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 เทคนิคการจาํลองพลวตัเชิงโมเลกุลทีÉผสมผสานกลศาสตร์ควอนตมัและกลศาสตร์โมเลกุล

บนพืÊนฐานวิธีโอเนียม-เอ็กซ์เอส (เรียกโดยย่อว่า การจาํลองพลวตัเชิงโมเลกุลบนพืÊนฐานวิธีโอ

เนียม-เอก็ซเ์อส) ไดถ้กูนาํมาประยกุต ์เพืÉอศึกษาโครงสร้างการละลายและพลวตัของไอออนโซเดียม

ในแอมโมเนียเหลว บนพืÊนฐานของเทคนิคการจาํลองพลวตัเชิงโมเลกุลบนพืÊนฐานวิธีโอเนียม-เอก็ซ์

เอสนีÊ  ระบบทีÉศึกษาจะถกูแบ่งออกเป็นสองส่วน ส่วนทีÉใหค้วามสาํคญัมากทีÉสุดจะเป็นส่วนเลก็ๆ ใน

ระบบ ไดแ้ก่ ทรงกลมทีÉบรรจุไอออนโซเดียมเป็นศูนยก์ลางและมีโมเลกุลแอมโมเนียลอ้มรอบ ซึÉง

อนัตรกิริยาภายในทรงกลมนีÊ จะถกูอธิบายโดยกลศาสตร์ควอนตมั และส่วนทีÉเหลือของระบบจะถูก

อธิบายบนพืÊนฐานของกลศาสตร์โมเลกุล การศึกษาในครัÊ งนีÊ  การคาํนวณกลศาสตร์ควอนตมัจะ

กระทาํในระดบัฮาร์ทรี-ฟ็อก (HF) โดยใชเ้บซิสเซตชนิดดบัเบิลเซตา้ทีÉรวมการโพลาไรซ์ (DZP) 

สาํหรับโมเลกุลแอมโมเนียและใชเ้บซิสเซตชนิดศกัยย์งัผลชืÉอ LANL2DZ สาํหรับไอออนโซเดียม 

ผลทีÉไดจ้ากการจาํลองพลวตัเชิงโมเลกุลบนพืÊนฐานวิธีโอเนียม-เอก็ซเ์อส ทาํใหเ้ขา้ใจพฤติกรรมของ

ไอออนโซเดียมทีÉเกีÉยวขอ้งกบัความสามารถในการสร้างโครงสร้างการละลายในแอมโมเนียเหลว 

(โดยเฉพาะเมืÉอเปรียบเทียบกบัผลการจาํลองพลวตัเชิงโมเลกุลทีÉผสมผสานกลศาสตร์ควอนตมัและ

กลศาสตร์โมเลกุลแบบดัÊ งเดิม) ผลการจาํลองพลวตัเชิงโมเลกุลบนพืÊนฐานวิธีโอเนียม-เอ็กซ์เอส 

พบว่า ไอออนโซเดียมมีความสามารถในการสร้างโครงสร้างการละลายทีÉค่อนขา้งชดัเจน โดย

สามารถเหนีÉยวนาํโมเลกุลแอมโมเนียทีÉอยูร่อบๆ เพืÉอสร้างชัÊนการละลายทีÉหนึÉ งและชัÊนทีÉสองโดยมี

แอมโนเนียบรรจุอยูโ่ดยเฉลีÉยจาํนวน 5.1 และ 11.2 โมเลกุล ตามลาํดบั โครงสร้างการละลายชัÊนทีÉ

หนึÉงนัÊนมีการจดัเรียงตวัทีÉค่อนขา้งชดัเจนในลกัษณะโครงรูปปิระมิดฐานสีÉเหลีÉยม ทัÊ งนีÊ  โครงสร้าง

การละลายชัÊนทีÉหนึÉงทีÉประกอบดว้ยแอมโมเนียจาํนวน 5 โมเลกุลดงักล่าว สามารถจะเปลีÉยนสลบัไป

มากับโครงสร้างการละลายอืÉนทีÉประกอบด้วยแอมโมเนียนจาํนวน 4 และ 6 โมเลกุลได้บ้าง 

โครงสร้างการละลายชัÊนทีÉสองของไอออนโซเดียมทีÉตรวจพบจากการจาํลองพลวตัเชิงโมเลกุลบน
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พืÊนฐานวิธีโอเนียม-เอก็ซเ์อส แสดงใหเ้ห็นอิทธิพลของไอออนโซเดียมทีÉมีต่อโมเลกุลแอมโมเนียทีÉ

อยูใ่นชัÊนการละลายทีÉสองดว้ย 
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SODIUM ION/ LIQUID AMMONIA/ ONIOM-XS MD 

 

 A combined quantum mechanics/molecular mechanics (QM/MM) molecular 

dynamics (MD) technique based on the ONIOM-XS (Own N-layered Integrated 

molecular Orbital and molecular Mechanics – eXtension to Solvation) method, called 

briefly ONIOM-XS MD, has been applied to investigate the solvation structure and 

dynamics of Na+ in liquid ammonia (NH3). Based on the ONIOM-XS MD technique, 

the system is composed of a “high-level” QM region, i.e., a sphere which contains the 

Na+ ion and its surrounding NH3 molecules, and the remaining “low-level” MM 

region. Inside the QM region, all interactions were treated at the Hartree-Fock (HF) level 

of accuracy using double-ζ plus polarization and LANL2DZ basis sets for NH3 and Na+, 

respectively, whereas the interactions within the MM and between the QM and MM 

regions were described by MM potentials. The ONIOM-XS MD results provided 

more insights into the behaviors of Na+ with respect to its “structure-making” ability 

in liquid NH3, especially when compared to the results obtained by the conventional 

QM/MM MD scheme. With regard to the detailed analyses on the ONIOM-XS MD’s 

trajectories, Na+ clearly acts as a “structure-maker” in this media, i.e., this ion can 

order its surrounding NH3 molecules to form specific first and second solvation shells 
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with the average coordination numbers of 5.1 and 11.2, respectively. In this respect, 

the first solvation shell of Na+ is rather well-defined, forming a preferred 5-fold 

coordinated complex with a distorted square pyramidal geometry. Interestingly, it is 

observed that the most preferential Na+(NH3)5 species could convert back and forth to 

the lower probability Na+(NH3)6 and Na+(NH3)4 configurations. The second solvation 

shell of Na+ is also detectable, indicating a recognizable influence of Na+ in ordering 

NH3 molecules in this shell. 
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CHAPTER I 

INTRODUCTION 

 

1.1  Literature review  

 It is known that the basic machinery of human body is proteins, and one-third 

of them are metalloproteins containing at least one metal ion. In this respect, the metal 

ions are needed for the proteins to have some structural and functional roles. To 

understand the properties of metalloproteins, fundamental knowledge with respect to 

the structure and dynamics of ion coordination in simple solvents, such as water (H2O) 

or ammonia (NH3), is essential. The elucidation on the structure and dynamics of ions 

solvated in aqueous electrolyte solutions has long been an interesting subject for both 

experimental and theoretical studies (Impey, Madden and McDonald, 1983; Karplus 

and McCammon, 1983; Marcus, 1988; Morokuma, 2003; Roux and Karplus, 1994; 

Woolf and Roux, 1994). In addition to the study of aqueous ionic solutions, behavior 

of ions, in particular of metal ions, solvated in liquid NH3 have also been a topic of 

scientific interest since these data can provide valuable insights into the coordinating 

environment of more complex ligands, e.g., DNA, RNA and proteins. Regarding the 

metal-ammonia solution, most of the available information has been reported in the 

Colloque Weyl Symposia (D, 1965; Das, 2007; Johnson and Meyer, 1931; Salter and 

Ellis, 2007).  
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 In general, experimental techniques, such as X-ray diffraction (XRD) and 

neutron diffraction (ND), are the useful tools for determining the static structure 

factors of ligands (i.e., solvent molecules, such as H2O or NH3) solvating a given ion 

(Ansell, Barnes, Mason, Neilson and Ramos, 2006; Ohtaki and Radnai, 1993; Narten, 

1976). However, most of experimental measurements often yield an incomplete 

description of ionic solvation, due to, e.g. the lack of suitable isotope substitutions in 

ND experiments, or difficulties in separating the atomic correlations or different 

species in diffraction data (Chowdhuri and Chandra, 2003; Koneshan, Rasaiah, 

Lynden-Bell and Lee, 1998; Zhou, Lu, Wang and Shi, 2002). In conjunction with 

experiments, computer simulations, i.e., by means of Monte Carlo (MC) and 

molecular dynamics (MD), have become an alternative approach to provide 

microscopic details of such systems. For the system of ions in liquid NH3, several MC 

and MD simulations have been carried out, providing detailed information on the 

structure and dynamics of the solvated ions (Kerdcharoen and Rode, 2000; 

Hannongbua, 1991;  Marchi, Sprik and Klein, 1990; Hannongbua, 1997; Tongraar, 

Liedl and Rode, 1998; Lee and Rasaiah, 1994). However, most of the earlier studies 

had relied on simplified potentials (Beu and Buck, 2001; Gao, Xia and George, 1993; 

Hannongbua, Kerdcharoen and Rode, 1992; Kincaid and Scheraga, 1982) or on direct 

ab inito pair interactions (Hannongbua, 2000). In this respect, it has been 

demonstrated that the quality of the simulation results depend crucially on the quality 

of the potentials employed for describing the system’s interactions, i.e. most of which 

are based on pairwise additive approximations. In particular, it has been shown that 

the simulations based on pair potentials with and without three-body correction 

revealed different results regarding the coordination numbers and the ion-ligand 
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distances (Hannongbua, 1997; Hannongbua, 1998; Hannongbua, Kerdcharoen and 

Rode, 1992; Kerdcharoen and Hannongbua, 1999; Pranowo, Mudasir, 

Kusumawardani and Purtadi, 2006; Pranowo and Rode, 1999). To obtain more 

reliable results, it has been demonstrated that the “quantum effects” are essential and 

that the inclusion of these effects in the simulations is mandatory (Rode, Schwenk and 

Tongraar, 2004). 

By means of ab initio (AI) MD techniques, Car-Parrinello (CP-MD) and Born-

Oppenheimer (BO-MD) are well-known. Undoubtedly, the main advantage of the AI-

MD techniques is that the whole system is treated quantum mechanically, most of 

which are based on density functional theory (DFT). However, some limitations of the 

AI-MD techniques come from the use of simple generalized gradient approximation 

(GGA) functionals such as BLYP and PBE and of the relatively small system size. 

Consequently, this results in too strong ion-ligand interactions, and thus more rigidity 

of the structure of ion-ligand complexes. In addition, it has been demonstrated that the 

use of small system size may lead to problem of ion-ion interactions (Lyubartsev, 

Laaonen and Laaksonen, 2001). With regard to this point, an alternative approach is to 

apply a so-called combined quantum mechanics/molecular mechanics (QM/MM) MD 

technique (Armunanto, Schwenk, Randolf and Rode, 2004; Armunanto, Schwenk and 

Rode, 2004; Field, Bash and Karplus, 1990; Kerdcharoen, Liedl and Rode, 1996; 

Kerdcharoen and Rode, 2000; Schwenk and Rode, 2004; Tongraar, Kerdcharoen and 

Hannongbua, 2006). By the QM/MM MD technique, the most interesting part of the 

system (i.e. a sphere which includes the ion and its surrounding solvent molecules) is 

treated quantum mechanically, while the rest of the system is handled by simple MM 

force fields. During the past decades, the QM/MM MD technique has been 
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successfully applied for studying many condensed-phase systems (Gao, 2007; 

Kerdcharoen, Liedl and Rode, 1996; Rode, Schwenk and Tongraar, 2004; Sripa, 

Tongraar and Kerdcharoen, 2013; Thaomola, Tongraar and Kerdcharoen, 2012; 

Wanprakhon, Tongraar and Kerdcharoen, 2011; Singh and Kollman, 1986; Warshel 

and Levitt, 1976). 

