3D BUILDING CADASTRAL DATABASE DESIGN
USING CityGML BUILDING MODULE:

A CASE STUDY IN THIMPHU CITY, BHUTAN

Tashi

A Thesis Submitted in Partial Fulfillment of the Requirements for the
Degree of Master of Science in Geoinformatics
Suranaree University of Technology

Academic Year 2015

MIvaNIUUgIHTRNalauaIMSUUD 3 JA lagedalugasims

o . == A a
HUVD1904 CityGML nsaiantluiesniny Uszmagav

UMY

a a A ' = = (% a v A
InentnusiniuaiuriaveamsanmnmunangasilSaanInemansumiadia
MNUIMYNANIAHNA
uvIngnagmalulaggsus

Umsanm 2558

3D BUILDING CADASTRAL DATABASE DESIGN USING
CityGML BUILDING MODULE: A CASE STUDY IN

THIMPHU CITY, BHUTAN

Suranaree University of Technology has approved this thesis submitted in
partial fulfillment of the requirements for a Master’s Degree.

Thesis Examining Committee

(Asst. Prof. Dr. Songkot Dasananda)

Chairperson

(Assoc. Prof. Dr. Suwit Ongsomwang)

Member (Thesis Advisor)

(Asst. Prof. Dr. Sunya Sarapirome)

Member

(Dr. Panthip Piyatadsananon)

Member
(Prof. Dr. Sukit Limpijumnong) (Prof. Dr. Santi Maensiri)
Vice Rector for Academic Affairs Dean of Institute of Science

and Innovation

3D BUILDING CADASTRAL DATABASE DESIGN USING

CityGML BUILDING MODULE: A CASE STUDY IN

THIMPHU CITY, BHUTAN

Suranaree University of Technology has approved this thesis submitted in

partial fulfillment of the requirements for a Master’s Degree.

ZM;@?

Thesis Examining Committee

5. Dovoovmorncla
(Asst. Prof. Dr. Songkot Dasananda)

Chairperson ,
/gmﬁflr @’;gr

(Assoc. Prof. Dr. Suwit Ongsomwang)

Member (Thesis Advisor)

(Asst. Prof. Dr. Sunygi Sarapirome)

Member

‘{:—jj/'Z:-T':) = : -:; "?—';;‘ g 37, > - Py
. L AL
(Dr. Panthip Pi}fﬁtadsananon)

Member

A |

(Prof. Dr. Sukit Limpijumnong)”
Vice Rector for Academic Affairs

and Innovation

(Prof. Dr. Santi Maensiri)

Dean of Institute of Science

M3 : MmyvonuuUgTeya Inuae UYL 3 5A Tasede TugaonsHUUTIA0
CityGML nydiAny luiioafiug) Uszmsingiu (3D BUILDING CADASTRAL
DATABASE DESIGN USING CityGML BUILDING MODULE: A CASE STUDY IN
THIMPHU CITY, BHUTAN) 019156 711/3n¥1 : 5097an310138 A3. 9308 desaun iy,

155 ¥ih

Aa 1 ' 1 da A A a o Y
msvauaaunaulawazyasnaungsludosnuveslszmaggiu vinlving

) chda & "y A A v XAy ' A da
19152 Tounawiuldedradudu Uszansilostonndedosyganinninnmssenauing

' 4 Y 9] o 1% 1 o 2 9 ' @
Lﬂmtﬁaﬁﬂwmagmﬁﬂ Fi]’]ﬂ’ﬁ'llfﬂﬂﬂﬂﬂaWﬂﬂWiﬁﬁﬁﬂgﬂﬁﬁ’lﬂﬂ’lﬂﬂaﬂﬂ’lﬂ@’mﬂ GUEJ’]EJG]')GLH

v
a

LUIAS HAazIzUUMIeen lnuae1msuuy 2 A lutgiu lugunsadanmsnodymidinan
Y o ?1‘/ an @ [A o W A
18 daiiu msesnuuulauaeinisuuy 3 56 Tudlszmaggiu dusniluGeed1any e

~ 4 @ AAa ~ o @ A 49! @ g’;
aovuaueImalasuulainimmgnisal lunisvanmisnaunmaunavuluidagiiu soung
Yy Aa 2 & ' o S o = A A
s Tiumatu Taena 1l lulszinaaieg Jaguseasrnanvosnsdnyine iMesenuuy
HUUTIA09 UML U84 CityGML ADE d115Ug11401an1500n Inuao1nsuiy 3 4@ uaziie
v 9
Wanngduuumsuanulasudeyanazgudoyanisenn InuaeIASUUD 3 1A DUNUFIUUDS
o . adn =< Y s A
UVI1809 UML U84 CityGML ADE 35msAny1dsenounie 4 o9adsznovune (1) 13
A 4 o Y a
AATITH (2) Myoenuuy (3) M3 lvinana uag (4) Msnaaou
HAaMIANEIMAaNUIZNoUAI8 MIATUVUTIADI0IANTUVL 3 1A MIAZ VU
UML ¥04 CityGML ADE d1%5Un1500n Inuae1a1suyy 3 1a nisuanasudoyanas
D] AL ° Aa Y]) ' v y X
gdeyaniars Tuiil nuuiiaetenaisuuy 3 56 neualerslnseienmeluldgnaieun
{ o . P kS 0
MunaENAuAaIe CityGML Taaldaenyiindg SketchUp 91014 uuUS180991A1TUUL 3

an

! 2 < ' { o s s o
1]@]‘ﬁQﬂﬁ%)"lx‘lﬁuﬂzgﬂllﬂaﬁ@ﬂﬂLﬂUﬂGTﬁWTQﬂ muﬁmwuﬂugﬂmaﬂﬂa gml ﬁ}?ﬂ"]f'ﬂwvlu?]ﬁ
4 v

Feature Manipulation Engine Tupsanuinsail imsuaaraglanvainSouguauiia %4
Useneudie aana “ApartmentUnit” “CommonPropertyUnit” ila& “AccecesoryUnit” wiouny
wmmammmmamﬂmﬁauLeﬁ’ﬂuh@ammmm CityGML iy shin1sade XML
schema mﬂei’l"ém“mmmi’mm UML %04 Cadastre ADE 228 11/51n054 ShapeChange E]ﬁd
ATZUIUMTAF XML schema LaEWIIYNITNTIOAITHADIRNTUT2UIaNAAIBAGUM A
a9l Tal51n53 Enterprise Architect (EA)

[a

Tuvaziernu msaiunudiassgiudeyaeinisuu 3 taszduiunisaield

lﬂlwy'

< @ Jd o o
Tdsunsu EA deenivayuilsndumsadaunudiaosInseadegudoya lunil dudisig

Y
UML U930173 1A E]ﬂﬁ%l'lxiﬁuL!“]J“]J’E]ﬂiuuﬂﬂ"mWQLﬁITiNLL‘U‘Uﬁ'laEN UML !L‘]J‘INWEJYP%I’JEJ

1A30330n15111/a 9909 model driven architecture 3189M35HaN lammua ldaramihazgnuiag

o o

1 o @ 4 4 o [4 kS 1
i lumsneaes Ngnimuadlsdlszymmiziiolon Toadinuaeaul 1INy nguaad

9

4 g X Y . A
SQL DDL ‘V’Iﬁi%i‘lluﬁluiﬂﬁllﬂﬁﬂ EA %zgﬂﬂizmawaﬂaﬂ SQL Command Line IN® & 314

(% [

J 4 4 o v J 1 .
ATT NN ADANY aﬂﬂaﬂllagaﬂu@ﬂ HAZANUATUNUTIETHINAITINANG Glu Microsoft SQL
Server 2008
= YR o Y 9
Fl]']ﬂwaﬂ1§ﬁﬂiel1ﬁ§ﬂhl@'31 ﬁ']ll150@@ﬂl!ﬂﬂllagwmu'l@uuﬂﬂi']um@yjﬁfﬂi@'ﬁ]ﬂIﬂuﬂ
aay Yo o ¥ . =
DINTLUY 3 1]9’]]1@ ’]ﬁﬂiﬂﬂﬁ]']ﬁﬂiuﬂawug']um@\i CityGML ﬂ']flslmﬂﬁllﬂill EA HaNITANEI

(3 9 [

Ay Yo P2 o g dy o o Y Aa
T]VlﬂiUGlUﬂiQu uﬂ’g’llﬂuwug']uﬁ']ﬂmﬁ’]WTUﬂ’]ﬁ%’]Gh’ﬂﬂﬂNaiuﬂqiﬂﬂﬂiﬂu@a’]ﬂ'liuﬂu 3

5

ue Tutlszmaggiu

a v Y A d’ =
ﬂ'1ﬂﬂ’3“]ﬂﬂ1‘iﬁﬂ;§ﬁ1ﬂi8llﬂa DYUDFOUNANE

= = A A I
ﬂfniﬁﬂ‘kﬂ 2558 a’]ﬂﬂJ’f]“lf’f]’f]'m'ﬁﬂﬂlﬁﬂ‘H']

TASHI : 3D BUILDING CADASTRAL DATABASE DESIGN USING
CityGML BUILDING MODULE : A CASE STUDY IN THIMPHU CITY,
BHUTAN. THESIS ADVISOR : ASSOC. PROF. SUWIT ONGSOMWANG,

Dr. rer. Nat. 155 PP.

3D BUILDING CADASTRE DATABASE DESIGN / CITYGML / ENTERPRISE

ARCHITECT / THIMPU CITY / BHUTAN

The scarcity of vacant land and high land value in Thimpu City of Bhutan has
led to intensive use of space. People in the city find it more affordable to invest in the
apartment rather than to buy a piece of land to build a house. This creates a different
legal objects extending into vertical direction and the present 2D system cannot
handle it properly. Therefore, the importance of implementation of 3D Cadastre in
Bhutan is necessary to incorporate the present changing scenario in the land
administration as well as future trend in development as prevailing in other countries.
The main objectives of the study were to design UML model of CityGML ADE for
3D building cadastral database, and to develop a data exchange format and 3D
building cadastral database based on the UML model of CityGML ADE. Research
methodology consisted of four components: (1) analysis, (2) design, (3)
implementation, and (4) testing.

Main results included construction of 3D building model, UML modeling of
CityGML ADE for 3D cadastre, data exchange format, and building database. Herein
3D building model with interior layout was firstly generated according to the classes

of CityGML under SketchUp software. The constructed 3D building model was

v

translated into their respective class using Feature Manipulation Engine as a gml file.
In this study, building module of CityGML was extended with new properties
included “ApartmentUnit”, “CommonPropertyUnit”, and “AccecesoryUnit” classes
along with building number and its parcel number. After that, XML schema based on
GML version 3.1.1 was generated from the UML model of Cadastre ADE using
ShapeChange software. The whole process of XML schema and codelist dictionaries
generation was activated through a batch file customized in Enterprise Architect (EA).

The modeling of the 3D building database was done in EA, which provided
comprehensive functionality for modeling database structures. Herein the UML
diagrams of tables were automatically generated from the simplified UML models
using the tool model driven architecture transformation. The code lists defined were
translated into tables assigned with a unique identifier to link to the column calling it.
Finally, SQL DDL scripts generated in EA was executed using SQL Command Line
to create tables, columns, primary and foreign keys, and relationship among the tables
in Microsoft SQL Server 2008.

In conclusion, the prototype of 3D building cadastral database was here
successfully designed and developed using CityGML as a base module in EA. This

work provides a basis for 3D cadastre implementation in Bhutan.

School of Remote Sensing Student’s Signature

Academic Year 2015 Advisor’s Signature

ACKNOWLEDGEMENTS

The presented research is part of my study for Master of Science in
Geoinformatics work that has been carried out at Suranaree University of Technology,
Nakhon Ratchasima, Thailand. The guidance and support of colleagues in the making
of the thesis deserve a special mention. It is a pleasure to convey my gratitude to them
all in my humble acknowledgement.

The first of all I am extremely indebted to my supervisor, Assoc. Prof. Dr.
Suwit Ongsomwang. This work would not have been possible without his valuable
guidance and support. His wisdom, knowledge, helpfulness and commitment for the
work always inspired and motivated me throughout the study period. I gratefully
acknowledge his support and advices throughout my stay in Thailand.

Thesis committee members, Asst. Prof. Dr. Songkot Dasananda, Asst. Prof.
Dr. Sunya Sarapirome, and Dr. Pantip Piyatadsananon who supported me with their
valuable comments and suggestions during my entire thesis work and despite their
busy schedule, they always had a time to evaluate my thesis at different levels.

Most importantly, 1 would like to thank Royal Government of Bhutan for
giving me the opportunity and Thailand International Cooperation Agency for
awarding me a scholarship to pursue my master degree in Geo-informatics.

I would like to express my heartfelt gratitude to my colleague Mr. Tshering
Wangchuck for helping me with the collection of data and Mr. Tandin Phuntsho for

his valuable suggestion and sharing his know-how on the database management.

Vi

Besides this, | would like to thank Mr. Clemens Portele, Dr. Linda van den Brink, and
support team of Safe software for their valuable contribution.

| extend my thanks to all the staffs and students of School of Remote Sensing
for their help and support during my stay here. | also thank all colleagues who have
knowingly and unknowingly helped me in the successful completion of this project.

Finally, 1 would like to express my deepest gratitude to my family for their
moral support, endless love, and best wishes which have always been a source of
inspiration and motivation for me.

Tashi

CONTENTS

Page

ABSTRACT IN THAI ettt |

ABSTRACT IN ENGLISHoooiiii e 1l

ACKNOWLEDGEMENTS ...t VI

CON T EN T Sttt b e b et san e beesnne s VI

LIST OF TABLES ...ttt bbb Xl

LIST OF FIGURES ..ottt e Xl

LIST OF ABBREVIATIONSot XVI
CHAPTER

| INTRODUCTIONttt 1

1.1 Background and significance of the Studycc.ccoovviiiiiiiiiiee 1

1.2 ReSearch ODJECTIVES ..ot 4

1.3 Scope and limitations of the StUdYccccoeiiiiiiiiin 5

1.4 STUAY BIBAcuiiteieieiieieee ettt bbbttt bbb 5

1.5 Benefit OF the STUAYccoiviiiiii e 7

I BASIC CONCEPTS AND LITERATURE REVIEW.........cccoooiiiiiieiee, 8

2.1 3D Cadastre CONCEPLSc.veeereieierie sttt sttt 8

2.2 Basic concept OF LADM.......ccovoiiiiiiiec et 12

2.3 OVerview Of CItYGMLoooiiie e 15

2.4 BaSICS OF UMW ...ttt e e 22

VI

CONTENTS (Continued)

Page

2.5 LITErature TEVIBWccveiveiiiiiieiieiiiteee ettt 24
RESEARCH METHODOLOGYoooiiiiiiiiieieeeeee e 35
3.1 ANalySiS COMPONENTcviiieiieeie e sre e 36
3.1.1 Data COlECIONc.ooiviiiiiiiiiccc e 37
3.1.2 ReSearch t0O0IS.ccooiiiiiiiiiicc e 37
3.1.3 Analysis of exXisting SYStEMcccocveviiiieiieie e 41
3.1.4 Requirement and specification of new 3D LIScccovenenennen. 45

3.2 DeSIgN COMPONENT......cviiiieiieite ettt se et e e sre e e e e e 50
3.2.1 Construction 0f 3D data...........ccuerieiiirieiiinereesese e 50
3.2.2 UML modelling of CityGML ADEcccoiiiiiieeceeceee e 51

3.3 Implementation COMPONENT..........cccoeiiiiiiii e 54
3.3.1 Dataexchange format.........cccccceiiieii i 54
3.3.2 Specification of relational database............cccccccevvveiieiiicie e, 54

3.4 TeSting COMPONENTciuieiiieiee ittt re e sae e e aeereeas 55
RESULTS AND DISCUSSIONS ...t 56
4.1 Specification of new 3D building database..........ccccccevveiviieiie e, 56
4.1.1 New attribute definition.............ccoooiiiiiiii 56
4.1.2 New class definitionccceoveiiiiiiiie 57

4.2 Construction of 3D building model............cccoiiiiiiiiii 58

4.2.1 Modeling of 3D building in SKetchUp.........ccoocovoiiinieniiiiee 58

CONTENTS (Continued)

Page

4.2.2 Translation of SketchUp to CityGML in FME...........c.ccoceoveieinenen. 60

4.3 UML model of CityGML ADE for 3D Cadastreccevvevverveiiesnenns 70

4.4 Data exchange format development............cccoovieiieeie i 72

4.5 BUIldiNg databhaseccveiiiiiieiiiicce e 75
4.5.1 Simplification of CityGML and ADE for 3D Cadastre.................. 76

4.5.2 Database MOAelingc.ccoveviiiieiiiii e 80

4.5.2.1 COre MOAE! ...cvviiiiiiiiiiic e 81

4.5.2.2 Building model and ADEcccoveiiiii i 84

4.5.2.3 Tables for geometry representationccccceeveevveieennnne 88

4.5.2.3 Tables for COAelistcoviiiireiiiiieieeee e 90

4.5.3 Implementation of 3D building cadastral database 91

I =11 1] T T USSP SRPRPSOSPN 94

V CONCLUSIONS AND RECOMMENDATIONS........cooiiieieie e 98
5.1 CONCIUSIONS ...ttt 98

5.2 RECOMMENTALIONSeviveiiiiriiciteeie e 100
REFERENGCES ...ttt 102
APPENDICES ...t 110

APPENDIX B THE SQL SERVER 2008 DATA TYPES.........ccooviiinn 119

APPENDIX C DDL SCRIPT FOR MS SQL SERVER 2008 126

CURRICULUM VITAE

CONTENTS (Continued)

Table

2.1

3.1

3.2

4.1

4.2

4.3

4.4

4.5

LIST OF TABLES

Page
LoD 0-4 of CityGML with their proposed accuracy requirements................. 19
Content of Cadastral data model of Bhutan.............ccocoovviiiiiiiine, 42
NLCS feature code for Building Model.............ccooiiiiiiiiiiiicc 43
List of new feature classes defined in CityGMLccooveiiiininciiiiins 57
Data tyPe MAPPINGoveiieiiei ettt bbb 76
Definition Of Class NAMEScccoiiiiiiiiiee e 83
Allowed integer values of objectClassID in the ThematicSurface table......... 86
Attributes determining aggregation tYPEScoveeerererereneeiee e 89

Figure

11

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

211

2.12

3.1

3.2

3.3

3.4

3.5

LIST OF FIGURES

Page
Map depicting the study area: Thimphu city, Bhutan...........ccccccoeovvovivennennene. 7
Extend of OWNership Mght.........cccoooiiiiiii e 9
Building complex in The Hague, the Netherlands..........c.ccooovvveiiveiiiiieiinennnns 10
APArTMENt COMPIEXES. ..o 11
An overview of Land Administration Domain Model..............ccocociinninns 13
Content of Spatial Unit Package with associations to other basic classes...... 14
The CityGML MOAUIES. ..o 16
The five levels of detail (LOD) defined by CityGML.........ccccoeieiiiininiine 18
The two possibilities of modelling a building in LODO using horizontal 3D

SUITAICES ..ttt ettt ettt b bbbttt e et bbb i 20
Building model in LODL — LOD4cc.oiiiiiiiieie s 20
UML diagram of CityGML Building Model ... 21
UIML OVEIVIBW ...ttt bbbttt bbb 22
Aggregation and composition relationship in a class diagramcc........ 24
The overview of the research methodology.ccoceviiiiiniiiiienicns 36
Content of Building Model of Bhutan. ... 42

An example of title certificate issued: (a) Certificate, (b) Map, and (c) Legend.. 44
Various cadastral objects related to strata titles in Malaysia.............ccccc....... 46

Example of drawing in strata title...........ccccceeeiieir i 47

Figure

3.6

3.7

3.8

3.9

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

411

4.12

X

LIST OF FIGURES (Continued)

Page
Illustration of main components of cadastral building model 48
[llustration of the definition of interior face in example of Victoria, Australia

(physical view) (left) and its representation in the subdivision plans (legal

view) without depicting the StrUCTUTE.ccoiieiieiiccce e 49
Workflow for the construction of 3D data.cccceeeeveieniininienese s 51
An overview of CityGML-IMGE0 ADE............cccocveviiiieieeie e 52

Example of the input data: (a) blueprint of building floor plan (CAD) and
(b) the building footprint from cadastral data (.gdb)cccccvevevieieiiiecine. 59
Example of output of 3D data construction as 3D building model (.skp) under
Trimble SKEtChUD ...cviiii e 60
Overall SketchUp to CityGML translation diagram using FME 62

Workflow of SketchUp data preparation before writing into CityGML classes .63

Translation of LOD4 building........ccccveiiiiiiiiie i 63
Translation of LOD1 building.........cccveviiiiiiiieiicccce e 64
Translation Of FOOMoiiiiii s 64
Translation of ceiling SUrface. ... 65
Translation of Floor SUITACE ..o 65
Translation of interior wall SUrfaceccoooveiiiiiiiiii e 66
Translation of exterior wall SUrfacecoceveiiiiiii 66
Translation Of OOISoiieiiiie e e 66

Figure

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

421

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

XV

LIST OF FIGURES (Continued)

Page
Translation Of WINAOWS..........cceiviiiiieiiee e 67
FME translation 10g file ..o 68
Output of the FME translation in FME Data INSpector............ccccceeevvvveveennene 69
UML diagram of Cadastre ADEccccoveieiieie e 71
Process 0f SNAPECNANGEccviiieiiee e 72
Configuration file of ShapeChange in XML format............ccccoccovveieiieinennns 74
The log file displaying the results and messages from ShapeChange tool 75
UML diagram of core model.....cc....oooiiiiiioiiicccc e 77
UML diagram of building modelccoeveiiiiiiiiiece e 78
The simplified UML diagram of Core modelcccooevieiiiieiicineeceee 80
The simplified UML diagram of building model and ADEc..cc.c........ 80
Tables of database schema of core model.............ccooiiiiiiiiiiiice 82
CityObject envelope storage as a 3D rectangle specified by (left: the two black

points with minimum and maximum coordinate values respectively) and

(right: black polygon using five POiNts).........cccccveiieinieiie e 84
Building database SChema...........cocveiieiiiiiic e 85
GeomMEtry NIBIarChY ..o 89
Tables Of COURTISc.viiiiiiee s 91
List of tables under BuildingDB database in MS SQL Server...........ccccccu..... 92

Diagram of BuildingDB database (tables, column, keys, and relationship) ... 93

Figure

431

4.32

4.33

4.34

4.35

XV

LIST OF FIGURES (Continued)

Page
XML schema validation reSult ... 94
Top view and [inset] list of buildingscccooeiieiieiicic e, 95
A clip from output GML file displaying list of hierarchical ordering of building

(000] 0 0] 010 1T 0| ST PR PR PPR 96
Building “Wangda-House™ and its cOmponentsc.ccoovvevinieriieiinicnennne, 97

Rooms bounded by interior wall surface, ceiling surface, and floor surface.. 97

LIST OF ABBREVIATIONS

2D/3D = Two Dimensional/ Three Dimensional
3abCDM = 3D Cadastral Data Model

3DCityDB = 3D City Database

ADE = Application Domain Extension

BIM = Building Information Models Planning
B-REP = Boundary Representation

CAD = Computer Aided Drawing

CityGML = City Geography Markup Language
DBMS = Database Management System

DDL = Data Definition Code

EA = Enterprise Architect

FIG = International Federation of Surveyors
FIG = International Federation of Surveyors
FK = Foreign Key

FME = Feature Manipulation Engine

GIS = Geographic Information System

GML = Geography Markup Language

ID = Identifier

B = Indian Institute of Technology Bombay

IMGeo = Information Model Geography

LIST OF ABBREVIATIONS (Continued)

1SO
JRE
KML
LADM
LIS
LOD
MDA
MSL
NLCS
oCL
0GC
OOXML
PIN

PK
RRR
sDI
SKOS
SQL
UML
VP-UML

WYF

International Organization for Standardization
Java Runtime Environment

Keyhole Markup Language

Land Administrative Domain Model
Land Information System

Level of Detail

Model Driven Architecture

Mean Sea Level

National Land Commission Secretariat
Object Constraint Language

Open Geospatial Consortium

Office Open XML

Plot Identifier Number

Primary Key

Right, Restriction, and Responsibility
Spatial Data Infrastructure

Simple Knowledge Organization System
Structured Query Language

Unified Modeling Language

Visual Paradigm for UML

World Youth Foundation

XVII

XVIII

LIST OF ABBREVIATIONS (Continued)

XMl

XML Interchange Files

XML

Extensible Markup Language

XSD

XML Schema Document

CHAPTER |

INTRODUCTION

1.1 Background and significance of the study

Urbanization has driven the population growth centralizing in the metropolitan
area (Chiang, 2012). On the other hand scarcity of vacant land in urban areas has led
to the intensive use of the space. This intensive utilization of space has led to high-rise
buildings and complex shaped structures as well as underground structures. These
constructions extend the use of land from surface level to three dimensional levels,
and challenge the traditional land registration and cadastral systems with multi-
ownerships of properties which are located on the same piece of land (Mingru, 2007).
Although property has been located on top of each other for many years, it is only
recently that the question has been raised as to whether cadastral registration should
be extended into the third dimension (van Oosterom, Stoter and Lemmen, 2005).
Many countries such as the Netherlands, Israel, Greece, Norway and Sweden already
have recognized this problem, and fulfilled the studies on the 3D cadastre as a way to
solve these problems. As a solution, a 3D cadastre system can represent rights in
three-dimensional space (Park, Lee, and Li, 2009).

Many efforts have been made to provide quality in the implementation of land
administration all over the world. Many jurisdictions, organizations and software

developers have developed their own cadastral data model. Examples of data

modelling developments are the core cadastral data model, FGDC Cadastral Data
Content Standard for the National Spatial Data Infrastructure, ArcGIS Parcel Data
Model, ePlan, Legal Property Object, and ISO 19152- Land Administrative Domain
Model (LADM) (Aien, Kalantari, Rajabifard, Williamson, and Shojaei, 2012).
Among the list, LADM has been widely used and many countries like Japan, the
Netherlands, Portugal, Indonesia, Korea, Cyprus and other have adopted the LADM
to develop their country profile of land information system (LIS).

The LADM is a model developed in the field of land administration as an
international standard by ISO/TC 211. The LADM provides an abstract conceptual
schema with three basic packages: parties (such as people or organization),
administrative rights, restrictions and responsibilities (such as property rights) and
spatial units (such as parcels, building and networks), with the latter having one sub-
package: surveying and spatial representation (Elia, Zevenbergen, Lemmen, and van
Oosterom, 2011). LADM supports both the 2D and 3D legal property, but it does not
define the storage of physical property. Instead the physical property is stored in some
external class, which is outside the scope of LADM.

On the other hand, there exists an Open Geospatial Consortium standard called
CityGML (City Geography Markup Language), an application independent
information model and exchange format for objects of 3D city landscape. It maintains
semantic, geometry, topology and the appearance of objects (Stadler and Kolbe,
2007). Although CityGML is an international standard model and it supports five
level of detail for spatial data of urban areas, it is limited to represent and manage the
legal information needed in cadastre. However, the Application Domain Extension

(ADE) method of CityGML makes it possible to extend the rich thematic and

geometry quality of CityGML to hold the legal information regarding the 3D cadastre.
Accordingly Gozdz, Pachelski, van Oosterom, and Coors (2014) have studied the
integration of LADM and CityGML to build 3D cadastral system and concluded that
it is possible to introduce the semantic representation of land administration from the
LADM into the CityGML.

Land recording system in Bhutan date back to 17th century, developed for the
purpose of tax assessment. The most commonly known land record was prepared
during the reign of the first King of Bhutan in year 1919 (NLC, 2014). Over decades,
the land registration system was reviewed repeatedly and it has evolved to
accommodate the changing scenario in land administration as well as the
advancement in the field of technology. Presently National Land Commission
Secretariat (NLCS) have completely updated and fully operated cadastral system, but
only in 2D.

In recent years, the urban areas of Bhutan have witness inclined growth in
population and infrastructures. These have ultimately led to extensive use of space of
urban areas which are generally stretched along the narrow valleys of Bhutan.
Moreover due to the high land value and low income of the people, people find it
more affordable to invest in the apartment rather than to buy land. The business of
real estate has boomed and people have started buying apartment. Such situation has
raised issues regarding the provision of legal assurance on the utilization of space
(Hendriatiningsih, Abdulharis, and Hernandi, 2012). The people who invested in
apartment wishes to register their properties, but the current land administration
system cannot support the situation of strata registration. Apart from apartment, there

are other forms of 3D situation like underground parking, flyover, utility network

(such as power, telecommunication, water, and sewerage) growing in the cities
without a proper system to map it. Bhutan’s growing economy mainly depends on the
sale of clean electricity generated through the growing industry of hydropower. These
hydropower industries built their powerhouses inside mountain creating another form
of 3D situation.

Therefore, the importance of implementation of 3D Cadastre in Bhutan is
necessary to incorporate the present changing scenario in the land administration as
well as future trend in development as prevailing in other countries. After analyzing
the characteristics and reviewing papers, it can be concluded that the integration of
LADM and CityGML can handle the existing 2D information as well as the growing
3D situation in Bhutan. The implementation of some of the classes from the LADM
with the classes of CityGML will be studied here to fulfill the need of growing
changes in land administration in Bhutan. Thereby, this study will design a CityGML
ADE for 3D building Cadastre in Bhutan and its realization into the existing relational

database under the realm of NLCS.

1.2 Research objectives

The primary objective of the research is to study the development of 3D
building cadastral database in Bhutan using LADM and CityGML models. The
specific objectives of the research are as follows:

(1) To design UML model of CityGML ADE for 3D building cadastral
database, and

(2) To develop a data exchange format and 3D building cadastral database

based on the UML model of CityGML ADE.

1.3 Scope and limitation of the study

The focus of this research is to design a 3D building cadastral database for LIS
of Bhutan. Based on the objectives, the scope and limitations of the study are as
follows:

(1) Considering the demand and the urgent requirement of 3D cadastre of
NLCS, only urban area was considered. Later it will be extended phase-wise to the
rest of the country.

(2) Although it is necessary to study all the thirteen thematic modules of city
landscape presented in CityGML, detailed description on each model is beyond the
scope of this research. Here only the building module is elaborated and adopted to
fulfill the need of 3D situation in Thimphu City.

The design of 3D cadastral building database is based on the architectural style
and 3D cadastral situation in Bhutan. Even the code list is based on national
requirement. Therefore, the limitation of the study is that its implementation might not
work in other countries. Another limitation or more precisely the difficulty of the
study is acquiring the existing floor plan. All the building drawings submitted by the
individual land owner for the construction approval are housed in the municipal
office, but they do not have the copyright to share them. Available dataset collected

through personal contact are here used in this study.

