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Abstract

Relaxed controls for a class of strongly nonlinear delay evolution equations are investigated.
Existence of solutions of strongly nonlinear delay equations is proved and properties of original
and relaxed trajectories are discussed. The existence of optimal relaxed controls and relaxation
result are also presented. For illustration, two examples are given.
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1. Introduction

It is well-known that in the study of the existence of optimal controls the convexity
condition (or more precisely Cesari property) is very important. Many authors work-
ing on variational and optimal control problem convexi9ed 9nite-dimensional control
system for existence of optimal controls. This problem (called relaxation) has already
been studied in literature (see [7,8,5]). For in9nite-dimensional systems, some authors
discussed a series of questions on relaxation for semilinear or some nonlinear evolu-
tion systems (see [1,11]). However, to our knowledge, few authors studied the problem
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on relaxed controls of systems governed by delay evolution equations. Particularly for
strongly nonlinear delay evolution equations.
Semilinear delay evolution equations have been studied by many authors including

us (see [9,12,10]). Most results are concerned with semigroup. In this paper, we in-
vestigate relaxed controls for a class of strongly nonlinear delay evolution equations.
Existence of solutions for such a class of strongly nonlinear delay evolution equations is
proved and both result and method are diFerent from others. In addition, the properties
of the set of solutions for corresponding control systems are discussed. By introducing
measure-valued controls, the original control systems are convexi9ed and relaxed con-
trol systems are obtained. Under some reasonable assumptions we prove that the set
of original trajectories is dense in the set of relaxed trajectories in appropriate space
(see Theorem 3.C). The approximation result showing the relation between original
control systems and relaxed control systems is very signi9cant for control theory and
application.
For relaxed system, the existence of optimal controls is obtained under some reg-

ularity hypotheses on cost functional. Finally, we show that the optimal values of
original and relaxed problems are equal, namely relaxation theorem. Two examples are
presented for illustration.
This paper is organized as follows. In Section 2, existence of solutions of strongly

nonlinear delay systems and some properties of set solutions for corresponding con-
trol systems are presented. We give relaxed systems and prove approximate results
on relaxed trajectories in Section 3. Section 4 contributes to existence of optimal re-
laxed control and relaxation theorem. Two examples concerning delay partial diFerential
equations are given in last section.

2. Nonlinear delay evolution equations and controlled system

Let V ,→ H ,→ V ∗ be evolution triple and the embedding V ,→ H be compact.
The system model considered here is based on this evolution triple (see Chapter 23 of
[13]).
Let 〈x; y〉 denote the pairing of an element x∈V ∗ and an element y∈V . If x; y∈H ,

then 〈x; y〉 = (x; y), where (; ) is the scalar product on H . The norm in any Banach
space X will be denoted by ‖ · ‖X . We denote by C=C([− r; 0]; H) the Banach space
of all continuous maps from [ − r; 0] into H with the usual supremum norm, here
r¿ 0.

Let 0¡t6T ¡+∞; It ≡ (0; t); I ≡ (0; T ), and let p; q¿ 1 such that 1=p+1=q=1
and 26p¡∞. For p; q satisfying the preceding conditions, it follows from reIexivity
of V that both Lp(It ; V ) and Lq(It ; V ∗) are reIexive Banach Spaces (see Theorem 1.1.17
of [2]). The pairing between Lp(It; V ) and Lq(It ; V ∗) is denoted by〈〈; 〉〉t . In particular,
for t = T , we use 〈〈; 〉〉 = 〈〈; 〉〉T . Clearly, for u; v∈L2(I; H); 〈〈u; v〉〉 = ((u; v)), where
((·; ·))is the scalar product in Hilbert space L2(I; H).
De9ne

Wpq = {x: x∈Lp(I; V ); ẋ∈Lq(I; V ∗)};
‖x‖Wpq = ‖x‖Lp(I;V ) + ‖ẋ‖Lq(I;V∗);
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where ẋ denotes the derivative of x in the generalized sense. {Wpq; ‖:‖Wpq} is a Banach
space and the embedding Wpq ,→ C(I; H) is continuous. If the embedding V ,→ H is
compact, the embedding Wpq ,→ Lp(I; H) is also compact (see Problem 23.13b of
[13]).
Consider the following basic initial value problem

(2:1)
{
ẋ(t) + A(t; x(t)) = g(t; x(t); xt); t ∈ (0; T );
x(t) = �(t); −r6 t6 0;

where for given t ∈ [0; T ] and x∈C([ − r; T ]; H), xt : [ − r; 0] → H is de9ned as
xt(�) = x(t + �); xt ∈C; �∈ [− r; 0].
We will need the following hypotheses on the data of problem (2.1)

(A) A : I × V → V ∗ is an operator such that
(1) t → A(t; x) is measurable;
(2) x → A(t; x) is monotone and hemicontinuous; i.e.,

〈A(t; x1)− A(t; x2); x1 − x2〉¿ 0 ∀x1; x2 ∈V; t ∈ I ;

A(t; x + sy) w→A(t; x) in V ∗ ∀x; y∈V as s → 0;

(3) There exist constants c1 ¿ 0; c2¿ 0; c3¿ 0 and a nonnegative function c4(·)
∈Lq(I), such that

〈A(t; x); x〉¿ c1‖x‖pV − c2 for all x∈V; t ∈ I;

‖A(t; x)‖V∗ 6 c4(t) + c3‖x‖p−1
V for all x∈V; t ∈ I ;

(G) g : I × H × C → H is an operator such that
(1) t → g(t; �; �) is measurable,

(�; �) → g(t; �; �) is continuous
(2) There exist constants  ; !¿ 0 and a nonnegative function h(·)∈L2(I) such

that

‖g(t; �; �)‖H 6 h(t) +  ‖�‖k−1
H + !‖�‖2=qC

where 26 k ¡p.

