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A sophisticated quantum mechanics/molecular mechanics (QM/MM)
molecular dynamics (MD) technique based on the ONIOM-XS method, called the
ONIOM-XS MD, has been applied for studying the preferential solvation and
dynamics of Li* in aqueous ammonia solution. This work was divided into 2 parts. In
part 1, an ONIOM-XS MD simulation was performed with the same simulation
protocol as employed in a recent conventional QM/MM MD study. As compared to
the conventional QM/MM MD results, which predicted that the first and second
solvation shells of Li* consist exclusively of water molecules with the arrangement of
the Li*'[(H20)4][(H20).] type, the ONIOM-XS MD simulation clearly indicate that
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(negligible) for this particular system, i.e., the DZV basis set is considered as a
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CHAPTER I

INTRODUCTION

1.1 Literature review

Characteristics of ions solvated in mixed solvents have been a topic of special
interest for scientists since such detailed knowledge is essential for understanding the
role of these ions in chemical and biological processes. (Vizoso and Rode, 1996;
Sajeevkumar and Singh, 1996; Pranowo and Rode, 2001; Gutmann, 2008). Under the
environment of multiple solvent species, the ability of ions to preferentially order the
solvent components surrounding them, i.e., to form their specific solvation complexes,
depends on the strength of binding energy between the ions and the solvent molecules.
Such phenomenon is usually discussed in terms of preferential solvation (Gill and
Cheema, 1983; Tongraar and Rode, 2007). With regard to the principle of hard and
soft acids and bases (HSAB) (Schwarzenbach and Baur 1956; Ahrland, Chatt and
Davies, 1958; Beerbower and Jensen, 1983; Pearson, 1993, 1995; Komorowski,
1993), “hard acids” will prefer to coordinate to “hard bases” and “soft acids” will
prefer to coordinate to “soft bases”. In this respect, “hard acids” refer to species with
small size, high positive charge, strongly solvated and low electronegativity, while
“hard bases” refer to those species with small size, strongly solvated, highly
electronegativity and weakly polarizable. For example, Li* and Na* can be considered
as “hard acids”, where the Li" is harder than Na. Likewise, H,O and NH; can be

classified as “hard bases”, where the H,O is regarded as a harder one



when compared to NH3. Consequently, when Li™ is dissolved in H,O-NH3 mixture, it
could be expected that Li* should preferably bind to the harder H,O over the softer
NH;.

Detailed knowledge with respect to preferential solvation phenomena can be
obtained by both experiments, such as FT-Raman, infrared (IR) and visible
spectroscopy, X-ray, neutron diffractions and NMR measurements (Qiao, Luan, Fang,
Zhou, Yao, Wang, Li, Chen and Tian, 2008; Kamienska-Piotrowicz and Stangret,
1995, 1998; Petrov, Wiessner, Fiebig and Staerk, 1995; Qiao, Luan, Fang, Zhou, Yao,
Wang, Li, Chen and Tian, 2008; Sajeevkumar and Singh, 1996), and theoretical
investigations, in particular Monte Carlo (MC) and molecular dynamics (MD)
simulations (Pranowo and Rode, 2001; Rode and Tanabe, 1988; Vizoso and Rode;
1996). In experiments, there is no single technique that can provide comprehensive
results of systems under investigation. For example, it is known that the techniques of
X-ray and neutron diffraction are only useful in providing structural details, while the
IR and Raman techniques are instead employed in order to obtain dynamics
information.

In conjunction with experiments, results from computer simulations can
provide valuable complementary information not accessible to experimental
approaches, both in the characterization of ion-solvent complexes and in the specific
mechanism of the involved interactions. Especially for the detailed descriptions at
molecular level, computer simulations can be seen as the elegant tools since it is
known that experiments often lead to ambiguous results due to the limitations of their
experimental techniques (Magina, Licheri, Pascgina and Piccaluga, 1988; Hewish,

Neilson and Enderby, 1982; Howell and Neilson, 1996). In this respect, it should be



realized that a comparison between experiments and theories is not straightforward
since most of the experimental methods for structural analysis have to be carried out
with solutions of relatively high concentrations, while most of the computer
simulations have been performed for very dilute solutions. By means of MC and MD
simulations, system’s interactions derived by means of ab initio quantum mechanical
calculations are recognized as most suitable treatment for multiple molecular
interactions. However, the performance of ab initio calculations for a condensed-
phase system consisting of a large number of particles is too time-consuming. Thus,
most of the previous MC and MD simulations on the preferential ion solvation had
relied on classical molecular mechanical (MM) force fields (Pranowo and Rode, 2001;
Rode and Tanabe, 1988; Vizoso and Rode, 1996). In this respect, the potential
functions employed for describing inter- and intramolecular interactions of interacting
atoms or molecules are constructed by fitting analytical formula to sets of
experimental data or to ab initio energy surface calculations, most of which are based
on pairwise additive approximations. During the past decades, a number of
simulations based on pairwise additive approximations can yield reasonable results for
the energetic data and the structural and dynamical properties of many molecular
systems. However, the importance of non-additive contributions for a correct
description of the intermolecular interactions has often been demonstrated (Beaumont,
Chihara and Morrison, 1961; Ermakova, Solca, Huber and Marx, 1995; Clementi,
Kistenmacher, Kotos and Romano, 1980; Curtiss, Woods, Halley, Hautman and
Rahman, 1987; Lybrand and Kollman, 1985). In particular for strongly interacting
systems, like ion-containing solutions, it has been demonstrated that the non-additive

contributions always play a significant role and that the neglect of these terms results



in wrong geometrical arrangements and coordination numbers (Probst, Spohr,
Heinzinger and Bopp, 1991; Ortega-Blake, Novaro, Les and Rybak, 1982; Lybrand
and Kollman, 1985; Clementi, Kistenmacher, Kolos and Romano, 1980; Curtiss,
Halley, Hautman and Rahman, 1987; Bernal-Uruchurtu and Ortega-Blake, 1995).
Nowadays, as a consequence of the rapid development in computer capacity
and performance, more sophisticated and accurate simulation techniques incorporating
quantum mechanical algorithms have become accessible. For example, a well-known
Car-Parrinello MD (CP-MD) technique has been established for the study of
condensed phase systems (Car and Parrinello, 1985; Tuckerman, Marx, Klein and
Parrinello, 1997). By the CP-MD technique, all interactions in the system are
described by means of ab initio calculations, most of which are relied on density
functional theory (DFT). However, some limitations of the CP-MD technique come
from the use of simple generalized gradient approximation (GGA) functionals, such as
BLYP and PBE, and of the relatively small system size. For example, with regard to
recent CP-MD simulations of liquid water, it has been demonstrated that some
properties of the liquid water are quite sensitive to the density functionals chosen, i.e.,
several of them were found to overestimate the water—water interactions (Vande
Vondele, Mohamed, Krack, Hutter, Sprik and Parrinello, 2005; Yoo, Zeng and
Xantheas, 2009). In this respect, some dynamics properties of water obtained from
those CP-MD simulations, such as self-diffusion coefficients, showed significantly
smaller value than that of experimental data, i.e., implying that the liquid water
simulated by the CP-MD technique under ambient condition is super-cooled or glassy

(Lee and Tuckerman, 2007).



Besides the CP-MD technique, an alternative approach is to apply a so-called
combined quantum mechanics/molecular mechanics (QM/MM) MD technique, which
has been successfully applied for studying numerous condensed-phase systems
(Kerdcharoen, Liedl and Rode, 1996; Tongraar, Liedl and Rode, 1997, 1998; Marini,
Liedl and Rode, 1999; Kerdcharoen and Rode; 2000; Rode, Schwenk and Tongraar,
2004). This technique treats the active-site region, i.e. the solvation shell around the
ion, quantum mechanically, while the environment consisting of further solvent
molecules is described by MM potentials. By this scheme, the complicated many body
contributions as well as the polarization effects, at least within the solvation sphere of
the ion, can be reliably included.

With regard to the QM/MM MD technique, however, there are some unsolved
problems that undermine the validity of this approach. For example, according to the
conventional QM/MM MD scheme, a smoothing function is applied only for the
exchanging particles that are crossing the QM/MM boundary. Such treatment is not
realistic since an immediate exchange of particles between the QM and MM regions
also affects the forces acting on the remaining QM particles. In addition, the
conventional QM/MM framework cannot clearly define the energy expression during
the solvent exchange process (Kerdcharoen and Morokuma, 2002; 2003). To solve
these problems, a more sophisticated QM/MM MD technique based on ONIOM-XS
method (which will be abbreviated throughout this work as “ONIOM-XS MD”) has
been proposed (Kerdcharoen and Morokuma, 2002). The ONIOM method, originally
developed by Morokuma et al. (Svensson, Humbel, Froese, Mutsubara, Sieber and
Morokuma, 1996), can handle not only the QM + MM combinations (which is

implemented in the conventional QM/MM scheme), but also the QM + QM



combinations. Recently, the ONIOM-XS MD technique has been successfully applied
to the systems of Li* and Ca** in liquid ammonia (Kerdcharoen and Morokuma, 2002,
2003), K* and Ca®" in aqueous solution (Wanprakhon, Tongraar and Kerdcharoen,
2011) as well as liquid water (Thaomola, Tongraar and Kerdcharoen, 2012).
Especially for the cases of K* and Ca** in aqueous solution, the ONIOM-XS MD
simulations have provided more reliable data on the structure and dynamics of these
two hydrated ions, i.e., compared to the results obtained by the conventional QM/MM
MD scheme (Wanprakhon, Tongraar and Kerdcharoen, 2011).

In the present study, the ONIOM-XS MD technique will be applied for
studying the preferential solvation of Li* in aqueous ammonia solution. Simple ion,
like Li", is well-known for widespread and diverse effects, both in animals and plant
(Birch and Phillips, 1991; Williams, Gershon and Shopsin, 1973). The characteristics
of Li* solvated in aqueous ammonia solution have been studied by means of classical
MC (Kheawsrikul, Hannongbua, Kokpol and Rode, 1989) and MD (Tongraar and
Rode, 1999) simulations using MM force fields, which revealed an octahedral
arrangement for the first solvation shell of Li* with different water to ammonia ratios
of 4:2 and 3:3, respectively. With regard to the earlier MC and MD results, however,
it has been demonstrated that the effects of many-body contributions, which are
neglected in the construction of pair potentials, are significant and are not negligible,
especially for the systems of strong ion-ligand interactions (Tongraar and Rode,
1999). Consequently, a more accurate Born-Oppenheimer ab initio QM/MM MD
simulation (Tongraar and Rode, 1999) has been carried out for this system, showing
that the average coordination number of Li* is 4, consisting of 3 water and one

ammonia ligands. The QM/MM MD results clearly demonstrated the failure of



pairwise additive approximations in describing such systems, i.e., leading to wrong
prediction for the coordination number and ligand composition of the solvated ion.
According to the earlier QM/MM MD work, however, a relatively small QM region
was employed, i.e., corresponding to the size of first solvation shell of the ion. In this
sense, the interactions of particles beyond the defined QM region (i.e., those in the
second solvation shell, which are described by means of pairwise additive
approximations) may have a strong influence on the ligand preference and thus on the
composition of the solvated ion. This leads to an important question whether the
quality of pair potentials is sufficient to correctly describe the second solvation shell
of Li*. Later, an extended ab initio QM/MM MD simulation has been performed
(Tongraar and Rode, 2008), in which the QM size was enlarged to 4.2 A radius (i.e.,
compared to the value of 3.4 A employed in the earlier QM/MM MD study).
Interestingly, the use of larger QM region had led to a clear water preference with an
arrangementof  Li'[(H20)4][(H20)4] type, compared to the preferred
Li*[(H20)3NH3][(H20)4(NH3),] structure obtained by the previous QM/MM MD
simulation using a small QM region not comprising the second solvation shell. These
observed discrepancies clearly demonstrate the importance of QM treatment of the
second shell of this solvated ion. Recently, CP-MD simulations have been performed
for the system of Li* in binary liquid mixture of water and ammonia (Pratihar and
Chandra, 2011), revealing that Li* is preferentially solvated by water and that the
coordination number of Li* is mostly four in its first solvation shell. A comparison of
the structural parameters for Li* in aqueous ammonia solutions, as obtained by various

simulation techniques, is given in Table A.1.



Regarding the recent CP-MD and QM/MM MD simulations, which provided
similar details (i.e., the coordination number of 4 and the preference for water
molecules as ligands) for the first solvation shell of Li*, these two techniques, as
mentioned earlier, still have their technical limitations. In particular, the observed
preference for only water molecules as ligands in the first solvation shell of Li* is
questionable. In gas phase, HF calculations using DZP basis set show that the strength
of ion-ammonia interactions is somewhat higher than that of ion-water interactions,
i.e., of the values of -41.25 and -37.11 kcal.mol™, respectively. In this work, therefore,
a more sophisticated ONIOM-XS MD technique will be applied for studying the
preferential solvation of Li* in aqueous ammonia solution. The results obtained by the
ONIOM-XS MD simulations can be expected to provide more detailed descriptions
on the preferential solvation and dynamics of the Li* ion in such solvent mixture,
leading to further understanding the role of this ion in chemical and biological

processes.

1.2 Research objectives

1. To apply the high-level ONIOM-XS MD technique for studying the
preferential solvation and dynamics of Li* in aqueous ammonia solution. The results
obtained by the ONIOM-XS MD simulation was compared to those derived by the
conventional QM/MM and CP-MD frameworks.

2. To study the sensitivity of the basis sets (DZV and DZP) employed in the

ONIOM-XS MD simulations of Li* in aqueous ammonia solution.



1.3 Scope and limitation of the study

In this work, the investigations were divided into two parts. In the first part, an
ONIOM-XS MD simulation was performed with the same simulation protocol as
reported in the recent conventional QM/MM MD simulation using enlarged QM
region (Tongraar and Rode, 2008). The objective was to compare the ONIOM-XS
MD results with those obtained by the conventional QM/MM MD study. In this
respect, the observed differences between the conventional QM/MM and ONIOM-XS
MD simulations was compared and discussed with respect to the validity of the
conventional QM/MM MD scheme for describing the properties of such system. For
the second part of this work, another ONIOM-XS MD simulation, with the same
simulation conditions as employed in part I, was performed. A significant change was
made by using a larger DZP basis set, i.e., instead of the DZV. The objective of this
part was to investigate the effect of polarization function on the preferential solvation
and dynamics of Li" in agueous ammonia solution.

Structural properties of the solvated Li* will be characterized through a set of
radial distribution functions (RDFs) and their running integration numbers, together
with detailed analyses on angular distribution functions (ADFs) and orientations of
water and ammonia molecules surrounding the ion. The dynamics details was
analyzed by means of mean residence times (MRTSs) of solvent molecule as well as of

solvent exchange processes at the ion.
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CHAPTER Il

QUANTUM CHEMISTRY

2.1 Introduction to quantum chemistry

Quantum chemistry is based on quantum mechanical principles. The theory of
quantum mechanics originated in the beginning of 20" century as a result of the
failure of classical mechanics to correctly describe the black-body radiation or
photoelectric effects and some unexplainable phenomena of very small particles, for
example, electrons, atoms and molecules. In quantum chemistry, a fundamental
behavior of matter at molecular scale can be described through the understanding of
the electron behavior. In this respect, a wavefunction, which can be obtained by
solving the Schrodinger equation (Schrodinger, 1926), is an essential tool of quantum
chemistry for describing the properties of matter in terms of energies and positions of
the nuclei and electrons. The applications of quantum chemistry include solving many
chemical problems, particularly understanding of chemical bonding, spectral

phenomena, molecular reactivity and various other fundamental chemical problems.