1.4 Study area

Thimphu city, Bhutan was chosen as the study area for implementation of 3D
building cadastral database based on LADM and CityGML Models (Figure 1.1).

Thimphu city is the capital and the largest urban center in Bhutan. It spans within an

area of 26 sg. km, stretching along the Wang River. It is located at 27°30” N latitude
and 89°30’E in central western part of Bhutan.

It is the most pullulated and fast growing city in Bhutan. Rapid expansion
following the pattern of rural exodus has resulted in considerable rebuilding in the
city center and mushrooming suburban development elsewhere. Presently the whole
of Thimphu is estimated to house around 6,500 buildings (kuenselonline, 2015) and
population of about 104,000 (thimphucity, 2015). It consists of varieties of
infrastructure development with different form of land administration. Recently the
real estate business has boomed in Thimphu due to the scarcity of land and high land
value. People started investing in apartment, which creates a different situation for the
land administrator to secure the right of ownership to individual. Unfortunately the
present LIS does not support the registration of apartment, though the lands are

registered as shared property among the owners.

http://www.thimphucity.bt/

BHUTAN MAP

THIMPHU CITY

Legend

0 5000 10,000 20,000 30,000 40,000 I Vvang River
T — S il meters l:l Thimphu City Boundary

Figure 1.1 Map depicting the study area: Thimphu city, Bhutan.

1.5 Benefits of the study

(1) Insight information on different methods and models available in the field
of 3D cadastre.
(2) A designed prototype of 3D building database system for NLCS of Bhutan,

for future implementation/use.

CHAPTER 11

BASIC CONCEPTS AND LITERATURE REVIEW

This chapter explains the concepts and theories, covering the four main topics
related to the research: (1) 3D cadastre concept, (2) basic concept of LADM, (3)

overview of CityGML, and (4) basic of UML.

2.1 3D cadastre concepts

This section introduces some concept of 3D cadastre from the thesis work “3D
Cadastre” by Stoter (2004). Stoter (2004) defines 3D cadastre as a cadastre which
registers and gives insight into rights and restrictions not only on parcels but on 3D
property units. A 3D cadastre should be capable of storing, manipulating, querying,
analysis, updating, and supporting the visualization of 3D land rights, restrictions and
responsibilities (Aien et al., 2012). According to Aien, Kalantari, Rajabifard,
Williamson, and Wallace (2013), 3D cadastre:

(1) represent the spatial extent of ownership boundaries in the third dimension
of height where layered and stratified ownerships exist,

(2) facilitate registration of 3D property rights,

(3) support land development processes including issuing of permit plans in
dense urban areas especially for large scale developments such as bridges and tunnels

which cross above or under other developments,

(4) provide reliable information for decision makers, and

(5) utilize as a basic layer to integrate with other information layers such as 3D
city models (CityGML), Building Information Models (BIM), transportation and
utility networks, land use controls, and delivery of services for different applications.

A 3D property unit is that bounded amount of space to which a person is
entitled by means of real rights. It can be a land parcel, a building, an underground
structure, or a superficies. Though 3D legal property is bounded by 3D space in some
countries, but most of the countries have no limitation on the extension, that is the
ownership can reach as far as the owner’s interest. As shown in the Figure 2.1 the

right of ownership can extend from the center of the Earth to the infinity sky above.

Building

Land

Centre of the earth

Figure 2.1 Extend of ownership right (http://resource.unisa.edu.au/mod/book/
print.php? 1d=55928).

Generally, 3D cadastral system involves related subjects like 3D registration,
3D modelling, 3D geodatabase, and 3D visualization. 3D registration deals with
maintaining both the spatial and non-spatial information of 3D objects. The types of

rights associated with a 3D component being the main non-spatial information can be

10

broadly differentiated as: (1) right of ownership; (2) limited ownership rights such as
right of superficies, right of long lease, right of easement; (3) right to an apartment or
condominium right; and (4) joint ownership.

Figures 2.2 and 2.3 illustrate examples of some common 3D situations and the
rights associated with it, as observed in the Netherlands. Figure 2.2 shows an example
of 3D situation of a building over a highway in the city of The Hague. In this example
there exists only one building with one owner, but it requires three parcels to establish
the legal status of the whole building. “Ing Vastgoed Belegging BV” possessed an
unrestricted right of ownership on parcel 1718, a right of superficies on parcel 1719
and a right of long lease on parcel 1720. The municipality holds a restricted right of

ownership on parcels 1719 and 1720.

1 1718 | 1719 1720

1722

Figure 2.2 Building complex in The Hague, the Netherlands (Stoter, 2004).

Figure 2.3 shows an example of apartment ownership. As shown in the right

picture, the whole building is divided into three apartments. One apartment is located

11

on the ground floor, and the two other apartments are located on the second and third

floor, next to each other, with an entrance on ground level.

il

M-ﬂ“r by
Jisy| |

Figure 2.3 Apartment complexes (Stoter, 2004).

3D cadastre can be interpreted in many ways ranging from a full 3D cadastre
supporting volume parcels, to the cadastre in which limited information is maintained
on 3D situations (Stoter and van Oosterom, 2006). Basically it can be distinguished
into three fundamental categories:

(1) Full 3D cadastre — This defines the property rights in 3D space. The 3D
space is subdivided into volume parcels partitioning the 3D space. The legal basis,
real estate transaction protocols, and the cadastral registration should support the
establishment and conveyance of such 3D rights.

(2) Hybrid cadastre — This mean preservation of the 2D cadastre and the
integration of the registration of the situation in 3D and being part of the 2D cadastral
data set. This results in a hybrid solution with the legal registration of 2D parcels and

a registration of the 3D situation.

12

(3) 3D tags linked to parcels in current 2D cadastral registrations — Here
the 2D cadastre holds reference to a digital or analog representation of 3D situation.
The difference with the hybrid cadastre is that the 3D representations are maintained

separately, not integrated with the cadastral geographical data set.

2.2 Basic concept of LADM

The contents of this section are based on the final draft version ‘ISO/FDIS
19152: Geographic information — Land Administration Domain Model (LADM)’
released in 2012,

The LADM is a conceptual schema covering basic information-related
components of land administration (including those over water and land, and elements
above and below the surface of the earth). LADM enables the combining of land
administration information from different sources (i.e. organizations) in a coherent
manner (Lemmen, van Oosterom, Uitermark, Zevenbergen, and Cooper, 2011). The
standard provides an abstract model with three packages and one sub-package
covering all basic aspect of land administration system. These packages are: Party
Package (green), Administrative Package (yellow), and Spatial Unit Package (blue)
(Figure 2.4). The Surveying and Representation Sub-package (purple and red) is a
sub-package of the Spatial Unit Package. These classes support 2D and 3D spatial
units as well as RRR, which are applicable to facilitate 3D property objects
registration and visualization for land and space registration (Budisusanto, Aditya,

and Muryamto, 2013).

13

LA
| LA LegalSpaceMNetwork |
L 1
e ——
LA_Source
LA_GroupParty Vi
LA SpatialUnit LA BoundaryFaceString
LA PartyMember | _ _ $ J] —‘
LA _Party I
LA Level
LA_RRR LA_Paoint
LA _BAURit
[| LA Resfriction LA_Responsibility | - —|
[—ee—

Figure 2.4 An overview of Land Administration Domain Model (Lemmen and van
Oosterom, 2013).

Totally, the LADM consists of 48 main classes defined with small set of
attributes, methods, and constraints. LADM allow users to add more specific
attributes, methods, constraints, and even new classes to fit with national
requirements. Conversely, it also allows some classes to be omitted if they are found
unnecessary for a particular country (Sucaya, 2009). According to ISO/TC211 19152,
all classes of the LADM inherit from a special class called VersionObject (Stoter and
van Oosterom, 2006), which manages and maintains historical data in the database.
Like any other model, the LADM does not model all aspects of the real world. Certain
objects classes are outside the scope, but are relevant for the full implementation of
the LADM. These types of (external) classes (e.g. ExtPersons, ExtAddress,
ExtTaxation, Extvaluation, ExtUsage) can be defined elsewhere and linked to the

relevant classes in the LADM through references.

14

For the purpose of this research, the focus is the Spatial Unit package. The
Spatial Unit package contains the classes concerning spatial elements such as land
parcel, buildings, utilities networks and attributes describing them (area, volume,
geometry) (Bydlosz, 2013). The main classes in this package are SpatialUnit,

LegalSpaceNetwork, and LegalSpace-BuildingUnit (Figure 2.5).

«datatype» «datatype»
VersionedObject Spatial Unit: Spatial Unit:
LA_VolumeValue LA_AreaValue
«featureType»
Party:LA_Party + volumeSize: Volume + areaSize: Area
+ type: LA_VolumeType + type: LA_AreaType
+party | 0..1 +rr VersionedObject
rmrParty o+ «featureType»
Administrative::LA_RRR
Topology relationship +mr [1.0 sudh VersionedObject Each spatial unithasa dimension. There
1SO19125_Type as ug can be a 2D spatial unit, or a 3D spatial
s «featureType» o : e 4 :
defined in ISO 19125 unitRrr 1| Administrative::LA BAUnit unit, with a spatial unit with dimension
St “liminal” in between. See Annex B.
; 0..* | +baunit Hi h :
VersionedObject relationSu it suHlerarchy i
«featureType» +su1l +su2 +su1 : - -
Spatial Unit:: | ____ _ | 0.* +suf 0.* 0.1 0.+ 1 «invariant»
LA_RequiredR i i Jnit +eip > = I {If structure = text then
— Os": VersionedObject | geometry/topology is optional}
+ relationship: 1S019125_Type = «featureType» : I
I

Spatial Unit::LA_SpatialUnit

|
% . !
«invariant» |

Spatial Unit::LA_LegalSpaceUtilityNetw ork

+ extPhysicalNetworkiD: ExtPhysicalUtilityNetwork [0..1]
+ status: LA_UtilityNetworkStatusType [0..1]
+ type: LA_UtilityNetworkType [0..1]

«featureType»

Spatial Unit::LA_LegalSpaceBuildingUnit

{if dimension=2D then volume not specified [-—- * extAddressiD: ExtAddress[0..] Vorsh -
5 . ‘ersionedObject|
if dimension=3D then area not specified} + area: LA_AreaValue [0.] 4
+ dimension: LA_DimensionType [0..1] «featureType»
. + label: CharacterString [0..1] Spatial Unit::LA_Level
suGroupHierarchy + referencePoint: GM_Point [0..1] i Slgvel
+element + sulD: Oid + 1ID: Oid
0. + surfaceRelation: 035 0.1 | + name: CharacterString [0..1]
- m LA_SurfaceRelationType [0..1] suLevel + registerType: LA_RegisterType [0..1]
VersionedObject + volume: LA_VolumeValue [0..*] + structure: LA_StructureType [0..1]
+ type: LA_LevelContentType [0..1
. 4f1'e.atureTyp.e» . + areaClosed() : Boolean YR - yee:l0:1)
+set Spatial Unit::LA_SpatialUnitGroup + volumeClosed() : Boolean
0.1 : 1
+ hierachyLevel: Integer +whole +part : zgﬁpﬂingef}?so;ume «invariant»
+ label: CharacterString [0..1] p ; . /- Y
3 N .~ | + createArea(): GM_MultiSurface [~~~ "] {If dimension = 3D than structure in
+ name: CharacterString [0..1] (12 0.. = 5 S LA_Level can be toplogical
+ referencePoint: GM_Point [0..1] + createVolume() : GM_MultiSolid . '
S = . suSuGroup polygon, unstructured or point}
+ sugID: Oid
constraints
{count(part)tcount(element)>0}
«featureType»

+ extPhysicalBuildingUnitID: ExtPhysicalBuildingUnit [0..1]
+ type: LA_BuildingUnitType [0..1]

«codelList»
Spatial Unit::
LA_UtilityNetw orkStatus Type

«codelList»
Spatial Unit::

LA_SurfaceRelationType

«codeList»
Spatial Unit::
LA_DimensionType

«codeList»
Spatial Unit::
LA_BuildingUnitType

«codeList»
Spatial Unit::
LA_LevelContentType

«codelList»
Spatial Unit::
LA_AreaType

«codeList»
Spatial Unit::
LA_RegisterType

«codelList»
Spatial Unit::
LA_StructureType

«codelList»
Spatial Unit::
LA_UtilityNetw orkType

«codelList»
Spatial Unit::
LA_VolumeType

Figure 2.5 Content of Spatial Unit Package with associations to other basic classes

(ISO/TC211, 2012).

15

A ‘spatial unit’ can be represented as a text (“from this tree to that river”), a
sketch, a point (or multi-point), a line (or multi-line), a polygon (or multi-polygon)
representing a single area (or multiple areas) of land (or water) or, more specifically, a
single volume of space (or multiple volumes of space) (Lemmen and van Oosterom,
2013). Spatial unit class is structured in such a way to support the creation and
management of basic administrative units. It can be further specialized into
LegalSpaceBuildingUnit or LegalSpaceUtilityNetwork. These sub-classes are useful
to describe legal spaces within building/utilities, which coincide with the physical

space of the building (or parts of it)/utilities (Ronsdorf, Wilson and Stoter, 2014).

2.3 Overview of CityGML

The content of the section is based on an adopted international standard of the
Open Geospatial Consortium (OGC) ‘The CityGML Encoding Standard document
version 2.0.0” published on April 04, 2012.

CityGML is an open data model and XML-based format for the storage and
exchange of virtual 3D city objects. It is an application schema for the Geography
Markup Language version 3.1.1 (GML3), the extendible international standard for
spatial data exchange issued by the OGC and the ISO TC211. The aim of the
development of CityGML is to reach a common definition of the basic entities,
attributes, and relations of a 3D city model. CityGML provides a standard model and
mechanism for describing 3D objects with respect to their geometry, topology,
semantics and appearance, and defines five different levels of detail (LOD). CityGML
enables lossless information exchange between different systems and users

(Snowflake Software, 2015). Its rich application includes urban and landscape

16

planning, 3D cadastre, environmental simulation, mobile telecommunications,
disaster management, homeland security, and many more.

The CityGML data model consists of a core module and thirteen thematic
extension modules. The core module defines the basic components of the CityGML
data model. Primarily, this comprises abstract base classes from which all thematic
classes are derived. It also includes non-abstract content common to more than one
extension module, for example basic data types. The extension modules cover specific
thematic fields of the virtual 3D city model including: Appearance, Bridge, Building,
CityFurniture, CityObjectGroup, Generics, LandUse, Relief, Transportation, Tunnel,

Vegetation, WaterBody, and TexturedSurface (Figure 2.6).

1 1 [1 1 1

<<| eaf>> <<l eaf>> <<l eaf>> <<| gaf>> <<l eaf>> << eaf>>
Appearance - Bridge - Building - CityFurniture {- | CityObjectGroup |- Generics ‘
] v /| 71 D C v :
<<Leaf>> i <<Leaf>> | <<Leaf>> | <<Leaf>> , <<Leaf>> ‘ <<Leaf>> l
LandUse i Relief i | Transportation |! Tunnel Vegetation | WaterBody |4
I] I
I I
i
I
I
I
i

ﬁ v <<import>> |
|

R RN <<Application Schema>> <______L _________________ bmmmmcmcccm————and
<<import>> CityGML Core <<import>> ! —|
,,,,,,,,,,,,,,,,,,,,,,,, <<Leaf>>
\:/«Impm» «‘mmrt»\:/ L Te);uredslurdf]ace
v ¥ eprecate
p
<<XSDschema>> <<XSDschema>>
Geography Markup Language extensible Address Language
(from OGC) (from OASIS)

Figure 2.6 The CityGML modules (OGC, 2012).

Most of the name of thematic modules clearly specifies its contents, except
modules such as Appearance, Generics, and CityObjectGroup. Appearances represent
the visual data as well as themes such as infrared radiation, noise pollution, or

earthquake-induced structural stress. Generics module represent the 3D objects, which

17

are not covered by the thematic classes of CityGML. The current version of CityGML
does not include, for example, explicit thematic models for embankments,
excavations and city walls. The CityObjectGroup module provides a grouping
concept for CityGML. According to user-defined criteria, arbitrary city objects can be
aggregated in groups to represent and transfer as part of a city model.

Another option to Generic module, for extensions of the CityGML data model
for specific fields, can be realized using the Application Domain Extensions (ADE).
ADE specifies addition to the CityGML data model through the introduction of new
feature types, attributes, geometries, and associations. Also new elements can be
added to the existing feature types with the ADE. Dsilva (2009) specified five
advantages of ADE over generic objects and attributes:

(1) ADEs can be formally specified,

(2) Extended CityGML instance documents can be validated against the
CityGML and its ADE schema,

(3) More than one ADE can be used in the same dataset,

(4) ADEs may be defined for one or more CityGML modules which provides
a high flexibility, and

(5) ADEs can be defined and standardized by communities that are interested
in specific application domains.

CityGML also provides code lists to allow some predefined values for the
CityGML attributes. This code list is allowed for extension and even replacement, to
suit the requirement or preference of a national code list. However, CityGML do not
provide a normative way to structure code lists. There exist some prominent choices

such as GML dictionary and Simple Knowledge Organization System (SKOS).

18

CityGML differentiates five consecutive Levels of Detail (LOD), where
objects become more detailed with increasing LOD regarding both their geometry and
thematic differentiation (Figure 2.7). LODs are characterized by differing accuracies
and minimum dimensions of objects (Table 2.1). CityGML files can - but do not have
to - contain multiple representations (and geometries) for each object in different
LOD simultaneously. Furthermore, objects can have external references to
corresponding objects in external datasets such as telecommunication, census, and

many more.

Figure 2.7 The five levels of detail (LOD) defined by CityGML (OGC, 2012).

Table 2.1 LOD 0-4 of CityGML with their proposed

(Snowflake Software, 2015).

19

accuracy requirements

LODO LOD1 LOD2 LOD3 LOD4
city
city, city districts, architectural
Model scale description regional, city, region districts, architectural mOde.IS
landscape roiects models (interior),
proJ (exterior), landmark
landmark
Class of accuracy Lowest Low middle high very high
Absolute 3D point lower than
accuracy (position / LOD1 5/5m 2/2m 0.5/0.5m 0.2/0.2m
height)
object object blocks obiect as Zfenni:ﬁglve
maximal bCH as as reajll and
Generalization - generalized generalized . .
generalization : : features: openings are
igeithgs; features; >2*2m/1m represented
>6*6m/3m >4*4m/2m P
represented .
Building installation No No yes exterior ;eal object
orm
features
Roof differentiated real object real object
. Yes Flat rood y !
structure/representation form form
structures
Roof overhanging parts Yes No yes, if known yes yes
. prototypes, . .
CityFurniture No |mportant generalized real object real object
objects objects form form

The Building Module which is related to the study is one of the most detailed

thematic concepts of CityGML. It allows for the representation of thematic and spatial

aspects of buildings and building parts in five levels of detail. Buildings may be

represented in LODO by footprint or roof edge polygons (Figure 2.8). LODL is the

well-known blocks model comprising prismatic buildings with flat roof structures. In

contrast, a building in LOD2 has differentiated roof structures and thematically

differentiated boundary surfaces. LOD3 denotes architectural models with detailed

wall and roof structures potentially including doors and windows. LOD4 completes a

LOD3 model by adding interior structures for buildings (Figure 2.9).

20

LODO FootPrint LODO0 RoofEdge

Building

Figure 2.8 The two possibilities of modelling a building in LODO using horizontal 3D
surfaces (OGC, 2012).

LOD1 LOD2 LOD3 LOD4

Building

Building Interior

Figure 2.9 Building model in LOD1 — LOD4 (OGC, 2012).

The pivotal class of the Building Model (Figure 2.10) is AbstractBuilding,
which is a subclass of the thematic class Site and transitively of the root class
CityObject. The class AbstractBuilding has two specializations namely Building and
BuildingPart. As shown in Figure 2.10, both classes inherit the following attributes:
the class of the building, the function, the usage, the year of construction, the year of
demolition, the roof type, the measured height, and the number and individuals
heights of the storeys above and below ground. A building may have zero or more

building installation objects such as chimneys, stairs, antennas, or balconies, which

21

are represented by the Buildinglnstallation class. Moreover, a Building or
BuildingPart may consist of rooms (represented by the class Room), with movable
parts such as chairs or tables (as instances of the class BuildingFurniture).
Unfortunately, the class AbstractBuilding does not provide any legal information

which is needed for 3D cadastre aspects.

==Features> i
core:_CityObject core::_Site
Iud3liliu’m§5enm'm o e
lodHmplicitRepresentation corezimplicitGeometry 1
lod4 ImplicitRepresentation 0.1 " hd2impiciReoresentation
lodd ImplicitRepresentation 0| | ld3implcitRenresentation
| leddimpiicitRepresentation ‘
0.1 0.1 <<Faature=>
Tre lod2 Geomph : Buildinginstallation
loddGeomelry | gml::_Geometry |Iud3tiec|meuy " |+class : gmi:CodaType [0.1] .
o1 | 1od4 Geometry + |+function : gml::CodeType [0.."]
+usage : gmi=CodeType [0.]

outerBuiidingInstaliation

<<Featura=>

IntBui - :
+aea : gri-CodeTypa 1] » mieriorBulldinglnstalation
L——_{+funciion : gmi::CodeType [0."] o

+usage : gml:-=CodeType [.."] e
" AbstractBuilding
roominstalaton +class - gmt:CodaType [0.1]
+unction - gml:2CodeType [0..*] (-
+usaga - gmi=CodeType [0..*]
+yearQfConstruction : xsgYear [0..1]
L | <<Fegture=> +yearQfDemolition : xs-gYear [0..1] .
- BuildingFurniture +mofType : gml:CodeType [0..1] F—
class - gml-CodeTypa (0.1 +measuredHeight : gmi-LengthType [0..1]
rm:rsc;ongrgﬂ::cmrﬁ':ée [EI]..'] +storeysAboveGround : xs:nonNegativelneger [0..1]
+usage : gml:-CodeType [0..°] storey=Ee : xs:monMegativel i "1.
+storeyHeightsAboveGround : gmi-MeasureCriulListType [0..1]
N lhmriu(Fuqurp +storeyHeightsBelowGround - gmi-MeasureOrNullListType [0..1] Fa—
0.t o <<Features> <<Faature==
Ry o Building BuildingPart |-
+class : gmi:CodeType [0..1] = consistsOfBulding Part
function : gml=CodeType [0..] nteriorRoom

+usage : gmi:CodeType [0..7]

010

led TTemamninersecton
lodTemamninersecton

lod3Temaminersecton
IEEET)
1
<<Geometry>> TodZMuECurve
gmi::_Solid ol MUk Cuve
loddMultCurve
047 0.1 0.1 - 21

|+ [<<Fearer> leddMultSurface lod2MultiSurface <<Geometry>>
| _Opening [= lodIMulfiSurface j O ——

" opening lodéMuliSurface IodéhuliiSurface
==Feature== =<Feghuras> . L.
boundedB
Windaow Doar il RIS EmmadBv
BounderySurks = boundedBy
nz - boundedBy
T T T T T T 1
<<Features> <<Feature=> <<Feature=> <<Feature>> <<Feature=> <<Feature=> <<Feature=>
RoofSurface WallSurfacee GroundSurface Clasur CeilingSurf InteriorWallSurface FloorSurface
==Featuress <<Faaturass
OuterCeilingSurface OuterFloorSurface

Figure 2.10 UML diagram of CityGML Building Model (OGC, 2012).

22

2.4 Basics of UML

LADM uses Unified Modeling Language (UML) class diagram to design its
conceptual model. OGC have also adopted UML as a modeling language to model the
extension of CityGML In regard to that, basic skill of UML class diagram is required
to understand the concept of LADM and CityGML standards.

The UML is a general-purpose modeling language in the field of software
engineering, which is designed to specify, visualize, and document models of
software systems as a standard way. It was adopted as ISO standard in year 2000.
Figure 2.11 shows an overview of the UML class diagram. It consists of classes
(super class and sub-class), attributes, operations, constraints, associations

(inheritance/ specialization), and code list.

class dlagram

Supar cless

+ attrbutes

sfoaturaTypas |

Class name Subclass A Subclass B

+ gltributes

+ operationx])

Classwilh characwriﬂjcsﬁ Specialization & inharitance ﬁ

eCodaList —.
Codellst name Clasal Clans D

ol name

+ volue 1 1 0.

+ value 2 +rola namea
+ value 3 L

Clasees with association ﬁ
Codeligt with values

Figure 2.11 UML overview (van den Brink, Stoter, and Zlatanova, 2013).

23

The class diagram shows a collection of classes, interfaces, associations,
collaborations and constraints. A class is an element that defines the attributes and
behaviors that an object is able to generate. Classes are typically modeled as
rectangles with three sections: the top section for the name of the class, the middle
section for the attributes of the class, and the bottom section for the methods of the
class (Agilemodeling, 2015).

Generalizations, aggregations, and associations are the relationship defined
between classes to reflect inheritance, composition or usage, and connections
respectively. Association is the general relationship type between elements. The
connector may include named roles at each end, cardinality, direction and constraints.
A generalization is used to indicate inheritance between parent class and child classes.
Aggregation is a form of association used to depict a whole/part relationship, whereas
composite is a stronger form of aggregation. If the parent of a composite aggregation
is deleted, usually all of its parts are deleted with it; however a part can be
individually removed from a composition without having to delete the entire
composition. Aggregation relationships are shown by a white diamond-shaped
arrowhead pointing towards the target or parent class and composition by a black

diamond-shaped arrowhead (Figure 2.12).

24

cd Composite
AddressBook ContactGroup
-——————————
1 0.

Contact

Figure 2.12 Aggregation and composition relationship in a class diagram

(http://www.sparxsystems.com/resources/umi2_tutorial/uml2_classdiagram.html).

2.5 Literature review

Zulkifli, Rahman, and van Oosterom (2014) discussed 3D objects registration
and modelling for cadastral objects within the Land Administration Domain Model
(LADM) framework in the paper “3D strata objects registration for Malaysia within
the LADM framework™. The paper first defined the various types of strata objects in
Malaysia supported by the Strata Title Act and Strata Management Act. The strata
objects included (1) building and building parts (all in 3D within a single lot), (2) land
parcel (with house no more than 4 storeys within a single lot), which can be refined
with (3) parcel unit, (4) accessory unit, and (limited) (5) common property unit
including support for provisional and multilayer/underground aspects. Based on the
LADM, the researchers proposed and developed a conceptual model as well as the
associated technical model for Malaysia country profile. The country profile was
explained in two parts: spatial part and administrative (legal) part. The spatial part of
Malaysian country profile was developed for the 3D spatial units represented by

building, utility and lot. All the classes were defined as a specialization of LADM

25

class “LA_SpatialUnit”. The legal part contained Party and Administrative package of
LADM. The technical model was realized in Oracle and uploaded with study area
data located at World Youth Foundation (WDF) building in the state of Melaka and
some land parcels around the building. After uploading the sample data, the prototype
frontend developed on Bentley Microstation was used to visualize the geometry and
query using SQL. This paper serves as an example to the other countries that have the
strata title system.

Gozdz, Pachelski, van Oosterom, and Coors (2014) conducted a study on the
application of CityGML in the representation of geometric and descriptive data about
buildings for the support of cadastral and administrative tasks. OGC (2012) stated that
the CityGML, which provides a geographical information model for urban
landscapes, not only represents the shape and graphical appearance of the 3D city
objects, but also addresses the representation of the semantic and thematic properties.
For that reason, the standard can be applied for the 3D representation of buildings.
However, the CityGML does not contain any features describing the legal information
about spatial objects needed for cadastral purposes. In support, EI-Mrkawy and et
Ostman (2012) also stated that the CityGML standard with its current status does not
have capabilities to build 3D cadastral system. Therefore, this paper presented the
proposal for the integration of the LADM and CityGML at the conceptual level to
support both the legal and physical description of a 3D building model needed in a
cadastral system. Application Domain Extension provides an extension capability to
incorporate the requirement of specific application in the CityGML data model. The
method used for development of the CityGML-IMGeo ADE as Dutch 3D national

standard (accepted as OGC Best Practice) was adopted here for preparation of

26

CityGML-LADM ADE. To link the legal space occupied by buildings and their
physical counterparts, two classes representing buildings: PL_LegalSpaceBuilding,
and PL_Building were introduced. Conceptually, class PL_LegalSpaceBuilding
representing the legal space was defined as subclasses of _CityObject, whereas
classes PL_Buidling and PL_BuildingPart, representing the physical space were
defined as subclasses of their counterparts from the CityGML. Information about
entities and property rights was represented as separate classes as LA _Party,
LA_RRR, and LA_BAUnit in CityGML-LADM ADE. Through this study they have
confirmed that the CityGML provides a flexible conceptual model, which can be
adapted to land administration domain, particularly for supporting the spatial concepts
required for cadastral system.

van Oosterom (2014) reported the results of the second phase of the 3D
Cadastre and LADM investigations in context of possible future renewal of the
Cadastral database at the Survey of Israel. The first phase of the investigations was
reported on 25 March 2014 and it covered two studies: (1) an overview of the
international state of the art of three-dimensional cadastre and (2) current cadastral
procedures, land model and database. The second phase continued with the
recommendations from the first phase of the investigations and addresses a series of
3D Cadastre/LADM topics such as standards, procedures, case studies, SDI, LADM
country profile, data transfer, DBMS schema, query and visualization. 1SO/TC211
standard LADM was used to define the conceptual model of the Israel 3D country
profile, supporting both cadastral map and land registry (legal) information. During
the development, various meeting was held and communicated through emails, to

discuss the main scoping questions raised by the International Federation of

27

Surveyors (FIG) Working group 3D Cadastral. (1) The first question on types of 3D
cadastral objects was answered by deciding to support both related to constructions
(buildings, pipelines, tunnels, etc.) and any part of 3D space (airspace, subsurface).
(2) 2D floor plan was used for the representation of apartments/condominium
buildings as well as related facilities such as storage or parking instead of 3D parcel,
which will be implemented in the future. (3) 3D parcels for infrastructure objects such
as long tunnels, pipelines, and cables was decided to represent in block-wise and
joined during the registration. (4) For representation of 3D parcel, legal space was
decided to have its own geometry. Considering the discussed scope and various
design considerations, the first step taken was mapping of the key concepts in LADM
and their counterparts in the actual registrations. The conceptual design was then
converted to technical design, which can be used for implementation in the context of
a database schema and/or exchange format. A seven steps workflow was identified as
follows: (1) Survey or mutation plan and (2) B-rep provides the spatial data sources
for the new 3D parcels; (3) data transfer standard was considered; (4) automated
quality check to assess the completeness of 3D data as well as its geometrical and
topological errors; (5) technical database model was realized using an Oracle database
and ESRI ArcGIS; (6) for data visualization and (7) dissemination, standards like 3D
pdf, X3D was considered.

