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Abstract. Explicit formulae and recurrence relations for the calculation of
generalized B-splines (GB-splines) of arbitrary order are given. We derive main
properties of GB-splines and their series, i.e. partition of unity, shape preserving
properties, invariance with respect to affine transformations, etc. It is shown
that such splines have the variation diminishing property and are Chebyshevian
splines.

Keywords: Splines, GB-splines, weak Chebyshevian systems, variation dimi-
nishing, shape preserving approximation

1. Introduction

Fitting curves and surfaces to functions and data requires the availability of
methods which preserve the shape of the data. In practical calculations we usually
deal with data given with prescribed accuracy. Therefore we need to develop
methods for constructing fair-shape-preserving approximations that satisfy given
tolerances and inherit major geometric properties of the data such as positivity,
monotonicity, convexity, presence of linear sections, etc. Such approximations,
based on GB-splines [12] with automatic choice of tension parameters are suggested
in [11].

Until recently, local support bases for computations with generalized splines
have been available only for some special types of splines [3,13,15]. This limits
the choice of methods when using generalized splines. In [7,8,9] local support
basis functions for exponential splines were introduced and their application to
interpolation problems was considered. A recurrence relation for rational B-splines
with prescribed poles was obtained in [5]. In [10,12] the author constructed GB-
splines for tension generalized splines allowing the tension parameters to vary from
interval to interval.

In this paper we expand the main results of [12] to GB-splines of arbitrary
order. These GB-splines are nonnegative functions with supports of minimal length
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which form a partition of unity. We get explicit formulae for such GB-splines
and develop recurrence algorithms for their calculation. In the particular case
of polynomial B-splines we recover the well-known recurrence relation for such
B-splines [1]. The main properties of GB-splines and their series such as shape
preserving properties, invariance with respect to affine transformations, etc. are
investigated. It is shown that the GB-spline series is a variation diminishing
function and the systems of GB-splines are weak Chebyshevian systems.

2. GB-splines of Arbitrary Order

Let a partition A :a =129 < 1 < --- < xxy = b of the interval [a, b] be given
to which we associate a space of functions S¢ whose restriction to a subinterval
[€;,2;01], © = 0,...,N — 1 is spanned by the system of n linearly independent
functions {1,z,...,2" 73, ®; ,, ¥; ,}, n > 2, and where every function in S¢ has
n — 2 continuous derivatives.

Definition 1. A generalized spline of order n is a function S € SS such that
(i) for any x € [z;,z;41],i=0,...,N—1

S(x) = Pyp_a(z) + S (2,)®; (7)) + ST (2551) U 0 (2), (1)
where P ,,_o is a polynomial of order n — 2, and

(I)z('?b(mﬂrl) = ‘I’ETT)L(%) =0, r=0,...,n—2

(2)
¢>§?Z_2)(xi) = \Ilg:z_Z)(xi-i-l) =1;

(i) S € C"2[a,b].

The functions ®; , and V;,, depend on tension parameters. In practice we
choose @; ,,(z) = @i (pi, ), Vin(z) = Vi n(gi,x), 0 < pi,qi < co. In the limiting
case when p;,q; — oo we require that lim,, ,oo ®;n(pi,z) =0, x € (2, z;41] and
limg, o0 Vi n(gi,x) =0, & € [;,xi41) so that the function S in formula (1) turns
into a polynomial of the order n — 2. Additionally, we require that if p; = ¢; = 0
for all ©+ we get a conventional polynomial spline of order n with

(. — ig1)" ! (2 —a)" !

in®) == T Ve = T,

hi = Ti4+1 — Tj-

Consider now the problem of constructing a basis in the space S consisting of
functions with local supports of minimal length. For this, it is convenient to extend
the mesh A by adding points z_,,41 < - <2_1 <a,b<zny31 < < TNin_1-
As dim(SY) = nN — (n — 1)(N — 1) = N +n — 1, it is sufficient to construct a
system of linearly independant GB-splines B, j=-n+1,...,N—1in S¢ such
that B ,(x) > 0 if x € (xj,2;4,) and B;, = 0 outside (2, Z;4n).

For n > 2 we require the fulfillment of the normalization condition

N-1

Z Bjn(x)=1 for z € la,b. (3)
j=—n+1



According to (1), on the interval (24, zj4141], L =0,...,n— 1, the GB-spline
Bj ,, has the form

n—2 n—2
Bj () = Piyn—z(z) + B (000) @100 (x) + B2 (0j00400) Cygin (), (4)

where Pj;,_o is a polynomial of order n — 2.
Taking into account the continuity conditions for neighboring polynomials
Pji—in—2and Pj;p_2,l=1,...,n—1,in (4), we have the relations

n—3
n—2 r r
Pjin—a(r) = Piic1 () + Bl 2 (wj0) Y40, (0 — mja)" /1!
r=0

with zj(.:_)l,n ‘115721 10 (@) — @;217”(:6%;), r=0,...,n—3.

As Bj,(z) = 0 if ¢ ¢ (zj,2;4,) and by (5), the polynomials Pj;,_» are
identical to zero when [ = 0 and [ = n—1. Then by repeated application of formula
(5) we have

n—2
Pjin—a( ZB( '(wj40) Z +y —xjqr)" /7!
0

I'=1 r=

n—1
- (n——2) r
= — E Bj,n .I'J_HI E z]+l’ .I'j_HI) /1’"

I'=l+1
lzl,...,n—2.

In particular, the following identity is valid,

n—1 n—3

n—2 r _
ST BU P (@) > 2D (@ = mi)r =0, (7)
=1 r=0

Using the expansion of polynomials by powers of z we can rewrite (7) in the

form
n—1 n—3 n—3

(n—2) z” ) (=mip) ™
DB ) Y it — ) O (8)
=1 a=0 r=oa
Now by equating the coefficients of the monomials 2%, o = 0,1,...,n — 3 in (8)
to zero, we arrive at a system of n — 2 linear algebraic equations which defines the
unknown quantities BJ(-Z_Z)(:EH,), I=1,...,n—1,
n—1 n—3

(n=2) (.. i (=zis)" ™Y B
ZBJan ($]+l) zj—f—l,nw _07 Of—o,...,n—s_

=1 r=a



To obtain the unique solution of this system we can use the normalization
condition (3). Substituting formula (4) into the identity (3) written for =z €
[, 2;11], we obtain

i i—1 i
n—2 n—2
S Bja(e) =®in(z) Y. BETP(@)+ Uiae) Y. BT (i)
j=i—n+1 j=i—n+1 j=i—n+2
2—1
+ Z Pji—jn—2(z) =1
j=t—nm—+2

As according to (3)

i—1 i
n—2 n—2
Z By(',n M) = Z B](n N(@i41) = 0,
j=i—n+1 j=i—n+2

it follows from (6) that

—J n—3
2 _
Z Pjijn—a( Z ZB(n M(wj40) D 2 (= )"/ = 1
j=t—nm—+2 j=t—n+2I1=1 r=0
This gives us the system of linear equations
n—3
2 (=)
S S B0 S 0, CEH o,
j=t—n+2[=1 r=ua (T a)

where dg  is the Kronecker symbol.
We can eliminate the unknowns analogously as has been done in [10,12].

