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On discrete GB-splines
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Abstract

Explicit formulae and recurrence relations are obtained for dis-
crete generalized B-splines (discrete GB-splines for short). Properties
of discrete GB-splines and their series are studied. It is shown that the
series of discrete GB-splines is a variation diminishing function and the
systems of discrete GB-splines are weak Chebyshev systems.
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1 Introduction

The tools of generalized splines and GB-splines are widely used in solving
problems of shape-preserving approximation (e.g., see [7]). Recently,
a difference method for constructing shape-preserving hyperbolic tension
splines as solutions of multipoint boundary value problems was developed.
Such an approach permits us to avoid the computation of hyperbolic func-

in [1]
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tions and has substantial other advantages. However, the extension of a mesh
solution will be a discrete hyperbolic tension spline.

The contents of this paper is as follows. In Section 2 we give a definition
of a discrete generalized spline. Next, we construct a minimum length local
support basis (whose elements are denoted as discrete GB-splines) of the new
spline; see Section 3. Properties of GB-splines are discussed in Section 4,
while the local approximation by discrete GB-splines of a given continuous
function from its samples is considered in Section 5. In Section 6 we derive
recurrence formulae for calculations with discrete GB-splines. The properties
of GB-spline series are summarized in Section 7.

2 Discrete generalized splines

Let a partition A : a = xy < 7 < --- < xxy = b of the interval [a, b] be given.
We will denote by SP¢ the space of continuous functions whose restriction
to a subinterval [z;,z;41], @ = 0,..., N — 1 is spanned by the system of
four linearly independent functions {1,z,®;, ¥;}. In addition, we assume
that each function in SP¢ is smooth in the sense that for given T,-Lj >0
and TiRj > 0, j = 1 — 1,1, the values of its first and second central divided

. . . Li_ Ri_ L;
differences with respect to the points z; — 7, ™, z;, z; + 7, ' and z; — 7,
i, T; + TiRi coincide.
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Given a continuous function S we introduce the difference operators
D\S(x) = D;1S(x) = (MN9S[x— 7 2]+ \iS[x, x4+ 7)) (1 — t)
+(M Sl — 75, 2]+ M Sle, z + )
DyS(x) = DinS(x) = 2S[x — 7 w2+ 7%)(1 — 1)
+2S[w — tHiy x4+ T,
x € [z mipy), 1=0,...,N—1,
where Al =1 - \l' = 7% /(r)i + /%), j =d,i+1and t = (z — z;)/h,
h; = x;41 — x;. The square parentheses denote the usual first and second

divided differences of the function S with respect to the argument values

L: R - -
g — Tt Ty, o+ T, ] =10+ L

Definition 1 A discrete generalized spline is a function S € SPY such that

1. for any x € [z;,x;14],i=0,...,N—1
S(x) = Si(x) = [S(x) — Pilwy) Mi)(1 —¢)
+ [S(@it1) — Wimis1) Mg ]t
where M; = D, 55;(x;), j = 4,0+ 1, and the functions ®; and V; are
subject to the constraints
(i1 — 7)) = Bi(wig) = Bi(win +75) =0,
Ui — 7)) = Wilay) = Wila; +7%) =0, (2)

Dip®i(z;) = 1, DipVi(wi1) =15
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2. S satisfies the following smoothness conditions

Si—1(l"i) = Si(l’i),
Difl,lsifl(xi) = Di,lsi(xi)a 1=1,...,N—-1 (3)
Di—1,25i—1(l"i) = Dz’,QSi(fEi)a

This definition generalizes the notion of a discrete polynomial spline in [9]
and of a generalized spline in [5, 6]. The latter one can be obtained by setting
T]-Li = T]-Ri =0,j=4d,i+1foralli Ifr” = 7F and 9 = Roi=i—1,i
then according to smoothness conditions (3) the values of the functions S; ;
and S; at the three consecutive points z; — TiL, Ti, T; + Tl-R coincide. Setting

Li R;

=171, =7, J =i+ 1 we obtain D,;S(z) = Sz — 7,z + 7;] and

j
D, ,;S(z) = S[x — 7, x,x + 7], which is the case discussed in [1].

