, score of particles
for i = 1:np
 %_# x = rand * (UB-LB)+ LB
 x(i,:)= rand *(UB-LB)+ LB; % x(i,:), raw vector,1_particle
 lfbest(i,1)= Obj(x(i,:));
end

[gfbest, idgfbest] = min(lfbest);
gbest = x(idgfbest,:);

end

deoutputmsg.m

This function gives the reason as to why the argorithm (DE or PSO) stopped

function msg = deoutputmsg(exitflag)

if exitflag == 0
 msg = sprintf('Generation limit reached.') ;
elseif exitflag == 1
 msg = sprintf('Change in value of the fitness function over') ;
 msg = sprintf('%s options.StallGenLimit generations less

than',msg);
 msg = sprintf('%s options.TolFun.',msg) ;

elseif exitflag == 5
 msg = sprintf('Fitness limit reached.');

elseif exitflag == -1
 msg = sprintf('Optimization Interupted.') ;

elseif exitflag == -5
 msg = sprintf('Time limit reached.') ;
else
 msg = sprintf('Unrecognized exitflag value') ;
end % if exitflag

Options.m

This function sets the options for the optimization algorithms

function options = Options(varargin)
%{
 Written by Jojo Pidosa Joachim
 * Last Update 15/DEC/2015*

 Any Method will take all the Option and use those it needs

209

%}
% For all the three algorithms
options.PopSize = 50; % np
options.Generations = 50 ; % ng

% For DEV & PSO
options.PlotInterval = 1 ;
options.FitnessLimit = -inf ;
options.DispInterval = 'final' ;
% options.DispInterval = 10 ;
 options.StallGenLimit = 0.8 * options.Generations ;
options.TimeLimit = 5*60 ;
options.TolFun = 1e-6 ;
options.Hybrid = 0;

% Specific for DEV
options.ScallingFactor = 0.8; % F
options.CrossoverFactor = 0.8 ; % Cr

% Specific for PSO
options.Inertia = 0.6; % w (If it's constant)
options.Inertia_initial = 0.9; % w (for LDIW-PSO)
options.Inertia_final = 0.4; % w (for LDIW-PSO)
options.SelfAttractin = 1.75 ; % C1
options.SocialAttraction = 1.0 ; % C2
options.VelocityLimit = 10 ; % vl

end

Main_Optimization.m

This script specifies the route (TRL or TAZARA route) and starts speed

profile optimization.

%{
 Written by Joachim Mwambeleko
 Last update 27/DEC/2015
%}
clear all;clc; close all; echo off
global SaveStationaly
global i indexP Obj route staname stapos Nstops s_stop TimeCheck
global GAXL PSOXL DEVXL XOPXL Method
SaveStationaly = 1;
Obj = @EMU_Compute;
nvars = 3;

%% PERMANENT CONSTANTS
% Train parameters used in optimization
global m_optmzn fc efc Cdf dt g Te_max Tb_max dec_max t_max
m_optmzn = (38.8e3 * 1.11)+ (60.7 * 312) + (27.4 * 54);

fc = 0.006; % Rolling friction coefficient
Cd = 0.6; % Drag coefficient
Af = 7.7; Ad = 1.225; % Frontal area (m^2); Air density (kg/m^3)

210

efc = 0.6; % Power conversion efficiency
g = 9.81; dt = 0.1;
Cdf = 0.5*Ad*Cd*Af; % Fdrag_Coefficient
Pe_max = 8*45e3; v_base_max = 0.45 * (50/3.6); %(6 m/s2)
Te_max = (Pe_max * efc)/v_base_max; Tb_max = Te_max;
acc_max = (Te_max - (m_optmzn*fc))/ m_optmzn ; dec_max = acc_max;
%% ROUTES - Initialize a route
set(0, 'DefaultUIControlFontSize', 12.5);
Routing = questdlg({'Welcome to Optimization:',...
 'Which route are you going for?'}, ...
 'SPECIFY A ROUTE ','TRL','TAZARA','TRL');
switch Routing
 case 'TRL' ; route = 1;
 case 'TAZARA' ; route = 2;
end

[x_Optimal]= InitializeRoute();
if isempty (x_Optimal) % No route was chosen
 fprintf (' Sorry !\n The route was not specified')
 fprintf (' Please re-run the program\n')
 return
end

s_stop = zeros(1,Nstops); Method = cell(1,Nstops); xop =

zeros(Nstops,3);
GAXL = zeros (6,Nstops); PSOXL = GAXL; DEVXL = GAXL; XOPXL = GAXL;

indexP = 1;
if SaveStationaly == 1;
 Nstops = indexP; % To make only one loop in for
end
%Nstops = 1;
%%
for i = indexP:Nstops
 s_stop (i) = stapos (i+1)-stapos(i);

 v_max = 50;
 LV = load ('VarStore','T_max1','T_max2');
 t_max = LV.T_max1; % Max time (minute) per km
 if (s_stop (i)/1e3) <= 1 ;
 t_max = LV.T_max2;
 end
 v_min = (s_stop (i)/(t_max*60*s_stop (i)*1e-3))*3.6;
 % v_max(km/h), acc, b:
 LB = [v_min 0.3 0.4];
 UB = [v_max acc_max 1];
 fprintf([' *** ',staname{i},' to ',staname{i+1},...
 ' :: %2.2f km ***\n'],(s_stop(i)/1e3))

 % -------------- Check varaibles --------------
 if length (LB)~= length (UB)
 error (' LB & UB should have equal length')
 elseif nvars ~= length (LB)
 error (' nvars should be equal to the baundary size')
 end
 if min(UB-LB)<0
 error (' The UB is invalid, one or more UB(i) < LB(i)')

211

 elseif min(UB-LB)== 0
 warning (' One or more UB(i) = LB(i)')
 end
 %--

 options = struct ;
 options = Options(options);
 np = options.PopSize; ng = options.Generations;
 opts = gaoptimset('Display','off','Generations',ng,...
 'PopulationSize',np,'PlotFcns',@gaplotbestf);

 [xop_ga,fop_ga] = ga(Obj,nvars,[],[],[],[],LB,UB,[],opts);
 fop_ga2 = EMU_Compute(xop_ga); % To assign TimeCheck
 if abs(fop_ga-fop_ga2)/fop_ga > 1e-2
 % warning ('fop_ga ~= fop_ga2'); % Just for curiosity
 end
 Time_ga = TimeCheck; % Get the time & prepare xlx DATA
 GAXL(:,i) = [s_stop(i)/1e3; xop_ga(1);xop_ga(2);xop_ga(3);...
 fop_ga;Time_ga];

 [xop_dev, fop_dev] = dev(Obj,nvars,LB,UB);
 fop_dev2 = EMU_Compute(xop_dev);
 if abs(fop_dev-fop_dev2)/fop_dev > 1e-2
 % warning ('fop_dev ~= fop_dev2');
 end
 Time_dev = TimeCheck;
 DEVXL(:,i) = [s_stop(i)/1e3; xop_dev(1);xop_dev(2);...
 xop_dev(3);fop_dev;Time_dev];

 [xop_pso,fop_pso] = pso(Obj,nvars,LB,UB);
 fop_pso2 = EMU_Compute(xop_pso);
 if abs(fop_pso-fop_pso2)/fop_pso > 1e-2
 % warning ('fop_pso ~= fop_pso2');
 end
 Time_pso = TimeCheck;
 PSOXL(:,i) = [s_stop(i)/1e3; xop_pso(1);xop_pso(2);...
 xop_pso(3);fop_pso;Time_pso];

 [Best, IndexBest] = min ([fop_ga, fop_dev, fop_pso]);

 if fop_dev == fop_pso
 if rand > 0.5
 Best = fop_pso; IndexBest = 3;
 end
 end

 if IndexBest == 1
 fprintf (' ### HURRAH for GA ####\n')
 xop(i,:) = xop_ga;
 XOPXL(:,i) = GAXL(:,i); Method(i) = {'GA'};
 elseif IndexBest == 2
 fprintf (' ### HURRAH for DE ####\n')
 xop(i,:) = xop_dev;
 XOPXL(:,i) = DEVXL(:,i); Method(i) = {'DE'};
 elseif IndexBest == 3
 fprintf (' ### HURRAH for PSO ####\n')
 xop(i,:) = xop_pso;

212

 XOPXL(:,i) = PSOXL(:,i); Method(i) = {'PSO'};
 else
 fprintf ('Soory Choose the BEST RESULT by yourself\n')
 warning ('xop has not been assigned\n')
 end

 %-----------Table Summary--------------%
 Summary = table(['GA ';'DE ';'PSO'],[xop_ga; xop_dev;

xop_pso],...
 [fop_ga; fop_dev; fop_pso],[Time_ga; Time_dev; Time_pso],...
 'VariableNames',{'Method' 'Optimal' 'Fval' 'Time'});
 fprintf ('\n'); disp(Summary);

 %---------If save after every stn --------%
 if SaveStationaly == 1
 SaveOptimalStationaly (i,route,xop)
 end
end

if SaveStationaly == 1;
 % Calling initialize route will write the
 % same data for every interstation. So, return

 return;
end
%% ----- Plot the optimal speed prifile----------%
% xop = load('TZR_Speed_Profile.txt');
EMU_Compute(xop,'Plotoptimal');
% % pause
%---------- Update the chooseRoute fnc --------%
if Nstops == Nstops+1-indexP;
 set(0, 'DefaultUIControlFontSize', 12.5);
 msgbox({'Review the Speed Profile and','Press any key to

continue'},...
 'Review Speed profile');
 pause
 if route == 1
 Overwrite = questdlg({'Do you want to Update',...
 'Optimal Speed Profile for TRL Route?'}, ...
 'TRL: Speed Profile','YES','NO','NO');
 switch Overwrite
 case 'YES'
 xop_trl = xop;
 InitializeRoute(1,'TRL',xop_trl);
 end

 elseif route == 2
 Overwrite = questdlg({'Do you want to Update',...
 'Optimal Speed Profile for TAZARA Route?'}, ...
 'TAZARA: Speed Profile','YES','NO','NO');
 switch Overwrite
 case 'YES'
 xop_tzr = xop;
 InitializeRoute(1,'TZR',xop_tzr);
 end
 end % ---> If route == 1
end % ---> if Nstops == length(stapos)-1