Having computed the unknowns BJ(-Z_Z) (xj41), L =1,...,n—1, we find the coeffici-
ents of the polynomials Pj;,_2, [ = 1,...,n — 2, in (4) by using formulae (6).
In this way, the computation of the coefficients of the polynomials P;;,_> can be
realized starting from either the left or right endpoint of the support interval.

3. Recurrence Algorithm for the Calculation of GB-splines

Let us define the function

U (@), @<z <ain

J,n
Bja(x) = ‘1)51_1273 (), zjp1 <2< Tj40 (9)
0, r ¢ (Tj,2j42)

where the functions \Ilgnn 2) q)gibu ) are assumed to be positive and monotone on

(xj,2j41) and (Tj41,Tj12) respectlvely.



We will consider the sequence of GB-splines defined by the recurrence formula
¥ B g T Bii1g—
Bj(z) = / B (1) 4 / Birrw-n(r) )
acj ijk_l $j+1 Cj+1,k_1 (].0)
E=3,...,n

where

Tj+k—1
Cjk—1 = / Bj g—1(7)dr.
e

j
In practical calculations, an alternate representation of formula (10),

Tjtk—1 B Tj+k B .
Bj,k(x) = —/ 7316 (7 )dT-l—/ R A 1(T)dT,

k=3,...,n

is useful.
By differentiating formula (10) we obtain

i k(@) = Bjr—1(x)/cjr-1— Bjr1e-1(2)/cjr16—1

11
k=3,...,n (1)

Theorem 1. The recurrence formulae (9) and (10) define the sequence of GB-
splines of the form

( k—2 n—k
BET (@)W (@), oz <o <

—2 n—=k
Pjiga(@) + By (@4) 01, (2)
k— n—=k
Bji(r) = +B( )($j+l+1)‘1’§+l,n)($) (12)
l‘j+l§l‘§.l'j+l+1, lZl,...,k—Q

(k—2) (n—k)
B T wik-1)® 000 (), Tjpk—1 S @ < wjgg

(0, = ¢ (zj,T54k)

k=2,...,n, where
Pjik—2(z) =
4
k—2 r r—mn
Z BJ(,k: ’TJ-H’ Z z](—i—)l’ j+ll) +k/(1" —n+ k)'
I'=1 r=n—~k (13)
k— r r—m
T Z By (wjir) Z A @ = ) T (0 = n 4 k).
I'=l+1 r=n—=~k
and
k—1
—2 r r—n o
ZB( (@ Z zj(~|—)ln —zi) " (r—n+ k) =0
=1 r=n—=k (14)

k=3,...,n.



Proof: For k = 2 the formula (12) takes the form
Bj,2($j+1)‘1’( )( ), % <z <Tjp
Bja(®) =\ Bja(w; )@ 172 (2), @41 <7< w0
0, z & (r,242)-
We choose Bjs(xj+1) = 1, and then by (2), this formula coincides with (9).
Using mathematical induction, we assume that the assertion of the theorem is

fulfilled for some k' =k —1<n—1(k=3,...,n—1). Let us show its validity for
k < n. According to (10) and (12) we have

1 K'—2 n—k'—1
Bj k(x) = p— B]( o (@)U (@), e (25,244
75
1 k' —2 n—k'—1
Bj(z) = - B "D (@)@ (@), @ € [man, 24w ).

Cj+1,k!
By virtue of (11) and because GB-splines have local supports,

k—2 k' —2
By(',k )(xj"‘l):B]('k’ N@jq1)/eins

k=2 k' —2
BJ(',k )(mHk—l) Bg(+1 kf)(i'?j+k’)/cj+1,k'-
Therefore,

-2 n—k
Bjx(x) = Bl (@) V) (@), € w2501, -
—2
Bji(z) = BJ(-,k N(@ih-1) ) L (2), @€ [mjnot, mign]
Let now the formula (12) be fulfilled in x4, £j4;41] for some !’ =1-1 < k—2
(l=1,2,...,k —2). We must show its validity for I’ < k — 2. According to (10),
and by the induction assumption for x € [z, £j4i4+1], we have

Bjr(z) = Pji-1,k—2(j+1)

k—2
+ B (@) @8 () + B (i) O (4)

1 r 1 @
+ / Bj,k—l(T)dT - 7/ Bj+1,k—1(7')d7'

Cjk=1 Jaj iy Ci+1,k—1 Jazjy,

k—2
ji-ti—2(wj0) + By 2 (@)U (254)

n—3 i r—n+k'+1|T
BE=) (5 0) L (T = @) (16)
k! g+t I,
cjk 1{,,2:1 P r:;k, R G 0 O L

k'—2 n—k'—1 “
+BE D (35,00 D ()

Tt

1 (k' —2) (n—k'—1)
—— < I+B ; 0]
Cj—{—l,k—l{ + 5k (@j+1) j+ln (1)

k'—2 n—k'—1
+ BT (@0000) 0 TV (1)

m }
Tt
T

}7
Zj+

T

Zj+1

-2 n—k'—1
+ Bg(+1 kf)(my+l+1)\1’§'+l,n )(7')




where

n—3

. —n+k'+1 |7

I= B(k ) )Y (T = @jp1p0) "

- 41, k' (@414 Zj+141'n (r—n+k+1)!
I'=1 r=n—k' ’ Tj+l
l n—3 —n+k T
B =2, () (T =)
j1e (T 2+ (r—n-+k)!

I'=1 r=n—k' ) Tj+1

Using the formula of differentiation (11) we obtain

k-2 -2 k'—2
B](',k )($j+l) = B]( k' )($j+l)/0j,k’ - By('+1,k’)($j+l)/cj+1,k"

This permits us to transform the expression (16) into the form

-1 n—3 r—n+k
, _ (k=2), ) (@i — Tjyr)
Bji(z) = lz::I Bjj " (@jer) r:nZ_k AT 1 k)
n—k k—2 n—k
+B 7 (@025 + B D (2) 0V ()
k—2 n—~k
+ B (w5040) 0 Y ()
n—3 r—n+k
(k 2)( (T —xq0)
S (@ — ajp)TE
- B ’ 'T ’

k k—2 n—k
=3 B )+ B a0 )

I'=1
k—2 n—=k
+Bj(',k )(5'31'+l+1)‘1’§'+l,n)(55)
n—3 ) r—n-+k
B (s 0, st
+uzl (o ) 2 e )

k— n—k
jak—2(t) + BV (w0) 08 W () + B (w1040) 0V ().

We have now proved the formula (12) with

n—3 r—n+k

B ’ (T) / (:L. _ xj+l’)

I'=1 r=n—=k

I=1,....k—2.