2.2 Schrodinger equation
In guantum chemistry, the complete description of a wavefunction can be
given through the solution of the Schrddinger equation, which describing the atom

system. Schrodinger obtained an equation by taking the classical time-independent
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wavefunction equation and substituting de Brogile’s relation for A. The classical

three-dimensional wave equation can be written as

voy = (ZEyey (2.1)
A
. . o0 o0 0 . .
where V is the Laplacian operator (V Ea_+5+a_) and ¥ is the wave function
X z

describing the displacement at any point along the wave. Schrodinger substituted the
de Broglie wavelength, A, in terms of energy to adapt the classical wave equation to

h

AJ2m(E -V)

particle waves (A = ). The Schrddinger equation is then given by

87%m
h2

vy = (2 MyE vy, 2.2)

This equation can be rearranged in a series of algebraic step to a more convenient

form of

{(S;Q;WZ +V}P = EY, (2.3)

which is known as Schrodinger’s time-independent wave equation for a single particle

of the mass (m) moving in the three-dimensional potential field (V). The left-hand side

of the equation is called the Hamiltonian operator ( H ),
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H E{( ‘C;)vz +v} (2.4)

8
which will be substituted in Schrdédinger equation,
HY = EY, (2.5)

where v is then called an eigenfunction and E an eigenvalue.

The equation (2.5) can be further simplified since the Born-Oppenheimer
approximation considers the nuclei wavefunction can be separated and the electron
distribution depends only on the instantaneous positions of nuclei and not on their

velocities. Therefore, an electronic Schrédinger equation can be obtained as

H" elecyprelec _ - elecypelec (2.6)

Hence, the Hamiltonian operator for an atom with k electrons can be written as

~ ol _h2 Kk ( k 7 k-1 k 1
elec
e IR Y B 3D Y @)
T'm, o g f i1 j=iealj
Telectron Velectron-nucleus Velectron-electron

Within the Born-Oppenheimer approximation, the electronic Schrddinger
equation can be solved at any given set of nuclei positions, thus Tnycieus 1S 0mitted. The
Schrodinger equation for a multi-electron atom can be solved numerically. Although
Velectron-electron CANNOL be included as an explicit term in the Hamiltonian, its effect on ¥
can be accounted by a mathematically simpler approach that each electron interacts

with an average field of the nucleus and all other electrons (see self-consistent field
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approximation in section 2.8). The Hamiltonian operator for a molecule with N atoms

and k electrons is given by

2

7 elec Z
e = ( o
r

)gv? =

e j=1 =1

Telectron Velectron-nucleus (2-8)

kl NNZZ

+ZZ»+ZZ -

i=1 n= |+lr|n j=l m=j+1

Velectron—electron Vnucleus—nucleus

where Viucreus-nucteus 1S typically treated as a constant.

2.3 Born-Oppenheimer approximation

The Born-Oppenheimer approximation is a way to simplify the complicated
Schrodinger equation for a molecule. The nucleus and electrons are attracted to each
other with the same magnitude of electric charge, thus they exert the same force and
momentum. While exerting the same kind of momentum, the nucleus, with a much
larger mass in comparison to electron’s mass, will have a very small velocity that is
almost negligible. So we can consider the electrons as moving in the field of fixed
nuclei, the nuclear kinetic energy is zero and their potential energy is merely a

constant. Thus, from equation (2.8), the electronic Hamiltonian reduces to

R 2 K N k 7 k-1 Kk 1
Helec — ( )ZVIZ zz_ +Z — = T+ Ve +V, (2 9)
e i=l j=1 i=1 r i=1 n:|+1r|n
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The solution of the Schrodinger equation with H eec is the electronic wave function

Y. and the electronic energy E

elec elec "

A

H elec \P = E \P (210)

elec elec ~ elec*®

The total energy E, . is then the sum of E__. and the constant nuclear repulsion term

tot elec

Enuc'
Etot = Eelec + Enuc’
where
N-1 N ZZ
B 527D = (212)
j=l m=j+1 ij

When a system is in the state ¥, the expectation value of the energy is given by

crpr_ (HH[®)
[V]=—1r——,
(¥]¥)
where
([H|¥) = [ ¥ H W (2.12)

The Born-Oppenheimer can be applied to calculate the bond length and energy

between molecules. By focusing on the specific separation between nucleus and
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electron, their wavefunctions can be calculated. Thus, a molecule’s energy in

relationship with its bond length can be examined.

2.4  Molecular orbital theory

The molecular orbital (MO) theory is a method for determining molecular
structure. A molecular orbital is a region in which an electron may be found in a

molecule. The molecular orbital can be described by the wavefunction of the electron
in a molecule, in particular a spatial distribution (|y/i(r)|2) of an electron and energy

of up to two electrons within it. The complete wavefunction for an electron is termed a
spin orbital (y) which is the product of a molecular orbital (y) and spin function (a or
). The wavefunction is simple product of spin orbital wavefunction for the
description of an n-electron system, which can be written in the form of product of

spin orbitals,

\Pproduct = Zl(l)zz (Z)Zn (n)! (213)

where y, (i) is the spin orbitals of electron i. However, such a wavefunction is

unacceptable because it does not satisfy the property of antisymmetry. The multi-
electron wavefunction must take into consideration the fact that electrons are
indistinguishable, and therefore interchanging electron position assignments in a
wavefunction cannot lead to a different wavefunction. To ensure the antisymmetry,

the spin orbitals are arranged in a determinant wave function,
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w0 20 - 2,0
v, (0@ 2@ - 1) 210
7 20 - 2,0

The practical use in building up a determinant wavefunction is to choose a set

of molecular orbitals, v, , v,, v,, ..., w,, and then to assign electrons of « and g spin

to these orbitals. Exchanging any two rows of a determinant, a process which
corresponds to exchanging two electrons changes the sign of the determinant and
therefore directly leads to the antisymmetry property. If any two rows of a determinant
are identical, which would correspond to two electron being assigned to the same spin
orbital, then the determinant wavefunction in equation (2.14) vanishes if two columns
are identical, which follows the Pauli exclusion principle. For some further properties
of the molecular orbital wavefunctions, it is possible to force the orbitals to be

orthogonal to each other,

j w, dxdydz = 0, for i # j, (2.15)

and molecular orbitals may be normalized,

wa w,dxdydz =1, (2.16)

which corresponds to the requirement that the probability of finding the electron
anywhere in the space is unity. Thus, the determinant wavefunction (equation (2.14))

may be normalized and full many-electron molecular orbital wavefunction, for
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example, for the closed-shell ground state of a molecular with n (even) electrons,

doubly occupying n/2 orbitals, can be written as

nOa® 0D  v,0a@®) - v, O
1 e v@Q) v,(2a@) - v, @BQ)
il z : S

via() v MAM w,(Mam) v, (AN

N (2.17)

An approximate wavefunction constructed from one electron orbital is often

referred to as a Slater determinant (Slater, 1929).

25 The LCAO-MO method and basis set

A linear combination of atomic orbitals to molecular orbitals or LCAO-MO
method is a quantum superposition of atomic orbitals, i.e., a technique for
calculating molecular orbitals in quantum chemistry. An initial assumption is that the
number of the molecular orbitals, y is equal to the number of atomic orbitals
included in the linear expansion. In this sense, n atomic orbitals combine to form n
molecular orbitals, which can be numbered i = 1 to n and which may not all be the

same. The expression (linear expansion) for the i-th molecular orbital would be:

Wi =Cuyd +Cphy +Cyihy +.... + Cyi¢,u7 (2.18)

or

Vi= icyi¢,u’ (2.19)


http://en.wikipedia.org/wiki/Quantum_superposition
http://en.wikipedia.org/wiki/Atomic_orbitals
http://en.wikipedia.org/wiki/Molecular_orbital
http://en.wikipedia.org/wiki/Quantum_chemistry
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where c; are the molecular orbital expansion coefficients, n is the number of atomic

basis function and the set of n function ¢, is called basis set.

The common types of basis function, as also called atomic orbital, used in
electronic structure calculations are Slater-type orbitals (STOs) (Slater, 1930) and
Gaussian-type orbitals (GTOs) (Boys, 1950). The formalism of the STOs can be

presented as

¢ (&1, m;r,6,4) = Nr" e 'Y, (6,4), (2.20)

where n, |, and m are quantum numbers referring to principal, angular momentum and

magnetic, respectively. N is the normalization constant and ¢ is exponent. The r, 6,

and ¢ are spherical coordinates, and Y, is the angular momentum part. The STOs

screening constants are calculated for small model molecules using rigorous self-
consistent field methods, and then being generated for use with actual molecules of
interest. The accuracy of STOs can be improved by combining two or more STOs (i.e.,
with two different values of ¢) into a single one-electron wavefunction (double ¢ basis
set).

However, the mathematical requirements for solving the integrals of the wave
equation using STOs are very time-consuming. Gaussian-Type Orbitals (GTOs) are
then introduced since they are mathematically simple than STOs, but less accurate

(Boys, 1950). The GTO is expressed as

m

¢ (a,l,mn;x,y,z)=Ne ™ x'y"z", (2.21)



26

where N is a normalization constant, and « is exponent. The x, y, and z are Cartesian
coordinates. The I, m, and n are now not quantum numbers but simply integral
exponents at Cartesian coordinates and r®> = x* + y* + z°. The advantage of GTOs is
that the product of two Gaussians at different centers is equivalent to a single
Gaussian function centered at a point between the two centers. Therefore, the two-
electron integral problem on three and four or more different atomic centers can be
reduced to integrals over two different centers. However, the GTO gives an inferior
representation of the orbitals at the atomic nuclei, which can be considered at 1s-
orbital. A 1s-orbital of STO has a cusp at the atomic nucleus but a GTO does not, as
shown in Figure 2.1. In this respect, the larger basis must be used to achieve the

accuracy comparable to that obtained from STOs.
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Figure 2.1 The STO exp(—ar) and GTO for 1s orbital exp(-ar?).

The most important factor for creating the molecular orbital is the set of
parameters applied to the basis function, called as basis set. The smallest number of
function possible for constructing the molecular orbital is called a minimum basis set.
The improvement of the basis set can be made by replacing two basis functions into

each basis function in the minimal basis set, called as double zeta (DZ). The larger
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basis set is a triple zeta (TZ), where three basis functions are used to represent each of
the minimal basis sets. The compromise between the DZ and TZ basis sets is called a
split valence (SV) basis set, in which each valence atomic orbital is represented by
two basis functions while each core orbital is represented by a single basis function.

In 1969, Pople and coworkers (Hehre, Stewart and Pople, 1969) designed the
basis set by expanding the STO in terms of n primitive Gaussians, called as STO-nG
basis set. The primitive Gaussian has been derived for n = 2-6. However, the STO-3G
basis set is a widely used minimal basis set, as shown in Figure 2.2. The STO-3G

basis set partially represents the cusp of s-type orbital at the atomic nuclei.

)

STO-3G 1s Basis function

Figure 2.2 The STO-3G basis set representing the desired STO.

Later, Pople and coworkers have applied the split valence for increasing
flexibility in the basis set, which can be designed as k-nImG basis set. The first
parameter (k) indicates the number of primitives used in the contracted core, while the
two values (nl) refer to a split valence, and three values (nlm) refer to a triple split
valence, such as 6-311G. For the triple split valence basis, the core orbitals are a
contraction of six primitives and the valence split into three functions, represented by

three, one and one primitive GTOs. The Pople’s style basis sets may include diffuse
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and/or polarization functions. The diffuse function can be denoted as + or ++ before
the G, in which the first + indicates one set of diffuse s- and p-function adding on
heavy atoms and the second + refer to the inclusion of diffuse s-function for hydrogen
atom. The polarization function can be put after the G, which separates designation for
heavy and hydrogen atoms. For example, 6-31+G(d) basis set refers to a split valence
with additional diffuse sp-functions and a single d-type polarization function only on
heavy atoms. The largest standard Pople style basis set is 6-311++G(3df,3pd).
Additionally, the polarization function can be replaced with * notation. For example,
the 6-311G* basis set is identical to 6-311G(d) and 6-311G** basis set is identical to
6-311G(d,p).

Since several GTOs are often grouped together, the contracted Gaussian
function has been applied to Dunning-Huzinaga (DZ) basis set (Dunning, 1970;
Dunning, 1971; Huzinaga, 1965). The DZ basis set can be made by a contraction such
as the (9s5p) primitive GTOs to [4s, 2p]. The contraction scheme is 6,1,1,1 for s-
functions and 4,1 for the p-functions. In addition, the development of basis set by
Dunning and coworker for recovering the correlation energy of the valence electrons
is known as the correlation consistent (cc) basis sets. The general formulation can be
written as cc-pVnZ, where n = D for double zeta, T for triple zeta, Q for quadruple
zeta, and so on.

For the systems having a large number of core electrons elements, it is
necessary to use a large number of basis functions for describing them. However,
since the deep core electrons are not much important in a chemical sense, this leads to
an approximation by replacing the core electrons with analytical functions, called as

an Effective Core Potential (ECP) or Pseudopotentials. In practice, such basis set is
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reasonably accurate and efficient, representing the combined nuclear-electronic core

to the remaining electrons.

2.6  Basis set superposition error

When atomic basis sets are used to calculate molecular energies, particularly
for weak interactions, an error occurs from the use of basis functions on improvement
molecules (Davidson and Chakravorty, 1994). However, the energy difference
obtained by such an approach will invariably be an overestimate of the true value. The
discrepancy arise from a phenomenon known as “Basis Set Superposition Error
(BSSE)” (Boys and Bernardi, 1970). The BSSE would be expected to be particularly
significant when small, inadequate basis sets are used (e.g., the minimal basis STO-nG
basis sets) which do not provide for an adequate representation of the electron
distribution far from the nuclei, particularly in the region where non covalent
interactions are strongest. One way to estimate the basis set superposition error is via
the Counterpoise Procedure (CP) of Boys and Bernardi in which the entire basis set

is included in all calculations (Boys and Bernardi, 1970). Thus, in the general case;

A+B —> AB (2.22)

AE = E(AB) —[E(A) + E(B)]. (2.23)

The calculation of the energy of the individual species A is performed in the
presence of “ghost” orbitals of B; that is, without the nuclei or electrons of B. A
similar calculation is performed for B using ghost orbitals on A. However, the
counterpoise method will not provide effective improvement of the results if the

atomic basis sets are very poor. The counterpoise procedure has been used as a
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standard tool of theoretical chemistry although some researchers have raised serious
doubts on the usefulness of this procedure (Schwenke and Truhlar, 1986; Schwenke
and Truhlar, 1987). The counterpoise correction can be very reasonable for the
estimation of weak electronic interaction energies with small basis sets at Hartree-
Fock (HF) level of accuracy. However, this approach has failed for the estimation of
strong electronic interaction energies even if with up to date basis sets, as
demonstrated by a study of cyclic hydrogen fluoride trimer (Liedl, 1998). An
alternative approach is to use a basis set in which the orbital exponents and
contraction coefficients have been optimized for molecular calculations rather than for
atoms. The relevance of the basis set superposition error and its dependence upon the
basis set and the level of theory employed (i.e., SCF or with electron correlation)

remains a subject of much research.

2.7 The variation method

In general, the energy of the system can be calculated through the Schrodinger
equation by operating the Hamiltonian operator on the wavefunction. One way that is
popular is variation method, which is applied to determine the lowest energy, which
represents the ground state of the system. However, the energy obtained will be higher
than ground state.