213

EMU_Compute.m

This function simulates train movement. It was also used as objective

function during speed profile optimization.

function [y] = EMU_Compute(x,varargin)
%{

Written by Joachim J Mwambeleko
Last update 20/Jan/2015

NOTE:
 x is an Array When the fnc is called for Optimization, a Matrix

when
 the fnc is called for Compute OR Plotoptimal.
 Vararging should tell why calling, if it's Empty, called for

optimization
The Flow
1. Determine acc to move the train (Using current 4Cs))
2. Increment time (Implying the train has moved)
2. Update distance {Use previous v}:i.e. s = s + ds;

 ds = v*t + 0.5*a*dt^2
3. Update velocity: i.e v = v + a*dt
4. Calculate power
%}
if isempty (varargin)
 varargin = 'Objfnc' ; % Sets the func 2b used as Obj fnc
end

global i indexP route stapos Nstops staname dec_max Tramov
global TimeCheck t_max CallAnimation Batt SaveStationaly

%------------------ PERMANENT CONSTANTS---------------------
global m_optmzn m_compute fc Cdf % mass, Frr_Coef, Fdrad_Coef
global dt efc g Te_max Tb_max

y = [];
if strcmp(varargin,'Compute')
 m = m_compute;
 N_STOPS = Nstops;
 indexI = 1; % Start for loop from i = 1 to Nstops
 stt = 60; % Station-stopping (Dwell) time (sec)
 bp_ah = Batt.Pack.Ah;
 bp_c = 0; bp_v = Batt.Pack.V_int;
 bp_soc = Batt.Pack.soc_int;
 bp_eng = Batt.Pack.E_int;
 bp_esr = Batt.Pack.ESR;

 % ------ For Commulative Storage (C,V & SOC) --------
 BP_V = bp_v ; BP_SOC = bp_soc; BP_C = bp_c;
 powfm_bp = 0; powfm_cat = 0;
 Powfrm_BP = powfm_bp; Powfm_CAT = powfm_cat;
elseif strcmp(varargin,'Plotoptimal')
 m = m_optmzn;

214

 N_STOPS = Nstops;
 indexI = indexP;
 stt = -inf; % Not to Include Dwell time
elseif strcmp(varargin,'Objfnc')
 m = m_optmzn;
 indexI = i; % IndexI keeps gloal value of i
 N_STOPS = indexI; % Avoid for loop
 stt = -inf;
end
%------------------------- INITIALIZATION -------------------
hr = 3600; % 1hr = 3600 sec
s_stop = zeros(1,N_STOPS); t_bs = s_stop; E_bs = s_stop;
mode = s_stop; t_Com = s_stop; E_Com = s_stop;

t = 0; t_rsv = 0; s = 0; v = 0;
Te = 0; Pe=0 ; Ee = 0;
Frr = fc*m*g; % Remains constant
Fdrag = 0; Fgrad = 0;
Fr = Frr + Fdrag + Fgrad; Pm = 0;

%------------------- INITIATE GENERAL STORAGE --------------
T = t; V = v; S = s; TE = Te;
PE = Pe; EE = Ee; % FR = Fr; PM = Pm;
%-------------- INITIALIZE IN EVERY ITERATION -------------
for i = indexI:N_STOPS
 Apu = 10; % Aux load (kW),Set to Zero after 1 min D-time
 v = 0; s_trav = 0;
 s_stop (i) = stapos (i+1)-stapos(i);
 disTonext = s_stop(i);
 if strcmp(varargin,'Compute')
 LV = load ('VarStore','T_max1','T_max2');
 t_max = LV.T_max1; % Max time (minute) per km
 if (s_stop (i)/1e3) <= 1 ;
 t_max = LV.T_max2;
 end
 mtt = t_max *60 * s_stop(i)/1e3; % max.travel timein in Sec
 mtt = floor(mtt/dt); mtt = mtt*dt;
 end
 if strcmp(varargin,'Compute')||strcmp(varargin,'Plotoptimal')
 v_max = x(i,1)/3.6; v_base = 0.3*v_max;
 acc = x(i,2);
 v_b = x(i,3)*v_max; v_base_b = 0.45*v_b;
 elseif strcmp(varargin,'Objfnc')
 v_max = x(1)/3.6; v_base = 0.3*v_max;
 acc = x(2);
 v_b = x(3)*v_max; v_base_b = 0.45*v_b;
 end

 Frr = fc*m*g;
 Fdrag = Cdf*v^2; Fgrad = 0;
 Fr = Frr + Fdrag + Fgrad;
 Te = Frr + m*acc; % Initial Te
 if Te >= Te_max
 Te = Te_max;
 a = (Te - Frr)/m;
 else
 a = acc;

215

 end
 %---------------------- GET THE UNKNOWNS ------------------
 % S_1 : Determined by a & v_max
 % S_3 : Determined by v_max & v_b
 % S_4 : Determined by v_b ; as a result
 % S_2 : Determined by S_1,S_3,& S_4

 [S_4, ~] = EMU_Compute_S_4(v_b, v_base_b, m);
 [S_3, ~, ~] = EMU_Compute_S_3(v_max, v_b, m);
 [S_1, ~, ~] = EMU_Compute_S_1(acc, v_max ,v_base, m);

 if (strcmp(varargin,'Objfnc')&&...
 ((S_1 + S_4 + S_3)- s_stop(i))> 1e-3)
 y = inf; % Invalid, discard
 return
 end
 S_2 = s_stop(i)-(S_1 + S_3 + S_4);

 %%----------------------- CONTROLLERS -------------------
 once = zeros(6,5); plotInterval = 10; plotindex = plotInterval;
 dontinterfere = zeros(6,5);

 %% ------------ MOVE THE TRAIN TILL THE NEXT STOP--------------
 tic
 while (disTonext > 0)
 time_stop = toc;
 if time_stop > 120*(s_stop (i)/1e3)

 error ('Compute: Timed out');

 end

 %NOTE: t & t_Com will include Dwell time outside the loop
 t = t + dt;
 t_bs (i) = t_bs (i) + dt;
 t_Com (i) = t_Com (i) + dt;

 %% ----------- MODE 1, Change creteria is V_max. -----------
 if(v < v_max && s_trav < S_1 && disTonext > S_4)
 mode(i) = 1;
 Fdrag = Cdf*v^2; Fr = Frr + Fdrag + Fgrad;

 %------------- Check & Controll Te & a ---------
 if v >= v_base
 if once(1,1) < 1
 P_base = Te * v; %Take the P_base, hold it
 once(1,1) = 2;
 end
 Te = P_base/v; % Te starts Decreasing
 a = (Te - Fr)/m;
 elseif Te >= Te_max
 Te = Te_max;
 a = (Te - Fr)/m;
 else
 % Calculate Te, outside the 2 conditions
 Te = Fr + m*a;
 end
 %-------- Done Check & Controll Te & a -------
 ds = v*dt + 0.5*a*dt^2;

216

 s = s + ds;
 s_trav = s_trav + ds;
 disTonext = s_stop(i) - s_trav;
 v = v + a*dt; % Current v

 % ------ MODE 2, Change creteria is Distance ------------

 elseif (v >= v_max && s_trav < (S_1 + S_2) && ...

 disTonext > S_4)
 mode(i) = 2;
 a = 0;
 Fdrag = Cdf*v^2; Fr = Frr + Fdrag; Te = Fr;

 ds = v*dt + 0.5*a*dt^2;
 s = s + ds;
 s_trav = s_trav + ds;
 disTonext = s_stop(i) - s_trav;
 v = v + a*dt;

 %% ------ MODE 3, Change creteria distance --------------
 elseif (s_trav >= (S_1 + S_2) && disTonext > S_4)
 mode(i) = 3;
 if (once (3,1)< 1) && (strcmp(varargin,'Compute')||...
 strcmp(varargin,'Plotoptimal'))
 S_mismatch = S_3 -(disTonext - S_4);
 once (3,1) = 2;
 end
 Te = 0;
 Fdrag = Cdf*v^2; Fr = Frr + Fdrag;
 a = - Fr/m;

 ds = v*dt + 0.5*a*dt^2;
 s = s + ds;
 s_trav = s_trav + ds;
 disTonext = s_stop(i) - s_trav;
 v = v + a*dt;

 %% ------------ MODE 4,The braking --------------------
 elseif ((disTonext <= S_4) ||...

 ((v <= v_b && s_trav > S_1 + S_2)))
 mode(i) = 4;
 Fdrag = Cdf*v^2; Fr = Frr + Fdrag;

 if (once (4,1)< 1),
 Te = -2*Frr; % Starting Braking 4c
 if abs (Te) >= Tb_max ; Te = -Tb_max; end
 Pconst = Te * v; % Take the Pconst, Hold it
 once (4,1) = 5;
 end

 if abs (Te) > Tb_max
 Te = -Tb_max;
 a = (Te - Fr)/m;
 if abs (Te) > 32e3
 disp (Te)
 warning ('(Te) > 32e3 ')

217

 pause
 end
 elseif (v^2/abs(2*0.9*dec_max) >= disTonext)
 a = -0.9*dec_max;
 Te = a*m + Fr;
 dontinterfere(1) = 5;
 % if abs (Te) > 32e3 %Check
 % disp (Te)
 % warning ('(Te) > 32e3 ')
 % pause
 % end
 elseif (v^2/abs(2*a) <= disTonext)
 dontinterfere(1) = 5;
 if (once (4,2)< 1)
 acrt = v^2/(2*disTonext);
 once (4,2) = 5;
 end
 a = -acrt;
 Te = a*m + Fr;
 % if abs (Te) > 32e3 % Check
 % disp (Te)
 % warning ('(Te) > 32e3 ')
 % pause
 % end

 % elseif (v > v_base_b)
 elseif (dontinterfere(1) < 1 &&...

 v^2/abs(2*a) > disTonext)

