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Abstract. In this paper we summarize the main results of [2] where an algo-

rithm of shape preserving C? spline interpolation for arbitrary 1 — D discrete
data is developed. We consider a classification of such data to separate the sec-
tions of linearity, the angles and the breaks. For remaining data we give a local

algorithm of C? interpolation by generalized splines with automatic choice of
the parameters to retain the monotonicity and convexity properties of the data.

§1. Introduction

It is well known that polynomial splines generally do not retain the geometric prop-
erties of the given data. To obtain the necessary solution many authors [1,3,4,5]
introduce some parameters in the structure of the spline. Then they choose these
parameters in such a way to satisfy the geometric constraints. The key idea here is
to develop algorithms for automatic selection of these parameters.

This paper defines a class of functions I (V') having shape properties determined
by a given set of points V = {P; = (v;, f;i) € R® : 29 < x1 < -+ < xn}. Based on
the definition, necessary and sufficient inequality conditions on V are given in order
that I(V') be non-empty. A local algorithm for covex and monotone interpolation
by C? generalized splines with automatic choice of the parameters is obtained. Its
application enables us to give a complete solution to the shape preserving inter-
polation problem for 1 — D data of arbitrary form, and to isolate the sections of
linearity, the angles and the breaks.

62. The Class of Shape Preserving Interpolants

Let the sequence of points V = {P;|i = 0,1,...,N}, P; = (x;, f;), on the plane
R? be fixed, where A : a = 29 < 1 < --- < zny = b forms a partition of the
interval [a, b]. We introduce the notation for the first two devided differences A; f =
(fixr — fi)/hiy hi = wp1 — x4, 4 = 0,1,...,N = 1; &f = Aif — Aj_1f, i =
1,2,..., N — 1. As usual, we shall say that the initial data increases monotonically
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(decreases monotonically) on the subinterval [z, xg], n > k, if A;f > 0 (A;f < 0),
i=mn,....,k—1. We say it is convex down (up) on [z,,zg], k > n+ 1if §;f > 0
((S,f < 0),7:271,,...,]6—2.

We call the problem of searching for a sufficiently smooth function S(z) such
that S(z;) = fi, i =0,1,..., N, and S(z) preserves the form of the initial data, a
shape preserving interpolation problem. It means that S(z) should monotonically
increase or decrease if the data has the same behaviour. Analogously, S(x) should
also be convex (concave) in data convexity (concavity) intervals.

Evidently the solution of the shape preserving interpolation problem is not
unique. We formalize the class of functions in which we search for the solution.

Definition 2.1. The set of functions I(V') is called the class of shape preserving

functions if for any S(x) € I(V') the following conditions are met:

(1) S(x) € C?[a,b;

(3) S'(x)A;f > 0 if A;f # 0 and S'(z) = 0 if A;f = 0 for all x € [x;, Ti41],
1=0,1,...,N —1; and

(4) S//(.I',)(S,f >0,2=1,2,....,.N —1; S”(CE)(ij >0,z € [ajial'i—i—l]; J =11+ 1
if §;fdix1f > 0; S(x) has no more than one inflection point T in the interval
(4, x541) if0; foi41f < 0 and also S"(z)d;f > 0 for x € [x;,T] and the number
of inflection points in the interval (z;_1,%;11) does not exceed the number of
sign changes in the sequence ;1 f,0;f,0;+1f.

Remark. When counting the number of sign changes in the sequence §;_1f,9;f,
d;+1f, the zeros are omitted.

The following propositions, characterizing the properties of shape preserving
interpolants, are proved by using simple geometric considerations.

Lemma 2.1. IfA; ;1 fA;f <0, then for the function S(x) to be shape preserving,
it is necessary that S'(z;) = 0.

Lemma 2.2. If §;f = 0 and d;_1fd;+1f > 0, then the unique shape preserving
function on the interval [z;_1,x;11] is the straight line passing through the points
Pi1, P, Piqy.

Corollary 2.1. If §;f = 0;+1f = 0, then the unique shape preserving function
in the interval [x;_1,%;41] is the straight line passing through the points P;, j =
t—1,0,9+ 1,7+ 2.

