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CHAPTERI

INTRODUCTION

1.1 Overview of the Calculations and Literature Survey

The ferroelectricity of materials was discovered for the first time in Rochelle
salt crystal by Valasek (Valasek, 1921). Later, the ferroelectricity was discovered in
ABOQO; perovskite crystal, i.e., BaTiOz in 1945 (Kanzig, 1945), opening up a new class
of materials that, later on, have successfully been used for a variety of industrial and
commercial applications. In addition to ferroelectricity, there have been continued
research on a wide range of interesting properties in perovskite materials, including
but not limited to, piezoelectricity, semiconductivity (Samantaray et al., 2004),
catalytic activity (Wang et al., 2007) and thermoelectricity (Frederikse et al., 1964).
These properties make these materials suitable for many technological applications,
for e.g., eletro-optical devices, semiconductor, waveguides, laser frequency doubling,
and high capacity memory cells (Wang et al., 2007; Frederikse et al., 1964; Auciello
et al., 1998; Mete et al., 2003).

Because of various interesting properties of perovskite materials as mentioned
above, they have been intensively investigated both theoretically and experimentally
for a long time. However, there are still outstanding properties waiting to be studied
as will be discussed next.

The elastic properties are among the most fundamental properties of materials

that are important for their mechanical manipulation. Therefore, the elastic properties



of perovskite materials are among the properties that have been widely studied both
experimentally and theoretically.

On the experimental side, the elastic properties of perovskite materials have
been widely studied. For examples, Li and co-workers (Li et al., 1991) used the
Brillouin scattering and ultrasound techniques to measure the velocity of the
ultrasound in a single tetragonal BaTiOj3 crystal. The sound velocities can be used to
translate into the elastic and piezoelectric constants. Kalinichev and co-workers
(Kalinichev et al., 1997) also used the same method to study the elastic and
piezoelectric constants of a single crystal of tetragonal PbTiO3. The elastic properties
of SrTiO3 have also been studied by various groups using different techniques
(Schranz et al., 1999; Poindexter and Giardini, 1958; Lheureux et al., 1999). This is
because SrTiOj3 has a rather simple structure (cubic phase in nature) with high quality
crystals available. Lheureux and co-worker also used the ultrasonic measurement
technique to study the elastic constants and their pressure dependence of cubic
SrTiOs. In addition, they also found the cubic-tetragonal phase transition to occur at 6
GPa.

On the computation side, Wang and co-workers (Wang et al., 2010) used the
density functional theory (DFT) to study several properties of perovskite BaTiOs,
including the elastic properties. In their works, the elastic constants of four structures
(cubic, tetragonal, orthorhombic and rhombohedral) of BaTiO3; have been reported.
Meng and co-worker (Meng et al., 2010) also used DFT to study the elastic and
piezoelectric properties of BaTiOs in the tetragonal structure. Liu and co-workers
(Liu et al., 2008) used DFT to study the elastic properties of perovskite PbTiO3 in

both cubic and tetragonal structures. They reported the calculated elastic constants of



both structures as well as the equilibrium tetragonal-to-cubic phase transition
pressure. Their calculated transition pressure of 10.1 GPa is in a reasonable agreement
with the experimental value of 11.5+0.3 GPa (Zha et al., 1992). The elastic properties
of natural cubic perovskite SrTiO; have been studied by Boudali and co-workers
(Boudali et al., 2009). They used DFT to calculate its elastic constants. The elastic
properties of another perovskite materials, SnTiOs, have been calculated based on
DFT by Taib and co-workers (Taib et al., 2012). Their results showed that SnTiOg is
stable in the cubic phase (Pm3m). Among all above mentioned theoretical studies,
only the work of Taib and co-workers on SnTiOgs, included the study of elastic
properties under pressure.

Although, the elastic properties of several perovskite materials have already
been studied. The knowledge on pressure dependencies of their elastic properties and
sound velocities is very limited. The aim of this thesis is to employ first principles
method to study the elastic properties and sound velocities of some perovskite
materials under hydrostatic pressures. In this thesis, in Chapter I, we will give a brief
description of the calculation method employed. In Chapter I, the calculated
structural parameters under ambient conditions in comparison with available
experimental and theoretical results are presented. In addition, the brief description of
elasticity in materials and the elastic constants are also explained. The calculated
elastic constants and sound velocities of selected cubic perovskite as a function of
hydrostatic pressure are presented in Chapter IV. Because we studied various
materials, we can study the trend of how the elastic constants changed with the cation
species. The trends of elastic constants of ATiO3; (A=group IIA elements) and PbBO3

(B=Ti, Zr and Hf) are analyzed in Chapter V. Finally, the ongoing work of the elastic



properties of mentioned materials in other crystal structures are presented in Chapter

VI.
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CHAPTER 11

THEORETICAL APPROACH

For simulation of materials, various information of materials system could be
extracted from the electron wave function. In principle, the electron wave function
can be obtained by solving the Schrodinger equation of the many-electron system.
However, directly solving the full set of Schrodinger equations of many-electron
problem is too complicated. Hence, there are many approximations employed to
simplify the many body problems into solvable ones. The density functional theory
(DFT) is the widely used method to reduce the many-electron Schrodinger equation
into a solvable problem. In this chapter, we will briefly explain the theories,
approximations, methods and software used in this thesis. Detailed information can

be found in the respective literature referenced throughout the chapter.

2.1 Density Functional Theory

The success of DFT is not limited to standard bulk materials, but also for
complex materials such as proteins and carbon nanotube (Ramachandran et al., 2008).

The main idea of DFT is to describe the complicated many-body electron interactions
through its density, n(r) (Parr and Yang, 1989), not its wavefunction, w,. DFT can

be viewed as a ground state theory with the electron charge density serving as the



variational parameter (Hohenberg and Kohn, 1964). The description in detail of DFT

will be described in the following section.

2.1.1 The Hohenberg and Kohn Theorem

For any system consisting of electrons moving under the external potential,
V.. (r), Hohenberg and Kohn proposed that the ground state energy and all properties
of electron wavefunction in the external potential can be determined from the electron
density, n(r). They showed the ground-state energy of many electron wavefunction

can be written as (Hohenberg and Kohn, 1964)
E[n(?)}:jvm (F)n(?)dst[n(F)] (2.1)

where V_ (r)is the external potential which generated by the interaction between

ext

nuclei and electrons. F [n(?)} is an unknown function, but it is a universal functional

of the electron density n(r). It does not depend on the external potential and includes

all kinetic energy and electron-electron interaction terms (Parr and Yang, 1989).

2.1.2 Kohn and Sham Equation
Kohn and Sham (Kohn and Sham, 1965) introduced a method based on

Hohenberg and Kohn theorems to minimize the ground state energy function. They
proposed that the universal function (F [n(?)}) in Equation 2.1 can be separated into

three parts. Therefore, the ground-state energy of many electron wavefunction can be

written as,



E[n(r)|= Ve (F(r) @+, [ n(r) |+, [ n(r) |+ E.[n(r)].  2)
where the second term, V, [n(?)} is the electron-electron Coulomb energy (also

often referred to as Hartree energy) can be defined as,

V, :%” n(;)_nF(r )dSrcPr‘. (2.3)

The third term, T, [n(?)] is the kinetic energy of the non-interacting system with the
same density and it is not the exact kinetic energy function (T [n(?)}) The
difference between T[n(?)} and T{n(?)} is proposed to be small and can be

included into the exchange-correlation energy, Exc[n(F)} which is the last term in

Equation 2.2 (Parr and Yang, 1989).

Therefore, the Kohn-Sham-effective potential can be written as,

Vi (1) =Vi (F)+e2f%d3r +W. (2.4)

Finally, the ground state solution of a one-particle problem can be obtained by

solving the Schradinger equation in the effective potential v, (r),

hz
{——Vz +Vq (r)}wi(r)=giy/i(r). (2.5)
The electron density for this system is given by (Kohn and Sham, 1965),

n(r)=i§_l:|x//i G (2.6)

where N is the number of electrons.
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Equation 2.5 has to be solved self-consistently. Initially, a guess of n(r) is
used to construct V., which is an important function needed to define the

Schrodinger equation in Equation 2.5. The Schrédinger equation then can be solved

to obtain the wavefunctions ;. Then the so-obtained y, can be used to construct an
improved n(r). The improved n(r) s then used to construct new V.. in Equaton 2.5.

This routine is repeated until convergence is reached, i.e., the n(r) remains unchanged

(or changed between the iterations within an acceptable value).

2.2  The Exchange Correlation Function
In Equation 2.4, the exchange correlation energy E,. [n(?)} is the only part in

the effective potential (Ver), which is not exactly known. In order to solve the one-

particle Schrédinger equation in Equation 2.5, the E,. [n(?)} must be approximated

or defined. In this thesis, two popular approximations of E, [n(?)} were employed;
the local density approximation (LDA) and the generalized gradient approximation
(GGA).

LDA, which was introduced by Kohn and Sham in 1965 (Kohn and Sham,

1965), can be said to be the most widely used approximation. It is assumed that the

density can be treated locally as an uniform electron gas. Under LDA, the E,, [n(?)}

depends on the value of electron density at each point in the system. The local density

approximation defines the exchange correlation energy as (Parr and Yang, 1989),
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ELDA [n(?)} :jn(F)gxc [n(?)}d%, (2.7)
where &, [n(?)} is the exchange correlation energy per particle of a homogeneous

electron gas with the density n(r). The &, [n(?)} can be written in the combination
between exchange and correlation energy as (Parr and Yang, 1989),

eu[n(H]]= e [0(7)] - [n(]. 2o
where gx[n(F)] and gc[n(F)} are the exchange and correlation energy density of a

homogeneous electron gas of density n(F), respectively. The exchange energy term,

gx[n(F)} was derived from the analytical form of a homogeneous electron gas by

Dirac in 1930 (Dirac, 1930) and can be written as (Parr and Yang, 1989),

&[n(r)]=-cn(r)" c, = %(%)ﬂs. (2.9)

The correlation energy term, gc[n(F)} was first calculated by Wigner (Wigner,

1938). For a homogeneous electron gas at different densities, the correlation energy
was calculated based on quantum Monte Carlo calculations by Ceperley and Alder
(Ceperley and Alder, 1980). The LDA method was successfully used for calculating
the equilibrium structures and harmonic vibration frequencies of crystals but it usually
fails in obtaining an accurate binding energy. Details of successes and failures of
LDA have been nicely discussed by Jones and Gunnarsson (Jones and Gunnarsson,

1989).
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Later GGA was introduced to take into account the variation of electron

density in space. Under GGA, the exchange-correlation energy Exc[n(F)J is a

function of the electron densities and their gradients, ‘Vn(?)‘ (Kohn, 1999).

