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CHAPTER I 

INTRODUCTION 

 

1.1 Overview of the Calculations and Literature Survey 

The ferroelectricity of materials was discovered for the first time in Rochelle 

salt crystal by Valasek (Valasek, 1921). Later, the ferroelectricity was discovered in 

ABO3 perovskite crystal, i.e., BaTiO3 in 1945 (Kanzig, 1945), opening up a new class 

of materials that, later on, have successfully been used for a variety of industrial and 

commercial applications. In addition to ferroelectricity, there have been continued 

research on a wide range of interesting properties in perovskite materials, including 

but not limited to, piezoelectricity, semiconductivity (Samantaray et al., 2004), 

catalytic activity (Wang et al., 2007) and thermoelectricity (Frederikse et al., 1964). 

These properties make these materials suitable for many technological applications, 

for e.g., eletro-optical devices, semiconductor, waveguides, laser frequency doubling, 

and high capacity memory cells (Wang et al., 2007; Frederikse et al., 1964; Auciello 

et al., 1998; Mete et al., 2003). 

Because of various interesting properties of perovskite materials as mentioned 

above, they have been intensively investigated both theoretically and experimentally 

for a long time.  However, there are still outstanding properties waiting to be studied 

as will be discussed next.  

The elastic properties are among the most fundamental properties of materials 

that are important for their mechanical manipulation. Therefore, the elastic properties
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of perovskite materials are among the properties that have been widely studied both 

experimentally and theoretically.           

On the experimental side, the elastic properties of perovskite materials have 

been widely studied.  For examples, Li and co-workers (Li et al., 1991) used the 

Brillouin scattering and ultrasound techniques to measure the velocity of the 

ultrasound in a single tetragonal BaTiO3 crystal.  The sound velocities can be used to 

translate into the elastic and piezoelectric constants. Kalinichev and co-workers 

(Kalinichev et al., 1997) also used the same method to study the elastic and 

piezoelectric constants of a single crystal of tetragonal PbTiO3.  The elastic properties 

of SrTiO3 have also been studied by various groups using different techniques 

(Schranz et al., 1999; Poindexter and Giardini, 1958; Lheureux et al., 1999).  This is 

because SrTiO3 has a rather simple structure (cubic phase in nature) with high quality 

crystals available.  Lheureux and co-worker also used the ultrasonic measurement 

technique to study the elastic constants and their pressure dependence of cubic 

SrTiO3.  In addition, they also found the cubic-tetragonal phase transition to occur at 6 

GPa. 

On the computation side, Wang and co-workers (Wang et al., 2010) used the 

density functional theory (DFT) to study several properties of perovskite BaTiO3, 

including the elastic properties. In their works, the elastic constants of four structures 

(cubic, tetragonal, orthorhombic and rhombohedral) of BaTiO3 have been reported. 

Meng and co-worker (Meng et al., 2010) also used DFT to study the elastic and 

piezoelectric properties of BaTiO3 in the tetragonal structure.  Liu and co-workers 

(Liu et al., 2008) used DFT to study the elastic properties of perovskite PbTiO3 in 

both cubic and tetragonal structures. They reported the calculated elastic constants of 
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both structures as well as the equilibrium tetragonal-to-cubic phase transition 

pressure. Their calculated transition pressure of 10.1 GPa is in a reasonable agreement 

with the experimental value of 11.5±0.3 GPa (Zha et al., 1992). The elastic properties 

of natural cubic perovskite SrTiO3 have been studied by Boudali and co-workers 

(Boudali et al., 2009).  They used DFT to calculate its elastic constants. The elastic 

properties of another perovskite materials, SnTiO3, have been calculated based on 

DFT by Taib and co-workers (Taib et al., 2012).  Their results showed that SnTiO3 is 

stable in the cubic phase (Pm3m).  Among all above mentioned theoretical studies, 

only the work of Taib and co-workers on SnTiO3, included the study of elastic 

properties under pressure.       

Although, the elastic properties of several perovskite materials have already 

been studied. The knowledge on pressure dependencies of their elastic properties and 

sound velocities is very limited. The aim of this thesis is to employ first principles 

method to study the elastic properties and sound velocities of some perovskite 

materials under hydrostatic pressures. In this thesis, in Chapter II, we will give a brief 

description of the calculation method employed. In Chapter III, the calculated 

structural parameters under ambient conditions in comparison with available 

experimental and theoretical results are presented.  In addition, the brief description of 

elasticity in materials and the elastic constants are also explained. The calculated 

elastic constants and sound velocities of selected cubic perovskite as a function of 

hydrostatic pressure are presented in Chapter IV. Because we studied various 

materials, we can study the trend of how the elastic constants changed with the cation 

species. The trends of elastic constants of ATiO3 (A=group IIA elements) and PbBO3 

(B=Ti, Zr and Hf) are analyzed in Chapter V.  Finally, the ongoing work of the elastic 
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properties of mentioned materials in other crystal structures are presented in Chapter 

VI.        
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CHAPTER II 

 THEORETICAL APPROACH  

 

 For simulation of materials, various information of materials system could be 

extracted from the electron wave function.  In principle, the electron wave function 

can be obtained by solving the Schrödinger equation of the many-electron system. 

However, directly solving the full set of Schrödinger equations of many-electron 

problem is too complicated.  Hence, there are many approximations employed to 

simplify the many body problems into solvable ones. The density functional theory 

(DFT) is the widely used method to reduce the many-electron Schrödinger equation 

into a solvable problem.  In this chapter, we will briefly explain the theories, 

approximations, methods and software used in this thesis.  Detailed information can 

be found in the respective literature referenced throughout the chapter.   

   

2.1 Density Functional Theory 

 The success of DFT is not limited to standard bulk materials, but also for 

complex materials such as proteins and carbon nanotube (Ramachandran et al., 2008).  

The main idea of DFT is to describe the complicated many-body electron interactions 

through its density, ( )n r (Parr and Yang, 1989), not its wavefunction,

 
i .  DFT can 

be viewed as a ground state theory with the electron charge density serving as the 
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variational parameter (Hohenberg and Kohn, 1964). The description in detail of DFT 

will be described in the following section. 

  

2.1.1 The Hohenberg and Kohn Theorem 

 For any system consisting of electrons moving under the external potential,
 

( )extV r , Hohenberg and Kohn proposed that  the ground state energy and all properties 

of electron wavefunction in the external potential can be determined from the electron 

density, ( )n r .  They showed the ground-state energy of many electron wavefunction 

can be written as (Hohenberg and Kohn, 1964) 

        3 ,extE n r V r n r d r F n r    
      (2.1) 

where ( )extV r is the external potential which generated by the interaction between 

nuclei and electrons.  F n r 
 

is an unknown function, but it is a universal functional 

of the electron density ( )n r .  It does not depend on the external potential and includes 

all kinetic energy and electron-electron interaction terms (Parr and Yang, 1989).  

 

2.1.2 Kohn and Sham Equation  

Kohn and Sham (Kohn and Sham, 1965) introduced a method based on 

Hohenberg and Kohn theorems to minimize the ground state energy function. They 

proposed that the universal function (  F n r 
 

) in Equation  2.1 can be separated into 

three parts. Therefore, the ground-state energy of many electron wavefunction can be 

written as,  
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            3 ,ext H s xcE n r V r n r d r V n r T n r E n r          
          (2.2) 

where the second term,  HV n r 
 

, is the electron-electron Coulomb energy (also 

often referred to as Hartree energy) can be defined as, 

 
   '2

3 3 '

'
.

2
H

n r n re
V d rd r

r r



  (2.3) 

The third term,
 

 sT n r 
 

 is the kinetic energy of the non-interacting system with the 

same density and it is not the exact kinetic energy function   T n r 
 

.  The 

difference between  T n r 
 

 and  sT n r 
 

 is proposed to be small and can be 

included into the exchange-correlation energy,  xcE n r 
 

 which is the last term in 

Equation 2.2 (Parr and Yang, 1989).  

Therefore, the Kohn-Sham-effective potential can be written as,  

 
   

   
'

2 3 '

'
.

xc

eff ext

n r E n r
V r V r e d r

nr r





 
   


  (2.4) 

Finally, the ground state solution of a one-particle problem can be obtained by 

solving the Schrödinger equation in the effective potential  effV r ,  

 
     

2
2 .

2
eff i i iV r r r

m
 

 
    
 

 (2.5) 

The electron density for this system is given by (Kohn and Sham, 1965),  

 
   

2

1

,
N

i

i

n r r


  (2.6) 

where N is the number of electrons. 
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Equation 2.5 has to be solved self-consistently. Initially, a guess of ( )n r  is 

used to construct effV , which is an important function needed to define the 

Schrödinger equation in Equation 2.5.  The Schrödinger equation then can be solved 

to obtain the wavefunctions i .  Then the so-obtained i  can be used to construct an 

improved ( )n r .  The improved ( )n r is then used to construct new
 effV  in Equaton 2.5.  

This routine is repeated until convergence is reached, i.e., the ( )n r remains unchanged 

(or changed between the iterations within an acceptable value). 

 

2.2 The Exchange Correlation Function 

In Equation 2.4, the exchange correlation energy  xcE n r 
 

 is the only part in 

the effective potential (Veff), which is not exactly known.  In order to solve the one-

particle Schrödinger equation in Equation 2.5, the  xcE n r 
 

 must be approximated 

or defined.  In this thesis, two popular approximations of  xcE n r 
 

 were employed; 

the local density approximation (LDA) and the generalized gradient approximation 

(GGA). 

