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Abstract

Explicit formulae and recurrence relations for the calculation of generalized B-splines (GB-splines) of arbitrary order
are given. We derive main properties of GB-splines and their series, i.e. partition of unity, shape-preserving properties,
invariance with respect to affine transformations, etc. It is shown that such splines have the variation diminishing property
and are Chebyshevian splines. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Fitting curves and surfaces to functions and data requires the availability of methods which pre-
serve the shape of the data. In practical calculations, we usually deal with data given with prescribed
accuracy. Therefore, we need to develop methods for constructing fair-shape-preserving approxima-
tions that satisfy given tolerances and inherit major geometric properties of the data such as positivity,
monotonicity, convexity, presence of linear sections, etc. Such approximations, based on GB-splines
[12] with automatic choice of tension parameters are suggested in [11].

Until recently, local support bases for computations with generalized splines have been available
only for some special types of splines [3, 13, 15]. This limits the choice of methods when using
generalized splines. In [7-9] local support basis functions for exponential splines were introduced
and their application to interpolation problems was considered. A recurrence relation for rational
B-splines with prescribed poles was obtained in [5]. In [10, 12] one of the authors constructed
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GB-splines for tension generalized splines allowing the tension parameters to vary from interval to
interval.

In this paper, we expand the main results in [12] to GB-splines of arbitrary order. These
GB-splines are nonnegative functions with supports of minimal length which form a partition of
unity. We get explicit formulae for such GB-splines and develop recurrence algorithms for their
calculation. In the particular case of polynomial B-splines, we recover the well-known recurrence
relation for such B-splines [1]. The main properties of GB-splines and their series such as shape-
preserving properties, invariance with respect to affine transformations, etc., are investigated. It is
shown that the GB-spline series is a variation diminishing function and the systems of GB-splines
are weak Chebyshevian systems.

2. GB-splines of arbitrary degree

Let a partition 4:a =xy<x; < --- <xy = b of the interval [a,b] be given to which we associate
a space of splines S¢ whose restriction to a subinterval [x;,x;4;], i =0,...,N—1 is spanned by the
system on linearly independent functions {1,x,...,x" 3, &, ,, ¥, ,}, n>2, and where every function
in S¢ has n—2 continuous derivatives.

Definition 2.1. A generalized spline of order 7 is a function S € S¢ such that
(i) for any x € [x;,x; 1], i=0,...,N — 1,

S(x) = Pipa(x) + S (x) @, n(x) + S (x40 ) Fin(x), (1)
where P;,_, is a polynomial of order n—2, and
) (%) = P(x)=0, r=0,...,n-2,
o P(x) = W i) = 1
(ii)) S € C"*[a,b].

(2)

The functions &, , and ¥, , depend on tension parameters. In practice, we choose @, ,(x)=®; ,( p;,x),
¥, (%) = ¥,,(q:,x), 0< p;, q;<oc. In the limiting case when p;,gq; — oo we require that lim,
D, .(pi,x)=0, x € [x;,x;41] and lim,,_, ., ¥; .(¢:,x) =0, x € [x;, x;41] so that the function § in formula
(1) turns into a polynomial of the order n—2. Additionally, we require that if p,=q,=0 for all i we get
a conventional polynomial spline of degree n with @, ,(x)=— ("(;ﬁ‘)fzi—l, ¥, .(x)= (z‘;_""l);!;l , =X —X;.

Consider now the problem of constructing a basis in the space S¢ consisting of functions with
local supports of minimal length. For this, it is convenient to extend the mesh 4 by adding points
X1 <o <x_;<a, b<xN+1 < o KXNgn—1- As dM(S,?) = (n)N — (n - 1)(N - 1) =N+n- 1, it
is sufficient to construct a system of linearly independent GB-splines B, ,,j=-nrn+1,...,N — 1, in
S¢ such that B, ,(x)>0 if x € (x;,x;,,) and B, , =0 outside (x;,x;.,).

For n>2 we require the fulfillment of the normalization condition

N—-1

> Biu(x)=1 for x&[a,b]. 3)

Jj=—n+1
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According to (1), on the interval [x;.;,X;4/41], [ =0,...,n — 1, the GB-spline B;, has the form

B (%) = Py 1 ua(x) + B P04 1) B0, (x) + BV D111 ) Bt a6), 4)

where P;;,_, is a polynomial of order n—2.
Taking into account the continuity conditions for neighboring polynomials P;,_, ,_, and P;;,_,
I=1,...,n—1, in (4), we have the relations

Pipna(X)=P; 1y aa(x)+ B},";Z’(x,H)Z 20 e —x) /i, I=1,...,n-1 (5)
r=0
with Z(:-)In = ‘P,(i)l La(Xje) = j+[n(x]+[) r=0,...,n-3.

As B, ,(x) =0 if x & (x;,X;1n42) and by (5), the polynomials P;,,_, are identical to zero when
/=0 and / =n. Then by repeated application of formula (5) we have

l
Pjiaa(x)=>_ BYy 2’(x,+1/)2 20 O = xjan Y /!

I'=1
-2 —
=_ Z B, )(xH,/)Z 20 = xp Y/, I=1,..,n-2. (6)
=]+1 r=0

In particular, the following identity is valid:

n—1
> By, 2)(x,ﬁL,)Z 20— xp ) /P1=0. (7)
=1

r=0
Using the expansion of polynomials by powers of x we can rewrite (7) in the form

an3

n—1 —

n— r ( Xj )r i
> B ”(xm)z P2 S g = ®)
=1 .

! r=a

Now by equating the coefficients of the monomials x*, « =0,1,...,n—3, in (8) to zero, we arrive
at a system of n—2 linear algebraic equations which defines the unknown quantities Bj.f',,'z)(xj+;),
I=1,...,n—1,

n—3
n— r ( —X )
2, I:B( ”(m)}i A s L 5 C=0, a=0,..,n-3.

To obtain the unique solution of this system we can use the normalization condition (3). Substi-
tuting formula (4) into the identity (3) written for x € [x;,x;,,], we obtain

i—1+1 i i—1
Z Biw(x)=Din(x) D BUTPx)+ Waux) Y. B P(i)+ Y. Puaa(x)=L
Jj=i—n+1 J=i—n+1 j=i—n+2 J=i—n+2

Since according to (3)

i—1 i

> BYPG)= ). Bl P(x) =0,

J=i—n+1 j=i—n+2
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it follows from (6) that

i—1 i—1 i—j
D Pjax)= > > B 2’(x,+,)z 20 (e = x) fri=1.

J=i—n+2 J=i—n+2 I=1
This gives us the system of linear equations
i—1 i—j
2 ) ( x1+l)
Z ZBJ(»,”,, )(xj+1)z j(’H,, — =004 a=0,...,n-3,
j=i—n+2 I=1 r=u (r—a)!

where dy, is the Kronecker symbol.

We can eliminate the unknowns analogously as has been done in [10, 12]. Having computed the
unknowns B}f’,,_ 2)(xj+,), I=1,...,n—1, we find the coefficients of the polynomials P;;,_,, [ =
1,...,n— 2, in (4) by using formulae (6). In this way, the computation of the coefficients of the

polynomials P;;,_, can be realized starting from either the left or right endpoint of the support
interval.