The functions ®; and ¥; depend on the tension parameters which influ-
ence the behaviour of S fundamentally. We call them the defining functions.
In practice one takes ®;(z) = ®;(p;, z), V;i(z) = ¥i(g, x), 0 < piyq; < 0.
In the limiting case when p;, ¢; — 0o we require that lim,, . ®;(p;, ) = 0,
z € (x;, zi41) and limg, o0 ¥;(g;, x) = 0, & € [x;, 2,41) so that the function S
in formula (1) turns into a linear function. Additionally, we require that if
p; = q; = 0 for all 7, then we get a discrete cubic spline. If TZ-Lj = TZ—Rj =1,
j = 1 — 1,7 for all ¢ then this spline coincides with a discrete cubic spline
of [10]. The case 7; = 7 for all ¢ was considered in [8].
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3 Construction of discrete GB-splines

Let us construct a basis for the space of discrete generalized splines SP¢
by using functions which have local supports of minimum length. Since
dim(SP¢) = 4N — 3(N — 1) = N + 3 we extend the grid A by adding the
points z;,j = =3, -2, -1, N+1, N+2, N+3,such that v_3 < z_y <2, < a,
b < TN+l < TNy2 < TN43-

We demand that the discrete GB-splines B;, i = —3,..., N — 1 have the
properties

Bi(z) > 0, € (xi+7" zipa— 157, (4)
Bi(r) = 0, ¢ (7i,Tiya),
N-1
> Bj(z) = 1, z€lab]. (5)
j=—3
According to (1), on the interval [z, z;41], j = ¢,...,i+ 3, the discrete
GB-spline B; has the form
Bi(z) = By(z) = Pij(z) + ®;(x)Mjp, + ¥;(x) M;s18,, (6)

where P;; is a polynomial of the first degree and M;p, = D,2Bi(z)), | =
J,j + 1 are constants to be determined. The smoothness conditions (3)
together with the constraints (2) give the following relations
Pij(z;) = Pij(x)) + 2 Mjs,,
DjiPij(x;) = DjaaPija(r;) +¢j2Mjm,,
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where

zj = zj(xg) = V(7)) — Dj(zy),
¢i12 = Dj 11V a(x;) — Dja®i(x;).

Thus in (6)

P j(x) = Pija(x) + [z + ¢jor2(r — 25)|Mj ;. (7)

)

By repeated use of this formula we get

J i+3
Pj(@)= > [a+aia(e—x)Mp, =— > [+ 12z — 3)|Myp,.
I=i+1 I=j+1

As B; vanishes outside the interval (x;, z;14), we have from (7) that P, ; =0
for j = 1,7+ 3. In particular, the following identity is valid

i+3
> [z +ejip(e — o) Mjp, =0,
J=i+1
from which one obtains the equalities

1+3

Z,
Yo ¢y Mis, =0, r=0,1, y=a; - —"—. (8)
j=it1 Cj-1,2
3 Construction of discrete GB-splines 0884‘

Thus the formula for the discrete GB-spline B; takes the form

[ Wi(x) My B, T € [Ti, Tig1),
(@ — Yiy1)CioMiv1 B, + Pipr () M1 g,
+ Wi (x) Miyom;, T € [Tip1, Tita),
Bi(z) = ¢ (Yits — 7)cizo2Mirsp, + Pipo(2) Mo, 9)
+ Wiso(2) Mit3B,, T € [Tita, Tiys),
Diy3(7) Miyap,, T € [Tiys; Tiya),
L 0, otherwise.

Substituting formula (9) into the normalization condition (5) written for
x € [z, x;41], we obtain

i—1 i
Z Bj(z) = &) Z M; s, + V() Z M1 8,
j=i=3 j=i-3 j=i—2
+(yi+1 - JJ)Ci,QMiH,Bi,rZ + ($ - yi)Ci—l,QMi,Bi,l =1.
As according to (5)
Y. Mg, = Y Mijip, =0 (10)
j=i-3 j=i2

the following identity is valid

(Yis1 —x)CiaMip1p,_, + (x —yi)Cic12M;p,_, = 1.
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From here one gets the equalities
r r J—
yi+10i,2Mz‘+1,Bi,2 —Y; Ci—1,2Mi,Bi,1 = 51,7‘7 r=0,1,

where 6;, is the Kronecker symbol. Solving this system of equations and
using (8) or (10), we obtain

My, = LTV 142043,
Cj—1,2Wi41(Y5)
wi+1(ﬂ7) = (33 - yi+1)(ﬂ7 - yz’+2)($ - yi+3)

or with the notation ¢;3 = yj10 — yj41, Jj = 4,0 + 1,

1
Mg, = ,
LB Ci2C;i 3
1 1 1
Mi+27Bi — <—+ ), (11)
Ci+1,2 \Ci,3 Ci+1,3
1
Mi+3,Bi =

Ci+2,2Ci+1,3

4 Properties of discrete GB-splines

The functions Bj, j = —3,..., N —1 possess many of the properties inherent
in usual discrete polynomial B-splines. To provide inequality (4), in what
follows we need to impose additional conditions on the functions ®; and V.
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The proofs of the following four assertions repeat those given in [5].