 Te = Pconst/v; % |Te| increases
 a = (Te - Fr)/m; % |a| increase slowly
 if (v^2/abs(2*a) <= disTonext)
 a = v^2/(-2*disTonext);
 end
 Te = a*m + Fr;
 if abs (Te) > Tb_max
 Te = -Tb_max;
 a = (Te - Fr)/m;
 end
 % if abs (Te) > 32e3 % Check
 % disp (Te)
 % warning ('(Te) > 32e3 ')
 % pause
 % end

 end

 ds = v*dt + 0.5*a*dt^2;
 s = s + ds;
 s_trav = s_trav + ds;
 disTonext = s_stop(i) - s_trav;
 v = v + a*dt;
 else
 %%----------- ASSES THE PERFOMANCE -------------------

 fprintf ('\nNeither of the conditions was met after');
 fprintf ('\ns = %3.3f ; v = %3.3f; a = %3.3f\n',s,v,a);

218

 fprintf ('Stopped at Mode[%1.0f,%1.0f]\n',i,mode(i));
 error('Mode Conditions not Met')
 end %---> If (v < v_max...)
 % -----Done with determining Mode of Operation ------------

 % -------------** VISUALIZE_1** ---------------------------
 if CallAnimation >= 1
 if (s_trav >= s_stop(i)) ; end %v = 0; end
 Visualize(mode(i), t ,v, s,once(5,1), plotindex,indexI)
 once(5,1) = 2; % Controlls route plotting: Plot route x1
 plotindex = plotindex + 1;
 end
 %--

 %% ----------------- POWER & ENERGY COMPUTATION -------------
 Pm = (Te * v)/1e3; % NOTE: Values In K
 Pe_t = Pm/efc;
 if mode(i) == 4
 Pe_t = Pm * efc ;
 end
 Pe = Pe_t + Apu;
 Ee_t = (Pe_t * dt)/hr; %kWh
 Ee_Apu = (Apu*dt)/hr; %kWh
 dEe = Ee_t + Ee_Apu;
 Ee = Ee + dEe; % Store Commulatively
 E_Com(i) = E_Com(i) + dEe; E_bs(i) = E_bs(i) + dEe;

 if strcmp(varargin,'Compute')

 %--- Get engfm_bp & cp, then soc, v,& c
 powfm_bp = Pe;
 bp_c = powfm_bp*1e3/bp_v;
 bp_v = Batt.Pack.V_nom - bp_c*bp_esr;
 engfm_bp = (powfm_bp*dt)/hr; % kWh
 bp_eng = bp_eng - engfm_bp ;
 bp_soc = (bp_eng/Batt.Pack.E_int);

 end
 %-------------- STORE THE ACCEPTED VALUES ----------------
 T = [T t]; V = [V v];
 S = [S s]; TE = [TE Te];
 PE = [PE Pe]; EE = [EE Ee];
 %PM = [PM Pm]; FR = [FR Fr];
 if strcmp(varargin,'Compute')
 BP_C = [BP_C, bp_c] ; BP_V = [BP_V, bp_v];

 BP_SOC = [BP_SOC, bp_soc];
 Powfrm_BP = [Powfrm_BP, powfm_bp];
 Powfm_CAT = [Powfm_CAT, powfm_cat];
 end

 if strcmp(varargin,'Compute') ||

strcmp(varargin,'Plotoptimal')
 %------- STOP KNOWING WHAT CAUSED THE STOP ---------
 if ((s_trav >= s_stop(i)) ||(v <= 0))
 % fprintf('Distance to S%2.0f = %3.3f m: V = %3.3f

m/s\n',...
 % (i+1),disTonext,v)

219

 break
 end
 elseif strcmp(varargin,'Objfnc')
 if(s_trav >= s_stop(i)) || (v <= 0)
 break
 end
 end

 end % ---> while (disTonext > 0)

 %% If the functon was called just for optimization, return Don't

Dwell.
 if strcmp(varargin,'Objfnc')
 TimeCheck = (T(end))/60;
 if (TimeCheck/((s_stop (i))/1e3)) <= t_max
 y = EE (end);
 else
% y = 10 * (EE(end)); % 10x Penalty
 y = inf; % invalid, discard
 end

 if v >= 0.1 % The program cheated on time
% y = 10 * (EE(end));
 y = inf; % invalid, discard
 end

 if disTonext >= 2
% y = 10 * (EE(end));

 y = inf; % invalid, discard
 end
 return % The optimization does not include Dwell time
 end

 %% ====================== DWELL TIME =========================
 if strcmp(varargin,'Compute') % @ During Dwell time
 % update the t_rsv (time reserved)
 t_rsv = t_rsv + (mtt - t_bs(i));
 % No Mechanical Power Issues here, Efficiencies
 cde = 0.9; % Batt Charge Discharge efficiency
 conve = 0.91; % Converter efficiency

 mode(i) = 0;
 Ischargepoint = 0; STT = stt;
 if i < Nstops; TCT = 1; elseif i == Nstops;

 TCT = 10;CallAnimation = 0;end
 if (route == 1); chargepoint = {'S1','S8'};
 elseif(route == 2); chargepoint = {'S1','S5' 'S7'

'S8','S10'}; end
 % elseif(route == 2); chargepoint = {'S1','S10'}; end
 if ismember (staname{i+1},chargepoint)
 Ischargepoint = 1;
 if i < Nstops
 STT = stt + t_rsv; % ### Rmb to Reset t_rsv

 % After chargng
 end
 end

220

 for p = dt:dt:STT*TCT;
 v = 0; Te = 0; % Reset the velocity

 % Brake to v=0;
 if once (6,1)< 1; Te = TE(end); once(6,1) = 2; end
 t = t + dt; t_Com (i) = t_Com (i) + dt;
 if (i == Nstops && p >= stt), Apu = 0; end
 Pe = Apu; % Equalize Arrays to Plot
 dEe = (Apu*dt)/hr; %kWh
 Ee = Ee + dEe;
 E_Com(i) = E_Com(i) + dEe;

 % Calculate Batt current,voltage, soc, etc.
 % Knowing not whether the station is a charging point
 if Ischargepoint == 1
 powfrm_cat = Pe/conve; %Rmb: Pe now is only Aux Load
 powfm_bp = 0;
 else
 powfm_bp = Pe/conve;
 powfrm_cat = 0;
 end

 bp_c = powfm_bp*1e3/bp_v;
 bp_v = Batt.Pack.V_nom - bp_c*bp_esr;
 engfm_bp = (powfm_bp*dt)/hr; % kWh
 bp_eng = bp_eng - engfm_bp ; % de included within 0.6
 bp_soc = (bp_eng/Batt.Pack.E_int);

 if ((Ischargepoint == 1)&& (bp_soc < 1))
 % powfrm_cat supplies Pe(Aux load) and

 % charges Batteries
 if bp_soc < 0.8
 c_rate = 4.5;
 bp_soc = bp_soc + (c_rate * cde * dt)/hr;
 powfm_cat = (Pe + (c_rate * bp_ah * bp_v))/conve;
 elseif bp_soc >= 0.8
 c_rate = 3;
 bp_soc = bp_soc + (c_rate * cde * dt)/hr;
 powfm_cat = (Pe + (c_rate * bp_ah * bp_v))/conve;
 end
 if (bp_soc > 1); % Limit max bp_soc
 bp_soc = 1;
 c_rate = 0;
 powfm_cat = Pe/conve; % Reset powefrm_cat
 end
 bp_eng = Batt.Pack.E_int * bp_soc;
 bp_c = - c_rate * bp_ah;
 bp_v = Batt.Pack.V_nom - bp_c*bp_esr;
 end

 % -- Store variables
 T = [T t]; V = [V v];
 S = [S s]; TE = [TE Te];
 PE = [PE Pe]; EE = [EE Ee];
 %PM = [PM Pm]; FR = [FR Fr];

 BP_C = [BP_C, bp_c] ; BP_V = [BP_V, bp_v];

221

 BP_SOC = [BP_SOC, bp_soc];
 Powfrm_BP = [Powfrm_BP, powfm_bp];
 Powfm_CAT = [Powfm_CAT, powfm_cat];

 % -----------** VISUALIZE_2** -----------------------
 if CallAnimation >= 1
 Visualize(mode(i), t ,v, s,once(5,1), ...

 plotindex,indexI)
 once(5,1) = 2; % Controlls route plotting:

 % Plot route once
 plotindex = plotindex + 1;
 end

 end %---> for p = 0:dt:STT*TCT;

 if (Ischargepoint == 1 && i < Nstops) % t_rsv was used
 t_rsv = 0; % Reset time reserve
 end
 end % --> if strcmp(varargin,'Compute') % @ During Dwell time
 %%-------- Formating Output btn Stations ---------------------
 fprintf (['\n From ', staname{i},' to ',...
 staname{i+1},' :: %2.2f km'],s_stop(i)/1e3)

 Opt = [x(i,1) x(i,2) x(i,3)*x(i,1)];
 if strcmp(varargin,'Compute')
 if Ischargepoint == 1; fprintf ([':: ^^^ @',staname{i+1}]);
 end;
 fprintf ('\n Optimal(v_max a v_b): %4.2f %4.2f

%4.2f', Opt)
 fprintf ('\n Energy btn Stns: %4.3f kWh',E_bs(i))
 fprintf ('\n Energy btn Stns + D_time: %4.3f kWh',E_Com(i))
 fprintf ('\n Energy Commulative: %4.3f kWh',EE(end))
 fprintf ('\n Time btn Stns: %4.3f min

',(t_bs(i)/60))
 fprintf ('\n Time btn Stns + Dwell time: %4.3f min

',(t_Com(i)/60))
 fprintf ('\n Time Commulative: %4.3f min

',T(end)/60)
 fprintf ('\n

%%===%% \n\n')
 end
 if strcmp(varargin,'Plotoptimal')
 fprintf ('\n Optimal(v_max a v_b): %4.2f %4.2f

%4.2f', Opt)
 fprintf ('\n Energy btn Stns: %4.3f kWh',E_bs(i))
 fprintf ('\n Time btn Stns: %4.3f min

',(t_bs(i)/60))
 fprintf ('\n

%%===%% \n\n')
 end
 %--
end % ---> for i = indexI:N_STOPS

% Structure & Globalize Tramov
Tramov.V = V; Tramov.S = S; Tramov.T = T; Tramov.PE = PE;
Tramov.TE = TE; Tramov.EE = EE;
if strcmp(varargin,'Compute')

222

 Tramov.Powfrm_BP = Powfrm_BP;
 Tramov.Powfm_CAT = Powfm_CAT;
 Batt.Pack_C = BP_C; Batt.Pack_V = BP_V; Batt.Pack_SOC = BP_SOC;
end
%% ###--------- PLOTTING OPTIMAL--------- ###
if strcmp(varargin,'Plotoptimal')
 Plotfigures('Plotoptimal',indexI)
end

%-------------------- Journey Summary --------------------------%
if (strcmp(varargin,'Compute')||...
 (strcmp(varargin,'Plotoptimal')&& SaveStationaly == 0))
 fprintf('\n ---------------- Journey Summary ------------------')
 fprintf('\n Journey distance (km): %4.2f :: Stops: %2.0f',...
 S(end)/1e3,Nstops+1-indexI)
 fprintf('\n Total Time(min) = %4.3f',T(end)/60)
 fprintf('\n Total Energy(kWh) = %4.3f',EE(end))
 fprintf('\n ------------------- THE END ---------------------\n')
end
end %----------------THE END ----------------%

InitializeRoute.m

This function initializes a chosen route (during speed profile optimization or

train movement simulation), saves the optimal speed profile values (during speed

profile optimization) and load the optimal speed profile values (during train

movement simulation).