3. Recurrence algorithm for the calculation of GB-splines

Let us define the function
Wi (x), X <x<xp,
Bja(x) =1 &12(x), xj1 <x<xp0, 9)
0, X & (x;,%;42),

where the functions 'ij':,_z) and d5§"+12,,) are assumed to be positive and monotone on (x;,x;,;) and
(xj41,%;42) respectively.
We will consider the sequence of GB-splines defined by the recurrence formula

Bj,k(x)z/ B/’k;l(r)dr_/ Mdl’, k=37“.’n, (10)
5 Cjk—l e Cjalh—l

where
Xj+k—1
cj,k—-l :/ Bj’k_l(T)dT.
Xj

In practical calculations, an alternate representation of formula (10),

Yjrk—1 B, Xj+k B
Bj!k(x)z_/ Bﬁ’f_l(ﬂdt_}_/ L’f(f)dr’ k=3,....n

Cjk-1 Cit1,k—1

is useful.
By differentiating formula (10) we obtain

B;‘,k(x) =B 1(x)/Cjk—1 — Biyrs—1(X)/Civ1h-1, k=3,...,n (11)
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Theorem 3.1. The recurrence formulae (9) and (10) define the sequence of GB-splines of the form

( Bj’f‘k_Z)(xjH )qu(,:_k)(x), X; KX<Xjy,
Py ri—a(x) + B P (x0) @0 (x)
Biux)=19 +B P (xpn) WL (x) X XXl =1,k = 2, (12)
Bﬁ‘,kk_Z)(xj+k—1 )@Dﬁ';;,’ﬁ,)(x), Xjpk—1 SX KXk,
\ 0, x¢(xjaxj+k)a

k=2,...,n, where

! n—3
k-2 —
Pirk—a(x) = B P(x40) Y 2001 — x0T (r — n+ k)
I'=1

r=n—k
k—1 n-—3
== 3 B Ur) D 2 — X Y T — n k) (13)
=l+1 r=n—k
and

k—1 n—3
DB 3 20— x) T =+ 1=0, k=3,..n. (14)
=1 r=n—k

Proof. For £ =2 the formula (12) takes the form
Bioxpw 000, 2 <x <,

Bjax(x) = Bj,z(xj+1)¢;1_1,2n)(x), Xjl SX SXj42
0, x & (xj,%;52).

We choose B;»(x;.1) =1, and then by (2), this formula coincides with (9).

Using mathematical induction, we assume that the assertion of the theorem is fulfilled for some
K =k—-1l<n—1(k=3,...,n—1). Let us show its validity for £ <n. According to (10) and (12)
we have

1 k=2 —k' =1
Bi(x) = — By @) ¥ @), x€xxl,
Sk

1 k=2 —k'—1
Bis() = = —— B (o )L, (), X € Djen Xpsars)
j+ H /
By virtue of (11) and because GB-splines have local supports,
k—2 k=2
B;,k )(xj+1)=B§-,kf )(xj+1)/cj,k’,

k=2 k-2
Bj’,k )(xj+k——1) = —B§‘+1,k’)(xj+k’ )Cis1,kr-
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Therefore,
Bju(x) = Bﬁ";”(xm)?’-(';""(x), x € [ %11, s)
Bix(x) = B P (xj40-1) @, e a®)s X € [k, Xa):
Let now formula (12) be fulfilled in [x;,/,x;/1] for some /'=1—1<k -2 (I=1,2,...,k - 2).

We must show its validity for /<k—2. According to (10), and by the induction assumption for

X € [xj41,%j1141], we have

Bji(x)=

P k—2(x41)

k 2 k k 2
+B ( )(xj+l 1)‘15,11 )ln(xj+1)+ )(x”,)

+

Bjk I(T)d‘f -

Cik—1 Jxppy

k=2 k
= j,l—l,k—Z(xj+1)+B§',k )(xj‘H)lI,j(:—l fn(xj+z)+

)
(k' ~2) )
ZBM' (4r) Z 2

I'=1 r=n—k’

k=2 k' —1
+ B @ )|+

Ci+lk—1
where

(k—

Citl,k—1

k)
(—:I ln( +l)

/ Bjix_1(t)de

Cjk—1

(T x+1,)r —n+k’+1

k-2 —k'—

Jj+in

(T — X141

—n+k +1) .

X
k=2 k' —1
§k’ (CTIRYL Sonia €)'

Xj+1

X

(1)

Xj+i

+BY, 1Lk (x/+l+1)‘llj(21: D)

Xj+l

, (16)

)r—n+k' +1)*

=3

I'=1

S

(r)
41, o (Xje140) Z Zi{1+0,n

r=n-—k'

n (-

(k 2)
1k (Xj1r) Z Zifi.n

—n+k'+1)!

r—ntk ¥
Xj+1)

(r—n+k)

Xj+l

I'=1

r=n—k’

Using the formula of differentiation (11) we obtain

k-2 K —2 k' -2)
( )(x1+l) % )(xj+l)/cj,k' B;+1 k'(xj+l)/cj+l K

This permits us to transform expression (16) into the form

— (k—2) e (x +1 I
Bi«(x)=) B “(x +1') 2 .

(n—k)

k 2 k k-2 k—2 (n—k
B V()2 ,,’+B‘ ’(x,-+l>d>,+,,,, )+ BE P P (x)
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)r—n+k

] n—3
-2 o &= X )
+ ZBJ" (xj41r) Z Zjstr,n (r—n+k)

V=1 r=n—k’

—n+k

! n—3
- (Xje1 = X0 )
— S B P 2
g ok (Gejr) Z j+ln (r —n+k)!

r=n—k’

!
k—2 —k) k—2 —k
= Bl ezl + Bl V)9 (%)
=1

! n-3 r—n+k

k=2 —k) k—2) (r) (x — X'+[I)
+ B ) T ) + DB 0ger) Y Zj:—l’,nj—k'
=1 (r—n+k)!

r=n—k’
=Pjk-2(0) + By 0B () + BT (i ) B, (%)
We have now proved formula (12) with

)r—n+k

I n—3
_ (k—2),_ ) (x — X1 _ _
P,-,z,k_z(x)—;Bj,k *x40) Z z”’”"—(r——n—i—k)! , I=1,... k-2 (17)

r=n—k

Taking into account the conditions for continuity we obtain the validity of the formula (17) for
I=k—1. However, according to (15), P; ;-2 =0. So from (17) for /=k—1 we obtain the identity
(14). By subtracting this identity from (17) we arrive at the second formula in (13). This proves
the theorem. O

To use formulae (12) and (13) for calculations we first need to find the quantities B;,';_z)(x i)
i=1,...,k—1; k=3,...,n. According to (11),

B P (x0) = B0 — Bl i) e, 1=1,.,k =1, k=3,..,n. (18)

In particular, it follows from here with B;,(x;,;) =1 that

1 1

B (xjn)=—, Bl (xin)=

7 ] Cj,2 4 s AN cj,ZCj,3 ’

1 1 1 1

B 5(xj42) = — Bly(xj12) =~ —

23 Cing P Ciri2 \ €3 €13 )

/! 1
Bj,4(xj+3) =

Cj+2,2Cj+1,3 ’
etc. Therefore, to find the required values of the derivatives of the GB-splines in the interior nodes of

their support intervals, it is necessary to know the quantities c;, i.e., the integrals of the GB-splines
Bj,k: k=2,...,n - 1.