According to the QM/MM MD technique, however, there are some limitations 

that undermine its applicability. In particular, it has been well-demonstrated that only 

the exchanging particles are treated by a smoothing function when they are crossing 

the QM/MM boundary. This is not realistic since immediate addition of deletion of a 

particle in the QM region due to the exchange of solvent molecules also affects the 

forces acting on the remaining QM particles. As a consequence, such QM/MM MD 

simulations suffered from numerical instability whenever there are solvent exchanges 

between the QM and MM region. In addition, the QM/MM MD scheme cannot clearly 

define the appropriate energy expression during the solvent exchange process 

(Kerdcharoen and Morokuma, 2003). To overcome these problems, an alternative 

approach is to apply a more sophisticated QM/MM MD technique based on the 

ONIOM-XS method (which will be abbreviated throughout this work as “ONIOM-XS 

MD”). The ONIOM-XS MD technique (Kerdcharoen and Morokuma, 2002) avoids 

the above problems by smoothing the total potential energy of the entire system, and 

thus, allowing the forces on every QM particle to be smoothed. The ONIOM-XS MD 

technique has been successfully applied for studying various condensed-phase 

systems, such as Li+ and Ca2+ in liquid NH3 (Kerdcharoen and Morokuma, 2002; 

Kerdcharoen and Morokuma, 2003), Li+, Na+, K+ and Ca2+ in aqueous solution (Sripa, 

Tongraar and Kerdcharoen, 2013; Wanprakhon, Tongraar and Kerdcharoen, 2011) as 
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well as liquid water (Thaomola, Tongraar and Kerdcharoen, 2012). In several cases, it 

has been proven that the ONIOM-XS MD technique can provide more insights into 

the properties of such systems, especially when compared to the results derived by the 

conventional QM/MM MD scheme. Interestingly, it has been demonstrated that the 

ONIOM-XS MD technique becomes more effective for the situation where the 

number of ligands that are crossing the QM/MM boundary is large, i.e., a system in 

which the ion-ligand interactions are weak and ligand molecules surrounding the ion 

are labile (Wanprakhon, Tongraar and Kerdcharoen, 2011). For the study of ions in 

liquid NH3, such as for the case of Ca2+/NH3 solution, the ONIOM-XS MD simulation 

(Kerdcharoen and Morokuma, 2003) has predicted a lower coordination number of 6 

for Ca2+, compared to the values of 9 and 8.2 predicted by classical MD simulations 

using pair potentials with and without 3-body corrections (Sidhisoradej, Hannongbua 

and Ruffolo, 1998). This observed difference clearly confirms the importance of the 

QM treatment for obtaining more reliable simulation results.  

In this work, the ONIOM-XS MD technique will be applied for studying the 

solvation structure and dynamics of Na+ in liquid NH3. The Na+ ion is abundant in 

nature and is known as one of the essential elements that play a vital role for all 

known life. In particular, the contrasting behavior of Na+, i.e., compared to K+, is of 

special interest concerning the process of ionic pumps across the cell membrane. 

Recently, the ONIOM-XS MD simulations of Na+ and K+ in aqueous solution 

(Wanprakhon, Tongraar and Kerdcharoen, 2011) have provided more insights into the 

relationship of these two ions with respect to their “structure-making” and “structure-

breaking” abilities. For the system of Na+ in liquid NH3, some selected structural 

parameters for the Na+ solvation, as obtained from different MC and MD simulations, 
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are summarized in Table A1 (See Appendix A). For example, the MD simulations 

using pair potentials based on primitive Gaussian basis sets for Na+/ammonia solution 

at 235 and 266 K have reported the coordination numbers of 8.0 and 7.0, with the 

average Na+-N distances of 2.49 and 2.42 Å, respectively (Hannongbua, 1991). Later, 

the MC simulations of Na+/ammonia solution at 277 K using pair potentials and pair 

plus three-body correction functions based on DZP basis sets have yielded the average 

coordination numbers of 9.0 and 8.1, respectively, with the similar Na+-N distance of 

2.68 Å (Hannongbua, 1997). Another MC simulation using empirical potentials gave a 

rather small coordination number of 5, with the relatively shorter Na+-N distance of 

2.25 Å (Marchi, Sprik and Klein, 1990). Interestingly, the results obtained by the 

conventional QM/MM MD simulation have revealed a lower coordination number of 

5 (Kerdcharoen and Rode, 2000), compared to the corresponding values of 9 and 8 

predicted by classical MD simulations using pair potentials (Hannongbua, 1991; 

Hannongbua, 1997; Kerdcharoen and Rode, 2000) or pair potentials plus three-body 

corrections (Hannongbua, 1997). In this context, the results obtained by the more 

sophisticated ONIOM-XS MD simulations are expected to provide more reliable 

descriptions on the structure and dynamics of this solvated ion, especially when 

compared to the conventional QM/MM MD results.  

 

1.2  Research objectives  

1. To apply the more accurate ONIOM-XS MD technique for studying the 

solvation structure and dynamics of Na+ in liquid NH3. 
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2. To emphasize the importance of the treatment with the ONIOM-XS MD 

technique for obtaining detailed knowledge of such condensed-phase 

system.  

 

1.3  Scope and limitation of the study 

 In this work, two ONIOM-XS MD simulations were performed. The first 

ONIOM-XS MD simulation refers to the system of Na+ in liquid NH3 and the second 

one refers to the system of pure liquid NH3. In this respect, the ONIOM-XS MD 

results for the system of pure liquid NH3 will be used as reference (bulk) when 

discussing the effects of the ion on the local structure and dynamics of the solvent 

molecules. According to the computational expense for QM force calculations, the 

selection of QM method, as well as the QM size and basis sets, must be considered 

carefully, compromising between the quality of the simulation results and the 

requirement of CPU time (Xenides, Randolf and Rode, 2005). In this study, all 

interactions within the QM region were evaluated by performing ab initio calculations 

at the Hartree-Fock (HF) level of accuracy using double-ζ plus polarization (DZP) 

basis set (Dunning and Hay, 1977) for NH3 and LANL2DZ basis set (Boys and 

Bernardi, 1970; Check, Faust, Bailey, Wright, Gilbert and Sunderlin, 2001; Hay and 

Wadt, 1985) for Na+. For the QM size, the QM radii of 4.4 Å and 5.2 Å were chosen 

for the cases of Na+ in liquid NH3 and of pure liquid NH3, respectively. These QM 

sizes are considered to be large enough to include most of the non-additive 

contributions and the polarization effects, i.e., at least within the whole first solvation 

shell and some parts of the second solvation layer of Na+ (or in the case of pure liquid 

NH3, within the whole first solvation shell of the reference NH3 molecule located at 
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the center of the QM region). The structural properties of the Na+ solvation will be 

analyzed by means of atom-atom radial distribution functions (RDFs) and their 

corresponding integration numbers, together with the angular distribution functions 

(ADFs) and dipole-oriented arrangements of NH3 molecules surrounding the ion. The 

dynamics properties will be interpreted through ligand exchange processes and mean 

residence times (MRTs) of NH3 molecules at the Na+ ion. The observed differences 

between the ONIOM-XS MD results and those obtained from experimental data and 

theoretical investigations will be compared and discussed.  
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 CHAPTER II  

QUANTUM CHEMISTRY 

 

2.1 Introduction to quantum mechanics 

Quantum mechanics is known as an essential tool applied for describing the 

fundamental behavior of matter at molecular scale, in particular the electron behavior. 

Quantum mechanics explicitly treat the electrons in a calculation, and thus, it is 

possible to derive properties that depend upon the electronic distributions and in 

particular to investigate chemical reactions in which bonds are broken or formed. In 

this respect, the energy and some properties of a molecule can be derived from a 

wavefunction, which can be obtained by solving the Schrödinger equation 

(Schrödinger, 1926).  

 

2.2  Schrödinger equation 

 Quantum mechanics describe molecules in terms of interactions among nuclei 

and electrons, and molecular geometry in terms of minimum energy arrangements of 

nuclei. It is straightforward to generalize the Schrödinger equation to a multinuclear, 

multielectron system. Note that the objective of most ab initio electronic structure 

theories is the solution of the time-independent Schrödinger equation, which can be 

expressed in a time independent form as  

 
 EĤ ,     (2.1)
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where Ĥ  is the Hamiltonian operator, which corresponds to the kinetic energy, T̂ , 

and potential energy, V̂ , of the system. In general, the Hamiltonian operator can be 

written as   

 

VTH ˆˆˆ  ,     (2.2) 

 

where 
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In situations where the potential is independent of time, this enables us to write the 

time-dependent Schrödinger equation in a more familiar time-dependent form as 
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where 2 is the Laplacian operator, written as 
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Here,   is Planck’s constant divided by 2π. Ψ is an eigenfunction which characterizes 

the particle’s properties, and E is the eigenvalue of the particle with respect to the 

eigenfunction. 

 

2.3 The variation theory 

 One of the useful methods for estimating the lowest energy is based on a so-

called variation theory, which assessing and improving guesses about the forms of 

wavefunctions in systems. The theory starts with a trial function ( ), which can be 

written in terms of a linear combination of the wavefunctions ( i ), 

 

,
i

iic       (2.7) 

   

where the individual i and coefficients ic are unknown. Then, the normality of 

imposes a constraint on the coefficients, deriving from  
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Then, considering the energy associated with the wavefunction ( ) as 
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After that, combining the results from equations (2.8) and (2.9), give 
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In general, the coefficients are assumed to be real numbers, thus, 2

ic and the result of 

)( 0EE i  must be greater than or equal to zero. Therefore, 
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 According to equation (2.12), the quality of wavefunctions for describing the 

ground state of a system can be defined by their associated energies as the better 

wavefunction can be constructed in any manner, which determined the quality by the 

integral in equation (2.12). 
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2.4 Born-Oppenheimer approximation 

 It is known that the Schrödinger equation cannot be solved exactly for any 

molecular systems. On the other hand, it is possible to solve the equation exactly for 

the simplest molecular species when the motion of the electrons is decoupled from the 

motion of the nuclei in accordance with the Born-Oppenheimer approximation (Born 

and Oppenheimer, 1927). In fact, since the nuclei are heavier than electrons, the nuclei 

are moving slowly than the electrons (Szabo and Ostlund, 1989). According to this 

property, the approximation has been made by separating the nuclei and electrons 

motions, called the Born-Oppenheimer approximation. 

 For N particle system, the Hamiltonian operator ( Ĥ ) takes into account five 

contributions to the total energy of a system, namely the kinetic energies of the 

electrons ( eT̂ ) and nuclei ( nT̂ ), the attraction of the electrons to the nuclei ( enV̂ ), and 

the inter-electronic ( eeV̂ ) and inter-nuclear ( nnV̂ ) repulsions, as shown in equations 

(2.13) and (2.14), 
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where i and j represent electrons, A and B represent nuclei, M is the mass of nucleus, Z 

is the atomic number, r and R are the distances between particles.  

 Based on the Born-Oppenheimer approximation, the electronic energies are 

computed by fixing nuclear position. Consequently, the nuclear kinetic energy term is 
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independent, and thus, can be neglected and the last term in equation (2.14), the 

repulsion of nuclei, can be considered as a constant. The remaining terms in equation 

(2.14) are called the electronic Hamiltonian or Hamiltonian describing the motion of 

N electrons in the field of M point charges,  
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2.5 Molecular orbital theory 

 The molecular orbital theory is a method for determining molecular structure. 