ES® [n(r) ] =[ £ n(r), vn(r) jn(r)d°r. (2.10)
GGA method improves the ground state properties. It reduces the errors in the binding
energy of light atoms, especially in small molecules. For solids, GGA usually
produces larger equilibrium lattice parameters than LDA and it is not clear which one
IS better in a particular system than the other. In many cases, GGA overcorrects the
LDA results, leading to the results are in worse agreement with experiments.
However, GGA is believed to provide improved the value of binding energies,
especially, for the systems that the electron density is more fluctuated.

There are many forms of GGA functional for the exchange correlation energy,

Exc[n(F)] The popularly used are B88 (Becke, 1988), PW91 (Perdew and Wang,

1992), and PBE (Perdew et al., 1996).

2.3  Bloch’s Theorem and Plane Wave Basis Sets

Even with the DFT and a simple exchange-correlation function, the direct
calculation of an almost infinite number of electrons in the electric field from an
almost infinite number of ions is still impossible. In a direct calculation of a real
system, the wave function has to be calculated for each and every electron in the
system which is in the order of 10% electrons. In addition, to fully describe each

electron wave function, the basis set, if not carefully chosen, could be infinitely large.
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However, the fact that crystalline has periodicity of ions can be used to reduce the
computational demand based on Bloch’s theorem. By using this theorem, it is
possible to express the wave function of an infinite crystal in terms of the wave
functions in the reciprocal space.

In principle, Bloch’s theorem uses the periodicity of a crystal to transform the

real space electron wave functions to the reciprocal space wave functions. Bloch’s

plane wave function can be written as a product of the wave part, e'*" and a periodic

part, u_, (F) (Kittle, 1996),

v (r) =% (r), (2.12)
where

U, (F):unR (F+ﬁ). (2.12)
Equation 2.11 and 2.12 are the well-known Bloch’s theorem, where r is the position

in the crystal, R is the lattice translation vector in the crystal, k is the wave vector, n

is the band index representing different solutions that have the same wave vector k .
Using the Fourier transformation of the periodic function to the reciprocal space, the
wave function in Equation 2.11 can be written in the sum plane waves form as (Kittle,

1996),
v ()= 2 (G)e°, (213

where G is the reciprocal lattice vectors. This allows the calculations to be done in
the reciprocal space. In order to limit the number of plane wave used for the
expansion, the plane waves used in the calculations are those with the kinetic energy

smaller than the energy cutoff, Ec,wo, (Martin, 2004),
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(2.14)

h? 2

%|k+G| <E ot -
The value of required energy cutoff depends on the required accuracy of the

results and the complication of the wave functions which is mainly related to the

elements under study.

2.4  Special k-point in the Brillouin Zone

The Brillouin zone is the Wigner-Seitz cell in the reciprocal lattice, which is
defined by the planes that are the perpendicular bisectors of the vectors from the
origin to the reciprocal lattice points. The first Brillouin zone is the smallest unit cell
in the reciprocal space that corresponds to the crystal unit cell in real space (Martin,
2004). In principle, we should calculate for the wave functions at every k-point in the
first Brillouin zone. In practice, it is impossible to do calculations with the infinite
number of k-points and the wavefunctions are quite similar for k-points in the same
vicinity. Therefore, it is possible to sampling a limited number of k-points in the first
Brillouin zone. There are various k-point sampling methods introduced. In this work,
we employed the sampling method introduced by Monkhorst and Pack (Monkhorst

and Pack, 1976)

2.5 Pseudopotentials

Electrons in materials can be divided into two types: core electrons and
valence electrons. The core electrons are in the inner shell of each atom. The valence
electrons are in the outer shell. The valence-electron wavefunctions are orthogonal to

the core-electron wavefunctions. A set of plane-waves (PWs) with a limited Ecyo 1S
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not suitably to describe the core region. This is because the wavefunctions in the core
region has a fast oscillation characteristic (Heine et al., 1970). However, the physical
properties of materials depend mainly on the valence electrons. Therefore,
pseudopotential approach was introduced. In the pseudopotential approach, the core
electrons are approximated to be “frozen”. The valence-electron wavefunctions do
not need to be orthogonal to the core states. This means that the properties of the
systems are calculated based on an assumption that core electrons are not involved in
the chemical bonding and do not change as a result of structural modifications. In the

pseudopotential scheme, the deep core potential part is replaced by a smooth
pseudopotential, V" (r) as illustrated in Figure 2.1. Removing the core electrons

from the calculations should not seriously affect the bonding properties in materials

because the core electrons should remain almost unchanged under all deformations of

interest shall it be included. The corresponding set of pseudo wavefunctions, " (r)
and all electron wavefunctions, y/(r) are matched outside a selected core radius, rc.

Inside r., ™ (r) does not have the fast oscillation features that required the plane
waves with high energy cutoff to describe. Instead, the wave function which is the
solution to pseudopotential becomes very smooth in core area as illustrated in

Figure 2.1.
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Figure 2.1 lllustrations of the pseudopotential and the pseudo wavefunction. The blue
dash lines represent the real electrons wavefunction, w(r), and real potential, V/(r) .
The red solid lines represent the corresponding pseudo wave functions, ™ (r) based

on the pseudopotential, V™ (r). The cutoff radius, r. represents a radius at which the

all electron and pseudo quantities are matched. (The figure is reproduced from Ref.

(Wolfram Quester Source, 2006))
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2.5.1 Norm-conserving pseudopotentials
Initially one of the requirements of the pseudopotetials is the norm-conserving
conditions. This is to ensure that the integration of both pseudo and all-electron
wavefunctions within the core region be the same (Hamann et al., 1979). The norm-
conserving conditions are defined from the following list of conditions (Martin,
2004).
1. Outside the core, the real and pseudo wavefunctions generate the same charge

density, this can be expressed as,
(Ve (e (VAT = [y (Mg (NA°T (2.15)
0 0

Equation 2.15 means that all electron and pseudo wavefunctions (should be smooth
and nodeless) are the same outside the core, i.e.,
Ve () =Wes (1) 5 > (2.16)
2. The eigenvalues should be conserved, i.e.,
g =™ (2.17)
3. The logarithmic derivatives of all electron and pseudo wavefunctions and their

first energy derivatives agree at r.

The logarithmic derivative for an angular momentum I, can be written as

D) (g):%lm//,(r;g) =%, (2.18)

where w, (r; ¢) is the solution of the radial Kohn-Sham equation for a fixed potential

and fixed energy ¢.
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The norm-conserving pseudopotentials, V™ can be divided into the local

potential, (V,"*(r)) and the non-local potential, (V>

loc nonloc

(r)) (Kleinman and Bylander,
1982) as,

V7 =V (N + Voo (N =Vigg (N + | AV (4] (2.19)

The non-local part is the deviation from the all electron potential and is confined

inside r.. The projector, |ﬂ|> acts on the wavefunctions with angular momentum (l),

which is localized within re.

2.5.2 Ultrasoft pseudopotentials

Although pseudopotentials allows the expansion of pseudo wavefunctions
using a set of plane waves as a basis, there are still quite a large number of plane
waves required to produce an accurate wave functions. Small increase in number of
plane waves used in the basis set significantly impact the computation demand. To
reduce number of plane waves needed, an ultrasoft pseudopotentials (USPPSs)
approach were introduced. The USPPs approach was introduced by Vanderbilt in
1990 (Vanderbilt, 1990), in order to allow the calculations to be performed with the
lowest possible cutoff energy for the plane-wave basis set.

The norm-conserving requirements have been relaxed in USPPs, to obtain
shallower potentials and smoother wave functions in the core regions. Instead of
using the plane wave to describe the full valence electron wave function, only small
portion of the wave function is calculated within the USPPs scheme. This allows one

to reduce substantially the wave cutoff energy in the calculations (Meyer, 2006).
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2.5.3 Projector augmented waves

The projector augmented waves (PAW) method was proposed by Bldchl
(Blochl, 1994). In this method, a smooth wavefunction () is created. There exists a
linear transformation which is relates the all electron wave function (y) to the

smooth wavefunction (w) by the linear transformation operator, z through the

relationship,
|l//>=2’|l//>. (2.20)
Utilizing the linear transformation of PAW method, the all electron wavefunction (y )

can be written as

v) (221)

w) =|w>+Zm‘,(|wm>—|wm>)<pm

where . is the localized all electron partial wave for state m, . is the localized
smooth partial wave for state m, and <pm‘ is the localized projection operator. The

linear transformation operator = can be written as,

T=1+;(|wm>—\wm>)<pm :

(2.22)

In Equation 2.22, the linear transformation operator 7 can be used to add back the
core potential of an all electron wavefunction to a smoothed wavefunction. Note that

Equation 2.22 can be for core as well as valence states (Martin, 2004).
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2.6 Hellmann-Feynman Theorem

The Hellmann-Feynman theorem derives from the relationship between the

derivative of the total energy and the derivation of the Hamiltonian. If A is a

parameter in the Hamiltonian, (H ), we can write the derivative of energy with respect

to 4 as

5=l

o
oE /oy oH

— E —r + -

EY) <a/1 |W> <"”

w>+<w\H\‘Z—Z>,
w>+E<wIZ—Z>,

oA

E el )+ 2t

o B Wi\ )
= oH
E_/[ IeH],\ 2.23
>~ <w 27 w> (2.23)

where z//(/I) is an eigenfunction of H. Equation 2.23 is the well-known Hellmann-

Feynman theorem (Hellmann, 1937). It shows that the derivative of the total energy
with respect to a parameter A can be calculated using the derivative of the operator
instead. If A4 is R, the forces are obtained and the Hellmann-Feynman force theorem

is written as,

i:__:_J‘ () ext(r)dB aE :—<l//ﬁ

oR oR R

t//>—aE—”, (2.24)

where E, is the electrostatic nucleus-nucleus (ion-ion) interaction.



21

2.7 The Vienna Ab initio Simulation Package (VASP)

In this thesis, the calculations were performed by using the Vienna Ab initio
Simulation Package (VASP) developed by Kresse, Hafner and Furthmiller (Kresse
and Hafner, 1994; Kresse and Furthmiller, 1996a; Kresse and Furthmiller, 1996b).
In VASP, the electron wavefunctions are described by using the planewaves (PWs)
basis set. The ultrasoft pseudopotentials (USPPs) (Vanderbilt, 1990) and projector
augmented wave (PAW) (Blochl, 1994) potentials needed for the calculations are
included in package. In this thesis, the pseudopotentials (without PAW) that are
sufficient to provide good description of elastic properties are mainly employed. The
k-point samplings are based on the Monkhorst-Pack approach (Monkhorst and Pack,
1976). The main computational part for solving the Kohn-Sham equation self-
consistently utilized an iterative matrix-diagonalization scheme such as, a conjugate
gradient scheme (Teter et al., 1989; Bylander et al., 1990) and block Davidson
scheme (Davidson, 1983). The Broyden/Pulay mixing scheme (Pulay, 1980; Johnson,
1988) is efficiency used for mixing the original and new electronic charge density
during the self-consistency calculation loops. The computational scheme used by the
VASP codes is illustrated in Figure 2.2. More details can be found in the manual of
VASP (Kresse and Furthmdller, 2012) and an article by the developers (Kresse and

Hafner, 1994; Kresse and Furthmiiller, 1996b).
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Trial-charge density (o) and trial wave function (‘)

Set up the
Hamiltonian

Iterative diagonalization, optimize wave function (¥,)

New partial occupancies f, and new energy E

; — —~ 2
New charge density p,, (r) = Zn f, ‘Pn(r)‘

Mixing of charge densities p. = p,, = new p;

!