In the 5" Land Administration Domain Model Workshop held in Kuala
Lumpur, Malaysia in 2013, Andrade, Carneiro, and Santos (2013) presented the full
specification of LADM for relational database for the Republic of Cape Verde. The
objective of the research was to propose a conceptual and abstract model based on the

LADM and to test its application in a specific database model. Initially, an abstract

28

model “LADM_CV” profile was proposed considering the national reality and the
decree that establishes the judicial regime of the building cadastre in Cape Verde. The
specification of the conceptual and abstract model through a relational database was
carried using the platform VP-UML, synchronize the UML profile to a relational
entity model and finally exported to the Postgres. The VP-UML was chosen due its
capacity to execute the whole modeling process, from the construction of the UML
diagrams until its implementation in a database. Despite that fact this platform
showed an absence of OCL language, which is used as one way of validating the
model. An empty database project was created (LADM_CV) in the PostgreSQL 9.1
with the spatial extension Postgis 1.5. The data base server was configured, and the
user name and password for the super user were defined. Immediately after,
connection between the Visual Paradigm for UML 10.1 and the PostgreSQL was
setup using the name and password of the superuser through the server created
previously in the PostgreSQL. After the connection, the model in UML was
transformed into a relational database schema (Entity-Relation Model). The SQL code
was generated from the schema in VP-UML, which is subdivided into two groups:
DDL (Data Definition Language) and DML (Data Manipulation Language). The first
was responsible for the creation, modification and management of tables, while the
second creates the structures which will contain the data, that is, the feeding and
management of data.

van den Brink, Stoter, and Zlatanova (2013) in their paper “UML-based
approach to developing a CityGML Application Domain Extension” tried to find out
the best approach for modelling CityGML-IMGeo ADE, the national 3D standard of

the Netherlands. The researchers evaluated six alternatives based on their pros and

29

cons. Alternative 3 stated as “Add properties in a subclass in the ADE package but
suppress this subclass from the generated XML Schema” stand out to be best
approach for modelling the CityGML ADE and later adopted by OCG as the best
practice (OGC, 2014). They described the reasons for their choice as (1) IMGeo being
an extension of CityGML, therefore adding the IMGeo classes as subclasses of
CityGML and also extra attributes are appropriate; (2) usage of sub-classes are
understandable to people; (3) the approach confirmed to relevant rules of UML, the
ISO 19100 series and OGC; and (4) the approach is more in the line with the current
geo-information modelling approach in the Netherlands. The procedures followed for
modelling IMGeo as an ADE of CityGML in UML are followed. Firstly, UML model
of CityGML is recreated in the modeling tool Enterprise Architect based on OGC
(2012). Secondly, a conceptual mapping is done between the CityGML and IMGeo at
the semantic levels to identify the equivalent classes of IMGeo in the CityGML. Two
followed solutions to map the classes are (1) remodel the IMGeo as much as possible
to find an equivalent CityGML class, and (2) classes, which cannot be remodeled, are
extended as subclass of one of the CityGML classes with stereotype
<<featureType>>. All IMGeo classes modeled as subclasses of CityGML classes are
assigned stereotype <<ADEElement>> to suppress from appearing in the XML
Schema. Thirdly, definition of code lists based on the notational list is done in Simple
Knowledge Organization System (SKOS). The code lists are maintained in the UML
model and XML structured code lists are generated using ShapeChange tool.
Fourthly, representation of geometry and topology of features are decided. All LODs
are defined with same accuracy alike in CityGML. The 2D representations of the

buildings are used to represent the building geometries on the surface and the

30

geometries above or below are modeled separately. For topology a general rule
defined in IMGeo standard, which stated that the 2D objects at the surface level must
form a topological structure of the Netherlands without gaps or overlaps, are copied in
CityGML-IMGEO ADE. Finally, a XML Schema is generated from the UML design
using Java tool ShapeChange.

Aien, Kalantari, Rajabifard, Williamson, and Wallace (2013) proposed a 3D
cadastral data model (3DCDM) in their paper ‘Towards integration of 3D legal and
physical objects in cadastral data model’. The research started by investigating the
existing cadastral data models and concentrated on the problems: its inefficiency to
facilitate effective representation and analysis of 3D data, negligence of interrelation
of 3D legal objects with their physical counterparts, and lack of semantic properties.
The researchers analyzed all the existing cadastral data models supporting 3D
properties such as ArcGIS Parcel Data Model, ePlan, the South Korean cadastral data
model and LADM. They expressed that only LADM had solution to represent 3D
properties, but LADM did not employ proper 3D geometry primitives such as solid
geometry, which facilitates 3D representation, volumetric calculation, and 3D spatial
analysis. The paper also stated that the current cadastral models do not support
semantics, which facilitate interoperability and integration of 3D legal objects with
their physical counterparts. To overcome the above mentioned problems regard to the
current cadastral data model, they proposed a new data model called 3DCDM, which
composes of two main components namely LegalPropertyObject and
LegalPhysicalObject. Legal Property Object was proposed by Kalantari (2008) where
the Right and Parcel classes were combined into one class to facilitate incorporation

of wide range of legal entities into the cadastral system. Here, physical property

31

objects such as building, tunnel, land, and utility network was linked to their legal
object by a unique identifier. The relevant module building was explained further
breaking it down into its classes such as building, building parts, and structural
component to describe the physical as well as the legal extend. Geometric elements,
solid and surface, were used to represent the physical objects. Through the
development of the 3DCDM model they aimed to achieve a conceptual framework for
3D cadastres, represent key components and their relationships, facilitate subdivision
of buildings and strata developments, and integrate physical counterparts of the legal
objects to support a multipurpose 3D cadastre.

Chiang (2012) explained a practical method conducted by Taiwan Land Office
to establish 3D building models that contain property ownership information in each
storey in the paper “Data modelling and application of 3D cadastral in Taiwan”
presented at the 3™ International workshop on 3D Cadastre held in Shenzhen, China
in October 2012. The research was commissioned by the Government of Taiwan to
investigate the feasibility of a 3D cadastral system. They used result maps of building
survey maintained by Land Offices to integrate building floor plans to construct a 3D
property model. This result map consisting of building plan, building location,
building area calculation formula, and building attributes data was issued upon
completion of construction of a building. Along with the building number, the result
map of building survey was used for building registration. Based on the building
components in the CityGML standard and the contents in the result maps of building
survey, they had designed ten building components to describe the cadastral building
model, including “layer”, “3D building”, “3D floor”, “wall”, “door”, “window”,

“eaves”, “balcony”, “stairs and elevator”’, and “column”. The result map and

32

construction plan were used to create the detail 3D building model and output as
SketchUp format for further 3D data editing. They developed two sub-systems: storey
plan vectorization system based on JRE; and basic 3D cadastral building system
developed using Apache Tomcat, JRE, and Java 3D to achieve the 3D building model.
The final derived basic 3D cadastral building model contained building number data;
storey ID; columns; 3D graphical data; 3D surface and textures; floor information;
building number and location; storey polygon; view point; and interior walls. OGC
standard CityGML was customized for 3D cadastral data exchange format, which
includes following classes and subclasses: “3D building” and “3D storey” as
subclasses of “AbstractBuilding”; “Roof”, “Polygon”, and “Wall” as subclasses of
“BoundarySurface”; “Door” and “Window” as subclasses of “Opening”; and
“Columns”, and “Stairs and Elevator” as subclasses of “IntBuildinglnstallation”. The
3D model prototype system was developed on SkylineGlobe and utilized zoning
maps, topographic maps, orthophotomap, cadastral maps, digital terrain model, and
the 3D cadastral building model to integrate with the land and building registration
attributes of the National Land Information System for system query and other
application. The system was divided into four main function groups such as map
query, land service, development plan, and 3D application.

Shen, Lin, and Renzhong (2011) presented a method for building a 3D
cadastral management system from survey plans with SketchUp in the paper
“Building 3D cadastral system based on 2D survey plans with SketchUp”. This paper
defined a cadastral model and builds a prototype 3D cadastral management system
corresponding to a 3D cadastral partition of space. Normally 3D cadastral objects

have physical space and legal space in a cadastral system, represented by

33

corresponding mathematical model and legislative definition. However, this paper
concentrated only on the geometric representation and topological consistency of a
physical object and took little of the legal aspect. The process of building a 3D
cadastral management system was divided into four phases: (1) processing of a 2D
survey plan; (2) 3D cadastral object construction; (3) topological reconstruction and
semantic information joining; and (4) spatial query and analysis. The first phase
started with the topological validation of the survey plan complying with the three
fundamental characteristics: (1) polygons should be closed, (2) the boundary of
polygons should not intersect, and (3) the polygons should not overlap and have no
gaps between them. Here, the 2D plan polygon was extruded with the physical height
in the Google SketchUp software. Then, the 3D model was linked with other
attributes such as geometric description, identifier, legal or property rights and some
temporal information by the developed plug-in using Ruby programming language.
The prototype developed can do some common functions like general semantic query
and display of geographic coordinates. In addition, the topological query can be
carried out based on the constructed topologic relationships. With the generic
functions of SketchUp, several basic computations for 3D objects can be calculated,
such as bottom area, surface area and volume of 3D cadastral units. The prototype can
also implement major operations like subdivision of 3D object, and merging of
multiple 3D objects. They made a complete use of SketchUp functions for the correct
topological structure, spatial analysis as well as to provide a flexible visualization.
Panchal, Khan, Sengupta and Sarda (2011) from Indian Institute of
Technology Bombay (1ITB) outlined the importance of 3D GIS technologies in

establishing and maintaining large-scale, reality-based 3D geo-information services in

34

their paper, which was a part of project “IITB Smart Campus GIS Grid”. The
researchers described how free software like Google SketchUp and standard like
CityGML can be used to represent 11TB campus data in a 3D environment. The paper
presented a semi-automatic approach for modelling the photo-realistic outdoor and
basic indoor model of building using Google SketchUp. The shapefile converted to
KML format was exported into SketchUp. It was extruded with accurate height
information and then modified with architectural drawing (CAD file) in Google
SketchUp. The modified model was textured with terrestrial images and finally
converted to CityGML format using the SketchUp-to-CityGML plugin. As results,
they mentioned that the derived 3D information can be used as an input for the
following tasks such as urban planning and economic development, infrastructure
management and monitoring, risk assessment system, public safety and security, and

virtual navigation system.

CHAPTER 111

RESEARCH METHODOLOGY

The conceptual research framework is schematically presented in Figure 3.1.
The research mainly consists of four components, namely: (1) analysis, (2) design, (3)
implementation, and (4) testing. The components are further divided into sub-
component to elaborate the complete workflow from data acquisition to data
dissemination. The first component reviews the application of ISO standard LADM and
OGC standard CityGML in field of 3D LIS from the available literatures. It also studies
the existing land administration system of Bhutan and finalizes the requirement of
NLCS. The second component explains the UML designing of the 3D data model
according to the finding of the analysis component. Thirdly, the UML design is realized
into a relational database. In the final component, the realized database is visually
tested. The details of four components of the research methodology are separately

described in the following sections.

36

'_ ;
I
] X
Literature Review User rgqylremem &]
] existing LIS
l I
; :] 1
ANALYSIS : '
Current Situation in Bhutan and Analysis of structure 1
! other countries (Existing & required) |
I
l ------------------------------ I
A e e e e e e g A e L --------------]
! 1
LI SR R S 1
DESIGN 1 3D data UML modelling of '
' construction CityGML ADE 1
l- - e W g O W O W O O e e S W O EE W S O W O O W O W e I
: XML Schema —
' Export
I
i
IMPLEMNTATION
1 Data Exchange
1 Format
1
: A
e i R Rl i e I
: - Upload v :
Quality Check 1
TESTING ' (completeness & Visualization i
! expressiveness)
I I
I 1
I 1

Figure 3.1 The overview of the research methodology.

3.1 Analysis component

This section mainly states the finding of literature review in the field of LIS. It
basically covers the four main areas including data collection, research tools, technical
review of the existing system in Bhutan, and finally the specification of the new 3D
database. These four topics are described individually in the following sub-sections.

3.1.1 Data collection

37

Literature review shows that the most important part in any sort of
research is the data acquisition. Moreover, it is a generic fact that if the data is complete
and accurate, then the dissemination and analysis followed will also be accurate. Many
researches on 3D data acquisition have been done involving technologies such as
LiDAR and terrestrial laser scan (Wang and Sohn, 2011), aerial photograph, and
tachymeter. In all the cases, the data from the mentioned technologies are combined
with 2D floor plan to construct the detail 3D model, either manually or automatically.

Based on the above finding, 2D floor plan is used in this research to
manually construct the 3D model. The data requirement for 3D data construction and
modelling are collected from the concerned agencies. The collected data are as follows:

(1) 2D data consists of parcels, buildings, and other topographical data
such as transportation, utilities, etc. are collected from the Office of National Land
Commission Secretariat (NLCS) of Bhutan in geodatabase format.

(2) Few samples of construction drawings of the building in CAD format
are collected through personal contact.

These two data sets are used as an input in the 3D data construction and finally the
result are used as a test data to study the 3D data model.
3.1.2 Research tools

Many software packages for building 3D model are available in the
market, like AutoCAD 3D Map from AUTODESK, Bentley’s Microstation, ArchiCAD
from GRAPHISOFT, and SketchUp from Trimble. Shen et al. (2011) stated that all the
above software provides various tools and visualization platform for various types of
construction and building, but lack topological support needed for the cadastral work.

However, SketchUp supports a secondary programming development with Ruby

38

language to deal with such spatial topologic information, as well as geographic
reference and coordinates. In addition, many SketchUp plug-in have been developed
and most of them can be freely downloaded online. Furthermore, SketchUp is widely
used by the architect community in Bhutan to construct 3D model. So SketchUp is
chosen as a tool to construct 3D model in this study.

The next issue to review here is the transformation of SketchUp model
to CityGML. For that, two websites: www.geores.de and www.citygml.de/index.php/
sketchup-citygml-plugin.html mentioned about a CityGML plug-in for SketchUp.
Unfortunately, the plug-in is built for SketchUp version 6 and it is not compatible with
the SketchUp 2015 used here. Moreover, in this research the original CityGML schema
need to be modified to fit to the cadastral domain, which requires the plug-in to be
modified too. As an alternative, Feature Manipulation Engine (FME) from Safe
software is here used to transform thematic model prepared in SketchUp model to
CityGML model, based on the research work of Wate (2014). FME offers a solution
for data transformation issues, supporting over 275 different data formats (Stoter et. al,
2013). It supports transformation between formats and coordinate systems and also
transforms data models and schemas.

Several commercial software for UML modelling such as Visual
Paradigm (VP-UML), Enterprise Architect (EA), and Microsoft Visio are available.
Andrade et al. (2013) developed a complete workflow from conceptual and abstract
model to a relational database using VP-UML. They stated that the choice of the VP-
UML resides in its capability to execute the whole modelling process, from the
construction of the UML diagram until its implementation in a database. The choice of

Microsoft Visio was implemented by the Swesurvey member during the project on

39

implementation of the 2D cadastral database in NLCS, Bhutan. Hespanha (2012)
presented the specification of UML in a relational database, where all the original
modeling was done in EA and exported to Eclipse UML for further processing. In
addition, EA is widely used in the world of UML modeling. A variety of CityGML
ADEs was modelled using the EA tools in various fields such as property taxation
(Cagdas, 2013), management of indoor facilities (Kim, Kang, and Lee, 2013), utility
networks, noise modelling, solar potential, energy efficiency of buildings as well as
national implementations in the Netherlands (van den Brink, Stoter, and Zlatanova,
2012), Germany or Bahrain. Therefore, EA is chosen as a tool to develop UML model
of CityGML-ADE:s in this study, as well as its realization of relational database.

Based on the above finding and its availability, the following tools
which are used to fulfill the objectives of the research are here again summarized.

(1) SketchUp: Trimble SketchUp 2015 is used mainly for editing and
modeling of 3D objects. SketchUp offers a module called Ruby, which is object-
oriented programming language, where plug-in, can be programmed to automate some
functions of 3D modelling.

(2) Feature Manipulation Engine (FME): The conversion tool FME
of Safe Software Inc. is used to convert the 3D SketchUp model into CityGML model,
which is finally loaded in the database maintained in MS SQL Server.

(3) Enterprise Architect (EA): Enterprise Architect version 12.0 of
SPARX Systems is used as a UML CASE tool to create conceptual and logical models
of CityGML-LADM ADE in the form of class diagrams. The UML model is converted

to DDL format to realize a relational DBMS in MS SQL Server.

40

(4) ShapeChange: ShapeChange is a free Java tool that can construct
application schema according to I1SO 19109 standard from a UML model
(Shapechange, 2015). A UML model stored in an EA project (EAP file) can be directly
processed by ShapeChange using the Java API of EA.

(5) ArcGIS: ESRI ArcGIS Version 9.2 is used to edit the existing data
and to add the height of the buildings. It is also used to edit the elevation of the building
footprint. Here, the elevation of the existing data is based on the Geoid 1980, which is
commonly called the mean sea level (MSL) height.

(6) XMLSpy: Altova XMLSpy 2016 is XML editor for modeling,
editing, transforming, and debugging XML-related technologies. It offers graphical
schema designer, a code generator, file converters, debuggers, profilers, full database
integration and supports for XSLT, XPath, XQuery, WSDL, SOAP, XBRL, JSON, and
Office Open XML (OOXML), plus Visual Studio and Eclipse integration, and more.

(7) Viewer: Many viewers for 3D model are freely available including
3DGML3 3D viewer application from Aristoteles, LandXPlorer CityGML Viewer
2009 developed by the company Autodesk, and CityGML and IFC viewer application
FZK Viewer. In this study, IFC viewer application FZK Viewer is used for visualizing

and testing the 3D model.

3.1.3 Analysis of existing system
The cadastral system of Bhutan is a parcel-based land information

system, governed by NLCS. It comprises a land registration system and a cadastral

41

registration as key components to house the legal information and physical properties
of land parcel respectively. In year 2008, under the Royal Command, NLCS carried out
nationwide cadastral resurvey with the latest technologies (such as GPS, Total Station).
During the resurvey the details such as parcel boundary, road, building, river, utility,
etc. were surveyed and the final data were uploaded in the cadastral database
maintained in MS SQL Server. The cadastral database contains the coordinates (plane
and height) of each and every point of the parcel along with other topographical
information, whereas registry database stores legal information like details of
landowner, land type, area, mortgage information, etc. in the form of table. A brief
description about the two databases is highlighted below.

A combined Topo and Cadastral Spatial Database exist in NLCS for the
management, dissemination, and archiving the geospatial data in the country. The
feature list contained in the data model represents all topographic data and cadastral
data. All data are stored in ArcGIS geodatabases in geographic coordinates in
DrukRef03, the new reference system of Bhutan. The combined model is divided into
sub-models, which are the datasets in the final geodatabase (Table 3.1). Among the nine
datasets (sub models) of NLCS data model, the relevant dataset ‘Building model’ is
shown in the Figure 3.2. It consists of different type of buildings such as institutional,
private, religious, industrial, and community. The class names are suffixed with
alphabets “P”, “L”, “P”, and “T” to differentiate details as point, line, polygon, and text
respectively.

Table 3.1 Content of Cadastral data model of Bhutan (Swedesurvey AB, 2003).

Model name Content

Pol & Adm Boundary Model All types of boundaries plus plot polygons.

Buildings Model
Control Model
Hydrography Model

Land cover Model

Quality Model

Terrain Model

Transportation Model

Utilities Model

42

All kinds of community, private, religious, and industrial buildings.

Plane and height control points.

River, lakes, glaciers, and manmade things like channels.

The main Land cover areas like forest, food crops, recreation etc.

An abstract class to group quality attributes to be inherited from

other models.

Contour lines and other types of terrain lines and points.

Roads, paths, ropeways, airports and symbols to these.

Electrical, water, sewage and telecommunication lines and points.

«CodedVaueDoman

«CodedValueDomains

[FFieType - esiFieidType = esiiF eI ypelrioger
+MergePolcy - esMergePdicyType = esrMPT DefauitValue
|SpiPocy exSptPloTipe = es?

FFdType- e ilype = esPeiTyper
cy estlerePicyType = b Defaulabe

‘Splli'oiv.y esSitPoyType = esrSPTDelakNake

BHU : <unspecit

-Out Reach Cinic <umm> 3

School : <unspecified> =

RAR : cunspecified> = §

Geog Center - cunspecifed> =6

|PublcinfoCenter : <unspecified> = 7
b =8

Bank : <unspeciied> = 10
LPoice Staton : <unspecified> = 11
Market - <unspecifiet> = 12
|Crematorum: <unspecified> = 13
[Watch Tower : <unspecified> = 14
[Vilage : <unspecified> = 15

«CodedValueDomaine
DOBuldingLineType

FFeiiTipe esailype = esdl pelteger.
esrMergePaicyType = esrMPTDelault/abve
Sohoicy esiSptPoicType = e TDefaitVabe

«CodedValueDomains

«CodedValueDomains

FFieldType : esF el Type = esiFedTypeint
+SpitPolicy ssuwwrgw = esiSPTDefaultVae
e : <unspecifed> = 2

[Quary: e =3
Ot <unspedtied> = 999

teger
MergePolcy - esriMergePalcyType = esrMPT DefauitValue

“FType euFeliType = esF eklType
oy - esriMergePaicyType = wuﬁwauwm

+SpitPoicy e-soupmyrype esrSPTDefal
-Unknown

-Dzong qmpearm r
Lhakhang : <unspecified> = 2
-AnimGoandey : <unspecfied> = 3
-Chorten : <unspecified> = 4
-Onbdey : <unspecified> = 5

«CodedValueDomaine

cFeijypt eyleﬂype wrasrypesmew

|-OriginalProduct : DOOriginal Product = 0

Building
Tame estFeigTypesting

Spitoicy wnPdlcyType - exriSPTDefaitVabe
Unknown : <unspecified:

MajorTown qmwﬁab

SmalerTown <mmﬁm> 2

PartOfTown : <unspecfied> =3

Mani: <unspes

Nye : <unspecifed> =
HinduTemple <msmﬁed> 8
-Dangrm : <unspecified> = 9
Other : cunspeced> = 999

UPT Defaulty abe

un =0
BuldinglD : esriFieldTypeString

Sngletouse : <unspecfied> = 4 BaidingT
;‘n:m‘;;:wmgw 5 {Nias = BuldngText,
HasM = False,
HasZ = Troe)
rexiType : DOBulding TextType =0
-r-smng estFieldT
|-TextAngle : esriFikiTypeDouble = 0
|-FCode

[BuldngType DOCommunityBuldngType = 0
1

‘CommunityBuildingP
{Aias = CommuniyBuidngPont,
GeometyType = esriGeometnyPoit,

HasM = Faise,
HasZ = Tru

[SymboiAngie esiiFieldTypeDouble = 0
(e exFelpestrg=ABl0 |

{Aias = CommunityBuiding {Alas = PrivateBuiking. M% iousBulding,
Geometry Type = esriGeometryPolygon, Geometry Type = esriGeometryPolygon, Geometry Type = X
HasM = Faise, HasM = Faise, HasM = Fase,
. HasZ = True} 1 HasZ = True} . HasZ = True)
ype integer = > lype : Infeger =1 elds lype
F Code -flﬁ‘lm AL820 F Code ; esriFieldT) = ALB22 FCode ; esriFieldT) = ALB24
| [BuldngSubType esrFeTypelnieger = 1 | [BidingsuibType esFieldTypeintoger = 1 | [BuldngsubType. esrFildTypelnieger =1
|- Code : esriFieldT ypeString = ALE20 |FCode : esrFiekdTypeString = ALB22 -FCode : esFeldTypeString = ALB24
ReligousBuilding
[BuldngSubType : esri ek Typeinieger = 2 [BuldingSubType annldTywlnm 2 BuldngSubType : esriFkiTypelniager = 2
-FCode : esrFieldTypeString = ALB21 -FCode : esrFiekdTypeString = ALB: -FCode : esrFieidTypeString = ALB25

— =2
-FCode : estiFieldTypeString = ACB21

-FCode : esriFieidTypeStrng = ACB2)

Figure 3.2 Content of Building Model of Bhutan (Swedesurvey AB, 2003).
All features defined in the cadastral database are assigned a feature code

to avoid input of different code for the same object. A code list simplifies a data input

43

as well as give a definition of the features. An extract of NLCS Feature Code is shown

in Table 3.2.

Table 3.2 NLCS feature code for Building Model.

SI. No Layers/Group Description Code
Fence FENCE
1 BuildingL Concrete Wall WALL
Gate GATE
Building/House BLDG
2 PrivateBuildingA Ruin House RUINH
Hut HUT
Animal Shed SHED
Government Quarters GQTR
3 PublicBuildingA Government Institutes GINST
Government Hospitals HOSP
Government Office GOFF
Chorten CHTN
Dangrim DANR
4 ReligiousBuildingA LhakiiRng LHAK
Dzong DZNG
Religious Institute RINST
Hindu Temple TMPL

Land registry database mainly contains the information of the

landowners, land parcel and rights, responsibilities, and restrictions related to it. The

database consists of tables such as Thram (registry), Plot, District, etc. associated with

each other through the use of primary key (PK) and foreign key (FK) pairs. The main

link between the landowner and land parcel within the registry database is a registration

number, which is a numeric character generated uniquely within a sub-district. The

database has the capacity to record history on the registry and also on the parcel. A land

registration interface was developed in Microsoft Access to automate the land

registration process and further a browser interface was developed which integrated the

44

map and registration data for viewing purposes. Figure 3.3 shows an example of title

certificate issue in A4 format by NLCS to individual owner.

e =i =51
= o e R
Eﬁl? U R AG| g, LIF
ﬂ .gfu'w:«rara'gq'&:w, = E
B\ o 90 AR -,
P, &
o 4 el b 4
Thromde: Thimphu LandowheénDékifile Certificate Permanent Address
Thram No. Name: Dzongkhag:
Ownership Type: "Individual Person” CID: Gewog/Thromde:
Co-owners Thram No.
House No:
Unique HH No:
Urban Village Location Precinct PlotNo. Registered Land NetArea Strata Origin of Remarks
Area (sq.ft) Pooling (sq.ft) Rights Land
(%)
Langjophakha Langjophakha Urban Village Periphery Sub LJ1-234 4,000 N/A 4,000 Substitute
GL Il (UV2-11)

5 it lainaia e g
E-I gE FE |-r7_|
i i
(B SE1EE]

EF A0 207K

ROYAL GOVERNMENT OF BHUTAN
NATIONAL LAND COMMISSION
Cadastral Map

ale: 1

&
AN

Plot Co-ordinates
et 24

Plane Control Point

P5 Pant
Rsp

Tog Pore

(b)

(©)

Figure 3.3 An example of title certificate issued: (a) Certificate, (b) Map, and (c)

Legend.

A unique Plot Id Number (PIN) serves as the functional linkage between

the cadastral map and the registry database. It is maintained in the cadastral map to

45

define a plot anywhere in the country. The same unique PIN is also maintained in the
registry database. A unique parcel identifier is adopted for every sub-district, which is
composed of alpha characters that abbreviates name of the sub-district and a running
numeric character which is unique within every sub-district for rural areas (e.g. MEW-
1012). For the cities, the following unique identification is adopted: (1) For cities, the
PIN is composed of two letters followed by one number that that abbreviates the block
in the city and a running numeric character which is unique within that block (e.g. UV1-
100 or UV11-100), and (2) for core areas, the PIN is composed of the word CORE that
abbreviates the city kernel and running numeric character which is unique within that
kernel (e.g. CORE-5 or CORE-15).
3.1.4 Requirement and specification of new 3D LIS

The requirement of the new 3D system is to realize the problem of
registration and maintenance of the physical data of apartment. Based on the definition
of requirement, the specification of the new system is firstly formulated. The required
specifications of the database is then compared with the chosen model LADM and
CityGML to define classes, attributes, relationship, and constraint needed to model the
building database.

Similar to the 2D cadastre, 3D cadastre defines the 3D legal space
occupied by the buildings and its corresponding 3D physical space. Literature review
shows that LADM can support both 2D and 3D representation of cadastral objects, but
only the legal space. As mentioned before, LADM requires an external class to store
the physical data. This external class can be realized using the modules of the CityGML.
Go6zdz at el. (2014) confirmed that CityGML module can be adapted to land

administration domain, particularly for supporting the spatial concepts required for

46

cadastral systems. However, it does not contain any features describing the legal
information about spatial objects. Therefore, the classes of the LADM, which support
the storage of legal space of a 3D property was combined with the classes of CityGML,
which covers the physical concept.

The next step is to define the various cadastral objects needed to define
legal aspect of 3D registration. Zulkifli et al. (2014) defined the cadastral objects
included in the Malaysian LADM country profile as building and building parts (all in
3D within a single lot), land parcel (with house no more than 4 floors within a single
lot), which can be refined with parcel unit, accessory unit, and (limited) common
property unit including support for provisional and multilayer/underground aspects

(Figure 3.4).

., Accessaries

Parcel =
unit

Lot
< (alienated land)

S Land
parcel

Figure 3.4 Various cadastral objects related to strata titles in Malaysia (Zulkifli et al.,
2014).
The legal aspect of the 3D registration of Malaysia is here mentioned to

give some idea about cadastral objects. Bhutan does not have a legal document to

47

clearly define the various cadastral objects. Therefore, based on the literature review
and from common observation in strata development in Bhutan, the following cadastral
objects are defined: (1) building, (2) apartment unit, (3) common areas (such as
staircase, parking area, and roof), and (4) accessory unit (such as garage, storeroom).

Figure 3.5 shows an example of drawing in strata tile.

Individual property . Part of
—) -
' ™ Strabum 1

m\ !
S : o
Part of irst Floor Plan
Stratum 2
\\

\\'x_x Part of
/,../ Stratum 1
el + Building
> ' Ground Floor Plan
/cpk‘u on praperty :
Parcel: owned by strata lot tarporation” - Part of

N Stratum 2

Figure 3.5 Example of drawing in strata title (Stoter, 2012).

Various building components are required to define the legal aspect
related with a building. Chiang (2012) defined ten building components to describe the
cadastral building model of Taiwan based on the building components in the CityGML

2 (13

standard, including “3D building”, “3D floor”, “layer (room/unit)”, “wall”, “door”,
“window”, “eaves”, “balcony”, “stairs and elevator”, and “column” as shown in Figure
3.6. Similarly, these components can be considered to define the both the legal and

physical properties of a building in Bhutan. However, the component such as eaves,

which is not common in Bhutanese architecture, can be rejected. Additionally

48

components floor and column are not considered based on the priority for this study.
Instead the floor can be added as an attribute to component layer. Based on finalized
specification, the various building components is constructed in SketchUp as well as

added in the CityGML ADE to be realized into database.