The theory starts with a trial function @ of the electronic coordinates and is

normalized, which can be written in terms of a linear combination of the wavefunction,

@ :ZCil//i’ (2.24)
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where the individual y, and coefficients c, are unknown. Then, the normality of ®

imposes a constraint on the coefficient, deriving from

_[CDZdr :1:_[Zcix//i2cjy/jdr
i i
=ZCiCjIWindr
ij
= c,c;5;
i

= Zcf . (2.25)

Then, considering the energy associated with the wavefunction ® as

o chrzlz.[Z(ciy/i)ﬁ(cht//j)dr

= ¢’E;. (2.26)

After that, combining the results from equations (2.25) and (2.26), give

[oH @I —E,[02dr=3 c2(E - E,). (2.27)
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The coefficients have been assumed to be real number, thus, ¢/ and the result of

(E, —E,) must be greater than or equal to zero. Therefore,

[©H odr —E,[o2dr>0, (2.28)
Or
jcpﬁcbdr 229)
L SE. .
ICDZdr °

From equation (2.29), the quality of wavefunction for describing the ground
state of a system can be defined by their associated energies as the better
wavefunction could provide the lower energy. In addition, the guess of the trial
wavefunction can be constructed in any manner, which determined the quality by the

integral in equation (2.29).

2.8 Hartree-Fock self-consistent field method

Generally, the molecular orbital computational methods (ab initio and
semiempirical) make use of the Hartree-Fock (HF) method to approximate the
molecular wavefunction. The Hamiltonian considers each electron in the average field
of all other electrons in the molecule. A single determinant wavefunction is
substituted into the original electronic Schrodinger equation and after applying lots of
algebra, it yields the HF equations. The resulting HF equations can be viewed as an

alternative Schrddinger equation where the exact Hamiltonian has been replaced by an
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approximation. By this scheme, the solution of wavefunction of many-electron system
becomes to one-electron system. The Harmiltonian that describes this approximation

is called the Fock operator and then the one-electron Hamiltonian operator is defined

by

N/2

FO=H""@Q)+ > (23,0 -K,Q), (2.30)

where H (1) is the exact one-electron operator,

N/2
1vf— Ei, (2.31)

H core (1) . _E r
a=1 '1a

J , and Ka are coulomb integral and exchange integral operators, respectively,

3,00 () = (4 (22) - 8, (1)022)64 (). (2:32)
and

Ra@6 () = ([ 024 (1)02)6, (). (233

The Fock operator and the exact Hamiltonian are different, i.e., the coulomb
operator has been replaced by an operator describing the interaction of each electron
with the average field of all other electrons. In this respect, the expansion of the

wavefunction in terms of basis functions from the application of LCAO-MO method
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lead to a limitation of the accuracy of the ab initio HF approach since there is limited
number of basis functions available. However, since the basis sets used in the
calculations are finite, the energy will approach a limiting value. This limiting energy
is called a HF limit. Moreover, the HF equation for atom can be solved by numerical
integration. Nevertheless, complication arises when molecules are considered because
there is more than one center. Thus, the HF equation can be written independently

using Roothaan-Hall equations,

N
> (F.—&S,)6, =0, 1=1,2,3..,N, (2.34)

v=l

with the normalization conditions,

N

ZZN:c;swcm. =1, (2.35)

pu=lv=1

where &; is the one-electron energy of molecular orbital w; and S, is the element of

an N x N matrix termed the overlap matrix.
S, = [ 4, 0¢, M)dxdy,dz,, (2.36)

and F,, is the element of another N x N matrix, called the Fock matrix,

N N

F, =M L3R (avlao)-Suihe) | @3

A=1 o=1
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In this expression, H " is a matrix representing the energy of a single electron in a
uv

field of “bare” nuclei. Its elements are

Hee = [ 4, H ™ (D)4, (D)dx,dy,dz,, (2.38)
in which

1,0° 62 2. Wz
@ =-=( S+ —) ==, (2.39)
2oy aY1 07y aa Na

where Z is the atomic number of atom A, and summation is carried out over all atoms.
The quantities (xv|Ac) and (ul|vo) appearing in equation (2.27) are two-electron

integrals,

(uv]20) = [[4. 09, (1)(—)@ (29, ()dx,dy,dz,dx,dy,dz,,  (240)
and

(ur|ve)=[[4; 0 O )¢ (24, (2)dx,dy,dz,dx,dy,dz,,  (2.41)

which are multiplied by the elements of the one-electron density matrix, P,_,

0cC

P, = 22% - (2.42)

The density matrix describes the electron density of the molecules. Thus, the criterion

for judging convergence of the self-consistent, called as self-consistent field (SCF),



36

which refers to the density as well as to the energy because both have to be stationary
at self-consistence. In equation (2.37), the summation occupies each molecular orbital,
and the asterisk represents complex conjugation (required if the molecular orbitals are

not the real functions). The electronic energy, E*°, is now given by

ele 1 L . r
[ elec =EZZPW(FW+H;°VG), (2.43)

pu=1v=1
and when adding the internuclear repulsion,

ZAZB

e - Zi:z“: (2.44)

H
B>A RAB

yields an expression for the total energy.

With regard to the two-electron integrals, the amount of atomic basis functions
give rise to a major practical problem in the application of the ab initio HF method
due to the computational requirement which is approximated to N*8 for N basis
functions. In fact, not only time consuming of the integral calculation, but also their
storage on disk is practically impossible for large molecular systems. Consequently,
the Direct SCF methods have become available, which reduce these problems
significantly. By these approaches, the two-electron integrals are not stored but
recalculated as required. This makes sense because the CPU of modern computers is
very fast, while 1/0 operation takes quite long time. Secondly, only those integrals that
are expected to have a significant value are actually calculated. With these tricks built

into modern programs, the direct algorithms are actually faster than the conventional
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one for systems of more than about 100 basis functions (depending on the particular
computer).

Since ab initio quantum chemical methods are limited in their practical
applicability because of their heavy demands of CPU time and storage space on disk
or in computer memory, evaluation of the two-electron integrals for molecules with
large number of electrons becomes computationally impractical. The Semiempirical
HF methods have been developed to simplify these integrals that compensate for
neglecting some of that time consuming mathematical terms. In general, the
parameters used by semiempirical methods can be derived from experimental

measurement or by performing ab initio calculations on model systems.

2.9 Electron correlation

The most significant drawback of HF method is that it fails to adequately
represent electron correlation. In the self-consistent field method, the electrons are
assumed to be moving in an average potential of the other electrons, and so the
instantaneous position of an electron is not influenced by the presence of neighboring
electron. In fact, the motions of electron are correlated and they tend to ‘avoid’ each
other more than HF method would suggest, giving rise to a lower energy. The
correlation energy is defined as the difference between the HF energy and the exact
energy.

E

—E, +E (2.45)

exact correlation *
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Since the HF energy is always above the exact energy, the correlation energy

is always negative,

E_. <0. (2.46)

corr

In addition, neglecting electron correlation can lead to some clearly anomalous
results, especially as the dissociation limit is approached. As a consequence, the ¥ and
E cannot be used to correctly predict atomic properties without somewhere accounting
for electron correlation.

There are a number of way in which correlation effect can be incorporated into
an ab initio molecular orbital calculation, such as Configuration interaction (CI)
(Bauschlicher, Langhoff and Taylor, 1990), Many-body perturbation theory (MBPT)
(Mgller and Plesset, 1934), Couple cluster (CC) (Bartlett, 1989)) and electron density

based methods such as density functional theory (DFT) (Jones and Gunnarrson, 1989).

2.10 Density functional theory

The structural and dynamical properties of molecules will be determined by
electrons. For the treatment of system containing many atoms and many electrons, the
ab initio methods are found to be very time-consuming. The density functional theory
(DFT) is then used as an alternative approach, which takes into account the electron
correlation using the concept of electron probability density. The DFT allows all of

properties determined by the electron density, p(r), which is the function of three
variables: p(r):J'(x,y,z). The DFT was continuously developed. The major

developments are as follows: Start with Thomas-Fermi model was introduced in 1920,
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Hohenberg-Kohn proved the existent DFT (Hohenberg and Kohn, 1964), the Kohn-
Sham (KS) scheme was proposed (Kohn and Sham, 1965), the DFT method was
applied in molecular dynamic simulations (Car-Parrinello, 1985), Becke and LYP
functional was developed (Becke, 1986; Becke, 1988; Lee, Yang and Parr, 1988) and
in 1998 Walter Kohn received the Nobel prize for developing a complete DFT.

The DFT of Hohenberg, Kohn and Sham is based on the fact that the sum of
the exchange and correlation energies of an electron can be calculated exactly only its
density. By means of the Kohn-Sham method, the ground state electronic energy, E,

can be written as

E=E{+E, + E, + E,., (2.47)
where E;, E,, E, and E,. refer to kinetic, potential (electron-nuclear interaction

energy), Coulomb and the exchange/correlation energy, respectively. All components

depend on the total electron density, p(r), except (E; ).

orbitals

p(r) =2 Y% (). (2.48)

Here, ¥, is called Kohn-Sham orbitals and the summation is carried out over pairs of

electrons. Each energy components within the finite basis set can be written as

basisfunctions 1

E = X X405V M (2.49)
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basisfunctions

SIS B ¥ PR

u v

@, (r)dr, (2.50)

basisfunctions

Ey = 2222 Pupli(1v|io), (2.51)

Ee = [ F(p(NVp(r),....)dr, (2.52)

where Z is the nuclear charge, r-R represents the distance between the electron and
nucleus. f refers to exchange/correlation functional, which depends on the electron
density and the gradient of the density.

In the local density approximation (LDA), the exchange-correlation can be
defined as in the equation (2.52). To improve the exchange-correlation function, a

non-local correction involving the gradient of p is added to the exchange-correlation

energy. The LDA with gradient-corrections is called the generalized gradient
approximation (GGA). The exchange-correlation functionals have been developed for
use in DFT calculations, such as mPWPW19, B3LYP, MPW1K, PBE1PBE, BLYP,
BP91 and PBE. The name of each function refers to the pairing of an exchange

function and correlation function.

2.11 Many body perturbation theory

Mgller and Plesset proposed an alternative way to tackle the problem of

electron correlation (Mgller and Plesset 1934). The method is based upon Rayleigh-

Schrodinger perturbation theory, in which the “true” Hamiltonian operator H is
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expressed as the sum of a “zeroth-order” Hamiltonian Ho (for which a set of

molecular orbitals can be obtained) and perturbation, V ;

H=H,+V. (2.53)

The eigenfunctions of the true Hamiltonian operator are ‘¥, with corresponding

energy E, . The eigenfunctions of the zeroth-order Hamiltonian are written P with

energy E(”. The ground state wavefunction is thus W¥” with energy E”. To devise

a scheme by which it is possible to gradually improve the eigenfunctions and

eigenvalues of Ho we can write the true Hamiltonian as follows;

AN

H=H,+ AV, (2.54)

where A is a parameter that can vary between 0 and 1, i.e., when A is zero then H is
equal to the zeroth-order Hamiltonian but when Ais one then H equal its true value.

The eigenfunction ¥, and eigenvalues E, of I:| are then expressed in powers of A1
Y= 2¢O 2P => v, (2.55)
n=0

E =EQ+IE® + PE® ... =Y 2EM, (2.56)
n=0
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E® is the first-order correction to the energy, E? is the second-order correction and

so on. These energies can be calculated from the eigenfunctions as follows;

EC = ¥ Ho ¥ dr (2.57)
EY = [WOV ¥ Odr (2.58)
E® = [¥OV w0dr (2.59)
EY = [ %OV ¥2dr (2.60)

The correction energy using second-order perturbation theory (MBPT(2)) is known as
second-order Mgller-Plesset perturbation theory (MP2). The correction energy of MP

method can be written as
Eoi=E@P4E® +EW +... (2.61)

The correction through E (2), called MP2 correction, which considers the first term of

the above equation as

[[dndr,z Wz, (2)[1J[za W2 (D) - 7,0 2, (2)]

occupied virtual rl

SEEDIDIDID)

i j>i a b>a

(2.62)
Eat &y — & — &,

These integrals will be non-zero only for double excitations, according to the Brillouin
theorem. Third- and fourth-order Mgller-Plesset calculations (MP3 and MP4) are also

available as standard options in many ab initio packages.
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The advantage of many-body perturbation theory is that it is size independent,
unlike configuration interaction interaction-even when a truncated expansion is used.
However, Mgller-Plesset perturbation theory is not variational and can sometimes
give energies that are lower than the “true” energy. Maller-Plesset calculations are
computationally intensive and so their use is often restricted to *single-point”
calculations at geometry obtained from a lower level of theory. This is the most
popular way to incorporate electron correlation in molecular quantum mechanical
calculations, especially at the MP2 level. Moreover, the MP2 level of theory is more

reliable than DFT. In practices, however, it’s quite time-consuming.
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CHAPTER Il1

MOLECULAR DYNAMICS SIMULATIONS

3.1 Introduction to computer simulation

Computer simulations can provide microscopic details for understanding the
properties of assemblies of molecules in terms of their structure and the microscopic
interactions between them. This serves as a complement to conventional experiments,
enabling us to learn something new, something that cannot be found out in other ways.
The two main families of simulation technique are molecular dynamics (MD) and
Monte Carlo (MC). Nowadays, there is a whole range of hybrid techniques which
combine features from both. In general, the obvious advantage of MD over MC is that
it gives a route to dynamical properties of the system, such as transport coefficients,
time-dependent responses to perturbations, rheological properties and spectra.

Computer simulations act as a bridge (see Figure 3.1) between microscopic
length and time scales and the macroscopic world of the laboratory, i.e., starts with a
guess at the interactions between molecules, and obtain “exact' predictions of bulk
properties. The predictions are “exact” in the sense that they can be made as accurate
as require, subject to the limitations imposed by available computational facilities. At
the same time, the hidden detail behind bulk measurements can be revealed. An
example is the link between the diffusion coefficient and velocity autocorrelation
function (the former is easy to measure experimentally, while the latter is much

harder). In another sense, simulations act as a bridge between theory and experiment.
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A theory can be tested by conducting a simulation using the same model, and
the model can be tested by comparing with experimental results. We may also carry
out computer simulations for systems that are difficult or impossible in the laboratory
(for example, working at extremely high temperature or pressure).

Ultimately, in order to make direct comparisons with experimental
measurements made on specific materials, a good model of molecular interactions is
essential. The aim of so-called ab initio molecular dynamics is to reduce the amount
of fitting and guesswork in the process to a minimum. On the other hand, regarding
the phenomena of a rather generic nature, it is not necessary to have a perfectly

realistic molecular model, i.e., the one that contains the essential physics may be quite

suitable.
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P S / Results
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Figure 3.1 Simulations as a bridge between (a) microscopic and macroscopic, and

(b) theory and experiment.
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3.2 Molecular dynamics (MD) simulation

In terms of computer simulations, the MD technique is a powerful tool. This
technique is widely used for studying various molecular systems. The MD scheme is
summarized in Figure 3.2. By the MD technique, Newton’s equation of motion is
employed, in which each particle in the system can be moved with respect to force
from neighboring particles. The MD simulation starts with reading in the starting
configurations, velocities, accelerations and forces. The starting configuration can be
obtained either from experimental data such as from X-ray or random configuration.
According to Newton’s Equation of motion, since there is no time-dependent force
that shall act in the system, the time integration algorithms will be used to obtain time-
dependent trajectories, namely the knowledge of positions, velocities and
accelerations of two successive time steps (small time interval). The energy of the
system can be calculated using either molecular mechanics (MM) or QM method.
Forces on each atom in the system can be derived from the energy with respect to
change in the atom’s position. These new forces will be used to obtain new
configurations and the steps will be repeated until the system reaches equilibrium.
Then, the coordinates, velocities, accelerations, forces and so on are collected for
further structural and dynamical property calculations. In general, only positions and
velocities are usually stored since most of the important and interesting properties can

be obtained from these two quantities.



starting configuration, velocities, accelerations and forces

predict configurations, velocities, accelerations, etc., at
a time t+ot using the current values of these quantities

calculate interaction energy E (using either MM or QM

method) and force on an atom (E [— dar _ F N and

dr,
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correct the predicted configurations, time integration
velocities, accelerations, etc., using the algorithm
new accelerations

move particles by force F;to the new configurations

no

equilibrium?

yes

store coordinates, velocities, accelerations and forces,

etc. of all particles

calculate properties of the system

Figure 3.2 The MD scheme.
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3.3 Statistical mechanics

Generally, the results obtained by the MD simulation will provide information
at microscopic level, including atomic positions and velocities. The conversion of
microscopic information to macroscopic observables can be achieved by using
statistical mechanics. The microscopic state of a system is defined by the atomic
position, g, and momenta, p, which can also be considered as coordinates in a
multidimensional space, called phase space. A single point in phase space, denoted by
G, describes the state of the system. The collection of points in phase space is known
as an ensemble.