AE < E

No

break

Yes

Obtain minimized energy, forces and update the ion locations

Figure 2.2 The self-consistency scheme used in the VASP codes.
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CHAPTER Il

CRYSTAL PROPERTIES

3.1 Perovskite Crystal Structure
The family of perovskite materials is composed of a large number of

compounds. The ideal cubic perovskite (space group Pm3m) structure has ABXs
stoichiometry and is composed of a three-dimensional framework of corner-sharing
ABg octahedra. The structure of an ideal cubic perovskite is illustrated in Figure 3.1,
where the A cations are located at the corners of the cube. B cation is located in the
center of oxygen cage, where the oxygen ions located at the face-centered position of
the cube. The A-site cation fills the 12-fold coordination formed by the BX3 network
and is surrounded by 12 equidistant anions (Johnsson and Lemmens, 2007). The ideal
cubic perovskite structure is simple but not the commonly observed structure. The
observed structures usually involves the tilting of BXs octahedra, the displacement of
B-site cations, and/or the distortion of the octahedral (Megaw, 1973). Additionally, if
either or both of the A- and B-cation sites contain more than one cation types
(including vacancies), an ordering of A cations and/or B cations may occur, resulting
in the distortion from the cubic symmetry (Mitchell, 2002; C.J. Howard et al., 2003;
Howard and Stokes, 2002). The distortion is directly related to the physical properties
of these compounds. Recently, the perovskite oxide family (ABO3) is widely studied.
In this thesis, we focus our attentions on the ATiO3 perovskite materials (where A is a

divalent metal) and PbBO3 perovskite materials (where B = Ti, Zr and Hf).
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Although the actual structure of some studied compounds might has some
distortion from the ideal cubic structure, for simplicity, only the perfect cubic
structure is chosen in this thesis. The equivalent positions of the atoms are shown in
Table 3.1. The calculated values of lattice parameters for selected perovskite materials
are shown in Table 3.2 in comparison with available calculated and experimental
results in the literatures. Our calculated values are in good agreement with the

literatures.

z

L
y*—jtx

Figure 3.1 An ideal cubic perovskite unit cell. The dark gray spheres represent A

cations, blue spheres: B cation, and red spheres: oxygen anions.

Table 3.1 Atomic positions in cubic perovskite.

Site Location Co-ordinations
A cation (2a) 0,0,0)
B cation (2a) (0.5,0.5,0.5)

O anion (6b) (0.5, 0.5, 0) (0.5, 0, 0.5) (0, 0.5, 0.5)
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Table 3.2 Lattice parameters for selected perovskite compounds. Our calculated
values are based on the perfect cubic perovskite structure. Values in parentheses are

taken from the literature.

Materials Parameters Calculations Expt.
LDA GGA
. a (A) 3.76 3.82
BeTIOs V (A3) 53.2 55.7 ]
MaTiO a (A) 3.79 3.84
glits Vv (A?) 54.4 56.6
a (A) 3.82 3.88
CaTiO; (3.89%) (3.90°,3.895°)
V (A% 55.7 58.4
a (A) 3.87 3.94
SITiOs (3.86%,3.91" (3.94° (3.929)
V (A% 58.0 61.2
a (A) 3.95 4.02
BaTiO3 (4.00",3.96°% (4.03% 4.00°
V (A% 61.6 65.0
a (A) 3.87 3.94
SnTiO3 (3.89" (3.94" -
V (A% 58.0 61.2
a (A) 3.89 3.97 _
PbTiOs (3.93% (3.96% (3.97)
v (&%) 58.9 62.57
a (A) 4.13 4.19
PbZrO; (4.11% (4.19%4.18" (4.16™)
V (A% 70.4 73.56
a (A 4.08 4.14
POHTO: V (A% 68.0 71.0 )

4Calculations by Lee et al.(Lee et al., 2009)

®Measurement by Ali and Yashima (Ali and Yashima, 2005)
‘Measurement by Brendan et al. (Brendan et al., 1999)
dCalculations by Piskunov et al. (Piskunov et al., 2004)
®Calculations by Boudali et al. (Boudali et al., 2009)
fCalculations by Wang et al. (Wang et al., 2010)
9Measurement by Hellwage et al. (K.H. Hellwage and A.M. Hellwage, 1969)
"Calculations by Daga et al. (Avinash Daga et al., 2011)
'Calculations by Parker et al. (Parker et al., 2011)
JMeasurement by Shirane et al. (Shirane et al., 1956)
kCalculations by Wang et al. (Wang et al., 2005)
'Calculations by Baedi et al. (Baedi et al., 2008)
MMeasurement by Fujishita et al.(Fujishita et al., 2002)
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3.2 Elastic Properties

For material developments, elastic properties of materials have been
intensively studied. They are the fundamental important information for interpreting
and understanding the nature of bonding in solid and can be used to describe the
material mechanical behaviors. In this section we will give a brief introduction to the

theory of elastic properties of materials and the set up to calculate them.

3.2.1 Elastic properties of materials

A solid object under an external force is in a state of stress. The stress is
defined as the force per unit area. Because force is a vector quantity, the stress is a
direction dependent quantity and generally described by a stress tensor g;. If all parts
of the object are in equilibrium and no external force, the Einstein’s convention

equation for summation (Kittel, 1996) can be written as

oo,
L2y (3.2)
8xj

where x; denoted as the Cartesian axes. The deformations of the object caused by the

external stress are described by the strain tensor e;;. If an atom is displaced with the

displacements u, , the strain tensor is defined as

. Ou,
o — | M M) (3.2)
2 ox;  OX

1
In the strain tensor, the diagonal components (¢e,;, e,, ande,,) are called tensile strain,
whereas the off-diagonal components are called shear strain. For a small deformation,

the linear theory of elasticity is a good approximation of the strained state of solid.

For small stresses (or small deformations), the elongations and distortions of an object
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are generally linearly proportional to the applied stresses. Note, however, that this
theoretical model does not refer to the atomistic nature of the matter, i.e., the atomic
bonds or the crystal structures do not enter as a prerequisite to this concept. The rang
of the linearity is called the elastic limit. Beyond the elastic limit, a non-linear effect
can break the direct proportional between the stress and strain, this region is called
plastic region. For large stresses, a plastic dissipation makes the deformation

irreversible (Kittel, 1996).

3.2.2 Elastic parameters and crystal symmetries

The elastic parameters are the fundamental parameters providing detailed
information on the mechanical properties of the materials. These qualities can give
insight on the mechanical behaviors of the material under different situations. Based
on Hook’s law for solid with a small deformation, stress components, ;i (i, j = X, Y,
z), can be expressed in term of the strain components, e;; (i, j = X, Yy, z) in the matrix

form as (Elliott, 1998),

O Cy Cp C3 Cp Cs Cg [ B
Oy Cu Cp Cpy Cy Cps Cy || By
O _ Ca Gy Gy Gy Gy Gy || & ' (3.3)
Oy, Cu Cpp Cpy Cyy Cis Cyg || B
Ox Coi G Cgy Cg Coy Gy || €4
Oyy Coo Coo Cgs Cg Cgs Cos €y

where a;j (I, ] = X, Yy, z) are the stress components, e;; (i, ] = X, y, z) are the strain
components, and C,, (4, a = 1, 2, 3,..., 6) are the elastic constants in the unit of GPa.
In the general form, the matrix of elastic components should contain 81 components.

However, due to the symmetry of g; and e;;, each of them have only 6 independent
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components. Therefore, we need only 36 elastic constants as shown in Equation 3.3.
These elastic constants are denoted as Cy,, Where the indices m and n are defined as
1=xx, 2=yy, 3=zz for the compression components and 4=yz,zy; 5=zx,xz; 6=xy,yx for
the shear components (Kittle, 1996).

The final number of independent elastic constants can be further reduced
based on the level of symmetry of crystal structure. In principle, all of 36 elastic
constants are independent. In practice, many of them are the same due to material
symmetries. In particular, the crystal with cubic symmetry has much reduced number
of independent elastic constants, i.e., C1; = Cy = C33, C12= Cp1 = Cp3=C3 = Cy3=
Ca1,and Cygq = Cs5= Cge. In addition, by symmetry, the off-diagonal shear components
are also vanished, i.e., Cs5s = Css = Cs6 = Cgs = Css = Cesa = 0 and the mixed
compression/shear couplings do not occur i.e. Ci4 = C4 = ... = 0. Therefore, the

elastic constants matrix for a cubic crystal has the form (Kittel, 1996),

’.GO BO ":O
'GO ':O ’.SO
::O 'SO ',GO
o o o

(3.4)

© O o o o
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There are only three independent elastic constants; (1) Cy; which is based on the
longitudinal compression, (2) Ci,, which is based on the transverse expansion and (3)
Cus, Which is the shear modulus. The schematic representations of the three elastic
constants of materials with the cubic symmetries are represented in Figure 3.2. To
obtain elastic constants from first principles calculations there are two approaches:

stress-strain methods and energy-strain method (Kittel, 1996; Elliott, 1998).
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[

() (b) (©)

Figure 3.2 Representation of (a) longitudinal compression (Ci1), (b) transvers
expansion (Cy2) and (c) shear modulus (Ca4s). The figure is reproduced based on the

work of Elliott. (Elliott, 1998).

3.2.3 Elastic constants calculations

The elastic constants of materials with known microscopic structure can be
obtained by ab-initio calculations using two major approaches (Le Page and Saxe,
2002). The first approach is based on the analysis of the changes in the (calculated)
stress values resulting from the changes in the strain. This approach is called ‘stress—
strain approach’ (Nielsen and Martin, 1983). In practice, the stresses can be obtained
from the “Hellmann-Feynman theorem”. Another approach, called "energy-strain
approach” (Le Page and Saxe, 2001), is based on the analysis of the total energies of
different strained states of the material.

In this work, the energy-strain approach was used to obtain the elastic
constants of selected perovskite oxides. Under small deformations, the stresses can be
approximated to be linearly proportional to the displacements of atoms, i.e., the

potentials can be considered to be harmonic. Under this approximation, the elastic
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energy density can be expressed as a quadratic function of the strains. The elastic

energy density can be written as (Kittel, 1996),

6 6

U=23"3Cpee, (35)

23 j=1
where the indices 1, 2, 3,..., 6 are defined in the same way as Equation 3.4. Each

elastic constantC; can be obtained from the derivative of U with respect to the

associated strain components (Kittel, 1996).