A molecular orbital is a region in which an electron can be found in a molecule. In 

general, the molecular orbital can be described by wavefunction of the electron in a 

molecule, in particular a spatial distribution ))(( 2ri  of an electron and energy of up 

to two electrons within it. A complete wavefunction for an electron consists of a 

molecular orbital and a spin function (and), which can be defined as a spin orbital 

))(( x  where x indicates both space and spin coordinates. Therefore, a spatial orbital 

can be formed into two different spin orbitals as                    
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 To simplify the treatment further, the next step is to assume that the electrons 

are non-interacting in which the appropriate functional form of the wavefunction for N 

electrons can be expressed as 
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where )(ih is the operator that describes the kinetic and potential energies of electron 

i. Then, the set of spin orbitals ))(( xj have been added to the operator,  

 

).()()( ijjij xxih       (2.18) 

 

In this respect, the wavefunction is a simple product of spin orbital wavefunction for 

each electron as 

 

     ).()...()(),...,,( 2121 NkjiN
HP xxxxxx    (2.19) 

 

The above equation can be written as 

  

                  ,HPHP EH      (2.20) 

where E is the sum of the spin orbital energies of each spin orbitals in ,HP  

 

     .... kjiE                          (2.21) 

 

 Accordingly, a N-electron wavefunction is termed a Hartree product, where 

the electron-one has been described by the spin orbital ),( i electron-two has been 



 

 

 

 

 

 

 

 

 22

described by the spin orbital ),( j etc. However, this wavefunction does not allow 

the antisymmetry principle. 

 To ensure the antisymmetric, considering a two-electron case in order to put 

electron-one in i and electron-two in j as 

 

     ).()(),( 212112 xxxx ji
HP                (2.22) 

 

In the opposite way, putting electron-one in j and electron-two in i as 

 

    ).()(),( 121221 xxxx ji
HP             (2.23) 

 

After that, taking the appropriate linear combination of these two Hartree products, 

 

)),()(())()((2),( 1221
2/1

21 xxxxxx jiji      (2.24) 

 

where the factor 2/12  is a normalization factor and the minus sign insures that

),( 21 xx is antisymmetric with respect to the interchange of the coordinates of 

electrons one and two. From equation (2.24), the wavefunction will be disappeared if 

both electrons occupy the same spin orbital, i.e., following the Pauli exclusion 

principle. Moreover, the antisymmetric wavefunction can be rewritten in terms of a 

determinant, 
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which is called a Slater determinant (Slater, 1929). For an N-electron system, the 

generalization is 
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Here, the factor 2/1)!( N  ensures that the wave function is normalized. The short-hand 

notation for a normalized Slater determinant only shows the diagonal elements of 

determinant, 

 

             .)()()(),...,,( 2121  NkjiN xxxxxx      (2.27) 

 

2.6  The LCAO-MO approach and basis sets 

 In most of quantum mechanical calculations, the molecular orbitals can be 

built form the atomic orbitals by using linear combination of atomic orbitals to 

molecular orbitals (LCAO-MO) method. The molecular orbitals, ,i  can be 

composed of a set of atomic orbitals, known as basis functions. Thus, each molecular 

orbital can be written as a summation of the following form: 
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where ic  are the molecular orbital expansion coefficients, and N is the number of 

atomic basis function. Here, a set of N function   is called basis set. The ic  can be 

calculated using various approaches, most of which are based on the linear variation 

methods. 

 Two common types of basis function used in the electronic structure 

calculations are Slater Type Orbitals (STOs) (Slater, 1930) and Gaussian Type 

Orbitals (GTOs) (Boys, 1950). 

 The formalism of the STOs can be expressed as 

 

    ),,(),,;,,( /1  
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where n, l, and lm are the quantum numbers referring to principal, angular momentum 

and magnetic, respectively, N is the normalization constant and 
llmY  is a spherical 

harmonic. The STOs screening constants are calculated for small model molecules 

using rigorous self-consistent field methods, and then being generated for use with 

actual molecules of interest. The accuracy of STOs can be improved by combining 

two or more STOs into a single one-electron wavefunction (double  basis set). effZ  is 

the effective nuclear charge, while the effective principal quantum number )( effn is 

related to the true principal quantum (n) by the mapping of 
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 n effn  : 1 22   33  43.7   5 4.0  64.2, 

 

in which the value of   equal 0/ ar , where 0a  is Bohr radius. 

 The STOs are usually applied for atomic and diatomic system, which high 

accuracy, such as in semi-empirical methods where all three- and four-center integrals 

are neglected and in density functional methods that do not include exact exchange 

and that the coulomb energy is calculated by fitting the density into a set of auxiliary 

functions. However, the STOs do not satisfy in the case of two-electron integral 

problem. With regard to this point, the feasible basis function is Gaussian type 

orbitals (GTOs), which are function of the form 
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where ),,( ccc zyx are the Cartesian coordinates of the center of the Gaussian function 

at ),,(, 111 zyxrc are the Cartesian coordinates of an electron at 1r , i, j and k are 

nonnegative integers and   is a positive exponent. The advantage of GTOs is that the 

product of two Gaussians at different centers is equivalent to a single Gaussian 

function centered at a point between the two centers. Therefore, the two-electron 

integral problem on three and four or more different atomic centers can be reduced to 

integrals over two different centers. However, it is known that the GTO gives an 

inferior representation of the orbitals at the atomic nuclei, which can be considered at 

1s-orbital. Note that the 1s-orbital of STO has a cusp at the atomic nucleus while a 

GTO does not, as can be seen in Figure 2.1. In this respect, the larger basis must be 

used to achieve the accuracy comparable to that obtained from STOs.  
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Figure 2.1 The Slater-type and Gaussian-type for 1s orbital. 

 

 The most important factor for creating the molecular orbital is a set of 

parameters applied to the basis function, called basis set. The smallest number of 

function possible for constructing the molecular orbital is called a minimum basis set. 

The improvement of the basis set can be made by replacing two basis functions into 

each basis function in the minimal basis set, called double zeta (DZ). The larger basis 

set is a triple zeta (TZ), where three basis functions are used to represent each of the 

minimal basis set. The compromise between the DZ and TZ basis sets is called a split 

valence (SV) basis set, in which each valence atomic orbital is represented by two 

basis functions while each core orbital is represented by a single basis function. 

 In 1969, Pople and coworkers (Hehre, Stewart, and Pople, 1969) designed the 

basis set by expanding the STO in terms of n primitive Gaussians, called STO-nG 

basis set. The primitive Gaussian has been derived for n = 2-6. However, the STO-3G 

basis set is a widely used minimal basis set, as shown in Figure 2.2. The STO-3G 
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basis set partially represents the cusp of s-type orbital, which is quite reasonable for 

representing the orbital at the atomic nuclei. 

 

 

Figure 2.2 The STO-3G basis set representing the desired STO. 

 

 In addition, Pople and coworkers have applied the split valence to obtain 

flexibility in the basis set, which can be designed as k-nlmG basis set. The first 

parameter (k) indicates the number of primitives used in the contracted core, while the 

two values (nl) refer to a split valence, and three values (nlm) refer to a triple split 

valence, such as 6-311G. For the triple split valence basis, the core orbitals are a 

contraction of six primitives and the valence splits into three functions, represented by 

three, one and one primitive GTOs, respectively. The Pople’s style basis sets may 

include diffuse and/or polarization functions. The diffuse function can be denoted as + 

or ++ before the G, in which the first + indicates one set of diffuse s- and p-function 

adding on heavy atoms and the second + refer to the inclusion of diffuse s-function for 

hydrogen atom. The polarization function can be put after the G, which separates 

designation for heavy and hydrogen atoms. For example, 6-31+G(d) basis set refers to 

a split valence with additional diffuse sp-functions and a single d-type polarization 

STO-3G 1s basis function 
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function only on heavy atoms. The largest standard Pople style basis set is                 

6-311++G(3df,3pd). In addition, the polarization function can be replaced with * 

notation, for example, the 6-311G* basis set is identical to 6-311G(d) and 6-311G** 

basis set is identical to 6-311G(d,p). 

 Since several GTOs are often grouped together, the contracted Gaussian 

function has been applied to Dunning-Huzinaga (DZ) basis set (Dunning, 1970; 

Dunning 1971; Huzinaga, 1965). The DZ basis set can be made by a contraction such 

as the (9s5p) primitive GTOs to [4s,2p]. The contraction scheme is 6,1,1,1 for s-

functions and 4,1 for the p-functions. In addition, the development of basis set by 

Dunning and coworkers for recovering the correlation energy of the valence electrons 

is known as the correlation consistent (cc) basis sets. The general formulation can be 

written as cc-pVnZ, where n = D for double zeta, T for triple zeta, Q for quadruple 

zeta, 5 for quintuple zeta or 6 for sextuple zeta. The diffuse functions can be 

augmented into the correlation consistent basis set by adding the prefix aug-, such as 

aug-cc-pVnZ. The correlation consistent basis set provides accurate description of 

anions and weak interactions, in particular for systems involving van der Waals forces 

and hydrogen bonding. 

 For the systems having large number of core electron elements, it is necessary 

to use a large number of basis functions for describing them. However, since the deep 

core electrons are not much important in a chemical sense, this leads to an 

approximation by replacing the core electrons with analytical functions, called an 

Effective Core Potential (ECP) (Collins, Schleyer, Binkley, and Pople, 1976) or 

pseudopotential (PP) (Aaqvist and Warshel, 1993), which would reasonably 
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accurately, and much more efficiently, representing the combined nuclear-electronic 

core to the remaining electrons.  

 

2.7  Basis Set Superposition Error (BSSE) 

 In the calculations of molecular energies using atomic basis sets, especially for 

weak interactions, an error occurs due to the use of basis functions on adjacent 

molecules (Davidson and Chakravorty, 1994). The results are regarded as “Basis Set 

Superposition Error (BSSE)” (Boys and Bernardi, 1970). The BSSE causes 

overestimation of the attractive contribution to the interaction energy and 

consequently provides an illegitimate increase of binding energy in a molecule. As a 

consequence, this may lead to less accurate results regarding to molecular geometry 

optimization and molecular charge distribution. The BSSE can be calculated with the 

help of ghost atoms. In this respect, the amount of BSSE can be estimated using 

Counterpoise Procedure (CP) (Boys and Bernardi, 1970). The counterpoise correction 

is the energy lowering of single monomer in the presence of ghost basis functions 

located at the position of the atomic centers of that monomer, but without additional 

nuclear charges or electrons. The correction for BSSE in the molecular calculations 

with medium and small basis sets can result in values of interaction energies which are 

fairly close to those obtained by using more expensive and large basis sets. However, 

it should be realized that the counterpoise method will not provide effective 

improvement of the results if the atomic basis sets are very poor. The counterpoise 

procedure has been used as a standard tool of theoretical chemistry although some 

researchers have raised serious doubts on the usefulness of this procedure (Schwenke 

and Truhlar, 1986). The counterpoise correction can be very reasonable for the 
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estimation of weak electronic interaction energies with small basis sets at Hartree-

Fock level of accuracy. However, this approach has failed for the estimation of strong 

electronic interaction energies even if with up to date basis sets, as demonstrated by a 

study of cyclic hydrogen fluoride trimer (Liedl, 1998). 

