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Abstract

We prove an existence result f@rperiodic solutions to nonlinear evolution equations
of the form

X0+ A, x@®) = f(r,x@®), O<t<T.

HereV < H <> V* is an evolution tripleA:1 x V — V* is a uniformly monotone
operator, and: I x H — V* is a Caratheodory mapping which is H6lder continuous with
respect tor in H and exponent & o < 1. For illustration, an example of a quasi-linear
parabolic differential equation is worked out in detail.
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1. Introduction

In this paper, we establish an existence result of periodic solutions for a class
of nonlinear evolution equations in Banach spaces. Our approach will be based
on techniques and results of the theory of monotone operators and the Leray—
Schauder fixed point theorem.
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The problem of existence of periodic solutions for nonlinear evolution equa-
tions has been studied by several authors. However, most of the works concen-
trated on semilinear systems. We refer to the works of Browder [2], Priiss [7], and
Becker [1]. The first fully nonlinear existence results for the periodic problem,
were obtained by Vrabie [9] and Hirano [4]. Vrabie assumes that the nonlinear
time invariant operatoA monitoring the evolution equation is such tiat- A1 is
m-accretive for some > 0, while Hirano [4] considers time invariant nonlinear
operatorA which is a subdifferential of a convex function defined in a Hilbert
space. Moreover, Hu and Papageorgiou [5] consider evolution inclusions defined
in an evolution triple of Hilbert spaces. They proved the existence of a periodic
solution for a problem with a Caratheodory multivalued perturbafion x) de-
fined on/ x H into H.

The time-dependent systems for the periodic problem were investigated
recently by Kandilakis and Papageorgiou [6] and Shioji [8]. Kandilakis and
Papageorgiou consider multivalued perturbations while Shioji consider single-
valued perturbation. However, the assumptions on the monitoring operaiod
on the perturbatiorF (¢, x) of both papers imply that the operatar+ F is a
pseudo-monotone operator.

In this paper, we also consider a time-dependent systems with a single-
valued perturbation. Here, the perturbatif(, x) is assumed to be continuous
and defined ol x H with values inV*. Our assumptions on the monitoring
operatorA and on the perturbatiori(z, x) do not imply thatA + f is pseudo-
monotone.

2. System description

The mathematical setting of our problem is the following. IEetbe a real
separable Hilbert spacé;, be a dense subspace #&f having structure of a
reflexive Banach space, with the continuous embedtling H — V*, where
V* is the topological dual space &f. The system model considered here is based
on this evolution triple. Let the embedding— H be compact.

Let (x, y) denote the pairing of an element V* and an element € V. If
x,y € H,then(x, y) = (x, y), where(x, y) is the scalar product oA . The norm
in any Banach spack will be denoted byjj - || x. Let T be a fixed positive constant
andl = (0,T). Letp,q >1be suchthap~1+ ¢ 1=1and 2< p < +oo.

We denoteL ,(I, V) by X. Then the dual space of is L,(I, V*) and is
denoted byX*. For p, g satisfy the above conditions, it follows from reflexivity
of V that bothX and X* are reflexive Banach spaces (see Zeidler [10, p. 411]).
Define

Wy ={x: x X, xeX"},
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where the derivative in this definition should be understood in the sense of
distribution. Furnished with the normix|w,, = llxllx + [IX]lx+, the space
(Wpg. || - ) becomes a Banach space which is clearly reflexive and separable.
Moreover, W,, embeds intoC(I, H) continuously (see Proposition 23.23
of [10]). So every element i, has a representative ifi(1, H). Because of

the embedding/ — H is compact, the embedding,, — L,(I, H) is also
compact (see Problem 23.13 of [10]). The pairing betwEesamd X* is denoted

by ({,)).
Consider the following equation

xt)+ AW x@)=f@,x@), tel,
x(0) =x(T),

where the operatord:/ x V — V* and f:1 x H — V*. By a solutionx of
problem (2.1), we mean a functiane {x € Wp,: x(0) = x(T)} such that

()'c(t), v) + (A(t,x), v) = (f(t, x), v)

forallve V and almost all € 1.
We need the following hypotheses on the data problem (2.1).