In our wok, the total energy (E) is calculated for the difference predefined
(small) strain (exx,eyy,€22,€2y,€2x,8xy) CONfigurations. For each strain configuration, E is
also calculated at a few values of the strains (e) (Wright, 1997). The energy-strain
curve for each strain configuration is fitted to a third—degree polynomial function.
Then, the second derivative of energy with respect to strain gives the elastic constants.

For cubic materials, the three independent of elastic constants can be obtained
(among various possible sets of strain configurations) using the following set of strain
configurations. The first component of elastic constants of cubic structure Cy; can be
obtained by using the strain configuration D; = (e, 0, 0, 0, 0, 0). The elastic energy

density under this strain configuration can be written in the matrix form as

'GO ’.GO EO
BO ’.:O BO
":O ’GO BO
o o o

u, =%(e,o,o,o,o,0) (3.6)
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The multiplication product of the matrices in the right hand side of Equation 3.6 gives
U, :%Cllez. By calculating the total energies of the material under a few values of

the strain, e, the energy-strain curve can be obtained. Then the energy-strain curve is
fitted to the third—degree polynomials and second derivative of the energy with
respect to the strain gives Cy;.

The second component of elastic constants, C;,, can be obtained by using the
strain configuration D, = (e, e, 0, 0, 0, 0), where the elastic energy density can be

written in the matrix form as

C, C,C, 0 0 0)fe
C,C,C, O 0 O |e
u2=1(e,e,o,o,o,0) Co Co Cu 0000 : (3.7)
2 0O 0 0C, 0 0O
O 0 0 0C, OfoO
00 00 0 C,Jjlo

The multiplication product of the matrices in the right hand side of Equation 3.7 gives
U, =(C,, +C,)e’. The second derivative of the energy with respect to the strain gives
us 2(C,+C,,).

The last component of elastic constants, Ca4, can be obtained by using the

strain configuration D3 = (0, 0, 0, e, 0, 0), where the elastic energy density can be

written in the matrix form as

BO BO EO
'SO .’:O '.GO
::O BO .’30
o O O

U, =%(o,o,o,e,o,0) (3.8)

O O o o o

O O ® O O O

o O o
o O O
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The multiplication product of the matrices in the right hand side of Equation 3.8 gives
U, :%CMeZ. The second derivative of the energy with respect to the strain gives us

C44.
Our calculated values of the elastic constants for selected perovskite materials
compared with available theoretical and experimental results are shown in Table 3.3.

Our calculated values are in reasonable agreements with available literature.
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Table 3.3 Calculated elastic constants (in GPa) for selected cubic perovskite

materials. Values in parentheses are from the literature.

, LDA GGA
Materials
Cu Cop Cus Cu Cp Cus
BeTiO; 363 121 48 307 112 48
MgTiOs 380 110 73 339 102 72
CaTiOs 405 110 100 356 103 98
385 113 119 326 103 112
SrTi03
(421%317%)  (1217102%) (133*123%) (313%311%) (98%99°) (113%104°%)
357 123 137 303 111 125
BaTi03
(358%,305°) (115%,106°) (150%128°) (3019 (104%) (132%)
SnTiO; 280 145 91 319 131 86
328 127 102 280 116 97
PbTiOs
(450%383°) (261%151°) (113%120°) (3259 (158?) (107%)
PbZrO; 363 93 64 317 88 64
PbHfO; 379 96 76 338 93 75

4Calculations by Piskunov et al. (Piskunov et al., 2004)
PCalculations by Liu et al. (Liu et al., 2008)

“Calculations by Boudali et al .(Boudali et al., 2009)
Experimental by Bell and Rupprecht (Bell and Rupprecht, 1963)
dCalculations by Wang et al. (Wang et al., 2010)
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3.3 Sound velocities in anisotropic materials

To model the propagation of the sound wave in anisotropic materials, we
assume that atoms can be oscillated around their equilibrium positions, leading to the
lattice vibrations. When considering the lattice vibrations, three major assumptions
are made; (i) the displacements of the atoms from their equilibrium positions are
small (ui«a, where a is a lattice parameter), (ii) the forces acting on atoms are
linearly proportional to the displacements, and (iii) adiabatic approximation is valid,
i.e., the electron cloud is moved along with the atoms and the bond strength is not
affected by the vibrations. In addition, the material is treated as a continuous medium
not a discreet one. The vibrations are referred to as the elastic waves.

To understand the elastic wave, we first consider a segment of a long bar with
the width dx. The elastic displacement of the segment dx is denoted by u as illustrated
in Figure 3.3(a). Based on Newton’s second law, the equation of motion can be

written as

d?u

F=m—: 3.9
>, e (3.9)
which implies that

d?u

F (x+dx)— F(x) = (pAdx) R

(3.10)

where p is the mass density and A is the cross-section area of the bar. Eq. (3.10) can

be simplified as

= p— (3.11)

From the definition of stress, Equation (3.11) can be written as
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d du
= p (3.12)

where oy is the compressive stress. If the wave propagates along [100] direction,
Hook’s law can be written by

o, =C.e,. (3.13)
where Cy; is the longitudinal compression or Young’s modulus and exx = du,/dx is the
tensile strain. Substitute Equation (3.13) and the definition of the tensile strain into
Equation (3.12), we get

d’u (C. \d%u
W(?Jd— (3:14)

For a longitudinal wave, the solution of the wave equation (3.14) can be written as
u(xt) = Ae' ™y, (3.15)
where q is the wave vector and w is the frequency which can be written as
@w=V.Q. (3.16)
v, is the longitudinal sound velocity which can be written as a function of the elastic

constants as

1

v, =(Cy/p)>. (3.17)
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Figure 3.3 Representation of (a) the longitudinal wave and (b) the transverse wave in

a slab. The figure is reproduced from Ref. (Elliott, 1998)
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In the case of a transvers wave, the equation motion is based on the shear
stress and strain. Consider Figure 3.3(b), in the same way as the longitudinal wave,
the equation of motion for the transverse wave can be written as

d 2
iwzp%gq (3.18)

where oy is the shear stress which is related to the shear modulus and shear strain by

the relationship
Oy =Culy- (3.19)
exy = duy/dx is the shear strain. Substitute Equation (3.19) and the definition of shear

strain into Equation (3.18), we get the transverse wave equation as

2 2
9£=(9£}1;, (3.20)
p ) dx

The displacement is in the y direction when the wave propagates in the x direction.
The solution of Equation (3.20) can be written as
u(xt) = Ae'®™ My, (3.21)
where q is the wave vector and w is the frequency, which can be written as
w=\.q. (3.22)
vt is the transverse sound velocity, which can be written as a function of the elastic

constants as

1
v, =(C,/ p)2. (3.23)
Note that there are two linear independent transverse modes characterized by the

displacement in y and z directions. For [100] direction, the velocities of these modes

are the same due to the symmetry. Normally, Cy; is larger than Cy4, therefore, the
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longitudinal sound velocities are generally larger than the transverse sound velocities.
The sound velocities mentioned above are in [100] direction. For other directions, the
sound velocities depend on the combinations of the elastic constants. The detailed
derivations can be found in Ref. (Kittel, 1996). The relationships of the sound
velocities and the elastic constants for a cubic crystal are summarized in Table 3.4.
The schematic illustration of the propagation directions of elastic waves and the

directions of the sound velocities are illustrated in Figure 3.4

Table 3.4 Sound velocity expressions of each wave propagation direction for a cubic

crystal (Kittel, 1996).

Sound velocity in different

directions Expression

v ([100]) (Culp )™*
vr([100]) (Caalp )?
vi([110]) [(Cii+ Cro+ 2Cus ) 2 p] 2
vr([110]) [(C11- C12)/ 2p] **
vi([111]) [(Cio+ 2C12+ 4Cus ) 3p]

vr([111]) [(C11- C12 + Cas)l 3p]°
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Figure 3.4 Representation of an elastic wave in a cubic crystal for (a) wave
propagating in the [100] direction, (b) the [110] direction and (c) the [111] direction.
Two transverse modes are degenerate for the propagation in the [100] and the [111]
directions. The red arrows represent the direction of wave vector and the dark blue
arrows represent the direction of the oscillation. The figure is reproduced from Ref.

(Kittel, 1996)
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CHAPTER IV
SOUND VELOCITIES AND ELASTIC PROPERTIES OF
PbTiO; AND PbZrO; UNDER PRESSURE:

FIRST PRINCIPLES STUDY

4.1 Introduction

PbZrO;3; (PZO) and PbTiO3 (PTO) are the parent compound materials of the
extensively utilized ferroelectric material Pb(Ti,Zr)O5; (PZT). PZT (as well as PZO
and PTO) has perovskite structure and is used in many devices such as ultrasonic
transducers and piezoelectric actuators (Yamamoto and Makino, 1996). The room
temperature phase of PZO and PTO is orthorhombic and tetragonal structure,
respectively (Kagimura and Singh, 2008; Kalinichev et al., 1997). Both orthorhombic
PZO and tetragonal PTO have only slight distortion from the perfect cubic perovskite
structure. The elastic properties of PZO and PTO under ambient pressure have been
studied by various research groups. Liu and co-workers (Liu et al., 2008) theoretically
studied the elastic properties of PTO in both cubic and tetragonal phases. Kalinichev
and co-workers (Kalinichev et al., 1997) used brillouin light scattering on single
crystalline PTO samples to obtain the elastic and piezoelectric constants at room
temperature. For PZO, Kagimura and D. J. Singh (Kagimura and Singh, 2008) studied

the elastic properties and energetics of orthorhombic and rhombohedral phases.
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The effects of hydrostatic pressure on perovskite materials have been
experimentally and theoretically investigated. However, to our knowledge, the elastic
properties and sound velocities of PTO and PZO under pressure have not been
reported. For PTO, most of previous works were performed in order to understand
their ferroelectric properties under pressure. Liu and co-workers (Liu et al., 2008)
focused mainly on the calculations of equilibrium tetragonal to cubic phase transition
pressure of PTO.

In this chapter, the elastic constants and sound velocities of cubic perovskite
PZO and PTO under pressures were studied based on density functional theory

calculations.

4.2  Computational Method

The computational approach employed was based on first principles density
functional theory (Hohenberg and Kohn, 1964; Kohn and Sham, 1965) with plane
wave pseudo-potentials as implemented in the Vienna Ab-initio Simulation Package
(VASP) code (Kresse and Furthmiller, 1996). For the exchange correlation terms,
both local density approximation (LDA) (Ceperley and Alder, 1980; Perdew and
Zunger, 1981) and generalized gradient approximation (GGA) (Perdew et al., 1997)
were used. The ultrasoft version of the pseudo-potential implemented in the VASP
code allows a low cut off energies for the plane wave expansion (only 500 eV). We

used a 8x8x8 Monkhrost-Pack scheme (Monkhorst and Pack, 1976) k-point sampling.
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In our calculations, the structures of PTO and PZO were treated as ideal cubic

structures with the space group Pm3m (#221) as illustrated in Figure. 3.1. The
atomistic positions follow the Wychoff positions: Pb 1a (0,0,0), Ti (or Zr) 1b
(0.5,0.5,0.5) and O 3c (0,0.5,0.5), (0.5,0.5,0) and (0.5,0.0.5) as shown in Table 3.1.