 

2.8  Hartree-Fock method 

 The important factor in the electronic structure calculations is the electron-

electron repulsions, which must be included in any accurate electronic structure 

treatment. The Hartree-Fock (HF) method treats the electron-electron repulsions in an 

average way. The Hamiltonian operator considers that each electron individually 

move in the average field of all other electrons in the molecule. This is the basis of the 

self-consistent field (SCF) procedure. For closed-shell systems (all electrons spin-

paired, two per occupied orbital), the formalism is well known as restricted Hartree-

Fock (RHF). The Hamiltonian operator for one-electron is called Fock operator, F̂ , 

which can be defined as 
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where coreH )1(
ˆ  is the core Hamiltonian operator, 
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where aĴ  is Coulomb operator representing the classical repulsion between two 

electron distributions (i.e., interaction potential of electron a with all of the other 

electrons), which can be defined as 
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and aK̂  is exchange operator representing the exchange function according to the fact 

that the two electrons exchange their positions corresponds to Pauli’s principle. The 

exchange of electrons in two-spin orbitals can be defined as 
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 The Fock operator and the exact Hamiltonian are different, i.e., the coulomb 

operator has been replaced by an operator describing the interaction of each electron 

with the average field of all other electrons. In this respect, the expansion of the 

wavefunction in terms of basis functions from the application of LCAO-MO method 

lead to a limitation of the accuracy of the ab initio HF approach since there is limited 

number of basis functions available. The greater the number of basis functions, the 

better the wavefunction and the lower the energy. The limit of an infinite basis set is 

known as the Hartree-Fock limit. Moreover, the HF equation for atom can be solved 

by numerical integration. Nevertheless, complication arises when molecules are 
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considered because there is more than one center. Thus, the HF equation can be 

written independently using Roothaan-Hall equations, 
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with the normalization conditions, 
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where i  is the one-electron energy of molecular orbital i  and vS  is the element of 

an N x N matrix termed the overlap matrix. 
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and vF  is the element of another N x N matrix, called the Fock matrix, 
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In this expression, core
vH  is a matrix representing the energy of a single electron in a 

field of “bare” nuclei. Its elements are  
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in which 
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where AZ  and is the atomic number of atom A, and summation is carried out over all 

atoms. The quantities  v  and   v  appearing in (2.38) are two-electron 

integrals, 
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which are multiplied by the elements of the one-electron density matrix, ,P  
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The significance of the density matrix is that it describes the electron density of the 

molecules. Thus, the criterion for judging convergence of the self-consistent, called as 

self-consistent field (SCF), which refers to the density as well as to the energy because 

both have to be stationary at self-consistence. In equation (2.43), the summation refers 

to occupied molecular orbitals only. The factor of two indicates that two electrons 
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occupy each molecular orbital, and the asterisk represents complex conjugation 

(required if the molecular orbitals are not the real functions). The electronic energy, 

elecE , is now given by 
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and when adding the internuclear repulsion, 
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yields an expression for the total energy.  

 With regard to the two-electron integrals, the amount of atomic basis functions 

give rise to a major practical problem in the application of the ab initio HF method 

due to the computational requirement which is approximated to N
4
/8 for N basis 

functions. In fact, not only time consuming of the integral calculation, but also their 

storage on disk is practically impossible for large molecular systems. Consequently, 

the Direct SCF methods have become available, which reduce these problems 

significantly. By these approaches, the two-electron integrals are not stored but 

recalculated as required. This makes sense because the CPU of modern computers is 

very fast, while I/O operation takes quite long time. Secondly, only those integrals that 

are expected to have a significant value are actually calculated. With these tricks built 

into modern programs, the direct algorithms are actually faster than the conventional 

one for systems of more than about 100 basis functions (depending on the particular 
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computer). On small workstations, direct SCF methods are only practical option, even 

for small systems. 

 Since ab initio quantum chemical methods are limited in their practical 

applicability (i.e., because of their heavy demands of CPU time and storage space on 

disk or in computer memory), evaluation of the two-electron integrals for molecules 

with large number of electrons becomes computationally impractical. The 

Semiempirical HF methods have been developed to simplify these integrals that 

compensate for neglecting some of that time consuming mathematical terms. In 

general, the parameters used by semiempirical methods can be derived from 

experimental measurement or by performing ab initio calculations on model systems. 

 

2.9  Electron correlation 

 It is known that motions of electrons are correlated and they tend to repel each 

other to give a lower energy. According to the HF method, each electron moves in the 

static electric field created by all of the other electrons in the system. On the other 

hand, the electron cannot see other electrons during the HF calculation. Thus, the 

significant deficiency of the HF method is that it fails to adequately treat the 

correlation between motions of electrons. The effects of electron correlation are 

usually neglected in the Hamiltonian in the previous section. This leads to limitation 

of the HF energy calculations. The difference between HF and exact (non-relativistic) 

energies is the correlation energy, 
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 Since the HF energy is always above the exact energy, the correlation energy 

is always negative, 

 

      .0corrE      (2.47) 

 

 In several cases, the neglect of electron correlation effects can lead to some 

anomaly of qualitative information. As a consequence, the Ψ and E cannot be used to 

correctly predict atomic properties without somewhere accounting for electron 

correlation. 

 The electron correlation methods calculate the coefficient in front of the other 

determinants in different way, such as configuration interaction (CI) (Sherrill and 

Schaefer Iii, 1999), many-body perturbation (MP) (Møller and Plesset, 1934), coupled 

cluster (CC) (Bartlett, 1989) and density functional theory (DFT). 
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CHAPTER III 

MOLECULAR DYNAMICS SIMULATIONS 

 

3.1  Introduction to molecular dynamics (MD) simulations 

 With regard to computer simulations, two well-known techniques are Monte 

Carlo (MC) and molecular dynamics (MD). In terms of MC, each particle moves 

randomly based on system’s energy criteria, and mostly, the structural details are of 

specific interest. For the MD technique, all particles in the system will be moved by 

time-dependent forces of neighbor particles, and thus, allowing time-dependent 

properties to be calculated. In this sense, the main advantage of the MD over the MC 

technique is that it can provide not only the structural properties, but also the 

dynamics details. 

 The common scheme of the MD technique is depicted in Figure 3.1. By the 

MD technique, the Newton’s equation of motion is employed, in which each particle 

in the system can be moved with respect to force from neighboring particles. The MD 

simulation starts with reading in the starting configuration, velocities, accelerations 

and forces. The starting configuration can be obtained either from experimental data 

such as from X-ray or random configuration. According to the Newton’s equation of 

motion, ,maF   since there is no time-dependent force that shall act in the system, 

the time integration algorithms will be employed to obtain detailed knowledge with 

respect to positions, velocities and accelerations of two successive time steps. The 
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energy of the system can be obtained from either molecular mechanics (MM) or 

quantum mechanics (QM) calculations. Next, the forces on each atom in the system 

can be derived from the energy with respect to the change in the atom’s position. 

These new forces will be used to obtain new configuration and the steps will be 

repeated until the system reaches equilibrium. Then, the coordinates, velocities, 

accelerations, forces and so on are collected for further structural and dynamical 

property calculations. In practice, only positions and velocities of all particles in the 

system are usually stored since most of the important and interesting properties can be 

obtained from these two quantities. 
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Figure 3.1 The scheme of molecular dynamics simulation. 
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3.2  Time average and ensemble average 

 Since the properties of a system will depend upon the positions and the 

momenta of N particles that comprise the system, the value of the property A can be 

written as 

 

 ,)(),( trtpA NN                   (3.1) 

 

where )(tp N  and )(tr N  represent the N momenta and positions, respectively. The 

value of property A is the average of the A over the time of the measurement, known 

as a time average. In principle, if the time measurement reaches infinity, the value of 

the property A is then the true value. 

 

 







  0
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.)(),(1lim
t

NN
ave dttrtpAA                (3.2) 

 

 Note that the time average is directly related to real experiments. By means of 

theoretical investigations, however, the treatment of a real system which contains a 

large number of atoms or molecules is not feasible. On the other hand, it is rather 

impossible even to determine an initial configuration of a real system, since one 

cannot prepare an infinite number of identical system in a real situation. With regard 

to this point, Boltzmann and Gibbs have developed statistical mechanics, known as 

ensemble. The ensemble is a single system evolving in time that contains a large 

number of mental copies of a system, considered all at once, each of which represents 
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a possible state of the real system. The time average is then replaced by an ensemble 

average as  

 

   ,,, NNNNNN
ensemble rprpAdrpdA                (3.3) 

 

where  NN rpA ,  is the observable of interest and it is expressed as a function of the 

momenta, p, and the position, r, of the system. The angle bracket (< >) indicates an 

ensemble generated by the simulation. It is postulated that theoretical predictions 

based on ensemble averaging are equivalent to experimental measurements, the time 

averaging, when a so-called ergodic ensemble is achieved. In this respect, the 

estimation of time average can be obtained over an enormous number of replicas of 

the system considered simultaneously, 

 

     ,
ensembletime

AA              (3.4) 

 

 To make the simulation becomes feasible, the ensemble must be generated 

under some constraints, such as constant number of particles (N), volume (V), energy 

(E), temperature (T), chemical potential (μ), pressure (P) and so on. Note that different 

macroscopic environmental constraints lead to different types of ensemble. For 

example, a simple ensemble is the microcanonical ensemble (NVE), which is a 

thermodynamically isolated system, where the N, V and E are fixed throughout the 

simulation. The equilibrium states of the NVE ensemble are characterized by the 

entropy. The development of the NVE ensemble is the canonical ensemble (NVT), in 

which the N and V are fixed and the ensemble has a well-defined temperature given by 
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the temperature of the heat bath. The thermodynamic property of the system derived 

from the NVT ensemble is Helmholtz free energy. Other ensembles include the grand 

canonical ensemble (μVT), i.e., the extension of the NVT ensemble which allows the 

energy exchange, but fixes the μ, V and T. 

 

3.3  Intermolecular potentials 

 According to classical MD simulations, the forces on each particle in the 

system are usually derived from potential energy function, V. The potential energy 

function is the total intermolecular interaction energy comprising all of pair, three-

body, four-body, and so on up to N-body interactions,  

 

   ),,,,(),,(),( NkjiVkjiVjiVVtotal  .  (3.5) 

 

 In equation (3.5), the upper terms are usually assumed to converge rather 

slowly and the terms tend to have alternating signs (Kistenmacher, Popkie, and 

Clementi, 1974). In this respect, the total interactions of the system are assumed to be 

the summation of only pair interactions, known as pairwise additive approximations.  

 In general, the pair potential functions can be constructed by using a set of 

experimental data. However, the popular way in obtaining the pair potential functions 

is to construct with respect to ab initio calculations. The interaction potential might 

contain explicitly both an angular and a radial dependency, 
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where ijr  and ij  specify intermolecular separation and orientation, most of which are 

relied on radial function and compromise between two conflicting requirements. For 

accuracy and flexibility, one might use a fairly long series of terms. However, it 

should be realized that the longer the series, the larger the number of associated fitting 

parameters, and thus the larger the number of machine cycles required to compute 

interaction energies in the MD simulation. The most commonly used interaction 

model is the Lennard-Jones pair potential, 
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where the parameters   and   are chosen to fit the physical properties of the 

function. This potential function has an attractive tail at long distances r, i.e., it 

reaches a minimum around ,122.1   and it is strongly repulsive at shorter distance, 

passing through 0 at r  and increasing steeply as r is decreased further. The term 

12

1
r

 dominates at short distance and models the repulsion between particles when they 

are close to each other, i.e., its physical origin is related to the Pauli principle; when 

the electronic clouds surrounding the atoms start to overlap, the energy of the system 

increased abruptly. Sometimes, the exponential behavior is more appropriate to 

replace this repulsive term. The term 6

1
r

dominates at large distances, constituting the 

attractive part. This term is originated by van der Waals dispersion forces and by 

dipole-dipole interactions according to fluctuating dipoles. These are rather weak                                                         

interactions which, however, dominate the bonding character of closed-shell systems, 
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such as Ar or Kr. When the Lennard-Jones potential is applied, the Coulombic terms 

are needed to sufficiently represent the long-range and charge-charge interactions, as 

depicted in Figure 3.2. 

 

 

 

Figure 3.2  The Lennard-Jones potential. 