Taking into account the conditions for continuity we obtain the validity of the
formula (17) for [ = k — 1. However, according to (15), Pjx—1,5-2 = 0. So from



(17) for I = k — 1 we obtain the identity (14). By subtracting this identity from
(17) we arrive at the second formula in (13). This proves the theorem.
To use the formulae (12) and (13) for calculations we first need to find the

quantities By(',kk_z)(ijrl), l=1,....,k—1; k=3,...,n. According to (11),
k—2 k-3 k—3
Bj(’k )(ajjﬂ) - Bﬂ(ak—l)(mjﬂ)/cjvk—l - Bg('+1,k)—1(5'3j+l)/cj+1,k—1

(18)
l=1,....k—1; k=3,...,n.

In particular, it follows from here with Bj »(xj41) = 1 that

1
B ' = B” . =
J,3(37J+1) Cj,27 J74('TJ+1) CiaCa
1 1 1 1
1(75+2) Cit1,2 sua(7542) Ci+1,2 \Cj,3  Cj+1,3
1
B;'/,4($j+3):

Cj+2,2Cj+1,3

etc. Therefore, to find the required values of the derivatives of the GB-splines in
the interior nodes of their support intervals, it is necessary to know the quantities
¢jk, 1. e. the integrals of the GB-splines Bj, k =2,...,n — 1.

Theorem 2. The integrals c;r = [.°** Bj;x()dr of GB-splines are given by the

J

formula
k-1 n—3 . o r—n+k+1
N g, ) (Tjra = Tjt1)
- ; ) T_,Lz_:k_l ST T k4 1) (19)

a=1,...,k—=1; k=2,...,n—1.

Proof: For k = 2 according to (9) we obtain

Tj+2
Cj,2 :/ Bja(r)dr = Bja(rj41)2 110, Bja(wje1) =1,

i
which corresponds to the formula (19). Let us suppose by induction that the formula

(19) holds for all k' =k —1<n—1 (k=3,...,n—1). We must prove its validity
for ¥/ +1 =k <n— 1. By formula (12),

Titk k—2 n—k—1
Cjk :/ Bjyk(T)dT:Bj(',k N(@j0) @ (@4)
]
s (k—2) (n—Fk)
=3 [ Pasea) + B el (20

=1 Jj+i

k—2 n—k k—2 n—k—1
+B§',k )(’Tj+l+1)\p§'+l,n)(7—):|d7—_Bj(',k )($j+k—1)q’§+k—1,73($j+k—1)-



Choosing the knot z;1, € supp Bjk, 1 < o < k — 1 and using the formulae
(13) we can transform the expression (20) into the form

k—2 —k—1
Cjk = ZBJ(,k )($j+l)zj(-11,n )
=1
(1 — l,)r—n+k+1 Tjti+1

+ [ B(k 2) (zj41) z(:)l, ks

ST IR S e
i [ B " (@isw) Zjtin }

_ !
= I'=l+1 r=n—=k (T n+k+1) Tj41

Collecting here the terms with B](.fck_2)(xj+l), [=1,...,k—1, we have

k—2 n—k—1
Cjk = ZB( ) (Tj41)2 J(+1,n :

n—3 . e r—n+k+1
B( —2) (r) ('TJ+Ot 'TJ~H)
+Z (- T%:_kzm,n (r—n+k+1)
k—1 n—3 —ntk+1
(k—2), () (Tj4a — i) T
+ 2 B @) 2 Bl (r—n+k+1)
l—a+1 r=n—=Fk
n—3 ) o r—n+k+1
_ Z BE D S 20, (Zjta — Tjt1)
= T (r—mn+k+1)!

This proves the theorem.

Theorem 3. Ifc¢;, k = 2,...,n — 1, are integrals of GB-splines B;;, then the
following equalities are valid

k-1 n—3 P r—n+k+l—«a
ST SR g
gk j+l GHlLn (. — ! 7,k " 00,«
— e e (r—-n+k+1-—a) (21)
a=0,....k—2; k=2,...,n—1,
where 0¢ , is the Kronecker symbol.
Proof: We can write these identities
k—1 n—3 r—n+k+1
- _ (k—2) (&= Tjn)
ik =Fir(e) =Y Biy (wi) Y, #. T
=1 r=n—k—1 (T —n+ k + 1) (22)
k=2,...,n—1

For k = 2, formula (22) does not depend on z and coincides with (19).
According to Theorem 2, the polynomial Fj — cjx, 2 < k < n — 1, of order



k — 1 takes zero values at the points zj;n, @ = 1,...,k — 1. Therefore, by the
Fundamental Theorem of Algebra it must be identically equal to zero.
Using the expansion of polynomials in (22) by powers of x we obtain

k-1 k=2 o n—3 r—n+k+l—c«
o (k=2)( z® i (=Zj)
=1

a=0 r=n—k—1+«

The right-hand side is a polynomial of order k£ — 1 for fixed j, k£ while the left-hand
side is constant. It follows that the coefficient of z* equals cj; when oo = 0 and
equals zero otherwise. From this we obtain the equalities (21). This proves the
theorem.

To construct the GB-spline B;, k = 3,...,n, we can formulate an algorithm
by applying formulae (18) and (19), and requiring the calculation of the following
quantities for GB-splines

k—2 n—2
Bja(wjy1) - Bl (@) o BT (@54a)
(a=1,...,n—1)
(k—2)
Bjtn-k2(@j4n—rt1) - Bj+n—k,k($j+n—k+a)
: C(a=1,...,k—1)
Bj+n—2,2(5'3j+n—1)

and the integrals of GB-splines

G2 Gkttt G-l
Ci+1,2 0 CGi4lk  Cidin-d
C.7+n_k72 e C.7+n_k7k

Cjtn—2,2

Algorithm 1.
(a) Form the diagonal matrix A = {a;;}, ¢, = 1,...,n — 1 with diagonal
=1,1

elements a;y17+1 = Bjti2(zjp41) =1, 1 = 0,...,n — 2. Attach to the matrix
A at the left an additional column with elements a;11,0 = ¢j442, 1 = 0,...,n — 2
calculated by formula (19).

(b) For k = 3,...,n, using formula (18) we find the elements aq;+1 =
B]('Ij;i—;—2)(k—2),k($j+a)’ a=1+3—k,...,l+1,l=n-2,...,k—2, and place them on

the main diagonal and on the first £ — 2 upper off-diagonals of the matrix A. At
every step k (for £ < n— 1) we also calculate the elements aj41 —2 = Cjtl—(k—2),k>
[ =n—2,...,k — 2, using the formula (19) and place them into the (k — 2)-nd
column of the lower triangular part of the matrix A.