To study the elastic properties, the total energies (E) of a unit cell of material
at several slightly different volumes (V) were calculated and fitted into an equation of
states (Li et al., 2005). If the unit cell is uniformly scaled, to simulate the hydrostatic
pressue effect, the bulk modulus (By) and its pressure derivative (B' ) is obtained.
Under the same approach, other elastic constants and sound velocities can be
calculated as described in Sarasamak et al. (Sarasamak et al., 2010). The reduced
material volume can be translated into the corresponding pressure following the
pressure—volume (P-V) relationship constructed by Birch-Murnaghan’s equation of

state (Poirier, 2000) written as,

P(V)= 3—?{(%)7/3 (\élmHu %(B' -4){[%)2/3 _1}, (4.1)

where Vj is the equilibrium volume.
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4.3 Results and Discussion

4.3.1 Structural and elastic properties

The calculated equilibrium lattice constants as well as the corresponding
volumes of both PTO and PZO calculated based on both LDA and GGA exchange
correlation functional are shown in Table 4.1 in comparison with other computation
and experimental results. Our values are in agreement with other corresponding
calculated results. In comparison with the experimental value, LDA tends to give a
slightly smaller lattice constant while GGA tends to give a larger value. This is
consistent with what have generally been observed in other materials.

The calculated bulk modulus (B), its pressure derivative (B'), and the elastic
constants at zero pressure of both PTO and PZO are also shown in Table 4.1. Because
LDA gives a smaller lattice constant compared to the corresponding value obtained
using GGA, the bulk moduli and all elastic constants computed using LDA are
consistently higher than the corresponding ones computed using GGA. PTO has been
previously studied by Piskunov et al. (Piskunov et al., 2004) and Liu et al. (Liu et al.,
2008). Liu’s LDA results are consistently higher than our results while their GGA
results are quite similar. To our knowledge, there is no computation result available
for PZO. The sound velocities, shown in the bottom section of Table 4.1, can be

derived from the elastic constants using the expressions shown in Table 3.4.
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Table 4.1 Calculated lattice constants (a) in A, a unit cell volumes (Vo) in A%, bulk
modulus (B) in GPa, its pressure derivative (B'), elastic constants in GPa and sound
velocities in km/s of PbTiO3; and PbZrOs in the cubic perovskite structure compared

with the literature.

PbTiO3 PbZrO;
LDA GGA LDA GGA

a Present 3.89 3.97 4.13 4.20

Other Calc.  3.88%3.93° 3.98% 3.96° 4.11° 4.19° 4.18"

Expt. 3.95° 4.16'

Vo Present 58.76 63.32 70.22 74.08
B Present 219 185 181 168

Other Calc. 2299, 324° 213° - -
B' Present 4.5 3.5 4.6 3.7
Cu Present 380 316 366 322

Other Calc. 3849, 450" 325" - -
Ci2 Present 145 130 92 89

Other Calc. 1519, 261° 158" - -
Cu Present 103 96 63 62

Other Calc. 1209, 113" 107° - -
v [100] Present 6.66 6.25 6.69 6.42
v7[100] Present 3.46 3.44 2.78 2.82
v [110] Present 6.53 6.28 5.98 5.86
v7[110] Present 3.70 3.39 4.10 3.86
v [111] Present 6.48 6.43 5.72 5.65
vr[111] Present 3.63 3.55 3.71 3.55

& Calculations by Hosseini et al. (Hosseini et al., 2007)

® Calculations by Piskunov et al. (Piskunov et al., 2004)
¢ Calculations by Wang et al. (Wang et al., 2005)

¢ Calculations by Baedi et al. (Baedi et al., 2008)

¢ Measurements by Kuroiwa et al. (Kuroiwa et al., 2001)
" Measurements by Fujiishita et al. (Fujishita et al., 2002)
9 Calculations by Liu et al. (Liu et al., 2008)
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4.3.2 Elastic properties under pressure

To study the elastic constants and sound velocities under hydrostatic
pressures, the calculations were performed at several reduced volumes, each of which
corresponds to the system under a different pressure. The pressure can be determined
from the pressure-volume relation shown by Equation 4.1. Sound velocities of PTO
and PZO under pressure can be obtained from the corresponding elastic constants
using the expressions (cite) given in Table 3.4.

The elastic constant as a function of pressure for cubic perovskite PTO and
PZO are shown in Figure 4.1. The elastic constants of both materials have similar
behaviors under pressure. In general, we can see that all three elastic constants, Ci,
Ci, and Cy4 increase with the pressure. In both PTO and PZO, C;1, which is related to
the longitudinal distortion, rapidly increases with the pressure. On the other hand, C,
and C44 are much less sensitive to the pressure. Indeed, C44, Which is related to the
transverse distortion, remains almost constant throughout the pressure range studied.
The calculated sound velocities under pressure for both cubic perovskite PTO and
PZO are shown in Figure 4.2. Since the sound velocities are directly derived from the
elastic constants, similar trends were found. All of the sound velocities, except for the
v1([100]) of PZO, increase with pressure mainly because they contain C;; which
rapidly increases with pressure. In PZO, vr([100]) slightly decreases under pressure
because it associated only with C44 which remains almost flat with pressure and
divided by p which increases with the pressure. As expected, the longitudinal modes

are larger than the transverse modes such that they can be divided into two groups.
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Figure 4.1 Elastic constants as a function of pressure for cubic perovskite PbTiO3 and

PbZrQO3, obtained from LDA (left) and GGA (right).



54

9 T | T | T | T

g | (@ POTIO, v,([100]) |
L v, ([1101)}

7 — —]
[ = i

6 — —]

51 v (110D 51— vty
£ 4 ST 4 ]
2l L vAL00D 3' C 1L 1 p00D ]
g 70 10 20 30 40 "o 10 20 30 40
_E 9 [ T T T T T V|([100|]) ] 9_ T T T T T ‘|)([10|0]) ]
E 8 _(b) PbZrO3 L —9 g L —»

7L L v,([110n]

s 1 6L H

5 ;‘/‘/.’vw' 5 :_//‘/./‘v/y([l‘li])r_;'

4 vA[11ID—  4¢= vA[111])

s vaoop | sl vA[100]) _

I TR B R I T I R

20 10 20 30 20 20 10 20 30 40

Pressure (GPa)

Figure 4.2 Sound velocities as a function of pressure for cubic perovskite PbTiO3 and

PbZrQO3, obtained from LDA (left) and GGA (right).
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4.4 Conclusions

The elastic constants and sound velocities of cubic perovskite PTO and PZO
as a function of pressure were calculated by first principles calculations. Both LDA
and GGA exchange and correlations were used. The calculated zero-pressure
properties are in good agreement with literature; ensuring the validity of the results.
LDA gives slightly smaller lattice constants and larger bulk moduli than GGA which
is consistent with what have been observed in other materials. The elastic constants
and sound velocities under the pressure range of 0—40 GPa were presented. The
elastic constants almost linearly increased with pressure. Cy; rapidly increases with
pressure while C;, and Cy4 are much less sensitive to pressure. Because the sound
velocities are related to the elastic constants, almost all of them increase with

pressure.
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CHAPTER V
ELASTIC PROPERTIES OF PEROVSKITE ATiO3

(A=Be, Mg, Ca, Sr and Ba) and PbBO; (B=Ti, Zr, and Hf)

5.1 Introduction

The elastic properties are the fundamental properties that providing detailed
information on the mechanical properties of materials. Because the elastic properties
can be used to describe and predict the mechanical behavior of materials in different
situations, they are widely studied. For perovskite family of oxides (ABOg), the
elastic properties of several materials have been studied theoretically (computation)
and experimentally.

Examples of materials that have been studied theoretically by first principles
DFT calculations are BaTiO3; (Meng et al., 2010; Wang et al., 2010), PbTiO3 (Liu et
al., 2008), SrTiO3 (Boudali et al., 2009) and SnTiO3 (M.F.M. Taib et al., 2012).

On the experimental side, several perovskite oxides have also been studied. Li
and co-workers (Li et al.,, 1991) used the Brillouin scattering and ultrasound
techniques to measure the velocity of the ultrasound in a single tetragonal BaTiO3
crystal. The sound velocities can be used to calculate the elastic and piezoelectric
constants. SrTiOj3 has also been studied different techniques (Lheureux et al., 1999;

Poindexter and Giardini, 1958; Schranz et al., 1999). This is because SrTiO3 has
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rather simple structure (cubic phase at room temperature) with high quality crystal
available. Lheureux and co-worker used the ultrasonic measurement technique to
study the elastic constants and their pressure dependence of cubic SrTiOs.

Although the elastic properties of some ABO3; perovskite materials have been
studied, the trend of how the elastic constants changed with the cation species has not
been investigated. In this chapter, how the elastic constants change with cation
species will be investigated by systematically varying A-site and B-site cations. In
this work, while we vary the A-site among different Group Il elements, we fix the B-
site to be Ti. The A-site was fixed to be Pb when we vary the B-site among different

Group IV transition elements. The cation elements used are highlighted in Figure 5.1

5.2 Computational Method

In this work, the computational approach employed is based on first principles
density functional theory (DFT) (Hohenberg and Kohn, 1964; Kohn and Sham, 1965)
with the plane wave pseudo-potential as implemented in Vienna Ab-initio Simulation
Package (VASP) code (Kresse and Furthmiller, 1996). Both local density
approximation (LDA) (Ceperley and Alder, 1980; Perdew and Zunger, 1981) and
generalized gradient approximation (GGA) (Perdew et al., 1996) were used as the
exchange correlation terms. The ultrasoft version of the pseudo-potential implemented
in the VASP code allows a low cut off energies for the plane wave expansion of only
500 eV. We used a 8x8x8 Monkhrost-Pack scheme (Monkhorst and Pack, 1976) k-
point sampling. More detailed information on the computation approach can be found

in Chapter 11
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In our study, the structure of selected perovskite materials was assumed to be

the ideal cubic structure (space group Pm3m) as illustrated in Figure 3.1 (Chapter I11)
with the atomistic positions following the Wychoff positions tabulated in Table 3.1.
The energy-strain relation was used to determine the elastic constants. The elastic
energy density (U) can be expressed as the quadratic function of the strains as, (Kittel,

1996)

6

Zicijeiej ’ (5.1)

i=1l j=1

U:

N |-

where the elastic constants C; can be obtained from the derivative of U with respect

to the associated strain components (Kittel, 1996). For example, in order to calculate
the Cy; elastic constants, the strain configuration D; = (e, 0, 0, 0, 0, 0) was used. The

elastic energy density can be written in a matrix as,

C,C,C, O 0 0)fe
c,C,C, 0O 0 010
ul=a5(emxo,oxx0) Co G Gy 0, 000 : (5.2)
2 O 0 0C, 0 OO
O 0 0 0C, O0]oO
0 0 0 0 0 C,J\O

The multiplication product of Equation (5.2) gives the energy of this strain

configuration as Ulzgcnez. The elastic energy was calculated with the several

values of the strain (e) and then the energy-strain curve was fitted to the third—degree
polynomials as shown in Figure 5.2. The second derivative of the energy with respect
to the strain gives us C;;. Other elastic components can be obtained using similar

steps. More details can be found in Chapter Il (Section 3.2.3).
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Figure 5.1 A periodic table with the cation species, used in the study, highlighted.