Elevator Layer

Floor e — Column

Door 3 Window

Eaves - Balcony

Figure 3.6 lllustration of main components of cadastral building model (Chiang, 2012).

Another aspect of 3D cadastre to be considered is the definition of the
boundary of the 3D properties. From legal point of view, when 3D properties contain
building boundaries, the location of those boundaries must be defined by stating
whether those boundaries lie along the “Interior face”, “Exterior face” or the “Median”
of the relevant physical structure (Aien et al., 2013). For example in Victoria, Australia,

definition of interior face often lies along the interior face of any wall, floor (upper

49

surface of elevated floor if any), ceiling (underside of suspended ceiling if any),
window, door or balustrade of the relevant part of the building (Figure 3.7). Selecting
the interior face as the parcel boundary generally means the structure of the relevant
wall, floor, and ceilings is to be contained in common property. The other option can
be the selection of exterior face of the building component as the legal boundary of a

property, which means the legal space of a building is equal to its physical space.

Lot3 ,j'f“‘wwmdow

Intericor face of ; First § First Storey
cladding ie: plaster i Figst SQrey 3 Interior
Wl face |
Common 7 5""’1 E Common l
Property Na.1 ' | Property No.1
Lower face of /’ o Window I

suspanded cailing

Lot1

Ground Storey Ground Storey 1 Interiar

Interior face of face —™

cladding ia: plaster d Wall
______ IAN |
Upper facg of -~ ——~~~—~ | I
elevated floorf 7/ L L
flaorboards

Foundations

Figure 3.7 Illustration of the definition of interior face in example of Victoria, Australia
(physical view) (left) and its representation in the subdivision plans (legal view) without
depicting the structure (Aien et al., 2013).

The definition of boundary of 3D property (ownership space)
should be supported by the legal policy of that country. Presently Bhutan
does not have legal documentation to support this definition. However, for
this study interior faces of an apartment as defined in the above example of

Victoria, Australia is here considered as legal boundary.

50

3.2 Design component

Design component is divided into two parts: 3D data construction, and UML
modelling of CityGML ADE. The two design works are elaborated in the following
section.

3.2.1 Construction of 3D data

The workflow for the construction of 3D building model is shown in
Figure 3.8. The building footprint and floor plan is used as an input for the construction
of 3D building model in SketchUp software manually. This software supports dxf and
kml format, therefore the building footprint in shapefile is firstly converted into dxf
format using ESRI ArcMap software and then floor plan is directly imported to
SketchUp. The process is divided into three steps:

(1) Firstly, the floor plan is georeferenced with the building footprint.

(2) Secondly, the georeferenced floor plan is modified with the
measurement details mentioned on the floor plan to specify the details such as walls,
floor, ceiling, window, door, etc.

(3) Finally, the different features of the modified building are assigned
to its specific layers.

(4) The final Sketchup model is translated to CityGML model using

FME.

51

' INPUT '
o R B e S B R [Bl e S e R e B SR B R R S B SR B e FR S B s By
I » Import to SketchUp

v

Build the 3D building model with the measurement details of floor plan
|}
]
]

v

Assign the different features of 3D building model to its respective layers

* METHOD Geo-reference the floor plan with the coordinated building footprint

Figure 3.8 Workflow for the construction of 3D data.

3.2.2 UML modelling of CityGML ADE

The focus of this section is to realize a CityGML ADE for the 3D
cadastre in Bhutan. Since CityGML is extended for cadastre in this study, henceforth
CityGML ADE is declared as Cadastre ADE.

CityGML version 2.0.0 realized in year 2012 freely available in the
website http://www.citygml.org is used in the study. CityGML consists of one core
module and thirteen thematic extension modules. However, the study does not require
all the extension modules to be included in the ADE. Herewith, only the core and
building module of CityGML are used and extended with the required additional
classes. CityGML building module has the feature classes to represent room, building

furniture, boundary surface, and opening in indoor space. However, it lacks the classes

52

which define the legal aspect of 3D properties needed in cadastre. So a conceptual
model is realized supporting the description of both legal and physical space of
buildings.

Cadastre ADE is modelled using an UML class diagram which is one of
the most used modelling languages by standardization bodies dealing with Geo-
informatics (van den Brink et al., 2013). CityGML specification does not provide rules
or guidance to model an ADE using UML (van der Brink et al., 2012). Therefore, the
approach adopted by the van der Brink et al. (2013) in the paper “UML-based approach
to developing a CityGML Application Domain Extension” is here used to extend the
application of CityGML for 3D cadastre. This practice is also later adopted by OGC as
the best practice for modelling an ADE of CityGML in UML. Figure 3.9 shows an

example of CityGML-IMGeo ADE of the Netherlands.

class BGT - overzicnt
(DataPoint) _Feature
> OtyGmL Core:: L] (IMGeo-Object)
L CityObject _Cityobject
12 ?

Transport

portation:
_TransportationObject

Vegetation: B
VegetationObject oLy LandUse:LandUse
o _WaterObjec

Building
_AbstractBuilding | | _AbstractTunnel

(Wegdeel)
TrafficArea
(Overbruggingsdeel)
BridgeConstructionElement

(OndersteunendWegdeel)
Auxiliary TrafficArea

(Tunneideel)
TunnelPart

(WaterPart)
Waterdeel

(AuxiliaryWaterPart)

OndersteunendWaterdeel

Figure 3.9 An overview of CityGML-IMGeo ADE (van den Brink et al., 2013).

53

Steps for generating the Cadastre ADE schema are as follows:

(1) Since CityGML is only available as XML schema from OGC, UML
model has to be recreated in the modelling tool Enterprise Architect, based on OGC
(2012). However, the UML model of the CityGML is available in the website
https://github.com/opengeospatial/CityGML-3.0/tree/master/Model and is collected.

(2) Conceptual mapping is performed between required classes of this
research and CityGML classes to identify the corresponding classes. This process lists
all the correspondences, mainly in the class level.

(3) Decide which subclasses to be extended. There are two types of
correspondence. Either the class is semantically the same as the corresponding
CityGML class, and only adds properties, or the class is semantically a subclass of the
corresponding CityGML class. In the first case, the classes get the same name as the
CityGML class they is extended with stereotype <<ADEElements>>.

(4) Definition of code lists of Bhutan. The code lists is maintained in the
UML model and generated as XML structured code lists using ShapeChange tool,
which allows generation of SKOS-encoded code lists with stereotype <<code list>>.

(5) Finally, the XML Schema (GML application schema) is generated
from the ADE defined in UML using the Java tool ShapeChange.

The above procedures only define the schema for exchange and storage of 3D data.
This schema needs to be transformed to a database structure to be able to store the huge
amount of data generated through the 3D data construction. This matter is elaborate

more in the next component.

54

3.3 Implementation component

Implementation component of this research consist of the two parts: data
exchange format and specification of relational database, which are explained
separately in the following sections.

3.3.1 Data exchange format

A data exchange format is needed for storage and exchange of data
between systems or when sharing data between agencies. There are some data transfer
standards available in the market such as LandXML, BIM, CityGML, etc. However,
instead of using these standards, a data exchange format is here generated as XML
schema, which has been explained in last part of previous Section 3.2.2.

3.3.2 Specification of relational database

This section explains the design and specification of realization of a
relational database. Basically it is mapping of the UML model into a relational database
where the classes, attributes, and relationship that exist in the UML model is realized
in the form of tables, columns, and cardinality in the chosen relational database. In this
research, the relational database is realized in MS SQL Server 2008.

During the process, many design decision has to be taken to develop the
database schema. A class in the UML model normally corresponds to table with same
name in the database model. Additionally, there are also views, tables for code lists,
and additional tables for representing relationships in case of a many-to-many relation
between two classes. There are various types of relationships to define relation between
tables in a database such as association, inheritance, and aggregation. Sparks (2015)
stated that inheritance is the most problematic relationship to define in a relational

database and there are three ways to handle it in a database: (1) defining each class

55

hierarchy as a single table, (2) defining each class as table (including inherited
attributes), and (3) defining each class in a hierarchy as table containing only its
attributes. Another point of attention is defining a proper Primary Keys (PK), Foreign
Keys (FK) and indices (usually a B-tree) in order to implement relationships between
objects in an effective manner.

Since EA supports comprehensive functionality for modeling database
structures (Sparx Systems, 2011), all the modelling phase from the conceptual model
to the DBMS realization is done in EA. This section is continuity to the Section 3.2.2,
whereby the defined class model is used as an input to realize a DBMS. The class model
resulted from Section 3.2.2 is converted to physical model in EA. In the final step, the

SQL script is generated and loaded into the DBMS (Sparx Systems, 2011).

3.4 Testing component

Some samples of 3D building model are constructed to test the data transfer
format and the 3D geodatabase. To test the designed data model, the implementation
for the Cadastre ADE is checked in following two ways as suggested by Kim et al.
(2013):

(1) Validations of the XML schema file (Section 3.3.1) using XMLSpy.

(2) Verification of expressiveness and correctness of sample data by
visualization software. Herein, FZK Viewer is used to visualize the developed 3D

building data.

http://www.sparxsystems.com/
http://www.sparxsystems.com/

CHAPTER IV

RESULTS AND DISCUSSIONS

Main results of the research included (1) specification of new 3D building
database; (2) construction of 3D building model; (3) UML modeling of CityGML
ADE for 3D cadastre; (4) data exchange format development; (5) building database;

and (6) testing are reported in following sections.

4.1 Specification of new 3D building database

This section studies the classes of CityGML which defines physical properties
of a building and identifies those additional properties required to define legal space
of a building. CityGML building module has the feature models to represent room,
building furniture, boundary surface, and opening. However, the existing model needs
to include detailed feature classes to represent the characteristics of 3D cadastre.
Therefore, the question “what are the properties or attributes that could be added in
order to have all legal details into the class?”” need to be answered (Dsilva, 2009).

The finalized additional properties for 3D cadastre representation were added
to CityGML either as a class or as attributes to an existing class. These two methods
of extension of CityGML are briefly explained below.

4.1.1 New attribute definition

Dsilva (2009) described the properties that are needed to describe legal

information in a building as building owners, the building registration number or the

57

building number, the parcel number of the parcel to which the building belongs to,
and the type of the building. Though all the mentioned properties are necessary to add
legal information in CityGML, here only building number, which can link a physical
building to an owner, was added along with the parcel number on which the building
stands. The other properties such as building owners and building registration number
were found unnecessary to be added. These attributes can be defined in the registry
system, which is the normal practice followed by NLCS of Bhutan. The attributes
building number was defined with attribute name “buildingNo” and parcel number as
“plotN0”, both as a string datatype. These attributes were added to AbstractBuilding
class of CityGML with stereotype “<ADEElement>", which suppress the class from
generating an instance in the XML schema of Cadastre ADE.

More attributes such as roomID and buildingInstID was assigned to the
class Room and Buildinglnstallation respectively to define a unique identifier.
Through this identifier the physical objects defined in the above two classes was
linked to its corresponding legal components.

4.1.2 New class definition
Table 4.1 shows the new classes added to CityGML to define the legal

properties of and related to a building.

Table 4.1 List of new feature classes defined in CityGML.

SuperClass Class Subclass Remarks

LegalSpaceBuilding
» Legal space of a

ApartmentUnit building,
SpatialUnit LegalSpaceBuildingUnit
AccessoryUnit » Defined as subclasses
of CityObject class

CommonPropertyUnit

58

New feature classes listed in the above table were added to CityGML
building model. Apartment class defines a volume representing the legal space within
a building. The common property class identifies the structures within a building
belonging to all the registered apartment owners. Whereas the accessory unit class
defines the structures which are not attached to the building, but belong to an
individual or a group of apartment owners. The concept of classes SpatialUnit and
LegalSpaceBuildingUnit were borrowed from the ISO standard LADM. As
mentioned in the literature review SpatialUnit class defines all the legal 2D and 3D
properties such as building, land parcel, utilities, tunnel, and etc., while its subclass
LegalSpaceBuildingUnit outlines all the legal spaces related to building.

The graphical composition of the new classes and attributes added to

the CityGML building model is illustrated and explained in the Section 4.3.

4.2 Construction of 3D building model

This section describes the result of construction of 3D building model. 3D data
construction consists of two phases included 3D building modeling in SketchUp and
its translation to CityGML format. The results from these two phases were graphically
illustrated and explained separately in the following subsections.

4.2.1 Modeling of 3D building in SketchUp

Figure 4.1 displays the input: building blueprint (CAD) and building
footprint (.gdb) used for construction 3D building model in Trimble SketchUp.
Building footprint provided the georeferenced position of the building with
coordinated building corners, whereas building blueprint specifies the detailed

measurement of the building structures.

59

| Plot

B

Building

(a) (b)
Figure 4.1 Example of the input data: (a) blueprint of building floor plan (CAD) and

(b) the building footprint from cadastral data (.gdb).

The result from the first phase of data construction in SketchUp is
displayed in Figure 4.2. It consists of a 3D building model with its details segregated
as different layers. The window layer on 2" and 3™ floor was turned off to display the
inner view of the building model. This segregation into different layers helps in

translating individual component of a building to its respective classes in CityGML.

60

DetautTay a
v Layers x
®06 -4
Name Vaun Color | A
O Layerd %]

i @

Figure 4.2 Example of output of 3D data construction as 3D building model (.skp)
under Trimble SketchUp.

Here it was found that Trimble SketchUp software can efficiently
construct 3D building model with its specific details. However, it is a time consuming
task and work becomes more tedious with increase in the details. Therefore, the
decision on the detailing should be decided in advance before starting 3D building
construction.

4.2.2 Translation of SketchUp to CityGML in FME

This section explains the result of the translation of layers in SketchUp
to its respective classes in the CityGML. Thematic model prepared in Trimble
SketchUp was transformed into CityGML using FME. SketchUp to CityGML
conversion with SketchUp Reader and CityGML Writer was developed using
sequence of built-in FME transformer tools for ten LOD1 and one LOD4 buildings.

The FME workbench containing SketchUp reader, CityGML writer

and transformers is shown in Figure 4.3. This translation consist of two input

61

SketchUp files: one file with ten building footprints and another with a 3D building
model (Figure 4.2). The input building footprints were extruded with the height of the
building to create LOD1 building models. For the second input, individual layers
defined in the SketchUp were translated into its respective feature classes such as
RoofSurface, WallSurface, GroundSurface, InteriorWallSurface, Buildinglnstallation,
Window and Door with Building as its parent feature class. The workflow of main
process and individual feature class translation are separately illustrated in Figures 4.4

—4.13 for clearer understanding.

Figure 4.3 Overall SketchUp to CityGML translation diagram using FME.

—_——— o e

Figure 4.4 Workflow of SketchUp data preparation before writing into CityGML
classes.

AttributeCreator Parameters
Transformer
Transformer Name:
1> Advanced: Attribute Value Handiing
Attributes To Set
Attribute Name Value A
@ gml_name | Wangda-House v
to e
L]

Figure 4.5 Translation of LOD4 building.

(@ Extrusion of building footprint with height of the building

® Extruder Parameters “

~

[

e —

Transformer Name:

Parameters

Extrusion Height: | €1 storeyHeightaboveGround | [+]

Hep || Defauts v| [ok || cancel L

[y

[

R S

——

QN7

~N

N

64

Figure 4.7 Translation of room.

65

R e e e e e

k AttributeCreator Parameters | < |

Transformer
Transformer Name: | FCET e r1os

1> Advanced: Attribute Value Handling

Attributes To Set
Attribute Name Value
b o= a e oxw | Dwicate |

T

> Calingsuface THF)

Figure 4.8 Translation of ceiling surface.

ViRAAAARRY

Figure 4.9 Translation of floor surface.

66

Figure 4.11 Translation of exterior wall surface.

Figure 4.12 Translation of doors.

67

@ Windows
BT 7 -

bflwlw k\\4 b Quput

pRiwze p—— 1 00T AtirbuteCreator_52:;

i it =
e e o

| P Output s

FeatureMenger 2)]

)
Supgier
»Merged
b NotMerged r\

g | »{AttmbuteCreator_12(5) 4

¥ Referenced
bUnefeenced [>
DuplcateSupplier [

63
P)
o

Transformer Nome: |

AttributeCreator Parameters

Transformer

Advanced: Attribute Value Handing
Attrbutes To Set

Attribute Name Value

| gmipaentid | fiww0]
@ join g1 v
+ -« v = x Dupicate

Help oK Cancel

Figure 4.13 Translation of windows.

Basically FME SketchUp reader reads skp file as a single piece,
therefore using Deaggregator tool SketchUp model was breakup into its multiple
geometries. These geometries were assigned with universal unique identifier
generated by the UUIDGenerator tool. FME reads SketchUp layers as traits in the
geometry rather than as an attribute. The tool GeometryPropertyExtractor extracts
those traits to feature attributes. The extracted attributes need to be exposed to be used
by other transformers later, so it was exposed using AttributeExposer tool. Hereafter
the individual SketchUp layers were translated to its respective feature classes of
CityGML building model.

The feature classes of CityGML form a hierarchy structure, which
need to be maintained during the structuring of the translation. The hierarchy tree of a

building starts with building at the top bounded by different thematic surfaces. The

68

parent identifier of thematic surfaces belonging to a building was assigned the same
value as the identifier value assigned to that building. Opening features falls at the
base of the tree and it is attached to a thematic surface rather than to building. A copy
of the thematic surface to which the opening belongs was passed to AttributeCreater
transformer with attributes join and parent identifier having value 1 and identifier of
the thematic class respectively. The same fake join identifier was created in the
opening class to join it to its parent thematic surface. FeatureMerger merges the
opening to its parent thematic class maintaining the hierarchy.

The output from this translation is a GML file, which can be stored or
exchanged among the user communities. The translation log file showing the

summery of features read and written is shown in the Figure 4.14.

Translation Log

Features Read Summary
building footprint 1
georeferenced building footprint merged with 3D model 1

L]

Total Features Read

Features Written Summary

[

Building
BuildingInstallation
CeilingSurface
ClosureSurface

Deoor

=N

FloorSurface
GroundSurface
InteriorWallSurface
ReoofSurface

Room

-1

WM OoOMNDFEORNOO WD

(]

WallSurface
Window

R

-
o0
n

Total Features Written

Translation was SUCCESSFUL with 4 warning(s) (462 feature(s) ocutput)
FME Session Duration: 14.1 seconds. (CPU: 11.5s user, 1.5s system)

END - ProcessID: €276, peak process memory usage: 145076 kB, current process memory usage: 138132 kB
Translation was SUCCESSFUL

Figure 4.14 FME translation log file.

69

Figure 4.15 shows the eleven buildings resulted from skp2citygml
translation in FME Data Inspector with total number of features created under

individual CityGML classes.

Figure 4.15 Output of the FME translation in FME Data Inspector.

As results it revealed that when the detail of building increases, the
workflow of translation in FME becomes complex, especially when we have to
maintain hierarchical characteristic of a building. For example room is a part of
building and it composes of ceiling, floor, and interior wall. While finalizing this
output, many other difficulties were observed too. This study requires designing
CityGML ADE which is supposed to hold the legal information of a building and it
need to be fed with data in this translation. Though FME provides mechanism to
attach ADE for writing the input data, but it does not document the process.

At the initial stage of research, while running the translation, the
process was continuously running without any result. This problem was shared to the
support team of FME and it was finally solved. The problem occurred due to the

presence of two versions of GML in the CityGML ADE. While CityGML 2.0 was

70

defined based on GML 3.1.1 and ADE was created with GML 3.2.1. This mixture of

GML 3.1.1 and 3.2.1 in ADE file is not supported by FME.

4.3 UML model of CityGML ADE for 3D Cadastre

The new properties defined in section 4.1 were integrated to the CityGML
Building model. These classes provide the reference to understand the location and
size of the legal objects. It represents features which defines the characteristics and
properties of 3D cadastre for building.

Figure 4.16 shows the UML class diagram of CityGML ADE for 3D Cadastre.
The classes of CityGML and the new classes of ADE were highlighted as are colored
yellow and pink. Codelists were defined for the class common property and accessory
unit as well as for the attribute floor number (shown as blue color in Figure 4.5).
Codelist definition provides a mechanism to defines some predefined attributes for
classes based on NLCS requirement.

The classes defining the legal information of a building were added as
subclass of abstract class LegalSpaceBuildingUnit, which is itself a subclass of
abstract superclass SpatialUnit. Theses abstract classes from the 1SO standard LADM
were defined as subclass to the abstract root class CityObject of CityGML. The
abstract class SpatialUnit was defined here to extend the scope of all the 3D legal
properties such as building, utilities, tunnels, hydropower, etc. However, in this study
only the building part was introduced, therefore, the abstract class
LegalSpaceBuildingUnit was included to cater all the aspect of 3D legal properties
defined by a building. The other 3D properties can be added later as subclasses of

SpatialUnit when required.

71

As shown in the UML diagram, this ADE does not define geometry for 3D
legal objects; rather it provides legal information and a link to the geometry. The
geometry was stored in the class room and building installation. Since class room
definition was not needed in this work, it was used to store the geometry of apartment
unit and common property unit and thereby reducing redundant geometry. Moreover,
FME does not provide documentation on citygml-feature-role definition which is

necessary to write geometries to CityGML ADE classes.

«CodeList»
+generalizesTo TR CommonPropertyUnitType
" : ; T
e 0.. CityGML_Core:AbstractCityObject + Balcony
CityGML_Core:| i e + Chimney
:AbstractSite = ExcernalRefer + Elevator
- ToTerrain [0..1 + Staircase
+ eT f0.11 + Roof
GeatieType - g AbstractGenericAtbute [0..7]
Building::Room Zr A tCodeTich
+ class: RoomClass [0..1] LegalPropertyType
+ function: Roor“nFunc(ionW [0.*] «Featu.reTyp.e' + ApartmentUnit
+ usage: RoomUsage [0..*] SpatialUnit c P Uni
+ loddSolid: GM_Solid [0..1] TR = # semmonbioperyUnic
+ lod4MultiSurface: GM_MukiSurface [0..1] - i e Unl
+ ~area: Area
tinteriorRoom '|* 0--* + volume: Volume R Godelists “Coter
1 Zﬁ BuildingType FloorNo
« rper « » + Concrete i
fcan'xrejl'.\pe ADEElement: - raomd +1sbUnitl «FeatureType» W i
Building:: Room LegalSpaceBuildingUnit|
AbstractBuilding BRI 1..* 0.* + Banglow + 3
+ roomID;CharacterString
+ Cottage + 4
0.% ? + Temporary + 5
+ Others + 6
+ UG
«ADEElement»
AbstractBuilding R T «RC‘,od‘f;.as(»
+ buildingNo: Ch String - = AccessoryUnit oL Iee
To: ' «FeatureType»
+ plotNo: CharacterString c,...mﬂpmp?::yunit + accType: AccessoryUnitType + Co'ncrete
+absBu | 1 TR | O + Shingle
+ cpuType: CommonPropertyUnitType acCint e + Metal roofing
+cpUnit2 | 0.1 +cpUnitl | 0.* S R
+legalBu | 0..1
6100 «FeatureType» «CodeList»
«FeatureType» +apUnitl apartmentUnit +apUnit2 AccessoryUnitType
LegalSpaceBuilding . tNo: C Stri
1.*[+ unitNo: CharacterString e + Garage
+ IsbID: CharacterString + roomCount: Integer S Sthreraon
+ floorNo: FloorNo
0.* | +outerBuildingInstallation Le end
«featureType» g
Building::Buildinglnstallation +bil | 1.* | CltyGM L Classes |
+ class: BuildingInstallationClass [0..1] «ADEElement»
+ function: BuildingInstallationFunction [0..*] e—o Buildinglnstallation
+ usage: BuildinglnstallationUsage [0..*] T s | New Feature classes |
+ lod3Geometry: GM_Object [0..1] i : 5
o : - Code list
+ lod2ImplicitRepresentation: core:ImplicitGeometry [!

0.1]
+ lod3ImplicitRepresentation: core:ImplicitGeometry [0..1]
+ lod4ImplicitRepresentation: core:ImplicitGeometry [0..1]

Figure 4.16 UML diagram of Cadastre ADE.

72

4.4 Data exchange format development

ShapeChange software was used to generate XML schema from the UML
model of Cadastre ADE. It is an open-source Java tool for generating schemas and
associated resources from a UML domain model. This tool read XML Interchange
Files (XMI 1.0) or Enterprise Architect Project (EAP) as an input model and create
one or more target representations such as XML Schema, JSON, RDF, KML, codelist
dictionaries, Schematron documents, and Feature catalogues. Figure 4.17 illustrates

the process of ShapeChange.

| ShapeChange

Execution options:

Target files _| " command line
LJ W * with or without dialog N \ UML model

|
) A .
7 * invoke from Enterprise
< .
p ‘M Architect
(30 . ¥
{ Log file Y, Requirements =/ Configuration fl
7 v Java 1.6
» other open source libraries,
e.g. Xerces-)

| » Enterprise Architect (for
processing .eap models)

Figure 4.17 Process of ShapeChange (shapechange, 2015).

The required input and output parameters are set in a configuration file. A
configuration file is an XML file, which conforms to a custom XML Schema

(ShapeChangeConfiguration.xsd). It forms the primary mechanism for providing

73

arguments to ShapeChange. The configuration file as shown in Figure 4.18 consists of
three functional elements namely:

(1) <input> element - Specify the location and format (xmi/eap) of the source
UML model; which application schema packages are to be converted.

(2) <log> element - Specify the name and destination location of the log file
and the logging level.

(3) <targets> element - Specify the destination locations, formats, encoding

rules and any additional mapping rules for each of the required outputs.
Based on the literature available in website (http://wiki.ieee-earth.org) entitled data
modeling needs & GML, the configuration file was setup for generating XML schema
definition in GML version 3.1.1 matching the definiton of CityGML version 2.0.0
used here.

Here the UML model was input to ShapeChange as EAP format as suggested
by Clemens Portele (personnel communication). ShapeChange tool was activated
through a batch file customized in EA and resulted in the log file and the target files
(Figure 4.19). The <targets> element was set to XML schema and codelist dictionary:
CadastreADE.xsd, AccessoryUnitType.xml, LegalPropertyType.xml, FloorNo.xml,
CommonPropertyUnitType.xml, RoofType.xml, and BuildingType.xml.

The generated XML Schema and codelists is shown in Appendix A.

http://wiki.ieee-earth.org/

74

<7xml version="1.0" encoding="UTF-8"?>
[<ShapeChangeConfiguration xmlns:xi="http://wiw.u3.0rg/2001/XInclude" xmins="http://www.interactive-instruments.de/ShapeChange/Confiquration/1.1" xmins:sc="
http: / /. interactive-instruments.de/ShapeChange/Confiquration/1.1" smlns:xsi="http: //wi.u3.0rq/2001/XMLSchena-instance" xsi:schemalocation="
http: //win. interactive-instrunents.de/ShapeChange/Confiquration/1.1 http://shapechange.net/resources/schena/ShapeChangeConfiguration. xsd">
H <input>
<!--Input Parameter-->
<parameter nane="inputModelType" value="EAT"/>
<parameter name="inputFile" value="E:\Master Programme\d. Fourth Term\Research Documents\Research Work\Analysis\UML Modelling\CityGML ADE.eap"/>
<parameter name="appSchemaName" value="CadastreADE"/>
<parameter nane="publicOnly" valus="true"/>
<parameter name="checkingConstraints" value="disabled"/>
<parameter name="sortedOutput" value="true"/>
<parameter name="addTaggedValues" value=""/>
<xi:include href="http://shapechange.net/resources/config/StandardAliases.ml"/>
</input>
g <log>
<parameter name="reportlevel" valus="INFO'/>
<parameter name="logFile" value="result.mml"/>
</1og>
B <targetsd
<!--Qutput Parameter-->
%] <Target¥nlSchena class="de.interactive instrunents.ShapeChange.Target.XmlSchena. XnlSchena" node="enabled">
18="C: /ShapeChange /output/CadastreADESchena" />
<targetParameter name="sortedOutput" value="true"/>
<targetParameter name="defaultEncodingRule" valus="cityqul-ade"/>
<xi:include href="http://shapechange.net/resources/config/StandardRules.ml"/>
<xi:include href="C:/ShapeChange/test/config/StandardNanespaces@ML311. xml"/>
<xi:include href="C:/ShapeChange/test/config/StandardMapEntries-v31.xml"/>
B <xmlNamespaces>
<¥nlNanespace nsabr="core" ns="http://www.opengis.net/cityqul/2.0" location="http://schenas.opengis.net/cityqnl/2.0/cityMiBase.xsd"/>
<¥nlNamespace nsabr="bldg" ns="http://wi.opengis.net/cityqnl /building/2.0" location="http://schemas.opengis.net/cityqnl /building/2.0/building.xsd"/>
{/xmlNanespaces>
{/Target¥nlSchena>
<!-- Codelist Dictionaries—->
H <Target class="de.interactive instrunents.ShapeChange.Target.Codelists.CodelistDictionaries" node="enabled">
<targetParameter name="outputDireetory" value="C:/ShapeChange/output/CadastreADESchema/codelist"/>
<targetParameter name="outputFilename" walue="CadastreADECodelist"/>
<targetParameter name="sortedoutput" vlue="true"/>

<targetParameter name="outputDirectory" val:

{targetParameter name="emmerations" value="false"/>
<[Target>
{[targetsy
*¢/ShapeChangeConfiquration>

Figure 4.18 Configuration file of ShapeChange in XML format.

75

ShapeChange result
Result: Conversion Completed
Start time: Wed Feb 10 23:29:56 ICT 2016
End time: Wed Feb 10 23:35:11 ICT 2016
Configuration file: C:\ShapeChang peChangeCc ion.xml
ShapeChange version: 201

Messages
G Debug | & Info | & Warning | & Error | & Fatal Error

Severity Message Source

Info Stereotype <<adeelement>> of class 'Building' is not an allowed value in encoding rule iso19136_2007" and is ignored.

Info Stereotype <<adeelement>> of class 'CityFurniture’ is not an allowed value in encoding rule 'iso19136_2007' and is ignored.

Info Stereotype <<adeelement>> of class 'Railway' is not an allowed value in encoding rule 'is019136_2007" and is ignored.

Info Stereotype <<adeelement>> of class 'Road' is not an allowed value in encoding rule 'iso19136_2007" and is ignored.

Info Application schema found, package name: 'CadastreADE', target namespace: 'file:///C:/ShapeChange/output/CadastreADESchema'

Info | (Converter java) Now processing target 'INPUT'

Info (Converter.java) Executed target class 'de.interactive_instruments.ShapeChange. Target. XmISchema.XmiSchema' for input ID: 'INPUT".