One thing to note is that the function is used to save the optimal speed profile

values if an entire route speed profile was optimize as a whole. That is, it cannot be

used to save the optimal speed profile values if optimization was done in section wise.

function [x_Optimal]= InitializeRoute(varargin)
%{
 Written by Joachim Mwambeleko
 Last update **8/DEC/2015**

==================== NOTE ========================== #####

1. Varagin 1-3 are just for updating speed profile
 2.1 New_x_Optimal: is the Best profile, and contains only

parameter-values for the speed profile, this is the data to write to
the txt file, if speed profile is to be updated.
 2.2 Individual speed profile e.g. GAXL, DEXL and PSOXL can be

local or global. If they are local they should be part of the

varagin, starting from varagin(4)

2. Profile data structure

223

 How profile data for xlx file is arranged is quite different to

that for the txt file.
 The xlx data is merely for report writing, when running the

program data from the txt file is loaded.

3. Profile data
 The beauty with the txt file, you can write & load even if it is

open You can NOT write to xlx file if it is open. Make sure the xlx
file is writable, before update the txt file, 'cos you wanna make

sure all the files are updated, with the same data

4. Route details, such as stapos, Nstops and journey_distare are

global. They will be defined only here, after the fnc call.
When the fnc is called only to update speed profile, that means it

was already called to initialize the route details.
 ***** --- *****
%}

global route direction Nstops stapos staname journey_dist
global GAXL PSOXL DEVXL XOPXL Method

% ---------------- Updating Speed Profile -------------------%
if ~isempty (varargin)
 JustUpdate = varargin {1};
 UpdateRoute = varargin {2};
 New_x_Optimal = varargin {3};

if JustUpdate == 1
 if strcmpi(UpdateRoute,'TRL')
 Test_Writing_xlx_File('TRL')
 xop_trl = New_x_Optimal;
 xlswrite('TRL_Spd_Profile.xlsx',GAXL,1,'E5') % Sheet 1->GA
 xlswrite('TRL_Spd_Profile.xlsx',DEVXL,2,'E5') % Sheet 2->DEV
 xlswrite('TRL_Spd_Profile.xlsx',PSOXL,3,'E5') % Sheet 3->PSO
 xlswrite('TRL_Spd_Profile.xlsx',XOPXL,4,'E5') % Sheet 4->ZeBest
 xlswrite('TRL_Spd_Profile.xlsx',Method,4,'E11')
 save('TRL_Speed_Profile.txt','xop_trl','-ascii') % Save to txt file
 save('VarStore.mat','xop_trl','-append') % Save to MAT file
 msgbox('Optimal Speed Profile for TRL Route was successfully

Updated',...
 'TRL Speed Profile'); % Just let the user know
 fprintf('Optimal Speed Profile for TRL Route has been Updated\n')

 elseif strcmpi(UpdateRoute,'TZR')
 Test_Writing_xlx_File('TZR')
 xop_tzr = New_x_Optimal;
 xlswrite('TZR_Spd_Profile.xlsx',GAXL,1,'E5') % Sheet 1->GA
 xlswrite('TZR_Spd_Profile.xlsx',DEVXL,2,'E5') % Sheet 2->DEV
 xlswrite('TZR_Spd_Profile.xlsx',PSOXL,3,'E5') % Sheet 3->PSO
 xlswrite('TZR_Spd_Profile.xlsx',XOPXL,4,'E5') % Sheet 4->ZeBest
 xlswrite('TZR_Spd_Profile.xlsx',Method,4,'E11')
 save('TZR_Speed_Profile.txt','xop_tzr','-ascii') % Save to txt

file
 save('VarStore.mat','xop_tzr','-append') % Save to MAT

file
 msgbox('Optimal Speed Profile for TAZARA Route was successfully

Updated',...

224

 'TRL Speed Profile'); % Just let the user know
 fprintf('Optimal Speed Profile for TAZARA Route has been

Updated\n')
 end
 x_Optimal = New_x_Optimal;
 return
end %---> if JustUpdate == 1
end %---> if ~isempty (varargin)
 %%--------------------- CHOOSE A ROUTE -------------------------

if route == 1
 fprintf ('---------TRL ROUTE-----------\n')
staname = {'S1', 'S2', 'S3', 'S4', 'S5' 'S6' 'S7' 'S8'};
stapos = [0 1.41 3.58 5.74 7.9 9.33 10.03 12.05]*1e3;
x_Optimal = load('TRL_Speed_Profile.txt');

 elseif route == 2
 fprintf ('--------TAZARA ROUTE---------\n')
staname = {'S1','S2','S3','S4','S5','S6','S7','S8','S9', 'S10'};
stapos = [0 1 3 4 6 9 11 17 19 21]*1e3;

x_Optimal = load('TZR_Speed_Profile.txt');

else
 x_Optimal = [];
 return
end
if direction == 2
 staname = fliplr(staname);
 stapos = -(fliplr(stapos));
 x_Optimal = flipud(x_Optimal);
end

 Nstops = length(stapos)-1;
journey_dist = (stapos(Nstops + 1)-stapos(1))/1e3; % km
 end

EMU_Compute_S_1.m

This function computes distance to be travelled in acceleration mode

function [S_1, t_1, v_max_mode1]= EMU_Compute_S_1(acc, v_max

,v_base, m)
%{
NOTE
 Whenever calling Compute_S_1 make sure
 The velocities are in m/s
%------------------ PERMANENT CONSTANTS -------------------------
global fc Cdf Te_max
global dt g
Frr = fc*m*g;
%-----------------Checking v_base Vs v_max------------------------
if v_base >= v_max

225

 error ('v_base should be less than v_max')
end
if v_max > 50/3.6
 v_max = 50/3.6;
 warning ('\n Maximum velocity has been reset to 60 kph')
end
%---
tic
t = 0;s = 0; v = 0; Fdrag = 0; Fgrad = 0;
Fr = Frr + Fdrag + Fgrad;
Te = Frr + m*acc; % Initial Te
if Te >= Te_max
 Te = Te_max; % Acceptable initial Te
 a = (Te - Frr)/m; % Acceptable starting acc
else
 a = acc;
 Te = Fr + m*a;
end

once_S1 = 0;
S_1 = s; t_1 = t;
T = t; A_1 = a; S = s; V = v; TE = Te;
%%--

while (v < v_max)
 time_stop = toc;
 if time_stop >= 60
 error ('EMU_Compute_S_1: Timed out')
 end

 t = t + dt;
 Fdrag = Cdf*v^2;
 Fr = Frr + Fdrag;

 if v >= v_base
 if once_S1 < 1
 P_base = Te * v; %Take the P_base, hold const
 once_S1 = 2;
 end
 Te = P_base/v; % Te starts decreasing
 a = (Te - Fr)/m;

 elseif Te >= Te_max
 Te = Te_max;
 a = (Te - Fr)/m;
 else
 % Calculate Te, outside the 3 conditions
 Te = Fr + m*a;
 end
 ds = v*dt + 0.5*a*dt^2;
 s = s + ds;
 v = v + a*dt; % This 'a' has already been accepted

 S_1 = s; t_1 = t;
 T = [T, t]; S = [S,s]; TE = [TE, Te]; V = [V,v];

 A_1 =[A_1, a];

226

 v_max_mode1 = V(end);
 end %---> if v >= v_max
end %---> while 1

EMU_Compute_S_3.m

This function computes the distance to be travelled in coasting mode (mode 3)

function [S_3, t_3, v_b_mode3] = EMU_Compute_S_3(v, v_b, m)

% NOTE
% Whenever calling Compute_S_3 make sure
% The velocities are in m/s
% v = v_max; m = mass;

% PERMANENT CONSTANTS
global fc Cdf dt g % Rolling friction coef, Fdrag Coef

Frr = fc*m*g;
Fdrag = Cdf*v^2;
Fr = Frr + Fdrag;
a = -(Fr/m);
v_check = v + a*dt;

if (v < v_b)
 fprintf ('v_b = %2.5f while v_max = %2.5f \n', v_b, v)
 error ('v_b can not be > v_max')

elseif (v_check <= v_b)
 S_3 = 0; t_3 = 0; v_b_mode3 = v;
 return
elseif (v*0.97 <= v_b)
 S_3 = 0; t_3 = 0; v_b_mode3 = v; % Assume No Coasting
 return
end
dispTest = 1; tic
%===
s = 0; t = 0; a = 0; Te = 0;
S_3 = s; t_3 = t;

T = t; A = a; S = s; V = v; TE = Te;

while 1
 time_stop = toc;
 if time_stop >= 10
 error ('IPEMU_Compute_S_3: Timed out')
 end

t = t + dt;
Fdrag = Cdf*v^2;
Fr = Frr + Fdrag;
%Te = m*a+ Fr = 0
%-------------------------TESTING------------------------