LDA, which was introduced by Kohn and Sham in 1965 (Kohn and Sham, 

1965), can be said to be the most widely used approximation.  It is assumed that the 

density can be treated locally as an uniform electron gas. Under LDA, the  xcE n r 
 

 

depends on the value of electron density at each point in the system. The local density 

approximation defines the exchange correlation energy as (Parr and Yang, 1989), 
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       3 ,LDA

xc xcE n r n r n r d r   
     (2.7) 

where  xc n r  
 

 is the exchange correlation energy per particle of a homogeneous 

electron gas with the density  n r . The  xc n r  
 

 can be written in the combination 

between exchange and correlation energy as (Parr and Yang, 1989),  

       ,xc x cn r n r n r        
     

  (2.8) 

where  x n r  
 

 and  c n r  
 

 are the exchange and correlation energy density of a 

homogeneous electron gas of density  n r , respectively.  The exchange energy term, 

 x n r  
 

 was derived from the analytical form of a homogeneous electron gas by 

Dirac in 1930 (Dirac, 1930) and can be written as (Parr and Yang, 1989),  

    
1/3

1/3 3 3
, .

4
x x xn r C n r C



          
  (2.9) 

The correlation energy term,  c n r  
 

 was first calculated by Wigner (Wigner, 

1938).  For a homogeneous electron gas at different densities, the correlation energy 

was calculated based on quantum Monte Carlo calculations by Ceperley and Alder 

(Ceperley and Alder, 1980).  The LDA method was successfully used for calculating 

the equilibrium structures and harmonic vibration frequencies of crystals but it usually 

fails in obtaining an accurate binding energy.  Details of successes and failures of 

LDA have been nicely discussed by Jones and Gunnarsson (Jones and Gunnarsson, 

1989).  
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Later GGA was introduced to take into account the variation of electron 

density in space.  Under GGA, the exchange-correlation energy  xcE n r 
 

 is a 

function of the electron densities and their gradients, ( )n r  (Kohn, 1999).   

 3( ) ( ), ( ) ( ) .GGA

xcE n r f n r n r n r d r          (2.10) 

GGA method improves the ground state properties. It reduces the errors in the binding 

energy of light atoms, especially in small molecules.  For solids, GGA usually 

produces larger equilibrium lattice parameters than LDA and it is not clear which one 

is better in a particular system than the other.  In many cases, GGA overcorrects the 

LDA results, leading to the results are in worse agreement with experiments. 

However, GGA is believed to provide improved the value of binding energies, 

especially, for the systems that the electron density is more fluctuated.  

There are many forms of GGA functional for the exchange correlation energy, 

 xcE n r 
 

. The popularly used are B88 (Becke, 1988), PW91 (Perdew and Wang, 

1992), and PBE (Perdew et al., 1996). 

 

2.3 Bloch’s Theorem and Plane Wave Basis Sets 

 Even with the DFT and a simple exchange-correlation function, the direct 

calculation of an almost infinite number of electrons in the electric field from an 

almost infinite number of ions is still impossible.  In a direct calculation of a real 

system, the wave function has to be calculated for each and every electron in the 

system which is in the order of 10
23

 electrons.  In addition, to fully describe each 

electron wave function, the basis set, if not carefully chosen, could be infinitely large. 

 

 

 

 

 

 

 

 



13 

However, the fact that crystalline has periodicity of ions can be used to reduce the 

computational demand based on Bloch’s theorem.  By using this theorem, it is 

possible to express the wave function of an infinite crystal in terms of the wave 

functions in the reciprocal space. 

 In principle, Bloch’s theorem uses the periodicity of a crystal to transform the 

real space electron wave functions to the reciprocal space wave functions.  Bloch’s 

plane wave function can be written as a product of the wave part, ik re   and a periodic 

part,  nk
u r  (Kittle, 1996), 

     ,ik r

nk nk
r e u r   (2.11) 

where  

    .nk nk
u r u r R   (2.12) 

Equation 2.11 and 2.12 are the well-known Bloch’s theorem, where r  is the position 

in the crystal, R  is the lattice translation vector in the crystal, k  is the wave vector, n 

is the band index representing different solutions that have the same wave vector k . 

Using the Fourier transformation of the periodic function to the reciprocal space, the 

wave function in Equation 2.11 can be written in the sum plane waves form as (Kittle, 

1996),  

      
,

i k G r

nk nk
G

r u G e
 

    (2.13)  

where G  is the reciprocal lattice vectors.  This allows the calculations to be done in 

the reciprocal space.  In order to limit the number of plane wave used for the 

expansion, the plane waves used in the calculations are those with the kinetic energy 

smaller than the energy cutoff, Ecutoff, (Martin, 2004), 
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2

2
.

2
cutoffk G E

m
   (2.14) 

The value of required energy cutoff depends on the required accuracy of the 

results and the complication of the wave functions which is mainly related to the 

elements under study. 

 

2.4 Special k-point in the Brillouin Zone 

The Brillouin zone is the Wigner-Seitz cell in the reciprocal lattice, which is 

defined by the planes that are the perpendicular bisectors of the vectors from the 

origin to the reciprocal lattice points. The first Brillouin zone is the smallest unit cell 

in the reciprocal space that corresponds to the crystal unit cell in real space (Martin, 

2004).  In principle, we should calculate for the wave functions at every k-point in the 

first Brillouin zone.  In practice, it is impossible to do calculations with the infinite 

number of k-points and the wavefunctions are quite similar for k-points in the same 

vicinity. Therefore, it is possible to sampling a limited number of k-points in the first 

Brillouin zone.  There are various k-point sampling methods introduced.  In this work, 

we employed the sampling method introduced by Monkhorst and Pack (Monkhorst 

and Pack, 1976)  

 

2.5 Pseudopotentials 

Electrons in materials can be divided into two types: core electrons and 

valence electrons. The core electrons are in the inner shell of each atom.  The valence 

electrons are in the outer shell.  The valence-electron wavefunctions are orthogonal to 

the core-electron wavefunctions.  A set of plane-waves (PWs) with a limited Ecutoff is 
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not suitably to describe the core region.  This is because the wavefunctions in the core 

region has a fast oscillation characteristic (Heine et al., 1970).  However, the physical 

properties of materials depend mainly on the valence electrons. Therefore, 

pseudopotential approach was introduced.  In the pseudopotential approach, the core 

electrons are approximated to be “frozen”.  The valence-electron wavefunctions do 

not need to be orthogonal to the core states.  This means that the properties of the 

systems are calculated based on an assumption that core electrons are not involved in 

the chemical bonding and do not change as a result of structural modifications. In the 

pseudopotential scheme, the deep core potential part is replaced by a smooth 

pseudopotential, ( )PSV r  as illustrated in Figure 2.1.  Removing the core electrons 

from the calculations should not seriously affect the bonding properties in materials 

because the core electrons should remain almost unchanged under all deformations of 

interest shall it be included.  The corresponding set of pseudo wavefunctions, ( )PS r  

and all electron wavefunctions, ( )r  are matched outside a selected core radius, rc.  

Inside rc,  ( )PS r  does not have the fast oscillation features that required the plane 

waves with high energy cutoff to describe.  Instead, the wave function which is the 

solution to pseudopotential becomes very smooth in core area as illustrated in    

Figure 2.1.     
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Figure 2.1 Illustrations of the pseudopotential and the pseudo wavefunction. The blue 

dash lines represent the real electrons wavefunction, ( )r , and real potential, ( )V r . 

The red solid lines represent the corresponding pseudo wave functions, ( )PS r  based 

on the pseudopotential, ( )PSV r .  The cutoff radius, rc represents a radius at which the 

all electron and pseudo quantities are matched. (The figure is reproduced from Ref. 

(Wolfram Quester Source, 2006))  
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2.5.1 Norm-conserving pseudopotentials  

Initially one of the requirements of the pseudopotetials is the norm-conserving 

conditions. This is to ensure that the integration of both pseudo and all-electron 

wavefunctions within the core region be the same (Hamann et al., 1979). The norm-

conserving conditions are defined from the following list of conditions (Martin, 

2004). 

1. Outside the core, the real and pseudo wavefunctions generate the same charge 

density, this can be expressed as, 

 * 3 * 3

0 0

( ) ( ) ( ) ( )
c cr r

AE AE PS PSr r d r r r d r      . (2.15) 

Equation 2.15 means that all electron and pseudo wavefunctions (should be smooth 

and nodeless) are the same outside the core, i.e., 

 ( ) ( )AE PSr r   ; cr r . (2.16) 

2. The eigenvalues should be conserved, i.e., 

 AE PS    . (2.17) 

3. The logarithmic derivatives of all electron and pseudo wavefunctions and their 

first energy derivatives agree at rc. 