Info Application schema found, package name: 'CadastreADE', target namespace: file:///C:/ShapeChange/output/CadastreADESchema'

Info | (Converter java) Now processing target 'INPUT'

Info (Converter java) Executed target class 'de.interactive_instruments.ShapeChange. Target. Codelists.CodelistDictionaries' for input ID: 'INPUT"

Results

Target Scope File
Code List Dictionary cad:AccessoryUnitType AccessoryUnitType.xml
Code List Dictionary cad:BuildingType BuildingType.xml
Code List Dictionary cad:CommonPropertyUnitType CommonPropertyUnitType.xml
Code List Dictionary cad:FloorNo FloorNo.xml
Code List Dictionary cad:LegalPropertyType LegalPropertyType.xml
Code List Dictionary cad:RoofType RoofType.xml
XML Schema file:///C:/ShapeChange/output/CadastreADESchema CadastreADE xsd

Figure 4.19 The log file displaying the results and messages from ShapeChange tool.

4.5 Building database

The 3D building database covers all modeling aspects of building module and
core module of CityGML 2.0.0 as well as the CityGML ADE for 3D cadastre. The
details of 3D city database schema development in the documentation of “3D City
Database” version 3.0.0 was used here to design the 3D building database. 3D City
Database is an open source software package available in the website

www.3dcity.com. In this release the 3DCityDB was implemented in the commercial

76

database, Oracle and the Open Source database, PostGIS. However, in this research,
the 3D building database schema was realized in Microsoft SQL Server 2008, which
is the database system in NLCS.

Generally in database modeling, one or more classes of the UML diagram are
mapped onto one table keeping the name identical to the class name. The attributes of
the classes become columns in the corresponding table with identical name as well.
Data types specified in CityGML were substituted by data types of the selected
database allowing an effective representation (see Table 4.2). The data types available

for the MS SQL Server 2008 are shown in Appendix B.

Table 4.2 Data type mapping.

UML MS SQL Server
String, any URI varchar, char, text
Integer int

Double, gml:LengthType float, real
Boolean bit

Date date, datetime
Enumeration varchar

GML Geometry Geometry

This section is elaborated in the following sub-sections starting with the
simplification of UML diagram to the implemnetation of the database schema into the
relational database.

4.5.1 Simplification of CityGML and ADE for 3D Cadastre

CityGML uses concepts which are seen as quite complex by some
users and software implementers. Direct translation to relational data model would

give inefficient result (Karpina, 2014). Therefore, some simplifications were

77

considered to simplify the implementation and consequently enhancing the
performance of database.

Figure 4.20 and Figure 4.21 show the UML diagram of core model and
building model respectively. Classes which were combined into a single table
according to the class relationship are shown in the UML diagrams as orange colored
boxes. The green ones shows the many-to-many (m:n) relationship between classes,

which have to be mapped into a separate table.

<<Geome|yy>>
gml::Evelope
0.1 /|\ envelope
1
<<Feature>>
gml::_Feature
+name : gml::CodeType [0.."] <<Feature>>
CityObjectGroup
Zﬁ +class : gmi::CodeType [0. 1] + geomet <<Geomety>>
[| 21 #function ; gml: CodeType [0."] 0.1 gml::_Geometry
+usage : gmt:CodeType [0.."]
<<Feature>>

gml::_FeatureCollection

? -------- Role
parent
<<Feature>> 01 | groupMember +role : xs:string [1]
CityModel \V/
<<Fealure>> -
. i <<DalaType>>
+creationDate : xs::date [0..1] extemalRel oo

+eminationDate : xs:date [0..1) #infomationSystem : xs:anyURI 0.1)

cityObjectMember (+relativeToTerain : RelativeToTerainType [0..1)
+relativeToWater : RelativeToWaterType [0..1] generalizesTo 1
|.
externalObject , |, 1
I | <<Union>>
<<Feature>> <<Fealure>> <<Feature>> <<Feature>> <<Feature>> ExternalObjectReference
dem:: ReliefFeature luse::LandUse veg::_VegetationObject fn::CityFurniture wir:;_WaterObject +name : xs:string (1)
+uri : xs::anyURI [1)
<<Fealure>> <<Fealure>> <<Fealure>>
gen::GenericCityObject _Site tran::_TransportationObjcet
[| 1
<<Feature>> <<Feature>> <<Feature>>
bldg::_AbstractBuilding tun:;_AbstractTunnel brdg::_AbstractBridge

Figure 4.20 UML diagram of core model (3dcitydb, 2015).

78

+usage : gml.CodeType [0.]

9‘ <<Feature>> q <<Feature>> <l——
core::_CityObjoct core::_Site
<<Object>> 0.1
M_ﬂn,ﬂ__km_;w; core::ImplicitGeometry lod2implictRepresentation
04 lod3imglicitlRepresentabon
loddimpliciRepresentation ddimoiicilRencesentation
bd4Geometry o 0.1 4 doGeomet <<Feature>>
<G - Buildinglnstallation
gml:;_G boddGeometry *leclass ; gml CodeType [0..1] .
0.1 lod4Geomery + |+unction : gmi::CodeType [0.] K>
+usage ; gmt CodeType [0.°]
* /[outerBu kingInstallation
<<Feature>>
IntBulldinginstallation
+ciass : gmi:CodeType [0..1]
Ll «|*lunction : gmi..CodeType [0.."]

<<Foature>>

roominstakation

m> <<Feature>> ém
+ | com;:Address
AbstractBuilding

* o eclass : gmib:CodeType [0..1]
viunction : gmi:CodeType (0.7
susage : gmt CodeType [0.*]
+yearOiConstrugtion | xs.:g Year [0..1]

Le | << Feature>> +yearOMemoltion | xs..gYea [0.1] 8
* BulldingFurniture #roofTypa: gmi:CodeType (0..1] K>
class : gmt:CodeType [0..1] ‘:":M"-?:' Lﬂ:*g"':‘wef’ :l ”
unction ; g CodeType [0,] storeysAboveGround - xs::nonl eqal alnteger (0..1)
susage : gt CodeType 0.] +storeysBelowGround | xsiinonNegativelnleger [0..1]
Sl A vstoreyHelghtsAboveGround : gmi::MeasureOrNulListType (0..1) gull
o /M ptedorFumiure storeyHeightsBelowGround - gk MeasureQNulistType [0..1) :
0.1 T I 1
<<Fealure>> <cFeature>> c<Fealure>> &
Room Bulldng BuildingPart
+class ; gmi:CodeType [0. 1)
function : gmi;.CodeType [0.]
+usage : gmt CodeType 0. *]
lod1S0id
o..1<>' i bd2Solid
lod3Sold
9.1 ["og4Sol
oddSolid | <<Goomatry>> <<Gaometry>>
gmi::_Solid gmi:MultiSurface
N
0 A\ 0.1 0.1 i 04
5 v bddMultiSurface bd2MuiSuriace Goameby
<<Fealure>>
= = od3MultiSuriace gmizMultiCurve
_Opening Lod3MuliSurface |
openi bd4MitSuriace LoiMubSurtaco
|_Q_‘ \
<<Featura>> <<Fealure>> ‘ boundedBy . A* boundedBy
Door Window b <<Foature>> « boundedBy
i | 0.2 _BoundarySurface |, g
| ! 1 ! | 1
<<Fature>> <cFeature>> <<Fealure>> <<Fealure>> <<Fealure>> <<Fealure>> <<Feature>>
RoofSurface WallSurfacee GroundSurface ClosureSurface CellingSurface InterforWall Surface FloorSurface
<<Feature>> <<Feature>>
OuterCeiling OuterF

Figure 4.21 UML diagram of building model (3dcitydb, 2015).

79

Meanwhile, Figure 4.22 and 4.23 show the simplified UML diagram of
core and building model of CityGML 2.0.0 which was used to generate tables of
database schema. Based on Figure 4.21, the following simplification was done to the
building model:

(1) Class BuildingInstallation and IntBuildingInstallation was
combined together as a single class Buildinglnstallation to store both the exterior and
interior features attached to a building.

(2) The three CityGML classes AbstractBuilding, Building and
BuildingPart are merged into a single table Building with all the geometries added as
attributes.

(3) Class BoundarySurface and its subclasses was defined to a single
class called ThematicSurface.

(4) Class Opening and its subclass Door and Window was remodel as

class Opening.

«featureType»
CityObjectGroup

+ + + +

class: GroupClass [0..1]
function: GroupFunction [0..%]
geometry: GM_Object [0..1]
usage: GroupUsage [0..*]

«featur...
CityModel

+parenty|,0..1

1%

«featureType»
CityObject

+groupMember

+groupMember udat;:;ipe-

0.

+ role: CharacterString

+cityObjectMember

+ + + + +

™

creationDate: Date [0..1] 1
externalReference: ExternalReference [0.
genericAttribute: AbstractGenericAttribute [0..*]
relativeToTerrain: RelativeToTerrain [0..1]
relativeToWater: RelativeToWater [0..1]
terminationDate: Date [0..1]

“typer

ImplicitGeometry

+ + + + +

libraryObject: URI [0..1]

mimeType: MimeType [0..1]

referencePoint: GM_Point
relativeGMLGeometry:GM. Object [0..1]
transformationMatrix: TransformationMatrix4x4 [0..1]

Figure 4.22 The simplified UML diagram of Core model.

80

— = AbstraceCityObject CodaLin
AbstraccCioObject HE5EAT CityObject | | CadastreADE:
P ! uilding CadastreADE:: =3
Room + riD: ARG I ~ class: BuildingClass [0.1] OtherPropertyUnit + 2
- o ~ function: BuildingFunction [0..*] = areaiArea -3
2 st e PN ehliaticniia. o o]~ lod0FootPrint: GM_MultiSurface [0..1] + sulD: CharacterString | |+ 4
+ loddMultiSurface: GM_MultiSurface [0.1]| ..« 1|~ lod0RoofEdge: GM MultiSurface [0..1] + volume: Volume 5
Sl s iing . < lod1MuldSurface: GM_MulciSurface [0.'1] + 6
D e Teali = lodISolid: GM_Solid [0..1] + UG
~ lod1Terrainntersection: GM_MulfiCutve [0..1] LegalSpaceBuildingUnid
< lod2MultiCurve: GM_MultiCurve [0..1] d > m
+_ lad2MuldiSurface: M MuldSurface [0..1] Jeuiaype e,
- Jod2Solid: GM_ Solid [0.1] Ini A UnitT:
0.+ |~ lodoTermaintftersection: GM_MultiCurve [0..1] ype
- 3MultiCurve: GM_MultiCurve [0..1] floorNo: FloorNo +~ Garage
< lod3MultiSurface: GM_MultiSurface [0..1] roomCount: Integer ~ Storercam
+ lod3Solid: GM_Selid [0..1] = unitlD: Ch
+ lod3Terrainlntersection: GM_MultiCurve [0..1]
= loddMultiCurve: GM_MultiCurve [0..1] — «CodeListr
Installation [,0..1 i1di o 0. = loddMultiSurface: GM_Surface [0..1] ApacrsecHaldiasy :
AbscraceCieyObject + lod4Solid: GM_Salid [0..1] l_“" E Ce PropertyUnitType
CioyObject = lod4Terrainlntersection: GM_MultiCurve [0..1] | DE: o e
= measuredHeight: Length [0.. AbstractBuilding Ry
«featureTypes + roofType: Roof Type [0..1] ~ biD:Ch rs S i
S 2) 3 : CharacterString 4 W
Buildinglnstallation + storeyHeightsAboveGround: MeasureList [0..1] + plotiD: CharscterString] |+ Rucf
+ class: BuildinglnstallationClass [0.1] ~ storeyHeightsBelowGround: MeasureList [0..1] I re
+ function: BuildinglnstallationFunction [0..*] ~ storeysAboveGround: int [0..1] il e
+ lod2Geometry: GM_Object [0..1] -~ storeysBelowGround: int [0..1] conssaOiDaldingrare
b i 5 i etry [0.1] ~ usage: BuildingUsage [0..*] 0
+ 10d3Geometry: GM_Object [0..1] + vearOfConstruction: Year [0..1]
+ lod ici i ary [0..1] + yearOfDemolition: Year [0..1]
+ lod4Geometry: GM_Object [0..1]) P
it 4 Tt wy [0.1] .. .
+ usage: BuildinglnstallationUsage [0..*]
e ol “AbstractCityObject
AbstraceCityObject CityObject
GityObyect . “featureTyper
+boundedBy| featureTypes TORENS Openin,
: P 5
BoundarySurface > R - - = =]
+ lod2MultiSurface: GM_MultiSurface [0..1] - lod3MultiSurface: GM_MultiSurface [0..1]
+ lod3MultiSurface: GM_MultiSurface [0..1] + NeAlamiisR ; Implici y [0.1]
+ loddMulciSurface: GM_MultiSurface [0..1] + lod4MultiSurface: GM_MultiSurface [0..1]

Figure 4.23 The simplified UML diagram of building model and ADE.

81

4.5.2 Database modeling
The modeling of the 3D building database was done in EA, which
supports comprehensive functionality for modeling database structures. UML diagram
of tables were generated from the simplified UML diagram of core model, building
model and ADE automatically using the tool MDA transformation of EA. The
resulted tables were edited in EA to correct the name of tables and columns as well as
addition of new columns and relationships to design a comprehensive database
schema. The code lists defined in the CityGML ADE were translated into tables with
a unique identifier column, name and description of the code list. The database
schema was described and displayed graphically in the following sections.
4.5.2.1 Core model

Figure 4.24 displays the tables of database schema of the core
model included ObjectClass, CityObject, CityModel, and CityObjectGroup. The
characteristics of each table were separately explained as below.

(1) ObjectClass: Table ObjectClass manages all class names of
the schema (see Table 4.3). It efficiently determines the affiliation to a class in the
superclass tables. The relation of the subclass to its parent class is represented via the
attribute superClassiID in the subclass as a foreign key (FK) to the ID of the parent
class.

(2) CityObiject: All city objects are represented by tuples in the
table CityObject. The fields are identical to the attributes of the corresponding UML
class, plus additional columns for metadata like lastModificationDate,
updatingPerson, reasonForUpdate and lineage. The BoundingBox (envelope) was

realized as rectangular geometry using five points, that join the minimum and

82

maximum X, y and z coordinates of the BoundingBox (Figure 4.25). The attribute
objectClassID provides information on the class affiliation of the CityObject. This
helps to identify the proper subclass tables.

(3) CityModel: A CityModel serves as root element of a
CityGML feature collection, whereby city object features can be aggregated to a
single CityModel. The m:n relationship to table CityObject was established by the
table CityObjectMember.

(4) CityObjectGroup: This table aggregates similar city
objects into a single object. The m:n relationship between an object group consisting
of city objects contained in CityObject was realized by the table GroupToCityobject,

which associates the IDs of both tables.

CityObjectGroup -] CityObject

CityObjectMember a

«columns
*pfK cityModellD: int
*piK cityObject!D: int

FKs
|+ FK_CityObjectMes
+ FK_CityObjectMe
PKe
+ PK_CityObjectMember(int, int

Figure 4.24 Tables of database schema of core model.

Table 4.3 Definition of Class names.

ID className superClassiD
0 Undefined

1 _GML

2 _Feature 1
3 _CityObject 2
4 _Site 3
5 CityObjectGroup 3
6 _AbstractBuilding 4
7 BuildingPart 6
8 Building 6
9 Buildinglinstallation 3
10 _BuildingBoundarySurface 3
11 BuildingCeilingSurface 10
12 InteriorBuildingWallSurface 10
13 BuildingFloorSurface 10
14 BuildingRoofSurface 10
15 BuildingWallSurface 10
16 BuildingGroundSurface 10
17 BuildingClosureSurface 10
18 _BuildingOpening 3
19 BuildingWindow 18
20 BuildingDoor 18
21 BuildingRoom 3
22 FeatureCollection 2
23 CityModel 22
24 OuterBuildingCeilingSurface 10
25 OuterBuildingFloorSurface 10
26 _SpatialUnit 3
27 _LegalSpaceBuildingUnit 26
28 ApartmentUnit 27
29 CommonPropertyUnit 27
30 AccessoryUnit 27
31 LegalSpaceBuilding 27

83

84

Figure 4.25 CityObject envelope storage as a 3D rectangle specified by (left: the two
black points with minimum and maximum coordinate values respectively) and (right:

black polygon using five points) (3dcitydb, 2015).

4.5.2.2 Building model and ADE

The building and ADE model is realized by the tables shown in
Figure 4.26 included building, thematic surface, building installation, opening, and
apartment.

(1) Building: The hierarchy within a building is realized by the
FK buildingParentID which refers to the superordinate building and contains NULL,
if such does not exist. This way, a tree-like structure arises for building aggregates.
FK buildingRootID refers directly to the top level (root) of a building tree. This FK
provides a mean to select all parts in a building tree by selecting those with the same
value. There are two columns defined in the table to specify the type of roof and
building. A unit column is provided for every attribute including measure information
like measuredHeight or storeyHeightsAboveGround etc. to specify the scale.
Geometry is represented by several FKs lodOFootPrintlD, lodORoofPrintiD,
lodxMultiSurfacelD (x = 1 and 4), and lodxSolidID (x = 1 and 4) which refer to

entries in the SurfaceGeometry table.

85

n n -
ApartmentUsit 3 i -
CltyObject T

o

PK ID-int
b ¢ AccessoryUnit

Unit(spartmentUnieID)

ObjeciClass

¢ varchar(256)
superClaslD: inyint

§
et K Building 8

Buillinglnstallation

jot . 01 o
SutaceGeometry 3

A

For

S 2 SN =2 3

¥ T; < S— >

Jy ! R\

0.1
1 | ThematicSurface N
' L
5
Opesing
—
B

OpeningToBoundarySurface

4 FK_Opesing CiryObjea(ID)

eniegTeb:

. P OpeansToBo.odarsSudce

P
+ PR OperingID

Figure 4.26 Building database schema.

(2) ThematicSurface: The table ThematicSurface represents
all different types of thematic boundary features represented by class
BoundarySurface and its subclasses. The type of the boundary surface was given by
the FK objectClassID, which link to the table ObjectClass. Allowed integer values of

objectClassID in the ThematicSurface table are shown in Table 4.4.

86

Table 4.4 Allowed integer values of objectClassID in the ThematicSurface table.

objectClassID className
11 BuildingCeilingSurface
12 InteriorBuildingWallSurface
13 BuildingFloorSurface
14 BuildingRoofSurface
15 BuildingWallSurface
16 BuildingGroundSurface
17 BuildingClosureSurface
24 OuterBuildingCeilingSurface
25 OuterBuildingFloorSurface

The aggregation relation between buildings and the
corresponding boundary surfaces results from the FK buildingID which refers to the
ID of the respective building. Thematic surfaces and the corresponding parent feature
share their geometry whereby the geometry was defined only once and used
conjointly as XLinks. The SurfaceGeometry, which for example geometrically
defines a roof, should at the same time be a part of the volume geometry of the parent
feature the roof belongs to.

3) Buildinglnstallation: The UML classes
Buildinglnstallation and IntBuildinginstallation were realized by the single table
BuildingInstallation. The attribute obejctClassID (external 27, internal 28)
distinguishes internal and external objects attached to a building. FK buildingID or
roomID maintains the relation to the corresponding parent feature, whereas the
surface based geometry was given via the FK lod4BREPID referring to the table
SurfaceGeometry. CityGML 2.0.0 building installations can also be represented by
using prototypes which are stored as library objects implicitly. The information
needed for mapping prototype objects to buildings consists of base point geometry

(lod4ImplicitRefPoint), a transformation matrix (lod4ImplicitTransformation), which

87

is stored as a string, and a FK reference to the ImplicitGeometry table
(loddImplicitReplD) where a reference to an explicit surface based geometry is saved.

(4) Opening: Table Opening represents CityGML class
Opening and its subclasses Window and Door. The differentiation was achieved by
the FK objectClassID which refers to the attribute ID of the table ObjectClass. Valid
integer values of objectClassID are ‘20° (Door) and ‘19’ (Window). Table
OpeningToThemSurface associates an opening ID in table Opening with a thematic
surface ID in table ThematicSurface representing the m:n relation between both
tables. Similar to building installations openings consists of columns
lod4implicitRepID, lod4ImplicitRefPoint, and lod4implicitTransformation model via
implicit geometry.

(5) Room: Room objects are allowed in LoD4 only. Therefore
the only keys lod4MultiSurfacelD and lod4SolidID refers to the table
SurfaceGeometry. Additionally the FKs to tables Building and CityObject are
necessary to map the relationship to these tables. In this research, a separate geometry
was not defined for the subclasses of LegalSpaceBuilding class. Instead it links to the
geometry of room, which is constructed to define an apartment or common property
unit within a building.

(6) Individual table was derived for classes: ApartmnetUnit,
AccessoryUnit, and CommonPropertyUnit. ApartmentUnit consist FK roomID which
points to ID in table Room. Similarly, FK roomID and buildinginstallationID of table
CommonPropertyUnit links to a tuple in table Room and Buildinginstallation

respectively, and FK buildingID in AccessoryUnit refers to a tuble in table Building.

88

The last two tables have a FK apartmentUnitID which associate to a tuple in
apartment unit table.
4.5.2.3 Tables for geometry representation

In the database schema the geometry consists of planar surfaces
which correspond each to one entry in the table SurfaceGeometry. The surface-based
geometry and implicit geometry was stored by attribute geometry and
implicitGeometry respectively. Whereas the volumetric geometry was stored by
attribute solidGeometry and its boundary surfaces (outer shell) by attribute geometry
as well. A solid is the basis for 3-dimensional geometry. The extent of a solid is
defined by the boundary surfaces (shell). A shell is represented by a composite
surface, where every shell is used to represent a single connected component of the
boundary of a solid.

Figure 4.27 displays geometry hierarchy with the solid
geometry at the top and surfaces at the bottom. Surfaces aggregates to form a complex
surfaces or the boundary of a volumetric object. The aggregation of multiple surfaces
(IDs 6 to 10 in Figure) is realized the way that the newly created surface tuple (ID 2)
is not assigned geometry. Instead, the parentID of the surfaces IDs 6 to 10 refer to the
ID of ID 2. In addition, a further tuple (ID=1) is introduced, which represent the solid
and defines the root element of the whole aggregation structure. Each surface
references to its root, using the rootlID attribute. This information has big influence on
the system performance, as it avoids recursive queries. On the downside there also
follows the limitation that each tuple in SurfaceGeometry can only belong to one

aggregate.

89

Geometry Root
ID=1
ROOT_ID=1
IS_SOLID=1
IS_COMPOSITE=0

LoD1 Surface
ID=2
PARENT_ID=1
ROOT_ID =1
IS_SOLID=0
IS_COMPOSITE=1

R

e, o = —_—

Sunae; 3 Surface 4 Surface 5 Surface 6 Surface 7

ID= ID=7 ID=8 ID=8 ID=10
PARENT_ID=2 PARENT_ID=2 PARENT_ID=2 PARENT_|D=2 PARENT_ID=2
ROOT_ID = 1 ROOT_ID = 1 ROOT_ID = 1 ROOT_ID = 1 ROOT_ID = 1
IS_SOLID=0 IS_SOLID=0 IS_SOLID=0 IS_SOLID=0 IS_SOLID=0

IS_COMPOSITE=0 IS_COMPOSITE=0 IS_COMPOSITE=0 IS_COMPOSITE=0 IS_COMPOSITE=0

Figure 4.27 Geometry hierarchy (3dcitydb, 2015).

Various flags characterize the type of aggregation: isSolid
distinguishes between surface (0) and solid (1), and isComposite defines whether this
is an aggregate (e.g. MultiSolid, MultiSurface) or a composite (e.g., CompositeSolid,
CompositeSurface) as shown in Table 4.5. Based on these flags the geometry types
listed in 5 can be distinguished. To distinguish a MultiSolid from a MultiSurface its
child elements have to be analyzed: In case the child is a Solid, the geometry can be

identified as MultiSolid.

Table 4.5 Attributes determining aggregation types (3dcitydb, 2015).

isSolid isComposite isTriangulated Geometry Solid_Geometry
Ecgzgggl,eﬂiangle, geometry NULL
MultiSurface NULL NULL
CompositeSurface * NULL NULL
Solid * NULL geometry
MultiSolid NULL NULL

CompositeSolid * * NULL geometry

90

Aggregated surfaces can be grouped again with other
(compound) surfaces, by generating a common parent. This way, arbitrary
aggregations of Surfaces, CompositeSurfaces, Solids, CompositeSolids can be
formed. Since all tuples in an aggregated geometry refer to the same rootlD, all tuples
can be retrieved efficiently from the table by selecting those tuples with the same
rootID. The aggregation schema allows for the definition of nested aggregations
(hierarchy of components). For example, a building geometry (CompositeSolid) can
be composed of the house geometry (CompositeSolid) and the garage geometry
(Solid), while the house’s geometry is further decomposed into the roof geometry
(Solid) and the geometry of the house body (Solid). In addition, the FK cityObjectID
refers directly to the CityGML features to which the geometry belongs. In order to
select all geometries forming the city object one only has to select those with the same
cityObjectID.

4.5.2.3 Tables for codelist

Figure 4.28 displays the table of codelists. Each table consists

of PK ID, which provides a name and description to a tuple in the table defining the

code.

91

CommonPropertyUnitType a LegalPropertyType =
«column» «column»
*PK ID: tinyint *PK ID: tinvint
name: varchar(50) T a6
description: varchar(50) description: varchar(50)
«PK» «PK»
- PK_CommonPropertyUnitType(tinyvint) + PK_LegalPropertyType(tinyint)
FloorNo =] BuildingType =) RoofType =]
«column» «column» «column»
*PK ID: tinyint *PK ID: tinyint *PK ID: tinyint
name: varchar(50) name: varchar(50) name: varchar(50)
description: varchar(50) description: varchar(50) description: varchar(50)
«PK» «PK» «PK»
PK_FloorNo(tinyint) . PK_BuildingType(tinyint) . PK_RoofType(tinyint)
CityModelType = AccessoryUnitType 2
«column» «column»
*PK ID: tinyint *PK ID: tinyint
name: varchar(50) name: varchar(50)
description: varchar(50) description: varchar(50)
«PK» «PK»
- PK_CityModelType(tinyint) - PK_AccessoryUnitType(tinyint)

Figure 4.28 Tables of codelist.

4.5.3 Implementation of 3D building cadastral database

Data definition code (DDL) was generated for the each objects of
database schema in EA. These DDL scripts can be executed either using the SQL
Command Line in EA or directly in Microsoft SQL Server Management Studio. An
empty database was created in the Microsoft SQL Server 2008 and assigned name as
BuildingDB. Here the generated scripts were executed in the empty database using
the first method to create tables, columns, Primary Keys (PK) and FKs, and
relationship among the tables.

Additional SQL script was written to generate unique apartment
number for the column unitNo in table ApartmentUnit. This unique number was
assigned an alphanumeric letter UNIT-X, where X is a running number and it

provides a link to its owner maintained in another database. Figure 4.29 displays the

92

list of tables created in the database based on the database schema diagrams shown in
Figure 4.24 and 4.26. Also, tables, column, keys, and relationship of BuildingDB
database is graphically displayed in Figure 4.30. All the SQL scripts were presented

in Appendix C.

Connect~ &7 &J =z B
= | J BH_LADM ~

= | J BuildingDB

[Database Diagrams

= 1 Tables
+ System Tables
dbo.AccessoryUnit
dbo.AccessoryUnitType
dbo.ApartmentUnit
dbo.Building
dbo.Buildinglnstallation
dbo.BuildingType
dbo.CityModel
dbo.CityModelType
dbo.CityObject
dbo.CityObjectGroup
dbe.CityObjectMember
dbo.CommeonPropertyUnit
dbo.CommonPropertyUnitType
dbo.FloorNo
dbe.GroupToCityObject
dbo.ImplicitGeometry
dbo.LegalPropertyType
dbo.ObjectClass
dbec.Opening
dbeo.OpeningToBoundarySurface
dbo.RoofType
dboc.Room
dbo.SurfaceGeometry
dbo.ThematicSurface

oy O O R R NN

&
s
3

L]

Vibleeeemem

Synonyms
Programmability v

F

Figure 4.29 List of tables under BuildingDB database in MS SQL Server.

93

4 CityObjectGroup
® O
ApartmentUnit CommonPropertyUnit et ity OljectID
T o » BREID
wnittic commanProperty Type e Geom
roomID e
E roomCort mresint
ObjectClass = =
T o s olumelint
srestint sptmertUatID
s CisssID Y s} GroupToCityObject
volumelnt. BuildinglrstalistionID ¥ =tyOuEDd
fomsze v
xeriSaurce de
T
BuiGngID Tt ticSurf:
IogS S eelD =5
losesaiarD Py
i s roomID
© CityObjectMember e
Duiiinglrstaistionld
Buidngho —
ko
BuigingParertID
BuildingInstallation e et ﬁ
T O DuldngType
‘adjectOassID e Type
BalsngID ros TypeCotespace
roemID yesrOfCormtruction
10a4ERETD ye=rOfDemaition
oo, mesteg =
Ioo4lmgictReslD toreyHsgitzAboreGround ¥ cpminglD
IO Traratormation StorosgRAGR e i
storeyzBdionGrond
stareyrisgrtsSeionGrord i
. festiosTicationDete
TodiMtiSrfsceID
todtSeiatD ressororiptste
IogetiSsTecaID
looSaiaID

Figure 4.30 Diagram of BuildingDB database (tables, column, keys, and relationship).

4.6

This section involves two kinds of testing: validation of XML schema and 3D

Buildin

the 3D

validity of the XSD document. The result showed that the syntax of generated XML

Testing

g model verification. In the final testing phase, the XML schema generated for

cadastre from ShapeChange was validated in XMLSpy software to ensure the

schema complies with ISO standard and no errors exist as shown in Figure 4.31.