  

 

In general, a Lennard-Jones potential is not at all adequate, especially for the 

treatment of an open shell system where strong localized bonds may form (as in 

covalent systems), or where there is delocalized “electron sea”. In this respect, the 

two-body interactions scheme itself fails very badly. However, regardless of how well 

they are able to model actual materials, the Lennard-Jones 12-6 potential constitutes 



 

 

 

 

 

 

 

 

 47

nowadays an extremely important model system. During the past decades, there are a 

vast number of scientists who have investigated the behavior of atom interacting via 

Lennard-Jones by a variety of different geometries (solids, liquids, surfaces, clusters, 

etc.). On the other hand, one could say that the Lennard-Jones is the standard potential 

to use for all investigations where the focus is on fundamental issued, rather than 

studying the properties of a specific material. In addition, it should be noted that 

many-body effects in the system’s interaction always play a significant role and in all 

cases, more accurate potentials have been developed.  

 

3.4 Time integration algorithms 

 The important engine of the MD simulation technique is the time integration 

algorithm. The time integration algorithms are based on finite difference methods, in 

which the MD trajectories can be generated with continuous potential models. The 

essential idea is that the integration is divided into many small steps, each of which is 

separated by a fixed time interval .t  The force on each particle at a time t  can be 

calculated from the summation of interactions from other particles. Once the force is 

known, the accelerations of the particles can be determined, which are then combined 

with the positions and velocities at a time t  to calculate the positions and velocities at 

a time .tt    

 There are many algorithms for integrating the equations of motion using finite 

difference methods, most of which assume that the positions and dynamics properties 

(positions, velocities, accelerations, etc.) can be expressed through the Taylor series 

expansions, 
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         432 )(
24
1)(

6
1

2
1 ttcttbttattvtrttr             (3.8) 

         32 )(
6
1

2
1 ttcttbttatvttv              (3.9) 

       2)(
2
1 ttcttbtatta              (3.10) 

       ttctbttb  ,             (3.11) 

 

where r is the position, v  is the velocity (the first derivative of the position with 

respect to time), a  is the acceleration (the second derivative), b  is the third 

derivative, and so on.  

 Many integration algorithms have been developed for integrating the equations 

of motion.  Two popular integration methods for MD simulations are Verlet algorithm 

(Verlet, 1967) and predictor-corrector algorithm (Gear, 1971).  

 

 3.4.1 Verlet algorithm 

  The Verlet algorithm is the most broadly used method for integrating 

the trajectories of motion in MD simulations. This algorithm uses the positions and 

accelerations at time t  and the positions from the previous step, )( ttr  , to 

calculate the new positions at time tt  . We can write down the following equations 

between these quantities and the velocities at a time t , 
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        2

2
1 ttattvtrttr   .           (3.13) 

 

The summation of these two equations gives 

 

        22 ttattrtrttr   .          (3.14) 

 

  Note that the velocities do not explicitly appear in the Verlet 

integration algorithm. However, the velocities can be calculated by dividing the 

difference in positions at time tt   and tt   by t2 as 

 

      tttrttrtv  2/][  .           (3.15) 

 

  The weakness of the Verlet algorithm is that the calculation of the 

velocities cannot be obtained until the positions at the next step are known. Thus, it is 

not a self-starting algorithm. With regard to this point, some variants of the Verlet 

algorithm have been developed. For example, the leap-frog algorithm (Hockney, 

1970), which uses the following expansions, 
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By this scheme, the velocities )
2
1( ttv   are firstly calculated from the velocities at 

time ),
2
1( tt  and the accelerations at time .t  The positions at time tt   are then 

deduced from the velocities just calculated together with the positions at time t using 

equation (3.16). The velocities at time t  can be calculated from 

 

  



  )

2
1()

2
1(

2
1 ttvttvtv  .           (3.18) 

 

  The advantage of this algorithm is that the velocities are explicitly 

calculated. However, some disadvantages exist, such as they are not calculated at the 

same time as the positions. An even better implementation of the similar basic 

algorithm is the velocity Verlet algorithm (Swope, Andersen, Berens, and Wilson, 

1982), which gives positions, velocities and accelerations at the same time and does 

not compromise precision, 

 

        2

2
1 ttattvtrttr              (3.19) 

         tttatatvttv  
2
1

.          (3.20) 

  Another integration method is Beeman’s algorithm (Beeman, 1976), 

which is related to the Verlet method, and can be expressed as 
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          tttattattatvttv  
6
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3
1

.          (3.22) 

 

  The Beeman’s algorithm makes use of a more accurate expression for 

the velocities and gives the better energy conservation, since the kinetic energy is 

calculated directly from the velocities. However, this method is more complicate than 

the Verlet algorithm, as well as it is more time-consuming.  

 

 3.4.2 Predictor-corrector algorithm 

  The performance of the predictor-corrector algorithm contains three 

basic steps. First, the new positions, velocities, accelerations and the higher-order 

terms are predicted according to the Taylor expansion, as shown in equations (3.8)-

(3.11). Second, the forces are then evaluated at the new positions to give the 

accelerations, )(a tt  . These accelerations are compared with the accelerations 

predicted from the Taylor series expansion ( )(a C tt  ). In this respect, the 

difference between the predicted and the calculated accelerations is an error signal, 

 

     ttattatta pc   .                              (3.23) 

 

  Then, the error signal is used to correct positions and their derivatives. 

All the corrections are proportional to the error signal, the coefficient of 

proportionality being a magic number determined to maximize the stability of the 

algorithm, 
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                ttacttrttr pc   0           (3.24) 

               ttacttvttv pc   1                       (3.25) 

               ttacttatta pc   2            (3.26) 

               ttacttbttb pc   3 ,          (3.27) 

 

where the superscript p represents as predicted values, r and v stand for the complete 

set of positions and velocities, respectively, a represents the accelerations and b 

denotes all the third order derivatives of r.  

 

3.5  Periodic boundary conditions 

 According to Figure 3.3, the periodic boundary (PB) condition is employed to 

solve the effects of interactions at surface, especially for the simulation of small 

system size where the interactions between particles and the wall could reflect in 

wrong system’s properties. The cubic box is replicated throughout the space, being 

thought as interacting not only with other particles in the same box, but also with their 

images in nearby boxes. By this scheme, when a particle leaves a unit cells, its image 

particle enters from the opposite side at the same time with the same velocity to 

conserve overall mass and momentum in the simulation box. This is a very useful 

technique possible to keep track of particles in only one cell, rather than to follow the 

specific particles of all replicated cells. 
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Figure 3.3 The periodic boundary conditions in two dimensions. 

 

3.6  Cut-off and minimum image convention 

 In classical MD simulations, the non-bonded interactions are of the most time-

consuming part of the energy and force calculations. For N atom system, the number 

of non-bonded interactions are N*(N-1)/2. According to the use of PB conditions, 

since particles in the systems will be duplicated infinitely, the calculations of non-

bond energies and forces of all particles become impractical. To solve this problem, 
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the minimum image criterion is introduced in which only the nearest images of 

distinguishable particles are taken into account, i.e., considering that most short range 

interactions usually fall off rapidly and can be neglected beyond the distance called 

the cut-off limit. According to Figure 3.4, the energies and forces are computed with 

respect to only the closest atoms or image, thus, reducing the number of non-bonded 

interactions that will be calculated in each MD step. In calculating particle interactions 

within the cut-off range, both real and image neighbors are included. In practice, the 

cut-off limit should be no more than half of the box length (rc ≤ L/2). On the other 

hand, only non-bonded interactions for crr  are taken into account for calculating 

energy or force, while the interactions for crr   are ignored.  
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Figure 3.4 The spherical cut-off and the minimum image convention. 

 

 By using the cut-off, the interactions between all pairs of atoms that are further 

apart from the cut-off value are set to zero. In this regard, the cut-off distance should 

not be greater than half of the length of their image. However, the use of cut-off leads 

to a serious problem in the simulation, as can be seen in Figure 3.5 
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Figure 3.5  The discontinuity of cut-off. 

 

 As can be seen in Figure 3.5, the use of cut-off limit reflects in the 

discontinuity of both the potential energy and the force after the cut-off value. This 

problem can be solved by shifting the potential function by an amount ,cV  
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where cr  is the cut-off distance and cV  corresponds to the value of the potential at the 

cut-off distance. Although the energy conservation can be improved by the shifted 

potential, however, the discontinuity in the force with the shifted potential still exists. 
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At the cut-off distance, since the force will have a finite value, a suitable shifted 

potential would be of the form 

 

              


















 

c

cc
rr

c

rrif

rrifrr
dr

rdVVrV
rV c

0

)()()(
)( .  (3.29) 

 

 In practice, it should be realized that the application of the shifted potential is 

not easy for inhomogeneous systems containing many different types of atom. An 

alternative approach is to eliminate the discontinuities in the energy and force by 

using a switching function. The switched potential ))(( rV SF  is related to the true 

potential ))(( rV  as 

 

                  )()()( rSrVrV  .            (3.30) 

 

 In several cases, the switching functions are applied to the entire range of the 

potential up to the cut-off point. In this respect, the switching function has a value of 1 

at 0 r   and a value of 0 at ,crr   while the switching function values between two 

cut-offs are varied. The example of a switching function applied to the Lennard-Jones 

potential is given in Figure 3.6. 

 



 

 

 

 

 

 

 

 

 58

 

 

Figure 3.6 The effect of a switching function applied to the Lennard-Jones potential. 

 

3.7  Non-bonded neighbor lists 

 In practice, the use of cut-off and minimum image convention is not actually 

reduce the time for calculating the non-bonded interactions, since the distance 

between every pair of atoms still have to be calculated in each simulation step. As a 

matter of fact that most of atoms move within a time step of less than 0.2 Å, the local 

neighbors of a given atom remain almost the same for many time steps. In this regard, 

the non-bonded neighbor list, as shown in Figure 3.7, is employed. The first non-

bonded neighbor list has been proposed by Verlet (Verlet, 1967). The Verlet neighbor 

list stores all atoms within the cut-off distance (the solid circle (rc)) and atoms are 
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slightly further away than the cut-off distance (the dashed circle (rm)). The neighbor 

list will frequently be updated throughout the simulation. With regard to this point, the 

distance used to calculate each atom’s neighbors should be slightly larger than the 

actual cut-off distance in order to ensure that the atoms outside the cut-off will not 

move closer than the cut-off distance before the neighbor list is updated again. 

 

 

Figure 3.7  The non-bonded neighbor list. 

 

3.8 Long-range interactions 

 The neglect of interactions beyond the cut-off distance, especially for the 

strong interacting systems, may results in an incorrect description of molecular 
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properties. One simple way to treat the long-range interactions is to use a large 

simulation cell, but this reflects in more time-consuming. There are many suitable 

methods for the treatment of long-range interactions. The first method is the Ewald 

summation method, which derived by Ewald in 1921 (Ewald, 1921). This method 

studies the energetic of ionic crystals, i.e., a particle interacts with all the other 

particles in the simulation box and with all of their images in an infinite array of 

periodic cells. The charge-charge contribution to the potential energy of the Ewald 

summation method could be of the form 
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where the prime on the first summation indicates that the series does not include the 

interaction ji   for 0n  , iq  and jq  are charges and n is a cubic lattice point. The 

Ewald summation method is the most correct way to accurately include all the effects 

of long-range forces in the computer simulation. However, this method is rather 

expensive to implement since the equation (3.31) converges extremely slowly. 

 Another method for the treatment of long-range interactions is the reaction 

field method (Foulkes and Haydock, 1989). This method constructs the sphere around 

the molecule with a radius equal to the cut-off distance. By this scheme, all 

interactions within the sphere are calculated explicitly, while those outside of the 

sphere are modeled as a homogeneous medium of dielectric constant ( s ). The 

electrostatic field due to the surrounding dielectric is given by 
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where j  are the dipoles of the neighboring molecules that are located within the cut-

off distance (rc) of the molecules i. The interaction between molecule i and the 

reaction field equals to iiE  . 