Theorem 3.2. The integrals c;; = fx’;”" B, «(r)dt of GB-splines are given by the formula

= (k—2) = ) Fjra — X ) A
= Bi ) Y A s = bk =L k=2, - 1.19)
=1 :

r=n—k—1
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Proof. For k£ =2 according to (9) we obtain

Cj2= B (1)dr = Bj,z(xj+1)Z,(-"+T,3,,), Bi(xj11) =1,
which corresponds to the formula (19). Let us suppose by induction that the formula (19) holds for
all K’=k—1<n—1(k=3,...,n—1). We must prove its validity for k’'+1=k < n—1. By formula (12),

X j+ke
k—2) —k—1
cu= [ Bu(t)dr=B )P m)

Xj

k=2 oxyin
+ 3 [ [Preao + B )00
=1

Xj+1
+ BP0 ) U@ dT = B0 )80 (). (20)

Choosing the knot x;., €suppB;;, 1 <a <k — 1 and using formulae (13) we can transform ex-
pression (20) into the form

— (k—2) (n—k—1) & [ (k—2) = o (T xpy !
- n—k— - v j
Cik = ZB/k Gee)zjin Z D BN ) Y 2, (r—n+k+1)

=1 =1 LI'=1 r=n—k

Xjt+i+1

Xj+1

Xj+i+1

k—2 [ k—1 *-2) n—3 ) (‘C — X )r—n+k+1
+ - B k— (X'+]/) Zvr ’ /
Z Z Js J E: J+U,n _ 1
I=a U'=1+1 r=n—k (r ntk+ 1) Xj+1

Collecting here the terms with Bj(,l;_z)(xjﬂ), I=1,...,k—1, we have
)r—n+k+l

k—1 o—1 n—3
(k—2) (n—k—1) (k—2) r) (xj+0( - xj+l
Civ = B; Xiy1)Z; + B X; Z;
Jik ; ik ( J+1) J+1.n ; ik ( j+1) z j+in (r —n+ k + 1)|

r=n—k

)r—n+k+1

k—1 n—3
k—2) ) (X — X1

+ ) B ) Y 2
= ik ( J-H)r:n—k j+i.n (r—n+k+ 1)'

_ N ) = 0 G —xm)
=>» B, (x4 E z A
; r ( " )r=n—k—1 sek (r -n k 1)'

—n+k+1

This proves the theorem. O

Theorem 3.3. If c;i, k =2,...,n — 1, are integrals of GB-splines B;; then the following equalities
are valid:

k—1 n—3

SBE Py S 2 (—xjy Yy —nthrl=e e
= Ik j+1 it j+in (r Tt k+l— a)! . "
O(:O,...,k—2, k=2,._.,n_2, (21)

where &, is the Kronecker symbol.
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Proof. We can write these identities

= (k—2) e (x — xjpq )k
qizEMu)=z;@J uﬁdhggl,H“r st k=2,....n—1. (22)

For k=2, formula (22) does not depend on x and coincides with (19). According to Theorem 3.2,
the polynomial F;; —c;s, 2 <k <n—1, of order k — 1 takes zero values at the points x;,,, a =
1,...,k — 1. Therefore, by the Fundamental Theorem of Algebra it must be identically equal to zero.

Using the expansion of polynomials in (22) by powers of x we obtain

k=2 _a n-3 (__xj+‘)r—n+k+1—a

(k—2) X (r) —
clk-ZBjk (x/+l)za| Z Zj+1,n(r_n+k+l_a)!’ k_z""’n_l'

=0 r=n—k—1+o

The right-hand side is a polynomial of order £ — 1 for fixed j, k¥ while the left-hand side is constant.
It follows that the coefficient of x* equals ¢;, when o =0 and equals zero otherwise. From this we
obtain the equalities (21). This proves the theorem. O

To construct the GB-spline B;;, £ =3,...,n, we can formulate an algorithm by applying formulae
(18) and (19), and requiring the calculation of the following quantities for GB-splines:

Balxj1) co B BT )

3 : : " (a=1,..,n—1)
Bk 2(Xjpn—tr1) - B(kn kk(xH-n ko)

: L (a=1,..,k-1)

Bj+n—2,2(xj+n)

and the integrals of GB-splines

cj,2 “ .. Cj,k e cj,n—l
Cit1,2 o Gk T Citn—1
Civn—k2 **° Cirn—kk
Citn—2,2-

Algorithm 1. (a) Form the diagonal matrix 4 = {a;},i,j = 1,...,n — 1, with diagonal elements
a4 =B 1(xj442) =1, 1=0,...,n — 2. Attach to the matrix 4 at the left an additional column
with elements a,,1 0 =c¢jy;2, { =0,...,n — 2 calculated by formula (19).

(b) For k£ =3,...,n, using formula (18) we find the elements a, =B}f,__2()k_2)’k(xj+a), ao=1+
3~k...,l1+1,l=n-2,...,k — 2, and place them on the main diagonal and on the first £k — 2
upper off-diagonals of the matrix 4. At every step k& (for k<n — 1) we also calculate the elements
A1 k-2 = Ciyi—h—2)k> L =n — 2,...,k — 2, using formula (19) and place them into the (k — 2)nd
column of the lower triangular part of the matrix 4.



72 B.I Ksasov, P. Sattayatham!Journal of Computational and Applied Mathematics 104 (1999) 63-88

As a result the matrix 4 is transformed to the form

k=2 -2
G2 Bala) ... By PGm) o BOTP(n)
k—2 ] -2 ]
A= Citk—22  Cj4k=33 " B,(k )(xj+k—1) Bj(':: )(xj+k—1)
(n—2).
Ci+n-22 Ciyn-33 " Cipn—1—kk+l Bj,n (Xj4n—1)

The (k—1)st column of the upper triangular part of the matrix 4 contains the quantities Bﬁ’;‘”@,w ),
a=1,....,k — 1,k =2,...,n. This permits us to construct the GB-splines B;;, k = 2,...,n, using
formulae (12) and (13). The integrals for these GB-splines are located along the main diagonal of
the matrix 4.

The supports of the GB-splines B, £ =2,...,n, begin at the point x;. We can also consider an
alternative version of the above algorithm in which the GB-splines B4 ,—t, Kk =n —2,...,0, whose
supports end at the point x;,, are calculated.

Algorithm 2. (a) Form the diagonal matrix 4 of dimension (n—1) x (n— 1) with diagonal elements
a4 = By 2(xj001) =1,1=0,...,n — 2. Attach to 4 the additional (n)th row with elements
Anir1 = Cjti2, 1 =0,...,n — 2, calculated by formula (19).