Remark 1. De9ne KA(t; x) = A(t; x − x0) for some x0 ∈V: It is easy to check that KA
satis9es assumption (A).

Consider the following problem

ẋ(t) + A(t; x(t)) = g(t; x(t); xt) 06 t6T;

x(t) = �(t) − r6 t6 0; (1)

where �∈C([−r; 0]; H); �(0)∈V . By Remark 1, we can assume �(0)=0 and A(t; 0)=
0 without loss of generality. De9ne

Wpq([− r; T ]) = {x: x∈C([− r; T ]; H); x|I ∈Wpq}:
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Seek a function x∈Wpq([− r; T ]) such that (1) is satis9ed in weak sense (see Chapter
30 of [13]). Since the trajectories of the system belong to Wpq([− r; T ]) and Wpq([−
r; T ]) ,→ C([ − r; T ]; H) (see Proposition 23.23 of [13]), the initial condition x0 = �
makes sense.
Furthermore, de9ne

W 0
pq = {x∈Wpq([− r; T ]); x(t) = �(t); −r6 t6 0};

where �∈C([− r; 0]; H) is the initial data.

Theorem 2.A. Under assumptions (A) and (G); problem (1) has a solution x∈W 0
pq.

Proof. (1) Set

B= {y |y∈C([0; T ]; H); y(0) = 0}:
Obviously; B is a Banach space. For any y∈B; we de9ne ŷ : [− r; T ] → H by

ŷ(t) =

{
�(t) for t ∈ [− r; 0];

y(t) for t ∈ [0; T ]:

The operator F is de9ned on B by letting y=Fx be a solution of the following Cauchy
problem:{

ẏ(t) + A(t; y(t)) = g(t; x(t); x̂t) t ∈ I;

y(0) = 0:

By assumption (G), G(x)(t) = g(t; x(t); x̂t) is measurable and G(x)(·)∈L2(I; H) ⊂
Lq(I; V ∗). F is well de9ned and y∈Wpq ,→ C(I; H) (see Theorem 30.A of [13]).
Hence F maps B into itself.
(2) F : B → B is continuous.
Suppose xn → x in B as n → ∞. This means

sup
06t6T

‖xn(t)− x(t)‖H → 0;

and

‖(x̂n)t − x̂t‖C → 0

uniformly with respect to t ∈ [0; T ] as n → ∞. Hence, there exists a constant M ¿ 0
such that

‖x̂n‖C([−r;T ];H)6M and ‖x̂‖C([−r;T ];H)6M:

By virtue of assumption (G),

G(xn)(t) → G(x)(t) in H

for a.e. t ∈ I as n → ∞ and there exists a constant M1 ¿ 0 such that

‖G(xn)(t)‖H 6 h(t) +M1 and ‖G(x)(t)‖H 6 h(t) +M1:
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It follows from majorized convergence principle that

G(xn) → G(x) in L2(I; H)

as n → ∞.
For 06 t6T; Fxn = yn and Fx = y satisfy the following equations, respectively:

ẏ n(t) + A(t; yn(t)) = G(xn)(t);

ẏ(t) + A(t; y(t)) = G(x)(t):

We have

ẏ n(t)− ẏ(t) + A(t; yn(t))− A(t; y(t)) = G(xn)(t)− G(x)(t): (2)

Integrating by parts and using the assumptions and Cauchy inequality, one can obtain
that

1
2
‖yn(t)− y(t)‖2H 6 ‖G(xn)− G(x)‖L2(It ;H)‖yn − y‖L2(It ;H)

6
1
2
‖G(xn)− G(x)‖2L2(I;H) +

1
2

∫ t

0
‖yn())− y())‖2H d):

Thanks to Gronwall’s Lemma, it is easy to show that

yn → y in B as n → ∞:

(3) F is a compact operator on B.
Let {xn} be a bounded sequence in B. That is, there is a constant M2 ¿ 0 such that

‖xn‖C([0;T ];H)6M2:

Again, by assumption (G), there exist constants M3; M4 ¿ 0 such that

‖G(xn)(t)‖H 6 h(t) +M3 and ‖G(xn)‖L2(I;H)6M4:

yn = Fxn is a solution of the following equation:

ẏ n(t) + A(t; yn(t)) = G(xn)(t): (3)

Integrating by parts in (3) and using assumption (A)(3), one can obtain

1
2
‖yn(t)‖2H + C1‖yn‖pLp(It ;V )6 ‖G(xn)‖L2(It ;H)‖yn‖L2(It ;H) + C2:

It follows from Cauchy inequality that there exist constants *¿ 0 and K ¿ 0 such that

1
2
‖yn(t)‖2H + *‖yn‖pLp(It ;V )6K‖G(xn)‖qL2(I;H) + C2:

Hence {yn} is bounded in C(I; H) ∩ Lp(I; V ). Again by assumption (A3), (G3), and
Eq. (3), we get {ẏ n} is bounded in Lq(I; V ∗). Therefore {yn} is bounded in Wpq.
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Since Wpq ,→ Lp(I; H) is compact, there exists a subsequence, relabelled {yn}, such
that

yn → y in Lp(I; H) as n → ∞;

and therefore {yn} is Cauchy sequence in Lp(I; H). Hence there exists a constant
M5 ¿ 0 such that