DB Convert View Browser WSDL SOAP XBRL Tools

8 &3 03 68 B8, [EBRE 8 e s e 56

XM

Window Help

3

1 <?xml version="1.0" encoding="UTF-8"7>
2 [H<schema xmins="http://www.w3.0rg/2001/XMLSchema" xmins:bldg="http://www.opengis.net/citygml/building/2.0"
xmins:cad="file:///C:/ShapeChange/output/CadastreADESchema” xmins:core="http://www.opengis.net/citygml/2.0"
xmins:gml="http://www.opengis.net/gml" targetNamespace="file:///C:/ShapeChange/output/CadastreADESchema"
elementFormDefault="qualified" version="1.0">
3 <import namespace="http://www.opengis.net/citygml/2.0" schemalocation="
http://schemas.opengis_net/citygml/2.0/cityGMLBase xsd"/>
4 <import namespace="http://www.opengis_net/citygml/building/2.0" schemalocation="
http://schemas.opengis_net/citygml/building/2.0/building.xsd"/=
5 <import namespace="http://www.opengis.net/gml" schemalocation="
http://schemas.opengis_net/gml/3.1.1/base/gml.xsd"/=
6 <I-XML Schema document created by ShapeChange - http://shapechange.net/—>
7 <element name="buildingNo" type="string" substitutionGroup="
bldg:_GenericApplicationPropertyOfAbstractBuilding"/>
8 <element name="plotNo" type="string" substitutionGroup="bldg:_GenericApplicationPropertyOfAbstractBuilding"/>
9 <element name="legalBu" type="cad:LegalSpaceBuildingPropertyType" substitutionGroup="
bldg:_GenericApplicationPropertyOfAbstractBuilding"/>
10 <element name="AccessoryUnit" type="cad:AccessoryUnitType" substitutionGroup="
cad:LegalSpaceBuildingUnit"/=
" = <complexType name="AccessoryUnitType">
12 i <complexContent>
13 ! <extension base="cad:LegalSpaceBuildingUnitType"=
14 ¢ { <sequence>
15 ’ i <element name="accType" type="gml:CodeType"/>
16 i <element name="apUnit2" type="cad:apartmentUnitPropertyTvpe" maxOccurs="unbounded"/>
Tet | Gid | Schema | WSDL | XBRL | Authentic Browser |
(i) CadastreADE.xsd |

P vlal minBl 8)2]2] X

Q @ File E:\CadastreADE.xw

oy

Figure

was Vis

structur

4.31 XML schema validation result.

In the second test, CityGML instance data resulted from the FME translation
ualized in FZK viewer to verify the expressiveness and correctness of the data

e. Figures 4.32-4.35 show some selected results for expressiveness and

95

correctness of the data structure of 3D Building model by visualization in the FZK
viewer. As shown in Figure 4.32, top view of the 10 LOD1 (blue) and 1 LOD4 (red)
buildings were displayed here. This verifies the correct translation of buildings
showing the exact number of buildings in the output GML file as in the input
SketchUp files. Figure 4.33 displays hierarchical structure of building in the output
GML file as a list whereas it is diagrammatically shown in Figure 4.34 and 4.35.
These show the correct translation from the input file and display complete list of data

structure as hierarchical structure correctly.

* W

|| Browser Toobar x

| ‘ = a core:CityModel
I =
Build14
@ @] Build12
& Build11
Build10
{ # . [&@] Buildd
| # [Build7
| # . [&] Builde
& Build5
Build3
& [&@] Build2
* @ Wangda-House

Figure 4.32 Top view and [inset] list of buildings.

96

SN / | core:CityModel
= CityGML Building [11]

. [&]Build14
[Build12
. [f&] Build11
. [&&] Build10
& [&]Build9 : T
Build? ——— | List of Buildings
. [t&] Buildé
& [&&] Builds
] Build3
Build2
= @ Wangda-l—_lgﬁ

. [@)] bldg:Buildinglnstallation)

[@) bldg:Buildinglnstallation

= @ bldg:Buildinglnstallation

&) l@ bldg:Buildinglnstallation

= % ‘;:::gt::::::::zz:::zz: ol List of boundary surfaces and rooms
= |§| bldg:Buildinglnstallation under the BUlIdlng named Wangda-
. [i@) bldg:BuildingInstallation House.

& Staircase_CPU

& AUB

= AUT

@ bldg:InteriorWallSurface
|E] bldg:InteriorWallSurface
@ bldg:InteriorWallSurface
bldg:InterierWallSurface | |
@ bldg:InteriorWallSurface

—
] bldg:CeilingSurface \\|

& B bldg:InteriorWallSurface

] B bldg:InteriorWallSurface

i B bldg:InteriorWallSurface

B bldg:InteriorWallSurface

& B bldg:InteriorWallSurface

i B bldg:InteriorWallSurface

& bldg:IntericrWallSurface

& B bldg:InteriorWallSurface .

- %b,dg:,meﬁo,wﬂlsmxe _ List of boundary surfaces such as
. [B bldginteriorWallsurface CeilingSurface, InteriorWallSurface,
:::w:n:erforxa:::u:“e and FloorSurface bounding the room
& g:InteriorWallSurface

o) B bldg:InteriorWallSurface named AUT.

i* B bldg:InteriorWallSurface

& bldg:InteriorWallSurface

B bldg:InteriorWallSurface

B bldg:InteriorWallSurface

i+ B bldg:InteriorWallSurface

& B bldg:InteriorWallSurface

B bldg:InteriorWallSurface

B bldg:InteriorWallSurface

i+ B bldg:InteriorWallSurface

& bldg:InteriorWallSurface

B bldg:InteriorWallSurface

B bldg:InteriorWallSurface

i+ || bldg:FloorSurface

Figure 4.33 A clip from output GML file displaying list of hierarchical ordering of
building components.

97

m
§
i
H
i

|
§
£
§
2
i

@
§
£
i
3
{

(0 saircase CPU
B ave

& (@] bldgCeilingSurface
B bldginterioraliSurtace
Bl bldginterionwaliSutace
18 bidginterioaurfce
B bidginteriortalSurtsce
@ 8 bidglnterioalsurtace
& 1§ bidginteriorWslurface
© B bldginterioslisurlace
& {8 bidginteriotWallsurtace
&) bldginterioWsltsurface
® [Bl bidginterioWiltSurtace
Bl bldginteriorvialSurface
B bldginteriorWsiiurtace
B bidginteriontialsurace
B bidginteriorwalisurface
B bldginterioWaltsurface.
B bldginteriorwaliSurface
8 bldginterioviallutace
Bl bldginterioraliSurtsce
B bidginteriorvialisurtace
1B bldginteriorWaisurface
B bldginteriorwaliSurace
Bl bldginteriorwalisuface.
@) bidgFoarsurtace

HERDE @

ETTE
@
3

o
(o]
H

3

(1)

8 visgwatsurisce
5 bidgalSrtace
 blogWalSuace v

ST

Karsruhc nsetute of Technoiogy

Figure 4.34 Building “Wangda-House” and its components.

ments | Layers

= % bldg

< @) bldg:BuildingInstallation
< [@) bldg:CeilingSurface

<& (@] bldg:FloorSurface
< [@] bldg:GroundSurface
<= B bldg:InteriorWallSurface

<= [B] bldg:WallSurface
<= [@] bldg:Window

B < core

<& [core:CityModel

e
¢

®

Figure 4.35 Rooms bounded by interior wall surface, ceiling surface, and floor

surface.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

This chapter concludes the results of this study based on the defined objectives
and give some recommendations to the concerned agencies for future research and

development.

5.1 Conclusions

Though three dimensional objects have existed for ages, it was only recently
found necessary to study about it. Over the past decades many researches was carried
out on this topic. CityGML is one kind of model resulted from this research,
developed for exchange and storage of virtual 3D city objects. Due to its rich thematic
classes and capability to extend through ADE mechanism, CityGML was adopted in
diverse application fields. Accordingly, it was also adopted here to design an ADE for
3D cadastre.

UML model of CityGML ADE for 3D building cadastral database, which
consist of two parts: UML modeling of CityGML ADE and its realization into
relational database, are successfully implemented in this study. The classes such as
ApartmentUnit, AccessoryUnit, CommonPropertyUnit, and LegalBuildingSpace
needed to differentiate the legal spaces related to a building were defined and added
as subclass of class CityObject of CityGML. Additionally, new attributes such as

buildingNo and plotNo were added to class AbstractBuilding using the stereotyped

99

class <ADEElement>. These additions of new properties have added semantic
information needed for 3D building cadastre in the classes of CityGML.

The ShapeChange software, which is an open-source Java tool for generating
schemas and associated resources from a UML domain model, is here used to
generate XML schema document and codelists dictionaries from the UML model of
Cadastre ADE. ShapeChange can directly accesses Enterprise Architect models via its
Java API and it provides a mechanism for providing arguments via a configuration
file. This configuration file can be configured according to the user’s requirements
providing an easy way to generate the required result as per our convenience.

All the modeling phase from UML design to DDL generation for database is
done in EA. Due to its comprehensive functionality for modeling; all the work can be
done under one roof without the need to learn or process in other software. Moreover,
EA has been chosen by ISO and OGC for the modeling standards in UML and the
models are freely accessible in the internet. This has speed up the overall workflow.

Since the existing data were only available in 2D, 3D data construction is
needed to be accomplished. For that building footprint and floor plan are used as an
input data to manually construct 3D building model in Trimble SketchUp software.
The resulted SketchUp 3D building model was translated to CityGML model using
FME tool. The output from this translation is a GML file. Through these results, it
was found that 3D building model with its detail can be efficiently constructed using
SketchUp software; however, it is time consuming when there are many details to be
modeled. Therefore, the detail of the building should be decided in advance before
starting 3D building construction. Similarly, the GML translation of the detailed

SketchUp model increases the number of transformers required making the FME

100

workflow more complex. Also in the beginning of the research, the translation from
SketchUp model to CityGML and Cadastre ADE in FME was running into loop when
executing. The problem was reported to support team of FME and it was found that
the ADE generated from ShapeChange have mixture of GML 3.1.1 and 3.2.1
definition, which is not supported by FME. This problem was corrected by
configuring the ShapeChange configuration file to generate XML schema for ADE in
GML 3.1.1 definition.

Overall a prototype of 3D building cadastre was here successfully designed
and developed using CityGML as a base module. The database implementation was
done in the MS SQL Server 2008, which is the database system of NLCS. EA
supports modeling of database schema and automatic generation of DDL scripts for
other DBMS targets such as DB2, Firebird, MS Access (all versions), MySQL, Oracle
(versions 9i, 10g, 11g and 12c), and PostgreSQL. Therefore, this implementation in
MS SQL Server can be duplicated to other DBMS. Finally, it is concluded that this

work can provide a basis for 3D cadastre implementation in Bhutan.

5.2 Recommendations

In this study, 3D building cadastral database design was examined and
designed using various tools and models. The choice of tools and models has provided
some merits and demerits to the result of this research. Considering the demerits and
the opportunity sighted to improve this work, the following recommendations could
be made for further studies:

(1) At present, many software packages for building 3D model are available in

the market. They can provide various specific tools and visualization platform for

101

various types of construction and building with some limitation. Therefore, it requires
reviewing specification of each software in detail before implementation of 3D
cadastre in Bhutan.

(2) Basically any development of database requires a user interface for
importing, exporting, editing, and querying the data. However, in this study due to
time constraint, development of an interface could not be included. Therefore, a
comprehensive interface should be design to work with the created prototype.
Additionally, a study on the web application technology in this domain is
recommended.

(3) Due to tedious and time consuming workflow of 3D building model
preparation under SketchUp, NLCS shall discuss with the concerned agencies,
particularly Thimphu Thromde, to investigate the possibility for submission of floor
plan in 3D format while seeking building occupancy certificate approval. This can
speed up acquisition of 3D building model to implement 3D cadastre in Bhutan. Other
alternative is the automation of some of the workflow for 3d model construction in
SketchUp, which is possible through the programming platform called Ruby console
available in SketchUp. Recently there is a commercial SketchUp plug-in for
CityGML named CityEditor was available in the market. Unfortunately, this plug-in
came out late and cannot be explored or used in this research. Therefore, its
functionality and applicability in this work shall be explored.

(4) In this work, only core and building modules of CityGML were used to
design the 3D building cadastral database. Therefore, utilization of other modules of
CityGML and other building model such as Building Information Models (BIM) as a

basic layer in the implementation of 3D cadastre shall be more investigated.

REFERENCES

REFERENCES

3dcitydb. (2015). 3D City Database for CityGML Version 3.0.0. [Online]
Available: http://www.3dcitydb.net/3dcitydb/fileadmin/downloaddata/

3DCityDB_Documentation_v3.pdf. Accessed date: November 21, 2015.

Agilemodeling. (2015). [Online] Available: http://www.agilemodeling.com/artifacts/

classDiagram.html. Accessed date: June 20, 2015.

Aien, A., Kalantari, M., Rajabifard, A., Williamson, 1., and Wallace, J. (2013).

Towards integration of 3D legal and physical objects in cadastral data model.

Land Use Policy. 35:140-154.

Aien, A., Kalantari, M., Rajabifard, A., Williamson, I.P., and Shojaei, D. (2012).
Developing and testing a 3D cadastral data model: A case study in Australia.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial

Information Sciences. 1-4; 1-6.

Andrade, A.J.B., Carneiro, A.F.T., and dos Santos, J.C. (2013). LADM Specification
of a Relational Database for the Republic of Cape Verde. 5" Land

Administration Domain Model Workshop, Kuala Lumpur, Malaysia. 345-

360.

Budisusanto, Y., Aditya, T., and Muryamto, R. (2013). LADM implementation

prototype for 3D cadastral information system of multi-level apartment in

http://www.agilemodeling.com/artifacts/%20classDiagram.htm
http://www.agilemodeling.com/artifacts/%20classDiagram.htm

104

Indonesia. International FIG workshop on the Land Administration

Domain Model, Kuala Lumpur, Malaysia. 1-11.

Bydlosz, J. (2013). Towards LADM Country Cadastral Profile - Case Poland. 5t
Land Administration Domain Model Workshop, Kuala Lumpur, Malaysia.

247-260.

Cagdas, V. (2013). An Application Domain Extension to CityGML for immovable
property taxation: A Turkish case study. International Journal of Applied

Earth Observation and Geoinformation. 21: 545-555.

Chiang, H. (2012). Data modelling and application of 3D cadastral in Taiwan. 3"

International Workshop on 3D Cadastre, Shenzhen, China. 137-157.

Dsilva, M.G. (2009). A feasibility study on CityGML for cadastral purposes.

Master Thesis. Eindhoven University of Technology, the Netherlands.

Elia, E.A., Zevenbergen, J.A., Lemmen, C.H.J., and van Oosterom, P.J.M. (2011).
The land administration domain model as the reference model for the Cyprus

land information system. Survey Review. 45(329): 100-110.

Go6zdz, K., Pachelski, W., van Oosterom, P., and Coors, V. (2014). The Possibilities
of Using CityGML for 3D Representation of Buildings in the Cadastre. 4"
International Workshop on 3D Cadastres, Dubai, United Arab Emirates.

339-361.

Hendriatiningsih, S., Abdulharis, R., and Hernandi, A. (2012). Revisiting the Concept
of Boundary on 3D Cadastre in Indonesia. FIG Working Week 2012, Rome,

Italy. 1-9.

105

Hespanha, J.P. (2012). Development Methodology for an Integrated Legal
Cadastre: Deriving Portugal Country Model from the Land
Administration Domain Model. PhD Thesis. Delft University of

Technology, the Netherlands.

ISO/TC 211. (2012). Geographic information - Land Administration Domain Model:

ISO/FDIS 19152. 1-118.

Kalantari, M. (2008). Cadastral Data Modelling — A Tool for e-Land

Administration. PhD Thesis. The University of Melbourne, Australia.
Karpina. (2014). A 3D CityGML based GIS system for shallow water simulations.

Kim, Y., Kang, H., and Lee, J. (2013). Development of Indoor Spatial Data Model
Using CityGML ADE. ISPRS - International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences. XL-

2/W2: 41-45.

kuenselonline. (2015). [Online] Available: http://www.kuenselonline.com. Accessed

date: May 29, 2015.

Lemmen, C.H.J., and van Oosterom, P.J.M. (2013). The Land Administration Domain
Model Standard. 5" Land Administration Domain Model Workshop, Kuala

Lumpur. 11-30.

Lemmen, C.H.J., van Oosterom, P.J.M., Uitermark, H.T., Zevenbergen, J.A., and
Cooper, A.K. (2011). Interoperable domain models: The ISO Land
Administration Domain Model LADM and its external classes. 28" Urban

Data Management Symposium, Delft, the Netherlands. 31-39.

http://www.kuenselonline.com/

106

Mingru, J. (2007). Registration of 3D cadastral Objects in China. Master Thesis.
International Institute for Geo-Information Science and Earth Observation, the

Netherlands.
NLC. (2014). Sazhi. National Land Commission’s quarterly newsletter. 1(1): 1-14.

OGC. (2012). OGC City Geography Marking Language (CityGML) Encoding

Standard.

OGC. (2014). Modeling an application domain extension of CityGML in UML OGC

Best Practice.

El-Mrkawy, M., and et Ostman, A. 2012. Feasibility of Building Information Models
for 3D Cadastre in Unified City Models. International Journal of E-

Planning Research. 1/4: 35-58

Panchal, H., Khan, R., Sengupta, S., and Sarda, N.L. (2011). GIS-based Smart
Campus System using 3D Modeling. Geospatial World Forum, Hyderabad,

India.

Park, S., Lee, J., and Li, H. (2009). 3D Cadastre Data Model in Korea; based on case

studies in Seoul. The Journal of GIS Association of Korea. 17/4:469-481.

Ronsdorf, C., Wilson, D., and Stoter, J. (2014). Integration of Land Administration
Domain Model with CityGML for 3D Cadastre. 4" International Workshop

on 3D Cadastres, Dubai. 313-322.

shapechange. (2015). [Online] Available: www.shapechange.net. Accessed date: June

03, 2015.

107

Shen, Y., Lin, L., and Renzhong, G. (2011). Building 3D cadastral system based on
2D survey plans with SketchUp. Geo-spatial Information Science.

14(2):129-136.

Snowflake Software. (2015). Developing CityGML ADEs. [Online] Available:
https://wiki.snowflakesoftware.com/download/attachments/5505036/Developi

ngCityGMLADE.pptx?api=v2. Accessed date: March 15, 2015.

Sparks, G. (2015). Database Modelling in UML. [Online] Available:

http://www.sparxsystems.com.au. Accessed date: May 30, 2015.

Sparkx Systems. (2011). Data Modeling: From conceptual model to DBMS.
[Online] Available: http://www.sparkxsystems.com. Accessed date: April 21,

2015.

Stadler, A., and Kolbe, T.H. (2007). Spatio-semantic coherence in the integration of
3D city models. 5" International ISPRS Symposium on Spatial Data

Quality, Enschede, the Netherlands.

Stoter, J., Beetz, J., Ledoux, H., Reuvers, M., Klooster, R., Janssen, P., Penninga, F.,
Zlatanova, S., and van den Brink, L. (2013). Implementation of a national 3D
standard: Case of The Netherlands. Progress and New Trends in 3D
Geoinformation Sciences. Berlin, Springer-Verlag Lecture Notes in

Geoinformation and Cartography. 277-298.

Stoter, J.E. (2004). 3D Cadastre. PhD Thesis. Delft University of Technology, the

Netherlands.

http://www.sparkxsystems.com/

108

Stoter, J.E. and van Oosterom, P. (2006). 3D Cadastre in an International Context:

Legal, Organizational, and Technological Aspects. CRC Press. 1-344.

Sucaya, I.LK.G.A. (2009). Application and validation of land administration
domain model in a real life situation (A case study in Indonesia). Master
Thesis. International Institute for Geo-Information Science and Earth

Observation, the Netherlands.

Swedesurvey AB. (2003). Strengthening National Geo-Information Management

System. NLCS, Bhutan.

thimphucity. (2015). [Online] Available: http://wwwthimphucity.bt. Accessed date:

June 02, 2015.

van den Brink, L., Stoter, J., and Zlatanova, S. (2012). Modelling an Application
Domain Extension of CityGML in UML. International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences.

XXXVI1-4/C26: 11-14.

van den Brink, L., Stoter, J., and Zlatanova, S. (2013). UML-based approach to
developing a CityGML application domain extension. Transactions in GIS.

17(6): 920-942.

van Oosterom, P. (2014). Survey of Israel Three-Dimensional Cadastre and the ISO
19152 - The Land Administration Domain Model. Delft University of

Technology, the Netherlands.

http://wwwthimphucity.bt/

109

van Oosterom, P., Stoter, J., and Lemmen, C. (2005). Modelling of 3D Cadastral
Systems. [Online] Available: http://www.gdmc.nl/publications/2005/3D _

cadastral_systems.pdf. Accessed date: February 02, 2016.

Wang, L., and Sohn, G. (2011). An integrated framework for reconstructing full 3D

building models. Advances in 3D Geo-Information Sciences. 261-274.

Wate, P.S. (2014). 3D GIS modeling at semantic level using CityGML for urban

segment. Master thesis. Andhra University, India.

Zulkifli, N.A., Rahman, A.A., and van Oosterom, P.J.M. (2014). 3D Strata Objects
Registration for Malaysia within the LADM Framework. 4™ International

Workshop on 3D Cadastres, Dubai. 380-388.

APPENDICES

APPENDIX A

XML SCHEMA OF CADASTRE ADE AND CODELISTS

112

<?xml version="1.0" encoding="UTF-8"?2>

<schema xmlns="http://www.w3.0xrg/2001/XMLSchema" xmlns:bldg="http://www.opengis.net/citygml/building/2.0" xmlns:cad="file:///C:/ShapeChange/output/CadastreADESchema"

xmlns:core="http://www.opengis.net/citygml/2.0" xmins:gml="http://www.opengis.net/gml" targetNamespace="file:///C:/ShapeChange/output/CadastreADESchema"
BlelementFormDefault="qualified" version="1.0">
<import namespace="http://www.opengis.net/citygml/2.0" schemaLocation="http://schemas.opengis.net/citygml/2.0/cityGMLBase.xsd"/>
<import namespace="http://www.opengis.net/citygml/building/2.0" schemaLocation="http://schemas.opengis.net/citygml/building/2.0/building.xsd"/>
<import namespace="http://www.opengis.net/gml" schemaLocation="http://schemas.opengis.net/gml/3.1.1/base/gml.xsd"/>
<!--XML Schema document created by ShapeChange - http://shapechange.net/-->
<element name="buildingNo" type="string" substitutionGroup="bldg:_ GenericApplicationPropertyOfAbstractBuilding"/>
<element name="plotNo" type="string" substitutionGroup="bldg:_GenericApplicationPropertyOfAbstractBuilding"/>
<element name="legalBu" type="cad:LegalSpaceBuildingPropertyType" substitutionGroup="bldg:_GenericApplicationPropertyOfAbstractBuilding"/>
<element name="AccessoryUnit" type="cad:AccessoryUnitType" substitutionGroup="cad:LegalSpaceBuildingUnit"/>
= <complexType name="AccessoryUnitType">

<complexContent>
<extension base="cad:LegalSpaceBuildingUnitType">
= <sequence>
<element name="accType" type='"gml:CodeType"/>
<element name="apUnit2" type="cad:apartmentUnitPropertyType" maxOccurs="unbounded"/>

r </sequence>
r </extension>
r </complexContent>
r </complexType>
g <complexType name="AccessoryUnitPropertyType">
= <sequence minOccurs="0">
<element ref="cad:AccessoryUnit"/>
T </sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>
+ </complexType>
<element name="buildingInstID" type="string" substitutionGroup="bldg:_GenericApplicationPropertyOfBuildingInstallation"/>
<element name="cpUnit2" type="cad:CommonPropertyUnitPropertyType" substitutionGroup="bldg: GenericApplicationPropertyOfBuildingInstallation"/>
<element name="CommonPropertyUnit" type="cad:CommonPropertyUnitType" substitutionGroup="cad:LegalSpaceBuildingUnit"/>
= <complexType name="CommonPropertyUnitType">
= <complexContent>
<extension base="cad:LegalSpaceBuildingUnitType">
= <sequence>
<element name="cpuType" type="gml:CodeType"/>
<element name="bil" type="bldg:BuildingInstallationPropertyType" maxOccurs="unbounded"/>
<element name="apUnitl" type="cad:apartmentUnitPropertyType" maxOccurs="unbounded"/>
r </sequence>
</extension>
+ </complexContent>
F </complexType>

Figure A-1 Cadastre ADE.xsd.

113

= <complexType name="CommonPropertyUnitPropertyType">
= <sequence minOccurs="0">
<element ref="cad:CommonPropertyUnit"/>
</sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>
</complexType>
<element name="LegalSpaceBuilding" type="cad:LegalSpaceBuildingType" substitutionGroup="cad:LegalSpaceBuildingUnit"/>
= <complexType name="LegalSpaceBuildingType">
= <complexContent>
= <extension base="cad:LegalSpaceBuildingUnitType">
] <seguence>
<element name="1sbID" type="string"/>
<element name="absBu" type="bldg:AbstractBuildingType"/>
F </sequence>
: </extension>
I </complexContents>
F </complexType>
] <complexType name="LegalSpaceBuildingPropertyType'>
E <sequence minOccurs="0">
<element ref="cad:LegalSpaceBuilding"/>
- </sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>
F </complexType>
<element name="LegalSpaceBuildingUnit" type="cad:LegalSpaceBuildingUnitType" abstract="true" substitutionGroup="cad:SpatialuUnit"/>
] <complexType name="LegalSpaceBuildingUnitType" abstract="true">
<complexContent>
<extension base="cad:SpatialUnitType">
] <sequence>
<element name="rooml" type="bldg:RoomType" maxCccurs="unbounded"/>
F </ sequence:
F </extension>
F </complexContent>
F </complexTypes>
] <complexType name="LegalSpaceBuildingUnitPropertyType">
E <sequence minoccurs="0">
<element ref="cad:LegalSpaceBuildingUnit"/>
— </sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>
F </complexTypes>

Figure A-1 (Continued).

<complexType name="SpatialUnitType" abstract="true">
<complexContent>
<extension base="core:AbstractCityoObjectType">
= <seguence>
<element name="suID" type="string"/>
<element name="area" type="gml:AreaType"/>

- </seguence>

- </extension>

, </complexContent>

- </complexType>

= <complexType name="SpatialUnitPropertyType">
E <sequence minOccurs="0">

<element ref="cad:SpatialUnit"/>

F </sequence>

<attributeGroup ref="gml:AssociationAttributeGroup"/>
- </complexType>

= <complexType name="apartmentUnitType">
<complexContent>
<extension base="cad:LegalSpaceBuildingUnitType">
= <seguence>
<element name="unitNo" type="string"/>
<element name="roomCount" type="integer"/>
<element name="floorNo" type="gml:CodeType"/>

- </sequence>

- </extension>

- </complexContent>

- </complexType>

= <complexType name="apartmentUnitPropertyType">
E <segquence minOccurs="0">

<element ref="cad:apartmentUnit"/>
F </sequence>
<attributeGroup ref="gml:AssociationAttributeGroup"/>
- </complexType>
-</schema>

<element name="volume" type="gml:VolumeType"/>

<element name="accUnitl" type="cad:AccessoryUnitPropertyType" minOccurs="0"

<element name="roomID" type="string" substitutionGroup="bldg:_GenericApplicationPropertyofRoom"/>
<element name="1sbUnitl" type="cad:LegalSpaceBuildingUnitPropertyType" substitutionGroup="bldg: GenericApplicationPropertyOfRoom"/>
<element name="SpatialUnit" type="cad:SpatialUnitType" abstract="true" substitutionGroup="core:_ CityObject"/>

<element name="apartmentUnit" type="cad:apartmentUnitType" substitutionGroup="cad:LegalSpaceBuildingUnit"/>

maxOccurs="unbounded" />

<element name="cpUnitl" type="cad:CommonPropertyUnitPropertyType" minOccurs="0" maxOccurs="unbounded"/>

Figure A-1 (Continued).

114

115

AccessoryUnit Typeaml E3 1

<?xml-stylesheet type='text/xsl' href='./CodelistDictionary-v32.xsl'?><Dictionary xmlns="http://www.opengis.net/qml"
xmlns:gml="http://www.opengis.net/gml" xmlns:xsi="http://wm.w3.0rq/2001/XMLSchema-instance"
Hogml:id="AccessoryUnitType" xsi:schemalocation="http://www.opengis.net/gml null">
H <description>
</description>
<identifier codeSpace="file:///C:/ShapeChange/output/CadastreADESchema'">AccessoryUnitType</identifier>
H <dictionaryEntry>
8 M <Definition gml:id="_7651 9624">
IS <description>
10 </description#
11 <identifier codeSpace="">Garage</identifier>
12 </Definition>

ST SRS, R O

3 <«/dictionaryEntry>

14 H <dictionaryEntry>

15 <Definition gml:id="_7651 9625">
16 O <description>

L </description>

8 <identifier codeSpace="">Storeroom</identifier>
9 - </Definition>

0 F </dictionaryEntry>

~</Dictionary>

Figure A-2 Codelist of accessory unit in xml.

| ;Jl = Aoartiazml £ -E LegalProperty Type xml £1 IE Roof Type xml J}
<?xml-stylesheet type='text/xsl' href='./CodelistDictionary-v32.xsl'?><Dictionary
xmlns="http://www.opengis.net/gml" xmlns:gml="http://www.opengis.net/gml"
xmlns:xsi="http://vww.w3.0rg/2001/XML.5chema-instance" gml:id="LegalPropertyType"
xsi:schemalocation="http://www.opengis.net/gml null">
E <description>
r </descripticn>

<identifier codeSpace="file:///C:/ShapeChange/output/CadastreADESchema">LegalPropertyType</identifier>
- <dictionaryEntry>
<Definition gml:id="_22983 28972">
= <description>

ginstallation Type xml £3 l B Building Type xml J] B CommanProperty UnitR:

- </description>
<identifier codeSpace="">ApartmentUnit</identifier>
. </Definition>
r </dictionaryEntry>
J <dictionaryEntry>
<Definition gml:id="_22983 28973"
= <description>
- </descriptions
<identifier codeSpace="">CommonPropertyUnit</identifier>
— </Definition>
r </dictionaryEntry>
0 <dictionaryEntry>
<Definition gml:id="_22983_28974">
= <description>

r </description>
<identifier codeSpace="">AccessoryUnit</identifier>
- </Definition>
r </dictionaryEntry>
~</Dictionary>

Figure A-3 Codelist of legal property type in xml.