The logarithmic derivative for an angular momentum l, can be written as  

 
' ( ; )

( ) ln ( ; ) ,
( ; )

c

l
l l

r l

rd
D r

dr r

 
  

 
    (2.18) 

where ( ; )l r  is the solution of the radial Kohn-Sham equation for a fixed potential 

and fixed energy  . 
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The norm-conserving pseudopotentials, V
PS

 can be divided into the local 

potential, ( ( )PS

locV r ) and the non-local potential, ( ( )PS

nonlocV r ) (Kleinman and Bylander, 

1982) as, 

 ( ) ( ) ( ) .PS PS PS PS

loc nonloc loc l l l

l

V V r V r V r V       (2.19) 

The non-local part is the deviation from the all electron potential and is confined 

inside rc.  The projector, l  acts on the wavefunctions with angular momentum (l), 

which is localized within rc. 

 

2.5.2 Ultrasoft pseudopotentials 

Although pseudopotentials allows the expansion of pseudo wavefunctions 

using a set of plane waves as a basis, there are still quite a large number of plane 

waves required to produce an accurate wave functions.  Small increase in number of 

plane waves used in the basis set significantly impact the computation demand.  To 

reduce number of plane waves needed, an ultrasoft pseudopotentials (USPPs) 

approach were introduced.  The USPPs approach was introduced by Vanderbilt in 

1990 (Vanderbilt, 1990), in order to allow the calculations to be performed with the 

lowest possible cutoff energy for the plane-wave basis set. 

The norm-conserving requirements have been relaxed in USPPs, to obtain 

shallower potentials and smoother wave functions in the core regions.  Instead of 

using the plane wave to describe the full valence electron wave function, only small 

portion of the wave function is calculated within the USPPs scheme. This allows one 

to reduce substantially the wave cutoff energy in the calculations (Meyer, 2006).    

 

 

 

 

 

 

 

 

 



19 

2.5.3 Projector augmented waves 

The projector augmented waves (PAW) method was proposed by Blöchl 

(Blöchl, 1994).  In this method, a smooth wavefunction ( ) is created.  There exists a 

linear transformation which is relates the all electron wave function ( ) to the 

smooth wavefunction ( ) by the linear transformation operator,  through the 

relationship,  

 .    (2.20) 

Utilizing the linear transformation of PAW method, the all electron wavefunction ( ) 

can be written as  

   ,mm m

m

p        (2.21)  

where m  is the localized all electron partial wave for state m,  m  is the localized 

smooth partial wave for state m, and  
m

p  is the localized projection operator. The 

linear transformation operator   can be written as,  

  1 .mm m

m

p      (2.22) 

In Equation 2.22, the linear transformation operator  can be used to add back the 

core potential of an all electron wavefunction to a smoothed wavefunction. Note that 

Equation 2.22 can be for core as well as valence states (Martin, 2004).    
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2.6 Hellmann-Feynman Theorem 

 The Hellmann-Feynman theorem derives from the relationship between the 

derivative of the total energy and the derivation of the Hamiltonian. If   is a 

parameter in the Hamiltonian, ( H ), we can write the derivative of energy with respect 

to   as   

 ,
E H

H H H
 

     
    

    
   

    
 

 ,
E H

E E
 
   

   

   
  

   
 

 ,
E H

E    
  

  
 

  
 

 .
E H

 
 

 


 
, (2.23) 

where     is an eigenfunction of H .  Equation 2.23 is the well-known Hellmann-

Feynman theorem (Hellmann, 1937).  It shows that the derivative of the total energy 

with respect to a parameter   can be calculated using the derivative of the operator 

instead.  If   is R, the forces are obtained and the Hellmann-Feynman force theorem 

is written as, 

 3( )
( ) ,ext II II

i

i i i i i

V r E EE H
F n r d r

R R R R R
 

   
       

      (2.24) 

where IIE is the electrostatic nucleus-nucleus (ion-ion) interaction.   
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2.7 The Vienna Ab initio Simulation Package (VASP) 

In this thesis, the calculations were performed by using the Vienna Ab initio 

Simulation Package (VASP) developed by Kresse, Hafner and Furthmüller (Kresse 

and Hafner, 1994; Kresse and Furthmüller, 1996a; Kresse and Furthmüller, 1996b).  

In VASP, the electron wavefunctions are described by using the planewaves (PWs) 

basis set.  The ultrasoft pseudopotentials (USPPs) (Vanderbilt, 1990) and projector 

augmented wave (PAW) (Blöchl, 1994) potentials needed for the calculations are 

included in package.  In this thesis, the pseudopotentials (without PAW) that are 

sufficient to provide good description of elastic properties are mainly employed.  The 

k-point samplings are based on the Monkhorst-Pack approach (Monkhorst and Pack, 

1976). The main computational part for solving the Kohn-Sham equation self-

consistently utilized an iterative matrix-diagonalization scheme such as, a conjugate 

gradient scheme (Teter et al., 1989; Bylander et al., 1990) and block Davidson 

scheme (Davidson, 1983).  The Broyden/Pulay mixing scheme (Pulay, 1980; Johnson, 

1988) is efficiency used for mixing the original and new electronic charge density 

during the self-consistency calculation loops. The computational scheme used by the 

VASP codes is illustrated in Figure 2.2.  More details can be found in the manual of 

VASP (Kresse and Furthmüller, 2012) and an article by the developers (Kresse and 

Hafner, 1994; Kresse and Furthmüller, 1996b). 
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Figure 2.2 The self-consistency scheme used in the VASP codes.  
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CHAPTER III 

CRYSTAL PROPERTIES 

 

3.1 Perovskite Crystal Structure 

 The family of perovskite materials is composed of a large number of 

compounds.  The ideal cubic perovskite (space group 3Pm m ) structure has ABX3 

stoichiometry and is composed of a three-dimensional framework of corner-sharing 

AB6 octahedra. The structure of an ideal cubic perovskite is illustrated in Figure 3.1, 

where the A cations are located at the corners of the cube. B cation is located in the 

center of oxygen cage, where the oxygen ions located at the face-centered position of 

the cube. The A-site cation fills the 12-fold coordination formed by the BX3 network 

and is surrounded by 12 equidistant anions (Johnsson and Lemmens, 2007). The ideal 

cubic perovskite structure is simple but not the commonly observed structure.  The 

observed structures usually involves the tilting of BX6 octahedra, the displacement of 

B-site cations, and/or the distortion of the octahedral (Megaw, 1973). Additionally, if 

either or both of the A- and B-cation sites contain more than one cation types 

(including vacancies), an ordering of A cations and/or B cations may occur, resulting 

in the distortion from the cubic symmetry (Mitchell, 2002; C.J. Howard  et al., 2003; 

Howard and Stokes, 2002).  The distortion is directly related to the physical properties 

of these compounds. Recently, the perovskite oxide family (ABO3) is widely studied. 

In this thesis, we focus our attentions on the ATiO3 perovskite materials (where A is a 

divalent metal) and PbBO3 perovskite materials (where B = Ti, Zr and Hf).  
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Although the actual structure of some studied compounds might has some 

distortion from the ideal cubic structure, for simplicity, only the perfect cubic 

structure is chosen in this thesis.  The equivalent positions of the atoms are shown in 

Table 3.1. The calculated values of lattice parameters for selected perovskite materials 

are shown in Table 3.2 in comparison with available calculated and experimental 

results in the literatures. Our calculated values are in good agreement with the 

literatures.  

  

Figure 3.1 An ideal cubic perovskite unit cell. The dark gray spheres represent A 

cations, blue spheres: B cation, and red spheres: oxygen anions. 

 

Table 3.1 Atomic positions in cubic perovskite.  

Site Location Co-ordinations 

A cation (2a) (0, 0, 0) 

B cation (2a) (0.5, 0.5, 0.5) 

O anion (6b) (0.5, 0.5, 0) (0.5, 0, 0.5) (0, 0.5, 0.5) 

A 

B O 
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Table 3.2 Lattice parameters for selected perovskite compounds. Our calculated 

values are based on the perfect cubic perovskite structure.  Values in parentheses are 

taken from the literature. 

Materials Parameters 
Calculations 

Expt. 
LDA GGA 

BeTiO3 
a (Å) 3.76 3.82 

- 
V (Å

3
) 53.2 55.7 

MgTiO3 
a (Å) 3.79 3.84 

- 
V (Å

3
) 54.4 56.6 

CaTiO3 

a (Å) 3.82 

(3.89
a
) 

3.88 

 (3.90
b
,3.895

c
) 

V (Å
3
) 55.7 58.4 

SrTiO3 

a (Å) 3.87 

(3.86
d
,3.91

h
) 

3.94 

(3.94
e
) (3.92

e
) 

V (Å
3
) 58.0 61.2 

BaTiO3 

a (Å) 3.95 

(4.00
f
,3.96

d
) 

4.02 

(4.03
d
) 4.00

g
 

V (Å
3
) 61.6 65.0 

SnTiO3 

a (Å) 3.87 

(3.89
i
) 

3.94 

(3.94
i
) - 

V (Å
3
) 58.0 61.2 

PbTiO3 

a (Å) 

 

3.89 

(3.93
d
) 

3.97 

(3.96
d
) (3.97

j
) 

V (Å
3
) 58.9 62.57 

PbZrO3 

a (Å) 

 

4.13 

(4.11
k
) 

4.19 

(4.19
k
,4.18

l
) (4.16

m
) 

V (Å
3
) 70.4 73.56 

PbHfO3 
a (Å) 4.08 4.14 

- 
V (Å

3
) 68.0 71.0 

a
Calculations by Lee et al.(Lee et al., 2009) 

b
Measurement by Ali and Yashima (Ali and Yashima, 2005) 

c
Measurement by Brendan et al. (Brendan et al., 1999) 

d
Calculations by Piskunov et al. (Piskunov et al., 2004) 

e
Calculations by Boudali et al. (Boudali et al., 2009) 

f
Calculations by Wang et al. (Wang et al., 2010) 

g
Measurement by Hellwage et al. (K.H. Hellwage and A.M. Hellwage, 1969) 

h
Calculations by Daga et al. (Avinash Daga et al., 2011) 

i
Calculations by Parker et al. (Parker et al., 2011) 

j
Measurement by Shirane et al. (Shirane et al., 1956) 

k
Calculations by Wang et al. (Wang et al., 2005) 

l
Calculations by Baedi et al. (Baedi et al., 2008) 

m
Measurement by Fujishita et al.(Fujishita et al., 2002) 
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3.2 Elastic Properties  

For material developments, elastic properties of materials have been 

intensively studied. They are the fundamental important information for interpreting 

and understanding the nature of bonding in solid and can be used to describe the 

material mechanical behaviors.  In this section we will give a brief introduction to the 

theory of elastic properties of materials and the set up to calculate them. 