1
2
‖yn(t)− ym(t)‖2H 6 ‖G(xn)− G(xm)‖Lq(I;H)‖yn − ym‖Lp(I;H)

6M5‖yn − ym‖Lp(I;H):

This inequality implies that {yn} is a Cauchy sequence in B. Since B is closed, F is
compact.
(4) A priori estimate on 9xed points.
Suppose x∈B and x=-Fx where -∈ [0; 1]. This implies that x satis9es the following

Cauchy problem:{
ẋ(t) + A(t; x(t)) = g(t; -x(t); -x̂t) t ∈ I;

x(0) = 0:
(4)

We will show that there exists a Q¿ 0 such that

‖x‖C([0;T ];H)6Q:

Using the same arguments and assumption (A) and (G), we have

1
2
‖x(t)‖2H + C1‖x‖pLp(It ;V )6

∫ t

0
〈g(); -x()); -x̂)); x())〉 d)+ C2

6
(∫ t

0
‖g(); -x()); -x̂))‖qV∗ d)

)1=q

×
(∫ t

0
‖x())‖pV d)

)1=p

+ C2;

hence

1
2
‖x(t)‖2H + *‖x‖pLp(It ;V )6 a1 + b1

∫ t

0
‖x())‖(k−1)q

H d)+ d1

∫ t

0
‖x̂)‖2C d);

where *; a1; b1; d1 are positive constants. Further, we have the following inequality:

1
2
‖x(t)‖2H + *‖x‖pLp(It ;V )6 a1 + b2‖x‖(k−1)q

Lp(It ;V ) + d1

∫ t

0
‖x̂)‖2C d)

where b2 ¿ 0 is a constant.
Consider the real function

h(�) = *�p − (a1 + b2�(k−1)q)
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with (k − 1)q¡p. There exists a constant �0 ¿ 0 such that

h(�)¿ 0 for all �¿ �0:

Hence there exists a2¿ 0 such that

a1 + b1�(k−1)q6 a2 for all 06 �6 �0:

It implies that

1
2
‖x(t)‖2H 6 a2 + d1

∫ t

0
‖x̂)‖2C d):

We denote

k(t) = 2
(
a2 + d1

∫ t

0
‖x̂)‖2C d)

)
:

It is obvious that k(t) is continuous increasing function in R. Hence

‖x̂t‖2C = sup
−r6s60

‖x̂(t + s)‖2H

6 sup
−r6)60

‖�())‖2H + sup
06)6t

‖x())‖2H

6 sup
−r6)60

‖�())‖2H + sup
06)6t

k())

6 sup
−r6)60

‖�())‖2H + k(t)

6 a3 + d2

∫ t

0
‖x̂)‖2C d)

where a3 and d2 are positive constants. That is,

‖x̂t‖2C6 a3 + d2

∫ t

0
‖x̂)‖2C d) for all t ∈ [0; T ]:

Gronwall’s Lemma (see [10]) implies that

‖x‖C([0;T ];H)6Q:

By the Leray–Schauder’s 9xed point theorem, F has a 9xed point x∗ in B. x∗ is just
a solution of (1).

Remark 2. We can assume g maps bounded set to bounded set instead of assumption
(G)(2).

Remark 3. It follows from the proof of Theorem 2.A; we also obtain that if x is a
solution of (1) then

‖x‖Wpq 6Q:
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Remark 4 (Uniqueness). The Leray–Schauder’s Theorem guarantees the existence but
not uniqueness. In order to obtain uniqueness; we have to impose some more strong
assumption on g.

(G)(3) g is locally Lipschitz continuous with respect to � and �, i.e., for any 3¿ 0,
there exists a constant L(3) such that

‖g(t; �1; �1)− g(t; �2; �2)‖H 6L(3)(‖�1 − �2‖H + ‖�1 − �2‖C); ∀t ∈ I

provided for �1; �2 ∈H; �1; �2 ∈C, and ‖�1‖H ; ‖�2‖H ; ‖�1‖C; ‖�2‖C6 3.

In fact, if problem (1) has two solutions x1; x2, then
1
2
‖x1(t)− x2(t)‖2H 6 ‖G(x1)− G(x2)‖L2(It ;H)‖x1 − x2‖L2(It ;H)

6
1
2
‖G(x1)− G(x2)‖2L2(It ;H) +

1
2
‖x1 − x2‖2L2(It ;H):

By assumption (G)(3), there exist constants C∗
1 ¿ 0 and C∗

2 ¿ 0 such that

‖x1(t)− x2(t)‖2H 6C∗
1

∫ t

0
‖x1())− x2())‖2H d)+ C∗

2

∫ t

0
‖(x1)) − (x2))‖2C d):

Thanks to Gronwall’s Lemma (see [12]), it implies

x1(t) = x2(t) for all t ∈ [0; T ]:

That is,

x1 = x2:

Now let us consider the corresponding control system. For any topological space
Z; 2Z \∅ will denote the space of nonempty subset of Z and Pc(Z) denotes the class
of nonempty closed convex subset of Z. Let (5;6) be an arbitrary measurable space
and Z be a metric space. A multifunction F : 5 → Pc(Z) is said to be measurable
if for all z∗ ∈Z; ! → d(z∗; !) = inf{d(z∗; z): z ∈F(!)} is measurable (see Theorem
2.11 of Chapter 3 of [6]). We will use SF to denote the set of measurable selectors
of F .
Assume:

(U) Z is a Polish space.
U : I → Pc(Z) is a measurable multifunction satisfying U (t) ⊆ M , a.e., t ∈ [0; T ],
where M is a 9xed weakly compact convex subset of Z . For the admissible
controls, we choose the set Uad = SU .