As a result the matrix A is transformed to the form

k—2 —2

iz Bjalwiy) ... B P(@i) o BT (win)
L L

A= citnon  cireas o0 Bl Dwien) o B (w4mm)
(n-2),

Cji4n—2,2 Cj+n—3,3 Citn—1—k,k+1 Bj,n ($j+n—1)

The (k — 1)-st column of the upper triangular part of the matrix A contains
the quantities Bj(fck_2)(;vj+a), a=1,....,k—1, k = 2,...,n. This permits us to
construct the GB-splines Bj, k = 2,...,n using formulae (12) and (13). The
integrals for these GB-splines are located along the main diagonal of the matrix A.

The supports of the GB-splines Bj i, k = 2, ..., n begin at the point ;. We can
also consider an alternative version of the above algorithm in which the GB-splines

Bjikn—t, k=n—2,...,0, whose supports end at the point x4, are calculated.
Algorithm 2.

(a) Form the diagonal matrix A of dimension (n — 1) x (n — 1) with diagonal

elements aj11,141 = Bj+i2(xjyi+1) =1,1=0,...,n—2. Attach to A the additional
n-th row with elements a,, ;41 = ¢j41,2, [l = 0,...,n — 2 calculated by formula (19).
(b) For k = 3,...,n, 1l =0,...,n — k, we find aj41,1+a = B§i?,i)($j+l+a)a

a=k—1,...,1and (for k <n—1) ap_g42,14+1 = ¢j41,x by formulae (18) and (19).
As a result the matrix A takes the form

(n—2) (n—2) (n—2)
B, V(wjy1) o Bjn U(Titin-k) 0 By U (Tj4n-1)
(k—2) (k—2)
A= Cj k41 T Bj+n—k,k($j+1+n—k) T Bj+n—k,k($j+n—1)
¢j,3 e Cjtn—k,3 o Bjyn—22(Tj4n-1)
Cj 2 c Cj+n—k,2 Ce Cjtn—2,2

The elements of the (n—k+1)-st row in the upper triangular part of the matrix
A permit us to construct the GB-splines Bjin_k %, kK = 2,...,n using formulae (12)
and (13). The integrals of these GB-splines are located along the main diagonal of
the matrix A.

4. Another Representation for GB-Splines
According to (12) and (13) the expressions for B, & = 3,...,n in the
subintervals [z;4;—1,%j4i] and [zj4;, £j4141] differ by the quantity

n—k k—2 n—k n—k
_(I)§+l—)1,n($)Bg(',k )($j+l—1) + [q)§'+l,n) () — \I’§'+l—)1,n($)

n—3
rn (@ —zjn
* Z “itn (r—n+k)!

)r—n—k

k-2 n—k k—2
]BJ(',k )(mj+l)+‘1’§'+l,n)($)3§-,k )(Sﬂj+l+1)-

r=n—k



By summing over the jumps we arrive at the representation

k—1
Bji(x) = ZQj+l,k($)B](',,Ck_2)(xj+l)7 k=3,...,n (23)
=1
with
Qjpap(r) = WL (@)0(@ — wjp0m0) + [0 (2) — U1 (@)
o 5, e - e e ),
r=n—=k :

1, >y,
e(x_y):{o, T <y.

As O(x —y) =1 —0(y — ) we obtain
k—1
A k—2
Bjw(r) == Q@) B P (wj50) + Rjlw), (25)
=1
where ;41 is derived from ;. by replacing 8(z — zj4m) With 0(z;4m — ),

m=1—1,1,1+ 1. Now according to (14)

r—n-+k

k—1 n—3
) — (k=2) . () (@ Tj4) _
Rj,k(x) - ;B],k (-’17_7+l) T:;_kzj_i_l’n (r—n+k)' 0, k —3,...,7’1,
and it follows from formulae (23) and (25) that Bjx(z) =0 if © ¢ (z;,24%). Any
of these formulae can be used to define the GB-spline of order k, 3 < k < n.

We will transform the expression for the function ;4 in (24). Using the

Taylor expansion of the functions @g::lr?, \Ilgi?’;) with the remainder in integral

form and the properties (2) we have

(x— T e
Qon(@) = [ / 2l ‘1’§-+l_1)1,n(7)d7]9(w — Tj41-1)
Tj+i-1 :

+[/: 7(37 _ T)k_2<I>(n_1)(T)dT — /: 7(:6 _ T)k_2\I!(n_1) (1)dr

i (E—2)r e i (B=2)r TutLe

xe(:c—g;j“)—[/w

Tj+i+1

T )k—z

(x—7)F2 _(,_
Wq)g'ﬂ,;) (T)dT] 0(x — zj4141).

From here we obtain for polynomial splines with

(o) =~ 0 (0)




that .
Qo k(@) = (Tim41 — Tm—1) Ik [T Tm—1, Ty Tmy1], m=7J+1,

ge(z,y) = (DM@ - i/ (k= 1), 2 = max(0,2)

and thus (23) is transformed to

Bjk(®) = (Tjn — wj)gnlw; 2js - 4], K =3,...,n
The recurrence formula (10) takes the form [14]

r—T; Tit+k — T

PP — B 11k-1(7)
jHk—1 = Ty Tj+k — Tj+1

with

Ti+k . .

Tjrk — T

jt+k — %j
Cjk = / Bj k(z)dr = ’ .
T

J

5. Properties of GB-splines

Let us formulate some properties of GB-splines which are similar to those of
polynomial B-splines [14].

Theorem 4. The functions Bjy, k = 2,...,n have the following properties:
(i) Bji(z) >0 ifx € (zj,zj4%) and Bj(z) =0 if v ¢ (2, Tj4%);
(ii) the splines Bj}, have k — 2 continuous derivatives;

(iii) for k > 3 and x € [a, b], ZJ__k+1 Bjr(z) =1;
(iv) for x € [xj,x;11],
n—r—1 n—r—1
Ui (@ H ¢ik)Binr(@), 0@ = [[(~cjimks1n)Bimnt1trn r(2)

k=2
j=0,....,N—1,7=0,...,n—2, where c;j, = [7/** Bjy(7)dr.
J

Proof: The functions Bjiq,2 given by formula (9) are positive if z € (244,
Tjta+2), while Bjiqo(x) = 0 if 2 ¢ (2j4a,Zjta+2), and are monotone on the
intervals [Zj4a+1, Tjtatit1), L =0,1; a=0,...,k — 2.

Let us suppose by induction that the functions Bjyq k—1(x) > 0 if z € (244,

— k—3 .
Tjtat+k-1), Bjtak-1=0if 2 & (Tj10, Tjratk—1) and BJ(JFO[,)C 1 (z) is monotone on

the intervals [Zj1a+1, Tj+a+i+1], L = 0,..., k—2 with (—1)l+13§ia31)c 1(Zjtrati) >0,

l=1,...,k—2, a=0,1. Then by formula (11) the function BJ(.,k ?) is monotone
in (241, @54041), L = 0,...,k — 1, and in addition (~1)"*' B (z;41) > 0, 1 =

1,...,k — 1. Therefore, B( ? has exactly k — 2 zeros in (zj,zj41) and by Rolle’s
theorem Bj i, does not vamsh on (zj,z;j41). Taking formula (10) into account, we
have Bjyk( )>0ifx € (zj,z;41%) and Bjgp(x) =0if & (v, 2j4%).