227

 a = -(Fr/m);
%a = -1; if dispTest ==1 warning ('Testing dec'); dispTest = 0; end
 % Testing
 % t_3 = (v_b - v_max)/a ; s_3 = (v_b)^2 - v_max^2)/(2*a)
%--
ds = v*dt + 0.5*a*dt^2; % This is correct, v is updated later
s = s + ds;
v = v + a*dt;

if (v <= v_b) % Break b4 storing, else.
 break
else
 S_3 = s; t_3 = t;
 T = [T, t]; A =[A, a]; S = [S,s]; TE = [TE, Te]; V = [V,v];
 v_b_mode3 = V(end);
end
end
end

EMU_Compute_S_4.m

This function computes the distance to be traveled in braking mode (mode 4)

function [S_4, t_4, A] = EMU_Compute_S_4(v_b, v_base_b, m)
%{
NOTE
Whenever calling this fnc make sure
The velocities are in m/s
%}
%-------------------- PERMANENT CONSTANTS-------------------------
global fc Cdf Tb_max dec_max
global dt g
Frr = fc*m*g;
v = v_b;
Fdrag = Cdf*v^2; Fgrad = 0;
Fr = Frr + Fdrag + Fgrad;
Te = -2*Frr; % Starting Braking 4c
if abs (Te) >= Tb_max ; Te = -Tb_max; end
a = (Te-Fr)/m;
Pconst = Te * v_b; % Hold this constant till at v_base_b

%------------------Checking v_base_b Vs v_b------------------------
 if v_base_b > v_b
 error ('v_base braking should be less than v_b')
 elseif v_base_b >= 0.6*v_b
 %warning ('v_base braking is too close to v_b')
 end

%---
tic
t = 0; s = 0;
S_4 = s; t_4 = t;

228

T = t; A = a; S = s; V = v; TE = Te;
%%--

while 1
 time_stop = toc;
 if time_stop >= 10
 error ('IPEMU_Compute_S_4: Timed out')
 end

 t = t + dt;
 ds = v*dt + 0.5*a*dt^2; % Use previous velocity
 s = s + ds; % For IPEMU check the energy b4 moving
 v = v + a*dt; % This 'a' has already been accepted
 Fdrag = Cdf*v^2; % Use current velocity
 Fr = Frr + Fdrag;

if abs (Te) >= Tb_max % if this is reached b4 v_base_b.
 Te = -Tb_max; % U can't reach v_base_b any more
 a = (Te - Fr)/m; % NOTE: Fr is decreasing |a|decreases

 if abs (a)>= dec_max % Comfortability
 a = -dec_max;
 Te = a*m + Fr;
 end

elseif v > v_base_b
 Te = Pconst/v; % Te is neg, |Te| increases
 a = (Te - Fr)/m; % |a| increases

 if abs (a)>= dec_max % Comfortability
 a = -dec_max;
 Te = a*m + Fr;
 end
else
 % Calculate Te, outside the 2 conditions
 % If u reach v_base_b b4 reaching Tb_max
 Te = Fr + m*a;
end

if v <= 0
 break % Breake b4 storing
 else

 S_4 = s; t_4 = t;
 T = [T, t]; A =[A, a]; S = [S,s]; TE = [TE, Te]; V = [V,v];
end

end
end

229

Test_Writing_xlx_File.m

This function checks the xlx file if it is writable, if it is not; the user is given

an opportunity to close the file to allow the optimal data to be saved, otherwise the

MATLAB® program detect that as an error and the data is lost. Thus, speed profile

optimization has to be repeated, which is very time consuming.

function Test_Writing_xlx_File(TestFile)

 %============= ###### NOTE ##### =================
 %{

Written by Joachim Mwambeleko

Last Update 10/DEC/ 2015
1. Its no good at all to spend several hours searching for optimal

speed profile, and then at the end the program fails to save the

optimal values, just because the xlx file was not writable. With this

fucn the problem it taken care of, one will have the chance to close
the file and save the data
2. Test writing to the first sheet of a particular xlx file.
3. Rmb: Try writing OUTSIDE the data Table, So for convenience sake

we are going to to test writing at cell Q4 for both TRL and TZR files
4. Don't confuse or mix-up the names
 %}
 % ***** --- ***** %
 if strcmp(TestFile ,'TRL')
 try
 %Check if TRL_Spd_Profile is open
 Checkfileopenid = 0;
 xlswrite('TRL_Spd_Profile.xlsx',{'TEST_1'},1,'Q4')
catch Open_Test
 if (strcmp(Open_Test.identifier,'MATLAB:xlswrite:LockedFile'))
 Checkfileopenid = 1; % To tell the program that the file was open
% Call a user
 set(0, 'DefaultUIControlFontSize', 12);
 d = dialog('Position',[600 350 400 150],'Name','Attention!');

 uicontrol('Parent',d,'Style','text','Position',[20 80 350 60],...
 'String',{'TRL_Spd_Profile is open, overwriting failed !' ''...
 'Please Close the file then click Continue '});

 uicontrol('Parent',d,'Position',[300 20 90 35],...
 'String','Continue','Callback','delete(gcf)');
 uiwait(d); % ### Wait for user responce (User input wait)
 end
 end % ---> try (The 1st try)

% RE-Check
if (Checkfileopenid > 0) % Re-check only if the file WAS indeed open
try
 xlswrite('TRL_Spd_Profile.xlsx',{'TEST_2'},1,'Q4')
catch Open_Test
 switch Open_Test.identifier
 case ('MATLAB:xlswrite:LockedFile')

230

 % Call user
 uigetpref('Xlx','Chec','**Attention-Attention**!',...
 {'For the last time, TRL_Spd_Profile is open' '' ...
 'Please CLOSE the file, then click Continue'},...
 {'Go_ahead';'Continue'}); % Values and button strings
 otherwise
 disp('Thanks for your attention\n') %## Y not executed ???
 end
end
 xlswrite('TRL_Spd_Profile.xlsx',{'TEST_2B'},1,'Q4')
end % ---> if (Checkfileopenid > 1)
% *---* %
 TAZARA
 % *--* %
 elseif strcmp(TestFile ,'TZR')
 try
 Checkfileopenid = 0;
 xlswrite('TZR_Spd_Profile.xlsx',{'TEST_1'},1,'Q4')
catch Open_Test
 if (strcmp(Open_Test.identifier,'MATLAB:xlswrite:LockedFile'))
 Checkfileopenid = 1;
 d = dialog('Position',[600 350 400 150],'Name','Attention!');

 txt = uicontrol('Parent',d,'Style','text','Position',[20 80 350

60],...
 'String',{'TZR_Spd_Profile is open, overwriting failed !' ''...
 'Please Close the file then click Continue '});

 btn = uicontrol('Parent',d,'Position',[300 20 90 35],...
 'String','Continue','Callback','delete(gcf)');
 uiwait(d); % ### Wait for user responce
 end
 end
% RE-Check
if (Checkfileopenid > 0) % Re-check only if the file was indeed open
try
 xlswrite('TZR_Spd_Profile.xlsx',{'TEST_2'},1,'Q4')
catch Open_Test
 switch Open_Test.identifier
 case ('MATLAB:xlswrite:LockedFile')
 % Call user
 uigetpref('Xlx','Chec','**Attention-Attention**!',...
 {'For the last time, TZR_Spd_Profile is open' '' ...
 'Please CLOSE the file, then click Continue'},...
 {'Go_ahead';'Continue'}); % Values and button strings
 otherwise
 disp('Thanks for your attention\n') %## Y not executed ???
 end
 end
end % ---> if (Checkid == 1)
xlswrite('TZR_Spd_Profile.xlsx',{'TEST_2B'},1,'Q4')
 end

231

SaveOptimalStationaly.m

Unlike the “InitializeRoute.m” this function allows optimizing and saving

speed profile optimal values section wise

function SaveOptimalStationaly(varargin)
%{
 Written by Joachim Mwambeleko
 Last update **29/Feb/2015**

=================== NOTE ====================== #####
 This is a new Technique, to save optimal values for every
intermediate station independently.
 Actually this was written so as graphs and snapshots for every
section can be saved.
 For convenient purposes, in this function the route is identified
by Number: 1-> TRL, 2-> TZR

 ***** --- *****
%}
global dt
global GAXL PSOXL DEVXL XOPXL Method

% ---- Updating Speed Profile for every stn independently ------%

stn = varargin {1}; % Value of i from Main_Optimization
UpdateRoute = varargin {2};
xopt_sctn = varargin {3};

if (UpdateRoute == 1)
 Test_Writing_xlx_File('TRL')
 xop_trl_newsectn = xopt_sctn;

 %----View the fig b4 saving the data-----
 % Call EMU_Compute, it will then call the plotfigures
 % Index & Nstops are global
 EMU_Compute(xopt_sctn,'Plotoptimal');

 hmsgbx = msgbox({'Review the Speed Profile and',...
 'Press any key to continue'},...
 'Review Speed profile');
 set(hmsgbx, 'position', [450 300 200 70]);
 ah = get(hmsgbx, 'CurrentAxes');
 ch = get(ah, 'Children');
 set(ch, 'FontSize', 12.5);
 pause

 set(0, 'DefaultUIControlFontSize', 12.5);
 Overwrite = questdlg({'Do you want to Update Optimal Speed

Profile',...
 'for THIS SPECIFIC Section of the TRL Route?'}, ...
 'TRL: Speed Profile Sectionwise','YES','NO','NO');
 switch Overwrite
 case 'YES'

232

 % Keep going
 case 'NO'
 warning ('Unupdated Section')
 fprintf ('TRL route: optimal speed profile ')
 fprintf ('S%1.0f - S%1.0f ',stn,stn+1)
 fprintf ('Was NOT Updated\n')
 return
 end

 % rmb % Sheet 1->GA, 2->DE, 3->PSO , and 4->ZeBest
 % ### double ('A') = 65, and char(65)= A
 % Start writing col E row 5, then col F row 5 ...
 % The data 2b written has 2b a col vector
 % Rmb: GAXL,DEVXL, PSOXL XOPXL are written column wise
 % Method is a row vector
 % xop is written row wise

xlswrite('TRL_Spd_Profile.xlsx',GAXL(:,stn),1,[char(stn+68),'5'])
xlswrite('TRL_Spd_Profile.xlsx',DEVXL(:,stn),2,[char(stn+68),'5'])
xlswrite('TRL_Spd_Profile.xlsx',PSOXL(:,stn),3,[char(stn+68),'5'])
xlswrite('TRL_Spd_Profile.xlsx',XOPXL(:,stn),4,[char(stn+68),'5'])