(G1) g : [0; T ]× H × C × Z → H
(1) t �→ g(t; �; �; <) is measurable,

(�; �; <) �→ g(t; �; �; <) is continuous on H × C × Z .
(2) There exist constants a; b; d¿ 0 such that

‖g(t; �; �; <)‖H 6 a+ b‖�‖k−1
H + d‖�‖2=qC

for all �∈H; �∈C; t ∈ [0; T ]; and <∈Z , where 26 k ¡p.



X. Xiang et al. / Nonlinear Analysis 52 (2003) 703–723 711

By famous selection theorem and assumption (U), SU �= ∅ (see Theorem 2.23, Chap-
ter 3 of [6]).
We consider the following control systems

ẋ(t) + A(t; x(t)) = g(t; x(t); xt ; u(t))

x(t) = �(t); −r6 t6 0; u(·)∈Uad : (5)

By Theorem 2.A, we immediately obtain the following existence theorem.

Theorem 2.B. Suppose the assumptions (A); (U); and (G1) hold. For every u∈Uad

Eq. (5) has a solution x(u)∈Wpq.

Remark 5. Imposing the local Lipschitz condition; one can prove the uniqueness of
solutions for (5).

De9ne

X0 = {x∈W 0
pq | x is a solution of (5) corresponding to u; u∈Uad}:

X0 is called the set of original trajectories. Set

A0 = {(x(u); u)∈Wpq × SU | x(u) is a solution of (5) corresponding to u}:
A0 is called the set of admissible state control pairs.
It can be seen from the proof of Theorem 2.A, the following conclusions are true.

Theorem 2.C. Under assumptions of Theorem 2.B; X0 is weakly precompact in Wpq

and precompact in Lp([− r; T ]; H) and C([− r; T ]; H).

Proof. Using assumptions (A); (G); and the same arguments as in the step (4) of the
proof of Theorem 2.A; one can verify that there exists a constant Q such that

‖x‖Wpq 6Q for all x∈X0:

This implies that X0 is weakly precompact in Wpq. It is easy to assert from compact-
ness of embedding V ,→ H that X0 is precompact in Lp(I; H). Hence every sequence
{xn} of X0 has a subsequence {xnk} which is Cauchy sequence in Lp(I; H). By the
arguments similar to the step (3) of the proof of Theorem 2.A, one can show that
{xnk} is also a Cauchy sequence in C(I; H). This means X0 is precompact in C(I; H).

3. Relaxed systems

We consider the following optimal control problem:

(P) inf
{
J (x; u) =

∫ T

0
L(t; x(t); xt ; u(t)) dt

}
subject to Eq. (5).
It is well known that the convexity conditions or more precisely the Cesari property

play a central role in the study of existence of optimal controls. If the convexity
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hypothesis is no longer satis9ed, to have optimal control solution, we need to pass to
a larger systems, in which the orientor 9eld have been convexi9ed. For the purpose
here we introduce the relaxed controls and the corresponding relaxed systems.
Let Z be a Polish space (i.e., a separable complete metric space) and B(Z) be its

Borel --9eld. We will denote the space of probability measures on Z by M 1
+(Z). Let

(5;6) be a measurable space. Transition probability is a function > : 5×B(Z) → [0; 1]
such that for every �∈B(Z); >(·; �) is

∑
-measurable and for every !∈5; >(!; ·)∈

M 1
+(Z). We use R(5; Z) to denote the set of all transition probabilities from (5;

∑
; ?)

into (Z; B(Z)). Following Balder [3] (see also Warga [8]), we can de9ne a topology on
R(5; Z) as follows. Let f :5×Z → R be a Caratheodory function (i.e. ! → f(!; x) is
measurable, x → f(!; x) is continuous and |f(!; x)|6  (!) is ?-almost everywhere
with  (·)∈L1(5)) and If(>)=

∫
5

∫
Z f(!; z)>(!)(dz) d?(!). The weakest topology on

R(5; Z) that makes the above functional continuous is called the weak topology on
R(5; Z).
Suppose 5=I=[0; T ] and Z is a compact Polish space, then Caratheodory integrands

on I × Z can be identi9ed with the Lebesgue Bochner space L1(C(Z)). We know
[C(Z)]∗ = M (Z) is the space of all bounded Borel measures on B(Z). M (Z) is a
separable Banach space and hence has the Radon–Nikodym property which tell us that

(L1(C(Z)))∗ = L∞(M (Z)):

So the weak topology on R(I; Z) coincides with the relative w∗(L∞(M (Z));
L1(C(Z))) topology (see [8,4]).
Now we introduce some assumptions imposed on Uad.

(U1) Z is a compact Polish space. U : I → Pc(Z) is a measurable multifunction.

De9ne
∑

(t) = {>∈M
1

+(Z); >(U (t)) = 1} and S6 is the set of transition probabili-
ties that are measurable selectors of 6(·). Since A(U (t)) ⊆ 6(t), then u∈ SU implies
A(u)∈ S6 i.e., SU ⊆ S6.
The following lemma are crucial in discussing relaxation problem (for proofs one

can see [8,3]).

Lemma 3.1. Suppose Z is a compact Polish space. Then S6 is convex and sequentially
compact.

Lemma 3.2. SU is dense in S6.