 

3.2.1 Elastic properties of materials 

A solid object under an external force is in a state of stress. The stress is 

defined as the force per unit area. Because force is a vector quantity, the stress is a 

direction dependent quantity and generally described by a stress tensor σij. If all parts 

of the object are in equilibrium and no external force, the Einstein’s convention 

equation for summation (Kittel, 1996) can be written as  

 

0
ij

jx





, (3.1)

 

where jx  denoted as the Cartesian axes.  The deformations of the object caused by the 

external stress are described by the strain tensor eij.  If an atom is displaced with the 

displacements iu , the strain tensor is defined as 

 

1
.

2

ji
ij

j i

uu
e

x x

 
     

 (3.2) 

In the strain tensor, the diagonal components ( 11e , 22e  and 33e ) are called tensile strain, 

whereas the off-diagonal components are called shear strain. For a small deformation, 

the linear theory of elasticity is a good approximation of the strained state of solid. 

For small stresses (or small deformations), the elongations and distortions of an object 
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are generally linearly proportional to the applied stresses. Note, however, that this 

theoretical model does not refer to the atomistic nature of the matter, i.e., the atomic 

bonds or the crystal structures do not enter as a prerequisite to this concept.  The rang 

of the linearity is called the elastic limit.  Beyond the elastic limit, a non-linear effect 

can break the direct proportional between the stress and strain, this region is called 

plastic region. For large stresses, a plastic dissipation makes the deformation 

irreversible (Kittel, 1996). 

 

3.2.2 Elastic parameters and crystal symmetries 

The elastic parameters are the fundamental parameters providing detailed 

information on the mechanical properties of the materials.  These qualities can give 

insight on the mechanical behaviors of the material under different situations. Based 

on Hook’s law for solid with a small deformation, stress components, σij (i, j = x, y, 

z), can be expressed in term of the strain components, eij (i, j = x, y, z) in the matrix 

form as (Elliott, 1998), 

 

13 15 1611 12 14

23 25 2621 22 24

33 35 3631 32 34

43 45 4641 42 44

51 52 5453 55 56

61 62 6463 65 66

xx xx

yy yy

zz zz

yz yz

zx zx

xy xy

eC C CC C C

eC C CC C C

eC C CC C C
     

eC C CC C C

C C CC C C e

C C CC C C e













   
   
   
   
    
   
   
   

   
   

,












 (3.3) 

where ij (i, j = x, y, z) are the stress components, eij (i, j = x, y, z) are the strain 

components, and Cλα (λ, α = 1, 2, 3,…, 6) are the elastic constants in the unit of GPa. 

In the general form, the matrix of elastic components should contain 81 components. 

However, due to the symmetry of σij and eij, each of them have only 6 independent 
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components.  Therefore, we need only 36 elastic constants as shown in Equation 3.3.  

These elastic constants are denoted as Cmn, where the indices m and n are defined as 

1=xx, 2=yy, 3=zz for the compression components and 4=yz,zy; 5=zx,xz; 6=xy,yx for 

the shear components (Kittle, 1996). 

The final number of independent elastic constants can be further reduced 

based on the level of symmetry of crystal structure.  In principle, all of 36 elastic 

constants are independent.  In practice, many of them are the same due to material  

symmetries. In particular, the crystal with cubic symmetry has much reduced number 

of independent elastic constants, i.e., C11 = C22 = C33, C12 = C21 = C23 = C32 = C13 = 

C31, and C44 = C55 = C66.  In addition, by symmetry, the off-diagonal shear components 

are also vanished, i.e., C45 = C54 = C56 = C65 = C46 = C64 = 0 and the mixed 

compression/shear couplings do not occur i.e. C14 = C41 = … = 0. Therefore, the 

elastic constants matrix for a cubic crystal has the form (Kittel, 1996), 

 

11 12 12

12 11 12

12 12 11

44

44

44

0 0 0

0 0 0

0 0 0

0 00 0 0

00 0 0 0

0 0 0 0 0

C C C

C C C

C C C
     .

C   

C   

C  

 
 
 
 
 
 
 
  
 

 (3.4) 

There are only three independent elastic constants; (1) C11 which is based on the 

longitudinal compression, (2) C12, which is based on the transverse expansion and (3) 

C44, which is the shear modulus.  The schematic representations of the three elastic 

constants of materials with the cubic symmetries are represented in Figure 3.2.  To 

obtain elastic constants from first principles calculations there are two approaches: 

stress-strain methods and energy-strain method (Kittel, 1996; Elliott, 1998).  
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Figure 3.2 Representation of (a) longitudinal compression (C11), (b) transvers 

expansion (C12) and (c) shear modulus (C44).  The figure is reproduced based on the 

work of Elliott. (Elliott, 1998). 

 

3.2.3 Elastic constants calculations 

The elastic constants of materials with known microscopic structure can be 

obtained by ab-initio calculations using two major approaches (Le Page and Saxe, 

2002). The first approach is based on the analysis of the changes in the (calculated) 

stress values resulting from the changes in the strain. This approach is called ‘‘stress–

strain approach’’ (Nielsen and Martin, 1983).  In practice, the stresses can be obtained 

from the “Hellmann-Feynman theorem”. Another approach, called "energy–strain 

approach" (Le Page and Saxe, 2001), is based on the analysis of the total energies of 

different strained states of the material. 

In this work, the energy-strain approach was used to obtain the elastic 

constants of selected perovskite oxides. Under small deformations, the stresses can be 

approximated to be linearly proportional to the displacements of atoms, i.e., the 

potentials can be considered to be harmonic. Under this approximation, the elastic 

(a) (b) (c) 
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energy density can be expressed as a quadratic function of the strains. The elastic 

energy density can be written as (Kittel, 1996), 

 

6 6

1 1

1

2
ij i j

i j

U C e e
 

   (3.5) 

where the indices 1, 2, 3,…, 6 are defined in the same way as Equation 3.4. Each 

elastic constant ijC can be obtained from the derivative of U with respect to the 

associated strain components (Kittel, 1996). 

 In our wok, the total energy (E) is calculated for the difference predefined 

(small) strain (exx,eyy,ezz,ezy,ezx,exy) configurations.  For each strain configuration, E is 

also calculated at a few values of the strains (e) (Wright, 1997). The energy–strain 

curve for each strain configuration is fitted to a third–degree polynomial function. 

Then, the second derivative of energy with respect to strain gives the elastic constants. 

For cubic materials, the three independent of elastic constants can be obtained 

(among various possible sets of strain configurations) using the following set of strain 

configurations.  The first component of elastic constants of cubic structure C11 can be 

obtained by using the strain configuration D1 = (e, 0, 0, 0, 0, 0). The elastic energy 

density under this strain configuration can be written in the matrix form as  

  

11 12 12

12 11 12

12 12 11

1

44

44

44

0 0 0

0 0 0 0

0 0 0 01
( ,0,0,0,0,0)      .

 0  00 0 0 02

 00 0 0 0 0

0 0 0 0 0  0

C C C e

C C C

C C C
U e

C

C

C

  
  
  
  

   
  
  
    

  

 (3.6) 
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The multiplication product of the matrices in the right hand side of Equation 3.6 gives 

2

1 11

1

2
U C e .  By calculating the total energies of the material under a few values of 

the strain, e, the energy-strain curve can be obtained. Then the energy–strain curve is 

fitted to the third–degree polynomials and second derivative of the energy with 

respect to the strain gives C11. 

 The second component of elastic constants, C12, can be obtained by using the 

strain configuration D2 = (e, e, 0, 0, 0, 0), where the elastic energy density can be 

written in the matrix form as  

  

11 12 12

12 11 12

12 12 11

2

44

44

44

0 0 0

0 0 0

0 0 0 01
( , ,0,0,0,0)      .

 0  00 0 0 02

 00 0 0 0 0

0 0 0 0 0  0

C C C e

C C C e

C C C
U e e

C

C

C

  
  
  
  

   
  
  
    

  

 (3.7) 

The multiplication product of the matrices in the right hand side of Equation 3.7 gives 

2

2 11 12( )U C C e  . The second derivative of the energy with respect to the strain gives 

us 11 122( )C C .   