2.1)

(A1) A:I xV — V*isan operator such that
(1) t— A(t, x) is measurable;
(2) Foreach €1, the operatod (¢): V — V* is uniformly monotone and
hemicontinuous, that is, there exists a constnt 0 such that

(A, x1) — A(t, x2), x1 — x2) > C1llx1 — x2]|}),
forall x1,x2 €V,

and the maps — (A(f,x + sz),y) IS continuous on[0, 1] for all
x,y,z€V;

(3) Growth condition: There exists a constart > 0 and a nonnegative
functiona(-) € L, (1) such that

|A@ )y <a1@) + C2||x||{’,’l, forallx eV, ae onlI;
(4) Coerciveness: There exists a constant- 0 such that
(A(t,x),x) > Csllx]ly;, forallxeV, ae onl.

Without loss of generality, we can assume that, 0) =0 for all 7 € 1.
(F1) f:1 x H— V*isan operator such that
(1) t— f(z,x)is measurable;
(2) x — f(¢,x) is continuous;
(3) There exists a nonnegative functies(-) € L, (/) and a constar@s > 0
such that

| £ 0]y <ha®) + Calx|ft, forallxev, rel,
where 1< k < p is constant;
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(4) f(,x)is Holder continuous with respect towith exponent O< o < 1
in H and uniformly inz. That is, there is a constantsuch that

£ x1) = (2. x2)|
forall x1,x2 € H and forallr € I.

V* g LH-xl - -x2||l[)f[7

It is convenient to rewrite system (2.1) as an operator equation in
Wpg(T) = {x € Wpq: x(0) =x(T)}.
Forx € X, we set
AX) () =A(t,x(1), Fx)@®)=f(t,x@), tel.

It follows from Theorem 30.A of Zeidler [10] that the operatdr X — X* is
bounded, uniformly monotone, hemicontinuous, and coercive. By using the same
technigue, one can show that the operatarL ,(/, H) — X* is bounded and
satisfies

|7

k—1
o <M1+ M2||u||(LP(,?H), forallu e L,(I, H).

Lemma 1. Under assumptiorfF1), the operatorF :L,(I, H) — X* is Holder
continuous with exponent, 0 < @ < 1, and F(x,) — F(x) in X* whenever

W
Xp—> x In Wy,

Proof. Let x1,x2 € L, (I, H). By hypothesis (4) of (F1) and Holder inequality,
we get

| F(x1) — F(x2)]

X*

1/q
q
v dt)

= (/Hf(t,xl(t)) — f(t,x2)|

1/q
<L ( / |x1(6) — x2(0) |4 dt)

0
T a/p T Ol/(qoc—l)
< L( [ - w0l dt) ( IR d,)
0 0

< L/Hxl - XZ”%,,([,H)

for some constant’. This proves thaf is Holder continuous with exponedatin
L,(I, H). HenceF is continuous ol ,(1, H).
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Since the embeddiny — H is compact, the embedding,, — L,(I, H)
is compact. That s,
Xp—x inL,(I,H) whenever x, L x in Wp,.
By using the above relation and the continuityfafwe have

F(x,)— F(x) inX* whenever x, - x in Wpe. O
Moreover, we observe that the original problem (2.1) is equivalent to the
following operator equation:

{fc—i—A(x):F(x),

x € Wy (T). (2:2)

Lemma 2. AssumdAl) and (F1) are satisfied. Then the set
S1={x € Wpy(T) | % + A(x) =0 F(x), for someo € [0, 1]} (2.3)
is bounded inW,, . Moreover, there exists a positive constafitsuch that
|A@) |y <M and I;Q?)Hx(t)HH <M

forall x € S1

Proof. Letx € S1, then we have
((x,x)) + ((A(x),x)) = ((aF(x), x))
SinceA is coercive (hypothesis (Al)) then
Callxll% < ({0 F (), x)) — (&, x)). (2.4)

By using integration by part and the relatio0) = x(7T'), one can see that the
second term on the right-hand side of (2.4) is equal to zero. Hence, inequality (2.4)

reduces to
T /g , T 1/p
Callx Il @(/Hf(r,x)y"v*dr) (/ ||x||€dr>

0 0
T 1/q

@( / (ha(t) + ||x||’;;1)"dr> Ixx
0

Sallxllx +azllxl (2.5)

for some constants; > 0 andaz > 0. Since 1< k < p, thus, by virtue of the
inequality (2.5), we can find a constaify > 0 such that

xllx <M (2.6)
forall x € S1.
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From (2.6), the boundedness of operatdrsand F, and the continuous
embeddingX — L, (I, H), we obtain