 % The Methods are written horizontally

xlswrite('TRL_Spd_Profile.xlsx',Method(stn),4,[char(stn+68),'11'])
 %{
 --------------- Saving into text & mat file --------------
 ## Careful, to change a specific variable there are two options
 1. Use load & save . i.e. load the file edit the specific
 variable and save. This is memory consuming
 2. use 'matfile' fnc . This has some limitations

 All of the two options require that the variable must
 have been created beforehand.
 %}
 % For text file
 xop_trl = load('TRL_Speed_Profile.txt');
 xop_trl(stn,:) = xop_trl_newsectn(stn,:); % Edit that part

 % Save to txt file
 save('TRL_Speed_Profile.txt','xop_trl','-ascii')

 % Save to MAT file
 save('VarStore.mat','xop_trl','-append')

 fprintf ('TRL route: optimal speed profile ')
 fprintf ('S%1.0f - S%1.0f ',stn,stn+1)
 fprintf ('was Successfully Updated\n')

%==%
elseif (UpdateRoute == 2)
 Test_Writing_xlx_File('TZR')
 xop_tzr_newsectn = xopt_sctn;

 %----View the fig b4 saving the data-----
 % Call EMU_Compute, it will then call the plotfigures
 % Index & Nstops are global

233

 EMU_Compute(xopt_sctn,'Plotoptimal');

 hmsgbx = msgbox({'Review the Speed Profile and',...
 'Press any key to continue'},...
 'Review Speed profile');
 set(hmsgbx, 'position', [450 300 200 70]);
 ah = get(hmsgbx, 'CurrentAxes');
 ch = get(ah, 'Children');
 set(ch, 'FontSize', 12.5);

 pause

 set(0, 'DefaultUIControlFontSize', 12.5);
 Overwrite = questdlg({'Do you want to Update Optimal Speed

Profile',...
 'for THIS SPECIFIC Section of the TAZARA Route?'}, ...
 'TRL: Speed Profile Sectionwise','YES','NO','NO');
 switch Overwrite
 case 'YES'
 % Keep going
 case 'NO'
 warning ('Unupdated Section')
 fprintf ('TAZARA route: optimal speed profile ')
 fprintf ('S%1.0f - S%1.0f ',stn,stn+1)
 fprintf ('Was NOT Updated\n')
 return
 end

xlswrite('TZR_Spd_Profile.xlsx',GAXL(:,stn),1,[char(stn+68),'5'])
xlswrite('TZR_Spd_Profile.xlsx',DEVXL(:,stn),2,[char(stn+68),'5'])
xlswrite('TZR_Spd_Profile.xlsx',PSOXL(:,stn),3,[char(stn+68),'5'])
xlswrite('TZR_Spd_Profile.xlsx',XOPXL(:,stn),4,[char(stn+68),'5'])

 % The Methods are written horizontally

xlswrite('TZR_Spd_Profile.xlsx',Method(stn),4,[char(stn+68),'11'])

% --------------- Saving into text & mat file --------------

 % For text file
 xop_tzr = load('TZR_Speed_Profile.txt');
 xop_tzr(stn,:) = xop_tzr_newsectn(stn,:); % Edit that part

 % Save to txt file
 save('TZR_Speed_Profile.txt','xop_tzr','-ascii')

 % Save to MAT file
 save('VarStore.mat','xop_tzr','-append')

 fprintf ('TAZARA route: optimal speed profile ')
 fprintf ('S%1.0f - S%1.0f ',stn,stn+1)
 fprintf ('was Successfully Updated\n')
end
end

234

D.2 BEMU Movement Simulation

The MATLAB® scripts presented in this section were used to model and

simulate the tram as a BEMU, plot graphs and, save results.

D.2.1 Agui_Initialization.m

This script starts up a GUI from which a route and direction can be selected.

And, an option to view train movement animation can also be selected as either ‘YES’

or ‘NO’. The ‘BEMU()’ function is then called to proceed with BEMU movement

simulation.

function varargout = Agui_Initialization(varargin)
%AGUI_INITIALIZATION M-file for Agui_Initialization.fig
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn',...
 @Agui_Initialization_OpeningFcn, ...
 'gui_OutputFcn',...
 @Agui_Initialization_OutputFcn, ...
 'gui_LayoutFcn', [], ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end

% --- Executes just before Agui_Initialization is made visible.
function Agui_Initialization_OpeningFcn(hObject, eventdata, handles,

varargin)
% Choose default command line output for Agui_Initialization
handles.output = hObject;

set(0, 'DefaultUIControlFontSize', 8);
axes(handles.SUT_logo) % Make current axes
imshow('AA_IESUT.png')
axes(handles.Tram_photo) % Make current axes
imshow('AA_Tram.png')

handles.rut = 1; % Default Values
handles.dirctn = 1;
handles.animate = 0;

% Update handles structure
guidata(hObject, handles);

235

% --- Outputs from this function are returned to the command line.
function varargout = Agui_Initialization_OutputFcn(hObject,

eventdata, handles)
% hObject handle to figure
% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on selection change in RouteMenu_Tag.
function RouteMenu_Tag_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function RouteMenu_Tag_CreateFcn(hObject, eventdata, handles)
% hObject handle to RouteMenu_Tag
% handles empty - handles not created until after all CreateFcns

called
% Set white background for popupmenu controls
if ispc && isequal(get(hObject,'BackgroundColor'),...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on selection change in DirectionMenu_Tag.
function DirectionMenu_Tag_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function DirectionMenu_Tag_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on selection change in Animation_Tag.
function Animation_Tag_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function Animation_Tag_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),...
 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in Save_Run_PB.
function Save_Run_PB_Callback(hObject, eventdata, handles)

% Get the Chosen Route
str = get(handles.RouteMenu_Tag,'String');
val = get(handles.RouteMenu_Tag,'Value');
 % Pp Hint: String — a CELL ARRAY that contains the menu contents
 % Value — the index of a menu selected content
 switch str{val}
 case 'TRL'
 handles.rut = 1;
 case 'TAZARA'

236

 handles.rut = 2;
 end

% Get the Chosen Direction
 str = get(handles.DirectionMenu_Tag,'String');
 val = get(handles.DirectionMenu_Tag,'Value');
 switch str{val}
 case 'Odd'
 handles.dirctn = 1;
 case 'Even'
 handles.dirctn = 2;
 end

% Get Decision on Animating
 str = get(handles.Animation_Tag,'String');
 val = get(handles.Animation_Tag,'Value');
 switch str{val}
 case 'NO'
 handles.animate = 0;
 case 'YES'
 handles.animate = 1;
 end

guidata(hObject,handles); % Save/Update the handles
global route direction CallAnimation
route = handles.rut ;
direction = handles.dirctn ;
CallAnimation = handles.animate ;
 run BEMU() % Call the EMU_Batt_SuperCap Fnc

% --- Executes on button press in Exit_PB.
function Exit_PB_Callback(hObject, eventdata, handles)
% hObject handle to Exit_PB (see GCBO)
set(0, 'DefaultUIControlFontSize', 12);
exit_now = questdlg('Are you sure you want to Exit?',...
 'Exit Program','Yes','No','No');
switch exit_now
case 'Yes'
delete (gcf)
case 'No'
return
end

237

BEMU.m

This function starts the BEMU movement simulation

function BEMU()
%{

Written by Joachim Mwambeleko
Last update 25/Jan/2016

%}

%% ROUTE & PROFILES : Initialize a Route and Speed Profile
global direction CallAnimation Tramov route
PlotOtherfigs = CallAnimation;

[x_Optimal]= InitializeRoute();
if isempty (x_Optimal) % No route was chosen
 fprintf (' A route was not Initialized Please re-run the

program\n')
 return
end
if direction == 1;
 fprintf(' ***** Direction: ODD *******\n')
elseif direction == 2;
 fprintf(' ***** Direction: EVEN *****\n')
end

%% STORAGE CAPACITY & EFFECTIVE WEIGHT
global m_compute Batt

% Get battery details
Batt.weight = 27.4; % kg
Batt.Ah = 60;
Batt.ESR = 4e-3; % Ohms
Batt.soc_int = 1;
Batt.V_nom = 24;
Batt.V_fullcharge = 27;
Batt.V_int = 24; % Under nominal area, (fcn of soc)
Batt.No_total = 54;
Batt.No_series = 27;
Batt.No_parallel = Batt.No_total/Batt.No_series;
if mod(Batt.No_parallel, 1)~= 0;
 error ('No series-parallel battery combination could be found')
end
Batt.Pack.ESR = Batt.ESR * Batt.No_series/Batt.No_parallel;
Batt.Pack.Ah = Batt.Ah * Batt.No_parallel;
Batt.Pack.V_int = Batt.V_int * Batt.No_series;
Batt.Pack.V_nom = Batt.V_nom * Batt.No_series;
Batt.Pack.E_int = (Batt.Pack.Ah * Batt.Pack.V_int)/1e3; % kWh
Batt.Pack.soc_int = Batt.soc_int;
Batt.Pack.Plim = 86; %### in kW
Batt.Pack.W = Batt.No_total * Batt.weight;

238

%--- Get Tram details
m_t = 38.8e3; RA = 1.11; % Tare-mass, rotary

allowance
PC = 312; Wpp = 60.7; Pw = PC*Wpp; % Passenger Weight
m_compute = m_t* RA + Pw + Batt.Pack.W;
% m_compute = 10;

%% PERMANENT CONSTANTS & TRAIN DETAILS
global fc Cdf Te_max Tb_max dec_max Pe_max % Frr_Coef,Fdrag_Coef
global dt efc g
fc = 0.006; % Rolling friction coefficient
Cd = 0.6; % Drag coefficient
Af = 7.7; Ad = 1.225; % Frontal area (m^2); Air density (kg/m^3)
efc = 0.6; % Power conversion efficiency
g = 9.81; dt = 0.1;
Cdf = 0.5*Ad*Cd*Af; % Fdrag_Coefficient
Pe_max = 8*45e3; v_base_max = 0.45 * (50/3.6); %(6 m/s2)
Te_max = (Pe_max * efc)/v_base_max; Tb_max = Te_max;
dec_max = abs((-Tb_max - (fc*m_compute*g))/m_compute);
%dec.crt1 = 0.25.