Lemma 2.3. If§,f = 0 and 0;_1 fd;+1f < 0, then for S(x) € I(V) it is necessary
that one of the following conditions be met:

(1) S"(zi)0i—1f > N;foi—1f, S"(x;) = 0;

(2) S/(CU) = Azf, S”(CU) =0 for all x € [aji—lal'i—i—l]-

Lemma 2.4. Let 0;f # 0 and S"(x;)S"(x) > 0 for all x € [z1,22], 21,22 €
[€;, x;41]. Then for S(z) € I(V') it is necessary that one of the following condi-
tions be met:



(1) S'(z1) < A,S < 8'(z2) for §;f > 0,

(2) S'(z1) > A,S > S'(22) for 6;f <0,

(3) S'(x) =A,S, S"(x) =0 for all z € 21, z2],
where A,S = (S(z2) — S(z1))/(22 — z1).
Lemma 2.4 immediately implies

Corollary 2.2. If §;,f0;41f > 0 and S'(x;) # A;f, j =14,i+ 1, then for
S(z) € I(V) it is necessary that the condition

S'(xi)0if < Nifoif < S (wiv1)dif

holds.

Corollary 2.3. If 6;—1fd;f > 0 and §;fd;+1f > 0, then for S(x) to be shape
preserving it is necessary that the inequalities hold:

min(A;_1 f, Aif) < S'(z;) < max(A;,_1f, Aif).

Lemma 2.5. If S'(x;) = 0, then for S(z) to be shape preserving it is necessary
that S”(CEZ)AZf Z 0, S”(CEZ')Ai_lf S 0.

Theorem 2.1. For the existence of a shape preserving function it is necessary and
sufficient that none of the following conditions hold:

(1) A1 fAF <0, Aj1 f #0,6i—2f0;f >0,0,1f=0,1=3,....,N -1,

(2) Ai1fAf <0, Aif #0,0,fiy2f 20,011 f=0,i=1,...,N =3,

(3) 0if #0,0i1f=0i01f=0,0f0f>0,k=1—-2,i+2,:=3,...,N — 3.

Necessity of this assertion is proved directly by using Lemmas 2.1-2.5. The
proof of the sufficiency consists in local constructing the shape preserving function
S(z) which interpolates arbitrary data and for which the conditions (1)—(3) of the
Theorem 2.1 are not satisfied.

We define now the admissible values Si(r) = S (x;), » = 1,2, in the knots
of the mesh A. The choice of these values should be subjected to the following
constraints:

min(Ai—lf7 A’Lf) < S,: < maX(Ai_1f7 Azf) and 57,fS;/ Z 0
if 0;f #0, 1<i<N-—1;
(S — Aif)dirf >0, SIAf >0, S/ =0
if (szf =0, 5i—1f61l+1f <0, 2< i <N — 2
(ST — ALf)daf <0, S1ALf>0,8) =0 if &.f=0,

(ng—l - AN_]_f)aN_Zf > 0, S;V—IAN—].f Z 0, S;\/f—l - (2.3)
if On—1f=0;



(Aof — 56)51f >0, S(I)Aof >0 (Aof 7é 0), S(’)’(Slf >0 if 51f 7é 0,
(Aof — S8)8af <0, S AGT > 0 (Aof #0), SU6f <0 (2.4)
if  01f=0,0f#0;

(S — An—1f)oN—1f >0, SNAn_1f > 0(An_1f #0), Syon—1f >0
if on_1f #0,
(Sy — An—1f)0N—2f <0, SNAn_1f > 0(An_1f #0), Syon—2f <0
if On_1f=0,0n_2f #0.

(2.5)

For the constructing of the shape preserving function S(z) it is sufficient to
eliminate from the consideration the intervals of the S(z) linearity and to define
S(z) in arbitrary subinterval [z;,x;41] for the following possible configurations of
the data:

(A) 6,f5,+1f >0, 0<i<N-—-1;

(B) 0if =0, 0i—1f6ix1f <0,1<i<N—1;
(C) 0ifdip1f <0, 1<i<N-2

(if i = 0, N, then we formally set 0; f = S.').