 

3.9 ONIOM-XS MD technique 

 The ONIOM (Own N-layered Integrated molecular Orbital and molecular 

Mechanics) method was originally proposed by Morokuma et al. (Svensson, Humbel, 

Froese, Matsubara, Sieber and Morokuma, 1996). The extension of the ONIOM 

method for the treatment of condensed-phase system was firstly applied by 

Kerdcharoen and co-worker, called ONIOM-XS (XS = eXtension to Solvation) 

(Kerdcharoen and Morokuma, 2002). According to the ONIOM-XS MD technique, 

the system is comprised of a “high-level” QM sphere, i.e., a sphere which contains a 

central reference particle (atomic or molecular species) and its nearest-neighbors, and 

the remaining “low-level” MM bulk solvents. A thin switching shell located between 

the QM and MM regions is then introduced in order to smooth the transition of force 

due to the solvent exchange.  
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Figure 3.8 Schematic diagram of the ONIOM-XS MD technique (Kerdcharoen and 

Morokuma, 2002).  

 

 According to Figure 3.8, given n1, l and n2 as number of particles in the QM 

sphere, the switching layer and the MM region, respectively, and N(= n1+l+n2) as the 

total number of particles, the potential energy term can be written by equations (3.33) 

and (3.34) based on the ONIOM extrapolation scheme (Svensson, Humbel, Froese, 

Matsubara, Sieber and Morokuma, 1996). If the switching layer is included into the 

high-level (QM) calculation, the energy expression is written as 

 

)()()();( 111 NElnElnENlnE MMMMQMONIOM  . (3.33) 

 

If the switching layer is considered as part of the low-level (MM) region, the energy 

expression is written as 
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)()()();( 111 NEnEnENnE MMMMQMONIOM  .  (3.34) 

 

The potential energy of the entire system is taken as a hybrid between both energy 

terms (3.33) and (3.34), 
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where   lrs  is an average over a set of switching functions for individual exchanging 

particle in the switching layer  ii xs  (Tasaki, McDonald and Brady, 1993), 
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The switching function in equation (3.36) can have any form. In the present study, a 

polynomial form is employed, 
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where     010 / rrrrx ii  , 0r  and 1r  are the radius of inner and outer surfaces of 

the switching shell, respectively, and ir  is the distance between the center of mass of 

the exchanging particle and the center of QM sphere. In this respect, the whole solvent 

particles will be switched between QM and MM regions based on its center of mass. 
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The above polynomial form has an S-shape and converges to 0 and 1 at 0r  and 1r , 

respectively. Finally, the gradient of the energy can be written as  
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 By the ONIOM-XS MD scheme, it is worth noting that forces on every 

particle in the QM region will be smoothed, in contrast to the conventional QM/MM 

scheme in which only the exchanging particles that will be treated by the switching 

function. 

 

3.10  Research procedures 

 3.10.1  Construction of pair potential functions 

  For the interactions within the MM and between the QM and MM 

regions, a flexible model, which describes inter- and intra-molecular interactions 

(Hannongbua, 1991; Hannongbua, Ishida, Spohr and Heinzinger,1988), was employed 

for NH3. The use of a flexible model is favorable, ensuring compatibility and a smooth 

transition when ammonia molecules move from the QM region with their full 

flexibility to the MM region, and vice versa. The pair potential functions for 

describing Na+-NH3 interactions were newly constructed. The 1819 HF interaction 

energy points for various Na+-NH3 configurations obtained from Gaussian03 

calculations (Frisch et al., 2005), using DZP basis set (Dunning and Hay, 1977)  for 
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NH3 and LANL2DZ basis set (Check, Faust, Bailey, Wright, Gilbert and Sunderlin, 

2001; Hay and Wadt, 1985) for Na+, were fitted to the analytical forms of 
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where A, B, C and D are the fitting parameters (see Table 3.1), icr  denotes the 

distances between the ions and the i-th atom of NH3, and iq  and cq  are the atomic net 

charges. The charge values for Na+ was set to 1.0 and for N and H of NH3 were set to 

-0.8022 and 0.2674, respectively. 

 

Table 3.1 Optimized parameters of the analytical pair potential for the interactions of 

ammonia with Na+ (interaction energies in kcal mol-1 and distances in Å). 

 

Pair 
A 

(kcal mol-1 Å6) 

B 

(kcal mol-1 Å7) 

C 

(kcal mol-1) 

D 

(Å-1) 
 

Na-N 

Na-H 

-32461.57236 

-901.0111121 

37734.03948 

1323.287312 

47752.17357 

151.4842753 

2.711467277 

1.237012174 
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 3.10.2  Simulation details 

  For the system of Na+ in liquid NH3, a QM radius of 4.4 Å and a 

switching width of 0.2 Å were chosen, which correspond to the ONIOM-XS 

parameters r0 and r1 of 4.2 and 4.4 Å, respectively. This QM region is considered to 

be large enough to include the whole first solvation shell and some parts of the outer 

region. Inside the QM region, all interactions were treated at the Hartree-Fock (HF) 

level of accuracy using LANL2DZ (Boys and Bernardi, 1970; Check, Faust, Bailey, 

Wright, Gilbert and Sunderlin, 2001; Hay and Wadt, 1985) and DZP (Dunning and 

Hay, 1977) basis sets for Na+ and NH3, respectively. For the system of liquid NH3, a 

QM radius of 5.2 Å and a switching width of 0.2 Å were chosen, which correspond to 

the ONIOM-XS parameters r0 and r1 of 5.0 and 5.2 Å, respectively. Note that, 

according to the previous QM/MM MD study (Tongraar, Kerdcharoen and 

Hannongbua, 2006), the first minimum of the N-N radial distribution function (RDF) 

is located between 4.8-5.0 Å. The selected QM region contains around 12-16 

ammonia molecules, covering the first shell coordination numbers predicted by most 

of experimental and theoretical reports (Beu and Buck, 2001; Hannongbua, 2000; 

Impey and Klein, 1984; Kincaid and Scheraga, 1982; Kiselev, Kerdcharoen, 

Hannongbua and Heinzinger, 2000; Narten, 1976; Ricci, Nardone, Ricci, Andreani 

and Soper, 1995; Tongraar, Kerdcharoen and Hannongbua, 2006). 

 All ONIOM-XS MD simulations will be performed in a canonical ensemble 

(NVT) at 235 K with periodic boundary conditions. For the system of Na+ in liquid 

NH3, a periodic box, with a box length of 21.80 Å, employed in the simulation 

contains one Na+ and 255 ammonia molecules, assuming the experimental density of 

pure NH3 (0.699 g cm-3). For the system of liquid NH3, a similar periodic box is 
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employed, which contains 256 ammonia molecules (i.e., the central Na+ ion was 

replaced by an ammonia molecule), corresponding to the experimental density of pure 

liquid NH3 (0.6988 g cm-3). The Newtonian equations of motions were treated by a 

general predictor-corrector algorithm. The reaction-field method (Adams, Adams and 

Hills, 1979) was employed for the treatment of long-range interactions. The time step 

size was set to 0.2 fs, which allows for the explicit movement of the hydrogen atoms 

of ammonia molecules. For the system of Na+ in liquid NH3, the starting configuration 

was obtained from the previous QM/MM MD study of liquid NH3 (Tongraar, 

Kerdcharoen and Hannongbua, 2006), i.e., simply by replacing Na+ to one ammonia 

molecule. The ONIOM-XS MD simulation was performed with the system’s re-

equilibration for 30,000 time steps, followed by another 200,000 time steps to collect 

configurations every 10th step. For the system of liquid NH3, the starting configuration 

was also obtained from the previous QM/MM MD study (Tongraar, Kerdcharoen and 

Hannongbua, 2006). The system was re-equilibrated by performing the ONIOM-XS 

MD simulation for 20,000 time steps, followed by another 150,000 time steps to 

collect configurations every 10th step.  

 

3.11  Determination of system’s properties 

3.11.1 Structural properties 

  The structural properties will be characterized through atom-atom 

RDFs and their corresponding integration numbers, together with detailed analyses on 

angular distribution functions (ADFs) and orientations of ammonia molecules, both in 

the solvation shell of Na+ and in the bulk liquid NH3. The RDF, gαβ (r), is the set of 



 

 

 

 

 

 

 

 

 68

site-site pair correlation functions, which describes how (on average) the atoms in the 

system are radically packed around each other. The RDF can be expressed as 

 

   ,4/)( 2
  rrrNrg                              (3.40) 

 

where Nαβ(r) is the average number of β sites located in the shell (r, r+Δr) centered on 

site α, and 
V
N

   is the average number density of β sites in the system. 

 The corresponding integration number of RDF is defined as 
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 3.11.2  Dynamical properties 

  The dynamical properties will be analyzed through mean residence 

times (MRTs) and self-diffusion coefficients (D). The mobility of ammonia molecules 

surrounding the ion or surrounding the central NH3 molecule (i.e., in the case of liquid 

NH3) can be interpreted through the D value, which can be calculated from their 

center-of-mass velocity autocorrelation functions (VACFs) using the Green-Kubo 

relation (Spohr, Palinkas, Heinzinger, Bopp, and Probst, 1988), 
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 The rates of ligand exchange processes at Na+ or at the central NH3 molecule 

(i.e., in the case of liquid NH3) were evaluated through MRTs of ammonia molecules 

in the solvation shell of Na+ or in the solvation shell of the central NH3 molecule (i.e., 

in the case of liquid NH3). In this work, the MRT data were calculated using the 

“direct” method (Hofer, Tran, Schwenk, and Rode, 2004), as the product of the 

average number of ammonia molecules in the solvation shell of ion or in the solvation 

shell of the central NH3 molecule (i.e., in the case of liquid NH3) with the duration of 

the ONIOM-XS MD simulation, divided by the observed number of exchange events 

lasting a given time interval t*, 

 

 
ex

sim

N
tCNMRT 

  ,                    (3.43) 

 

where CN is the average coordination number, tsim is the duration of the simulation 

and Nex equals the number of events. In general, a t* value of 0.0 ps is recommended 

for the estimation of hydrogen bond lifetimes, while a t* value of 0.5 ps is chosen as a 

good measure for ligand exchange processes.  
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

4.1  Structural properties 

The structural details of the Na+ solvation can be illustrated through the Na-N 

and Na-H radial distribution functions (RDFs) and their corresponding integration 

numbers, as depicted in Figure 4.1. Note that the insertion given in Figure 4.1 refers to 

the corresponding RDFs obtained from the QM/MM MD simulation (Kerdcharoen 

and Rode, 2000). By means of the ONIOM-XS MD simulation, a pronounced first 

Na-N RDF is exhibited at 2.58 Å, together with a recognizable second Na-N peak 

centered at around 4.22 Å. As can be seen in Figure 4.1a, the smooth shape of the Na-

N RDF between 4.2 and 4.4 Å (which correspond to the ONIOM-XS parameters 0r  

and 1r ) clearly confirms that the transition of NH3 molecules between the QM and 

MM regions occurs smoothly, and that the ion-ligand and ligand-ligand interactions 

beyond the QM region could be well accounted for by the MM potentials. The shape 

and height of the first and second Na-N RDFs reveal a clear “structure-making” 

ability of Na+ in liquid NH3, i.e., a significant influence of the Na+ ion in ordering its 

surrounding NH3 ligands to form specific ion-ligand complexes. Note that, according 

to the recent ONIOM-XS MD simulation of Na+ in aqueous solution (Sripa, Tongraar 

and  Kerdcharoen, 2013), the Na+ ion has been classified as a weak “structure-maker”. 
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In liquid NH3, the observed higher intensity of the Na-N RDF, i.e., when compared to 

the Na-O RDF for the case of Na+ in aqueous solution (Sripa, Tongraar and 

Kerdcharoen, 2013), clearly implies a stronger “structure-making” ability of Na+ in 

this media. In addition, the pronounced second peak of the Na-N RDF clearly 

indicates the influence of Na+ beyond the first solvation layer. With regard to the Na-