(b) For k=3,...,n,1=0,...,n — k, we find a;;y 4, = j(iz,f)(xj+l+a), «=k-—1,...,1 and (for
k<n—1) ay,_g2,141 = ¢jy1x by formulae (18) and (19).

As a result the matrix A takes the form

(n—2) (n—2) (n—2)
B (i) o0 B (i) 0 Bl U (%ga-1)
(k—2) (k—2)
A= Ck+1 te Bj+n——k,k(xj+l+n—k) e Bj+n_k’k(x]'+,,_1)
Cj3 v Citn—k,3 te Bj+n—2,2(xj+n—1)
€j2 T Cjtn—k2 o Cj4n—2,2

The elements of the (n — k + 1)th row in the upper triangular part of the matrix 4 permit us to
construct the GB-splines B, i, k =2,...,n, using formulae (12) and (13). The integrals of these
GB-splines are located along the main diagonal of the matrix 4.

4. Another representation for GB-splines

According to (12) and (13) the expressions for B;;, kK =3,...,n, in the subintervals [x;,,_1,x;41]
and [x;41,%;4,41] differ by the quantity

n—3

—n—k
—k (k—2 —k —k) r) (x—x )"
— & @B D) + | B ) = FLEL + D s

k—2
j+in (r —n+k)' Bj(,k )(xj+1)

r=n—k

—k k=2
+P 0 OBE P ().
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By summing over the jumps we arrive at the representation
k—1
Biu(x) =) Qux(0BY P (xjn), k=3,....n (23)
=1
with

n—3 oy, Yrtk
Qy1x(0) = WA (00 — xj0101) + | BTG — WO )+ 3 2, S I

+i,n +I=1,n Zifln
J 4 = (r—n+k)
X 0(x = xj51) = BL1 (X)X — X1, (24)
1, x>y,
0x — y)= {
0, x<y.

As 0(x — y)=1—-0(y — x) we obtain

k—1

Biu(x) ==Y Q11 4()BE P (xj51) + Ryu(x), (25)

I=1

where QJ-H,k is derived from Q;,,, by replacing 6(x — x;,,,) with 6(x;,,, —x),m=1—1,1,1 + 1.
Now according to (14)

R;(x) k§_l Bl () n§-3 20, Em o3
x) = ; ; . — =V, = Jyiey
" I=1 r b r=n—k sl (l" —n+ k)'

and it follows from formulae (23) and (25) that B;x(x) =0 if x ¢ (x;,x;,;). Any of these formulae
can be used to define the GB-spline of order £, 3 < k < n.

We will transform the expression for the function €,,,, in (24). Using the Taylor expansion of
the functions dij-(:,_,,’f) , Y’j(:,“,’f) with the remainder in integral form and the properties (2) we have

X X -1 k—2 e
Qi p(x) = [/ (-(];':;Tq'j(u_l;),n(f)df} O(x — x;11-1)

S

X (x_T)k—-Z e X x__.c)k—Z e
+[/ Sy o [ G o

X xX—1 k—2 e
XO(x —x;41) — [/ ((T_—;—),—djj(w,rl;)(f) df} 0(x — x;4141).

From here we obtain for polynomial splines with

L (r—x ! _ =y
o)== e =T h;
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that
Qm,k(x) = (xm+1 — Xm—1 )gk[x; xm—laxmaxm+1]5 m=j+ I,
g6, y)=(=1Df(x — (k= 1),  z, =max(0,z)
and thus (23) is transformed to

B o(x) = Xk — x;)glx; x5, x4), k=3,...,n.

The recurrence formula (10) takes the form [14]

X —X; Xjop — X
B i(x)= / B i (x)+ ’ Biyik-1(x)
jHe—1 " X Xj+k — Xj+1
with
X j+k x‘+k — X
Cik = B i(x)dx = %
Xj

5. Properties of GB-splines

Let us formulate some properties of GB-splines which are similar to those of polynomial B-splines
[14].

Theorem 5.1. The functions B, k =2,...,n, have the following properties:
(i) Bx(x)>0 if x € (xj,x;14) and B;y(x) =0 if x & (x},X;14);

(ii) the splines B; ) have k — 2 continuous derivatives;

(iii) for k >3 and x€[a,b], Y},  Bu(x)=1;

(iv) for x € [x;,x;1.1],

n—r—1 n—r—1
%{;)(x): ( 1—_[ cj,k) Bj,n—r(x), ¢§’rr)l(x)= H (_cj—k+l,k)Bj—n+1+r,n—r(x)

k=2 k=2

j=0,...N-1,r=0,...,n—2, where ¢y = ' B i(1)dr.

Xj

Proof. The functions B;,,, given by formula (9) are positive if x € (X4, Xj144+2), While B;i,2(x)=0
if X € (x4, X;44+2), and are monotone on the intervals [x; oo/, Xj451i41), 1=0,1; «a=0,...,k —2.

Let us suppose by induction that B, (x)>0 if x € (Xj10Xjr0mk—1) Biyak—1 =0 if x & (x4,
Xjsark—1) and li;gf;i)_l(x) is monotone on the intervals [X;ioi1,Xj104141)s { = 0,...,k — 2 with
(-D)"*BEY (4ast)>0, I =1,...,k =2, «=0,1. Then by formula (11) the function B;™>
is monotone in [x;.;,x;/1], 1=0,...,k—1, and in addition (—l)’+lBj(",‘c—2)(xj+,)>O, I=1,...,k—1.
Therefore, Bj(f;(_z) has exactly £ — 2 zeros in (x;,x;.+) and by Rolle’s theorem, B;, does not vanish
on (x;,x;4x). Taking formula (10) into account, we have B, ;(x)>0 if x € (x;,x;.+) and B;(x) =0 if
x @(Xj, X4k )-
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Property (ii) is obvious by virtue of the recurrence formula (10) and by continuity of the func-
tion B; ;.
According to (12) for x € [x;,x;.1],
-2 n—2
B o(x) = By P(xs)¥n(X)s Bioni1n(x) = B2 (%)) 0(x)- (26)

Applying the differentiation formula (11) we obtain

B)(x) = H CrniBnr(x),

(27)
BD .. ,,(x)_H( ikt Bt (), X E[xpx0], r=12,..,n =2
and in particular,
B () = H e Blaiiale) = H( k) (28)
Therefore, if x € [x;,x;;,] then according to (26)—(28) we have
n—r—1 n—r—1
) = I 6Bnr®), 80 = [ (—6401.0Bnirsrnrx), r=0,...,n=2.
k=2 k=2
Applying the recurrence formula (10) for £ >2, we have for x € [, b]:
N—1 N-1
* By * Biie
> Bum= Y [ / Bul®) g / B ®) dr]
jm k41 je—kal L Gk—1 xiv1 Gt k=1
_ [ B i14-1(7) dr — /x Byi1(7) de= /x° B_ji14-1(7) dr=1,
Xk C—k+lk—1 xw  CNk—1 *—is1  Ck+1k—1
Le.,
> Bun(x)=1, k=3,...,nif xc[a,b]. (29)
J=—k+1

This proves the theorem. O

Corollary 5.2. The following identities are valid:

-t i N
k-2 (x —xj41) _
Z ZBI(IC )(xﬂ-) Z j(:-)ln}—zls k=3,...,n

!
J=i—k+2 I=1 r=n—k n+k)
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Proof. Substituting formula (12) into the identity (29) written for x € [x;,x;;,], we obtain

i-1 i
Z Bu(x)=9, ") Y B+ ¥V Y BT V0)

J=i—k+1 J=i—k+1 J=i—k+2
i—1
+ E P},[_j,k__z(x)El.
J=i—k+2

According to (29)

i-1 i
>, B = Y B V() =0

j=i—k+1 jmi—k42
Then using (13) one obtains

i-1 i )r——n+k

Z Picjk—a(x) = Z Z Bk P (x41) Z j(:t)ln(i—-xj;—q-kTEl.