 The last component of elastic constants, C44, can be obtained by using the 

strain configuration D3 = (0, 0, 0, e, 0, 0), where the elastic energy density can be 

written in the matrix form as  

  

11 12 12

12 11 12

12 12 11

3

44

44

44

0 0 0 0

0 0 0 0

0 0 0 01
(0,0,0, ,0,0)      .

 0  00 0 02

 00 0 0 0 0

0 0 0 0 0  0

C C C

C C C

C C C
U e

C e

C

C

  
  
  
  

   
  
  
    

  

 (3.8) 
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The multiplication product of the matrices in the right hand side of Equation 3.8 gives 

2

3 44

1

2
U C e . The second derivative of the energy with respect to the strain gives us 

C44. 

Our calculated values of the elastic constants for selected perovskite materials 

compared with available theoretical and experimental results are shown in Table 3.3. 

Our calculated values are in reasonable agreements with available literature. 
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Table 3.3 Calculated elastic constants (in GPa) for selected cubic perovskite 

materials. Values in parentheses are from the literature. 

Materials 
LDA GGA 

C11 C12 C44 C11 C12 C44 

BeTiO3 363 121 48 307 112 48 

MgTiO3 380 110 73 339 102 72 

CaTiO3 405 110 100 356 103 98 

SrTiO3 

385 

(421a317d) 

113 

(121a102d) 

119 

(133a123d) 

326 

(313a,311c) 

103 

(98a,99c) 

112 

(113a104c) 

BaTiO3 

357 

(358a,305e) 

123 

(115a,106e) 

137 

(150a,128e) 

303 

(301a) 

111 

(104a) 

125 

(132a) 

SnTiO3 280 145 91 319 131 86 

PbTiO3 

328 

(450a,383b) 

127 

(261a,151b) 

102 

(113a,120b) 

280 

(325a) 

116 

(158a) 

97 

(107a) 

PbZrO3 363 93 64 317 88 64 

PbHfO3 379 96 76 338 93 75 

a
Calculations by Piskunov et al. (Piskunov et al., 2004) 

b
Calculations by Liu et al. (Liu et al., 2008) 

c
Calculations by Boudali et al .(Boudali et al., 2009) 

d
Experimental by Bell and Rupprecht (Bell and Rupprecht, 1963) 

d
Calculations by Wang et al. (Wang et al., 2010) 
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3.3 Sound velocities in anisotropic materials 

 To model the propagation of the sound wave in anisotropic materials, we 

assume that atoms can be oscillated around their equilibrium positions, leading to the 

lattice vibrations.  When considering the lattice vibrations, three major assumptions 

are made; (i) the displacements of the atoms from their equilibrium positions are 

small (ui≪a, where a is a lattice parameter), (ii) the forces acting on atoms are 

linearly proportional to the displacements, and (iii) adiabatic approximation is valid, 

i.e., the electron cloud is moved along with the atoms and the bond strength is not 

affected by the vibrations.  In addition, the material is treated as a continuous medium 

not a discreet one.  The vibrations are referred to as the elastic waves. 

 To understand the elastic wave, we first consider a segment of a long bar with 

the width dx.  The elastic displacement of the segment dx is denoted by u as illustrated 

in Figure 3.3(a). Based on Newton’s second law, the equation of motion can be 

written as 

 
2

2
,

d u
F m

dt
  (3.9) 

which implies that  

 
2

2
( ) ( ) ( ) ,

d u
F x dx F x Adx

dt
    (3.10) 

where ρ is the mass density and A is the cross-section area of the bar. Eq. (3.10) can 

be simplified as  

 
2

2
.

d F d u

A dx dt



 (3.11) 

 

From the definition of stress, Equation (3.11) can be written as 
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2

2
,xxd d u

dx dt


  (3.12) 

where σxx is the compressive stress.  If the wave propagates along [100] direction, 

Hook’s law can be written by  

 11 ,xx xxC e   (3.13) 

where C11 is the longitudinal compression or Young’s modulus and exx = dux/dx is the 

tensile strain. Substitute Equation (3.13) and the definition of the tensile strain into 

Equation (3.12), we get  

 
2 2

11

2 2
.

Cd u d u

dt dx

 
  
 

 (3.14) 

For a longitudinal wave, the solution of the wave equation (3.14) can be written as  

 ( )( . ) ,i qx tu x t Ae x  (3.15) 

where q is the wave vector and ⍵ is the frequency which can be written as  

 .Lv q   (3.16) 

vL is the longitudinal sound velocity which can be written as a function of the elastic 

constants as  

  
1

2
11 / .Lv C   (3.17) 
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(b) 

Figure 3.3 Representation of (a) the longitudinal wave and (b) the transverse wave in 

a slab. The figure is reproduced from Ref. (Elliott, 1998) 
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 In the case of a transvers wave, the equation motion is based on the shear 

stress and strain. Consider Figure 3.3(b), in the same way as the longitudinal wave, 

the equation of motion for the transverse wave can be written as  

 

2

2
.

xyd d u

dx dt


 , (3.18) 

where σxy is the shear stress which is related to the shear modulus and shear strain by 

the relationship  

 44 .xy xyC e   (3.19) 

exy = duy/dx is the shear strain. Substitute Equation (3.19) and the definition of shear 

strain into Equation (3.18), we get the transverse wave equation as  

 

2 2

44

2 2
.

Cd u d u

dt dx

 
  
 

 (3.20) 

The displacement is in the y direction when the wave propagates in the x direction. 

The solution of Equation (3.20) can be written as  

 
( )( . ) ,i qx tu x t Ae y  (3.21) 

where q is the wave vector and ⍵ is the frequency, which can be written as  

 .Tv q   (3.22) 

vT is the transverse sound velocity, which can be written as a function of the elastic 

constants as  

  
1

2
44 / .Lv C   (3.23) 

Note that there are two linear independent transverse modes characterized by the 

displacement in y and z directions. For [100] direction, the velocities of these modes 

are the same due to the symmetry.  Normally, C11 is larger than C44, therefore, the 
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longitudinal sound velocities are generally larger than the transverse sound velocities. 

The sound velocities mentioned above are in [100] direction. For other directions, the 

sound velocities depend on the combinations of the elastic constants. The detailed 

derivations can be found in Ref. (Kittel, 1996).  The relationships of the sound 

velocities and the elastic constants for a cubic crystal are summarized in Table 3.4. 

The schematic illustration of the propagation directions of elastic waves and the 

directions of the sound velocities are illustrated in Figure 3.4  

 

Table 3.4 Sound velocity expressions of each wave propagation direction for a cubic 

crystal (Kittel, 1996). 

Sound velocity in different 

directions 
Expression  

vL([100])  (C11/ρ )
1/2

 

vT([100]) (C44/ρ )
1/2

 

vL([110]) [(C11 + C12 + 2C44 )/ 2 ρ]
 1/2

 

vT([110]) [(C11 - C12 )/ 2ρ]
 1/2

 

vL([111]) [(C11 + 2C12 + 4C44 )/ 3ρ]
 1/2

 

vT([111]) [(C11 - C12 + C44)/ 3ρ]
 1/2
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q
q

q

 

 

 

 

 

                          (a)                                    (b)                                  (c) 

Figure 3.4 Representation of an elastic wave in a cubic crystal for (a) wave 

propagating in the [100] direction, (b) the [110] direction and (c) the [111] direction. 

Two transverse modes are degenerate for the propagation in the [100] and the [111] 

directions. The red arrows represent the direction of wave vector and the dark blue 

arrows represent the direction of the oscillation. The figure is reproduced from Ref. 

(Kittel, 1996) 
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CHAPTER IV 

SOUND VELOCITIES AND ELASTIC PROPERTIES OF 

PbTiO3 AND PbZrO3 UNDER PRESSURE:  

FIRST PRINCIPLES STUDY 

 

4.1 Introduction 

 PbZrO3 (PZO) and PbTiO3 (PTO) are the parent compound materials of the 

extensively utilized ferroelectric material Pb(Ti,Zr)O3 (PZT). PZT (as well as PZO 

and PTO) has perovskite structure and is used in many devices such as ultrasonic 

transducers and piezoelectric actuators (Yamamoto and Makino, 1996).  The room 

temperature phase of PZO and PTO is orthorhombic and tetragonal structure, 

respectively (Kagimura and Singh, 2008; Kalinichev et al., 1997).  Both orthorhombic 

PZO and tetragonal PTO have only slight distortion from the perfect cubic perovskite 

structure. The elastic properties of PZO and PTO under ambient pressure have been 

studied by various research groups. Liu and co-workers (Liu et al., 2008) theoretically 

studied the elastic properties of PTO in both cubic and tetragonal phases. Kalinichev 

and co-workers (Kalinichev et al., 1997) used brillouin light scattering on single 

crystalline PTO samples to obtain the elastic and piezoelectric constants at room 

temperature. For PZO, Kagimura and D. J. Singh (Kagimura and Singh, 2008) studied 

the elastic properties and energetics of orthorhombic and rhombohedral phases. 
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The effects of hydrostatic pressure on perovskite materials have been 

experimentally and theoretically investigated. However, to our knowledge, the elastic 

properties and sound velocities of PTO and PZO under pressure have not been 

reported.  For PTO, most of previous works were performed in order to understand 

their ferroelectric properties under pressure.  Liu and co-workers (Liu et al., 2008) 

focused mainly on the calculations of equilibrium tetragonal to cubic phase transition 

pressure of PTO.  