An experiment is usually made on a macroscopic sample, which contains an
extremely large number of atoms or molecules sampling a huge number of
conformations. In statistical mechanics, averages corresponding to experimental
observables are defined in terms of ensemble averages. An ensemble average is
average taken over a number of replicas of the system considered simultaneously,

which can be expressed as
<A>ensemble :dederNA(pN,rN)p(pN’rN)’ (31)

where A(p",r") is the observable of interest and it is expressed as a function of the
momenta, p, and the position, r, of the system. The integration is over all possible

variables of r and p . The probability density of the ensemble is given by

vy = Laxp| - (P
p(p" .1 )—Qexp{ T } (3.2)
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where H is the Hamiltonian, T is the temperature, K is Boltzmann’s constant and Q

is the partition function,

Q:”(dedrN)exp{—H(pk—’;)] (3.3)

This integral is extremely difficult to calculate since it must calculate all
possible states of the system. By means of statistical mechanics, the experimental
observable are defined in terms of time averages of property A that can be measured

throughout infinite time, which can be expressed as
H f N N 1 < N N
(Al =1im [A(p" () 7" (Odt = > AP 1), (34)
t=0 t=1

where 7z is the simulation time, m is the number of time steps in the simulation and
A(p",r") is the instantaneous value of A.

The relationship between time averages and ensemble averages can be
achieved using the Ergodic hypothesis, which states that the time averages equal the
ensemble average, i.e., the estimation of time average can be obtained over an

enormous number of replicas of the system considered simultaneously,

<A>time - <A>ensemble ) (35)
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In addition, the ensemble must be performed under some constraints, such as
constant number of particles (N), volume (V), energy (E), temperature (T), chemical
potential (), pressure (P) and so on. For example, a simple ensemble is the
microcanonical ensemble. This ensemble is a thermodynamically isolated system,
where the N, V and E are fixed throughout the simulation. The equilibrium states of
NVE ensemble are characterized by the entropy. The development of NVE ensemble is
the canonical ensemble (NVT), in which the N and V are fixed and the ensemble has a
well define temperature given by the temperature of the heat bath. The
thermodynamic property derived from the NVT ensemble is Helmholtz free energy.
The grand canonical ensemble («FT) is the extension of NVT ensemble which allows

the energy exchange, but fixes the x, Vand T.

3.4 Intermolecular interactions

The calculation of the potential energy inevitably involves assumptions
concerning the nature of attraction and repulsion between molecules. Intermolecular
interaction is the result of both short- and long-range effects. Electrostatic, induction,
and dispersion effects are examples of long range interactions. With regard to these
terms, the energy of interaction is proportional to some inverse power of
intermolecular separation. Electrostatic interactions result from the static charge
distribution between molecules. This effect can be either attractive or repulsive and it
is exclusively pairwise additive approximation. Induction effects are always
attractive, resulting from the distortions caused by the molecular fields of neighboring

molecules. However, the most important contribution is the attractive influence of
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dispersion arising from instantaneous fluctuations caused by electron movement.
Neither induction nor dispersion are pairwise additive approximation.

The short-range interactions are characterized by an exponential decay in the
interaction energy with respect to intermolecular separation. At small intermolecular
separations, there is a significant overlap of the molecular wave functions causing
either intermolecular exchange or repulsion. These interactions are not pairwise
additive. In general, it is possible to calculate the intermolecular interactions from first
principles. In practice, however, the first principle or ab initio approach is confined to
relatively simple systems. More commonly, the influence of intermolecular interaction
is expressed by some types of intermolecular potential. The nature of intermolecular

forces is discussed in greater detail (Stone, 1996).

3.5 Effective potentials

Before proceeding further, it is important to make the distinction between
effective and true two-body potentials. Even though many potentials functionally
pairwise (i.e., they only require pair separation as inputs), they are often in reality
“effective” potentials and it should not be confused with genuinely two-body
potentials.

In general, the potential energy function is the total intermolecular interaction
energy comprising all of the two-body, three-body, four-body up to N-body

interactions,

Vi = SV, )+ SV, 1K)+ + SV, oK, N). (3.6)
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However, most of earlier simulations had neglected the higher order interactions (three,
four,..., N-body), i.e., these terms are assumed to converge rather slowly and the terms
tend to have alternating signs (Kistenmacher, Popkie and Clementi, 1974). Therefore, the

system’s interactions are mostly relied on the summation of all two-body interactions,

Vi = ivij Qri - rj‘), (3.7)

i<j

where ri and rj are the position of species i and j, respectively. This is known as
pairwise additive approximations.

Therefore, unless otherwise indicated, the potentials discussed should be
treated as “effective.” In the past decades, a number of effective potentials have been
developed (Maitland et al., 1981) and applied to atoms. Historically, an empirical
approach was used with the parameters of the potential being obtained from
experimental data such as second virial coefficients, viscosities, molecular beam cross
sections, etc. Conclusions regarding the accuracy of pair potential were made by
comparing the properties predicted by the potential with experiment. In contrast,
computer simulation permits the theoretical rigorous evaluation of the accuracy of
intermolecular potentials. However, very few potential have been tested extensively
using molecular simulation. Notable exceptions are the hard-sphere, Lennard-Jones,
and exp-6 potentials. Effective potentials for atoms are often incorporated into the
molecular simulation of platonic molecules and increasingly, macromolecules.
Therefore, the atomic pair potential is an important starting basis for predicting

molecular properties.
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3.6  Time integration algorithms

The engine of a MD program is its time integration algorithms, required to
integrate the equation of motion of the interacting particles and follow their
trajectories. The time integration algorithms are based on finite difference method,
where time is discretized on a finite grid, the time step At being the distance between
consecutive points on the grid. Knowing the positions and some of their time
derivatives at time t, the integration scheme gives the same quantities at a later time
t + At. By iterating the procedure, the time evolution of the system can be followed
for long times. Two popular integration methods for MD calculations are the Verlet

algorithm (Verlet, 1967) and predictor-corrector algorithms (Gear, 1971).

3.6.1 Verlet algorithm
In MD, the most commonly used time integration algorithm is probably
the so-called Verlet algorithm. The basic idea is to write two third-order Taylor

expansions for the positions r(t) , one forward and one backward in time.

Calling Vv the velocities, @ the accelerations, and b the third derivatives of I' with

respect to t, one has,

r(t+At) = r(t) + v(t)At +£a(t)At2 +1b(t)At3 +0(At*)
2 6 (3.8)
r(t—At) = r(t) —v(t)At +%a(t)At2 —%b(t)m3 +0(At*),

Adding these two equations give

r(t+ At) = 2r(t) — r(t — At) + a(t)At* + O(At™). (3.9)
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This is the basic form of the Verlet algorithm. Since the interest in Newton’s equation,
a(t), is just the force divided by the mass, and the force is in turn a function of the

position r(t),

a(t) = —%AV(r(t)). (3.10)

As one can clearly see, the truncation error of the algorithm when evolving the system

by At is of the order of At”, even if third derivatives do not appear explicitly. This
algorithm is at the same time simple to implement, it is accurate and stable, thus
explaining its great popularity among molecular dynamics simulations.

A problem with this version of Verlet algorithm is that velocities are not
directly generated. While they are not required for the time evolution, knowledge of
them is sometimes necessary. Moreover, they are used to compute the kinetic energy
K, whose evaluation is necessary to test the conservation of the total energy (E = K +
V). This is one of the most important tests to verify that a MD simulation is
proceeding correctly. In general, one could compute the velocities from the positions

by using

r(t+At) —r(t — At)

3.11
2At (.10

v(t) =

However, the error associated to this expression is in the order of At? rather than
At*. To overcome this difficulty, some variants of the Verlet algorithm have been
developed. They give rise to exactly the same trajectory, and differ in what variables

are stored in memory and at what times. The leap-frog algorithm (Hockney, 1970) is a
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common numerical approach to calculate trajectories based on Newton’s equation.

The steps can be summarized as follows,

— 1. solve for a; at t using —Z—E =F =ma(t)
r-i
2. updatev;at t+ % using Vv, (t+ %) =V (t —%) +a, (t)At
. At
L 3. updater; at t+ At using r(t+At)=r(t)+v,(t +?)At

An even better implementation of the same basic algorithm is the so-called
velocity Verlet method (Swope, Anderson, Berens and Wilson, 1982), where positions,
velocities and accelerations at time t + At are obtained from the same quantities at

time t in the following way,

r(t+At) = r(t) + v(t) At +;a(t)At2

v(t+ g) =v(t) + i a(t)At
2 A (3.12)
a(t + At) = —%vv (F(t + AY))

V(t+ At) = v(t + %) +%a(t £ ADAL,

3.6.2 Predictor-corrector algorithm
In mathematics, particularly numerical analysis, a predictor-corrector
method is an algorithm that proceeds in two steps. First, the prediction step calculates
a rough approximation of the desired quantity. Second, the corrector step refines the

initial approximation using another means. In approximating the solution to a first-

order ordinary differential equation, suppose one knows the solution points y, andy,
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at times t, and t, . By fitting a cubic polynomial to the points and their derivatives
(obtained from the differential equation), one can predict a point Y, by extrapolating

to a future time t, . Using the new value y, and its derivative there, y, along with the
previous points and their derivatives, one can then better interpolate the derivative
between t; and t, to get a better approximation Yy, . The interpolation and subsequent

integration of the differential equation constitute the corrector step. An example of an

Euler - trapezoidal predictor-corrector method,

h=At,t.

RN

=t. +At=t. +h. (3.13)

y = [t y),(t) = vo. (3.14)

First, calculate an initial guess value Yy, via Euler:

yo B8 hJ‘(ti ) yi) \ (3.15)

Next, improve the initial guess through iteration of the trapezoidal rule. This iteration

process normally converges quickly.

i =Y, +2I(ti’yi)+.[(ti+l'yo)'

Fo = v+ )+ [ T (3.16)

yn =Y +2(J.(ti'yi)+_[ti+ll yn—l)'

This iteration process is repeated until some fixed value n or until the guesses

converge to within some error tolerance e:
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1V, - Vol <. (3.17)

Then use the final guess as the next step:

Yia = Yo (3.18)

Note that the overall error is unrelated to convergence in the algorithm but instead to
the step size and the core method, which in this example is a trapezoidal (linear)

approximation of the actual function. The step size h(At) needs to be relatively small

in order to get a good approximation.

3.7 Periodic boundary conditions

Computer simulations using atomistic potentials are typically performed on
small systems, usually of the order of a few hundred molecules. Assuming a simple
cubic lattice, of 1,000 molecules, 488 lie on the surface. These molecules would
experience different forces than the other molecules. To try and counteract this surface
effect it is common to invoke periodic boundary conditions.

Here, the system is surrounded by an infinite number of identical systems, as
shown in Figure 3.3. In the course of the simulation the molecules in each of the boxes
move in the same way. Hence if a molecule leaves the simulation box at one side, an

identical molecule enters the box at the other.
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Figure 3.3 Schematic representation of the idea of periodic boundary conditions.

Periodic boundary conditions are usually used in conjunction with the
minimum image convention for short ranged forces, i.e., only considering interactions
between each molecule and the closest periodic image of its neighbors. Short ranged
forces are often truncated to increase computational efficiency. For consistency with
the minimum image convention, this cut-off distance must be less than or equal to half
of the box length. Periodic boundary conditions can sometimes have an effect on the
system under consideration. This is especially pronounced for small system sizes and
for properties with a large long range contribution, such as light scattering factors.
They also inhibit long wavelength fluctuations that are important near phase

transitions. However, they have little effect on equilibrium properties.



61

3.8 Cut-off and potential at cut-off
According to Figure 3.3, r, is the cut-off radius, which is commonly applied

along with the minimum image criterion when calculating the energy and force
between two atoms, i.e., in order to reduce the number of non-bonded interactions that
will be calculated in each MD step. In classical MD simulation, the non-bonded
interactions are of the most time-consuming part of the energy and force calculations.
For N atom system, the number of non-bonded interactions are N*(N-1)/2. Normally,
the cut-off limit should be no more than half of the box length (< L/2). On the other

hand, only non-bonded interactions for » < r, are taken into account for calculating
energy or force, while the interactions for r >r, are ignored.

According to cut-off, the most straightforward way is the simple truncation at

r=r,. This leads to a discontinuity in potential energy and force at the cut-off

distance. In practice, the MD simulation cannot deal with such situation because of
poor energy conservation. To solve this problem, a shifted potential is employed in

order to modify the potential at the cut-off radius,

v _1% (r)—¢y, (r.) if r<r,
© o if r>r,’ (3.19)

where ¢, (r.) is equal to the value of the potential at the cut-off distance. Another way is
to switch off the potential between a chosen distance r and r,, which may not affect the

equilibrium structure due to applied switching function over a narrow range, which can be

expressed as
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P (1) =, (r.) - (d¢§r(r))rrc (r—r.) rsr (3.20)

0 r>r..

c

SF__
V(r) -

3.9  Neighbor lists

Atom within the cutoff distance is quite time-consuming in MD simulation
because the distance between every pair of atoms still has to be calculated in each
simulation step. In practice, since most of atoms move within a time step of less than
0.2 A, the local neighbors of a given atom remain the same for many time steps.

To avoid wasteful recalculation for every single time, the Verlet neighbor list
(see Figure 3.4) is employed, which creates lists of all atoms within a certain distance

of every atom. In this respect, every atom only interacts in its neighbor list. That is, it

stores all atoms within the cut-off distance (r,,) and all atoms that locate slightly

ut

further away from the cut-off distance (r,).

"skin region”

Figure 3.4 Verlet neighbor list.
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3.10 Long-range interactions

The neglect of interactions beyond the cut-off distance, especially for the
strong interacting systems, may results in an incorrect description of molecular
properties. One simple way to treat the long-range interactions is to use a large
simulation cell, but this reflects in more time-consuming. There are many suitable
methods for the treatment of long-range interactions. The first method is the Ewald
summation method, which derived by Ewald in 1921 (Ewald, 1921). This method
studies the energetic of ionic crystals, i.e., a particle interacts with all the other
particles in the simulation box and with all of their images in an infinite array of
periodic cells. The charge-charge contribution to the potential energy of the Ewald

summation method could be of the form

V :% ’iZN:L (3.21)

where the prime on the first summation indicates that the series does not include the

interaction i = j for n=0, g; and q; are charges and n is a cubic lattice point. The

Ewald summation method is the most correct way to accurately include all the effects
of long-range forces in the computer simulation. However, this method is rather
expensive to implement since the equation (3.21) converges extremely slowly.
Another method for the treatment of long-range interactions is the reaction
field method (Foulkes and Haydock, 1989). This method constructs the sphere around
the molecule with a radius equal to the cut-off distance. By this scheme, all

interactions within the sphere are calculated explicitly, while those outside of the
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sphere are modeled as a homogeneous medium of dielectric constant (&,). The

electrostatic field due to the surrounding dielectric is given by

3 =M(%] >, (322)

e +1 \r,

c

]:rijgrc

where 4 are the dipoles of the neighboring molecules that are located within the cut-

off distance (r;) of the molecules i. The interaction between molecule i and the

reaction field equals to E, - z;.