116

<?xml-stylesheet type='text/xsl' href='./CodelistDictionary-v32.xsl'?><Dictionary xmlns="http://www.opengis.net/gml"
xmlns:gml="http: //www.opengis.net/gml" xmlns:xsi="http://www.w3.orq/2001/XMLSchema-instance" gml:id="FloorNo"
xsi:schemalocation="http://www.opengis.net/gml null">
E <description>
F </description>
<identifier codeSpace="file:///C:/ShapeChange/output/CadastreADESchema">FloorNo</identifier>
H <dictionaryEntry>
<Definition gml:
= <description>

g

="_7652_9626">

F </description>
<identifier codeSpace=""»>1</identifier>

E </Definition>

r </dictionaryEntry>

H <dictionaryEntry>

<Definition gml

= <description>

- </description>
<identifier codeSpace="">2</identifier>

- </Definition>

r </dicticnaryEntry>

0 <«dictionaryEntry>

<Definition gml:

-] <description>

F </description>
<identifier codeSpace=""»3</identifier>

F </Definition>

F </dictionaryEntry>

H <dictionaryEntry>

E <Definition gml:id="_7652_9629">
<description>4th Fleor</description>
<identifier codeSpace="">4</identifier>

F </Definition>

r </dictionaryEntry>

ﬁ <dictionaryEntry>

= <Definition gml:id="_7652_9630">
<description>5th Fleor</description>
<identifier codeSpace="">5</identifier>

i </Definition>

r </dictionaryEntry>

H <dictionaryEntry>

E <Definition gml:id="_7652_9631">
<description>6th Floor</description>
<identifier codeSpace="">6</identifier>

. </Definition>

t </dictionaryEntry>

0 «dictionaryEntry>

E <Definition gml:id="_7652_28531">
<description>UG = Underground</description>
<identifier codeSpace="">UG</identifier>

- </Definition>

r «</dictionaryEntry>

~</Dictionary>

i="_7652_9627">

="_7652_9628">

Figure A-4 Codelist of floor number in xml.

117

Installation Type xml _-Jl 5 Building Type xml di E CommonPropertyLrit Type ol £3 l [Foorhloam! £] &l LegalProperty Typeamil £ B RoofTypeal B3

<?xml-styleshest type='text/xsl' href='./CodelistDictionary-v32.xsl'?><Dictionary xmlns="http://www.opengis.net/qml"
smlns:gml="http://www.opengis.net " oxmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" gml:id="RoofType"
xsi:schemalocation="http://www.opengis.net/gml null">
E <description>
r </description>
<identifier codeSpace="file:///C:/ShapeChange/output/CadastreADESchema">RoofType</identifier>
0 <dictionaryEntry>
<Definition gml:id="_22979 28960">
= <description>
F </description>
<identifier codeSpace="">Concrete</identifier>
F </Definition>
F </dictionaryEntry>
H <«dictionaryEntry>
<Definition gml:id="_22979 28961">
] <description>
. </description>
<identifier codeSpace:"">Shingle</identifier4
r </Definition>
r </dictionaryEntry>
H <«dictionaryEntry>
<Definition gml:id="_22979 28962">
H <description>
F </description>
<identifier codeSpace="">Metal roofing</identifier>
| </Definition>
r </dictionaryEntry>
H <«dictionaryEntry>
<Definition gml:id="_22979 28963">
H <description>
. </description>
<identifier codeSpace="">Slate</identifier>
- </Definition>
b </dictionaryEntry>
“</Dictionary>

Figure A-5 Codelist of roof type in xml.

118

honPropertylnit Type el &3 [BuidingType sl E3 |[E=] Floarhlo soml L.Jl [LegalProperty Type ol Jl Roof Type il &3

xsi:schemalocation="http://www.opengis.net/qml null":-
=] <description>
F </description>

<identifier codeSpace="file:///C:/ShapeChange/output/CadastreADESchema">BuildingType</identifier>

=] <dictionaryEntry>
<Definition gml:id=" 22981 28367">
<description>
- </description>
<identifier codeSpace="">Concorete</identifier>
F </Definition>
- </dictionaryEntry>
=] <«dictionaryEntry>
<Definition gml:id="_22381 28965">
= <description>
- </description>»

<identifier codeSpace="">Traditional</identifier>
F </Definitiony>
- </dictionaryEntry>
-] <«dictionaryEntry>
<Definition gml:id="_ 22981 28968">
= <description>
- </description>
<identifier code3pace="">Banglow</identifier>
E </Definition>
- </dictionaryEntry>
=] <dictionaryEntry>
<Definition gml:id=" 22381 28370">
= <description>
F </description>
<identifier codeSpace="">Cottage</identifier>
- </Definition>
- </dictionaryEntry>
=] «dictionaryEntry>
<Definition gml:id="_ 22981 28966">
= <description>
- </description>
<identifier codeSpace="">Temporary</identifier>
- </Definition>
+ </dictionaryEntry>
=] <«dictionaryEntry>
<Definition gml:id=" 22981 28371">
= <description>
- </description>
<identifier codeSpace=""»0therz</identifier>
F </Definition>
+ </dictionaryEntry>
“</Dictionary>

<?xml-stylesheet type='text/xsl' href='./CodelistDictionary-v32.xsl'?><Dictionary xmlnz="http://www.opengis.net/gml"
xmlnz:gml="http://www.opengis.net/gml" xmlns:xsi="http://www.w3.orq/2001 /XMl S5chema-instance" gml:id="BuildingType"

Figure A-6 Codelist of building type in xml.

119

APPENDIX B

THE SQL SERVER 2008 DATA TYPES

Table B-1 String types.

Data type Description Storage

char(n) Fixed width character string. Maximum 8,000 Defined width
characters

varchar(n) Variable width character string. Maximum 2 bytes + number of chars
8,000 characters

varchar(max) Variable width character string. Maximum 2 bytes + number of chars
1,073,741,824 characters

text Variable width character string. Maximum 4 bytes + number of chars
2GB of text data

nchar Fixed width Unicode string. Maximum 4,000 Defined width x 2
characters

nvarchar Variable width Unicode string. Maximum
4,000 characters

nvarchar(max) Variable width Unicode string. Maximum
536,870,912 characters

ntext Variable width Unicode string. Maximum
2GB of text data

bit Allows 0, 1, or NULL

binary(n) Fixed width binary string. Maximum 8,000
bytes

varbinary Variable width binary string. Maximum 8,000

varbinary(max)

image

bytes
Variable width binary string. Maximum 2GB
Variable width binary string. Maximum 2GB

121

Table B-2 Number types.

Datatype Description Storage
tinyint Allows whole numbers from 0 to 255 1 byte
smallint Allows whole numbers between -32,768 and 32,767 2 bytes

) Allows whole numbers between -2,147,483,648 and
int 4 bytes
2,147,483,647

o Allows whole numbers between -
bigint 8 bytes
9,223,372,036,854,775,808 and 9,223,372,036,854,775,807

Fixed precision and scale numbers.

Allows numbers from -10738 +1 to 10738 —1.

The p parameter indicates the maximum total number of

. digits that can be stored (both to the left and to the right of ~ 5-17

decimal(p,s)
the decimal point). p must be a value from 1 to 38. Default ~ bytes

is 18.

The s parameter indicates the maximum number of digits
stored to the right of the decimal point. s must be a value

from 0O to p. Default value is 0

Table B-2 (Continued).

122

Data type

Description

Storage

numeric(p,s)

smallmoney

money

float(n)

real

Fixed precision and scale numbers.

Allows numbers from -10°38 +1 to 10738 —1.

The p parameter indicates the maximum total number of
digits that can be stored (both to the left and to the right of
the decimal point). p must be a value from 1 to 38. Default
is 18.

The s parameter indicates the maximum number of digits
stored to the right of the decimal point. s must be a value

from 0 to p. Default value is 0
Monetary data from -214,748.3648 to 214,748.3647
Monetary data from -922,337,203,685,477.5808 to

922,337,203,685,477.5807

Floating precision number data from -1.79E + 308 to 1.79E
+ 308.

The n parameter indicates whether the field should hold 4
or 8 bytes. float(24) holds a 4-byte field and float(53) holds
an 8-byte field. Default value of n is 53.

Floating precision number data from -3.40E + 38 to 3.40E +

38

5-17
bytes

4 bytes

8 bytes

40r8
bytes

4 bytes

Table B-3 Date types.

123

Data type Description Storage
] From January 1, 1753 to December 31, 9999 with an
datetime o 8 bytes
accuracy of 3.33 milliseconds
) From January 1, 0001 to December 31, 9999 with an
datetime2 6-8 bytes
accuracy of 100 nanoseconds
) From January 1, 1900 to June 6, 2079 with an accuracy
smalldatetime _ 4 bytes
of 1 minute
Store a date only. From January 1, 0001 to December
date 3 bytes
31,9999
time Store a time only to an accuracy of 100 nanoseconds 3-5 bytes
] The same as datetime2 with the addition of a time zone
datetimeoffset 8-10 bytes

timestamp

offset

Stores a unigue number that gets updated every time a
row gets created or modified. The timestamp value is
based upon an internal clock and does not correspond to
real time. Each table may have only one timestamp

variable

124

Table B-4 Other data types.

Data type Description

) Stores up to 8,000 bytes of data of various data types, except
sql_variant _
text, ntext, and timestamp

uniqueidentifier Stores a globally unique identifier (GUID)

xml Stores XML formatted data. Maximum 2GB
cursor Stores a reference to a cursor used for database operations
table Stores a result-set for later processing

B-5 Spatial Data Types

There are two types of spatial data such as:

(1) The geometry data type supports planar, or Euclidean (flat-earth), data.

(2) The geometry data type both conforms to the Open Geospatial Consortium
(OGC) Simple Features for SQL Specification version 1.1.0 and is compliant with
SQL MM (ISO standard).

The geometry and geography data types support sixteen spatial data objects,
or instance types. However, only eleven of these instance types are instantiable; you
can create and work with these instances (or instantiate them) in a database. the ten
instantiable types of the geometry and geography data types are Point, MultiPoint,
LineString, CircularString, MultiLineString, = CompoundCurve, Polygon,
CurvePolygon, MultiPolygon, and GeometryCollection. There is one additional

instantiable type for the geography data type: FullGlobe.

125

The figure below depicts the geometry hierarchy upon which the geometry

and geography data types are based. The instantiable types of geometry and

geography are indicated in blue.

Geometry
S
Point Surface GeomCollection
Iy r'y
LineString Polygon MultiSurface MultiCurve MultiPoint
A L
MultiPolygon MultiLineString
Simple types
Point zero-dimensional object representing a single location and may contain Z
(elevation) and M (measure) values
LineString one-dimensional object representing a sequence of points and the line

segments connecting them

CircularString

collection of zero or more continuous circular arc segments (a curved
segment defined by three points in a two-dimensional plane)

CompoundCurve

collection of zero or more continuous CircularString or LineString

Polygon

two-dimensional surface stored as a sequence of points defining an
exterior bounding ring and zero or more interior rings

CurvePolygon

topologically closed surface defined by an exterior bounding ring and
zero or more interior rings

Collective types

MultiPoint

collection of zero or more points

MultiLineString

collection of zero or more geometry or geography LineString instances

MultiPolygon

collection of zero or more Polygon instances

GeometryCollection

collection of zero or more geometry or geography instances

APPENDIX C

DDL SCRIPT FOR MS SQL SERVER 2008

127

IF EXISTS (SELECT * FROM dbo.syscbjects WHERE id = object id('[FE yU
ALTER TABLE [AccesscoryUnit] DROP CONSTRAINT [FE AccessoryUnit ApartmentUnit]
GO

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object id('[FF 2

| 1') AND OBJECTPROPERTY (id, 'T
ALTER TABLE [AccesscoryUnit] DROP CONSTRAINT [FE_AccessoryUnit_ Building]

GO

IF EXISTS (SELECT * FROM dbo.syscbjects WHERE id = object id('[FE_ rtmentUnit Room]') AND OBJECTPROPERTY (id, 'IsForeignKey') = 1)
ALTER TABLE [ApartmentUnit] DROP CONSTRAINT [FK_ApartmentUnit_Room]

GO

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object id('[FF_
ALTER TABLE [Building] DROP CONSTRAINT [FK_Building Building]
GO

1') AND OBJECTPROPERTY (id, 'I

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object id('[FE_Building Building 02]') AND OBJECTPROPERTY(id, 'IsForeignKey') = 1)
ALTER TABLE [Building] DROP CONSTRAINT [FKﬁBuildingiBuilding702]
GO

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object id('[FE_
ALTER TABLE [Building] DROP CONSTRAINT [FK _Building CityObjectl]
GO

ling CityObject]') AND OBJECTPROPERTY (id, 'IsForeignEKey') = 1)

IF EXISTS (SELECT * FROM dbo.syscbjects WHERE id = object id('[FK Buil
ALTER TABLE [Building] DROP CONSTRAINT [FE_Building SurfaceGeometry]
GO

yv]'} AND OBJECTPROPERTY (id, 'IsForeignKey') = 1)

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object_id{':??_Bu;'
ALTER TABLE [Building] DROP CONSTRAINT [FE_Building SurfaceGeometry 02]

~02]1') AND OBJECTPROPERTY (id, '

GO

IF EXISTS (SELECT * FROM dbo.syscbjects WHERE id = object_id(':?H_Bu;' 1') AND OBJECTPROPERTY(id, 'IsForeignEey') = 1)
ALTER TABLE [Building] DROP CONSTRAINT [FE_Building SurfaceGecmetry 03]

GO

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object id('[FE_Building SurfaceGeometry 04]') AND OBJECTPROPERTY (id, 'IsForeignKey') = 1)
ALTER TABLE [Building] DROP CONSTRAINT [FE_Building SurfaceGecmetry 04]

GO

Figure C-1 Drop foreign key (FK) constraints.

128

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object id('I[F
ALTER TABLE [Building] DROP CONSTRAINT [FK Building SurfaceGeometry 05]
GO

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object_id{':?K_Bu;;é;nd nstallation Bu
ALTER TABLE [BuildingInstallation] DROP CONSTRAINT [FEK_BuildingInstallation_ Building]
GO

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object id('[FK_BuildingInstallation |
ALTER TABLE [BuildingInstallation] DROP CONSTRAINT [FK BuildingInstallation_CityObject]

ityObject] ') AND OBJECTPROPERTY (id, 'IsForeignEey') = 1)

GO

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object id('[FE 1 'IsForeignRey') = 1)
ALTER TABLE [BuildingInstallation] DROP CONSTRAINT [ER.. Bulldlnglnstallatlon Imp11c1tGeometry]

GO

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object id(' BuildingInstallation O ') AND OBJECTPROPERTY (id, 'IsForeignEKey') = 1)
ALTER TABLE [BuildingInstallation] DROP CONSTRAINT [FK BuildingInstallation_ ObjectClass]

GO

IF EXISTS (SELECT * FROM dbo.syscbjects WHERE id = object id(’ . BuildingInstallation ') AND OBJECTPROPERTY (id, 'IsForeignKey') = 1)
ALTER TABLE [BuildingInstallation] DROP CONSTRAINT [FK_: Bulldlnqlnstallatlon SurfaceGeometry]

GO

IF EXISTS (SELECT * FROM dbo.syscbjects WHERE id = object id('[FK_BuildingTn 'IsForeignRey') = 1)

ALTER TABLE [BuildingInstallation] DROP CONSTRAINT [FK BuildingInstallation Room]
GO

IF EXISTS (SELECT * FROM dbo.syscbjects WHERE id = object id(’
ALTER TABLE [CityObject] DROP CONSTRAINT [FEK CityObject oObjectClass]
GO

I
i
-

') AND OBJECTPROPERTY (id, 'IsForeignKey')

IF EXISTS (SELECT * FROM dbo.syscbjects WHERE id = object id(' [FE_CityObj T
ALTER TABLE [CityObjectGroup] DROP CONSTRAINT [FE _CityObjectGroup CityObject 02]
GO

roup

IF EXISTS (SELECT * FROM dbo.syscbjects WHERE id = object 1d{"3'_C;tbeﬁe:tGr:u5 SurfaceGeometry]') AND OBJECTPROPERTY (id, 'IsForeignKey') = 1)
ALTER TABLE [CityObjectGroup] DROP CONSTRAINT [FK _CityObjectGroup SurfaceGeometry]
GO

Figure C-1 (Continued).

129

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object id('[FE G
ALTER TABLE [CityObjectGroup] DROP CONSTRAINT [FK_CityObjectGroup CityObject]
GO

_CityObject]') AND OBJECTPROPERTY(id, 'IsForeignKey')

I
)
-

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object id('[FK
ALTER TABLE [CityObjectMember] DROP CONSTRAINT [FK CltyObgectMember C;tymodel]
GO

yModel] ') AND OBJECTPROPERTY(id, 'IsForeignKey') = 1)

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object id('[FK_Cityor jembar_
ALTER TABLE [CityObjectMember] DROP CONSTRAINT [FK_CityObjectMember ! CLtyObJect]
GO

') AND OBJECTPROPERTY (id, '

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object id('[FK
ALTER TABLE [CommonPropertyUnit] DROP CONSTRAINT [FEK_OtherPropertyUnit Apartmentvnlt]
GO

tmentUnit]') AND OBJECTPROPERTY (id, 'IsForeignKey') = 1)

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object id(’ -tyUnit BuildingInstallation]') AND OBJECTPROPERTY (id, 'IsForeignKey') = 1)
ALTER TABLE [CommonPropertyUnit] DROP CONSTRAINT [FE_ OtherPropertyUnlt _BuildingInstallation]

GO

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = cbject id('[FK OtherPropertyUnit Rocm]') AND OBJECTPROPERTY(id, 'IsForeignKey') = 1)

ALTER TABLE [CommonPropertyUnit] DROP CONSTRAINT [FE_OtherPropertyUnit_Room]

GO

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object id('[FE_CroupToCi t_CityObject]') AND OBJECTPROPERTY (id, 'IsForeignKey') = 1)
ALTER TABLE [GroupToCityObject] DROP CONSTRAINT [FK_GroupToCityObject_ CityObject]

GO

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object id('[FK GroupToCityObject CityObjeefGroup]') AND OBJECTPROPERTY (id, ' ey') = 1)
ALTER TABLE [GroupToCityObject] DROP CONSTRAINT [FK_GroupToCityObject_ CityObjectGroup]

GO

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object id('[FE_ImplicitGeometry_ SurfaceGeometry]') AND OBJECTPROPERTY (id, 'IsForeignKey') = 1)
ALTER TABLE [ImplicitGeometry] DROP CONSTRAINT [FE_ImplicitGeometry_ SurfaceGeometry]

GO

IF EXISTS (SELECT * FROM dbo.syscbjects WHERE id = object id('[FK_ObjectClass_ObjectClass]') AND OBJECTPROPERTY (id, 'IsForeignKey') = 1)
ALTER TABLE [ObjectClass] DROP CONSTRAINT [FK_ObjectClass_ObjectClass]

GO

Figure C-1 (Continued).

130

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object id('[FK_Opening CityObject]') AND OBJECTPROPERTY(id, 'IsForeignKey') = 1)
ALTER TABLE [Opening] DROP CONSTRAINT [FK_Opening_ CityObject]
GO

v]') AND OBJECTPROPERTY (id, 'IsForeignKey') = 1)

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object id('[FE
ALTER TABLE [Opening] DROP CONSTRAINT [FK_Opening_ Impl:.c;tGeometry]

GO

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object id('[FK_Or ing_ObjectClass]') AND OBJECTPROPERTY (id, 'IsForeignKey') = 1)
ALTER TABLE [Opening] DROP CONSTRAINT [FK_Opening ObjectClass]

GO

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object id('[FK ¢ ng_SurfaceGeometryl') AND OBJECTPROPERTY(id, 'IsForeignKey') = 1)

ALTER TABLE [Opening] DROP CONSTRAINT [FK_Opening SurfaceGeometry]
GO

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object id('[FK OpeningToBour = BoundarySurface]') AND OBJECTPROPERTY (id, 'IsForeignKey') = 1)
ALTER TABLE [OpeningToBoundarySurface] DROP CONSTRAINT [FK OpenlngToBoundarySurface BoundarySurface]

GO

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object id('[FK OpeningToBoundarySurface Opening]') AND OBJECTPROPERTY (id, 'IsForeignKey') = 1)
ALTER TABLE [OpeningToBoundarySurface] DROP CONSTRAINT [FK_OpeningToBoundarySurface_Opening]

GO

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object_id(' [FK_Ro v]') AND OBJECTPROPERTY(id, 'IsForeignKey') = 1)

ALTER TABLE [Room] DROP CONSTRAINT [FK_Room_SurfaceGeometry]

GO

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = ob]ect id(' [FK4 ~02]') /AND OBJECTPROPERTY (id, 'IsForeignKey') = 1)

ALTER TABLE [Room] DROP CONSTRAINT [FK_Room_SurfaceGeometry 02]

GO

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object id('[FK_Room Building]') AND OBJECTPROPERTY (id, 'IsForeignKey') = 1)

ALTER TABLE [Room] DROP CONSTRAINT [FK_Room_Building]
GO

IF EXISTS (SELECT * FROM dbo.sysobjects WHERE id = object id('[FK_Room CityObject]') AND OBJECTPROPERTY (id, 'IsForeignKey') = 1)
ALTER TABLE [Room] DROP CONSTRAINT [E‘K_Room_C:.tyOb]ect]
GO

Figure C-1 (Continued).

IF EXISTS (SELECT * FROM dbo.sysobjects
DROP TABLE [AccessoryUnit]

GO

IF EXISTS (SELECT * FROM dbo.sysobjects
DROP TABLE [AccesscryUnitType]

GO

IF EXISTS (SELECT * FROM dbo.sysobjects
DROP TABLE [ApartmentUnit]

GO

IF EXISTS (SELECT * FROM dbo.syscbjects
DROP TABLE [Building]

GO

IF EXISTS (SELECT * FROM dbo.sysobjects
DROP TABLE [BuildingInstallation]

GO

IF EXISTS (SELECT * FROM dbo.syscbjects
DROP TABLE [BuildingTypel

GO

IF EXISTS (SELECT * FROM dbo.sysobjects
DROP TABLE [CityModel]

GO

IF EXISTS (SELECT * FROM dbo.sysobjects
DROP TABLE [CityModelType]

GO

IF EXISTS (SELECT * FROM dbo.sysobjects
DROP TABLE [CityObject]

GO

IF EXISTS (SELECT * FROM dbo.sysobjects
DROP TABLE [CityObjectGroup]

GO

WHERE

WHERE

WHERE

WHERE

WHERE

WHERE

WHERE

WHERE

WHERE

WHERE

id

id

id

id

id

id

id

id

id

id

object id(' [z

object id(' [z

object id(' [:

tmentUnit] ') AND OBJECTPROPERTY (id,

object id(']

') AND OBJECTPROPERTY (id, 'IsUserTable') =

object id{'[BuildingInstallation]') AND OBJECTPROPERTY (id,

object id('l[

object id('!I

object id('!I

object id('[

object id('!|

Figure C-2 Drop tables.

131

IF EXISTS (SELECT * FROM dbo.sysobjects
DROP TABLE [CityObjectMember]

GO

IF EXISTS (SELECT * FROM dbo.syscbjects
DROP TABLE [CommonPropertyUnit]

GO

IF EXISTS (SELECT * FROM dbo.sysobjects
DROP TABLE [CommonPropertyUnitType]

GO

IF EXISTS (SELECT * FROM dbo.syscbjects
DROP TABLE [FloorNol

GO

IF EXISTS (SELECT * FROM dbo.sysobjects
DROP TABLE [GroupToCityObject]

GO

IF EXISTS (SELECT * FROM dbo.sysobjects
DROP TABLE [ImplicitGeometry]

GO

IF EXISTS (SELECT * FROM dbo.sysobjects
DROP TABLE [LegalPropertyTypel

GO

IF EXISTS (SELECT * FROM dbo.sysobjects
DROP TABLE [ObjectClass]

GO

IF EXISTS (SELECT * FROM dbo.sysobjects
DROP TABLE [Opening]

GO

IF EXISTS (SELECT * FROM dbo.syscbjects
DROP TABLE [OpeningToBoundarySurface]
GO

WHERE

WHERE

WHERE

WHERE

WHERE

WHERE

WHERE

WHERE

WHERE

WHERE

id

id

id

id

id

id

id

id

id

id

object id('[IsUserTab
object_id{':uonnon?:o;er*lfh;t:'} AND OBJECTPROPERTY (id, 'IsUserT
object id(' [CommonPropertyUnitT IsU
object id('I
object_id('I

object id('[I

object_id('[L

object_id('I

object id{'[Openingl'} AND OBJECTPROPERTY({id, 'IsUserTable') = 1)

object id('[Op

Figure C-2 (Continued).

132

133

DROP TABLE [RoofTypel
GO

DROP TABLE [Rooml
GO

DROP TABLE [SurfaceGeometry]
GO

DROP TABLE [ThematicSurface]
GO

IF EXISTS (SELECT * FROM dbo.

IF EXISTS (SELECT * FROM dbo.

IF EXISTS (SELECT * FROM dbo.

IF EXISTS (SELECT * FROM dbo.

sysobjects

sysobjects

sysobjects

sysobjects

WHERE

WHERE

WHERE

WHERE

id

id

id

id

object id{'[Room]') AND OBJECTPROPERTY (id, 'IsUserTable'

object id{'[s

object id{'[ThematicSu

Figure C-2 (Continued).

134

CREATE TABLE [AccessoryUnit]
=4
[ID] int NOT NULL IDENTITY (1, 1) NOT FOR REPLICATION,
[accessoryUnitType] tinyint NULL,
[buildingID] int NULL,
[zrea] real NULL,
[areaUnit] wvarchar({-0) NULL,
[voelume] real NULL,
[volumeUnit] warchar{-0) NULL,
[apartmentUnitID] int NULL

CREATE TABLE [AccessoryUnitTypel]
(
[ID] tinyint NOT NULL,
[name] wvarchar(-50) NULL,
[description] wvarchar (50} NULL
)
GO

CREATE TABLE [ApartmentUnit]
=i
[ID] int NOT NULL IDENTITY (1, 1) NOT FOR REPLICATION,
[unitNo] varchar(l10) NOT NULL,
[roomID] int NULL,
[roomCount] tinyint NULL,
[floorNo] tinyint NULL,
[z2rea] real NULL,
[areaUnit] wvarchar({(l000) NULL,
[volume] real NULL,
[volumeUnit] warchar{(1000) NULL

Figure C-3 Create tables.

135

CREATE TABLE [Building]
I
[ID] int NOT NULL,
[buildingNo] varchar(i0) NOT NULL,
(plotNo] varchar(256) NOT NULL,
[buildingParentID] int NULL,
[buildingRootID] int NULL,

[buildingType] tinyint NULL, -- SIG3D: Classification of the actual usage of Building or BuildingPart as given by the relevant national regulations, information communities
or specific applications.
[roofType] tinyint NULL, -- bSI: Basic configuration of the roof in terms of the different roof shapes

[roofTypeCodaspace] varchar(4000) NULL,
[year0fConstruction] date NULL, == SIG3D: Year of completion of this Building or BuildingPart.

[yearOfDemolition] date NULL, -- SIG3D: Year of demolition of this Building or BuildingPart.
[measuredHeight] float NULL, -- SIG3D: Measured or calculated distance between the highest point od the roof construction and the lowest point of the terrain intersection of
the building
[storeysAboveGround) int NULL, -- 8SIG3D: Number of storeys mainly above ground
[storeyHeightsAboveGround] varchar(4000) NULL, -- 5IG3D: List of heights for each storey abowe ground
[storeyHeightAGUnit] varchar(4000) NULL,
[storeysBelowGround] int NULL, -- SIG3D: Number of storeys mainly below ground
[storeyHeightsBelowGround] varchar(4000) NULL, -- SIG3D: List of heights for each storey below ground
[storeyHeightBGUnit] varchar(4000) NULL,
[lod0FootPrintID] int NULL, -- SIG3D: Relation to a LODO foot print geometry of Building or BuildingPart. The LOD concept for buildings or building parts is defined in
chapter ...
[lod1MultiSurfaceID] int NULL, -- S§IG3D: Relation to a LOD1 surface geometry of Building or BuildingPart,, The LOD concept for buildings or building parts is defined in
chapter ... Geometrically, the LODl solid geometry and surface geometry arel.identical.
[lod1S0lidID] int NULL, -- 5IG3D: Relation to a LODL solid geometry of Building ‘ofl BuildingPartiThe LOD concept for buildings or building parts is defined in chapter ...
[lod4MultiSurfaceID] int NULL, -- SIG3D: Relation to a LOD4 surface gecmetry of Building or BuildingPart. The LOD concept for buildings or building parts is defined in
chapter ... A LOD4 surface geometry may be used in addition to a LOD4 solid geometry (e.q. to model roof overhangs), or it may replace a 10D 4 solid geometry (e.g. buildings
without ground plate).
[lod450lidID) int NULL -- SIG3D: Relation to a 1LOD4 solid geometry of Building or BuildingPart. The LOD concept for buildings or building parts is defined in chapter ...
)
GO

Figure C-3 (Continued).

136

CREATE TABLE [BuildingInstallation]
f(
[ID] int NOT NULL IDENTITY (1, 1) NOT FOR REPLICATION,
[objectClassID] tinyint NOT NULL,
[buildingID] int NULL,
[roomID] int NULL,
[1od4BREPID] int NULL,
[lod4ImplicitRefPoint] geometry NULL,

[lod40OtherGeom] geometry NULL, -—- SIG3D: LOD4 geometry of BuildingInstallation
[lod4ImplicitRepID] int NULL,
[lod4ImplicitTransformation] varchar(1000) NULL

R
GO

CREATE TABLE [BuildingType]
f(
[ID] tinyint NOT NULL,
[name] wvarchar(-0) NULL,
[description] varchar(50) NULL
r)
GO

CREATE TABLE [CityModel]

f(
[ID] int NOT NULL IDENTITY (., 1) NOT FOR REPLICATION,
[GMLID] varchar(25¢) NULL,
[cityModelType] tinyint NULL,
[description] varchar(4000) NULL,
[envelope] geometry NULL,
[creationDate] datetimeoffset(’/) NULL,
[terminationDate] datetimeoffset(7) NULL,
[lastModificationDate] datetimeoffset(7) NULL,
[updatingPerson] varchar(25¢) NULL,
[reasonForUpdate] wvarchar(4000) NULL,
[lineage] varchar(25¢) NULL

Figure C-3 (Continued).

137

CREATE TABLE [CityModelType]

=N ¢
[ID] tinyint NOT NULL,
[name] wvarchar(-570) NULL,
[description] wvarchar(S0) NULL
)
GO

CREATE TABLE [CityObject]

CREATE TABLE [CityObjectGroupl]

H(
[IDP] int NOT NULL IDENTITY (., 1) NOT FOR REPLICATION,
[parentCityObjectID] int NULL,
[BREPID] int NULL,
[otherGeom] geometry NULL
s)
GO

CREATE TABLE [CityObjectMember]
o

[cityModelID] int NOT NULL,
[cityObjectID] int NOT NULL

H(
[ID] int NOT NULL IDENTITY (., 1) NOT FOR REPLICATION,
[objectClassID] tinyint NOT NULL,
[GMLID] wvarchar(Z2-5¢) NULL,
[terminationDate] datetimeoffset(’) NULL,
[relativeToTerrain] varchar(Z5¢) NULL, - t the city obj
[relativeToWater] wvarchar(2-5¢) NULL, —— Location of the €ity objec
[envelope] geometry NULL,
[lastModificationDate] datetimeoffset (7) NULL,
[updatingPerson] wvarchar(Z5¢) NULL,
[reasonForUpdate] wvarchar(4000) NULL,
[lineage] wvarchar(2:5¢) NULL,
[xmlSource] text NULL
=)
GO

ct relative to the surrounding terrain.

relative to the surrounding water

surface.