Lemma 3.3. Suppose h : I × H × C × Z → R satisfying

1. t �→ h(t; �; �; -) is measurable; (�; �; -) �→ h(t; �; �; -) is continuous.
2. |h(t; �; �; -)|6  R(t) ∈L1(I) provided with ‖�‖H 6R; ‖�‖C6R; and -∈Z .
If

xn → x in C([− r; T ]; H)

then

hn(·; ·) → h(·; ·) in L1(C(Z))
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as n → ∞, where

hn(t; -) = h(t; xn(t); (xn)t ; -);

h(t; -) = h(t; x(t); xt ; -):

Proof. It is obvious that

hn; h∈L1(C(Z)):

The convergence

xn → x in C([− r; T ]; H)

implies

(xn)t → xt in C

uniformly with respect to t ∈ I ; as n → ∞.
For 9xed t ∈ I , we show that hn(t; ·) → h(t; ·) in C(Z) as n → ∞.
In fact, for 9xed t ∈ I; n∈N , there exists -n ∈Z such that

sup
-∈Z

|hn(t; -)− h(t; -)|= |hn(t; -n)− h(t; -n)|:

Since Z is compact, we assume -n → -∗. By continuity of h, one can verify that

sup
-∈Z

|hn(t; -)− h(t; -)|

=|hn(t; -n)− h(t; -n)|
6 |hn(t; -n)− hn(t; -∗)|+ |hn(t; -∗)− h(t; -∗)|+ |h(t; -n)− h(t; -∗)|
→ 0 as n → ∞;

i.e.,

‖hn(t; ·)− h(t; ·)‖C(Z) → 0 as n → ∞:

By assumption (2) and Majorized convergent principle, we have

hn(·; ·) → h(·; ·) in L1(C(Z)) as n → ∞:

We consider the relaxed system

ẋ(t) + A(t; x(t)) =
∫
Z
g(t; x(t); xt ; -) d?t(-) 06 t6T;

x(t) = �(t) − r6 t6 0; ?∈ S6: (6)

Similar to the arguments of Theorem 2.B, one can verify the following existence
theorem.

Theorem 3.A. Suppose the assumptions (A); (G1); (U1) hold. For each ?∈ S6; the
relaxed system (6) has a solution.
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De9ne

Xr = {x∈W 0
pq | x is a solution of (6) corresponding to ?; ?∈ S6}:

Ar = {(x; ?)∈Wpq × S6 | x is a solution of (6) corresponding to ?; ?∈ S6}:
Xr is called set of relaxed trajectories and Ar is called set of admissible relaxed pairs.
Theorem 3.A shows that

Xr �= ∅
and combining with SU ⊂ S6 we have

X0 ⊆ Xr:

Similar to Theorem 2.C, we have the following conclusion.

Theorem 3.B. Under assumptions of Theorem 3.A; Xr is weakly precompact in Wpq

and precompact in Lp([− r; T ]; H) and C([− r; T ]; H).

This then raises the fundamental question of how much we enlarged the set of
trajectories of original system. The next theorem answers this question by stating that
this process does not essentially alter the original solution set.

Theorem 3.C. If assumption (A); (G1); (U1) hold; then Xr =X0 (the closure is taken
in C(I; H)) provided that the solution of (6) is unique.

Proof. Suppose ỹ∈Xr; i.e.; (ỹ; >)∈Ar for some >∈ S6.
By virtue of density result Lemma 3.2, there exists a sequence {un} ⊂ SU such that

Aun → > in R(I; Z):

We have sequence {(yn; un)} ⊂ A0. Since X0 is bounded in Wpq and C([ − r; T ]; H),
there exists a constant M ¿ 0 such that

‖yn‖C([−r;T ];H)6M;

‖yn‖Wpq(I)6M:

It follows from Theorem 2.C that there exist y∈Wpq and w∈Lq(I; V ∗) such that

yn
w→y in Lp(I; V ); ẏ n

w→ẏ in Lq(I; V ∗);

A(·; y(·)) w→w in Lq(I; V ∗);

yn → y in Lp(I; H); yn → y in C([− r; T ]; H);

(yn)t → yt in C uniformly for all t ∈ I;

as n → ∞ (if necessary passing to subsequence). Consider the following equations:

ẏ n(t) + A(t; yn(t)) =
∫
Z
g(t; yn(t); (yn)t ; -)Aun(t)(d-); 0¡t6T;

yn(t) = �(t); −r6 t6 0: (7)
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Set

G(yn(t); -) = g(t; yn(t); (yn)t ; -); G(y(t); -) = g(t; y(t); yt ; -);

G∗
n (t) =

∫
Z
G(yn(t); -)Aun(t)(d-); G∗(t) =

∫
Z
G(y(t); -)>(t)(d-):

For each  ∈C∞(I) and v∈V , de9ne

KGn(t; -) = ((Gyn(t); -);  (t)v); KG(t; -) = ((Gy(t); -);  (t)v):

For 9xed t ∈ I; it follows from assumption (G1) that

KGn(t; ·); KG(t; ·)∈C(Z);

furthermore

KGn(·; ·); KG(·; ·)∈L1(C(Z)):

Since Z is compact Polish space, and

yn → y in C(I; H) as n → ∞;

by assumption (G1) and Lemma 3.3, we have

KGn → KG in L1(C(Z)) as n → ∞:

In the topology of R(I; Z), we assert∫
I

∫
Z

KGn(t; -)Aun(t)(d-) dt →
∫
I

∫
Z

KG(t; -)>(t)(d-) dt as n → ∞:

That is,∫
I
〈G∗

n (t);  (t)v〉 dt →
∫
I
〈G∗(t);  (t)v〉 dt:

i.e.,

〈〈G∗
n ;  v〉〉 → 〈〈G∗;  v〉〉:

It implies that

G∗
n

W→G∗ in Lq(I; V ∗):

We conclude that y satis9es the following equation ẏ(t) + w(t) =
∫
Z
g(t; y(t); yt ; -)>(t)(d-) 06 t6T;

y(t) = �(t) − r6 t6 0:

Observe that

〈〈G∗(yn); yn〉〉=
∫
I

∫
Z
(G(yn(t); -); yn(t))Aun(t)(d-) dt

and

(G(yn(t); -); yn(t)) = (G(yn(t); -)− G(y(t); -); yn(t))

+ (G(y(t); -); yn(t)− y(t)) + (G(y(t); -); y(t)):
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Similar to the above procedures, one can verify that

(G(yn(·); ·)− G(y(·); ·); yn(·)) → 0 in L1(C(Z)):

By growth condition, we have,

|(G(y(t); -); yn(t)− y(t))|6 (a+ b‖y(t)‖k−1
H + d‖yt‖2=qC )‖yn(t)− y(t)‖H :

Hence,

(G(y(·); ·); yn(·)− y(·)) → 0 in L1(C(Z)):

We conclude that

〈〈G∗(yn); yn〉〉 → 〈〈G∗(y); y〉〉:
By integration by parts, it follows from (7) that

lim
n→∞〈〈A(yn); yn〉〉6 1

2 (‖y(0)‖2H − ‖y(T )‖2H ) + 〈〈G∗(y); y〉〉

= 〈〈w; y〉〉:
Since A satis9es condition (M) (see p. 474 of [13]), we have

A(y) = w:

Now we can say that y is the solution of following equation: ẏ + A(y) =
∫
Z
g(t; y(t); yt ; -)>(t)(d-) 06 t6T;

y(t) = �(t) − r6 t6 0:

Uniqueness implies

y = ỹ:

This means that

yn → ỹ in C(I; H):

As {yn} ⊂ X0 and ỹ∈Xr , we proved that

X0 ⊇ Xr in C(I; H):

Since R(I; Z) is sequentially compact, by the same procedure one can show that

X0 ⊆ Xr = Xr:

Hence

Xr = X0

where closure is taken in C(I; H).

The following corollaries can be obtained from the proof of Theorem 3.B.

Corollary 3.C. Under assumptions of Theorem 3.B; Xr is sequentially compact in
C(I; H).
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Corollary 3.D. Under assumptions of Theorem 3.B; > → x(>)∈Xr is continuous from
S6 ⊂ R(I; Z) into C(I; H).

Proof. Let >n → > in R(I; Z). For corresponding sequence {xn} of solutions; we have
a subsequence {xnk} ⊂ {xn} such that

xnk → x in C(I; H);

where x is the unique solution of (6) corresponding to >. By convergence principle;
we assert that

xn → x in C(I; H):

The proof is completed.

4. Relaxation theorem

As we have already mentioned the introduction of the larger relaxed system guaran-
tees the existence of an optimal solution. This is illustrated by the following general
result.
Consider the following problem (Pr):

J (y; >) =
∫
I

∫
Z
‘(t; y(t); yt ; -)>(t)(d-) dt =min

subject to system (6).
We make the following hypotheses concerning the integrand ‘(·; ·; ·; ·).

(L) ‘ : I × H × C × Z → KR= R ∪ {+∞}
(1) (t; �; �; -) → ‘(t; �; �; -) is measurable,
(2) (�; �; -) → ‘(t; �; �; -) is lower semicontinuous,
(3)  (t)6 ‘(t; �; �; -) almost everywhere with  (·)∈L1.

Let mr=inf{J (y; >); (y; >)∈Ar}. We have the following existence of relaxed optimal
control:

Theorem 4.A. Suppose assumptions (A); (G1); (U); (L) hold and Z is compact Polish
space; then there exists (x; >)∈Ar such that J (x; >) = mr .

Proof. Let {(xn; >n)} be a minimizing sequence in Ar: Recall that S6 is w∗-compact;
by passing to a subsequence if necessary; we may assume >n → > in R(I; Z).

Invoking Theorem 3.B, we may assume

xn → x in C(I; H);

(x; >)∈Ar .
Recalling that every lower semicontinuous measurable integrand is the limit of an

increasing sequence of Caratheodory integrands, there exists increasing sequence of
Caratheodory integrands {lk} such that

lk(t; �; �; -) ↑ l(t; �; �; -) ∀(t; �; �; -)∈ I × H × C × Z:
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Invoking the de9nition of the weak topology and Lemma 3.3, we have

J (x; >) =
∫
I

∫
Z
l(t; x(t); xt ; -)>(t)(d-) dt

= lim
k→∞

∫
I

∫
Z
lk(t; x(t); xt ; -)>(t)(d-) dt

= lim
k→∞

lim
n→∞

∫
I

∫
Z
lk(t; xn(t); (xn)t ; -)>n(t)(d-) dt

6 lim
n→∞

∫
I

∫
Z
l(t; xn(t); (xn)t ; -)>n(t)(d-) dt

= mr:

However, by de9nition of mr , it is obvious that J (x; >)¿mr . Hence

J (x; >) = mr:

This implies that (x; >) is an optimal pair.