3.11 Temperature scaling

Temperature scaling is one of the “tricks of the trade” employed in MD to
drive a simulation towards the desired system temperature.
If it turns out that system’s temperature is not the temperature required, it is

simply to multiply the velocity of every atom by

%‘

Temperature scaling = , (3.23)

T
where T, is the required temperature. This technique can be applied at regular intervals

during the equilibration period, and so drive the simulation consistently towards the

desired temperature.
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3.12 Conventional ab initio QM/MM MD technique

According to the conventional QM/MM technique, the system is partitioned
into two parts, namely QM and MM regions. The QM region is the most interesting
region which is treated by quantum mechanics, while the rest of the system, the MM

region, is described by classical MM potentials.

MM region

QM region

r
r on
off

Figure 3.5 System’s partition.

According to Figure 3.4, the total energy ( E,, ) of the system can be obtained

from the summation of three component parts, namely the interactions within the QM,

in the MM and between the QM and MM regions;

A

H \PQM >+ EMM + EQM—MM ; (3.24)

Etot = <\PQM

A

where <‘I’QM H

‘PQM> refers to the interactions within the QM region, E,,, is the

interactions within the MM region and E is the interactions between the QM

QM -MM

and MM regions.
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By the conventional QM/MM MD technique, a thin switching layer located
between the QM and MM regions is introduced to smooth the transition due to the

solvent exchange, as show in Figure 3.5.

During the QM/MM MD simulation, exchanges of particles between the QM
and MM regions can occur frequently. With regard to this point, the force acting on
each particle in the system are switched according to which region the particle was

entering or leaving the QM region and was defined as

F =S, (NFou +@—=S,(r)Fyuu, (3.25)
where F; refers to force on each particle in the system, F,, and F,, are quantum

mechanical and molecular mechanical forces, respectively. S_(r) is a smoothing

function,

S,(r)=1 forr<r, (3.26)
r;—r?)(rf +2r* -3r/
S, (r) = (% ()r(zo— 7y ) forr, <r<r,, (3.27)
0 1
S,(r)=0 forr>r, (3.28)

where 1, and r, are the distances characterizing the start and the end of the QM region,

applied within an interval of 0.2 A to ensure a continuous change of forces at the

transition between QM and MM regions.
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3.13 ONIOM-XS MD technique

According to the conventional QM/MM MD technique, however, some
unsolved problems have been demonstrated. First, only the exchanging particles
which are crossings between the QM and MM regions are treated by a smoothing
function, i.e., not the whole particles in the QM region. With regards to this point, it is
not reliable since immediate addition or deletion of a particle in the QM region due to
the particle exchange also affects the forces acting on the remaining particles in the
QM region. Thus, the conventional QM/MM MD simulation may provide numerical
instability of forces whenever the particle exchange process occurs in the system.
Second, the conventional scheme cannot clearly define the appropriate energy
expression when particle exchange process occurs during the simulation.

To solve these problems, a more sophisticated QM/MM MD technique based
on ONIOM-XS method has been proposed (Kerdcharoen and Morokuma, 2003). The
ONIOM (Own N-layered Integrated molecular Orbital and molecular Mechanics)
method was originally proposed by Morokuma et al. (Svensson et al., 1996). The
extension of the ONIOM method for the treatment of condensed-phase system was
firstly applied by Kerdcharoen and co-worker, called ONIOM-XS (XS = eXtension to
Solvation). Here, the term “ONIOM-XS MD” will be used throughout this work.

According to the ONIOM-XS MD technique, the system is comprised of a
“high-level” QM sphere, i.e., a sphere which contains the ion and its surrounding
solvent molecules, and the remaining “low-level” MM bulk solvents. A thin switching
shell located between the QM and MM regions is then introduced in order to smooth

the transition due to the solvent exchange.
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N(=nl+l+n2)

Figure 3.6 Schematic diagram of the ONIOM-XS MD technique.

Given ng, I and n, as number of particles in the QM sphere, the switching layer
and the MM region, respectively, and N(= n;+l+n;) as the total number of particles,
the potential energy of the system can be written in two ways based on the ONIOM
extrapolation scheme (Svensson, Humbel, Froese, Matsubara, Sieber and Morokuma,
1996). If the switching layer is included into the high-level QM region, the energy

expression iswritten as

E™ (0, +1:N)= E® (0, +1)- E™ (n, +1)+ E™ (N). (3.29)

If the switching layer is considered as part of the “low-level” MM region, the

energy expression is written as

EONIOM(nl;N): EQM (n1)_ EMM (n1)+EMM (N) (330)

The potential energy of the entire system is taken as a hybrid between both

energy terms (3.31) and (3.32),
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™) = -5 )) B+ N s ) E™ (uN), (33D)

where s({r,}) is an average over a set of switching functions for individual exchanging

particle in the switching layer s, (Xi )

s(in )=

s, (x;), (3.32)

— I

|
i=1
The switching function in equation (3.32) can have any form. In the present study, a

polynomial form is employed,

1Y 1) 15 1)1
s, ()= 6(xi —Ej —5{Xi _Ej +8(Xi —Ej+5 , (3.33)

where x, =((r, —=r,)/(r, —=1,)), r, and r, are the radius of inner and outer surfaces of
the switching shell, respectively, and r; is the distance between the center of mass of
the exchanging particle and the center of the QM sphere. The switching function has
an S-shape and converges to 0 and 1 at r, and r,, respectively. The gradient of the

energy can be written as

VRE S ({0 ) = - SUR DV LE™ (n, +1N) +5(0n )

V,ENM(n;N)+ vsdr ) (3.34)

| 0

.(EONIOM (n| , N) _ EONIOM (n| + I, N))
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3.14 Simulation details

All ONIOM-XS MD simulations have been performed in a canonical
ensemble at 293 K with periodic boundary conditions. The system contains one Li",
163 H,0 and 37 NH3 molecules in a periodic box, with a box length of 18.56 A. The
QM size with diameter of 8.4 A was chosen. All interactions inside the QM region
were treated at Hartree-Fock (HF) level of accuracy using DZV (Part 1) and DZP (Part
I1) basis sets. In this study, the HF method was selected since the correlated methods,
even at the simple MP2 level, are still beyond our current computational facilities.
Table A.2 summarizes the optimized geometries and stabilization energies of different
Li*-(H20)m-(NH3), complexes, where m + n = 4, as obtained by various QM methods
and basis sets. In addition, the comparisons of the stabilization energies, as well as the
average Li-O and Li-N distances, of the optimized Li*-(H,0)m-(NH3), complexes are
also plotted in Figures 3.7-3.9. As compared to the results obtained by the B3LYP
calculations, it is apparent that the HF method, although shows slightly weak ion-
ligand interactions, produces the average ion-ligand distances in better agreement with
those obtained by the correlated methods. In particular, the overestimations of the
stabilization energies found in the B3LYP calculations clearly reflect in shortening of
the Li-O and Li-N distances. Comparing the HF calculations using DZV and DZP
basis sets, the observed differences could be expected due to the effect of polarization
function in describing the structural and energetic properties of the Li*-(H,O)m-
(NH3), complexes. Thus, the effect of polarization function on the preferential
solvation and dynamics of the Li* ion in aqueous ammonia solution becomes another
interesting subject in this study. Long-range interactions were treated using the

reaction-field procedure (Adams, D.J., Adams, E.M. and Hill, 1979). The Newtonian
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equations of motions were treated by a general predictor-corrector algorithm. The time
step size was set to 0.2 fs. For each of the ONIOM-XS MD simulations, the system
was initially equilibrated by performing the ONIOM-XS MD simulation for 20,000
time steps, followed by another 200,000 time steps to collect configurations every 10"

step.

16 | —
i \_'_'—"—o

-104 a) 6-311++G(d,p) —=—HF

-108 \ ——B3LYP
A —— MP2

-112 -\ ——CCSD

-120

-124 | L
112 k. b) DZP

-116
120 \
124 | %Q-

128 %

V4

ab

7

>

AE (keal/mol)

13| PP

%
N

-144 . L . L . L
4:0 3:1 2:2 1:3 0:4

-128

-132

7

-136

-140

;\JJ;

Number of m:n

Figure 3.7 Stabilization energies of different Li*-(H,0)m-(NH3), complexes, where
m + n = 4, as obtained by various QM levels of accuracy using a) 6-311++G(d,p),

b) DZP and c) DZV basis sets, respectively.
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Figure 3.8 Optimized Li-O distances of different Li*-(H,0)m-(NH3), complexes,
where m + n = 4, as obtained by various QM levels of accuracy using

a) 6-311++G(d,p), b) DZP and c) DZV basis sets, respectively.
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Figure 3.9 Optimized Li-N distances of different Li*-(H,0)m-(NH3), complexes,
where m + n = 4, as obtained by various QM levels of accuracy using

a) 6-311++G(d,p), b) DZP and c) DZV basis sets, respectively.
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CHAPTER IV

RESULTS AND DISCUSSION

According to the research objectives of this work, the results will be divided
into two parts. First, the results obtained by the ONIOM-XS MD simulation will be
compared to those derived by the conventional QM/MM MD scheme, and the
observed discrepancies will be discussed with respect to the important treatment of
the ONIOM-XS method in describing the behaviors of the solvated Li* in aqueous
ammonia solution. Second, the observed differences between the two ONIOM-XS
MD simulations using the DZV and DZP basis sets will be discussed with respect to
the effect of polarization function on the preferential solvation and dynamics of Li" in
such solvent mixture.

With regard to the present ONIOM-XS MD studies, it should be noted that
the HF method and the DZV and DZP basis sets employed in the simulation were
chosen as a compromise between the quality of the simulation results and the
requirement of the CPU time. In general, it is known that the instantaneous electron
correlation and the charge transfer effects are not typically well-described by the HF
theory, and that the use of DZV and DZP basis sets could result in high basis set
superposition error and an exaggeration of ligand-to-metal charge transfer. In this
respect, the ONIOM-XS MD results should be discussed with caution (i.e., they

should not be over-interpreted).
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4.1 Preferential solvation and dynamics of Li* in agueous ammonia
solution: New insights through an ONIOM-XS MD simulation

(Part 1)

The structural properties of the solvated Li* can be analyzed through a set of
ion-ligand radial distribution functions (RDFs) and their corresponding integration
numbers, as depicted in Figure 4.1, comparing the results as obtained by the ONIOM-
XS and conventional QM/MM MD (Tongraar and Rode, 2008) simulations. Looking
at Figure 4.1a, it is apparent that the characteristics of the Li-(N+O) RDFs obtained
by the two simulation techniques are significantly different. As compared to the
conventional QM/MM MD study (Tongraar and Rode, 2008), which reported a strong
pronounced first Li-(N+0O) RDF at 1.98 A and a recognizable second peak centered at
around 3.25 A, the ONIOM-XS MD simulation reveals a broader and less pronounced
first Li-(N+0) peak with a maximum exhibited at a slightly longer distance of 2.05 A,
together with a rather broad second peak in the region from 3 to 5 A. With regard to
the ONIOM-XS MD results, the shape and height of the first Li-(N+O) peak clearly
suggests a less “structure-making” ability of Li*. In addition, the observed broad and
less defined second Li-(N+O) peak also implies a small influence of Li* in ordering
the solvent molecules in this shell. Hence, according to a relatively loose second
solvation shell of Li*, the structural parameters with respect to this shell are
considered as a rough estimate, i.e., the second minimum of all ion-ligand RDFs is
assumed to be 5 A throughout this work. According to Figure 4.1a, integrations up to
first and second minimum of the Li-(N+O) RDF vyield about 4 and 14 ligands in the
first and second solvation shells of Li*, respectively, compared to the corresponding

values of 4 and ~4 ligands observed in the conventional QM/MM MD study
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(Tongraar and Rode, 2008). Figures 4.1b and c separately plot the Li-O and Li-N
RDFs and their corresponding integration numbers. In the conventional QM/MM MD
study (Tongraar and Rode, 2008), since the first and second solvation shells of Li*
contain only water molecules, the characteristics of the first and second peaks in the
Li-O RDF coincide with the respective peaks in the Li-(N+O) RDF. On the basis of
the ONIOM-XS MD simulation, the characteristics of the Li-(N+O) RDF is regarded
as a combination of the Li-O and Li-N RDFs. As can be seen in Figures 4.1b and c,
the combination of rather well-defined first Li-O and Li-N peaks, with their maxima
exhibited at slightly different distances of 1.95 and 2.10 A, respectively, leads to a
slightly broader and less pronounced first Li-(N+0O) peak (cf. Figure 4.1a). Likewise,
the observed broad second peak in the Li-(N+O) RDF can be ascribed to the
combination of a broad second Li-O peak, with maximum at around 3.75 A, and a
recognizable second Li-N peak, with maximum at about 4.35 A. According to the
ONIOM-XS MD’s Li-O and Li-N RDFs, it is obvious that Li* can order both water
and ammonia molecules to form its specific first and second solvation shells, with the
water-to-ammonia ratios (i.e., numbers of ligands according to integrations within the
first and second peaks of the Li-O and Li-N RDFs) of about 3:1 and 11:3,
respectively. In this work, the observed favorable Li*[(H20)3NH3][(H20)11(NH3)3]
complex is in contrast to a clear water preference with the arrangement of the
Li*[(H20)4][(H20)4] type reported in the previous QM/MM MD study (Tongraar
and Rode, 2008). These observed differences clearly point out that a more accurate
simulation technique, like the ONIOM-XS MD, can provide more insights into the
characteristics of Li* in such a solvent mixture. Note that the results obtained by the

ONIOM-XS MD simulation are also significantly different to the recent CP-MD
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study, which reported a well-defined first solvation shell that contains only water
molecules (Pratihar and Chandra, 2011). With regard to the CP-MD results, however,
it should be realized that the simulation has been carried out in a relatively small
system size, i.e., in a cubic box with a box length of 9.95 A, using a simple BLYP
functional. In several cases, it has been shown that the results obtained by this
technique are quite sensitive to the density functionals chosen, i.e., several of them
were found to overestimate the intermolecular interactions (Yoo, Zeng and Xantheas,
2009; VandeVondele, Mohamed, Krack, Hutter, Sprik and Parrinello, 2005; Lee and
Tuckerman, 2007; Marx, Chandra and Tuckerman, 2010; Vuilleumier and Borgis,
1999). Consequently, the use of B3LYP functional is known to underestimate the
diffusion values of species in aqueous media (Rode, Schwenk and Tongraar, 2004;

VandeVondele, Mohamed, Krack, Hutter, Sprik and Parrinello, 2005).



79

14F g y 14
= 12F s 4120
S -m?
< 8r 1z
= 6 --=-=-Conv.QMMM 6 =

4 ONIOM-XS 14 =

2 2

0Ff 0

14 f {14

12 12
= 10} {102
' %
= 6| 16 =
ep I )

4 4 =

2 2

0 0

14 | 114
- Jue
[ -
Z gl 1s =
Z8L 18 3
& 6 f 16 =

4 4

2 [ 2

0 0

0 1 2 3 4 5 6 71 8
Distance (A)
Figure 4.1 a) Li-(N+O), b) Li-O and c) Li-N radial distribution functions and their

corresponding integration numbers, as obtained by the conventional QM/MM and

ONIOM-XS MD simulations.