In this chapter, the elastic constants and sound velocities of cubic perovskite 

PZO and PTO under pressures were studied based on density functional theory 

calculations. 

 

4.2 Computational Method 

 The computational approach employed was based on first principles density 

functional theory (Hohenberg and Kohn, 1964; Kohn and Sham, 1965) with plane 

wave pseudo-potentials as implemented in the Vienna Ab-initio Simulation Package 

(VASP) code (Kresse and Furthmüller, 1996).  For the exchange correlation terms, 

both local density approximation (LDA) (Ceperley and Alder, 1980; Perdew and 

Zunger, 1981) and generalized gradient approximation (GGA) (Perdew et al., 1997) 

were used. The ultrasoft version of the pseudo-potential implemented in the VASP 

code allows a low cut off energies for the plane wave expansion (only 500 eV).  We 

used a 8×8×8 Monkhrost-Pack scheme (Monkhorst and Pack, 1976) k-point sampling. 
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 In our calculations, the structures of PTO and PZO were treated as ideal cubic 

structures with the space group 3Pm m  (#221) as illustrated in Figure. 3.1. The 

atomistic positions follow the Wychoff positions: Pb 1a (0,0,0), Ti (or Zr) 1b 

(0.5,0.5,0.5) and O 3c (0,0.5,0.5), (0.5,0.5,0) and (0.5,0.0.5) as shown in Table 3.1. 

To study the elastic properties, the total energies (E) of a unit cell of material 

at several slightly different volumes (V) were calculated and fitted into an equation of 

states (Li et al., 2005).  If the unit cell is uniformly scaled, to simulate the hydrostatic 

pressue effect, the bulk modulus (B0) and its pressure derivative (B' ) is obtained.  

Under the same approach, other elastic constants and sound velocities can be 

calculated as described in Sarasamak et al. (Sarasamak et al., 2010).  The reduced 

material volume can be translated into the corresponding pressure following the 

pressure–volume (P–V) relationship constructed by Birch-Murnaghan’s equation of 

state (Poirier, 2000) written as, 

  (4.1)

 

 

where V0 is the equilibrium volume. 
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4.3 Results and Discussion 

 4.3.1 Structural and elastic properties 

 The calculated equilibrium lattice constants as well as the corresponding 

volumes of both PTO and PZO calculated based on both LDA and GGA exchange 

correlation functional are shown in Table 4.1 in comparison with other computation 

and experimental results.  Our values are in agreement with other corresponding 

calculated results. In comparison with the experimental value, LDA tends to give a 

slightly smaller lattice constant while GGA tends to give a larger value. This is 

consistent with what have generally been observed in other materials. 

 The calculated bulk modulus (B), its pressure derivative (B'), and the elastic 

constants at zero pressure of both PTO and PZO are also shown in Table 4.1. Because 

LDA gives a smaller lattice constant compared to the corresponding value obtained 

using GGA, the bulk moduli and all elastic constants computed using LDA are 

consistently higher than the corresponding ones computed using GGA.  PTO has been 

previously studied by Piskunov et al. (Piskunov et al., 2004) and Liu et al. (Liu et al., 

2008). Liu’s LDA results are consistently higher than our results while their GGA 

results are quite similar. To our knowledge, there is no computation result available 

for PZO. The sound velocities, shown in the bottom section of Table 4.1, can be 

derived from the elastic constants using the expressions shown in Table 3.4. 
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Table 4.1 Calculated lattice constants (a) in Å, a unit cell volumes (V0) in Å
3
, bulk 

modulus (B) in GPa, its pressure derivative (B'), elastic constants in GPa and sound 

velocities in km/s of PbTiO3 and PbZrO3 in the cubic perovskite structure compared 

with the literature. 

  PbTiO3 PbZrO3 

  LDA GGA LDA GGA 

a  Present 3.89 3.97 4.13 4.20 

Other Calc. 3.88
a
, 3.93

b
 3.98

a
, 3.96

b
 4.11

c
 4.19

c
 ,4.18

d
 

Expt. 3.95
e
 4.16

f
 

V0  Present 58.76 63.32 70.22 74.08 

B  Present 219 185 181 168 

 Other Calc. 229
g
, 324

b
 213

b
 - - 

B' Present 4.5 3.5 4.6 3.7 

C11 Present 380 316 366 322 

 Other Calc. 384
g
, 450

b
 325

b
 - - 

C12 Present 145 130 92 89 

 Other Calc. 151
g
, 261

b
 158

b
 - - 

C44 Present 103 96 63 62 

 Other Calc. 120
g
, 113

b
 107

b
 - - 

vL[100] Present 6.66 6.25 6.69 6.42 

vT[100] Present 3.46 3.44 2.78 2.82 

vL[110] Present 6.53 6.28 5.98 5.86 

vT[110] Present 3.70 3.39 4.10 3.86 

vL[111] Present 6.48 6.43 5.72 5.65 

vT[111] Present 3.63 3.55 3.71 3.55 

a
 Calculations by Hosseini et al. (Hosseini et al., 2007) 

b
 Calculations by Piskunov et al. (Piskunov et al., 2004) 

c
 Calculations by Wang et al. (Wang et al., 2005) 

d
 Calculations by Baedi et al. (Baedi et al., 2008) 

e
 Measurements by Kuroiwa et al. (Kuroiwa et al., 2001) 

f
 Measurements by Fujiishita et al. (Fujishita et al., 2002) 

g
 Calculations by Liu et al. (Liu et al., 2008) 
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 4.3.2 Elastic properties under pressure 

 To study the elastic constants and sound velocities under hydrostatic 

pressures, the calculations were performed at several reduced volumes, each of which 

corresponds to the system under a different pressure. The pressure can be determined 

from the pressure-volume relation shown by Equation 4.1. Sound velocities of PTO 

and PZO under pressure can be obtained from the corresponding elastic constants 

using the expressions (cite) given in Table 3.4.  

 The elastic constant as a function of pressure for cubic perovskite PTO and 

PZO are shown in Figure 4.1.  The elastic constants of both materials have similar 

behaviors under pressure.  In general, we can see that all three elastic constants, C11, 

C12 and C44 increase with the pressure.  In both PTO and PZO, C11, which is related to 

the longitudinal distortion, rapidly increases with the pressure. On the other hand, C12 

and C44 are much less sensitive to the pressure.  Indeed, C44, which is related to the 

transverse distortion, remains almost constant throughout the pressure range studied.  

The calculated sound velocities under pressure for both cubic perovskite PTO and 

PZO are shown in Figure 4.2.  Since the sound velocities are directly derived from the 

elastic constants, similar trends were found. All of the sound velocities, except for the 

vT([100]) of PZO, increase with pressure mainly because they contain C11 which 

rapidly increases with pressure. In PZO, vT([100]) slightly decreases under pressure 

because it associated only with C44 which remains almost flat with pressure and 

divided by  which increases with the pressure. As expected, the longitudinal modes 

are larger than the transverse modes such that they can be divided into two groups.  
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Figure 4.1 Elastic constants as a function of pressure for cubic perovskite PbTiO3 and 

PbZrO3, obtained from LDA (left) and GGA (right).  
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Figure 4.2 Sound velocities as a function of pressure for cubic perovskite PbTiO3 and 

PbZrO3, obtained from LDA (left) and GGA (right). 
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4.4 Conclusions 

 The elastic constants and sound velocities of cubic perovskite PTO and PZO 

as a function of pressure were calculated by first principles calculations. Both LDA 

and GGA exchange and correlations were used. The calculated zero-pressure 

properties are in good agreement with literature; ensuring the validity of the results. 

LDA gives slightly smaller lattice constants and larger bulk moduli than GGA which 

is consistent with what have been observed in other materials. The elastic constants 

and sound velocities under the pressure range of 0–40 GPa were presented. The 

elastic constants almost linearly increased with pressure. C11 rapidly increases with 

pressure while C12 and C44 are much less sensitive to pressure. Because the sound 

velocities are related to the elastic constants, almost all of them increase with 

pressure. 
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CHAPTER V 

ELASTIC PROPERTIES OF PEROVSKITE ATiO3        

(A=Be, Mg, Ca, Sr and Ba) and PbBO3 (B=Ti, Zr, and Hf) 

 

5.1 Introduction 

 The elastic properties are the fundamental properties that providing detailed 

information on the mechanical properties of materials. Because the elastic properties 

can be used to describe and predict the mechanical behavior of materials in different 

situations, they are widely studied.  For perovskite family of oxides (ABO3), the 

elastic properties of several materials have been studied theoretically (computation) 

and experimentally.  

Examples of materials that have been studied theoretically by first principles 

DFT calculations are BaTiO3 (Meng et al., 2010; Wang et al., 2010), PbTiO3 (Liu et 

al., 2008), SrTiO3 (Boudali et al., 2009) and SnTiO3 (M.F.M. Taib et al., 2012).  