[A@) |y <Mz and [|F0)] . <M, 2.7)
for some constan¥, > 0 and allx € S1. Therefore,
Il x+ <A@ g + | F )| g < 2M2,  forallx e S1 (2.8)

It follows from (2.6) and (2.8) that
lxllw,, <M1+ 2M>.
Hence, S1is a bounded subseti, .
Finally, we note thaW,, — C(I, H); then
Ixllca,m < alixllw,,

and hence
max|x(n) |, < Ma

for some positive constanta, M3, and for all x € S1. ChoosingM =
max(M», M3), the assertion follows. O

Theorem 3. Under assumptiongAl) and (F1), Eq. (2.2)has a solutionx €
W (T).

Proof. We denoteS = Lp(I, H). DefineG:S x [0,1] — S by G(u,0) = v,
wherev is the solution of the following problem:
v+ AWw) =0 F(u),
{ v(0) =v(T). (2.9)
SinceA is uniformly monotone, theH is strictly monotone. By Theorem 32.D
of [10], for anyu € S, problem (2.9) has a unique solutiore W,, C S. S0G is
well defined.
(1) We now assert that : S x [0, 1] — S is continuous and compact.
In fact, for any sequencg:,,, o;,) C S x [0, 1] such that

(up,on) — (u,0) inS x[0, 1],
we denotey, to be the solution of the problem

{ Up + A(Vy) = 04 F(uy),
v, (0) = v, (T),
andv to be the solution of the problem

v+ AWw) =0 F(u),
v(0) = v(T).
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Therefore,
((0n — 0, 02 — V) +((A(Wn) — A(V), v, — v))
= ((GnF(un) —oF(u), v, — v)) (2.10)

Using integration by parts and the monotonicity of the operatpiwe obtain
from (2.10) that

1
5 (1on () = oD, = [0 (0 = 0O [7) + Calvn — vil§

< ((Ule(ulz) —oF(u), vy — U>>
T
< /Honf(r,un> ot

0

e lon @ —v®)]|, dt

—q/p
€ q
X*’

Ha,,F(u,,) —GF(u)’

&
<l —vllg +
foralle > 0. (2.11)

Since F(u) is Holder continuous with exponent, F:L,(I,H) — X* is
bounded, by choosingin (2.11) small enough, then

My||v, —vII§ < M2|0u F(un) — 0 F(u) %
= M>||0y F (tn) — 04 F () + 04 F (1) — o F(u) | %,
< M3(||F(un) — F@) | % + low — 7| F@)||%.)
< Maluy — uld + Mslo, — o |9 (1+ ull§ )7,

for some positive constanig;, M2, M3, M4, andMs. Noting that the embedding
L,(I, V)= L,(I, H) is continuous, we have
-1
lon = vlls < M (lun — wll &7 + low — 19/ (L+ Nl §)47),

for some constan¥’ > 0. HenceG : S x [0, 1] — S is continuous.

Let v be the solution of problem (2.9) withu|s < b1 for someo € [0, 1],
whereb1 > 0 is a constant. Similar to the proof of Lemma 2, one can show that
there exists constahb > 0 such that

lvliw,, <b2.

Hence,G maps bounded sets i x [0, 1] into bounded sets i, . Since the
embeddingV,, — S is compactG : S x [0, 1] — S is also compact.
(2) Next, we must show that the set

{ueS|u=G(u,o)fOfsomeO§agl}

is bounded irS.
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Assume that € S andu = G(u, o). Thenu € W, and satisfies the problem
u—+ A)=o0F ),
u(0) =u(T).

By Lemma 2, we gefjullw,, < M. Again, since the embedding,; — S is
compact, we get

lulls < B

for some constang > 0.
(3)Gu,0)=0, foranyu € S,
For anyu € S, setG(u, 0) = vg, wherevg satisfies
{ U0 + A(vo) =0,
vo(0) = vo(T).
By uniqueness of the solution of Eq. (2.12), we get fra@) = 0 that

(2.12)

vo=0, inWy,.

Since the imbedding¥,, — S is continuous, we get
vo=0, inS,

that is,
Gu,00=0, foranyues.