The distributions of the number of ligands in the first solvation shell of Li" are
displayed in Figure 4.2. Based on the ONIOM-XS MD simulation, it is apparent that
this ion favors a sole coordination number of 4 (cf. Figure 4.2a, with the probability
distribution up to 86%), followed by 3 and 5 in small amounts. This implies a well-
defined tetrahedral geometry of the first solvation shell of Li*. According to Figures

4.2b and c, it could be demonstrated that ligand composition in the preferred 4-fold
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coordinated complex favors a water-to-ammonia ratio of 3:1, which corresponds to a
favorable Li*(H,0)sNH; complex. Nevertheless, the distributions of the numbers of
water and ammonia ligands that participated in the 4-fold coordinated complex of Li*
are found to deviate significantly from the ratio of 3:1. As can be seen in Figures 4.2b
and c, the probability densities of finding 2 and 4 waters as well as 0 and 2 ammonia
ligands become more visible, i.e., compared to the observed deviations from the
dominant number of 4 in Figure 2a. This supplies information that, although this ion
strongly prefers a sole coordination number of 4, water and ammonia molecules in the
first solvation shell of Li* are somewhat labile, and that other different 4-fold
coordinated complexes, such as Li*(H20)4 and Li*(H,0)2(NH3),, can frequently be
formed during the ONIOM-XS MD simulation.

According to Figure 4.2, the distributions of the number of ligands were
obtained from the integrations up to first minimum of the Li-(N+O), Li-O and Li-N
RDFs, respectively. In situation where the ion-ligand interactions are not too strong,
i.e., when compare to the interactions among solvent molecules, these distributions
could be attributed partially to exchanges of solvent molecules (water and ammonia)
between the nearest environment of the ion and the bulk solvents (cf. see Figures 4.5
and 4.6 in the next section). In the recent CP-MD study (Pratihar and Chandra, 2011),
it has been reported that the water-ammonia interactions are quite strong when
ammonia acts as an acceptor, i.e., these HBs are found to live longer than water-water

HBs.
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Figure 4.2 Coordination number distributions, calculated up to first minimum of the

Li*-ligand RDFs: a) Li*-(H,O+NHj3), b) Li*-H,0 and ¢) Li*-NHs.

The arrangement of ligands in the first solvation shell of Li* can be analyzed
from the plots of O-Li-N, O-Li-O and N-Li-N angular distributions, as shown in
Figure 4.3. It is apparent that ligands in the first solvation shell of Li* are arranged
with respect to the preferred tetrahedral geometry, and with some degrees of
flexibility, as can be seen from the broad peaks between 80° and 140°. Comparing to

the distributions of the O-Li-O and O-Li-N angles, the observed narrower N-Li-N
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angle between 100° and 150° can be described due to the stronger repulsion between
the first-shell ammonia molecules, i.e., a considerable amount of repulsive three-body
effects at a short Li-N distance was found in the ab initio calculations of the

NH3-Li*-NH3 complex (Tongraar, Hannongbua and Rode, 1997).

Probability density

0 20 40 o60 80 100 120 140 160 180

Angle (degree)
Figure 4.3 Distributions of a) O-Li-N, b) O-Li-O and c¢) N-Li-N angles, calculated up

to first minimum of the Li-(N+O) RDF.

Additional information on the arrangement of first-shell ligands can be gained

from the plots of the @angle, defined by the dipole vector of the ligand molecules and
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the Li---O and Li---N vectors, as depicted in Figure 4.4. Looking at Figure 4.4a, a
broad peak between 90° and 180° clearly shows a high flexibility of the first-shell
water’s orientations. In contrast, the shape of the distribution peak in Figure 4.4b
clearly reveals that ammonia molecules in the first solvation shell of Li* stick more
rigidly to their dipole-oriented configuration. According to Figure 4.4b, a
recognizable shoulder between 100° and 120° suggests a higher flexibility of the first-
shell ammonia’s orientation, most probably influenced by their binding to solvent

molecules in the second solvation shell.
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Figure 4.4 Distributions of @angle in the first solvation shell of Li*, calculated up to

the first minimum of the Li-(N+O) RDF: a) H,O and b) NH3.

With regard to the qualitative expectation according to a hard and soft

acid/base (HSAB) concept (Pearson, 1993; Komorowski, 1993), Li* is classified as a
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“hard” ion and it would prefer the “harder” water molecules over the “softer”
ammonia ligands. In the course of the ONIOM-XS MD simulation, the favorable
Li*[(H20)3NH3][(H20)11(NH3)3] complex is in good accord with the HSAB concept.
In ab initio calculations of the Li*-H,0 and Li*-NH3 interactions, it has been shown
that the global minima are not much different, namely 44.1 and 46.2 kcal.mol™,
respectively (Gao and Truhlar, 2002). This implies that an increase of ammonia
ligands would result in an increase of the stabilization energy of the ion-ligand
complexes. However, it should be realized that the larger ammonia ligands will
experience more steric hindrance and thus will locate farther away from the ion than
the smaller water molecules, i.e., deviations from the dipole-oriented arrangement
lead to much stronger repulsion forces in the case of ammonia than for water

molecules (Gao and Truhlar, 2002).

By means of the ONIOM-XS MD simulation, the observed differences in the
structural properties, i.e., compared to those obtained by the conventional QM/MM
MD study (Tongraar and Rode, 2008), can further be expected to reflect in different
dynamics details of this solvated ion. With regard to the distributions of the ligand
composition in the first solvation shell of Li* (cf. Figures 4.2b and c), the arrangement
of the preferred 4-fold coordinated complexes and the ligand exchange processes at
the ion can be visualized through the plots of the Li-O and Li-N distances, as depicted

in Figure 4.5.
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Figure 4.5 Time dependence of Li-O (top) and Li-N (down) distances, as obtained

from the 40 ps of the ONIOM-XS MD simulation.

In addition, the distributions of the numbers of first-shell ligands, calculated
with respect to the first minimum of the Li-(N+QO) RDF, are also plotted in Figure.
4.6. Within the 40 ps of the ONIOM-XS MD data collection, it is apparent that the
first solvation shell of Li* is somewnhat flexible and that this ion can order both water
and ammonia molecules to form several 4-fold coordinated species, such as
Li*(H20)4, Li*(H20)3NH;3 and Li*(H,0)2(NH3),. In this respect, the arrangement of
the 4-fold coordinated complexes with respect to the Li*(H,0)sNH; structure is
found to dominate over the Li*(H,0)4 and Li*(H,0)2(NH3), configurations, with the
probability distributions of about 60%, 24% and 16%, respectively. Interestingly, as

can be seen in Figures 4.5 and 4.6, it is observed that water molecules surrounding the
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Li* ion are more labile than ammonia molecules, showing more frequency of water

exchange processes during the 40 ps of the ONIOM-XS MD simulation.
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Figure 4.6 Distributions of the number of first-shell ligands: a) H,O+NHj3;, b) H,0

and c¢) NHj3, calculated up to first minimum of the Li-(N+O) RDF.

Regarding the ONIOM-XS MD results, it should be emphasized that the correct
degree of lability of ligands in the solvation shells of Li* is essential in order to
understand the reactivity of Li* in such a solvent mixture. The rates of ligand
exchange processes in the first and second solvation spheres of Li* were evaluated via
the ligand mean residence times (MRTSs), which were calculated using the “direct”
method (Hofer, Tran, Schwenk and Rode, 2004), as the product of the average
number of ligand molecules in the solvation sphere of ion with the duration of the
simulation, divided by the observed number of exchange events lasting a given time

interval t. In general, a t value of 0.0 ps is recommended as a good choice for the
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estimation of H-bond lifetimes, and a value of 0.5 ps is proposed as a good measure
for ligand exchange processes (Hofer, Tran, Schwenk and Rode, 2004). The
calculated MRT data of ligand molecules in the first and second solvation shells of
Li* are summarized in Table 4.1, comparing the results to those obtained by the
conventional QM/MM MD simulation (Tongraar and Rode, 2008). In addition, to
provide useful discussion with respect to the “structure-making” ability of Li", the
available MRT data for liquid water and ammonia obtained by the compatible
ONIOM-XS and conventional QM/MM MD simulations were also given for
comparison. With regard to both the conventional QM/MM (Tongraar and Rode,
2008) and ONIOM-XS MD simulations, Li* clearly acts as a “structure-maker”, i.e.,
the MRT values for ligands in the first solvation shell of Li* are higher than the
corresponding values observed in the pure solvent environments. However, it should
be demonstrated that the ability of Li" in ordering the structure of its surrounding
ligands is much less than other stronger “structure-makers”, like Mg* or Ca*
(Kerdcharoen, Liedl and Rode, 1996; Wanprakhon, Tongraar and Kerdcharoen,
2011). For example, according to the recent QM/MM MD studies of Li*, Na*, K™ and
Ca”" in aqueous solution (Rode, Schwenk and Tongraar, 2004; Hofer, Pribil and
Randolf, 2008), the MRT values for first-shell waters were reported to be of 11, 2.4,
2.1 and 40 ps, respectively. In our previous ONIOM-XS MD studies (Wanprakhon,
Tongraar and Kerdcharoen, 2011), the MRT values for water molecules in the first
hydration shell of K* and Ca*" were reported to be of 1.80 and 21.7 ps, respectively.
With regard to the QM/MM and ONIOM-XS MD results, since such simulations have
been performed only for 30-40 ps (not many exchange processes can be observed)

and only for one ion (assuming a very dilute solution), these data could be considered
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as rough estimates for relative comparison, i.e., they cannot be directly compared to
the experimental observations. Note, for example, that the experimental estimation for
MRT of first-shell water ligands at Ca’* is ~107-10 s (Helm and Merbach, 1999;
Lincoln and Merbach, 1995), while the QM/MM and ONIOM-XS MD simulations
deliver 0.04 x 10 and 0.02 x 10 s, respectively. On the basis of the ONIOM-XS
MD simulation, Li* is able to order both water and ammonia molecules in its

surrounding to form its specific complexes, and the MRT values for first-shell ligands

reveal a clear order of t,,, )t, ., i.e., byabout4 and 2 times for t"=0.0 and 0.5 ps,

H,0
respectively. This can be ascribed to the higher binding energy of Li* to ammonia
ligands than to waters, i.e., when Li" is located near the global minimum of the
corresponding interaction energy surface. According to the data in Table 4.1, it is
apparent that the MRT data for water and ammonia ligands in the second solvation
shell of Li* are not much different to those for pure solvents, indicating a small
influence of Li* in ordering its surrounding ligands beyond the first solvation shell.
Overall, as compared to the conventional QM/MM MD study (Tongraar and Rode,
2008) , the observed differences in both the preferential solvation and the dynamical
details of the solvated Li" clearly confirm the elegant treatment of the ONIOM-XS

MD technique in providing more detailed knowledge of such a complicated system.
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Table 4.1 Mean residence times (MRTSs) of solvated ligands and of pure solvents, as

obtained by the conventional QM/MM and ONIOM-XS MD simulations.

System teim ligand CN t =0.0 ps t =0.5ps

0.0 0.5
NS 00 NS 05

Conv. QM/MM MD
Li* in H,O+NH3* 200 H,0 (1% shell) 58 1.38 19 4.21

4.0 382 0.22 41 2.05

H,O (2" shell) 4.2 - 0.19 - 1.78

Lig. H,0 " - 0.33 - 1.62
Lig. NH3 ©

ONIOM-XS MD 151  0.82 33 3.76

Li* in H,O+NHs® 40.0 H,O (1% shell) 2109  0.20 273 1.57

3.1 11 3.27 5 7.20

H,0O (2" shell) 10.7 585  0.20 59 1.97

NH3 (1% shell) 0.9 - 0.23 - 2.17

NHs (2" shell) 2.9
Lig. H,O ©

# (Tongraar and Rode, 2008)

Y (Hofer, Tran, Schwenk and Rode, 2004)
¢ (Rode, Schwenk and Tongraar, 2004)

¢ (Present study)

¢ (Thaomola, Tongraar and Kerdcharoen, 2012)
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4.2 The effect of polarization function on the preferential solvation

and dynamics of Li* in aqueous ammonia solution (Part I1)

In this part, another ONIOM-XS MD simulation has been performed with the
same simulation protocol as employed in the part I. A significant change is made by
using a larger DZP basis set, i.e., instead of the DZV. The objective of this part is to
investigate the effect of polarization function on the preferential solvation and
dynamics of Li* in agqueous ammonia solution. Figure 4.7 displays the ion-ligand
RDFs and their corresponding integration numbers, comparing the results as obtained
by the ONIOM-XS MD simulations using the DZV and DZP basis sets. According to
the plots in Figure 4.7, it is apparent that the structural properties of the solvated Li*
obtained by the two ONIOM-XS MD simulations are not much different, i.e., in terms
of the coordination number and the ligand composition within the first solvation shell.
As compared to the ONIOM-XS MD simulation using the DZV basis set, however,
the later one suggests that the use of DZP basis set reflects in slightly more
pronounced first Li-(N+0O) and Li-N peaks. In this respect, it could be demonstrated
that the inclusion of polarization function enhances the Li*-NH3 interactions, leading
to a slightly more structured of the ion-ligand complexes. The distributions of the
number of ligands in the first solvation shell of Li*, as obtained by the two ONIOM-
XS MD simulations are displayed in Figure. 4.8. Obviously, the use of DZP basis set
also predicts the similar ligand composition in the preferred 4-fold coordinated
complex, i.e., with the water-to-ammonia ratio of 3:1. However, as can be seen in
Figure 4.8, the probability densities of finding 2 and 4 waters as well as 0 and 2

ammonia ligands become less visible, i.e., compared to the ONIOM-XS MD
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simulation using the DZV basis set. This corresponds to the observed more

pronounced first peaks of the Li-(N+O) and Li-N RDFs (cf. Figure 4.7).
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Figure 4.7 a) Li-(N+O), b) Li-O and c) Li-N radial distribution functions and their
corresponding integration numbers, as obtained by the ONIOM-XS MD simulations

using the DZV and DZP basis sets.
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Figure 4.8 Coordination number distributions, calculated up to first minimum of the
Li*-ligand RDFs: a) Li*-(H,O+NHs3), b) Li*-(H,0) and c¢) Li*-(NH3), as obtained by

the ONIOM-XS MD simulations using the DZV and DZP basis sets.

Figure 4.9 shows the arrangement of ligands in the first solvation shell of Li",
i.e., in terms of O-Li-N, O-Li-O and N-Li-N angular distributions, comparing the
results as obtained by the ONIOM-XS MD simulations using the DZV and DZP basis
sets. In addition, the distributions of the & angle, defined by the dipole vector of the
ligand molecules and the Li---O and Li---N vectors, are also plotted in Figure 4.10.
Overall, it is apparent that the results obtained by the ONIOM-XS MD simulations

using the DZV and DZP basis sets are not much different. With regard to Figure 4.9c,
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the observed broader N-Li-N peak in the ONIOM-XS MD simulation using the DZP
basis set is in accord with the observed less visible of the probability of finding 2
ammonia molecules (cf. Figure 4.8c). In Figure 4.10b, the ONIOM-XS MD
simulation using the DZP basis set clearly reveals that ammonia molecules in the first
solvation shell of Li* stick more rigidly to the dipole-oriented arrangement than those

obtained in the ONIOM-XS MD simulation using the DZV basis set.