The red rectangle highlighted the elements used on the A-site while fixing the B-site

to be Ti in the cubic perovskite ABO3. The blue rectangle highlighted the elements

used on the B-site while fixing A-site to be Pb. [The figure is reproduced from Ref.

(Wolfram Quester Source, 2013)]
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Figure 5.2 A typical energy-strain curve fitting used to obtain the elastic constants.
The black square points represent the calculated data and the red curve represents the

third-degree polynomial fitting.



63

5.3 Results and Discussion

As described in Chapter 111, there are only three independent elastic constants
(C11, Ci2 and Cy4) for cubic crystal. Each of them represents the directional
mechanical responses of the crystal for different directions of applied forces with the
details described in Chapter 111 (Figure 3.2 and Section 3.2). The calculated elastic
constants of selected perovskite materials (according to what previously described
criteria) based on both LDA and GGA exchange correlation functional are tabulated
in Table 3.3. In general, LDA tends to consistently give slightly larger elastic
constants than GGA. Our values are in good agreement with available calculated and
experimental results.

To understand the trend of the elastic constants with respect to cation species,
the elastic constants for materials with different A-site cations and B-site cations are
plotted with respect to the atomic numbers of the varied cations in Figure 5.4(a)(c)(e)
and (b)(d)(f), respectively.

The longitudinal elastic constant, C;y, directly represent the stiffness of the
crystal. It is based on the longitudinal compression as shown in Figure 3.2. From the
plot (Figure 5.4(a)), we can see that as we varied the A-site cation from Be to Ba, Cy;
increases until it reaches the maximum, when Ca is the A-site cation, then decreases.
As we varied the B-site cation (Figure 5.4(b)), from Ti to Hf, Ci; monotonically
increases. Although the behavior of Cy; with respect to A-site and B-site cations
seems to be complicated and no clear trend, it can be explained using a simple
explanation as following. The perovskite structure can be considered to be a network
of two intercalating cage structures; A-site cage and oxygen cage as illustrated in

Figure 5.3. Because the two networks share the same set of oxygen atoms, the
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volumes of the two types of cages are not independent but tied to each other. The
volumes of the two cage types are not necessarily optimized at the same time.
Therefore, the overall lattice constant of the crystal is optimized at the interplay point
that compromises the volumes of the two types of cages. Both networks of cages
contributed into the strength (C;1) of the crystal. When the atomic species that
occupies an A-site is smaller than that occupies a B-site, the strength of the crystal is
dominated by the network of the oxygen cages. On the other hand, when the atomic
species that occupies an A-site is larger than that occupies a B-site, the strength of the
crystal is dominated by the network of A-site cages. The crystal becomes the most
stiff (C11 reaches maximum) when the size of atomic species that occupies an A-site is
comparable to that occupies a B-site; the point where both types of cages contributed
to the stiffness of the crystal. As we varied the A-site cation and fixed the B-site
cation to be Ti, the maximum Cy; takes place when an A-site atom is Ca which has
the size most comparable to Ti among all Group-11 elements used. At other point,
only one type of the cages is dominating the stiffness, resulting in a lower C;;. By
using the same reasoning, the behavior of Cy; with respect to the changes of the B-site
cation, can also be explained. When we change the B-site cation, the A-site cation is
fixed to be Pb. We would expect Cy; to be the largest when the B-site cation is
comparable to Pb; in this case Hf. Therefore, it is not surprising that Ci;
monotonically increases as we varied the B-site cation from Ti to Hf. Cj; is expected

to shift lower for PbRfO3 (not calculated).
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(b)

Figure 5.3 lllustration of the polyhedral of ideal cubic perovskite crystal from (a) a

perspective view and (b) top view. The blue-green cage represents the oxygen cage.
The dark gray spheres represent A cations, blue-green spheres are B cation, and red

spheres are oxygen anions.
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Figure 5.4 Elastic constants (C;;) of perovskite (a) ATiOz and (b) PbBO;3 as a function

of atomic number of A-site and B-site atom, respectively.
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The transvers elastic constant, Ci,, is based on the transverse expansion as
shown in Figure 3.2. From the plots (Figure 5.4(c)), we can see that C;, is not very
sensitive to the changing of A-site cations, when the B-site cation is kept fixed as Ti.
This is because C;; is mainly dominated by the distortion of the oxygen cage, i.e., as
the cage is squeezed on the side it would heavily expand in the transverse direction.
As we change A-site cations, the center of the oxygen cages remains to be Ti. As a
result, C1, remains almost constant. On the other hand, from the plot in Figure 5.4(d),
Cy, is slightly decreased as the B-site cation was changed from Ti to Zr and remained
unchanged as it is changed further to a larger Hf cation. Changing B-site cations,
directly affect the oxygen cages. As the B-site cations (Ti) were replaced by larger
cations (Zr or Hf) the cages are expanded and the conformation of the polyhedral
shape turns weaker; leading to a smaller Cy5.

The shear elastic constant, Cy4, is based on the distortion shown in Figure 3.2.
From the plot in Figure 5.4(e), we can see that Cy44 is increased with the size of A-site
cations. This indicates that Cy4 is directly dominated by the A-site cage. Because the
overall lattice constant is partly controlled by the oxygen cage, for small A-site
cations, the A-site cages are expanded; resulting in the weak bonds to O and small
Cas. As the A-site cations turn larger to comparable or even larger than the B-site
atom, their bonding to O becomes stronger making the A-site cage more difficult to
shear. Hence, Cy4 increases. On the other hand, from the plot in Figure 5.4(f), Cy4 is
decreased as the B-site cation was changed from Ti to Zr and remained almost
unchanged as it is changed further to a larger Hf cation. This can be explained using

the same reasoning, Cy4 is dominated by the A-site cage (in this case Pb). As the B-
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site cations are changed from Ti to Zr the size of oxygen cages increase pushing the

Pb-O bonds to a value larger than their optimum length leading to smaller Cy,.

5.4 Conclusion

Elastic properties of perovskite ATiO; (A=Be, Mg, Ca, Sr and Ba) and PbBO;
(B=Ti, Zr and Hf) were studied by first principles calculations. Both of LDA and
GGA exchange and correlations were used in the calculations. The calculated elastic
constants are in good agreement with available literatures. The LDA results
consistently give slightly larger elastic constants than those calculated using GGA.
For ATiO3;, Cq1 was found to increase with the atomic size of A until it reaches
maximum when the atomic size of A-site and B-site atoms are comparable. As the
atomic size of A further increased, was found to decrease. For PbBO3, Cq; was found
to monotonically increase with the atomic size of B since B is always smaller than Pb
in this study. Cj, was found to be quite the same for the entire series of ATiOs.
However, for PbBO3, C1, was found to slightly decrease as the size of B-site cations
increases. Cy4 elastic constant was found to monotonically increase with the size of A-
site cations for the ATiO3 system and slightly decrease with the size of B-site cations
for the PbBO3. The discussions of the changes of the elastic constants with respect to

the cation sizes were given based on the nature of the crystal structure.
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CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

6.1 Conclusions

In this thesis, elastic properties of selected perovskite oxides materials, namely
BeTiO3, MgTiO3;, CaTiOs, SrTiOs;, BaTiOs, PbTiOs;, PbZrO; and PbHfO; were
calculated by utilizing first principles method. The pressure dependencies of their
elastic properties and sound velocities were calculated for some of the aforementioned
materials. The effects of cation species on the elastic constants were also studied and
analyzed. The main results from our study can be summarized as follows:

The elastic constants and sound velocities of the cubic phase of PbTiO3; and
PbZrO; as functions of the pressure were investigated based on first principles
calculations. Under ambient conditions, our calculated elastic properties of both
materials are in good agreement with available experimental results. The calculated
LDA lattice constants are smaller than the ones obtained by GGA while the LDA
elastic constants are larger than the ones obtained by GGA which is consistent with
what have been observed in other materials and available literatures. The elastic
constants and sound velocities were also studied under the pressure range of 0 — 40
GPa. All elastic constants almost linearly increase with pressure in this range. Cy;

elastic constant rapidly increases with pressure while Cy, and Cy4 are found to be less
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sensitive to pressure. Because the sound velocities are related to the elastic constants,
almost all of them also increase with pressure (Pandech et al., 2013).

The trends of how elastic constants changed with cation species were studied.
The elastic constants of the cubic phase of perovskite ATiO3; (A = Be, Mg, Ca, Sr and
Ba) and PbBOs (B = Ti, Zr and Hf) were systematically studied for this purpose. The
maximum Cy; elastic constant is found when the atomic size of the cations at the A-
site and B-site are comparable. This was explained by the nature of the perovskite
crystal structure that allows both types of cations to contribute to the stiffness of the
crystal when they are comparable in size and only one type is dominated when the
size of the cations are different. Cj, elastic constant is mainly defined by the oxygen
cage, when Ti is at the center, and is not very sensitive to the A-site cations. When
the B-site cation is changed from Ti to a larger size cations, Ci; slightly decreases due
to weaker oxygen cages. For ATiO3, Cy4 elastic constant increases with the size of A-
site cations. For PbBO3, Cy4 slightly decreases with the size of B-site cations. This is
because the cube structure defined by the A-site cations plays a major role in the shear
elastic. When A-site cations are relatively large compare to the B-site cations, the
cube structure maintains its high integrity. As the B-site cations turns larger the cube

is forced to expand making it easier to shear.

6.2 Future Research Plan

Extension of the study of the elastic properties and sound velocities of
aforementioned materials to more complicated crystal structures such as tetragonal,
orthorhombic, rhombohedral, and etc. are suggested. The calculations of elastic

constants and sound velocities could be performed using the same approach described
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in Chapter 11l. However, the number of independent elastic constants is now more
than three (for cubic) due to the reduced symmetry of the crystal structures. For
example, there are six independent elastic constants of tetragonal structure and nine
independent elastic constants of orthorhombic structure (Tinder, 2008).