Lemma 2 If the conditions

0 < 2h74 W i(25) < Djm1a¥joa(zy),

0 < 2h7'®(z;) < =D ®;(x;), j=i+1li+2i+3 (12)
are satisfied, then in (11) ¢j >0, j =14,...,i+4—k; k=2,3, and

(=1 " 'M;p, >0, j=i+1,i+2i+3. (13)

Theorem 3 Let the conditions of Lemma 2 be satisfied, the functions ®;
and V; be conver and D;»2®; and D;2¥; be strictly monotone on the interval
[, 2j41] for all j. Then the functions B;, j = —3,...,N — 1 have the
following properties:

1. Bj(x) > 0 for z € (; +TJRj,x]~+4 — Tf_izg), and Bj(z) = 0 if v ¢
(l‘j,x]‘+4);

2. B; satisfies the smoothness conditions (3);

3. Z;‘V;_lg YioBi(w) =a", 1 =0,1forx € [a,b], ®;(x) = ¢j12¢j 23B; 3(2),
\IJJ(I) = ijQC]"g,Bj(fL') f07" S [Z‘j,l‘j+1], _] = 0, .. .,N — 1.
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Lemma 4 The function B; has support of minimum length.

Theorem 5 The functions B;, + = —3,..., N — 1, are linearly independent
and form a basis of the space SPY of discrete generalized splines.

5 Local approximation by discrete GB-splines

According to Theorem 5, any discrete generalized spline S € SP¢ can be
uniquely written in the form

S(x) = > bBj(v) (14)

for some constant coefficients b;.

If the coefficients b; in (14) are known, then by virtue of formula (9)
we can write out an expression for the discrete generalized spline S on the
interval [;, z;41], which is convenient for calculations,

S() = by + b2 (& — i) + b2, i) + B Wi (w), (15)
where
pk=D) _ pk=1)
W= k=12, Y =y, (16)
Cja—k
5 Local approximation by discrete GB-splines 0888‘

The representations (14) and (15) allow us to find a simple and effective
way to approximate a given continuous function f from its samples.

Theorem 6 Let a continuous function f be given by its samples f(y;), j =
—1,...,N + 1. Then for b; = f(yj+2), 7 = —3,...,N — 1, formula (14)
s exact for polynomials of the first degree and provides a formula for local
approrimation.

Proof: It suffices to prove that the identities
N-1
Z y;HBj(x) =7", r=0,1 (17)
j=-3

hold for z € [a,b]. Using formula (15) with the coefficients b;_, = 1 and
bj_o=y;, j=1—1,4,i+ 1,7+ 2, for an arbitrary interval [z;, z;4], we find
that identities (17) hold.

For bj_, = f(y;), formula (15) can be rewritten as

S(@) = fly) + Flyi vinl(@ = 93) + Wirr = v ) flyi1s Y3 yirrle o i)
+(Wire — vi) f[Yir Yiv1s yi+2]0521‘1’i($)> T € [24, Tiy1].

This is the formula of local approximation. The theorem is thus proved. &
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Corollary 7 Let a continuous function f be given by its samples f; = f(x;),
Jj=—2,...,N+2. Then by setting

bj—s = fj — L(‘I’j—l(l“j)f[l“jaﬂﬁj+1] = @j(2;) flrjmnz])  (18)

€j-12

in (14), we obtain a formula of three-point local approzimation, which is exact
for polynomials of the first degree.

Proof: To prove the corollary, it is sufficient to take the monomials 1 and
x as f. Then according to (18), we obtain b;_» = 1 and b;_, = y; and it only
remains to make use of identities (17). This proves the corollary. [ )

Equation (15) permits us to write the coefficients of the spline S in its
representation (14) of the form

by = { S(yj) = Dj1,25(2j-1)®5-1(y;) = DjpS(25) ¥ 1(ys), v < x5,

’ S(;) — D;j2S(x)®;(y;) — Djr125(x41)¥;(y;), yj > ;.
According to this formula we have b;_, = S(y;) +O(E§), h; = max(hj_1, h;).
Hence it follows that the control polygon (e.g., see [4]) converges quadratically
to the function f when b;_5 = f(y;), or if the formula (18) is used.
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6 Recurrence formulae for discrete GB-splines

Let us define functions

D]':Q\Ijj(x)7 S [xjvxjnLl)v
Bjo(z) =4 Djs12P11(7), @ € [xj41,7542], j=ii+1i+2. (19)
0, otherwise,

We assume that the functions D;»¥; and Dj 2®;; are strictly monotone on
[,2j41) and [x;41, 2 j40] respectively. The splines B, are a generalization
of the “hat-functions” for polynomial B-splines. They are nonnegative and,
furthermore, B s(z;4) = 1y, [ =0,1,2.