If J0(x; u)=
∫
I ‘(t; x(t); xt ; u(t)) dt is the cost functional for the original problem and

m= inf{J0(x; u); (x; u)∈A0}. In general we have mr6m. It is desirable that mr =m,
i.e., our relaxation is reasonable. We have the following relaxation theorem. For this,
we need stronger hypotheses on ‘ than (L):

(L1) ‘ : I × H × C × Z → R is an integrality such that
(1) (t) → ‘(t; �; �; -) is measurable,
(2) (�; �; -) → ‘(t; �; �; -) is continuous,
(3) |‘(t; �; �; -)|6 �R(t) for all almost t ∈ I provided ‖�‖H ; ‖�‖C6R; -∈Z ,

and �R ∈L1.

Theorem 4.B. If assumptions (A); (G1); (U); (L1) hold and Z is compact; then m=mr

provided that the solution of (6) is unique.

Proof. Theorem 4.A shows that there exists (x; >)∈Ar such that

J (x; >) = mr:

By Lemma 3.2; there exists a sequence {un} ⊂ SU such that Aun → > in R(I; Z).
Let xn be the solution of (6) corresponding to un. Passing to a subsequence if

necessary, we may assume that

xn → x in C([− r; T ]; H)

(see Theorem 2.C).
Similarly, by using Lemma 3.3, one can verify that

‘(·; xn(·); (xn)·; ·) → ‘(·; x(·); x·; ·) in L1(C(Z)):
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By de9nition of weak topology on R(I; Z), we have

J0(xn; un) = J (xn; Aun) =
∫
I

∫
Z
‘(t; xn(t); (xn)t ; -)Aun(t)(d-) dt

→
∫
I

∫
Z
‘(t; x(t); xt ; -)>(t)(d-) dt = J (x; >) = mr:

This implies

m= mr:

5. Examples

In this section we present two examples of delay evolution equations to which our
general theory applies.
Let 5 be an bounded domain in Rn with smooth boundary @5; QT = (0; T ) × 5,

0¡T ¡∞. Let  = ( 1;  2; : : : ;  n) be a multi-index with { i} nonnegative integers
and | | =∑n

i=1  i. Suppose p¿ 2 and q = p=(p − 1); Wm;p(5) denotes the standard
Sobolev space with the usual norm:

‖’‖Wm;p =

 ∑
| |6m

‖D ’‖pLp(5)

1=p

; m= 0; 1; 2; : : : :

Let Wm;p
0 (5)={’∈Wm;p |D!’|@5=0 ; |!|6m−1}. It is well known that C∞

0 (5) ,→
Wm;p

0 (5) ,→ L2(5) ,→ W−m;p(5)and the embedding Wm;p
0 (5) ,→ L2(5) is compact.

Denote V ≡ Wm;p
0 (5); H ≡ L2(5), then V ∗ ≡ W−m;q(5).

Example 1. We consider the following initial-boundary value problem of 2m-order
quasi-linear delay parabolic control system:

@
@t

y(t; x) +
∑
| |6m

(−1)| |D A (t; x; �(y)(t; x)) = g(t; x; y(t; x); y(t − r; x); u) on QT ;

D!y(t; x) = 0 on [0; T ]× @5 for all !: |!|6m− 1;

y(s; x) = �(s; x); on 5; −r6 s6 0: (8)

where �(y) ≡ {(D*y); |*|6m}; �(t; x) is given function; �∈C([ − r; 0]; L2(5)) and
M = (n+ m)!=n!m!.

Suppose that !1i(·); !2i(·) (16 i6M1) are continuous functions from [0; T ] to R
and satisfy

!1i(t)¡!2i(t) for all t ∈ [0; T ]; 16 i6M1:

There exists a constant a¿ 0 such that

−a6 !1i(t)¡!2i(t)6 a for all t ∈ [0; T ]; 16 i6M1:
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Set Z = [− a; a]M1 ⊂ RM1 . Then Z is a compact Polish space. Set

U (t) ≡ {(wi(t))∈RM1 ; !1i(t)6wi(t)6 !2i(t); 16 i6M1}:
It is clearly that U : I → Pc(Z). The set of admissible controls Uad is chosen as

Uad ≡ SU

= {u : I → RM1 is measurable u(t)∈U (t) a:e: t ∈ [0; T ]}:
Assume that the function l0 : QT ×R×R×RM1 → KR=R∪{+∞} is continuous and

|l0(t; x; �; �; u)|6d1|�|2 + d2|�|2 + �(t; x)

with constants d1; d2, and the function �∈L1(QT ) for a.e. (t; x)∈QT and u∈Z . For
�; �∈L2(5); u∈Z , we de9ne

l(t; �; �; u) =
∫
5
l0(t; x; �(x); �(x); u) dx: (9)

The cost functional is given by

J (u) =
∫
I
l(t; y(t); y(t − r); u(t)) dt:

The optimal control problem (P∗) is to 9nd u0 ∈Uad s.t.

J (u0)6 J (u) for all u∈Uad

subject to system (8).
For y1; y2 ∈Wm;p

0 (5); t ∈ I , we set

a(t; y1; y2) =
∫
5

∑
| |6m

A (t; x; �(y1)(t; x))D y2 dx

and assume that for all  with | |6m, the function A :QT × RM → R satis9es the
following properties.