By introducing on the straight line, joining the points F;, P;;1, an additional
inflection point extending the mesh A the case (C) is reduced to the case (B). In
cases (A) and (B) the problem of the shape preserving function construction can
be reduced [2] to the solution in [x;, z;11] of the Hermite interpolation problem by
the given values SJ(.T), r=20,1,2; j = 4,1 + 1 with the function monotonicity and
convexity requirement in this interval and additional restrictions

min(S;, Sj,;) < A;f < max(S;, Si,4). (2.6)
AifS;>0, j=iji+l. (2.7)
S7/(Sis1—8)) >0, j=ii+1. (2.8)

According to the Definition 2.1 the following relations should be satisfied too:

SH(CU)SH(CU]') >0, g=121+1;, =ze€ [«Tial'i—i—l]- (29)

§3. The Solution of the Hermite Interpolation

Problem with Constraints

The question of local construction of the shape preserving function S(z) can be
solved by using generalized cubic splines [4,5].



Definition 3.1. Our generalized cubic spline on the mesh A will be a function
S(z) € C?a,b] such that in any subinterval [z, ;1] it has the form

S(z) = [Sj — ¢;(0)AFS}1(1 = t) + [Sj1 — (V)RS 1]t
+903(t)h35”+¢g() 7 ;/—1—17

where t = (x — x;)/h; and the functions ¢;(t), ¢;(t) satisfy the conditions

PV =90)=0, r=01,2 ¢I0)=y/1) =1

We assume that ¢} (t), 17 (t) are continuous monotonic functions of the variable
t € [0,1] values and

pi(t) = o), t), i) =e(g,1-1), pjq >0. (3.2)

To solve the Hermite interpolation problem with constraints on the interval
[, 2;11] let us define a function

(3.1)

| S(x, i, x4i) if € x;,xinl;
Slw) = {S($7$¢1,$i+1) if €[z, ®iy1),

which has the form (3.1) on the intervals [z;, x;1], [x;1, i+1] and satisfies the inter-
polation and smoothness conditions

S0 (z;) = f(’“) S (g1 —0) = ST (2, +0), r=0,1,2; j=1i,i+1.

We assume that the inequalities (2.6)—(2.8) are fulfilled and according to (2.7)
we have S;S;. | > 0.
Let us introduce the notations

Sit1— Aif
hit = Ti1 — g, pin =1 — Nix = har /by, 75 =~ ——
Sz{+1_Sz{
Sit — fi i+1 — S hiSj
Lo/ ﬁ,.—f“ ! = j=i,i+1.

M M T
According to these notations and by the inequalities (2.6) we have
Aif =78+ (1= 7)Si1, 0<m <L (3.3)

Using the formula (3.1) we obtain

= s LT 87 = ) — vi(IS! + s |
fi = — ! {(hz - hu)TﬁlSéLl — 31(0)S;1 + [0i1(0) + @1 (0)] z{—l—l}v (34)
©;:1(0)

Tt =[5 (0) + @5 (0)][9;(1) — 5 (V)] = 9 (0)9;(1),  j = i,il.



By the continuity of the spline second derivative in the knot x;; we have the
equation

/ |:)\i1 o 7 Aa g _Mi1 g
)

S IO A ) B O R A Ol (3.5)
ROy g Ve g
w;(l) 211431094 (p;l(o)ﬂzl 7 71 i+1]-

Now taking into account the identity p;1c; + A1 = A;f and substituting
here the expressions for «;, f;, Si; from (3.4) and (3.5) we arrive at the equation
with respect to p;1

(I)i(ﬂil) = Ai,ufl + Bi/ﬁizl + Cipin + D; = 0. (3.6)

If now to set p;1 = ¢; then according to (3.2) we have in (3.6) the coefficient
A; = 0 and to define p;; we obtain the quadratic equation

1 . . .
Qi (pi1) = I Bip? + Cipin + D | =0, (3.7)
where
Bi =[¢i(1)¢}(0) + T, oy + [ (1)}, (1) — Ty o,
Ci = — ¥i(1)@;(0); + [~ (1)whin (1) + 2T oigr + 24(1) — (1),
D; = — Tiloigr — i(1) + manpl(1).
Since 1
®,(0) =7; — m [T5101+1 + i (1)],
Bi(1) = — (L—7) + — [T oy + ()]

pi(1)

we can find such p;, g;, g;;, that for all p; > p,;, ¢ > @;, ¢i1 > @;; according to
(3.3) we have ®;(0) > 0, ®;(1) < 0. Thus the equation (3.7) has a unique root
pi1 € (0,1).