%% TRAIN MOVEMENT SIMULATION
fprintf (' Battery Pack:\n');
fprintf (' V_nom: %3.2f V\n',Batt.Pack.V_nom);
fprintf (' Ah: %3.2f Ah\n',Batt.Pack.Ah);
fprintf (' E_int: %3.2f kWh\n',Batt.Pack.E_int);
EMU_Compute(x_Optimal,'Compute');

%------------------- Plot the rest of the Figures -----------------
set(0, 'DefaultUIControlFontSize', 12);
if PlotOtherfigs == 0
 Plotfigures()
elseif PlotOtherfigs == 1
 Plotfigs = questdlg('Do you want to Plot Other Figures?',...
 'Figures-Plotting','YES','NO','NO');
 switch Plotfigs
 case 'YES'
 Plotfigures()
 end
end

SAVE = questdlg('Do you wan''t to Save Results?','

','YES','NO','NO');
switch SAVE
 case 'YES'
 if route == 1
 TramEE_trl = Tramov.EE(end);
 save ('VarStore.mat', 'TramEE_trl','-append') %### Rmb -

append
 elseif route == 2
 TramEE_tzr = Tramov.EE(end);
 save ('VarStore.mat', 'TramEE_tzr','-append')
 end
end
set(0, 'DefaultUIControlFontSize', 8);
end

239

Visualize.m

If animation is selected as ‘YES’, this function animate tram movement

function []= Visualize(mode, t ,v, s,once_pr, plotindex,indexI)
%{
 Written by Joachim Mwambeleko
 Last update **2/Sept/2015**
 PLATFORM
%}

global Nstops stapos staname
plotInterval = 25;
plotInterval_2 = 10*plotInterval;
plotInterval_3 = 5*plotInterval;
plotInterval_reset = plotInterval;
figure (100)
if mode == 2 || mode == 0 , plotInterval = plotInterval_2;
elseif mode == 3, plotInterval = plotInterval_3;
elseif mode == 4, plotInterval = 1.2* plotInterval ;
 if v <= 1; plotInterval = plotindex;end % Plot the last poin
else plotInterval = plotInterval_reset;
end

if rem (plotindex,plotInterval)== 0 % Visualize
 subplot (2,1,1)
 plot(t, v.*3.6,'kx','LineWidth',1.5),grid off,hold on
 title ('Train Kinematics','FontWeight','bold')
 xlabel('Time (s)')
 ylabel ('Velocity (kph)')
end
 subplot (2,1,2)
PlotRange = (stapos(Nstops + 1)-stapos(indexI))/1e3;
PlotStart = stapos(indexI)/1e3;

if once_pr < 1
 for pr = indexI: Nstops + 1
 plot ((stapos(pr)/1e3 - PlotStart),2,'s'), hold on
 xlabel({'Train Moving'; 'Distance in km'})
 set(gca,'YTick',[])
 line([(stapos(pr)/1e3 - PlotStart) (stapos(pr)/1e3 -

PlotStart)],[3 8])
 text((stapos(pr)/1e3 - PlotStart),8,staname(pr),...
 'EdgeColor','red','LineWidth',2,'FontWeight','bold',...
 'LineStyle','-','HorizontalAlignment','center',...
 'BackgroundColor',[.6 .9 .7])
 axis ([-0.5 PlotRange + 0.5 0 9])
 end
end
if rem (plotindex,plotInterval)== 0
 get([]);
 plot (s/1e3, 2, '+')
end

240

Plotfigures.m

This function plots the figures related to BEMU movement simulation

function []= Plotfigures(varargin)
%{
 Written by Joachim Mwambeleko
 Last update **25/Jan/2016**
 PLATFORM
The varagin
 varagin {1} = for 'Plotoptimal'
 varagin {2} = Index (Plotting starting point), by default the
 ending point is specified by "Nstops + 1"
%}
global Batt Tramov staname stapos Nstops
V = Tramov.V;
S = Tramov.S;
T = Tramov.T;
TE = Tramov.TE;
PE = Tramov.PE; EE = Tramov.EE;

if ~isempty(varargin)
 if strcmp (varargin{1},'Plotoptimal')
 indexI = varargin{2};
 figure ('Name','Speed Vs Time Optimal', ...

 'NumberTitle','off', ...
 'units','normalized',...
 'DefaultAxesXMinorTick','on','DefaultAxesYminorTick','on')
 plot(T, V.*3.6,'LineWidth',1.5)
 title ('Tram Speed Profile','FontWeight','bold')
 xlabel('Time (s)','FontWeight','bold')
 ylabel ('Velocity (kph)','FontWeight','bold')
 axis ([0 inf 0 (max(V)*3.6)*1.1])

 figure ('Name','Speed Vs Distance Optimal', ...

 'NumberTitle','off', ...
 'units','normalized',...
 'DefaultAxesXMinorTick','on','DefaultAxesYminorTick','on')
 PlotRange = (stapos(Nstops + 1)-stapos(indexI))/1e3;
 PlotStart = stapos(indexI)/1e3;
 for pr = indexI: Nstops + 1
 plot ((stapos(pr)/1e3 - PlotStart),0,'s'), hold on
 text((stapos(pr)/1e3 - PlotStart),-2,staname(pr),...
 'EdgeColor','red','LineWidth',2,...
 'FontWeight','bold','LineStyle','-',...
 'HorizontalAlignment','center',...
 'BackgroundColor',[.6 .9 .7])
 axis ([-0.1*PlotRange 1.1*PlotRange -5

(max(V)*3.6)*1.1])
 end
 plot(S./1e3, V.*3.6,'LineWidth',1.5)
 title ('Tram Speed Profile','FontWeight','bold')
 xlabel('Distance (km)','FontWeight','bold')
 ylabel ('Velocity (kph)','FontWeight','bold')
 hold off

241

 figure ('Name','Power Profile Clue','NumberTitle','off', ...
 'units','normalized',...
 'DefaultAxesXMinorTick','on','DefaultAxesYminorTick','on')
 plot(T, PE,'LineWidth',1.5)
 title ('Tram Electric Power Demand','FontWeight','bold')
 xlabel('Time (s)','FontWeight','bold')
 ylabel ('Electric Power (kW)','FontWeight','bold')
 axis ([0 inf 1.1*min(PE) 1.1*max(PE)])
 return
 end
end

BP = Tramov.Powfrm_BP;
BSOC = Batt.Pack_SOC; BV = Batt.Pack_V; BC = Batt.Pack_C;

figure ('Name','Velocity & Tractive Effort','NumberTitle','off', ...
 'units','normalized',...
 'DefaultAxesXMinorTick','on','DefaultAxesYminorTick','on')
[hax, hline1, hline2] = plotyy (T, V.*3.6, T,TE);
set (hline1,'LineWidth',2);
set (hline2,'LineStyle','-','LineWidth',1);
xlabel ('Time (s)','FontWeight','bold')
ylabel (hax(1), 'Velocity (km/h)','FontWeight','bold') % Left
ylabel (hax(2), 'Tractive Force (kN)','FontWeight','bold') % Right
xlim (hax(1),[0 inf]); xlim (hax(2),[0 inf]);
legend('Velocity','Tractive Force')

 ylabels = {'Distance Travelled (km)','Net Energy Consumed

(kWh)',...
 'Battery SoC (%)'};
 Xlabel = 'Time (s)';
 Title = 'Distance, Energy & Battery SoC Vs Time';
 Legend = {'Distance','Energy','Batt SoC','SouthEast'};
 Plot_yyy(T,S/1e3, T,EE,

T,BSOC.*100,[],[],ylabels,Xlabel,Title,Legend);

 figure('Name','Batt Current,Voltage & Tram

Power','NumberTitle','off', ...
 'units','normalized',...
 'DefaultAxesXMinorTick','on','DefaultAxesYminorTick','on')
 subplot(4,1,[2,3,4])
 [ax, hline1, hline2] = plotyy(T,BC, T, PE); %T,BSOC*100
 set(hline1,'LineWidth',1.5);
 set (hline2,'LineStyle','-.','LineWidth',1.5);
 ylabel (ax(1), 'Battery Current (A)','FontWeight','bold')
 ylabel (ax(2), {'Tram Power','Demand (kW)'},'FontWeight','bold')
 set(gca,'xtick',[]);
 xlabel ('Time (s)','FontWeight','bold')
 hleg = legend('Batt current','Tram Power Demand',...
 'Location','SouthEast');
 set(hleg,'FontSize',9,'FontAngle','italic')

 xlim (ax(1),[0 inf]); xlim (ax(2),[0 inf])
 subplot (4,1,1)
 plot(T,BV, 'b','LineWidth',2)
 ylabel ({'Battery',' Voltage','(V)'},'FontWeight','bold')
 xlim ([0 inf]); set(gca,'xtick',[])

242

figure ('Name','TE Vs Velocity','NumberTitle','off')
plot (V*3.6 ,TE/1e3,'b','LineWidth',2),grid off
xlabel ('Velocity (kph)','FontWeight','bold')
ylabel ('Tractive Force (kN)','FontWeight','bold')

function [ax,hlines] = Plot_yyy(x1,y1,x2,y2,x3,y3,x4,y4,varargin)
 ylabels = varargin{1};
 Xlabel = varargin{2};
 FigTitle = varargin{3};
 LEgend = varargin {4};
 if isempty(varargin{1})
 ylabels{1,:}=' ';
 elseif (nargin - length(varargin)) > 8
 error('Too many input arguments')
 elseif (nargin-length(varargin)) < 6
 error('Not enough input arguments')
 end
 figure('units','normalized',...
 'DefaultAxesXMinorTick','on','DefaultAxesYminorTick','on',...
 'Name',FigTitle,'NumberTitle','off');
 %Plot first two lines with plotyy
 [ax,hlines(1),hlines(2)] = plotyy(x1,y1,x2,y2);
 cfig = get(gcf,'color');
 pos = [0.1 0.1 0.7 0.8];
 offset = pos(3)/5.5;
 set (hlines(1),'LineWidth',1);
 set (hlines(2),'LineStyle','--','LineWidth',1.5);
 xlabel (Xlabel,'FontWeight','bold')
 xlim (ax(1),[0 x1(end)]); xlim (ax(2),[0 x1(end)]);
 %Reduce width of the two axes generated by plotyy
 pos(3) = pos(3) - offset/2;
 set(ax,'position',pos);

 %Determine the position of the third axes
 pos3=[pos(1) pos(2) pos(3)+offset pos(4)];

 %Determine the proper x-limits for the third axes
 limx1=get(ax(1),'xlim');
 limx3=[limx1(1) limx1(1) + 1.2*(limx1(2)-limx1(1))];

 ax(3)=axes('Position',pos3,'box','off',...
 'Color','none','XColor','k','YColor','r',...
 'xtick',[],'xlim',limx3,'yaxislocation','right');

 hlines(3) = line(x3,y3,'Color','r','Parent',ax(3), ...