(Ã) (1) (t; x) → A (t; x; �) is measurable on QT for �∈RM ; � → A (t; x; �) is contin-
uous on RM for a.e. (t; x)∈QT ;
(2) For �= (� )∈RM ; �̃= (�̃ )∈RM , there exist positive constants c; c1; c2; c3,
and c4 such that∑

| |6m

(A (t; x; �)− A (t; x; �̃))(� − �̃ )¿ 0;

∑
| |6m

A (t; x; �)� ¿ c1
∑
|*|6m

|�*|p − c2;

|A (t; x; �)|6 c4 + c3
∑
|*|6m

|�*|p−1:

It is not diQcult to verify that under the above assumption, for each y1 ∈V and
t ∈ [0; T ], y2 → a(t; y1; y2) is a continuous linear form on V: Hence there exists an
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operator A : I × V → V ∗ such that

〈A(t; y1); y2〉V∗ ;V = a(t; y1; y2):

Under the given assumption (Ã), it is easy to see that A satis9es our assumption
(A) of Section 2.
Assume the function g : QT × R× R× RM1 → R satis9es the following properties.

(G̃) (1) (t; x) → g(t; x; �; �; u) is measurable on QT for all (�; �; u)∈R× R× RM1 ;
(2) (�; �; u) → g(t; x; �; �; u) is continuous on R×R×RM1 for almost all (t; x)∈QT ;
(3) There exist constants b1 ¿ 0; b2 ¿ 0 and b3 ∈L2(QT ) s.t.

|g(t; x; �; �; u)|6 b1|�|2=q + b2|�|2=q + b3(t; x);

for almost all (t; x)∈QT uniformly in u∈U (t).

For �1; �2 ∈H; J∈Z; t ∈ I , set

bJ(t; �1; �2;  ) =
∫
5
g(t; x; �1; �2; J) dx:

Then  → bJ(t; �1; �2) is a continuous linear form on H . Hence there exists an operator
G : [0; T ]× H × H × Z → H s.t.

bJ(t; �1; �2;  ) = (G(t; �1; �2; J);  ):

Noting that yt(�) = yt(r) for all −r6 �6 0 and (G̃), one can verify that G satis9es
assumption (G1) of Section 2.
Using the operators A and G as de9ned above, Eq. (8) can be written as the abstract

evolution equation

ẏ(t) + A(t; y(t)) = G(t; y(t); y(t − r); u); 0¡t¡T;

x(t) = �(t); t ∈ (−r; 0):

In addition, for the cost functional l which is de9ned in (9), we get that l : [0; T ]×
H × H × Z → R satis9es assumption (L1) of Section 4.
Hence our result can be used to this model.

Example 2. Consider the system of reaction diFusion equations with delay:

@ 
@t

= D(t; x)R + f(t; x;  (t; x);  (t − r; x); u) on QT ;

 (t; x) = 0 on [0; T ]× @5;

 (t; x) = ’(t; x) on 5; −r6 t ¡ 0; (10)

where  is an k-vector-valued function on QT ; ’(t; x) is a given k-vector-valued
function; ’∈C([− r; 0]; L2(5; Rk)): D=diag(d1; d2; : : : ; dk) is the diFusion matrix and
di ¿ 0; i = 1; 2; : : : ; k.
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For the mathematical setting, we take p = q = 2; H = L2(5; Rk); V = W 1;2
0 (5; Rk)

with V ∗ =W−1;2(5; Rk) being the dual of V .
For the nonlinear term, we assume that f(t; x; �; �; u) is a k-vector-valued function

de9ned on QT × Rk × Rk × Z → Rk which satis9es the following properties:

(1) f is continuous in all the variables,
(2) There exist a function b1 ∈L2(5) and constants b2¿ 0; b3¿ 0 such that

|f(t; x; �; �; u)|Rk 6 b1(t; x) + b2|�|Rk + b3|�|Rk a:e: in QT uniformly in u∈Z:

For �1; �2 ∈L2(5); u∈Z; t ∈ I , set

fu(t; �1; �2;  ) =
∫
5
f(t; x; �1; �2; u) dx:

Then  → fJ(t; �1; �2) is a continuous linear form on H . Hence there exists an
operator F : [0; T ]× H × H × Z → H s.t.

fu(t; �1; �2;  ) = (F(t; �1; �2; u);  )

and F satis9es assumption (G1) of Section 2.
Let A = −DK, it is obvious that the operator A∈L(V; V ∗) and it is coercive and

hence monotone. A satis9es the assumption (A) of Section 2.
The same as example 1, we choose that Z =[− a; a]M1 ⊂ RM1 . Then Z is a compact

Polish space.
Set

U (t) ≡ {v∈RM1 : !1i(t)6 vi(t)6 !2i(t); i = 1; 2; : : : ; M1}
The admissible controls are given by

Uad ≡ {u : I → RM1 is measurable; u(t)∈U (t) a:e:}:
For the cost integrand l, one may choose the quadratic function l : I×H×H×Z → R

with

l(t;  (t);  (t − r); u) =
∫
5
(C1(t; x)( (t; x)− y1(t; x)); ( (t; x)− y1(t; x)))Rk dx

+
∫
5
(C2(t; x)( (t − r; x)− y2(t; x));

( (t − r; x)− y2(t; x)))Rk dz

+
∫
5
(C3(t; x)u(t; x); u(t; x))RM1 dx

with Ci; i = 1; 2; 3 are positive semide9nite matrix-valued functions on QT ; yi(i =
1; 2)∈Rk are target states. Then l satis9es assumption (L1) of Section 4. Our problem



X. Xiang et al. / Nonlinear Analysis 52 (2003) 703–723 723

takes the following abstract form:

inf
Uad

{J (u) =
∫ T

0
l(t;  (t);  (t − r); u(t)) dt}= m;{

s:t:  ̇ (t) + A (t) = F(t;  (t);  (t − r); u(t));
 (s) = ’(s); −r6 s6 0;

u∈Uad :

Since all the assumptions of our abstract result are satis9ed in this particular case,
our result can be applied in this model.
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