(4) Applying Leray—Schauder fixed point theorem (see [3, p. 231]) in the
spaces, there is one fixed point € S such that

x=G(x,1)

andx € SNW,,. Thatis,x is a solution of problem (2.2). Since the problem (2.1)
is equivalent to the problem (2.2), there exists a periodic solution for nonlinear
evolution equation (2.1). O

3. Examples

In this section, to illustrate the applicability of our work, we prove the existence
of a periodic solution for a quasi-linear parabolic partial differential equations of
order 2n.

Let 2 be a bounded domain iR" with smooth boundar§$2, Or = (0, T) x
2,0<T <o0. Leta = (a1, a2, ..., a,) be a multi-index with{e; } nonnegative
integers ando| = )7 ;. Suppose > 2 andg = p/(p — 1), W™P(£2) denotes
the standard Sobolev space with the usual norm:

1/p
||¢||Wm~P=< > ||D°‘¢||i,,(m) . m=012....

| <m
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Let W7 (£2) = {p € WP | DPglye =0, |B| <m — 1}. Itis well known that
CSL(R) — WP (£2) — L?(2) — WP (£2) and the embedding/;"” (2)
< L?(£2) is compact. Denotd/ = W;"”(2) and H = L2(2); then V* =
W4 (£2).

Example 1. We consider the time-periodic solutions famzrder quasi-linear
parabolic equations

Tx(, )+ Y em DD Ag (1, 2, n(X) (¢, 2))

=Y lcm DD fut,2,x(,2)) onQr,
DPx(t,z)=0 on[0,T]x 382 forall B: || <m —1,
x(0,2)=x(T,z) ong,

(3.1)

wheren(x) ={(D"x), |y|<m}andM = (n + m)!/(n'm!).

We need the following hypotheses on the data of (3.1):

(A) The functionsd, (Ja| < m): Or x RM — R are functions such that
(1) (t,2) = Aq(t, z,n) is measurable o7 for n € RM, n — Ay(t,z, 1)
is continuous oRM for almost all(¢, z) € Or;
(2) |Aa(t,z, | <aslt,2) +c1(2) Xy, 1<m Iy [P~1 with a1(-, ) € Lg(Q7)
andc1(-) € L*°(£2) for almost allt € (0, T);
Q) Zm\gm(Aa(tv 1) — Ag(t, 2, 1) (e — M) = c2(2) Z|y|gm Iny — 0y |?
with ¢2(-) € L (£2) for almost alls € (0, T);
(4) Aq(t,z,00=0forall (t,z) € Or.
(F) fu«:01 x R— R are functions such that
Q) (t,2) > fu(t,z,x) is measurable o®7 for x € R, x — f,(t,z,x) IS
continuous ok for almost all(z, z) € Or;
2) I fut, 2,0 <az(t,2) +ca@) x|t with 1<k < p,az(-, ) € Lg(Qr),
andc4(-) € L*°(£2) for almost allr € (0, T);
(3) fu(z,z,x) is Holder continuous with respectand exponent & o« < 1;
that is, there is a constant

| fu(t, 2, x1) = fu(t, 2, x2)| < L|x1 —x2|*
foranyxi,xp € R, (¢t,2) € Or.

Forx,y e Wy'", 1 €I, we define

at.x,y)= | > Aa(t.z.n(x)(t.2))D*ydz.
0 lel<m
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It is not difficult to verify that under the above assumpti@ri), for eachx € V
andr €I, y — a(t, x, y) is a continuous linear form ol. Hence there exists an
operatorA: I x V — V* such that

(A(t,x), y) =a(t,x,y).

Under the given assumptiofA’), it is easy to verify thatA satisfies our
hypotheses (A1) of Section 2.
Next, by using the time-varying Dirichlet forrfi: I x H x V — R defined by

f(r,x,y>=/ > fp(t 2, x(1,2)) DPy(2) dz.

Q 1Blsm
Theny — f(¢,x,y) is a continuous linear form ol. Hence there exists an
operatorF : I x H — V* such that
f,x,y)= (F(t, X), y).

Under the given hypothes¢F'), we obtain thatF satisfies our hypotheses (F1)
of Section 2.

Using the operatord and F as defined above, Eq. (3.1) can be written in an
abstract form:

X+ A, x)=F(t,x),
x(0) =x(T).

So applying Theorem 3, we get the following theorem.

(3.2)

Theorem 4. If hypothesesA’) and (F') hold, then there exists a periodic solution
x € L,(I,Wy'"(£2)),0x/0t € Ly(1, W—™4(R2)) of Eq. (3.1)
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