N RDF in Figure 4.1a, the first solvation shell of Na+ is rather well separated from the 

second one, suggesting that NH3 molecules in the first solvation shell are strongly 

attached to the ion, and that ligand exchange processes between the first and the 

second solvation shells may not frequently occur during the ONIOM-XS MD 

simulation. Integrations up to first and second minimum of the Na-N RDF yield about 

5.1 and 16.3 NH3 molecules, respectively. Note that, since the second minimum of the 

Na-N RDF is broad, the structural parameters with respect to the second solvation 

shell are considered as rough estimates, i.e., the position of the second Na-N minimum 

is assumed to be 5.25 Å throughout this work. 
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Figure 4.1 a) Na-N and b) Na-H radial distribution functions (RDFs) and their 

corresponding integration numbers. The insertion refers to the corresponding RDFs 

obtained from the QM/MM MD simulation (Kerdcharoen and Rode, 2000). 
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Some structural parameters for the first solvation shell of Na+, as obtained from 

various MC and MD simulations, are summarized in Table 4.1. As compared to the 

recent QM/MM MD study (Kerdcharoen and Rode, 2000), the ONIOM-XS MD 

simulation, although predicts a similar coordination number of about 5, reveals 

significant deference regarding the characteristics of the Na-N RDF (see insertion in 

Figure 4.1). In particular, the ONIOM-XS MD results clearly show relatively higher, 

sharper and more pronounced first and second peaks of the Na-N RDF, leading to 

better defined first and second solvation shells. This observed difference clearly 

confirms the important treatment of the ONIOM-XS MD technique for the study of 

such condensed-phase system. Regarding the observed discrepancies between the 

ONIOM-XS and QM/MM (Kerdcharoen and Rode, 2000) MD studies, it should be 

noticed that the latter one was performed with the use of different basis set, namely 

the ECP, as well as with the relatively shorter simulation period of 12 ps. According 

to the data in Table A1, it is obvious that most MC and MD simulations using pair 

potentials or pair plus three-body correction functions fail to predict the solvation 

structure of Na+ in liquid NH3, i.e., most of which predict sharper, narrower and better 

separated first Na-N peaks with relative higher coordination numbers. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 78

Pe
rc

en
t

Coordination Number

First shell

Second shell

 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

10

20

30

40

50

60

70

 

 

 

Figure 4.2 Distributions of the coordination numbers, calculated within the first and 

second solvation shells of Na+. 

 

The probability distributions of the coordination numbers, calculated within the 

first and second solvation shells of Na+, are displayed in Figure 4.2. Within the first 

solvation shell of Na+, it is apparent that this ion prefers the coordination number of 5, 

followed by 6 and 4 in smaller amounts. In the second solvation layer, a number of 

NH3 molecules, ranging from 7 to 14 with the most prevalent number of 11, are 

observed. The arrangement of NH3 molecules in the first solvation shell of Na+ can be 

analyzed from the distributions of  N---Na---N angle, as depicted in Figure 4.3. With 

regard to the coordination number of 5, one could assume two possible geometrical 
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arrangements, namely a trigonal bipyramidal and a square pyramidal structure (cf. 

Table 4.2). In general, the trigonal bipyramidal structure is characterized by the        

N---Na---N angles of 90, 120 and 180, with the probability ratio of 6:3:1, while the 

square pyramidal structure corresponds to the N---Na---N angles of 90 and 180, with 

the probability ratio of 8:2. According to the plot in Figure 4.3, it is apparent that NH3 

molecules in the first solvation shell of Na+ are somewhat flexible, forming the 

preferred 5-fold coordinated complexes with respect to the distorted square pyramidal 

geometry.  
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Figure 4.3 Distributions of the N---Na---N angle, calculated within the first minimum 

of the Na-N RDF. 
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Additional information regarding the orientation of NH3 molecules in the 

vicinity of Na+ is also given in Figure 4.4. In this context, the angle   is defined by 

the Na+---N axis and the dipole vector of the surrounding NH3 molecules. As can be 

seen in Figure 4.4, the shape of the distribution peaks clearly indicates that NH3 

molecules in the first solvation shell of Na+ stick quite rigidly to their dipole-oriented 

configurations, and that NH3 molecules in the second solvation layer are also arranged 

with respect to a remarkable influence of Na+.  
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Figure 4.4 Probability distributions of  angle in the first and second solvation shells 

of Na+, calculated within the first and second minima of the Na-N RDF. 
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Table 4.1 Two possible geometries of penta-coordinated ion-ligand complexes.  

 

 

With regard to the ONIOM-XS MD simulation of liquid NH3, the structural 

details of this liquid are characterized through the N-N, N-H, H-N and H-H RDFs and 

their corresponding integration numbers, as shown in Figure 4.5, comparing the 

results to those obtained by the QM/MM MD simulation (Tongraar, Kerdcharoen and 

Hannongbua, 2006). In this context, the first atom in the RDFs refer to the atom of the 

central reference NH3, and the latter represents the atom of other NH3 molecules. As 

can be seen in Figure 4.5, the QM/MM and ONIOM-XS MD results are quite similar, 

implying that the deficiency of the QM/MM MD scheme is not affect much in 

describing the local structure of the liquid NH3. According to the QM/MM MD study 
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of liquid NH3 (Tongraar, Kerdcharoen and Hannongbua, 2006), it has been 

demonstrated that the hydrogen bonding in this peculiar liquid is weak, i.e., the 

structure and dynamics of this liquid are suggested to be determined by the steric 

packing effects, rather than by the directional hydrogen bonding interactions. Based 

on the present ONIOM-XS MD simulation, the first N-N peak is exhibited at 3.62 Å 

in which the integration up to first N-N minima yields the average coordination 

number of 12.3. This value is in good accord with the experimental data for about    14 

NH3 molecules (Ricci, Nardene, Ricci, Andreani and Soper, 1995). The characteristics 

of hydrogen bonds in liquid NH3 can be interpreted through the N-H, H-N and H-H 

RDFs (cf. Figures 4.5b-d). In experiment (Ricci, Nardene, Ricci, Andreani and Soper, 

1995), the hydrogen-bond formation in the liquid NH3 was interpreted from the 

feature of N-H RDF at 2.25 Å. In the ONIOM-XS MD simulation, however, this 

feature is less evident, i.e., only a slightly distinct peak is recognizable at N---H 

distances between 2.4 and 2.7 Å. Thus, it is more ambiguous to evaluate the average 

number of hydrogen bonds in the liquid NH3. According to the N-H RDF in Figure 

4.5b, an integration up to a N---H (hydrogen-bond accepter) distance of 2.7 Å yields 

about 1.2 hydrogen atoms being bonded to nitrogen atom of the central reference 

molecule. Likewise, according to the H-N RDF in Figure 4.5c, an integration up to a 

H---N (hydrogen-bond donor) distance of 2.7 Å gives about 1.1 nitrogen atoms being 

bonded to hydrogen atoms of the central NH3. These data suggest that each NH3 

molecule in the liquid phase has on the average close to one donor and one accepter 

hydrogen bonds. With regard to the rather large nearest surrounding molecules (12), 

it is apparent that the observed number of hydrogen bonds in the liquid phase are 

much smaller, especially when compared to those of liquid water. Figure 4.6 displays 
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the probability distributions of the number of NH3 molecules surrounding the central 

reference molecule, calculated up to first minimum of the N-N RDFs. By means of the 

ONIOM-XS MD simulation, a favored coordination number of 12 is observed, 

followed by 11 and 13 in decreasing amounts. As can be seen in Figure 4.6, the broad 

distribution of the coordination number, varying from 8 to 15 coordinated molecules, 

clearly indicates the distorted close-packing structure of the liquid NH3. Note that the 

QM/MM MD study reported the preferred coordination numbers of 12, 13 and 14 in 

comparable amounts, with the broad distribution of the numbers of NH3 molecules, 

ranging from 10 to 16. 
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Figure 4.5 a) N-N, b) N-H, c) H-N and d) H-H radial distribution functions and their 

corresponding integration numbers, as obtained by the QM/MM (Tongraar, 

Kerdcharoen and Hannongbua, 2006) and ONIOM-XS MD simulations. 
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Figure 4.6 Probability distributions of the coordination numbers, calculated up to first 

minimum of the N-N RDFs, as obtained by the QM/MM (Tongraar, Kerdcharoen and 

Hannongbua, 2006) and ONIOM-XS MD simulations. 

 

4.2  Dynamical properties 

The dynamics properties of the ion-ligand complexes can be visualized from 

plots of time dependence of the Na-N distance and number of first-shell ligands, as 

shown in Figure 4.7. Within the 40 ps of the ONIOM-XS MD simulation, it is 

observed that the first solvation shell of Na+ is arranged with respect to the preferred 

Na+(NH3)5 configuration, i.e., this penta-coordinated ion-ligand complex is found to 

dominate over the 6- and 4-fold coordinated complexes with the probability 
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distributions of about 67%, 18% and 15%, respectively (cf. Figure 4.2). In this 

respect, it is observed that the most favorable Na+(NH3)5 species can convert back and 

forth to the lower probability Na+(NH3)6 and Na+(NH3)4 structures. For example, at 

the simulation time of 2.5 ps, an arrangement of Na+(NH3)4 complex is formed, in 

which one NH3 molecule in the favorable Na+(NH3)5 complex is repelled. At the 

simulation time of 21 ps, one NH3 molecule from the outer (second-shell) region come 

into the favorable Na+(NH3)5 complex, forming an Na+(NH3)6 intermediate. 

According to Figure 4.1a, the non-zero first minimum of the Na-N RDF 

suggests that NH3 molecules in the first solvation shell of Na+ can possibly exchange 

with those in the outer region, in particular the second solvation layer. The lability of 

NH3 molecules in the first and second solvation shells of Na+ can be interpreted from 

the self-diffusion coefficient (D). In this study, the D values for NH3 molecules 

surrounding the ion were calculated from their center-of-mass velocity autocorrelation 

functions (VACFs) using the Green-Kubo relation (McQuarrie, 1976), 
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Based on the ONIOM-XS MD simulation, the D values for NH3 molecules in 

the first and second solvation shells of Na+ are estimated to be 1.98 x 10-5 and 3.82 x 

10-5 cm2 s-1, respectively, which are significantly less than the value of 11.99 x 10-5 

cm2 s-1 of liquid NH3 derived by a compatible ONIOM-XS MD simulation (i.e., an 

additional ONIOM-XS MD simulation in which the Na+ ion was replaced by a 
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reference NH3 molecule using the ONIOM-XS parameters 0r  and 1r  of 5.0 and 5.2 Å, 

respectively). With regard to the ONIOM-XS MD results, it is obvious that Na+ can 

order its surrounding NH3 molecules to form both the first and second solvation 

structures. In this context, it is worth noting that the correct degree of lability of NH3 

molecules in the solvation shells of Na+ is crucial in accurately determining the 

reactivity of Na+ in liquid NH3. 