Probability density
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Figure 4.9 Distributions of a) O-Li-N, b) O-Li-O and N-Li-N angles, calculated up to
first minimum of the Li-(N+O) RDFs, as obtained by the ONIOM-XS MD

simulations using the DZV and DZP basis sets.
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Figure 4.10 Distributions of © angle in the first solvation shell of Li*, calculated up
to the first minimum of the Li-(N+O) RDF: a) H,O and b) NH3, as obtained by the

ONIOM-XS MD simulations using the DZV and DZP basis sets.

The calculated MRT data of ligand molecules in the first and second solvation
shells of Li*, comparing the results as obtained by the ONIOM-XS MD simulations
using the DZV and DZP basis sets, are summarized in Table 4.2. Comparing the two
ONIOM-XS MD results, it is apparent that the inclusion of the polarization function,
i.e., regarding the ONIOM-XS MD simulation using the DZP basis set, results in
slight differences of the MRT data. In this respect, it could be demonstrated that the
effect of the polarization function is marginal (negligible) in obtaining the detailed
descriptions of Li* in aqueous ammonia solution. Consequently, in situation where the
computational facilities are rather limited, the selection of the DZV basis set can be

considered as an acceptable choice for the study of this particular system.



95

Table 4.2 Mean residence times (MRTs) of solvated ligands, as obtained by the

ONIOM-XS MD simulations using the DZV and DZP basis sets.

System tim ligand CN t =0.0 ps t =0.5ps

0.0 0.5
NS 700 NS 705

ONIOM-XS MD (DZV)

Li* in H,O+NH;  40.0 H,O (1" shell) 151  0.82 33 3.76

3.1 2109 020 273 157
H,O (2"shell) 10.7 11 3.27 5 7.20
NH3 (1%shell) 0.9 585 0.20 59 1.97
NH; (2" shell) 2.9

ONIOM-XS MD (DZP) 115 088 25  3.06
Li* in H,O+NH; 328 H,O (1% shell) 1677 022 263 138
3.1 9 3.50 5 6.31

H,0 (2" shell) 11.0 392  0.30 60 1.93
NHs (1% shell) 1.0
NHs3 (2" shell) 3.5
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CHAPTER V

CONCLUSION

In this work, more sophisticated ONIOM-XS MD simulations have been
performed to investigate the preferential solvation and dynamics of Li* in aqueous
ammonia solution. In part I, an ONIOM-XS MD simulation was applied with the
same simulation protocol as employed in the recent conventional QM/MM MD
study. The main objective of this part was to test the validity of the conventional
QM/MM MD scheme for obtaining the detailed descriptions of Li* solvated in such a
solvent mixture, i.e., by comparing the ONIOM-XS MD results with those obtained
by the conventional ONIOM-XS MD framework. As compared to the conventional
QM/MM MD study, which predicted that the first and second solvation shells of Li*
consist exclusively of water molecules with the arrangement of the
Li*[(H20)4][(H20).] type, the ONIOM-XS MD simulation clearly indicated that this
jon can order both water and ammonia molecules to form a favorable
Li*[(H20)3NHs][(H20):1(NH3)3] configuration. Of particular interest was that the
“structure-making” ability of Li* is not too strong and that the first solvation shell of
Li* is somewhat flexible, so that different 4-fold coordinated species, such as
Li*(H20)4, Li*(H20)3NH; and Li*(H20)2(NHs),, could be converted back and forth.
In addition, evidence was gained that the second solvation shell of Li* is less
structured, indicating a small influence of Li" in ordering the ligand molecules in this
shell. The observed discrepancy between the conventional QM/MM and ONIOM-XS

MD result clearly confirmed that the more sophisticated simulation techniques, such
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as the ONIOM-XS MD, offer advanced performance for the study of such a
condensed-phase system.

In the second part of this study, another ONIOM-XS MD simulation has been
performed with the same simulation protocol as employed in part I. A significant
change was made by using a larger DZP basis set, i.e., instead of the DZV. The
objective here was to investigate the effect of polarization function on the
preferential solvation and dynamics of Li* in aqueous ammonia solution. It was
observed that the results obtained by the ONIOM-XS MD simulations using the
DZV and DZP basis sets are quite similar. This suggested that the effect of
polarization function is marginal (negligible) for this particular system, i.e., the use
of the DZV basis set (in part 1) is a promising choice in order to reduce the CPU
time. In this context, it should be noted that, when the computational facilities
become more powerful, further improvement of the ONIOM-XS MD results can be
achieved by using higher ab initio correlated methods, such as MP2, together with

the use of a larger QM size and basis set.
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APPENDIX A

THEORETICAL OBSERVATIONS

Table A.1 Comparison of some structural parameters for Li* solvation in aqueous ammonia

solution

Ruio Ruiin Number of
Methods CN Year Reference
A A H,0 : NH;

Pair potential MC 1.95 2.50 4:2 6.0 1989 Kheawsrikul et al.
Pair potential MD 2.00 2.10 3:3 6.0 1999 Tongraar et al.
QM/MM MD (Small
1.94 2.08 3:1 40 1999 Tongraar et al.
QM)
QM/MM MD
1.98 - 4:0 4.0 2008 Tongraar et al.
(Larger QM)

CP-MD 1.96 - 4:0 40 2011 Pratihar et al.




Table A.2 Optimized geometries and stabilization energies of Li*-(H,0)m-(NHs), complexes, where m + n = 4, as obtained by various

QM methods and basis sets.

Ruio (A) Riin (A) AE(kcal.mol™)
Methods Complex
6-311++G(d,p) DZP DzVv 6-311++G(d,p) DZP DzZV  6-311++G(d,p) DzP Dzv
Li*-w, 1.9699 1.9694  1.9699 - - - -104.08 -111.35  -125.57
Li*-ws-am; 1.9823 1.9847  1.9823 2.0765 2.0881 2.1447 -112.57 -120.37  -132.46
HF Li*-w,-am, 1.9988 1.9979  1.9988 2.0924 2.0996 2.1584 -114.60 -122.14  -132.46
Li*-w;-am, 2.0178 2.0149  2.0178 2.1110 2.1100 2.1705 -116.51 -123.99  -132.76
Li*-am, - - - 2.1222 2.1199 2.1739 -118.55 -126.14  -133.28
Li*-w, 1.9441 1.9468  1.9441 - - - -108.85 -115.71  -132.53
Li*-ws-am; 1.9552 1.9656  1.9552 2.0565 2.0792 21113 -116.92 -123.84  -139.27
B3LYP Li*-w,-am, 1.9718 1.9782  1.9718 2.0694 2.0904 2.1229 -118.61 -125.45  -138.39
Li*-w;-am; 1.9900 1.9946  1.9900 2.0830 2.1048 2.1379 -120.40 -127.22  -137.65
Li*-am, - - - 2.0922 2.1127 2.1245 -122.43 -129.20  -137.39
Li*-w, 1.9604 1.9670  1.9604 - - - -105.81 -113.50  -127.42
Li*-ws-am; 1.9737 1.9804  1.9737 2.0690 2.0834 2.1359 -114.32 -122.16  -134.86
MP2 Li*-w,-am, 1.9884 1.9913  1.9884 2.0862 2.0976 2.1491 -116.06 -124.11  -134.54
Li*-w;-am; 2.0063 2.0063  2.0063 2.1030 2.1097 2.1611 -118.02 -126.12  -134.49
Li*-am, - - - 2.1147 2.1184 2.1632 -120.29 -127.91  -134.93
Li*-wy 1.9593 1.9675  1.9593 - - - -105.51 -112.37  -126.87
Li*-ws-am; 1.9692 1.9788  1.9692 2.0672 2.0842 2.1360 -114.08 -121.00  -134.42
CcCcSD Li*-w,-am, 1.9854 1.9895 1.9854 2.0840 2.0974 2.1498 -115.79 -122.85  -134.20
Li*-w;-am; 2.0027 2.0040  2.0027 2.1006 2.1095 2.1608 -117.70 -124.75  -134.22
Li*-am, - 2.1120 2.1182 2.1637 -119.89 -126.95  -134.70
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A more sophisticated quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD)
technique based on the ONIOM-XS method, called the ONIOM-XS MD, has been applied for studying
the characteristics of Li' in an aqueous ammonia solution. As compared to the conventional QM/MM
MD study, which predicts a clear water preference with the arrangement of the Li*[{H0)][(H20)] type.
the ONIOM-XS MD simulation clearly reveals that this ion can order both water and ammonia molecules
to form the preferred Li'[{H20):NH5][(Hz0)1:(NH1)s] complex. Of particular interest, it is observed that
the “structure-making” ability of Li* is nol too strong and that the first solvation shell of Li* is somewhat
flexible, in which other different 4-fold coordinated species, such as Li'{Hz0)4 and Li'{H20)2{MHz}, can
frequently be formed. In addition, it is found that the second solvation shell of Li* is less structured,

implying a small influence of Li* in ordering the solvent molecules in this shell.

@ 2014 Elsevier B.V. All rights reserved.

1. Introduction

During the past decades, a so-called combined quantum
mechanics/molecular mechanics {(QM/MM) molecular dynamics
{MD) technique has been successfully applied for studying various
systems [1-15]. This technique partitions the system into a part
described by quantum mechanics (QM) and another part treated
by means of classical molecular mechanical (MM) force fields. By
this scheme, the complicated many-body interactions as well as
the polarization effects, i.e., at least within the defined QM region,
can be reliably included. In the course of QM/MM MD simulations
of condensed phase systems [5-15], since the exchange of solvent
molecules between the QM and MM regions can occur frequently,
a smoothing function [ 16] is employed to ensure a smooth change
of forces at the transition between the QM and MM regions. Here, a
term “conventional QM/MM MD" will refer to the MD simulation
technique based on this QM/MM approach. With regard to the
conventional QM/MM MD technique, however, the smoothing
function is applied only for the exchanging particles that are
crossing the QM/MM boundary. Of course, this is not satisfactory
since an interchange of particles between the QM and MM regions
will also affect the forces acting on the remaining QM particles. In

#* Corresponding author. Fax: +66 44 2240 7.
E-mail address: anan_tongraar@yahoo.com (A. Tongraar).

http://dx.doiorg/10.1016/j.chemphys.2014.11.012
030M-0104/& 2014 Elsevier B.V. All rights reserved.

addition, the conventional QM/MM MD framework cannot clearly
define the system’s energy expression during the solvent exchange
process [17,18].

To improve these methodical weaknesses, a more sophisticated
QM/MM MD technique based on the ONIOM-XS {Own N-layered
Integrated molecular Orbital and molecular Mechanics - eXtension
to Solvation) method, called briefly the ONIOM-XS MD, has been
proposed [17,18]. By the ONIOM-XS MD technique, the forces on
all QM particles will be smoothed during the particle exchanges
and, thus, it better defines the system's energy expression. In par-
ticular, it is worth noting that this technique allows both energies
and forces to be smoothed, whereas only forces were taken into
account through the conventional QM/MM MD scheme. The ONI-
OM-XS MD technique has been applied, firstly, for the systems of
Li* and Ca®* in liquid ammonia [17,18], and, later, for the systems
of aqueous Na*, K* and Ca®* solutions [19,20] and pure water [21].
In all cases, as compared to the conventional QM/MM MD studies,
the ONIOM-XS MD technique clearly reveals its capability in pro-
viding more reliable results which are in better agreement with
experiments. For example, according to a comparative study of
the conventional QM/MM and ONIOM-XS MD simulations of pure
water [21], the ONIOM-XS MD results clearly pointed out that the
structural arrangement of liquid water with respect to 4 HBs
decreases significantly and that the distributions of 2- and 3-fold
HB species becomes more visible. These observed phenomena are
in good accord with recent experimental observations [22.23],
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which reported considerable amounts of 2- and 3-fold HB clusters
in liquid water. In the cases of Na” and K" in aqueous solutions
[19,20], the results obtained by the ONIOM-XS MD simulations
have provided more insights into the contrasting behaviors of
these two ions with respect to their “structure-making” and
“structure-breaking” ahilities.

Besides the study of ions in pure solvents, the investigations of
ions solvated in solvent mixtures have also been a topic of special
interest since detailed knowledge of such systems has been
utilized for many chemical and biclogical processes |24|. Under
the environment of multiple solvent species, the ability of ions to
preferentially order their solvent components, i.e., in order (o form
their specilic solvation complexes, depends crudally on the
strength of the binding energies between the ions and the solvent
molecules, and is usually discussed in terms of preferential solva-
tion. In this work, the ONIOM-XS MD technique will be employed
for studying the preferential solvation and dynamics of Li* in an
aqueous ammonia selution. In fact, the details with respect to
the preferential solvation of this ion have been explored by hoth
Monte Carlo {(MC) and MD simulations using either classical MM,
combined QM/MM or purely QM maodels. Regarding the prior MC
simulation [25], it has been shown that the use of pair potentials
(which neglects the effects of many-body contributions) had led
to wrong prediction on the solvation structure of Li', as well as
on the ligand composition of the first and second solvation shells
|8,26]. On the basis of the QM/MM MD approach, an early attempt
has been made by using a small QM size {i.e., a QM region not
comprising the second solvation shell), supplying information that
Li* prefers to order its surrounding ligands to form a Li'[{H,0)sNH3]
[{H20)4{MNH3)2] complex [E]. Later, an extended QM/MM MD
simulation using a relatively larger QM size has been revisited,
which predicted a clear water preference with an arrangement of
the Li'[{H,0)4][{H20)4] type [26]. Recently, a Car-Parrinello {CP)
MD simulation of Li' in a water-ammonia mixture has been
carried out, which also reported the preference ol only water mol-
ecules in a nearly tetrahedral arrangement of the first solvation
shell of Li* [27]. By means of the CP-MD technique, however, it is
widely known that some methodical drawbacks come from the
use of simple generalized gradient approximation {GGA) function-
als, such as BLYP and PBE, and of the relatively small system size
[28.29]. With regard to the aforementioned limits of both the
conventional QM/MM and CP-MD approaches, it is of particular
interest, therefore, to apply the ONIOM-X5 MD technique in order
to provide more detailed description of this system. In this study,
we focus on a comparative study between the conventional QM{
MM and ONIOM-XS MD simulations, i.e., the observed differences
derived by means of the OMIOM-XS MD technique will be shown
and discussed with respect to the validity of the conventional
OM/MM MD scheme.