Property (ii) is obvious by virtue of the recurrence formula (10) and by continui-
ty of the function Bj .



According to (12) for z € [z, zj4+1],

Bjn(z) = B2 (@541)n(2), Bjopsra(z) = B2 (0)@5,(2).  (26)

Applying the differentiation formula (11) we obtain

(T') chnk Jnrx)

, — (27)
B @) = [T (6 nihm i) Bionttirn (@), @ € [25,3511],

r=1,2,...,n—2

and in particular,

n—2 n—2
n—2 — n—2 —
B](',n )($j+1) = Cj,}l—k’ B]( n+)1 n(@5) = H(_cj—lk,k+1)' (28)
k=1 k=1

Therefore, if = € [;,2;41] then according to (26), (27), and (28) we have
n—r—1 n—r—1

V@) = T[ cuBin—r(z), @)@ = [[ (~cjmtrin)Bicntitrmr(@),
k=2 k=2

Applying the recurrence formula (10) for k > 2, we have for z € [a, b]:

N-1
> Bik@) /B]’“ 1l / Biska(n) g,
J
j=—k+1 jm—kt1 s ikl Cj+1k—1
r B_ _ By o B_ _
:/ Doktlk (7 )dr—/ N,k 1(T)dT:/ k+1,k 1(T)dT:17
o1 C-k+lk—1 zn  CNk-1 t pp1  C—k+1k—1
1. €.

N-1
> Biil)=1, k=3,...,n if z¢€lab] (29)
j=—k+1

This proves the theorem.

Corollary 1. The following identities are valid

(k—2) (r) (- zj11) _ B
DD DT IEHRS S Bt i R S

j=t—k+2 =1 r=n—=k




Proof: Substituting formula (12) into the identity (29) written for x € [z;, z;41],
we obtain

i i—1 i
n—=k k—2 n—=k k—2
S B =0 @) Y BE @)+ uln @) S B (wi)
j=i—k+1 j=i—k+1 j=i—k+2
+ Z Pji_jra(z) =1,
j=t1—k+2

According to (29)
S BT Y B -0
j=i—k+1 j=i—k+2
Then using (13) one obtains

r—n-+k

> P = Y S o, o

j=t—k+2 j=t—k+2 =1 r=n—=k

This proves the corollary.

Corollary 2. Let Fji, k =2,...,n— 1, be polynomials as defined in (22). Then
the following equalities are valid

N-1
z/ @l = Y F@) =b—a, k=2...n—1
j=—k+1" j=—k+1

Proof: Integrating the identity (29) on the interval [a, b] and using (22) we obtain

O TCTI S

j=—k+1 j_—k+1
N-1
= Z cr= Y, Fir)=b-a
j=—kt1 j=—k+1

This proves the corollary.
Theorem 5. The GB-splines Bjy, k = 2,...,n, have supports of minimum length.

Proof: It follows from the explicit formula (9) that the support of the GB-spline
Bj 2 cannot be reduced. Let us suppose that the assertion of the theorem is fulfilled
for some k' = k—1 < n (k=3,...,n). Using mathematical induction we will prove
its validity for &' +1 =k < n.

By the properties of the functions ®;4; ,,, ¥4 5,0 <1 < k—1, and by formula
(12), GB-spline B, cannot be different from zero on only a part of the interval



Tirl, Tir1ag], 0 <1 < k—1. If we suppose that B, ; is zero on interval [z ;1;, T;1141],

J+ J+1+ Js J+ J+1+

0 <1 <k —1, then due to the continuity of B](.fck_%, we have B](.’kk_2)(xj+l) =
k—2

fﬁk N(@j141) = 0.

Using formula (11) one can show, however, that (—1)l+1BJ(.kk_2)(xj+l) > 0,
l=1,...,k—1. For k = 2 we have Bjs(x;1+1) = 1. Suppose by induction that
(—1)”13](-7]2,_2)(:6]4[) >0,l=1,....,k —1for 1 <k'" <k —1. By formula (11) we
get

B(.kl,_z) (CE '_H) B(-k’_z,) (ZE '_H)
_1 l+1B(k—2) T — (—1)*1 3,k J i +LE
(=) B (@) = (1) o~

(k'=2), (K'=2)
— (_1)l+]_ Bj,k;’ ($J+l) + (_1)lB_]+1,k;’ (x]+1+(l_1)) >

Cj k! Cj+1,k'

We have obtained a contradiction. This proves the theorem.

Theorem 6. The GB-splines By, j = —k+1,...,N—1;k =2,...,n are linearly
independent and form a basis for the space S’,? of generalized splines.

Proof: Let us assume to the contrary that there exist constants b;y, j = —k +
1,...,N—1, k=2,...,n, which are not all equal to zero and such that

botr1kB-kt1k(T) + -+ bv_1xBrn-1k(x) =0, z €]Ja,b]. (30)

According to formula (9), and taking into account the properties of the functions
®; ,, and ¥, ,, in (2), we obtain from (30) for k = 2

N—-1
> bjeBja(wi) =bi_12=0, i=0,...,N.

j=—1

Thus, bj2 =0, 7 = —1,..., N — 1, and the functions Bj», j = —1,...,N — 1 are
linearly independent.

Suppose by induction that the functions B; s/, j = —k’,..., N — 1 are linearly
independent for some k' =k —1 <n (k= 3,...,n). We will prove the assertion
of theorem for £’ +1 = k < n. Differentiating the equality (30) and using the
recurrence formula (10) we have

N-1 N-1
B',k—l(ﬂﬁ) B'+1,k—1($)
R S
j=—k+1 j=—k+1 J,k—1 j+1,k—1
N—-1
B_ _1(x B i (x
:b_k_l_l’kM_'_ Z (bj,k_bj—l,k) j,l.c 1( )
C—k—I—l,k—l j=—k+2 c],k;—l
Bn_
by PNk (31)

CN,k—1



The supports of the GB-splines Bj,_1, j = —k + 1, N, however, are outside
the interval [a,b]. By the induction assumption, the GB-splines Bj ;_1, j = —k +
2,...,N — 1 are linearly independent and thus from (31) we get b, — bj_1,1 = 0,
j=—-k+2,....,N—-1lorbjp=c=const,j=—k+1,...,N — 1. By Theorem 4,
the GB-splines Bj i, j = —k+1,..., N — 1 give a partition of unity on the interval
[a,b]. Using this property, and the equation (29), we arrive at the equality

N-1 N-1
> bixBik(r)=c Y Bjrlz)=c-1=0.
Jj=—k+1 j=—k+1

Therefore, b; , = 0,5 = —k+1,..., N—1 and the GB-splines Bj , j = —k+1,..., N
—1,k=2,...,n, are linearly independent.