 

 

 

Figure 4.7 Time dependence of a) Na+---N distance and b) number of first-shell 

ammonia molecules, as obtained by the ONIOM-XS MD simulation. In Figure 4.7a), 

the dash line parallel to the x-axis indicates the first minimum of the Na-N RDF. 
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More details regarding the particle motions can be gained by computing the 

center-of-mass VACFs for NH3 molecules in the first and second solvation shells of 

Na+ and in the bulk, as shown in Figure 4.8. Obviously, the VACFs of NH3 molecules 

surrounding the ion decay to zero faster than that of NH3 molecules in the bulk, which 

corresponds to the strength of the Na+-ligand interactions, i.e., when compared to the 

interactions among NH3 molecules in the bulk. Fourier transforms of the translational 

motions of NH3 molecules in the first and second solvation shells of Na+ and in the 

bulk are shown in Figure 4.9. In the liquid NH3 (bulk), the Fourier transformation 

reveals a broad maximum peak between 15-45 cm-1. In the first and second solvation 

shells of Na+, the power spectra of NH3 molecules in these two shells are shifted to 

higher frequencies of about 127 and 52 cm-1, respectively, i.e., due to the strong 

interactions between the ion and NH3 molecules. 
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Figure 4.8 Center-of-mass VACFs for NH3 molecules in the first and second 

solvation shells of Na+ and in the bulk. 
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Figure 4.9 Fourier transforms of the translational motions of NH3 in the first and 

second solvation shells of Na+ and in the bulk. 

 

In addition to the translational motions, the Fourier transforms of the 

librational motions of NH3 molecules in the first and second solvation shells of Na+ 

and in the bulk are also plotted in Figure 4.10. Note that, according to the normal-

coordinate analyses (Bopp, 1986), the power spectra of the librational motions are 

calculated from the three components of the hydrogen’s velocities of all NH3 

molecules found within the defined solvation layer. In the liquid NH3 (bulk), the 

rotation about the dipole axis (z axis) exhibits a maximum at zero frequency, implying 

a rather free rotational motion around this axis, while the rotation around the x axis 

shows a maximum peak at 160 cm-1. As compared to liquid water (Tongraar, Liedl 
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and Rode, 1997; Xenides, Randolf and Rode, 2005), it is apparent that the rotational 

motions of NH3 molecules in the liquid phase are rather fast processes, which reflect 

in short-time dynamics of the hydrogen bonds in liquid NH3. With regard to the power 

spectra in Figure 4.10, the rotations of NH3 molecules in the solvation shells of Na+ 

are subject to the effects of the ion. In this respect, the effects of the ion cause the 

spectral densities shift to higher frequencies. Regarding the rotations about the x axis, 

as compared to the peak for bulk NH3, the power spectra of NH3 molecules in the first 

and second solvation shells of Na+ increase to 490 and 235 cm-1, respectively. For the 

rotations about the z axis, the frequency for the first-shell NH3 molecules is shifted 

from zero frequency (in the bulk) to 135 cm-1, while that of the second-shell NH3 

molecules shows spectrum at 0 cm-1, but with a tailing peak shifted to higher 

frequency. 
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Figure 4.10 Fourier transforms of the librational motions of NH3 in the first and 

second solvation shells of Na+ and in the bulk (the dash lines refer to z axis and the 

solid lines refer to x axis). 

 

The rates of ligand exchange processes at Na+ were evaluated through mean 

residence times (MRTs) of NH3 molecules in the first and second solvation shells of 

the ion. In this work, the MRT data were calculated using the “direct” method (Hofer, 

Tran, Schwenk and Rode, 2004), as the product of the average number of NH3 

molecules in the solvation shell of ion with the duration of the ONIOM-XS MD 

simulation, divided by the observed number of exchange events lasting a given time 

interval t*. In general, a t* value of 0.0 ps is recommended for the estimation of 



 

 

 

 

 

 

 

 

 93

hydrogen bond lifetimes, while a t* value of 0.5 ps is chosen as a good measure for 

ligand exchange processes (Hofer, Tran, Schwenk and Rode, 2004). The calculated 

MRT data with respect to t* values of 0.0 and 0.5 ps are summarized in Table 4.3. To 

provide useful discussion with respect to the “structure-making” ability of Na+, the 

MRT data for liquid NH3, as well as for the cases of Na+ in aqueous solution (Sripa, 

Tongraar and Kerdcharoen, 2013) and pure water (Thaomola, Tongraar and 

Kerdcharoen, 2012), obtained by the compatible ONIOM-XS MD simulations are also 

given for comparison. As compared to the MRT value of bulk NH3, Na+ clearly acts 

as a “structure-maker”, i.e., the MRT values for NH3 molecules in the first and second 

solvation shells of Na+ are higher than the corresponding value observed in the liquid 

NH3. As can be seen in Table 4.3, the “structure-making” ability of Na+ in liquid NH3 

is significantly stronger than in aqueous solution. In particular, it is obvious that the 

ability of Na+ in ordering its surrounding NH3 molecules to form specific ion-ligand 

complexes exists beyond the first solvation shell.  
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Table 4.2 Number of ligand exchange events (Nex) and mean residence times (MRTs) 

of solvent molecules in the bulk and in the vicinity of Na+, as obtained by the 

ONIOM-XS MD simulations. 

System CN tsim 

 

t* = 0.0 ps 
 

t* = 0.5 ps 

 

0.0
exN  

 

0.0

3NH
τ  

 

0.5
exN  

 

5.0

3NH
τ  

 

Na+ in liquid NH3 

Na+  (1st shell) 

Na+
   (2nd shell) 

Na+ in liquid water 

Na+  (1st shell) * 

Pure solvents 

Liquid NH3  

Pure H2O ** 

 

5.1 

11.2 

 

5.4 

 

11.8 

4.7 

 

40.0 

40.0 

 

41.0 

 

30.0 

30.0 

 

42 

734 

 

164 

 

885 

607 

 

4.86 

0.61 

 

1.35 

 

0.40 

0.23 

 

16 

157 

 

36 

 

270 

65 

 

12.75 

2.85 

 

6.18 

 

1.31 

2.17 

 
 

* (Sripa, Tongraar and Kerdcharoen, 2013) 

** (Thaomola, Tongraar and Kerdcharoen, 2012) 

 

4.3  References 

Bopp, P. (1986). A study of the vibrational motions of water in an aqueous CaCl2 

solution. Chemical Physics. 106: 205-212.  

Hannongbua, S. (1991). A molecular dynamics simulation of the structure of sodium 

ion in liquid ammonia. Australian Journal of Chemistry. 44: 447-456. 



 

 

 

 

 

 

 

 

 95

Hannongbua, S. (1997). The role of nonadditive effects in the first solvation shell of 

Na+ and Mg2+ in liquid ammonia: Monte Carlo studies including three-body 

corrections. Journal of Chemical Physics. 106: 6076-6081. 

Hofer, T. S., Tran, H. T., Schwenk, C. F. and Rode, B. M. (2004). Characterization of 

dynamics and reactivities of solvated ions by ab initio simulations. Journal of 

Computational Chemistry. 25: 211-217. 

Kerdcharoen, T. and Rode, B. M. (2000). What is the solvation number of Na+ in 

ammonia? An ab initio QM/MM molecular dynamics study. Journal of 

Physical Chemistry A. 104: 7073-7078. 

Marchi, M., Sprik, M. and Klein, M. L. (1990). Solvation and ionization of alkali 

metals in liquid ammonia : A path integral Monte Carlo study. Journal of 

Physics. 2: 5833-5848. 

McQuaarie, D. A. (1976). Statistical Mechanics; Harper & Row: New York. 

Ricci, M. A., Nardene, M., Ricci, F. P., Andreani, C. and Soper, A. K. (1995). 

Microscopic structure of low temperature liquid ammonia: A neutron 

diffraction experiment. Journal of Chemical Physics. 102: 7650-7655. 

Sripa, P., Tongraar, A. and Kerdcharoen, T. (2013). “Structure-making” ability of Na+
 

in dilute aqueous solution: An ONIOM-XS MD simulation study. The 

Journal of Physical Chemistry A. 117: 1826-1833.  

Thaomola, S., Tongraar, A. and Kerdcharoen, T. (2012). Insights into the structure 

and dynamics of liquid water: A comparative study of conventional QM/MM 

and ONIOM-XS MD simulations. Journal of Molecular Liquids. 174: 26-33. 



 

 

 

 

 

 

 

 

 96

Tongraar, A., Liedl, K. R. and Rode, B. M. (1997). Solvation of Ca2+ in water studied 

by Born-Oppenheimer ab initio QM/MM dynamics. Journal of Physical 

Chemistry A. 101: 6299-6309. 

Xenides, D., Randolf, B. R. and Rode, B. M. (2005). Structure and ultrafast dynamics 

of liquid water: A quantum mechanics/molecular mechanics molecular 

dynamics simulations study. Journal of Chemical Physics. 122: 174506-

174510. 



 

 

 

 

 

 

 

 

CHAPTER V 

CONCLUSION 

 

In this work, a high-level ONIOM-XS MD technique has been applied for 

studying the solvation structure and dynamics of Na+ in liquid NH3. Two ONIOM-XS 

MD simulations have been separately performed, namely for the systems of Na+ in 

liquid NH3 and of the pure liquid NH3. In the case of pure liquid NH3, the ONIOM-XS 

MD results were used as reference (bulk) when discussing the effects of the ion on the 

local structure and dynamics of the solvent molecules. With regard to the detailed 

analyzes on the ONIOM-XS MD’s trajectories, Na+ clearly acts as a “structure-

maker” in this media, i.e., this ion can order its surrounding NH3 molecules to form 

specific first and second solvation shells with the average coordination numbers of 5.1 

and 11.2, respectively. In this respect, the first solvation shell of Na+ is rather well-

defined, forming a preferred 5-fold coordinated complex with a distorted square 

pyramidal geometry. Interestingly, it is observed that the most preferential Na+(NH3)5 

species could convert back and forth to the lower probability Na+(NH3)6 and 

Na+(NH3)4 configurations. The second solvation shell of Na+ is also detectable, 

indicating a recognizable influence of Na+ in ordering NH3 molecules in this shell. 

The ONIOM-XS MD results are significantly different from those derived by the 

QM/MM MD scheme, implying the important treatment of the ONIOM-XS MD 

technique for obtaining more reliable descriptions of such condensed-phase system. 
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With regard to the ONIOM-XS MD results, it is worth noting that the HF 

method and the DZP and LANL2DZ basis sets employed in this work were 

considered to be good enough to provide reliable data, compromising between the 

quality of the simulation results and the requirement of the CPU time. In this respect, 

it should be realized that the instantaneous electron correlation and the charge transfer 

effects may not be typically well-described by the HF theory, and that the use of the 

DZP and LANL2DZ basis sets could result in a high basis set superposition error and 

an exaggeration of the ligand-to-metal charge transfer. When computational facilities 

become more feasible, further improvement of the ONIOM-XS MD results can be 

achieved by using higher ab initio correlated methods, such as MP2, together with the 

use of larger QM size and basis set. 
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APPENDIX A 

THEORETICAL OBSERVATIONS OF Na+
 IN LIQUID 

NH3 

Table A1 Theoretical observations for the system of Na+
 in liquid NH3. 

Method 
ion/ 

solvent 

Temp 

(K) 

rmax 

(Å) 

RDF 

(rmax) 
CN Year Ref. 

 

ONIOM-XS 

MD 
1/215 235 2.58 8.0 5.1 2014 This work 

 

QM/MM  

MD 
1/215 235 2.55 4.4 5.0 2000 Kerdcharoen  

 

MM MD 

(2-body) 
1/215 235 2.55 14.8 8.0 2000 Kerdcharoen  

 

MM MC 

(2-body) 
1/201 277 2.68 11.6 9.0 1997 Hannongbua 

 

MM MC 

(2+3-body) 
1/201 277 2.68 10.0 8.0 1997 Hannongbua 

 

MM MD 

(2-body) 
1/215 235 2.49 16.6 8.0 1991 Hannongbua 

 

MM MD 

(2-body) 
1/215 266 2.42 14.6 7.0 1991 Hannongbua 

 

MC 

(empirical) 
1/250 260 2.25 9.5 5.0 1990 Marchi et al. 
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