J=i—k+2 J=i—k4+2 I=1 r=n—k

This proves the corollary. O

Corollary 5.3. Let F;, k=2,...,n — 1, be polynomials as defined in (22). Then the following
equalities are valid:

Z/ 3 c(x)dx = Z Fiux)=b—a, k=2,....,n—1.
J==—k+1 J=—k+1

Proof. Integrating the identity (29) on the interval [a,b] and using (22) we obtain

j+k+1

Z/ 2 () dx = Z/ Bx(x)dx

J=—k+1 J=—k+1
N-1 N—-1
= E Gk = E Fj,k(x):b—a.
J=—k+1 J=—k+1

This proves the corollary. O

Theorem 5.4. The GB-splines B;;, k =2,...,n, have supports of minimum length.

Proof. It follows from the explicit formula (9) that the support of the GB-spline B;, cannot be
reduced. Let us suppose that the assertion of the theorem is fulfilled for some k' =k — 1<n (k=
3,...,n). Using mathematical induction we will prove its validity for &' + 1 =k <n.

By the properties of the functions @/, ¥j+1s, 0 <! < k—1, and by formula (12), a GB-spline
B;, cannot be different from zero on only a part of the subinterval [x;4/,x;114/], 0<I<k— 1. If we
suppose that B, is zero on interval [x;,,,x;.11,], 0</<k — 1, then due to the continuity of B(k 2),

k-2 k-2
we have B( )(xj+1) = B,(k )(xj+1+l) =0.
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Using formula (11) one can show, however, that (—1)’+‘B(k—2)(xj+,)>0, l=1,...,k — 1. For

k =2 we have B, ,(x;+1) = 1. Suppose by induction that (—l)’*‘BJ(’,‘(, 2)(x,~+,)>0, I=1,... .k -1,
for 1 <k'<k — 1. By formula (11) we get

BY P(50)  BED ()
(k~2) I+1 Ik J+! j+1 k’ J+1
(D" B (k)= (-1)
rE ! Gk Gl k!
B.(k//__z) X; ! /(JC | -1
_ay B0 B Gean) oy gy
Gk Gi+1,k!

We have obtained a contradiction. This proves the theorem. O

Theorem 5.5. The GB-splines By, j=—k+1,...,N—1, k=2,...,n, are linearly independent and
form a basis for the space SE of generalized splines.

Proof. Let us assume to the contrary that there exist constants b;;, j=—k+1,...,N—1, k=2,...,n,
which are not all equal to zero and such that

by B p(x)+ -+ by By—1k+1(x) =0, x€la,b]. (30)
According to formula (9), and taking into account the properties of the functions ®;, and ¥,, in
(2), we obtain from (30) for £ =2

N—-1
Z b 2B 2(x;)=bi_12=0, i=0,...,N.
j=~1
Thus, b, =0, j=-1,...,N —1, and the functions B, j=—1,...,N — 1, are linearly independent.
Suppose by induction that the functions B, j=—Fk’,...,N — 1 are linearly independent for some
kK'=k—1<n (k=3,...,n). We will prove the assertion of theorem for £’ + 1 =% < n. Differentiating
the equality (30) and using the recurrence formula (10) we have

N-1 N-1
B,_ B

Z biiB(x) = Z bk 1) _ Biip(x)
J=—k+1 J=—kt1 Gk—1 G+l,k-1

B_ X x B (x

b B N gy By ),
Cbtlh—1 Jm—k+2 Gk—1 CN,k—1
(31)

The supports of the GB-splines B;,_;, j = —k + 1,N, however, are outside the interval [a,b]. By
the induction assumption, the GB-splines B;;_;, j = —k +2,...,N — 1 are linearly independent and
thus from (31) we get by —b;_; =0, j=—k+2,...,N~1or by =c=const, j=—k+1,..., N—1.
By Theorem 5.1, the GB-splines B;;, j=—k+1,...,N —1 give a partition of unity on the interval
[a, b]. Using this property, and Eq. (29), we arrive at the equality

N—-1 N—1
Z biBix(x)=c Z Bi(x)=c-1=0.

j=—k+1 j=—k+1
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Therefore, b, =0, j=—k+1,...,N —1 and the GB-splines B;;, j=—k+1,...,.N—1,k=2,...,n,
are linearly independent.

Since by Definition 2.1, dim(SZ)=(k)N —(k—1)(N—1)=N +k—1, we see that the GB-splines
B €SP, j=—k+1,...,N — 1 form a basis of this space. This proves the theorem. [

By virtue of this theorem, any spline S € SC, k =2,...,n, can be uniquely written in the form

N-1

Sx)= > buBux) for x€(a,b] (32)

je—k+1

for some constant coefficients b, ;.

Corollary 5.6. Any spline S £ 0 in S¢, k=2,...,n, with finite support of minimal length coincides
with a GB-spline up to a constant multiplier.

Proof. By Theorem 5.4 the minimal support of a spline S € S¢, k=2,...,n different from identical
zero, is an interval (x;,x;4x), i =0,...,N — k. Using representation (32) we get

Sx) =bi_gr1,Bickrie + -+ bisk—1 4 Biir—1.6(x).

As §=0 for x & (x;,x;1«), when choosing sequentially x € (xp,x,11), p=i—k+1,...,i — 1, we
obtain b, =0. In the same manner, b,; =0 for p=i+k—1,...,i+ 1. Therefore, S(x)=b;;B; i(x).
This proves the corollary. O

6. Series of GB-splines

In practical applications such as approximation of functions, discrete data etc., one considers linear
combinations of GB-splines. According to Theorem 5.5, any generalized spline S €SS, k=2,...,n,
can be uniquely represented in the form

N—]

Sx)= Y buBulx) for x€[a,b] (33)

j=—k+1

with some constant coefficients b; ;.
Let us study how the behaviour of a spline S depends on the coefficients b;,. Since GB-splines
are local, from (33) we obtain the inequalities

min b <S(x)= E biiBip(x) < max b, X <x<Xy, k=2,...,n (34)
i~k <i = i~k <
j=i—

Hence it follows that the behaviour of the spline .S on the interval [x;,x;;,] is determined by the
coefficients b; ;.\ 4,...,bi . In particular, in order for a spline S to be zero at a point of the interval
[xi,xi+1], it is necessary that b;;b;, 1 <O for some i —k+1 < j <i.
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The estimate (34) can be substantially improved on. Applying the differentiation formula (11), we
obtain for r <k -2

N-1

SV(x) = Z @fl)l?j,k_r(x), (35)
J==k+r+1
where
bj.ks l=09
D _ ) -1y _ -1
(R I S S TP (3¢)
Gik—1

Lemma 6.1. If b, >0 (<0), j=—k+1,....N—-1; k=2,...,n, then S(x) > 0(< 0) for all x.