Since by the definition 1, dim(SS) =kN —(k—1)(N—1) = N+k—1, we see
that the GB-splines Bjj € S,?, j=—-k+1,...,N —1 form a basis of this space.
This proves the theorem.

By virtue of this theorem, any spline S € S’,?, k = 2,...,n can be uniquely
written in the form

N-1
S)= > bjxBjr(z) for z € la,b] (32)
j=—k+1
for some constant coefficients b; .

Corollary 3. Any spline S # 0 in S’,?, k =2,...,n, with finite support of minimal
length coincides with a GB-spline up to a constant multiplier.

Proof: By theorem 5, the minimal support of a spline S € S&, k = 2,...,n
different from identical zero, is an interval (z;,z;yx), ¢ = 0,...,N — k. Using
representation (32) we get

S(x) =bi—kt+1,kBi—k+1,k + -+ bitk—1kBitk—1,k(T).

As S = 0 for x ¢ (x4, Zitx), when choosing sequentially x € (2p,2pt1), p =
i—k+1,...,¢— 1, we obtain b, = 0. In the same manner, b,; = 0 for p =
i+k—1,...,i+ 1. Therefore, S(x) = b; B; x(x). This proves the corollary.

6. Series of GB-splines

In practical applications such as approximation of functions, discrete data etc.
one considers linear combinations of GB-splines. According to Theorem 6, any

generalized spline S € S’,? , k=2,...,n can be uniquely represented in the form
N-1
S)= > bjxBjr(r) for € a,b] (33)
j=—k+1

with some constant coefficients b; .



Let us study how the behaviour of a spline S depends on the coefficients b; .
Since GB-splines are local, from (33) we obtain the inequalities

A
E b 1 Bik(z) < max  b;g
j_i_k+1 75 T ( ) — z—k+1§]§z VLD

i<z <xiy1, k=2,...,n

min _ bjr < S(x) =

i—k+1<j<i (34)

Hence it follows that the behaviour of the spline S on the interval [x;,z;y1] is
determined by the coefficients b;_g11,...,b; . In particular, in order for a spline
S to be zero at a point of the interval [z;, z;41], it is necessary that bjibjt1, <0
for some i —k+1<j <.

The estimate (34) can be substantially improved on. Applying the differentia-
tion formula (11), we obtain for r < k — 2

N—-1
SO@) = Y b)Bjr(z) (35)
j=—k+r+1
where
bk, 1=0
b = L a-1) L 0-1) (36)
7,k b — b
5k Jj—1k _
R , =12, ...

Lemma 1. Ifb;, >0 (<0),j=-k+1,...,.N—1;k=2,...,n, then S(z) > 0
(<0) for all x.

The conclusion is obvious, because the GB-splines B; j, are nonnegative.

Lemma 2. Ifbj,k > bj—l,k (bj,k < bj—l,k)7 j=—-k+2,...N=-1,k=3,...,n
then the function S is monotonically increasing (decreasing).

Proof: According to formulae (35) and (36), we have

}: BB 1 (), B = Lok bimth
’ 7 .
j=—k+2 Cjk—1

Because the GB-splines Bj,_1, k = 3,...,n are nonnegative, the formula above
and Lemma 1 imply that S is monotonic. This proves the lemma.

Lemma 3. Ifo{") > o 081 < b\D ) j=—k+3,. . N-1;k=4,...,n,
then the function S is convex downwards (upwards).

Proof: By virtue of (35) and (36), we have

(2) @) b(_l) b(l)l .
S// Z b ) Bk _o(m), bj,k = % (37)
j=—k+3 k-2
Because the GB-splines Bj_o, k = 4,...,n, are nonnegative, taking into account

Lemma 1 we obtain that S is convex. This proves the lemma.

Let Zp,4)(f) denote the number of isolated zeros of a function f on the interval
[a, b].



Lemma 4. If the generalized spline S(z) = Z;V_ 1k+1 bjkBjr(z), k=2,...,nis

not identically zero on any subinterval of [a, b], then
Z[a,b](S) <N+k—-2.

Proof: According to (35) and (4.9), for x € [z;,x;41] we have

j=—1

This function has at most one zero on [z;, z;11], because the functions q)z%—z) and

\IIZ(T;_Z) are monotonous and nonnegative on this subinterval. Hence Z[, 3)(S (k=2)y <
N. Then, according to Rolle’s theorem [14], we find Ziap(S) < N 4k —2. This
proves the lemma.

Denote by supp Bj i, = {x|B; x(x) # 0}, k = 2,...,n, the support of GB-spline
Bj , i.e. the interval (2, z;4x).

Theorem 7. Assume that T_py1 < T_gyo < --- <7Tn—1, k=2,...,n. Then
D =det (Bji(m)) #0, 4,j=—-k+1,....,N—1

if and only if
T; € supp Bjx, j=—-k+1,...,N—1 (38)

If condition (38) is satisfied, then D > 0.

Proof: Let us prove the theorem by induction. It is clear that the theorem holds
for a single basis function. Assume that it also holds for [ — 1 basis functions. Let
us show that if (38) is satisfied, then D # 0 for [ basis functions.

Let 7, ¢ supp Byg. If 7 lies to the left (right) with respect to the support
of By then the last column (line) of the determinant D consists of zeros, i.e.
D = 0. If 7 € supp By, and D = 0, then there exists a nonzero vector ¢ =
(C—k—l—l,k; RN Cl—k,k) such that

-k

S(mp) = Z cikBjr(tp) =0, p=—-k+1,...,1 -k,
j=—k+1

i.e. the spline S has [ isolated zeros. But this contradicts Lemma 4, which states
that S can have no more than [ — 1 isolated zeros. Hence ¢ = 0 and D # 0.

Now it only remains to prove that D > 0 if (38) is satisfied. Let us choose
zp < Tp < Tp4q for all p. Then the diagonal elements of D are positive and all the
elements above the main diagonal are zero, i.e. D > 0. It is clear that D depends
continuously on 7,, p = =k +1,...,l =k, and D # 0 for 7, € supp B, ;. Hence the
determinant D is positive if condition (38) is satisfied. This proves the theorem.

The following three statements follow immediately from theorem 7.



Corollary 4. The system of GB-splines {B; 1.}, j = —k+1,..., N=1,k=2,...,n,
is a weak Chebyshevian system in the sense of [6], i.e. for any T_j11 < T_gi2 <
-+ < Tn_1 we have D > 0, and D > 0 if and only if condition (38) is satisfied. If
the latter is satisfied, then the generalized spline

N—-1
Sx)= > bjxBjr(), k=2,...,n,
j=—k+1

has no more than N + k — 2 isolated zeros.

Corollary 5. If the conditions of Theorem 7 are satisfied, the solution of the
interpolation problem

S(Ti):fi, 1=—k+1,.... N—1, f, €eR (39)

exists and is unique.