As mentioned in Chapter 11, the general form of the elastic constants matrix
contains 36 components (Equation 3.3). For materials with crystal symmetries, the
number of elastic constants can be reduced based on the level of symmetries. For the
case of tetragonal structure, the 36 elastic constants can be reduced to only 6
independent elastic constants. The elastic constants matrix for a tetragonal crystal has

the form (Kittel, 1996; Tinder, 2008)

C,C,C, O 0 0
C, C,Cs O 0 O
C,CyCy 0O 0 O 6.1)
0 0 0C, 0 O
0 0 0 0C, O
0 0 0 0 0 Cg

We have calculated the structural parameters and elastic constants of selected
oxides in the tetragonal perovskite structure. The structure of an ideal tetragonal
structure used in our calculations is illustrated in Figure 6.1. The equivalent positions
of the atoms are shown in Table 6.1. Our calculated values of lattice parameters and
elastic constants are shown in Table 6.2 in comparison with available calculated and
experimental results in the literatures. Our calculated values are in reasonable

agreement with the literatures.
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Figure 6.1 An ideal tetragonal perovskite unit cell. The dark gray spheres represent A

cations, blue spheres: B cation, and red spheres: oxygen anions.

Table 6.1 Atomic positions in the ideal tetragonal perovskite structure.

Site Location Co-ordinations
A cation (2a) 0,0,0)
B cation (2a) (0.5,0.5,0.5)

O anion (6b) (0.5, 0.5, 0) (0.5, 0, 0.5) (0, 0.5, 0.5)
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Table 6.2 Lattice parameters and elastic constants for selected oxides in the tetragonal

perovskite structure. Values in parentheses are from the literature.

Compounds
- BaTi PbTi nTi
Lattice aTiO; bTiO; SnTiO3
Parameters | pa  GGA Expt. LDA GGA Expt. LDA GGA Expt
3.95 4.03 o 382 376 383 i
a® (96) (3984 G92) (3gey 389 B904) ggn (g (8)
oy o o9 396 398  4.08 i
c(A) @03y @oeey (403E) oo 402 (IS R Gn (@4)
L Los o L04 106 107 i
c/a w029 Lozt WOL) (g 103 (LO6S) jiam (e (109
V(AS) (6?32.523) (622'3175 (64.32°)  58.8 624 (634" 585 621  (59.78)
Elastic
constants
347 276 d 460 o
Cu (3007 (2548Y) (P22) (gggy 3792 (235) 503 427
128 108 d 165 o
Co 1099 (o14®) (134 (qqon 1454 (01) 171 183
123 102 d 150 o
Cis 00 (oa1ty (11 (gp3y 1311 (988 150 134
299 203 d 354 o
C33 (149a) (1585b) (151 ) (323e) 268 (105 ) 340 267
126 111 o 107 .
Caa (124%) (68") (61.1°) (1079) 98.1 (65.1%9 94 89
128 111 o 106 .
Coo 1289 (st (134 (qooy 966 (104) 92 87

4Calculations by Wang et al. (Wang et al., 2010)
®Calculations by Meng et al. (Meng et al., 2010)
‘Measurement by Kwei et al. (Kwei G. H. et al., 1993)
IMeasurement by Khalal et al. (Khalal et al., 1999)
®Calculations by Liu et al. (Liu et al., 2008)
"Measurement by Kuroiwa et al. (Kuroiwa et al., 2001)
9Measurement by Li et al. (Li et al., 1996)
"Calculations by Parker et al. (Parker et al., 2011)
'Measurement by Matar et al. (Matar et al., 2009)



7

In the future, we are planning to study the elastic constants and sound
velocities of tetragonal perovskite oxides under pressure using the similar approach
we employed for the cubic case.

This thesis shows that the first principles calculation can be used reliably to
study the elastic properties and sound velocities of materials with the illustration of
several perovskite oxide systems. The approaches illustrated in this thesis can be

applied to study other materials as well.
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Abstract

The elastic constants and sound velocities as a function of pressure for perovskite materials PbTiO3 (PTO) and PbZrO; (PZO) were
investigated by first principles calculations. Under ambient pressure, the calculated structural parameters were calculated and found to
be in good agreement with known values. To study properties under pressure, PTO and PZO were calculated at several reduced
volumes, each of which corresponds to the system under pressure. The Cy;, C> and Cyy elastic constants are all found to increase with
pressure for the pressure range studied. Because the sound velocities are directly derived from the elastic constants, the relationships
between the sound velocities and pressure also follow similar trends. The longitudinal modes are all larger than those of the

transverse modes.

© 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
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1. Introduction

PbZrO; (PZO) and PbTIO; (PTO) are the parent
compound materials of the extensively utilized ferroelectric
material Pb(Ti,Zr)O3 (PZT). PZT (as well as PZO and
PTO) has perovskite structure and is used in many devices
such as ultrasonic transducers and piezoelectric actuators
[1]. The room temperature phase of PZO and PTO is
orthorhombic and tetragonal structure, respectively [2,3].
Both orthorhombic PZO and tetragonal PTO have only
slight distortion from the perfect cubic perovskite struc-
ture. Their elastic properties have been studied by several
research groups. Liu et al. [4] theoretically studied the
elastic properties of PTO in both cubic and tetragonal
phases. Kalinichev et al. [3] used brillouin light scattering
to obtain the elastic and piezoelectric constants for tetra-
gonal PTO single crystals at room temperature. For PZO,

*Corresponding author at: School of Physics, Suranaree University of
Technology. Nakhon
Ratchasima 30000, Thailand. Tel.: 466 4422 3000.
E-mail address: sukit@sut.ac.th (S. Limpijumnong).

Kagimura and Singh [2] studied the elastic properties and
energetics of orthorhombic and rhombohedral phases.

Some effects of hydrostatic pressures on perovskite
materials beside PTO and PZO have been experimentally
and theoretically investigated. To our knowledge, the
elastic properties and sound velocities of PTO and PZO
under pressure have not been reported. For PTO, most of
previous works were performed in order to understand
their ferroelectric properties under ambient pressure. Liu
et al. [4] focused mainly on the calculations of equilibrium
tetragonal to cubic phase transition pressure of PTO. In
this work, the elastic constants and sound velocities under
pressure in cubic perovskite PZO and PTO were studied by
using the density functional theory calculations.

2. Elastic properties of the cubic perovskite crystal

2.1. Elastic constants of the cubic perovskite crystal
Elastic constants of materials can be obtained by

ab-initio calculations using two main approaches [5].

The first approach is based on the analysis of the total
energies of the strained state of the materials which is

0272-8842/$ - see front matter © 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
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called “energy strain approach™ [6]. Another approach is
based on the analysis of the changes in calculated stress
values resulting from the changes in the strain. This
approach is called “stress strain approach” [7].

In this work, the elastic constants (Cy) were calculated
by using the stress strain approach. The stress strain
relation can be written in the matrix form as

Oxx Cn Ciz Gz Cuu Cis Cyg €xx
Tyy Cyn Gy G Cy G5 Cy Cyy
(7% Gy G Giz Cu Gss Cy €z
6y | = | Ca Caz Cy3 Cus Cus Cus Cyz
Oxx Csi Cs» Cs3 Cs Css Csg €x
Oxy Ca Cs2 Cezs Ca: Cos Ces Cxy

(M

where o;; (i, j=x, y, z) are the stress components, e; (7,
Jj=X, y, z) are the strain components, and C;, (4, =1, 2,
3,..., 6) are the elastic constants. For cubic perovkite
structure, the 36 elastic constants in Eq. (1) can be reduced
to three independent elastic constants because of the high
symmetry of the structure. The three independent elastic
constants are denoted by Cy, Cy» and Cy. Eq. (1) is
reduced to

Oxx ChnCpC 0 0 O Cxx
Tyy CpCiC, 0 0 0 ey
G2z Ch, CpCpp 0 0 O €2
Oyz =10 0 0 Cuo 0 Cyz @
Ozx 0o 0 0 0 Cu 0 C2x
o5 000 0 0 0 Cu/l\ey

2.2. Sound velocities of the cubic perovskite crystal

Sound velocities in materials are related to their elastic
constants by a simple relationship:

ve(§) =/ Cr(§)/p 3)

where P indicates the polarization, which can be either L
for longitudinal or 7 for transverse, and §is the propaga-
tion direction of the wave. p is the mass density and Ci(§)

Table 1
Sound velocity expressions of each wave
propagation direction for the cubic structure.

Sound velocity Expression

u2([100]) (Cufp)”?

v7{([100D) (Cuslp)'?

v((110) [(Ciy+ Cra+2Cu) 20
vr{(110]) [(Cni—C)/p)'”

vr([111]) [(Cr1+2C1+4Cu)[3p)' 2
v((111]) [(Cn1— Cro+ Can) 3017

is the combination of elastic constants. The expression on
the right hand side of Eq. (3) for three propagation
directions of the cubic perovskite structure are summarized
in Table 1.

3. Computational method

The computational approach employed was based on
first principles density functional theory [8.9] with the
plane wave pseudo-potential as implemented in Vienna
Ab-initio Simulation Package (VASP) code [10]. For the
exchange correlation terms, both local density approxima-
tion (LDA) [11,12] and generalized gradient approxima-
tion (GGA) [13] were used. The ultrasoft version of the
pseudo-potential implemented in the VASP code allows a
low cut off energies for the plane wave expansion of only
500 eV. We used a 8 x 8 x 8 Monkhrost Pack scheme [14]
k-point sampling.

A cubic perovskite structure has the space group
Pri3m(#221) with the Wychoff positions: Pb 1a (0,0,0),
Ti (or Zr) 1b (0.5,0.5,0.5) and O 3c (0,0.5,0.5), (0.5,0.5,0)
and (0.5,0.0.5) as illustrated in Fig. 1.

The total energies (E) of a unit cell of the crystal at
several slightly different volumes (") were calculated and
fitted into the equation of states [15] to obtain the bulk
modulus (B,) and its pressure derivative (B') of the crystal.
In order to study the crystal properties under pressures, the
elastic constants and sound velocities were calculated at
several reduced volumes, following the approach described
in Ref. [16]. The reduced crystal volume can be translated
into the corresponding pressure following pressure volume
(P V) relationship in the Birch Murnaghan’s equation of
state [17] written as

(0768 oo )

“

where 5, is the equilibrium volume.

4
y ¢J¢X

Fig. 1. Schematic illustration of a cubic perovskite umt cell. The dark
gray spheres represent Pb atoms, blue sphere: Ti or Zr atom and red
spheres: O atoms. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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4. Results and discussions
4.1. Structural and elastic properties at zero pressure

The calculated equilibrium lattice constants as well as
the corresponding volumes of both PTO and PZO based
on both LDA and GGA exchange correlation functional
are compared to other computation and experimental
results in Table 2. Our values are consistent with other
calculated results. In comparison with the experimental
values, LDA tends to give slightly too small lattice
constants while GGA tends to give slightly too large
values. This is consistent with what have been observed
in other materials.