The conclusion is obvious, because the GB-splines B;; are nonnegative.

Lemma 6.2. If by >b_1; (bu<b_ix), j=—k+2,...,N—1, k=3,...,n, then the function S is
monotonically increasing (decreasing).

Proof. According to formulae (35) and (36), we have

bk — b1k

Cik—1

N—-1
SG)= Y bYBuoi(x), b=

J=—k+2

Because the GB-splines B;,_;, £=3,...,n, are nonnegative, the formula above and Lemma 1 imply
that § is monotonic. This proves the lemma. O

Lemma 6.3. If b)) >b", , (b1 <8, ), j=—k+3,....N—1; k=4,...,n, then the function S is
convex downwards (upwards).
Proof. By virtue of (35) and (36), we have

N-1 M _ b0,

S"(x) = Z bﬁ)]gj’k_z(x), lyjfi)z_f;_’f___

J=—k+3 Gik—2

(37)

Because the GB-splines B;;_,, k=4,...,n, are nonnegative, taking into account Lemma 1 we obtain
that S is convex. This proves the lemma. [

Let Zj, 5(f) denote the number of isolated zeros of a function f on the interval [a,b].

Lemma 6.4. If the spline S(x)=Y""", biBix(x), k=2,...,n, is not identically zero on any subin-
terval of [a,b), then

Zun(S) SN +k—2.
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Proof. According to (35) and (9), for x € [x;,x;;1], we have

i

N—-1
SED(xy= 3" BE B o(x) = B B0 () + BTV ().
j=-1

This function has at most one zero on [x;,x,,,], because the functions di,(-f'n"z) and ¥, are monoto-
nous and nonnegative on this subinterval. Hence Z,;(S* ) < N. Then, according to Rolle’s

theorem [14], we find Z, ,)(S) < N + k — 2. This proves the lemma. O

Denote by supp B;, = {x|B;x(x)#0}, k =2,...,n, the support of GB-spline B;,, i.e. the interval
(%) X4k ).
Theorem 6.5. Assume that 1_; \<T_j2<-  <ty_, k=2,...,n. Then
D =det(B; (1)) #0, i, j=-k+1,...,N—1
if and only if
T, €suppBiy, j=-k+1,...,N+ 1L (38)

If condition (38) is satisfied, then D>0.

Proof. Let us prove the theorem by induction. It is clear that the theorem holds for a single basis
function. Assume that it also holds for /—1 basis functions. Let us show that if (38) is satisfied,
then D £ 0 for / basis functions.

Let 7, ¢ suppB;i. If 7, lies to the left (right) with respect to the support of B;, then the last
column (line) of the determinant D consists of zeros, i.e., D =0. If 1, €supp B;, and D =0, then

there exists a nonzero vector ¢ = (C_t 14,...,Ci—k k) Such that
I—k
S(t)= Y. cuBu(n)=0, p=—k+1,...,01-k
j=—k+1

i.e., the spline S has / isolated zeros. But this contradicts Lemma 6.4, which states that S can have
no more than /—1 isolated zeros. Hence ¢ =0 and D # 0.

Now it only remains to prove that D >0 if (38) is satisfied. Let us choose x, <1, <x,,, for all p.
Then the diagonal elements of D are positive and all the elements above the main diagonal are
zero, i.e., D>0. It is clear that D depends continuously on 7,, p=—k+1,...,/ —k, and D # 0
for 7, € supp B, x. Hence the determinant D is positive if condition (38) is satisfied. This proves the
theorem. [J

The following three statements follow immediately from Theorem 6.5.

Corollary 6.6. The system of GB-splines {B;:}, j=—-k+1,....N—1, k=2,...,n, is a weak
Chebyshevian system in the sense of [6], i.e., for any T_, 11 <T_j2< -+ <Ty_; we have D = 0,
and D>0 if and only if condition (38) is satisfied. If the latter is satisfied, then the generalized
spline S(x) = Z?’:__'k a biBik(x), k=2,...,n, has no more than N + k — 2 isolated zeros.



B.I Ksasov, P. Sattayatham|Journal of Computational and Applied Mathematics 104 (1999) 63-88 81

Corollary 6.7. If the conditions of Theorem 6.5 are satisfied, the solution of the interpolation
problem

S(‘Ci):fi, l:‘-k+1,,N—l, f,EIR (39)

exists and is unique.

Let A={a;}, i=1,...,m, j=1,...,n, be a rectangular (m x n) matrix with m < n. The matrix
A is said to be totally nonnegative (totally positive) [4] if the minors of all orders of the matrix are
nonnegative (positive), i.e., for all 1 </<m we have

det(a; ;) > 0(>0) forall 1<ij<---<ij<m, 1<j<--<ji<n.

Corollary 6.8. For arbitrary integers —k + 1<v_; 1< - <y, SN —1and 1_;,(<T 1 2< -
<Ti_r,k=2,...,n, we have

Dy =det{B, «(t)} >0, ij=—k+1,... -k
and D, >0 if and only if
T, EsuppB, i, j=—k+1,...,1 -k
ie., the matrix {B; (1)}, i,j=—k+1,...,N — 1 is totally nonnegative.

The last statement is proven by induction on the basis of Theorem 6.5 and the recurrence relations
for the minors of the matrices {B,(7;)}, k=2,...,n. The proof does not differ from that described
by Schumaker [14].

Since the supports of GB-splines are compact, the matrix of the system (39) is a banded matrix
and has 2k — 1 nonzero diagonals in general. If the knots of the spline x;, i=—k+1,...,N — 1, are
placed in a suitable manner, then the number of nonzero diagonals of this matrix can be reduced
to k—1.

De Boor and Pinkus [2] proved that linear systems with totally nonnegative matrices can be
solved by Gaussian elimination without choosing a pivot element. Thus, the system (39) can
be solved efficiently by the conventional Gauss method.

Denote by S~(v) the number of sign changes (variations) in the sequence of components of the
vector v = (vy,...,0,), with zero being neglected. Karlin [6] showed that if a matrix 4 is totally
nonnegative, then it decreases the variation, i.e.

S7(A4v) < S(v).

By virtue of Corollary 6.8, the totally nonnegative matrix {B,,(t;)}, i,j=—k+1,....N—1, k=
2,...,n, formed by the GB-splines decreases the variation.