Let A= {a;;},i=1,...,m,j=1,...,n, be arectangular (m x n) matrix with
m < n. The matrix A is said to be totally nonnegative (totally positive) [4] if the
minors of all orders of the matrix are nonnegative (positive), i.e. for all 1 <1 <m
we have
det(a;,;,) >0 (>0) forall 1<ip<...<iyg<m

1<ji<...<ji<n.

Corollary 6. For arbitrary integers —k +1 < v_py1 < ... < v < N —1 and
Tohogl < Tepgo2 < -+ < Ti—k, k=2,...,n, we have

Dl:det{Byj’k(Ti)}ZO, i,)=—k+1,....01 -k,
and D; > 0 if and only if
T €supp By g, Jj=-k+1,...,0—k,

i.e. the matrix {Bj(7;)}, i,j = —k+1,...,N — 1 is totally nonnegative.

The last statement is proven by induction on the basis of Theorem 7 and the
recurrence relations for the minors of the matrices {B, ()}, k = 2,...,n. The
proof does not differ from that described by Schumaker [14].

Since the supports of GB-splines are compact, the matrix of the system (39)
is a banded matrix and has 2k — 1 nonzero diagonals in general. If the knots of the
spline x;, # = —k+1,..., N — 1, are placed in a suitable manner, then the number
of nonzero diagonals of this matrix can be reduced to k — 1.

De Boor and Pinkus [2] proved that linear systems with totally nonnegative
matrices can be solved by Gaussian elimination without choosing a pivot element.
Thus, the system (39) can be solved efficiently by the conventional Gauss method.

Denote by S~(v) the number of sign changes (variations) in the sequence of
components of the vector v = (vy,...,v,), with zeros being neglected. Karlin [6]



showed that if a matrix A is totally nonnegative, then it decreases the variation,
ie.

ST (Av) < S(v).

By virtue of Corollary 6, the totally nonnegative matrix {B,x(7)}, ¢,7 = —k +
1,...,N—1; k=2,...,n, formed by the GB-splines decreases the variation.

For a bounded real function f, let S~ (f) be the number of sign changes of the
function f on the real axis R without taking into account the zeros

S_(f):SUPS_[f(T1)7_,_,f(Tp)], T1<T2<"'<Tp
p

Theorem 8. The generalized spline S(z) = Z;.V:__lk_l_l bjrBjr(x), k = 2,...,

n is a variation diminishing function, i.e. the number of sign changes of S does
not exceed the one in the sequence of its coefficients

N-1
Sﬁ( Z bj,kBj,k> <S8 (b), b=(b_gt1k> ---sbN-1k)
j=—k41

Proof: We use the approach proposed by Schumaker [14]. Let S~ (b) =d — 1. Let
us divide the coefficients b, 5, into d groups:

b_kt1,ks " Oko ks Dkt 1 ks s Okg ks "+ 5 Dy 1ks " s DN 1k

In each group at least one coefficient is not zero, and all the nonzero coefficients
have the same sign.
Putting k1 = —k and k441 = N — 1, we define the function

kj+1

Bjr(x)= Y |bix

i=k;+1

Bi,k(a?), jZl,...,d.

Then for arbitrary 71 < 75 < -+ < 74 we have

ko ka1
~ d
det(BJ}k(Ti))i’jzl - Z T Z |bV1,k| T |bvd,k|det(Bj,k(Ti)) >0
vi=ki1+1 va=kq+1
1=1,...,d, j=v1,...,vq, k=2,....n
by virtue of Corollary 6 and because at least one coefficient b; j, is not zero in each
group. It is clear that we can choose 7y < 75 < --- < 74 such that det(B; x(7;)) > 0.
Hence the functions Bj, are linearly independent.
Assume that 6 = £1 is the sign of the first group of the coefficients b; ;. Let
us take b; p = (—=1)*718,i=1,2,...,d. Then

g(."l?) = Zgl,kéhk(gj) = S(."IZ) = z_: bjkaj,k(.’E).

j=—k+1



Applying Lemma 4, we obtain

Z bjkBjk) =

Jj=—k+1 =1

<d—1

Mm

=S (b_ktiky- - bN—1k), k=2,...,n.

This proves the theorem.

The statement of theorem 8 can be refined, namely we can point out a relation
between the point at which the spline changes its sign and the corresponding spline
coefficient. The coefficient corresponds to the GB-spline whose support includes
the point of the sign change [see (34)].

Theorem 9. Assume that the inequalities (—1)*S(7;) > 0, i =1,2,...,d, are valid
for the generalized spline S(x) = E;V__lkﬂ bJ kBjk(z) at some 71 < 1o < -+ < Ty
Then there exist —k +1 < 71 < jg < -+ < jqg < N — 1 such that

(=1)"bj, xBj, (1) >0, i=1,...,d

The proof of this statement does not differ from the proof of the corresponding
theorem for polynomial B-splines [14].

7. Invariance of Generalized Splines with Respect to

Affine Transformations

In some applications of spline approximation we encounter affine transforma-
tions of the independent variable: & = px + ¢, where p # 0 and ¢ are constant.
It is well-known that the usual Lagrange-Newton, Chebyshev, etc. polynomials
are invariant with respect to such transformations. Let us show that generalized
splines also have this property.

Let SS be a set of generalized splines on the mesh A = {Z;| % = pri +q,i =
0,...,N} which is obtained from the linear space S¢ by affine transformation of
the variable x.

Theorem 10. An approximating generalized spline S € SS is invariant with
respect to affine transformations of the real axis R = (—00,00).

Proof: The function B; in (9) can be written in the form

2 Zj
lb(n )<T>’ rj <x < xjyq,
J
B;o(x) = (n=2) (T — Tjq1
i2(®) 90j+1,n<h_7>7 Tjt1 ST < Tjyo,
7+1 .
0 otherwise,

where

. $_m]>hn_2:¢f €T y (7;6 $J+1>h/n Z—q)' x
wj,n( h; j in(®)s  Pit1n Tyt j+1 i+1,n ()



Using the change of the variable & = px + q we get
(_n—z)(w—%’) (n— 2)( z — & )
o2 $—$a+1> (n— 2)( T — Tj41 )
]—1—1 n J+1ln Fy it2 — -'17]—1—1

Therefore, Bj2(z)
l=k—-1<n (k=

" Bjk_ * Bj _
B () :/ ik I(T)dT—/ ki) )
z Tjt1

;o Gik—1 Cj+1,k—1

= ,2( ). Let the equality Bj;(z) = le( ) be fulfilled for
3,...,m). By virtue of the recurrence relation (10) we have

k=3,...,n
with
Tjtk—1
Cj,k—l = / Bj’k_l(T)dT.