According to (9), (11) and (19) the function DB, can be written as

i+3
DyBi(z) = Y MjpBj1(x)
J=i+1
— L(Bm(ﬂﬁ) B Bz‘+1,2($)) 1 (Bi+1,2(ﬂ?) B Bi+2,2(l")) (20)
Ci,3 Ci,2 Cit1,2 Ci+1,3 Cit1,2 Cit+2,2

The function D;B; satisfies the relation

D\B;(z) = Bz‘,3($) . Bi+1,3($)’ (21)

Ci,3 Cit+1,3
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where
Dz' \Ilz- T
’101',2( )’ T € (75, Tj41),
Dj11®i11(v)  Djr11V;4(7)
Bia(r) =4 ' F Cj2 — e TELT), (99

_ Djr21®jia(w) £ € [2y0m 2113)

Cj+1,2 ) j+2>)Tj+3),
[ 0, otherwise.

Using formula (22) it is easy to show that functions B; 3, j = —2,..., N—1
satisfy the first and second smoothness conditions in (3), have supports of
minimum length, are linearly independent and form a partition of unity,

N

i Bjs(x) =1, z¢€la,b].

=1

~.

Applying formulae (20) and (21) to the representation (14) we also obtain

N-1 N—-1
DiS(x) = Y 0Bs(x), DuS(z) = 3 bB;a(x), (23)

j=—2 j=—1

where bgk), k =1,2 are defined in (16).
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7 Series of discrete GB-splines (uniform case)

Let us suppose that each step size h; = x;41 — x; of the mesh A :aq = x4 <
r1 < -+ < xy = bis an integer multiple of the same tabulation step, 7, of
some detailed uniform refinement on [a, b].

For # € R, 7 > 0 define
Ry, = {0 + i | i is an integer}
and let Ryo = IR. For any a,b € IR and 7 > 0 let

[a,b]; = [a,b] N R, .

The functions B, », B;3, and B; with TjLi = T]Ri =71,75=14,1+ 1 forall ¢

are nonnegative on the discrete interval [a, b],. This permits us to reprove the
main results for discrete polynomial splines of [9] for series of discrete gener-
alized splines. Even more, one can obtain the results of generalized splines
of [5] from the corresponding statements for discrete generalized splines as a
limiting case when 7 — 0.

In particular, if in (14) and (23) we have the coefficients bgk) >0, k=
0,1,2, 5 =-34k,..., N —1, then the spline S will be a positive, monoton-
ically increasing and convex function on [a, b],.

Let f be a function defined on the discrete set [a, b],. We say that f has
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a zero at the point x € [a, b], provided

f(x)=0 or f(r—7)-f(x)<DO.

When f vanishes at a set of consecutive points of [a,b],, say f is 0 at
T,...,x + (r—1)71, but f(x —7)- f(x +r7) # 0, then we call the set
X ={z,x+71,...,0+ (r — 1)1} a multiple zero of f, and we define its
multiplicity by

T, if f(x—7)-f(x+r7)<0andrisodd,
Zx(f)=q 1 if f(x—=7)-f(x+r7)>0andris even,
r 4+ 1, otherwise.

This definition assures that f changes sign at a zero if and only if the zero
is of odd multiplicity.

Let Zi. 4, (f) be the number of zeros of a function f on the discrete set
[a,b],, counted according to their multiplicity. Let us denote DLS(z) =
Slx — T, z].

Theorem 8 (Rolle’s Theorem For Discrete Generalized Splines.) For
any S € SP¢,
Zias),(DY'S) 2 Zja, (S) — 1. (24)

‘7 Series of discrete GB-splines (uniform case) C894‘

Proof: First, if S has a 2-tuple zero on the set X = {xz,...,x+ (r — 1)1},
it follows that DLS has a (2 — 1)-tuple zero on the set X' ={x +7,..., 2+
(r —1)7}. Now if X' and X? are two consecutive zero sets of S, then it is
trivially true that DFS must have a sign change at some point between X'
and X?2. Counting all of these zeros, we arrive at the assertion (24). This
completes the proof. 'Y

Lemma 9 Let the function D;2®; and D;,¥; be strictly monotone on the
interval [z;, ;1] for all i. Then for every S € SPY which is not identically
zero on any interval [x;, x;11],;, 1 =0,...,N —1,

Zjap),(S) < N +2.