On the experimental side, several perovskite oxides have also been studied.  Li 

and co-workers (Li et al., 1991) used the Brillouin scattering and ultrasound 

techniques to measure the velocity of the ultrasound in a single tetragonal BaTiO3 

crystal. The sound velocities can be used to calculate the elastic and piezoelectric 

constants.  SrTiO3 has also been studied different techniques (Lheureux et al., 1999; 

Poindexter and Giardini, 1958; Schranz et al., 1999).  This is because SrTiO3 has
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rather simple structure (cubic phase at room temperature) with high quality crystal 

available. Lheureux and co-worker used the ultrasonic measurement technique to 

study the elastic constants and their pressure dependence of cubic SrTiO3. 

 Although the elastic properties of some ABO3 perovskite materials have been 

studied, the trend of how the elastic constants changed with the cation species has not 

been investigated.  In this chapter, how the elastic constants change with cation 

species will be investigated by systematically varying A-site and B-site cations.  In 

this work, while we vary the A-site among different Group II elements, we fix the B-

site to be Ti.  The A-site was fixed to be Pb when we vary the B-site among different 

Group IV transition elements.  The cation elements used are highlighted in Figure 5.1  

 

5.2 Computational Method 

 In this work, the computational approach employed is based on first principles 

density functional theory (DFT) (Hohenberg and Kohn, 1964; Kohn and Sham, 1965) 

with the plane wave pseudo-potential as implemented in Vienna Ab-initio Simulation 

Package (VASP) code (Kresse and Furthmüller, 1996). Both local density 

approximation (LDA) (Ceperley and Alder, 1980; Perdew and Zunger, 1981) and 

generalized gradient approximation (GGA) (Perdew et al., 1996) were used as the 

exchange correlation terms. The ultrasoft version of the pseudo-potential implemented 

in the VASP code allows a low cut off energies for the plane wave expansion of only 

500 eV. We used a 8×8×8 Monkhrost-Pack scheme (Monkhorst and Pack, 1976) k-

point sampling.  More detailed information on the computation approach can be found 

in Chapter II 
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 In our study, the structure of selected perovskite materials was assumed to be 

the ideal cubic structure (space group 3Pm m ) as illustrated in Figure 3.1 (Chapter III) 

with the atomistic positions following the Wychoff positions tabulated in Table 3.1. 

The energy-strain relation was used to determine the elastic constants. The elastic 

energy density (U) can be expressed as the quadratic function of the strains as, (Kittel, 

1996) 

 

6 2

1 1

1

2
ij i j

i j

U C e e
 

   , (5.1) 

where the elastic constants ijC can be obtained from the derivative of U with respect 

to the associated strain components (Kittel, 1996).  For example, in order to calculate 

the C11 elastic constants, the strain configuration D1 = (e, 0, 0, 0, 0, 0) was used. The 

elastic energy density can be written in a matrix as,  
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    

  

  (5.2) 

The multiplication product of Equation (5.2) gives the energy of this strain 

configuration as 2

1 11

1

2
U C e . The elastic energy was calculated with the several 

values of the strain (e) and then the energy–strain curve was fitted to the third–degree 

polynomials as shown in Figure 5.2. The second derivative of the energy with respect 

to the strain gives us C11. Other elastic components can be obtained using similar 

steps. More details can be found in Chapter III (Section 3.2.3). 

 

 

 

 

 

 

 

 

 



61 

 

 

Figure 5.1 A periodic table with the cation species, used in the study, highlighted.  

The red rectangle highlighted the elements used on the A-site while fixing the B-site 

to be Ti in the cubic perovskite ABO3.  The blue rectangle highlighted the elements 

used on the B-site while fixing A-site to be Pb.  [The figure is reproduced from Ref. 

(Wolfram Quester Source, 2013)] 
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Figure 5.2 A typical energy-strain curve fitting used to obtain the elastic constants. 

The black square points represent the calculated data and the red curve represents the 

third-degree polynomial fitting. 
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5.3 Results and Discussion 

 As described in Chapter III, there are only three independent elastic constants 

(C11, C12 and C44) for cubic crystal. Each of them represents the directional 

mechanical responses of the crystal for different directions of applied forces with the 

details described in Chapter III (Figure 3.2 and Section 3.2).  The calculated elastic 

constants of selected perovskite materials (according to what previously described 

criteria) based on both LDA and GGA exchange correlation functional are tabulated 

in Table 3.3.  In general, LDA tends to consistently give slightly larger elastic 

constants than GGA.  Our values are in good agreement with available calculated and 

experimental results. 

To understand the trend of the elastic constants with respect to cation species, 

the elastic constants for materials with different A-site cations and B-site cations are 

plotted with respect to the atomic numbers of the varied cations in Figure 5.4(a)(c)(e) 

and (b)(d)(f), respectively.     

The longitudinal elastic constant, C11, directly represent the stiffness of the 

crystal.  It is based on the longitudinal compression as shown in Figure 3.2.  From the 

plot (Figure 5.4(a)), we can see that as we varied the A-site cation from Be to Ba, C11 

increases until it reaches the maximum, when Ca is the A-site cation, then decreases.  

As we varied the B-site cation (Figure 5.4(b)), from Ti to Hf, C11 monotonically 

increases.  Although the behavior of C11 with respect to A-site and B-site cations 

seems to be complicated and no clear trend, it can be explained using a simple 

explanation as following.  The perovskite structure can be considered to be a network 

of two intercalating cage structures; A-site cage and oxygen cage as illustrated in 

Figure 5.3. Because the two networks share the same set of oxygen atoms, the 
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volumes of the two types of cages are not independent but tied to each other.  The 

volumes of the two cage types are not necessarily optimized at the same time.  

Therefore, the overall lattice constant of the crystal is optimized at the interplay point 

that compromises the volumes of the two types of cages.  Both networks of cages 

contributed into the strength (C11) of the crystal. When the atomic species that 

occupies an A-site is smaller than that occupies a B-site, the strength of the crystal is 

dominated by the network of the oxygen cages.  On the other hand, when the atomic 

species that occupies an A-site is larger than that occupies a B-site, the strength of the 

crystal is dominated by the network of A-site cages.  The crystal becomes the most 

stiff (C11 reaches maximum) when the size of atomic species that occupies an A-site is 

comparable to that occupies a B-site; the point where both types of cages contributed 

to the stiffness of the crystal.  As we varied the A-site cation and fixed the B-site 

cation to be Ti, the maximum C11 takes place when an A-site atom is Ca which has 

the size most comparable to Ti among all Group-II elements used.  At other point, 

only one type of the cages is dominating the stiffness, resulting in a lower C11.  By 

using the same reasoning, the behavior of C11 with respect to the changes of the B-site 

cation, can also be explained.  When we change the B-site cation, the A-site cation is 

fixed to be Pb.  We would expect C11 to be the largest when the B-site cation is 

comparable to Pb; in this case Hf.  Therefore, it is not surprising that C11 

monotonically increases as we varied the B-site cation from Ti to Hf.  C11 is expected 

to shift lower for PbRfO3 (not calculated).       
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(a) 

 

 

(b) 

Figure 5.3 Illustration of the polyhedral of ideal cubic perovskite crystal from (a)  a 

perspective view and (b) top view.  The blue-green cage represents the oxygen cage. 

The dark gray spheres represent A cations, blue-green spheres are B cation, and red 

spheres are oxygen anions. 
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Figure 5.4 Elastic constants (Cij) of perovskite (a) ATiO3 and (b) PbBO3 as a function 

of atomic number of A-site and B-site atom, respectively.   

 

 

 

 

 

 

 

 

 



67 

 

The transvers elastic constant, C12, is based on the transverse expansion as 

shown in Figure 3.2.  From the plots (Figure 5.4(c)), we can see that C12 is not very 

sensitive to the changing of A-site cations, when the B-site cation is kept fixed as Ti.  

This is because C12 is mainly dominated by the distortion of the oxygen cage, i.e., as 

the cage is squeezed on the side it would heavily expand in the transverse direction.  

As we change A-site cations, the center of the oxygen cages remains to be Ti.  As a 

result, C12 remains almost constant.  On the other hand, from the plot in Figure 5.4(d), 

C12 is slightly decreased as the B-site cation was changed from Ti to Zr and remained 

unchanged as it is changed further to a larger Hf cation.  Changing B-site cations, 

directly affect the oxygen cages.  As the B-site cations (Ti) were replaced by larger 

cations (Zr or Hf) the cages are expanded and the conformation of the polyhedral 

shape turns weaker; leading to a smaller C12.     

The shear elastic constant, C44, is based on the distortion shown in Figure 3.2. 

From the plot in Figure 5.4(e), we can see that C44 is increased with the size of A-site 

cations.  This indicates that C44 is directly dominated by the A-site cage.  Because the 

overall lattice constant is partly controlled by the oxygen cage, for small A-site 

cations, the A-site cages are expanded; resulting in the weak bonds to O and small 

C44.  As the A-site cations turn larger to comparable or even larger than the B-site 

atom, their bonding to O becomes stronger making the A-site cage more difficult to 

shear.  Hence, C44 increases.  On the other hand, from the plot in Figure 5.4(f), C44 is 

decreased as the B-site cation was changed from Ti to Zr and remained almost 

unchanged as it is changed further to a larger Hf cation.  This can be explained using 

the same reasoning, C44 is dominated by the A-site cage (in this case Pb).  As the B-
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site cations are changed from Ti to Zr the size of oxygen cages increase pushing the 

Pb-O bonds to a value larger than their optimum length leading to smaller C44.    