As p;1 = ¢; we can rewrite the equation (3.5) in the form

Siv = Si + pir(Sipr — S§) — v bl (0) S + iy (1)S744]. (3.8)

Considering f(z) as a sufficiently smooth function we assume that

SJ(.T) — f;r) = O(hf"’l_’"), r=1,2;j=14,i+1; k=2 or k = 3. Then using (3.8) we

obtain
i1 — (@) =S; — fi = [9i(0) + ¢i (D] X par hi f]]
+ hit (b — ha)[1/2 = 9 (D" + O(B5).
It implies that the approximation error order will increase for the derivative of
the spline in the point z;; if according to (3.2) we set ¢;1 = p;.
We consider now the question of the shape preserving properties for the gen-
eralized spline S(z) in the interval [x;, x;11]. The following criterion is valid.



Theorem 3.1. By the fulfillment the restrictions

pi(1)
bi(1)

pi(1)
bi(1)

(,01(0) <1-— Tis — (pz(O)O'H_l < Ti, (39)

the unique shape preserving generalized cubic spline S(x) exists solving the Hermite
interpolation problem with restrictions (2.6)—(2.9).

Proof: The conditions (2.6) — (2.8) are fulfilled by the construction. The re-
quirement (2.9) means the absence on [z;,z;41] of inflection points for the shape
preserving function S¢(z). Let us show that for the spline S(z) this condition will
be fulfilled if the inequalities are valid

min(ag, 5;) < Si; < max(ag, ),
min(S;, A; f) < a; < max(S;, A; f),
min(S;, 1, Aif) < B < max(S; 1, Aif).

It is convenient to rewrite these inequalities in the form

ai(sz{ﬂ - S:) < Si1(S; N z/) < Bi(S; i1 Sz{)_l
Sl( i+1 S?f) < al( i+1 Sl) < A; f( i+1 S/)_17 (310)
Az’f(Sz{Jrl —SH)t< 5¢(Sz{+1 -5)t< Sl+1(S;+1 S~

7

From (3.4) and (3.8) we find

il
w1

a; = S + prin (Si — S') {1 + ( )Uz + X1 (0) (i1 — Ui)] , o (3.11)

)
)
B = Loy — An(SLay — S E

i (1) -1 /
0 [1 + (1)J¢+1 — pi190;(0) (0541 — o'i):|_

It enables us to write the conditions (3.10) in the form

2383 [1+ IZ:; )Uz + Xi10}(0)(oiq1 — 03)] < L+ X19(0) (i1 — 04),
ZES; [1 + £;1)0z+1 Mil‘P;(O)(UH—l - Uz’)] <1- ,Uil(p;;(o)(ai-}-l — i),
bl P ——0 Oit1 — Oy —T;
0< le;(l) [1 sz( ) 1,+)‘11901(0)( i+1 1,)] <1 29
V(1) Tt /
0 < ANi1—=~ o (D) [1+ lbz(l)am i@ (0) (051 — 03)] < 73



To fulfill these inequalities and the conditions ®;(0) > 0, ®;(1) < 0 it is suffi-
cient to choose the parameters p;, ¢; in such a way that the restrictions (3.9) are
satisfied.

According to (3.1)

Si = ai +[9i(0) + i (0)]hi1 S — ¢s(1)hir i
Then by substituting here the expression for a; from (3.11) we have

Si.,— 8]
i1 = #/(1) [1 + ¢;(0) (piroi + >\¢10¢+1)]- (3.12)

If the inequalities (3.9) are fulfilled, the expression in square parentheses in
(3.12) is positive and S;1(Siy; — S;) > 0. As S{(Si,; — S;) >0, j =i,i+1, we
conclude from here that ;357 >0, j =4,i+ 1.

From (3.1) on the interval [z;, ;1] we have

S () = Si'eq (t) + Siei (¢).
Since ¢!/ (t), ¢! (t) > 0 for ¢t € [0, 1], then
S”(CE)S;-/ >0, jg=1,11 for xz¢€ [a:i,a:“].

We arrive at an analogous conclusion by considering the subinterval [x;1, 2;41]. As a
result the function S”(z) is convex in the interval [z;, z;41] and S’(x) is monotone.
Because of the assumption S;S;, ; > 0 the function S(x) has the monotonicity
property. The theorem is proved.

The given construction completes the proof of the sufficiency conditions of
Theorem 2.1 from the previous section.
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