Proof: According to (19) and (23), the function D»S has no more than one
zero on [x;, T;11], because the functions Dy ®; and DyW; are strictly monotone
and nonnegative on this interval. Hence Z[a’b}T(DQS) < N. Then according
to the Rolle’s Theorem 8, we find Zj,4, (S) < N + 2. This completes the

proof. '
Denote by supp,B; = {z € R, ; |B;(z) > 0} the discrete support of the
spline By, i.e. the discrete set (x; + 7,214 — T),.
Theorem 10 Assume that (3 < (o < --- < (n_1 are prescribed points on
the discrete line R, . Then
D:det(B,(C]))ZO, i,j:—g,...,N—l
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and strict positivity holds if and only if

¢ €supp,B;, i=-3,...,N—1 (25)

The proof of this theorem is based on Lemma 9 and repeats that of
Theorem 8.66 in [9, p.355]. The following statements follow immediately
from Theorem 10.

Corollary 11 The system of discrete GB-splines {B;}, j = —3,...,N —1,
associated with knots on R, , is a weak Chebyshev system according to the
definition given in [9, p. 36], i.e. for any (_3 < (o < --- < (y_1 in R, we
have D > 0 and D > 0 if and only if condition (25) is satisfied. In the latter
case the discrete generalized spline S(x) = LY 50;B;(x) has no more than
N + 2 zeros.

Corollary 12 If the conditions of Theorem 5 are satisfied, then the solution
of the interpolation problem

S(Cz):fl, i=-3,....,.N—1, f,€eR (26)
exrists and is unique.

Let A = {a;;}, 71 = 1,...,m, j = 1,...,n, be a rectangular m x n
matrix with m < n. The matrix A is said to be totally nonnegative (totally
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positive) (e.g., see [3]) if the minors of all order of the matrix are nonnegative
(positive), i.e. for all 1 < p < m we have

1<iy<---<i,<m,

det(a;j,) >0 (>0) for all 1<ji<<jy<n.

Corollary 13 For arbitrary integers —3 < v_3 < -+ < Vp_y < N — 1 and
(-3 < (g < -+ < (py in Ry, we have

D, =det{B,,((;)} >0, i,j=-3,....p—4
and strict positivity holds if and only if
¢i€supp,B,,, i=-3,...,p—4
i.e. the matriz {B;((;)}, 4,7 = —3,..., N — 1 is totally nonnegative.
The last statement is proved by induction based on Theorem 5 and the

recurrence relations for the minors of the matrix {B,;(¢;)}. The proof does
not differ from that of Theorem 8.67 described by [9, p.356].

Since the supports of discrete GB-splines are finite, the matrix of sys-
tem (26) is banded and has seven nonzero diagonals in general. The matrix
is tridiagonal if (; = x;,9, 1= -3,..., N — 1.
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An important particular case of the problem, in which S'(z;) = f, i =

79

0, N, can be obtained by passing to the limit as (_3 — (_o, (y—1 = (y_2-

De Boor and Pinkus [2] proved that linear systems with totally nonnega-
tive matrices can be solved by Gaussian elimination without choosing a pivot
element. Thus, the system (26) can be solved effectively by the conventional
Gauss method.

Denote by S~ (v) the number of sign changes (variations) in the sequence
of components of the vector v = (vq,---,v,), with zeros being neglected.
Karlin [3] showed that if a matrix A is totally nonnegative then it decreases
the variation, i.e.

ST(Av) <87 (v).

By virtue of Corollary 4, the totally nonnegative matrix {B;(¢;)}, i,j =
—3,...,N — 1, formed by discrete GB-splines decreases the variation.

For a bounded real function f, let S~(f) be the number of sign changes
of the function f on the real axis IR, without taking into account the zeros

S_(f):sgps_[f(gl),,f(Cn)], C1<C2<"'<<n'

Theorem 14 The discrete generalized spline S(x) = S77'5b;B;(x) is a
variation diminishing function, i.e. the number of sign changes of S does
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not exceed that in the sequence of its coefficients:

S*( Nf bij> <S5 (b), b=(by... by1).

j=—3

The proof of this statement does not differ from that of Theorem 8.68 for
discrete polynomial B-splines in [9, p.356].
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