For a bounded real function f, let S™(f) be the number of sign changes of the function f on
the real axis R without taking into account the zeros

S_(f)=SupS_[f(Tl)""af(rp)]’ TI<TZ<"'<TP-
P
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Theorem 6.9. The generalized spline S(x) = Zf’;_lk a biiBi(x), k=2,...,n, is a variation dimin-
ishing function, i.e., the number of sign changes of S does not exceed the one in the sequence of
its coefficients

N1
Suif( Z bj,kBj,k)SS_(b), b=(b_is1h5---»bn_1k)

j=—k+1

Proof. We use the approach proposed by Schumaker [14]. Let S~ (b) =d — 1. Let us divide the
coeflicients b;; into d groups:

b—k+1,k9 s bkz,ks bk2+1,k’ nees bk;,ka ey bk,,r+l,ka e abN—l,k-

In each group at least one coefficient is not zero, and all the nonzero coefficients have the same
sign.
Putting k, = —k and k;,; = N — 1, we define the function

kj+1
Bix)= Y [bislBua(x), j=1,....d.
i=k;j+1

Then for arbitrary 7, <17, < --- <7, we have

kit
det(B; x(1:)) -, = Z © > bl by ldet(Bi(1)) = 0
vi=k1+1 va=kg+1

izl,...,d, j=v1,...,vd, k=2,...,n

by virtue of Corollary 6.8 and because at least one coefficient b;; is not zero in each group. It is
clear that we can choose 7, <T,< --- <7, such that det(l?,-,k(ri))>0. Hence the functions E,-,k are
linearly independent.

Assume that 6==1 is the sign of the first group of the coefficients b; ;. Let us take Ei,k=(—1)""5,
i=1,2,...,d. Then

a,

N—1

SE)=Y" buBi(x)=S(x)= > b;iBu(x).

i=1 j=—k+1

Applying Lemma 6.4, we obtain

N—1 d
Z( Z bj,kBj,k) = (Z thtk> d—1=8"(b_isihs--»bvork), k=2,...,n

j=—k+1
This proves the theorem. O
The statement of Theorem 6.9 can be refined, namely we can point out a relation between the

point at which the spline changes its sign and the corresponding spline coefficient. The coefficient
corresponds to the GB-spline whose support includes the point of the sign change [see (34)].
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Theorem 6.10. Assume that the inequalities (— 1)’S(r,)>0 i=1,2,...,d, are valid for the gener-
alized spline S(x)= """ -—k+l b, «Bj«(x) at some 1, <7, < --- <74 Then there exist —k+1 < ji <j,
<. - <js N —1 such that

(=1Yb, B x(1)>0, i=1,...,d.

The proof of this statement does not differ from the proof of the corresponding theorem for poly-
nomial B-splines [14].

7. Invariance of generalized splines with respect to affine transformations

In some applications of spline approximation we encounter affine transformations of the inde-
pendent variable: x = px + g, where p#0 and g are constant. It is well-known that the usual
Lagrange—Newton, Chebyshev, etc., polynomials are invariant with respect to such transformations.
Let us show that generalized splines also have this property.

Let S¢ be a set of generalized splines on the mesh 4= {%:|%=pxi+q, i=0,...,N} which is
obtained from the linear space S by affine transformation of the variable x.

Theorem 7.1. An approximating generalized spline S € SO is invariant with respect to affine trans-
formations of the real axis R = (—o00,00).

Proof. The function B;, in (9) can be written in the form

-2 — X
l//(n )< h j) > X <X ij+1’
J

Bj’z(x) =9 (n-2) (x — Xj+1

| T ) , Xipr X K Xjy,
j+1

0 otherwise,

where

X — B X —X; u
‘h’,n( , ) hn ’= Y, (%), (Pj-H,n( h.+f+l> h/+12 = @ 1.(x).
j

Using the change of the variable X = px + ¢ we get

W R BT X — %
h, o\Em =& )

=2y [ X — Xj41 =2y ¥ —Xj11
(Pj+1 n h (p]+1 n A A .
j+1 Xjy2 — X1
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Therefore, Bj,z(x)=ﬁ,-,2()2). Let the equality Bj,,(x)=§j,,(fc) be fulfilled for I=k—1<n (k=3,...,n).
By virtue of the recurrence relation (10) we have

Bj,k(x)=/ Mdf—/ M—_I(—T)d‘r, k=3,...,n,

;o Cik~1 i Citlk~1

with
Xjrk—1
Cpomt = / Bysi(7)dr.
Xj

Using the substitution 7 = pt + ¢ we obtain by induction

Ljek—1 1 . 1.
Cik—1 =/ Bj,k-l(‘f); dt = ;Cj,k—u

j

Bj,k(x)=/ —’;"—it—)df—/ Brwn®@ e _p 5), k=3...,n.

8, Cik—1 Citlk—1

If now S €SS and § € $S are approximating splines on the meshes 4 and A, respectively, con-
nected by an affine transformation £ = px + ¢, then by the uniqueness of the spline representation
as a linear combination of GB-splines we obtain

SE)= bBia(x) =Y bBu%)=3(). (40)
J J

Therefore, the approximating generalized spline S is invariant with respect to affine transformations
of its variable. This proves the theorem. O

It was shown above that B, ;(x) =B, ;(%), k=2,...,n. By differentiation of this equality we obtain
d d ~ . d , ...d% A n
B = 8] = ZBu@IT = PBL®) k=3,
Differentiating now the equality (40), we can write down
S'(x)=3_ b;B;,(x)=Y_ b;pB, (%)= pS'R).
J J
By repeated differentiation of the last and next to last equalities we arrive at

SO =3 bBOx) =3 b B =pSOR), r=1...n-2
J J

8. Local approximation by GB-splines

Using the locality of GB-splines one can reduce the representation of a spline S as a linear
combination of GB-splines (33) for k =n to the form

Sx)= Y biuBiu(x), x€pxnl, i=0,1,..,N-1L (41)

J=i—n+1
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Theorem 8.1. The restriction (41) of the spline S to the interval [x;,x;11] can be written in the
form

S(x) =Py pa(x) + B0 B, (x) + BUTDW, (x), (42)
where

2 (x x+1’)
Piaa(x) = Z b,,,ZB},':. ’(x,m ;;),, —’,

J=i—n+2 =
b('k 2y b(k 2)
B =2 T k=1,..,n=2 b0 =b;,, j=i—n+1,...,i
cj,n—k
Proof. We use induction on n. According to formula (9), the representation (42) holds for n = 2:

S(x) =bi_12Bi_12(x) + b;2B; 5(x) = b;_1 2 Pi 2(x) + b2 i a(x), x€[xi,xi11]. (43)

Suppose that (42) holds for n=17— 1. Then for n=1 one has from (41)

S(x)= Z b 1B (x), x€[xi,xin]

J=i—l+1

Using (4) for n=1, one obtains

SE)= Y bulPricju-a(x) + B ()i i(x) + BT (x40 W (%))

j=i—l+1
=P;;a(x) + 1, (43)
where according to (6)
i—1 i—j
Puax)= S b, Y B! 2)(x,+1') ,"Q,/ x’*") (44)