 

5.4 Conclusion 

 Elastic properties of perovskite ATiO3 (A=Be, Mg, Ca, Sr and Ba) and PbBO3 

(B=Ti, Zr and Hf) were studied by first principles calculations. Both of LDA and 

GGA exchange and correlations were used in the calculations. The calculated elastic 

constants are in good agreement with available literatures. The LDA results 

consistently give slightly larger elastic constants than those calculated using GGA. 

For ATiO3, C11 was found to increase with the atomic size of A until it reaches 

maximum when the atomic size of A-site and B-site atoms are comparable.  As the 

atomic size of A further increased, was found to decrease.  For PbBO3, C11 was found 

to monotonically increase with the atomic size of B since B is always smaller than Pb 

in this study.  C12 was found to be quite the same for the entire series of ATiO3.  

However, for PbBO3, C12 was found to slightly decrease as the size of B-site cations 

increases. C44 elastic constant was found to monotonically increase with the size of A-

site cations for the ATiO3 system and slightly decrease with the size of B-site cations 

for the PbBO3.  The discussions of the changes of the elastic constants with respect to 

the cation sizes were given based on the nature of the crystal structure.          
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CHAPTER VI 

CONCLUSIONS AND FUTURE RESEARCH 

 

6.1 Conclusions  

 In this thesis, elastic properties of selected perovskite oxides materials, namely 

BeTiO3, MgTiO3, CaTiO3, SrTiO3, BaTiO3, PbTiO3, PbZrO3 and PbHfO3 were 

calculated by utilizing first principles method.  The pressure dependencies of their 

elastic properties and sound velocities were calculated for some of the aforementioned 

materials. The effects of cation species on the elastic constants were also studied and 

analyzed.  The main results from our study can be summarized as follows: 

 The elastic constants and sound velocities of the cubic phase of PbTiO3 and 

PbZrO3 as functions of the pressure were investigated based on first principles 

calculations.  Under ambient conditions, our calculated elastic properties of both 

materials are in good agreement with available experimental results.  The calculated 

LDA lattice constants are smaller than the ones obtained by GGA while the LDA 

elastic constants are larger than the ones obtained by GGA which is consistent with 

what have been observed in other materials and available literatures.  The elastic 

constants and sound velocities were also studied under the pressure range of 0 – 40 

GPa.  All elastic constants almost linearly increase with pressure in this range. C11 

elastic constant rapidly increases with pressure while C12 and C44 are found to be less  
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sensitive to pressure. Because the sound velocities are related to the elastic constants, 

almost all of them also increase with pressure (Pandech et al., 2013). 

The trends of how elastic constants changed with cation species were studied. 

The elastic constants of the cubic phase of perovskite ATiO3 (A = Be, Mg, Ca, Sr and 

Ba) and PbBO3 (B = Ti, Zr and Hf) were systematically studied for this purpose.  The 

maximum C11 elastic constant is found when the atomic size of the cations at the A-

site and B-site are comparable.  This was explained by the nature of the perovskite 

crystal structure that allows both types of cations to contribute to the stiffness of the 

crystal when they are comparable in size and only one type is dominated when the 

size of the cations are different.  C12 elastic constant is mainly defined by the oxygen 

cage, when Ti is at the center, and is not very sensitive to the A-site cations.  When 

the B-site cation is changed from Ti to a larger size cations, C12 slightly decreases due 

to weaker oxygen cages.  For ATiO3, C44 elastic constant increases with the size of A-

site cations.  For PbBO3, C44 slightly decreases with the size of B-site cations.  This is 

because the cube structure defined by the A-site cations plays a major role in the shear 

elastic.  When A-site cations are relatively large compare to the B-site cations, the 

cube structure maintains its high integrity.  As the B-site cations turns larger the cube 

is forced to expand making it easier to shear.   

 

6.2 Future Research Plan 

Extension of the study of the elastic properties and sound velocities of 

aforementioned materials to more complicated crystal structures such as tetragonal, 

orthorhombic, rhombohedral, and etc. are suggested.  The calculations of elastic 

constants and sound velocities could be performed using the same approach described 
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in Chapter III.  However, the number of independent elastic constants is now more 

than three (for cubic) due to the reduced symmetry of the crystal structures.  For 

example, there are six independent elastic constants of tetragonal structure and nine 

independent elastic constants of orthorhombic structure (Tinder, 2008). 

As mentioned in Chapter III, the general form of the elastic constants matrix 

contains 36 components (Equation 3.3).  For materials with crystal symmetries, the 

number of elastic constants can be reduced based on the level of symmetries.  For the 

case of tetragonal structure, the 36 elastic constants can be reduced to only 6 

independent elastic constants.  The elastic constants matrix for a tetragonal crystal has 

the form (Kittel, 1996; Tinder, 2008) 

 

11 12 13

12 11 13

13 13 33

44

44

66

00 0

00 0

00 0

000 0 0

00 0 0 0

0 0 0 0 0

C C C

C C C

C C C
     .

 C  

 C 

C  

 
 
 
 
 
 
 
  
 

 (6.1) 

We have calculated the structural parameters and elastic constants of selected 

oxides in the tetragonal perovskite structure.  The structure of an ideal tetragonal 

structure used in our calculations is illustrated in Figure 6.1. The equivalent positions 

of the atoms are shown in Table 6.1.  Our calculated values of lattice parameters and 

elastic constants are shown in Table 6.2 in comparison with available calculated and 

experimental results in the literatures. Our calculated values are in reasonable 

agreement with the literatures.  

 

 

 

 

 

 

 

 



75 

 

 

 

Figure 6.1 An ideal tetragonal perovskite unit cell. The dark gray spheres represent A 

cations, blue spheres: B cation, and red spheres: oxygen anions. 

 

Table 6.1 Atomic positions in the ideal tetragonal perovskite structure.  

Site Location Co-ordinations 

A cation (2a) (0, 0, 0) 

B cation (2a) (0.5, 0.5, 0.5) 

O anion (6b) (0.5, 0.5, 0) (0.5, 0, 0.5) (0, 0.5, 0.5) 
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Table 6.2 Lattice parameters and elastic constants for selected oxides in the tetragonal 

perovskite structure. Values in parentheses are from the literature. 

 
  

Compounds 
 

Lattice 

parameters 

BaTiO3 PbTiO3 SnTiO3 

LDA GGA Expt. LDA GGA Expt. LDA GGA Expt. 

a (Å) 
3.95 

(3.96a) 

4.03 

(3.984b) 
(3.992c) 

3.82 

(3.86e) 
3.89 (3.904f) 

3.76 

(3.78h) 

3.83 

(3.85h) 
(3.8i) 

c (Å) 
4.05 

(4.03 a) 

4.19 

(4.066b) 
(4.036c) 

3.96 

(4.02e) 
4.02 (4.157f) 

3.98 

(4.27h) 

4.08 

(4.4h) 
(4.14i) 

c/a 
1.03 

(1.02 a) 

1.04 

(1.021b) 
(1.011c) 

1.04 

(1.04e) 
1.03 (1.065f) 

1.06 

(1.13h) 

1.07 

(1.15h) 
(1.09i) 

V (Å
3
) 

62.2 

(63.5 a) 

68.1 

(64.537b) 
(64.32c) 58.8 62.4 (63.4f) 58.5 62.1 (59.78i) 

Elastic 

constants 
  

 
  

 
  

 

C11 
347 

(300
a
) 

276 

(254.8
b
) 

(222
d
) 

460 

(339
e
) 

379.2 (235
g
) 503 427 - 

C12 
128 

(109
a
) 

108 

(101.4
b
) 

(134
d
) 

165 

(140
e
) 

145.4 (101
g
) 171 153 - 

C13 
123 

(90
a
) 

102 

(104.1
b
) 

(111
d
) 

150 

(143
e
) 

131.1 (98.8
g
) 150 134 - 

C33 
299 

(149
a
) 

203 

(158.5
b
) 

(151
d
) 

354 

(323
e
) 

268 (105
g
) 340 267 - 

C44 
126 

(124
a
) 

111 

(68
b
) 

(61.1
d
) 

107 

(107
e
) 

98.1 (65.1
g
) 94 89 - 

C66 
128 

(128
a
) 

111 

(118.6
b
) 

(134
d
) 

106 

(109
e
) 

96.6 (104
g
) 92 87 - 

a
Calculations by Wang et al. (Wang et al., 2010) 

b
Calculations by Meng et al. (Meng et al., 2010) 

c
Measurement by Kwei et al. (Kwei G. H.  et al., 1993) 

d
Measurement by Khalal et al. (Khalal et al., 1999) 

e
Calculations by Liu et al. (Liu et al., 2008) 

f
Measurement by Kuroiwa et al. (Kuroiwa et al., 2001) 

g
Measurement by Li et al. (Li et al., 1996) 

h
Calculations by Parker et al. (Parker et al., 2011) 

i
Measurement by Matar et al. (Matar et al., 2009) 
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 In the future, we are planning to study the elastic constants and sound 

velocities of tetragonal perovskite oxides under pressure using the similar approach 

we employed for the cubic case.   

 This thesis shows that the first principles calculation can be used reliably to 

study the elastic properties and sound velocities of materials with the illustration of 

several perovskite oxide systems. The approaches illustrated in this thesis can be 

applied to study other materials as well. 
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