The bulk modulus (B), its pressure derivative (B) and
the elastic constants at zero pressure of both PTO and
PZO are also shown in Table 2. Because LDA gives
smaller lattice constants compared to GGA, the bulk
moduli and all elastic constants computed using LDA
are consistently higher than those corresponding ones
computed using GGA. PTO has been previously studied
by Piskunov et al. [18] and Liu et al. [4]. Liu et al. values
calculated based on LDA are very similar to ours. How-
ever, Piskunov et al. LDA results are consistently higher

Table 2

than ours while their GGA results are quite similar. To our
knowledge, there is no computation result available for
PZO. The sound velocities, shown in the bottom section of
Table 2, can be derived from the elastic constants using the
expressions shown in Table 1.

4.2. Elastic properties under pressure

To study the elastic constants and sound velocities under
hydrostatic pressures, the calculations were performed at
several reduced volumes, each of which corresponds to the
system under a different pressure. The pressure can be
determined from the pressure volume relation shown by
Eq. (1). Sound velocities of PTO and PZO under pressure
can be obtained from the corresponding elastic constants
using the expressions given in Table 1.

The elastic constants as a function of pressure for cubic
perovskite PTO and PZO are shown in Fig. 2. Both
materials have similar behavior in the changes of elastic
constants under pressure. In general, we can see that all
three elastic constants, Cyj, Cj» and Cyy increase with
pressure. In both PTO and PZO, Cy;, which is related to
the longitudinal distortion, rapidly increases with pressure.
On the other hand, €}, and C,4 are much less sensitive to

Calculated lattice constants (a) in A, volumes (¥p) in A*, bulk modulus (B) in GPa, its pressure derivative (B’), elastic
constants in GPa and sound velocities in km/s of PbTiO; and PbZrOs in the cubic perovskite structure compared with

literatures.
PbTiO; PbZrO;
LDA GGA LDA GGA
a Present 3.89 3.97 4.13 4.20
Other calc. 3.88%, 3.93° 3.98% 3.06° 4.11° 4.19°, 4.18¢
Expt. 3.95° 2.16°
Vo Present 58.76 63.32 70.22 74.08
B Present 219 185 181 168
Other calc. 2268, 324° 213° - -
B Present 45 35 16 37
Cn Present 380 316 366 322
Other calc. 3845, 450° 325° - =
Gy Present 125 130 92 89
Other calec. 1518, 261° 158° - -
Cau Present 103 96 63 62
Other calc. 1208, 113° 107° - -
v[100] Present 6.66 6.25 6.69 6.42
v,{100] Present 3.46 3.44 278 282
v[110] Present 6.53 6.28 5.98 5.86
v7110] Present 3.70 3.39 4.10 3.86
v[111] Present 6.48 6.43 572 5.65
v111] Present 3.63 3.55 371 3.55

#Calculations by Hosseini et al. [19].
Calculations by Piskunov et al. [18].
“Calculations by Wang et al. [20].
¢Calculations by Baedi et al. [21].
“Measurements by Kuroiwa et al. [22].
‘Measurements by Fujiishita et al. [23].
ECalculations by Liu et al. [4].
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Fig. 2. Elastic constants as a function of pressure for cubic perovskite PbTiO5 and PbZrOs, obtained from LDA (left) and GGA (right). (a) PbTiO; and
(b) PbZrOs.
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Fig. 3. Sound velocities as a function of pressure for cubic perovskite PbTiO; and PbZrOs, obtained from LDA (left) and GGA (right). (a) PbTiO3 and
(b) PbZrOs.

pressure. Indeed, Cy, which is related to the transverse trend was found. All of the sound velocities, except for the
distortion, remains almost flat. The calculated sound  v#([100]) of PZO, increase with pressure mainly because
velocities under pressure for both cubic perovskite PTO  they contain C;; which rapidly increases with pressure. In
and PZO are shown in Fig. 3. Since the sound velocities ~ PZO, v{([100]) slightly decreases under pressure because it
are directly derived from the elastic constants, a similar  is associated only with Cy which remains almost flat
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with pressure and divided by p which increases with
pressure. As expected, the longitudinal modes are larger
than the transverse modes such that they can be divided
into two groups.

5. Conclusions

The elastic constants and sound velocities of perovskite
PTO and PZO as a function of pressure were calculated by
first principles calculations. Both LDA and GGA exchange
and correlations were used. The calculated zero-pressure
properties are in good agreement with the previous studies
ensuring the validity of the results. LDA gives slightly
smaller lattice constants and larger bulk moduli than GGA
which is consistent with what have been observed in other
materials. The elastic constants and sound velocities under
the pressure range of 0 40 GPa were presented. The elastic
constants are almost linearly increased with pressure. Cy;
rapidly increases with pressure while Cy, and Cyy are much
less sensitive to pressure. Because the sound velocities are
related to the elastic constants, almost all of them increase
with pressure.
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Abstract

The elastic constants as a function of pressure for perovskite materials PbTiO; (PTO)
were studied by first principles density functional calculations as implemented in
Vienna Ab-initio Simulation Package (VASP). Both local density approximation
(LDA) and generalized gradient approximation (GGA) were employed and compared.
At zero pressure (the results are also applied for ambient pressure conditions), the
calculated fully relaxed structure of PTO is in good agreement with known
experimental results. The elastic constants at zero pressure are in reasonable agreement
with the known literature. To study the properties under different pressure condition,
we calculated PTO properties at several reduced volumes. The equation of state curve
is then used to relate each compressed volume to the corresponding hydrostatic
pressure. The Cy;, Cy, and Cyy elastic constants are all found to increase monotonically
with the pressure for the pressure range studied.

Keywords: PbTiOs, perovskite, elastic constants, first principles
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Abstract

First principles calculation based on density functional theory (DFT) was used to study
the elastic properties of perovskite ATiO; (A=Be, Mg, Ca, Sr and Ba). Both local
density approximation (LDA) and generalized gradient approximation (GGA) were
used. The Cy;, C}, and Cy, elastic constants are studied as a function of atomic number
of A-site atom. ('}, is maximum when the atomic number of A-site atom is comparable
to the atomic number of B-site atom. Cy, is found to be quite independent with A-site
atom. Cyy is found to increase with the atomic number of A-site atom.
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The material research greatly enhances current knowledge on technologically sensitive
materials. The knowledge allows the improvement of material syntheses as well as
fabrication of new materials with desired physical properties. In modern material research,
the computational technique is widely accepted to be an important tool to gain a deeper
understanding of the material system under the investigation. In addition the computation
techniques can be used to study the behavior of materials that are not successfully
synthesized in experiments. In my thesis, the main interest is on the elastic properties and
sound velocities of perovskite materials under hydrostatic pressures. I use first principles
calculations based on density functional theory (DFT) with the plane wave pseudo-potential
as implemented in Vienna Ab-initio Simulation Package (VASP). Our systematic study
allows us to study the elastic properties as well as the sound velocities when the material is
compressed (under hydrostatic pressures). In addition, we can also study the properties in
carefully selected compounds, we can identify how the elastic constants changed with the
cation species, i.e.. the trend of elastic constants of ATiO; (A = group IIA elements) and
PbBO; (B = Ti, Zr, and Hf) were studied and will be presented. This work illustrates how
computation materials can be used to directly simulate material properties that can be
measured by experiment without taking any input from experiment. The computation
method we employed can provide full detail of electronic properties, vibration properties and
optical properties of the system studied in addition to the physical properties shown here.
Therefore the computational approach illustrated here can be used in conjunction with
various experimental measurements such as infrared spectroscopy, x-ray absorption
spectroscopy and UV-vis spectroscopy.
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The elastic constants and sound velocities as a function of pressure for perovskite
materials PbTiO; (PTO) and PbZrO; (PZO) were investigated by density
functional first principles calculations. Under ambient pressure, the calculated
structural parameters are in good agreement with known values. For properties
under pressure, the materials (PTO and PZO) were calculated at several reduced
volumes, each of which corresponds to the system under pressure. The Cyy, Ci2
and Cyy elastic constants are all found to increase with the pressure for the pressure
range studied. Since the sound veloeities is almost constant. The caused of this
exception will be discussed. The sound velocities can clearly be divided into two
groups; the longitudinal modes and transverse modes. The sound velocities of
longitudinal modes are all larger than those of the transverse modes.
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Recent first principles calculations [Suewattana et al., Phys. Rev. B 86, 064105 (2012)] showed that Bi, Mg and Ti
in Bi(Mg, ,Ti, ,)O,, hence forth BMT, are off-centering (from the center of their respective oxygen cages) much
more than reported by XRD experiment [Khalyavin et al., Chem. Mater 18, 5104 (2006)]. The off-centering of
the cations is a characteristic of good electroactive materials. To probe the local structure of specific elements, x-
ray absorption spectroscopy (XAS) is known to be a powerful technique. Here, we calculated the x-ray absorption
spectra of Bi, Mg and Ti by using first-principles calculations. For each cation (Bi, Mg and Ti), the spectra were
calculated for different configurations: (1) the cation is located at the center of its oxygen cage, (2) the cation is
located slightly off-centered based on XRD results and (3) the cation is located largely off-centered based on the
calculation results. These results show which features in XAS are affected by the shift of Bi, Mg and Ti off their
respective center position. This indicates that XAS measurement would be very useful to verify the actual off-

centering of cations in this material.
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The elastic constants of several perovskite oxides were calculated by first principles
approach. By systematically varied the A-site and B-site cations, the effects of
cations on the elastic constants were revealed. For A-site, we fixed the B-site cation
to be Ti and studied the elastic properties of perovskite ATiO3; with A= Be, Mg, Ca,
Sr, and Ba, one at a time. For B-site, we fixed the A-site cation to be Pb and studied
the elastic properties of PbBO; (B = Ti, Zr, and IHf). We employed the density
functional first principles calculations with local density approximation (LDA) and
generalized gradient approximation (GGA). The Cyy, C),, and Cyy elastic constants of
above mentioned oxides were calculated and compared. For ATiOs, €y, is maximum
when the atomic number of A-site atom is comparable to that of B-site atom. Cj, is
found to be quite independent with A-site atom. Cyy is found to increase with the
atomic number of A-site atom. For PbBO;, 'y, is also maximum when the atomic
number of B-site atom is comparable to the atomic number of A-site atom. There is,
however, no clear relationship between Cy, and Cyy and the atomic number of the B-
site atom.
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Most of material properties (physical, electronics, magnetics and optical) can be studied
based on the quantum mechanics calculations of the interactions between electrons and the
electronic potential from the nuclei of the atoms in the material. Such calculations are called
first princples calculations. In principle, one need to solve a complicated set of Schrédinger
equations of a many-body system. In practice, various approximations have to be applied in
order to make the computation feasible. Yet, the properties obtained are still reasonable.
With today computing technology. properties of complicated crystalline compounds such as
perovskite PbTiO3 (PTO) can be study by first principles calculations using personal PC. In
this presentation, we will show how the crystal parameters (the lattice constant and other
internal lattice parameters) as well as elastic parameters of PTO can be calculated. Our
results are in good agreement with previously reported experimental and computational
results. In addition. we will show how the elastic parameters can be used to calculate sound
velocities of PTO. If time permits, the extension of the calculations to study the elastic
parameters and sound velocities under pressure will be presented.
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