J=i—I1+2 I'=1
and
i—1 i
I=®;(x) Y BB Px) + Pux) D B 0xin).
J=i—i+1 J=i—1+2

By applying the formula of differentiation (11) one gets
- [Bﬁ-,’z‘fz’(xf) Bl 1(x,)]

I=&;,(x) > by,

jmim i1 Cii—1 Cjt1,1-1

+ ¥.(x) 2’: b;, [lel/_jl)(xi“) B+11 l(x,+1)}
i i

jmiit2 Cj1—1 Cit1,1-1
(I— i—1 (1-3)
= ®,,(x) | b; B 11 l(x,) Z b, — b, L pU~ 3)( x)—b le 7 (x:)
il i—1+1,1 o —C- -1 [ U c
i—I+1,1—1 ji142 ' i—1 i 1—1
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B9 i U=
i 1+21 1(xig1) bj,l bj 1,1 p(l—3) ;+11 1(Xi1)

+ ¥.(x) bi—l+21_— Z —————=B, /(%)) = by j——————
Ci—i42,1-1 joicie3  Cid-l Cit1,1-1

(45)

Because B\, >, 1K) = Bfi,? 1—1(xi5)=0, I'=0,1, expression (45) can be rewritten in the form

i—1
I=®,(x) > BB 2x) + Wix) Z BB 2N (xi)

j=i—1+42 j=i—1+3
with

b — b
B )=t =i I 42,0

Cji—1

By the assumption of induction however,

i—14l

Z bj,-1B 11 1(x1+1/) b,l 11)1/1 o =01

J=i—(I=2)+1
Therefore one gets
=B, /(x) + b7V W, i(x)

and using (44), we can write down (43) in the form

S(x) =Py 1_o(x) + B2 @, (%) + BTV E, (%)

This is formula (42) in the assertion of the theorem for n= 1. This proves the theorem. O

Theorem 8.2. In formula (42) the polynomial P;,_, can be written in the form

n—3
(k) (n—3—k)
Pi,n—Z(x): 1 n+2+anz,:x—-2 (X),
k=0
where
Oin—a(x)/Ci21, k=0,
(k) _ (k—1) (k—1)
Qinax)= x)— Qi 5(x
b Q- Ln— 2(*) Q”" 2( ), k=12,...,n—3,
Cik—1,k+2
n=3 rn(x—x;) L , (=37
Qj,n—Z(x)= zj,n————r!_’ J=1—n + 3"">l7 Qi,n—z(x)= 1.
=0 :

This assertion is new even for polynomial splines, and can be proven by induction.
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9. Examples

Let us give examples of the defining functions &; ,(x) and ¥, ,(x) in (1) which are most commonly
used. In the examples given below they depend on the parameters

@i,n(x) = (p,"n(t)h,’-'~2 = lpn(pi’ 1— t)(”‘hi)n_zy
Wn(x) = Yi(OR 2 = Yh(gi, R 2,

where ¢ =(x — x;)/h; and 0 < p;,q; < o0.
By Definition 2.1 the function ¥, ,(¢) satisfies the conditions

Y(0)=0, r=0,...,n—2, Yo P()=1. (46)
(1) Rational splines:
"~ Cuulg) e 4
in t)= - s C - C:g— : s
Vin(1) (m—1N1+g(l—1) b ; 2j+1
where
; n-—2
ca=("57)
is the usual binomial coefficient.
(2) Exponential splines:
! (1-1) 1 = J qj
inll) = ~HTG (g0, C, ()= Chrr i
Yin(2) (n—l)!e 2.n(4:) 20 (gi) ; 2G¥ 1)
(3) Hyperbolic splines:
@i,n(t
Yin(t)= —,,_2—.—)_,
g; "~ sinh(q;)
where
. m-2_ ()7
0..(1)= sinh(q;t) — ijoz (27“)? if n=2m,
’ cosh(g;t) — Z;";OZ—(%!)—! if n=2m— 1.

(4) Splines with additional nodes:

1+q1 ( qi )ﬂ—l
i a(f) = {— — .
=2\ g ).

If we take o, =(1+ p;)~' and B, =1—(1+g¢;)"!, then the points x;; =x; + o;h; and x;, =x; + Bih;
fix the positions of two additional nodes of the spline on the interval [x;,x;,;]. By moving them, we
can go from a spline of the order n to a spline of the order n — 2.

The constants C;,(q;), k=1,2, in the expressions for the function y;,(¢) above are calculated
from the condition ¥, (1)=1 in (46).

n




88

B.I. Ksasov, P. Sattayatham ! Journal of Computational and Applied Mathematics 104 (1999) 63-88

Acknowledgements

Appreciation is rendered to the Thailand Research Fund for the financial support which has made
this research possible.

References

(1]
[2]
(3]
[4]
[5]
(6]
(7]

(8]
(9]

[10]
(11]

[12]
[13]
[14]
[15]

C. de Boor, A Practical Guide to Splines, Springer, New York, 1978.

C. de Boor, A. Pinkus, Backward error analysis for totally positive linear systems, Numer. Math. 27 (1977) 485-490.
N. Dyn, A. Ron, Recurrence relations for Tchebicheffian B-splines, J. Anal. Math. 51 (1988) 118-138.

F.R. Gantmacher, The Theory of Matrices, vol. 1, Chelsea Publishing Company, New York, 1960.

A. Gresbrand, A recurrence relation for rational B-splines with prescribed poles, preprint.

S. Karlin, Total Positivity, vol. 1, Stanford University Press, Stanford, CA, 1968.

P.E. Koch, T. Lyche, Exponential B-splines in tension, in: C.K. Chui, L.L. Schumaker, J.D. Ward (Eds.),
Approximation Theory VI, vol. II, Academic Press, Boston, 1989, pp. 361-364.

P.E. Koch, T. Lyche, Construction of exponential tension B-splines of arbitrary order, in: P.J. Laurent,
A. Le Méhaute, L.L. Schumaker (Eds.), Curves and Surfaces, Academic Press, New York, 1991, pp. 255-258.
P.E. Koch, T. Lyche, Interpolation with exponential B-splines in tension, in: G. Farin et al. (Eds.), Geometric
Modelling, Computing/Supplementum, vol. 8, Springer, Wien, 1993 pp. 173-190.

B.I. Ksasov, Local bases for generalized cubic splines, Russian J. Numer. Anal. Math. Modelling 10 (1995) 49-80.
B.I. Ksasov, Shape preserving spline approximation via local algorithms, in: F. Fontanella, K. Jetter, P.J. Laurent
(Eds.), Advanced Topics in Multivariate Approximation, World Scientific, Singapore, 1996, pp. 181-196,

B.I. Kvasov, GB-splines and their properties, Ann. Numer. Math. 3 (1996) 139-149.

T. Lyche, A recurrence relation for Chebyshevian B-splines, Constr. Approx. 1 (1985) 155-173.

L.L. Schumaker, Spline Functions: Basic Theory, Wiley, New York, 1981.

L.L. Schumaker, On recurrences for generalized B-splines, J. Approx. Theory 36 (1982) 16-31.