 'LineStyle','-',...
 'LineWidth',1.5);
 if (~isempty(x4) && ~isempty(y4))
 hlines(4) = line(x4,y4,'Color','r', ...

 'Parent',ax(3),'LineStyle',':',...
 'LineWidth',1.5); % Same axis (ax(3))
 end
 limy3=get(ax(3),'YLim');
 line([limx1(2) limx3(2)],[limy3(1) limy3(1)],...
 'Color',cfig,'Parent',ax(3),'Clipping','off');
 axes(ax(2))

243

 %Label all three y-axes
 set(get(ax(1),'ylabel'),'string',ylabels{1},'FontWeight','bold')
 set(get(ax(2),'ylabel'),'string',ylabels{2},'FontWeight','bold')
 set(get(ax(3),'ylabel'),'string',ylabels{3},'FontWeight','bold')

 hleg = legend (hlines,LEgend{1:end-1},'location',LEgend{end});
 set(hleg,'FontSize',9,'FontAngle','italic')

D.3 Passenger Travel Cost and Emission Analysis

The MATLAB® scripts presented in this section computes travel cost and

emission per passenger kilometer, and plot

function PTFCEA (Ttrlelco, Ttzrelco)

if ~exist('Ttrlelco','var'),
 LV = load ('VarStore.mat','TramEE_trl') ;
 Ttrlelco = LV.TramEE_trl;
end
if ~exist('Ttzrelco','var'),
 LV = load ('VarStore.mat','TramEE_tzr') ;
 Ttzrelco = LV.TramEE_tzr;
end
Charger_eff = 0.9;
diesel.price = 1 ; % (US$/ liter)
diesel.emission = 2.68; % CO2 emission (kg/liter)
electr.price = 0.082; % (US$/kWh)
electr.emission = 0.52 ; % kg/kWh
routedis.trl = 12.05; % km
routedis.tzr = 21; % km
%% ---- TRL Commuter Train
TRL_train.pcc = 1440; % pcc: passenger carrying capacity
Tram_trl.pcc = 312;
TRL_train.dico = 100; % discon: diesel consumption 1_way trip
Tram_trl.elco = Ttrlelco/Charger_eff; % kWh from grid 1_way trip

TRL_train.perfull_mo = [0, 0.9 , 0.5, 1, 0.6, 0.8];
TRL_train.perfull_ev = [0.9, 0.6, 1, 0.5, 0.8, 0.4];
% TRL_train.avrfull_mo = mean(TRL_train.perfull_mo);
% TRL_train.avrfull_ev = mean(TRL_train.perfull_ev);
TRL_train.avrfull = mean([TRL_train.perfull_mo ,

TRL_train.perfull_ev]);
fprintf ('TRL_Train Average Passengers Full %5.0f (%2.2f

percent)\n',...
 TRL_train.avrfull*TRL_train.pcc,TRL_train.avrfull*100);
Tram_trl.avrfull = TRL_train.avrfull;
% fcpp : fuel cost per passenger
TRL_train.fcppkm = (TRL_train.dico * diesel.price)/...
 (TRL_train.avrfull*TRL_train.pcc*routedis.trl);
Tram_trl.fcppkm = (Tram_trl.elco * electr.price)/ ...
 (Tram_trl.avrfull*Tram_trl.pcc*routedis.trl);
% epp : emission per passenger
TRL_train.eppkm = (TRL_train.dico * diesel.emission)/...

244

 (TRL_train.avrfull*TRL_train.pcc*routedis.trl) ;
Tram_trl.eppkm = (Tram_trl.elco * electr.emission)/ ...
 (Tram_trl.avrfull*Tram_trl.pcc*routedis.trl);

% eppred & fccpred
Tram_trl.fcppkmred = 1 - Tram_trl.fcppkm /TRL_train.fcppkm;
Tram_trl.eppkmred = 1 - Tram_trl.eppkm /TRL_train.eppkm;

fprintf ('Compared to TRL_train IPEMU reduces:\n')
fprintf (' ptfc by %2.2f perceent\n',Tram_trl.fcppkmred*100)
fprintf (' CO2 emission by %2.2f percent\n',Tram_trl.eppkmred*100)

%% ---- TAZARA Commuter Train

TZR_train.pcc = 1200;
Tram_tzr.pcc = 312;
TZR_train.dico = 70;
Tram_tzr.elco = Ttzrelco/Charger_eff;

TZR_train.perfull_mo = [0, 1 , 0.2, 1, 0.2, 0.3];
TZR_train.perfull_ev = [0.3, 0.2, 0.9, 0.3, 0.9, 0.1];

TZR_train.avrfull = mean([TZR_train.perfull_mo ,

TZR_train.perfull_ev]);
fprintf('\n\nTAZARA_Train Average Passengers Full %5.0f (%2.2f

percent)\n',...
 TZR_train.avrfull*TZR_train.pcc,TZR_train.avrfull*100);
Tram_tzr.avrfull = TZR_train.avrfull;
% fcpp : fuel cost per passenger
TZR_train.fcppkm = (TZR_train.dico * diesel.price)/...
 (TZR_train.avrfull*TZR_train.pcc*routedis.tzr);
Tram_tzr.fcppkm = (Tram_tzr.elco * electr.price)/ ...
 (Tram_tzr.avrfull*Tram_tzr.pcc*routedis.tzr);
% epp : emission per passenger
TZR_train.eppkm = (TZR_train.dico * diesel.emission)/...
 (TZR_train.avrfull*TZR_train.pcc*routedis.tzr) ;
Tram_tzr.eppkm = (Tram_tzr.elco * electr.emission)/ ...
 (Tram_tzr.avrfull*Tram_tzr.pcc*routedis.tzr);

% eppred & fccpred
Tram_tzr.fcppkmred = 1 - Tram_tzr.fcppkm /TZR_train.fcppkm;
Tram_tzr.eppkmred = 1 - Tram_tzr.eppkm /TZR_train.eppkm;

fprintf ('Compared to TAZARA_train IPEMU reduces:\n')
fprintf (' ptfc by %2.2f perceent\n',Tram_tzr.fcppkmred*100)
fprintf (' CO2 emission by %2.2f percent\n',Tram_tzr.eppkmred*100)

% plot fcppkm
Yfcppkm = [TRL_train.fcppkm, TZR_train.fcppkm Tram_trl.fcppkm

Tram_tzr.fcppkm];
figure ('Name','Passenger Travel Fuel Cost','NumberTitle','off')
width = 0.4;
bar (1,Yfcppkm(1),width,'r'),hold on
bar (2,Yfcppkm(2),width,'b'),hold on
bar (3,Yfcppkm(3),width,'g'),hold on
bar (4,Yfcppkm(4),width,'c'),hold off

245

set(gca,'xtick',[]);
ylabel ('US$ per passenger km','FontWeight','bold')
hleg = legend ('TRL train','TAZARA train','BEMU,TRL route',...
 'BEMU,TAZARA route');
% set(hleg,'FontAngle','italic','TextColor',[.3,.2,.1])
set(hleg,'FontSize',9)

% plot eppkm
Yeppkm = [TRL_train.eppkm, TZR_train.eppkm Tram_trl.eppkm

Tram_tzr.eppkm];
figure ('Name','Passenger Travel Emission','NumberTitle','off')
bar (1,Yeppkm(1),width,'r'),hold on
bar (2,Yeppkm(2),width,'b'),hold on
bar (3,Yeppkm(3),width,'g'),hold on
bar (4,Yeppkm(4),width,'c'),hold off
set(gca,'xtick',[]);
ylabel ('kg CO_2 per passenger km','FontWeight','bold')
hleg = legend ('TRL train','TAZARA train','BEMU,TRL route',...
 'BEMU,TAZARA route');
set(hleg,'FontSize',9)

APPENDIX E

PUBLICATIONS

247

List of Publications

Mwambeleko, J.J., Kulworawanichpong, T., and Greyson, K. A. (2015). Tram and

Trolleybus Net Traction Energy Consumption Comparison. Proceedings of

the IEEE 18th International Conference on Electrical Machines and

Systems (ICEMS2015). Pattaya.

Kulworawanichpong, T., and Mwambeleko, J.J. (2015). Design and costing of a

stand-alone solar photovoltaic system for a Tanzanian rural household.

Sustainable Energy Technologies and Assessments, Vol. 12: 53-59.

Note:

This publication does not directly relate to the research. It has been included here just

because it was done during the period of the Master Degree study

248

249

250

251

252

253

254

255

256

257

258

259

260

BIOGRAPHY

Mr. Joachim Julius Mwambeleko was born on the 1st of March 1987 in

Morogoro Region, Tanzania. He received his Bachelor of Science in Electrical

Engineering from Saint Augustine University of Tanzania (SAUT), Mwanza,

Tanzania in 2013. Currently he is a Master Degree student at the School of Electrical

Engineering, Suranaree University of Technology (SUT), Nakhon Ratchasima,

Thailand. He has published a technical paper related to electric traction, titled tram

and trolleybus net traction energy consumption comparison in the Proceedings of the

IEEE 18th International Conference on Electrical Machines and Systems

(ICEMS2015), Pattaya, Thailand. He also has published a technical paper related to

solar energy, titled design and costing of a stand-alone solar photovoltaic system for a

Tanzanian rural household in the Sustainable Energy Technologies and Assessments

journal.