Figure C-3 (Continued).

138

CREATE TABLE [CommonPropertyUnit]

H(
[ID] int NOT NULL IDENTITY (., 1) NOT FOR REPLICATION,
[commonPropertyType] tinyint NULL,
[area] real NULL,
[areaUnit] wvarchar(.000) NULL,
[volume] real NULL,
[volumeUnit] varchar(1000) NULL,
[apartmentUnitID] int NULL,
[roomID] int NULL,
[buildingInstallationID] int NULL

=)

GO

CREATE TABLE [CommonPropertyUnitType]

H (
[ID] tinyint NOT NULL,
[name] wvarchar(-7) NULL,
[description] varchar(50) NULL
=)
GO

CREATE TABLE [FlooxNo]

H(
[ID] tinyint NOT NULL,
[name] wvarchar(-_) NULL,
[description] varchar(-57) NULL
=)
GO

CREATE TABLE [GroupToCityObject]

H(
[cityObjectID] int NOT NULL,
[cityObjectGroupID] int NOT NULL,
[role] wvarchar(.000) NULL

=)

GO

Figure C-3 (Continued).

139

CREATE TABLE [ImplicitGeometry]
1
[ID] int NOT NULL IDENTITY (., 1) NOT FOR REPLICATION,

[mimeType] varchar(256) NULL, -- Mime type of the referenced external gecmetric object (attribute libraryObject).

[referenceToLibrary] wvarchar(4000) NULL, -- Base point of the object in the world coordinate system.

[libraryObject] text NULL, -- External link to a prototype geometry.

[relativeBREPID] int NULL, -- Geometry of the prototype, specified in a local coordinate system.

[relativeOtherGeom] geometry NULL -- Mathematical transformation (translation, rotation and scaling) between the prototype geometry and the actual spatial position of the
object.

)
GO

CREATE TABLE [LegalPropertyType]
i
[ID] tinyint NOT NULL,
[name] wvarchar(50) NULL,
[description] varchar(50) NULL
)
GO

CREATE TABLE [ObjectClass]
I
[ID] tinyint NOT NULL,
[className] varchar(25:) NOT NULL,
[superclassID] tinyint NULL
)
GO

CREATE TABLE [Opening]
I
[ID] int NOT NULL IDENTITY (1, 1) NOT FOR REPLICATION,
[objectClassID] tinyint NOT NULL,
[lod4MultiSurfaceID] int NULL, —-- SIG3D: LOD4 surface geometry of Door or Window
[lod4ImplicitRepID] int NULL,
[lod4ImplicitRefPoint] gecmetry NULL,
[lod4ImplicitTransformation] varchar(1000) NULL

Figure C-3 (Continued).

140

CREATE TABLE [OpeningToBoundarySurface]
ER¢
[openingID] int NOT NULL,
[boundarySurfaceID] int NOT NULL
)
GO

CREATE TABLE [RoofType]
7
[ID] tinyint NOT NULL,
[name] wvarchar (-0) NULL,
[description] warchar(50) NULL
GO

CREATE TABLE [Room]

iRt
[ID] int NOT NULL IDENTITY (1,
[buildingID] int NOT NULL,
[lod4MultisurfaceID] int NULL, -— SIG3D: Relation to aLOD4 surface
[lod4S0lidID] int NULL, —-- SIG3D: Relation to a LOD4 solid geol
[legalPropertyType] tinyint NULL

1) NOT FOR REPLICATION,

"
GO

CREATE TABLE [SurfaceGeometry]

i
[ID] int NOT NULL,
[GMLID] wvarchar (25¢) NULL,
[parentID] int NULL,
[rootID] int NULL,
[isSolid] binary(10) NULL,
[isComposite] binary(1() NULL,
[isXLink] binary(10) NULL,
[geometry] geometry NULL,
[solidGecmetry] gecmetry NULL,
[implicitGeometry] geometry NULL,
[cityObjectID] int NULL

)

gecmetry of Reom. The LOD concept for buildings or building parts is defined in

of Room.. The LOD concept for dings or building parts is defined in chapter

chapter ...

Figure C-3 (Continued).

141

=l

CREATE TABLE [ThematicSurface]

[ID] int NOT NULL IDENTITY (I, 1) NOT FOR REPLICATION,
[objectClassID] tinyint NOT NULL,

[roomID] int NULL,

[buildingID] int NULL,

[buildingInstallationID] int NULL,

[loddMultiSurfaceID] int NULL -- SIG3D: Relaticn to a LODY surface geemetry of

is defined in chapter ...

AbstractBoundarySurface, The LOD concept for boundary surfaces of buildings or building parts

Figure C-3 (Continued).

142

ALTER TABLE [AccessoryUnit]

ADD CONSTRAINT [PE_AccessoryUnit]
PRIMARY KEY CLUSTERED ([ID])

GO

ALTER TABLE [AccessoryUnitTypel]

ADD CONSTRAINT [PEK_AccessoryUnitType]
PRIMARY KEY CLUSTERED ([ID])

GO

ALTER TABLE [ApartmentUnit]

ADD CONSTERAINT [PK_BpartmentUnit]
PRIMARY KEY CLUSTERED ([ID])

GO

ALTER TABLE [ApartmentUnit]
ADD CONSTRAINT [Unigque ApartmentUnit] UNIQUE NONCLUSTERED ([unitNo])
GO

ALTER TABLE [Building]

ADD CONSTRAINT [PE_Building]
PRIMARY KEY CLUSTERED ([ID])

GO

ALTER TABLE [Building]
ADD CONSTRAINT [Unique BuildingNo] UNIQUE NONCLUSTERED ([buildingNo])
GO

ALTER TABLE [BuildingInstallation]

ADD CONSTRAINT [PE_BuildingInstallation]
PRIMARY KEY CLUSTERED ([ID])

GO

ALTER TABLE [BuildingType]

ADD CONSTRAINT [PK BuildingTypel
PRIMARY KEY CLUSTERED ([ID])

GO

Figure C-4 Create primary keys (PK), indexes, unique, checks.

143

ALTER TABLE [CityModel]

ADD CONSTRAINT [PR CityModel]
PRIMARY KEY CLUSTERED ([ID])

GO

ALTER TABLE [CityModelTypel]

ADD CONSTRAINT [PR CityModelTypel]
PRIMARY KEY CLUSTERED {[ID])

GO

ALTER TABLE [CityObject]

ADD CONSTRAINT [PE CityObject]
PRIMARY KEY CLUSTERED ([ID])

GO

ALTER TABLE [CityObjectGroupl

ADD CONSTRATNT [PK_CityObjectGroup]
PRIMARY KEY CLUSTERED ([ID]1)

GO

ALTER TABLE [CityObjectMember]
ADD CONSTEBAINT [PK_CitbejectMember]

PRIMARY KEY CLUSTEERED ([CityMDdelID],[CityﬂbjectID]}
GO

ALTER TABLE [CommonPropertyUnitType]

ADD CONSTRAINT [PE CommonPropertylUnitTypel]
PRIMARY KEY CLUSTERED ([ID])

GO

ALTER TABLE [FloorNco]

ADD CONSTRAINT [PE FloorNo]
PRIMARY KEY CLUSTERED ([ID])

ele)

ALTER TABLE [GroupToCityObject]
ADD CONSTRAINT [PK_GroupToCityObject]

GO

PRIMARY KEY CLUSTERED ([cityObjectGroupID], [cityObijectID])

Figure C-4 (Continued).

144

ALTER TABLE [ImplicitGeometryl

ADD CONSTRAINT [PE ImplicitGecmetryl]
PRIMARY KEY CLUSTERED ([ID])

GO

ALTER TABLE [LegalPropertyTypel

ADD CONSTRAINT [PEK LegalPropertyType]
PRIMARY KEY CLUSTERED ([ID])

GO

ALTER TABLE [ObjectClass]

ADD CONSTRAINT [PE ObjectClass]
PRIMARY KEY CLUSTERED ([ID])

GO

ALTER TABLE [Opening]

ADD CONSTRAINT [PK_Opening]
PRIMARY KEY CLUSTERED ([ID])

GO

ALTER TABLE [OpeningToBoundarysSurface]
ADD CONSTRAINT [PE OpeningToBoundarySurfacel]

PRIMARY KEY CLUSTERED ({[boundarySurfacelID], [openingID])
GO

ALTER TABLE [RoofTypel]

ADD CONSTRAINT [PK_ROOnype]
PEIMARY KEY CLUSTERED ([ID]}

GO

ALTER TABLE [Room]

ADD CONSTRAINT [PK Room]
PRIMARY KEY CLUSTERED ([ID])

GO

ALTER TABLE [SurfaceGeocmetry]

ADD CONSTRAINT [PE_SurfaceGeomstry]
PRIMARY KEY CLUSTERED ([ID])

GO

Figure C-4 (Continued).

145

ALTER TABLE [CityModel]

ADD CONSTRAINT [PR CityModel]
PRIMARY KEY CLUSTERED ([ID])

GO

ALTER TABLE [CityModelTypel]

ADD CONSTRAINT [PR CityModelTypel]
PRIMARY KEY CLUSTERED {[ID])

GO

ALTER TABLE [CityObject]

ADD CONSTRAINT [PE CityObject]
PRIMARY KEY CLUSTERED ([ID])

GO

ALTER TABLE [CityObjectGroupl

ADD CONSTRATNT [PK_CityObjectGroup]
PRIMARY KEY CLUSTERED ([ID]1)

GO

ALTER TABLE [CityObjectMember]
ADD CONSTEBAINT [PK_CitbejectMember]

PRIMARY KEY CLUSTEERED ([CityMDdelID],[CityﬂbjectID]}
GO

ALTER TABLE [CommonPropertyUnitType]

ADD CONSTRAINT [PE CommonPropertylUnitTypel]
PRIMARY KEY CLUSTERED ([ID])

GO

ALTER TABLE [FloorNco]

ADD CONSTRAINT [PE FloorNo]
PRIMARY KEY CLUSTERED ([ID])

ele)

ALTER TABLE [GroupToCityObject]
ADD CONSTRAINT [PK_GroupToCityObject]

GO

PRIMARY KEY CLUSTERED ([cityObjectGroupID], [cityObijectID])

Figure C-4 (Continued).

CREATE INDEX [surface geom inx]

OMN [SurfaceCGeocmetry]
WITH FILLFACTOR = S
GO

([GMLID] ASC)

CREATE INDEX [surface geom parent fkx]

ON [SurfaceGeometry]
WITH FILLFACTOR = S0
GO

([parentID] ASC)

CREATE INDEX [surface geom root fkx]

ON [SurfaceGeometry]
WITH FILLFACTOR = 9
(e8]

([rootID] ASC)

CREATE INDEX [surface geom cityob]j fkx]

ON [SurfaceCGeometry]
WITH FILLFACTOR = 2
GO

{[cityObjectID] ASC)

ALTER TABLE [ThematicSurface]
ADD CONSTRAINT [PE ThematicSurface]
PRIMARY KEY CLUSTERED ([ID])

GO

Figure C-4 (Continued).

146

ALTER TABLE
FOREIGN
GO

ALTER TABLE
FOREIGN

ALTER TABLE
FOREIGN

ALTER TABLE
FOREIGN
GO

ALTER TABLE
FOREIGN
GO

ALTER TABLE
FOREIGN
GO

ALTER TABLE
FOREIGN
GO

ALTER TABLE
FOREIGN
GO

ALTER TABLE
FOREIGN
GO

ALTER TABLE
FOREIGN
GO

[AccessoryUnit] ADD CONSTRAINT [FE_AccessoryUnit ApartmentUnit]
KEY ([apartmentUnitID]) REFERENCES [ApartmentUnit] ([ID]) ON DELETE No Action ON UPDATE No Action

[AccessoryUnit] ADD CONSTRAINT [FE_AccessoryUnit Buildingl
KEY ([buildingID]) REFERENCES [Building] ([ID]) ON DELETE No AEction ON UPDATE No Action

[BpartmentUnit] ADD CONSTRAINT [FK_ApartmentUnit_Room]
KEY ([roomID]) REFERENCES [Room] ([ID]) ON DELETE No Action ON UPDATE No Action

[Building] ADD CONSTRAINT [FE Building Building]
KEY ([buildingParentID]) REFERENCES [Building] ([ID]) ON DELETE No Action ON UPDATE No Action

[Building] ADD CONSTRAINT [FE Building Building 02]
KEY ([buildingRootID]) REFERENCES [Building] ([ID]) ON DELETE No Action ON UPDATE No Acticn

[Building] ADD CONSTRAINT [FE Building CityObject]
KEY ([ID]) REFERENCES [CityObject] ([ID]) ON DELETE No Acticn ON UPDATE No Action

[Building] ADD CONSTRAINT [FR Building SurfaceGecmetryl
KEY ([lod0OFcotPrintID]) REFERENCES [SurfaceGeometry] ([ID]) ONMN DELETE No Action ON UPDATE No Action

[Building] ADD CONSTRAINT [FK_Building SurfaceGeometry 0Z]
KEY ([lodiMultisSurfaceID]) REFERENCES [SurfaceGeometry] ([ID]) ON DELETE No Action ON UPDATE No Action

[Building] ADD CONSTRAINT [FK_Building SurfaceGeometry 03]
KEY ([lodlSolidID]) REFERENCES [SurfaceGeomstry] ([ID]) ON DELETE No Action ON UPDATE No Action

[Building] ADD CONSTRAINT [FK_Building SurfaceGeometry 04]
KEY ([lod4MultiSurfaceID])} REFERENCES [SurfaceGeomstry]l ([ID]) ON DELETE No Action ON UPDATE No Action

Figure C-5 Create foreign key (FK) constraints.

147

ALTER TABLE
FOREIGN
GO

ALTER TABLE
FOREIGN

ALTER TABLE
FOREIGN

ALTER TABLE
FOREIGN
GO

ATLTER TABLE
FOREIGN
GO

ATLTER TABLE
FOREIGN
GO

ALTER TABLE
FOREIGN
GO

ALTER TABLE
FOREIGN
GO

ALTER TABLE
FOREIGN
GO

ALTER TABLE
FOREIGN
GO

[AccessoryUnit] ADD CONSTRAINT [FE_AccessorylUnit ApartmentUnit]
KEY ([apartmentUnitID]) REFERENCES [ARpartmentUnit] ([ID]) ON DELETE No Action ON UPDATE No Action

[AccessoryUnit] ADD CONSTRAINT [FE_AccessoryUnit Building]
KEY ([buildingID]) REFERENCES [Building] ([ID]) ON DELETE No Action ON UPDATE No Action

[ApartmentUnit] ADD CONSTRAINT [FK_ApartmentUnit_Room]
KEY ([roomID]) REFERENCES [Room] ([ID]) ON DELETE No Action ON UPDATE No Action

[Building] ADD CONSTRAINT [FE Building Building]
KEY ([buildingParentID]) REFERENCES [Building] ([ID]) ON DELETE No Action ON UPDATE No Action

[Building] ADD CONSTRAINT [FE Building Building 02]
KEY ([buildingRootID]) REFERENCES [Building] ([ID]) ON DELETE No Action ON UPDATE No Acticon

[Building] ADD CONSTRAINT [FE Building CityObject]
KEY ([ID]) REFERENCES [CityObject] ([ID]) ON DELETE No Action ON UPDATE No Action

[Building] ADD CONSTRAINT [FK Building SurfaceGeometryl
KEY ([lodOFcotPrintID]) REFERENCES [SurfaceGeometry] ([ID]) ON DELETE No Action ON UPDATE No Action

[Building] ADD CONSTRAINT [FE Building SurfaceGecmetry 02]
KEY ([lodliMultiSurfaceID]) REFERENCES [SurfaceGeometry] ([ID]) ON DELETE No Action ON UPDATE No Action

[Building] ADD CONSTRAINT [FE Building SurfaceGeometry_ 03]
KEY ([lodlSclidID]) REFERENCES [SurfaceGeometry] ([ID]) ON DELETE No Action ON UPDATE No Action

[Building] ADD CONSTRAINT [FE Building SurfaceGeometry_ 04]
KEY ([lod4MultiSurfaceID]) REFERENCES [SurfaceGeometry] ([ID]) ON DELETE No Action ON UPDATE No Action

Figure C-5 (Continued).

148

ALTER TABLE
FOREIGN
GO

ATLTER TABLE
FOREIGN
GO

ATLTER TABLE
FOREIGN

ATLTER TABLE
FOREIGN

ATLTER TABLE
FOREIGN
GO

ATLTER TABLE
FOREIGN
GO

ALTER TABLE
FOREIGN
GO

ALTER TABLE
FOREIGN
GO

ATLTER TABLE

FOREIGN

ATLTER TABLE
FOREIGN

[cityObjectGroup] ADD CONSTRAINT [FE cityObjectGroup cityoObject]
KEY ([ID]) REFERENCES [CityObject] ([ID]) ON DELETE No Action ON UPDATE No Action

[CityObjectMember] ADD CONSTRAINT [FE_CityObjectMember CityModell]
KEY ([cityModelID]) REFERENCES [CityModel] ([ID]) ON DELETE No Action ON UPDATE No Action

[CityObjectMember] ADD CONSTRAINT [FE_CityObjectMember CityObject]
KEY ([cityObjectID]) REFERENCES [CityObject] ([ID]) ON DELETE No Action ON UPDATE No Action

[CommonPropertyUnit] ADD CONSTRAINT [FE_OtherPropertylUnit ApartmentUnit]
KEY ([apartmentUnitID]) REFERENCES [ApartmentUnit] ([ID]) ON DELETE No Action ON UPDATE No Action

[CommonPropertyUnit] ADD CONSTRAINT [FE OtherPropertyUnit BuildingInstallation]
KEY ([buildingInstallationID]) REFERENCES [BuildingInstallation] ([ID]) ON DELETE No Action ON UPDATE No Action

[CommonPropertyUnit] ADD CONSTRAINT [FE OtherPropertyUnit Room]
KEY ([roomID]) REFERENCES [Rocm] ([ID]) ON DELETE No Action ON UPDATE No Action

[GroupToCityObject] ADD CONSTRAINT [FE GroupToCityObject CityObject]
KEY ([cityObjectID]) REFERENCES [CityObject] ([ID]) ON DELETE No Action ON UPDATE No Action

[GroupToCityobject] ADD CONSTRAINT [FE GroupToCityobject CityobjectGroupl
KEY ([cityObjectGroupID]) REFERENCES [CityObjectGroup] ([ID]) ON DELETE No Action ON UPDATE No Action

[ImplicitGeometry] ADD CONSTRAINT [FE_ImplicitGeometry SurfaceGeometryl
KEY ([relativeBREPID]) REFERENCES [SurfaceGeometry] ([ID]) ON DELETE No Action ON UPDATE No Action

[ObjectClass] ADD CONSTRAINT [FE_ObjectClass_ ObjectClass]
KEY ([superclassID]) REFERENCES [ObjectClass] ([ID]) ON DELETE No Action ON UPDATE No Action

Figure C-5 (Continued).

149

150

ALTER TABLE [Opening] ADD CONSTRAINT [FE_Opening CityObject]
FOREIGN KEY ([ID]) REFERENCES [CityObject] ([ID]) ON DELETE No Action ON UPDATE No Action

ALTER TABLE [Opening] ADD CONSTRAINT [FE_Opening ImplicitGecmetry]
FOREIGN KEY ([lod4ImplicitRepID]) REFERENCES [ImplicitGecmetry]l ([ID]) ON DELETE No Action ON UPDATE No Action

ALTER TABLE [Opening] ADD CONSTRAINT [FE Opening ObjectClass]
FOREIGN KEY ([cbjectClassID]) REFERENCES [ObjectClass] ([ID]) ON DELETE No Acticn ON UPDATE No Action
GO

ALTER TABLE [Opening] ADD CONSTRAINT [FE_Opening SurfaceGsometry]
FOREIGN KEY ([lod4MultiSurfaceID]) REFERENCES [SurfaceGeometry] ([ID]) ON DELETE No Action ON UPDATE No Action
GO

ALTER TABLE [OpeningToBoundarySurface] ADD CONSTRAINT [FE_OpeningToBoundarysSurface Boundarysurface]
FOREIGN KEY ([boundarySurfaceID]) REFERENCES [ThematicSurface] ([ID]) ON DELETE No Acticon ON UPDATE No Action
GO

ALTER TABLE [OpeningToBoundarysSurface] ADD CONSTRAINT [FE_OpeningToBoundarysSurface Opening]
FOREIGN KEY ([openingID]) REFERENCES [Opening] ([ID]) ON DELETE No Action ON UPDATE No Action
GO

ALTER TABLE [Room] ADD CONSTRAINT [FE_Room_ SurfaceGeometryl
FOREIGN KEY ([lod4MultisSurfaceID]) REFERENCES [SurfaceGeometry] ([ID]) ON DELETE No Acticn ON UPDATE No Action
GO

ALTER TABLE [Room] ADD CONSTRAINT [FE_Room SurfaceGeometry_ 02]
FOREIGN KEY ([lod4SclidID]) REFERENCES [SurfaceGeometry] ([ID]) ON DELETE No Action ON UPDATE No Action

ALTER TABLE [Room] ADD CONSTRAINT [FK_Room Building]
FOREIGN KEY ([buildingID]) REFERENCES [Building] ([ID])}) ON DELETE No Action ON UPDATE No Action

ALTER TABLE [Room] ADD CONSTRAINT [FE_Room CityObject]
FOREIGN KEY ([ID]) REFERENCES [CityObject] ([ID]) ON DELETE No Action ON UPDATE No Action
GO

Figure C-5 (Continued).

151

ALTER TABLE [SurfaceGeometry] ADD CONSTRAINT [FK_SurfaceGeometry CityObject]
FOREIGN KEY ([cityObjectID]) REFERENCES [CityObject] ([ID]) ON DELETE No Action ON UPDATE No Action
GO

ALTER TABLE [SurfaceGeometry] ADD CONSTRAINT [FK_SurfaceGeometry SurfaceGeometry]
FOREIGN KEY ([parentID]) REFERENCES [SurfaceGeometry] ([ID]) ON DELETE No Action ON UPDATE No Action
GO

ALTER TABLE [SurfaceGeometry] ADD CONSTRAINT [FK_SurfaceGeometry SurfaceGeometry 02]
FOREIGN KEY ([rootID]) REFERENCES [SurfaceGeometry] ([ID]) ON DELETE No Action ON UPDATE No Action
GO

ALTER TABLE [ThematicSurface] ADD CONSTRAINT [FK_ThematicSurface Building]
FOREIGN KEY ([buildingID]) REFERENCES [Building] ([ID]) ON DELETE No Action ON UPDATE No Action
GO

ALTER TABLE [ThematicSurface] ADD CONSTRAINT [FK_ThematicSurface BuildingInstallation]
FOREIGN KEY ([buildingInstallationID]) REFERENCES [BuildingInstallation] ([ID]) ON DELETE No Action ON UPDATE No Action
GO

ALTER TABLE [ThematicSurface] ADD CONSTRAINT [FK_ThematicSurface ObjectClass]
FOREIGN KEY ([objectClassID]) REFERENCES [ObjectClass] ([ID]) ON DELETE No Action ON UPDATE No Action
GO

ALTER TABLE [ThematicSurface] ADD CONSTRAINT [FK _ThematicSurface SurfaceGeometryl]
FOREIGN KEY ([lod4MultiSurfaceID]) REFERENCES [SurfaceGeometry] ([ID]) ON DELETE No Action ON UPDATE No Action
GO

ALTER TABLE [ThematicSurface] ADD CONSTRAINT [FK_ThematicSurface_ Room]
FOREIGN KEY ([roomID]) REFERENCES [Room] ([ID]) ON DELETE No Action ON UPDATE No Action
GO

ALTER TABLE [ThematicSurface] ADD CONSTRAINT [FK_ThematicSurface CityObject]
FOREIGN KEY ([ID]) REFERENCES [CityObject] ([ID]) ON DELETE No Action ON UPDATE No Action
GO

Figure C-5 (Continued).

DELETE FROM ObjectClass;

INSERT INTO ObjectClass (ID , className , superClassID)
VALUES (0, 'Undefined' , NULL) ;

INSERT INTO ObjectClass (ID , className , superClassID)
VALUES (.,' GML',NULL);

INSERT INTO ObjectClass (ID , className , superClassID)
VALUES (2,' Feature',l);

INSERT INTO ObjectClass (ID , className , superClassID)
VALUES (3,' _CityObject',2);

INSERT INTO ObjectClass (ID , className , superClassID)
VALUES (4,'_site',3);

INSERT INTO ObjectClass (ID , className , superClassID)
VALUES (5,'CityObjectGroup',3);

INSERT INTO ObjectClass (ID , className , superClassID)
VALUES (6,' AbstractBuilding',k4);

INSERT INTO ObjectClass (ID , className , superClassID)
VALUES (7,'BuildingPart',6);

INSERT INTO ObjectClass (ID , className , superClassID)
VALUES (&, 'Building',®)s

INSERT INTO ObjectClass (ID , className , superClassID)
VALUES (%, 'BuifldingInstallation',3);

INSERT INTO ObjectClass (ID , className , superClassID)

VALUES (10,' BuildingBoundarySurface',3);

INSERT INTO ObjectClass (ID , className , superClassID)
VALUES (11,'BuildingCeilingSurface',10);

INSERT INTO ObjectClass (ID , className , superClassID)
VALUES (12,'InteriorBuildingWallSurface',10);

INSERT INTO ObjectClass (ID , className , superClassID)
VALUES (13, 'BuildingFloorSurface',b10);

INSERT INTO ObjectClass (ID , className , superClassID)
VALUES (14,'BuildingRoofSurface',b10);

INSERT INTO ObjectClass (ID , className , superClassID)
VALUES (15,'BuildingWallSurface',10);

Figure C-6 Object class instances.

152

INSERT
VALUES

INSERT
VALUES

INSERT
VALUES

INSERT
VALUES

INSERT
VALUES

INSERT
VALUES

INSERT
VALUES

INSERT
VALUES

INSERT
VALUES

INSERT
VALUES

ITNSERT
VALUES

INSERT
VALUES

INSERT
VALUES

INSERT
VALUES

INSERT
VALUES

INSERT
VALUES

INTCO ObjectClass { ID

; className ,

{16, 'BuildingGroundSurface', 10} ;

INTO ObjectClass (ID

, className ,

(17, 'BuildingClosureSurface' ,10) ;

INTO ObjectClass (ID
{18,' BuildingOpening'

INTO ObjectClass (ID

{19, 'BuildingWindow" ,1

INTO ObjectClass { ID

{20, 'Buildingboor'#l8) ;

INTO ObjectClass { ID

21, '"BuildingRoom' 39 ;

INTO Objectclass { ID

{22, 'FeatureCollection

INTO ObjectClass (ID

i~y

s className ,

] iy

; className ,

B):

s className ,

r

, className ,

; className ,
!

gl

s className ,

, className ,

INTCO ObjectClass (ID , className ,

(25, "OterBuildingFloo

INTCO ObjectClass (ID

{(26,' SpatialunIit'’3);

INTCO ObjectClass { ID

rSurfac

, className ,

, className ,

{27,' LegalSpaceBuildingUnit',26);

INTO ObjectClass { ID

{28, 'ApartmentUnit!' ,27

INTO Objectclass { ID

, className ,

y:

; className ,

(29, 'CommonPropertyUnit' ,27) ;

INTO ObjectClass (ID

30, 'AccessoryUnit' ,27

INTCO ObjectClass { ID

31, 'LegalSpaceBuilding"',Z

s className ,

|

; className ,

7Y

superClassID

superClassID

superClassID

superClassID

superClassID

superClassID

superClassID

superClassID

superClassID

0)

{24, 'OuterBuildingCeilingSurface' , 10

superClassID

superClassID

superClassID

superClassID

superClassID

superClassID

superClassID

Figure C-6 (Continued).

153

154

bREAIE PROCEDURE [dbo]. [sp_generate unique App id]

AS

DECLARE @ID AS INT,
@Id3eed AS INT,
BECFTable AS BIT

DECLARE curTable CURSOR FOR SELECT ID FROM ApartmentUnit

OPEN curTable
SELECT EEOFTable = 1
FBEGIN TRANSACTION
-——Get the first record and check for EOF
FETCH curTable INTO @ID
IF @RERRCR <> [GOTO ERRCR HRANDLER
IF @RFETCH_STATUS <>
HBEGIN

SELECT @ECFTable
-END
WHILE NOT (EEOFTable
IBEGIN
SELECT @IdSeed = Seed FROM counter WHERE Unit = 'LE'
UFDATE ZApartmentUnit SET unitNo = '"UNIT-' + LTRIM(@IdSeed +
UPDATE Counter SET Seed = @IdSeed + WHERE Unit = 'LEP'

I
_—

FETCH curTable INTO @ID
IF BE@FETCH STATUS <> 0
=] BEGIN
SELECT REOFTable = 0O
= END
END
COMMIT TRANSACTION
CLOSE curTable
DEALLOCATE curTable
SELECT 'Unique ID updated successfully !!!’
RETURN
ERRCR_HANDLER:
ROLLBACK TRANSACTION
RATSERROR ('Could not update Unique ID.',16,1)
CLOSE curTable
DEALLOCATE curTable

1) WHERE ID = @ID

Figure C-7 Store procedure for generation of unique identifier for apartment unit.

CURRICULUM VITAE

Name: Tashi

Date of Birth: 05 April, 1979
Place of Birth: Punakha, Bhutan.
Education:

2000 Bachelor of Science. Sherubtse College (Affiliated to

Delhi University, India), Tashigang, Eastern Bhutan.

2006 Post Graduation Diploma in Surveying and Mapping

(Course 500 Survey Engineering). Indian Institute of Surveying and Mapping (IIMS),

Survey of India. Uppal, Hyderabad, India.

Publications:

Ongsomwang, S., and Tashi. (2015). 3D Building cadastral design using CityGML.: A
Case study of Thimphu City, Bhutan. Journal of Remote Sensing and GIS
Association of Thailand. Vol. 17 (1). (Accepted on 21 January 2016).

Grants and Fellowships:

Government of India scholarship.
Thailand International Cooperation Agency scholarship.

Position and Place of Work:

Sr. Survey Engineer under Urban Planning Division, Gelephu

Thromde, Sarpang, Bhutan -00975.