J

Using the substitution 7 = pr + ¢ we obtain by induction

Tjth=t 1 1
Cik-1= [ Bjg-1(7)—di = —¢j k-1,
T

j b b
¥ Bjg-1(f - )
Bj,k(gg):/ Md%—/ Mdlegj,k@),
‘%J ijk_l ‘%J+1 C]+1,k—1
k=3,...,n

~ Ifnow S € S¢ and S e S’S are approximating splines on the meshes A and
A respectively, connected by an affine transformation £ = px + ¢, then by the
uniqueness of the spline representation as a linear combination of GB-splines we

obtain A
Zb Bjn(x Zb Bjn(2) = S(%). (40)

Therefore, the approxnnatmg generalized sphne S is invariant with respect to affine
transformations of its variable. This proves the theorem.

It was shown above that Bjx(z) = B, x(2), k = 2,...,n. By differentiation of
this equality we obtain

L 1Ba(o)] = - Byl@)] = - Bia(@) e = pB) ()],

k=3,...,n

Differentiating now the equality (40), we can write down
= 0B (@) = Y bipB;, (i) = pS' ().
J J

By repeated differentiation of the last and next to last equalities we arrive at

(1") Z b; B(r) Z bjprB(r) prg(r) (),



8. Local Approximation by GB-Splines

Using the locality of GB-splines one can reduce the representation of a spline
S as a linear combination of GB-splines (33) for £ = n to the form

Z bj,nBj,n(.T), T € [$¢,$¢+1], 7 = 0,1,...,N— 1. (41)
Jj=t—n+1

Theorem 11. The restriction (41) of the spline S to the interval [x;,z;y1] can be
written in the form

S(w) = Pypa(@) + b 200 (@) + b0 20y (), (42)
where
L0 @mae)
r - 17

’Ln 2 Z bjnz ZL'J_HI J‘H’ T—-'j

j=i—n+2 I'=1 r=0 :

b(k 1)_b(k 1)

bgz: J— 1TL7 k:l,...7n—2; b,g?T)L:b.]J” j:i—n-'—l".‘,?/

C]vn_k

Proof: We use induction on n. According to formula (9), the representation (42)
holds for n = 2

S(x) =bi—1,2B;i—12(x) + bj2B; 2(x)
=bi—12P;i2(x) + b;2Vi2(x), € [®i,Tiq1]

Suppose that (42) holds for n =1 — 1. Then for n = [ one has from (41)

7
Z bjiBji(x), € [z i)
j=i—l41

Using (4) for n = [, one obtains

ST bjalPricjas() + B (@) @ia(w) + B (wi41) i (2)]
j=i—I+1
— Pyyo(z) + 1, (43)

where according to (6)

(1—2 (x —xjqpr)"
Py Z beB Naj40) Z e B CC

J=t—104+2 I'=1

and

Z bju BT (i) + Wi (w Z bjaBY D (wig1)-
Jj=i—1l+1 j=i—1+2



By applying the formula of differentiation (11) one gets

1— -3 -3
I=®;,(x) i b.l[BJ('”‘l)(m") _ BJ('+1,?—1(371')]
, j=i—I+1 : Cii-1 Cj+1,1-1
7 -3 1—3
+ U, 1 (x) Z b.l[BJ(}l—l)(mi“) _ B§+1,2—1($i+1)]
i j=i—1+2 . Cji-1 Cj+1,1—1

B T; Ul Y
:@i,l($)[bi—l+1,l l_l—H’l_l( )-l— Z MBJ(Z_—SI)(I&)

Ci—14+1,1-1 i l+2 Cjil—1
(1-3)
Bz,l—l (.’171)
—bi_1;
Cil—1
1-3) i
B! (xiy1) bt — b
i—l42,1—1\"i+1 5,0 i—1,1 5(1-3)
+ ‘I’zl(ﬂﬂ) [bi—l—i—z,l + E 73]’,1—1 (Tit+1)

Ci—142,1—1 Cji—1

(45)

Because Bz'(l—_li)1+l',l—1(5'3i+l’) = Bl.(i_l,:fg_l(;vi+lf) =0, ' = 0,1, the expression (45)

can be rewritten in the form

1—1 7
1 -3 1 -3
T=®u(x) Y OB @)+ Vi) Y 6B i)
j=i—l+2 j=i—1+3

with
p) — bit = bim1g

) = L j=i—l+2,...i

By the assumption of induction however,
i—141
-3 -3
Z bjal_1B§,l—]_)($’i+l') — brg_l_zll,l_ly l/ == 0, 1.

j=i—(1—2)+1'

Therefore, one gets
=02 05(@) + b VWi (@)

and using (44), we can write down (43) in the form
S(w) = Poa-a(@) + b0 Psa(e) + 0 Wi (@),

This is formula (42) in the assertion of the theorem for n = [. This proves the
theorem.



Theorem 12. In formula (42) the polynomial P;,,_o can be written in the form

k n—3—k
zn2 Zbg )n+2+kn EnZ )( )7
where
an 2 /Cz 1,2, kZO,
(k) (k 1) (k—1)
Qin-al Qi QZ”Z(), k=1,2,...,n—3,
Ci—k—1,k+2
n—3 o T
r - . . . n—3
Qjn—2( zj(’ TJ, j=i—n+3,...,1, Qg,n_g(aj)zl.
1=0

This assertion is new even for polynomial splines, and can be proven by

induction.

9. Examples

Let us give examples of the defining functions ®; ,(z) and ¥; ,(x) in (1),
which are most commonly used. In the examples given below they depend on the

parameters:

q)in( ) (;Ozn(t)h —wn(pzy _t)(_hi)n_27
i (%) =i (O] = Pnlgi, )R 2,

where t = (x — :c,)/h,Z and 0 < p;, q¢; < oo.
By definition 1 the function ; ,,(t) satisfies the conditions

PI0)=0, r=0,...,n-2, " V(1)=1.

(1) Rational splines:

. tn—t 4 n((h) 7;
wi,n(t)_ (n—l)'1+q,(1—t Z

where Cg_z = (n j_ 2) is the usual binomial coefficient.

(2) Exponential splines:

gt B n-2 qg’
Yinlt) = (n — 1)!6 U0 G (00), 62;&(%) - Z Co—s (7 +1)!
j=0

(3) Hyperbolic splines:

(46)



o (0 sinh(g;t) — Z quj)jyf)l if n=2m,
i,n t) =
cosh(q;t) — Z (ﬁq;)) if n=2m—1.

(4) Splines with additional nodes:

L+ g ¢\t
inll) = (t— ) .
Yin(t) (n—1)! 14+¢/+

If we take a; = (1+p;) "1 and B; = 1—(1+¢;) !, then the points ;; = z;+a;h;
and z;0 = x; + B;h; fix the positions of two additional nodes of the spline on the
interval [z;,z;11]. By moving them, we can go from a spline of the order n to a
spline of the order n — 2.

The constants Ck,(¢;), £ = 1,2, in the expressions for the function v; . (%)

above are calculated from the condition 1/)(" 2)(1) = 11in (46).
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