2. Methods

By the ONIOM-XS MD technique [ 17-21], the system is divided
into a “high-level” QM region, i.e., a sphere which includes the
central Li* and its nearest-neighbor ligands, and the remaining
“low-level” MM subsystem. A thin swilching layer inserted
between the QM and MM regions is employed to check the
exchanging particles and help in smoothing the energy and forces
of the combined system. In this respect, three parameters, namely
my, I and n,, are defined as the number of particles involved in the
0OM region, the switching layer and the MM region, respectively,
and N is set as the total number of particles {i.e, N=n; +I+n;).
Based on the ONIOM extrapolation scheme [20], the potential
energy of the system can be written in two ways. First, if the
switching layer is included into the high-level QM region, the
energy expression is written as

EONOM Ny = EMny ) - B 4+ BN, (1)

n

Otherwise, il the switching layer is considered as part of the
“low-level” MM subsystem, the energy expression is

EOMOM Ny = EM () — EMN(py) 4 BN, (2

According to Eqs. (1) and {2), the E% and E™ terms represent
the interactions derived by the QM calculations and by the classical
MM force fields, respectively. In addition, it should be noted that
the interactions between the QM and MM regions are also
described by means of MM potentials, and thus, these
contributions are already included in the E™{N). In the course of
the ONIOM-XS MD simulation, when a particle moves into the
switching layer (either from the QM or MM region), both Eqs. (1)
and (2) must be evaluated. Then, the potential energy of the entire
system can he expressed as a hybrid hetween both energy terms
(1) and (2),

ENOMS () = (1= 3({ri})) - M (m + LN) +3({n)
ENOM (g Ny, (3)

where 5({r;}) is an average over a set of switching functions for
individual exchanging particles in the switching layer si(x;),

T .
s({r}) =7 _six), (4)
i=1

In general, the switching function applied in Eq. {4) can be of
any form. In this study, a polynomial expression is employed,

A . 1"’ n* 15 1 .
Sr{xr']=b(xi—i) —5(-\&—5) +ﬁ(xi—§) +§, (3

where x; = ({ri — ro)/{r1 — o)), and rp and rqy are the radius of the
inner and outer surfaces ol the swilching shell, respectively, and
r; is the distance between the center of mass of Lthe exchanging
particle and the center of the QM sphere. Note that the above poly-
nomial form and paramelter sets were derived (o have an S-shape
that converges to 0 and 1 at 7, and rq, respectively [17]. Finally,
the gradient of the energy can be written as

VREPNMS (L 1) = (1= 3({r 1)) VRE™M(my I N)
£5({r ) - VREN M N

1
+mv§({ﬁ})

i (Enmnm (n;N) — AN (m +L N}) (6)

The OMNIOM-XS MD technique does improve the methodical
drawbacks of the conventional QM/MM MD framework, although
it has been shown that this sophisticated treatment does not elim-
inate all smoothing errors [21]. In this respect, the postulated
advantages of the ONIOM-XS method over the conventicnal QM/
MM scheme can be described in terms of the quantitative differ-
ences of the simulation results. To reliably compare the results
with those obtained by the conventional QM/MM MD scheme,
the present ONIOM-XS MD simulation was performed with the
same simulation conditions as employed in the previous QM/MM
MD study [26]. Note that the details with respect to the QM/MM
MD simulation protocols can be found in literature [5,G]. In this
respect, a QM radius of 4.2 A and a switching width of 0.2 A were
chosen, which correspond to the ONIOM-XS parameters ry and ry
of 4.2 and 4.4 A, respectively. As compared to the recent QMMM
MD study [26], these parameters correspond to the start and the
end of the QM radius, i.e, a defined QM/MM boundary where the
smoothing applies. Inside the QM region, all interactions were
treated at the Hartree-Fock {HF) level of accuracy using double
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zeta valence basis sets [32]. In this work, all QM calculations were
carried out using the Gaussian03 program [33]. For interactions
within the MM and between the QM and MM regions, flexible
models, which describe inter- and intramolecular interactions,
were employed for water [34,35] and ammonia [36]. The pair
potential functions for describing water-ammonia interactions
were adopted from Tanabe and Rode [37], and those for describing
ion-water and ion-ammonia interactions were obtained from our
previous works [1,38]. Long-range interactions were treated using
the reaction-field procedure [39]. The ONIOM-XS MD simulation
was performed in a canonical ensemble at 293 K with a time step
of 0.2 fs. The system's temperature was kept constant using the
Berendsen algorithm [40]. The periodic cubic box, with a box
length of 18.56 A, employed in the simulations contained one
ion, 37 ammonia and 163 water molecules, assuming the experi-
mental density of 18.4% aqueous ammonia at the given tempera-
ture, The initial system’s configuration was taken from a classical
MD simulation that was performed for 100 ps using MM potentials
|5,34-38]. The ONIOM-XS MD simulation was performed with
re-equilibration for 15 ps, followed by another 40 ps to collect
configurations every 10th step.

3. Results and discussion

The structural properties of the solvated Li* can be analyzed
through a set of ion-ligand radial distribution functions (RDFs)
and their corresponding integration numbers, as depicted in
Fig. 1, comparing the results as obtained by the ONIOM-XS and
conventional QM/MM MD |26] simulations. Looking at Fig. 1a, it
is apparent that the characteristics of the Li-(N + O) RDFs obtained
by the two simulation techniques are significantly different.
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Fig. 1. (a) Li-(N+0), (b) Li-O and (c) Li-N radial distribution functions and their
corresponding integration numbers, as obtained by the conventional QM/MM and
ONIOM-XS MD simulations.

As compared to the conventional QM/MM MD study [26], which
reported a strong pronounced first Li—(N + 0) RDF at 1.98 A and a
recognizable second peak centered at around 3.25 A, the ONIOM-
XS MD simulation reveals a broader and less pronounced first
Li-(N+0) peak with a maximum exhibited at a slightly longer
distance of 2.05 A, together with a rather broad second peak in
the region from 3 to 5 A. With regard to the ONIOM-XS MD results,
the shape and height of the first Li-(N + O) peak clearly suggests a
less “structure-making” ability of Li". In addition, the observed
broad and less defined second Li-(N + O) peak also implies a small
influence of Li* in ordering the solvent molecules in this shell.
Hence, according to a relatively loose second solvation shell of
Li*, the structural parameters with respect to this shell are
considered as a rough estimate, i.e., the second minimum of all
ion-ligand RDFs is assumed to be 5A throughout this work.
According to Fig, 1a, integrations up to first and second minimum
of the Li-(N + O) RDF yield about 4 and 14 ligands in the first and
second solvation shells of Li*, respectively, compared to the
corresponding values of 4 and ~4 ligands observed in the conven-
tional QM/MM MD study [26].

Fig. 1b and c separately plot the Li-O and Li-N RDFs and their
corresponding integration numbers, In the conventional QM/MM
MD study [26], since the first and second solvation shells of Li*
contain only water molecules, the characteristics of the first and
second peaks in the Li-O RDF coincide with the respective peaks
in the Li-(N + O) RDF. On the basis of the ONIOM-XS MD simula-
tion, the characteristics of the Li-(N + O) RDF is regarded as a com-
bination of the Li-O and Li-N RDFs. As can be seen in Fig. 1b and c,
the combination of rather well-defined first Li-O and Li-N peaks,
with their maxima exhibited at slightly different distances of
1.95 and 2.10 A, respectively, leads to a slightly broader and less
pronounced first Li-(N+0Q) peak (cf. Fig. 1a). Likewise, the
observed broad second peak in the Li-(N + 0) RDF can be ascribed
to the combination of a broad second Li-O peak, with maximum at
around 3.75 A, and a recognizable second Li-N peak, with maxi-
mum at about 4.35 A. According to the ONIOM-XS MD's Li-0 and
Li-N RDFs, it is obvious that Li* can order both water and ammonia
molecules to form its specific first and second solvation shells, with
the water-to-ammonia ratios (i.e., numbers of ligands according to
integrations within the first and second peaks of the Li-O and Li-N
RDFs) of about 3:1 and 11:3, respectively. In this work, the
observed favorable Li*[(H20)sNHs][(H20)11(NHs)s] complex is in
contrast to a clear water preference with the arrangement of the
Li*|(H,0)4][(H,0)4] type reported in the previous QM/MM MD
study |26]. These observed differences clearly point out that a
moare accurate simulation technique, like the ONIOM-XS MD, can
provide more insights into the characteristics of Li* in such a
solvent mixture. Note that the results obtained by the ONIOM-XS
MD simulation are also significantly different to the recent
CP-MD study, which reported a well-defined first solvation shell
that contains only water molecules [27]. With regard to the CP-MD
results, however, it should be realized that the simulation has been
carried out in a relatively small system size, i.e., in a cubic box with
a box length of 9.95 A, using a simple BLYP functional. In several
cases, it has been shown that the results obtained by this technique
are quite sensitive to the density functionals chosen, i.e,, several of
them were found to overestimate the intermolecular interactions
|28,29,41-43]. Consequently, the use of B3LYP functional is known
to underestimate the diffusion values of species in aqueous media
[10,29].

The distributions of the number of ligands in the first solvation
shell of Li* are displayed in Fig. 2. Based on the ONIOM-XS MD
simulation, it is apparent that this ion favors a sole coordination
number of 4 (cf. Fig. 2a, with the probability distribution up to
86%), followed by 3 and 5 in small amounts. This implies a well-
defined tetrahedral geometry of the first solvation shell of Li'.
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Fig. 5. Time dependence of Li-0 (top) and Li-N (down) distances, as obtained from
the 40 ps of the ONIOM-XS MD simulation.

exchange processes at the ion can be visualized through the plots
of the Li-0O and Li-N distances, as depicted in Fig. 5. In addition,
the distributions of the numbers of first-shell ligands, calculated
with respect to the first minimum of the Li-(N + Q) RDF, are also
plotted in Fig. 6. Within the 40 ps of the ONIOM-XS MD data collec-
tion, it is apparent that the first solvation shell of Li* is somewhat
flexible and that this ion can order both water and ammonia
molecules to form several 4-fold coordinated species, such as
Li"(H20 )4, Li'{Ho0)3NHs and Li*'(H20);(NHs),. In this respect, the
arrangement of the 4-fold coordinated complexes with respect to
the Li*(H,0)sNH; structure is found to dominate over the Li'(H,0 ),
and Li*(H.0),{NHs). configurations, with the probability distribu-
tions of about 60%, 24% and 16%, respectively. Interestingly, as
can be seen in Figs. 5 and G, it is observed that water molecules
surrounding the Li" ion are more labile than ammonia molecules,
showing more frequency of water exchange processes during the
40 ps of the ONIOM-XS MD simulation.

Regarding the ONIOM-XS MD results, it should be emphasized
that the correct degree of lability of ligands in the solvation shells
of Li* is essential in order to understand the reactivity of Li* in such
a solvent mixture. The rates of ligand exchange processes in the
first and second solvation spheres of Li* were evaluated via the
ligand mean residence times (MRTs), which were calculated using
the “direct” method [47], as the product of the average number of
ligand molecules in the solvation sphere of ion with the duration of
the simulation, divided by the observed number of exchange
events lasting a given time interval r*. In general, a t* value of
0.0 ps is recommended as a good choice for the estimation of H-
bond lifetimes, and a value of 0.5 ps is proposed as a good measure
for ligand exchange processes [47]. The calculated MRT data of

Simulation time (ps)

Fig. 6. Distributions of the number of first-shell ligands: (a) H,O + NH3, (b)H.0 and
() NHs, calculated up to first minimum of the Li-(N+ Q) RDF.

ligand molecules in the first and second solvation shells of Li* are
summarized in Table 1, comparing the results to those obtained
by the conventional QM/MM MD simulation [26]. In addition, to
provide useful discussion with respect to the “structure-making”
ability of Li*, the available MRT data for liquid water and ammonia
obtained by the compatible ONIOM-XS and conventional QM/MM
MD simulations were also given for comparison. With regard to
both the conventional QM/MM [2G] and ONIOM-XS MD simula-
tions, Li* clearly acts as a “structure-maker”, i.e., the MRT values
for ligands in the first solvation shell of Li* are higher than the
corresponding values observed in the pure solvent environments.
However, it should be demonstrated that the ability of Li* in
ordering the structure of its surrounding ligands is much less than
other stronger “structure-makers”, like Mg** or Ca®* [5,19]. For
example, according to the recent QM/MM MD studies of Li*, Na®,
K" and Ca®’ in aqueous solution [10,48], the MRT values for first-
shell waters were reported to be of 11, 2.4, 2.1 and 40 ps, respec-
tively. In our previous ONIOM-XS MD studies [19], the MRT values
for water molecules in the first hydration shell of K* and Ca?* were
reported to be of 1.80 and 21.7 ps, respectively. With regard to the
QM/MM and ONIOM-XS MD results, since such simulations have
been performed only for 30-40 ps (not many exchange processes
can be observed) and only for one ion (assuming a very dilute
solution), these data could be considered as rough estimates for
relative comparison, i.e., they cannot be directly compared to
the experimental observations. Note, for example, that the
experimental estimation for MRT of first-shell water ligands at
Ca®* is ~10°7-10° s [49,50], while the QM/MM and ONIOM-XS
MD simulations deliver 0.04 x 10°® and 0.02 x 1075, respec-
tively. On the basis of the ONIOM-XS MD simulation, Li* is able

Table 1
Mean residence times (MRTs) of solvated ligands and of pure solvents, as obtained by the ONIOM-XS and conventional QM/MM MD simulations.
System Laim ligand CN " =0ps r=05ps
NOO 00 5 705
ex ex
Conv. QM/MM MD
Li" in HzO + NH3 [26] 20.0 H20 (15t shell) 4.0 58 1.38 19 421
Hz0 (2nd shell) 4.2 382 022 41 2.05
Lig. H,0 [51] - 0.19 - 1.78
Lig. NH; [10] - 0.33 - 1.62
ONIOM-XS MD
Li" in HzO + NH3 40.0 H20 (1st shell) 3.1 151 0.82 33 376
H>0 (2nd shell) 10.7 2109 0.20 273 1.57
NH; (1st shell) 0.9 11 3.27 5 7.20
NH; (2nd shell) 2.9 585 0.20 59 1.97
Lig. Hz0 [21] - 023 - 217
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Lo order both water and ammonia moelecules in its surrounding to
form its specific complexes, and the MRT values for first-shell
ligands reveal a clear order of vy, > Ti,0, i.2, by about 4 and 2
times for t* = 0.0 and 0.5 ps, respectively. This can be ascribed to
the higher binding energy of Li' to ammonia ligands than to
waters, i.e., when Li* is located near the global minimum of the
corresponding  interaction energy surface. According o the
data in Table 1, it is apparent that the MRT data for water and
ammonia ligands in the second solvation shell of Li* are not much
different to those for pure solvents, indicating a small influence of
Li"* in ordering its surrounding ligands beyond the first solvation
shell. Overall, as compared to the conventional QM/MM MD study
[26], the observed differences in both the preferential solvation
and the dynamical details of the solvated Li* clearly confirm the
elegant treatment of the ONIOM-XS MD technique in providing
more detailed knowledge of such a complicated system.

Regarding the ONIOM-XS MD study, it should be noted that the
HF method and the double zeta valence basis sel employed in the
simulation were chosen as a compromise hetween the quality of
the simulation results and the requirement of the CPU time. In gen-
eral, it is known that the instantaneous electron correlation and
the charge transfer effects are not typically well-described by the
HF theory, and that the use of douhle zeta valence hasis set could
result in high basis set superposition error and an exaggeration
of ligand-to-metal charge transfer. In this respect, the ONIOM-XS
MD results should he discussed with caution {i.e., they should
not be over-interpreted). When computational facilities become
more feasible, further improvement of the ONIOM-X5 MD results
can be achieved by using higher ab initio correlated methods, such
as MP2, together with the use of larger QM size and hasis set.

4. Conclusion

In this work, a more accurate ONIOM-XS MD simulation has heen
performed Lo investigate the preferential solvation and dynamics of
Li" in an aqueous ammonia solution. As compared to the conven-
tional QM/MM MD study, which predicted that the first and second
solvation shells of Li” consist exclusively of water molecules with the
arrangement of the Li'[{H,0)4][{H;0)4] type, the ONIOM-XS MD
simulation clearly indicates that this ion can order both water and
ammonia molecules (o form a favorable Li'[{11,0)sNH;][{H,0);,
{NH3)s) configuration. Of particular interest, it is observed that the
“structure-making” ahility of Li" is not too strong and that the first
solvation shell of Li* is somewhat flexible in which different 4-fold
coordinated species, such as Li'(H20)4, Li'{H>0):NH;3 and Li'{(H20),
{NH3)a, could be converted back and forth. In addition, it is observed
that the second solvation shell of Li* is less structured, indicating a
small influence of Li* in ordering the ligand molecules in this shell.
The ohserved discrepancy between the conventional QM/MM and
ONIOM-XS MD results clearly confirms that more sophisticated
simulation techniques, like the ONIOM-XS MD, are highly recom-
mended for the study of such a condensed-phase system.
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