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A hyperbolic tension spline is defined as the solution of a differen-
tial multipoint boundary value problem. A discrete hyperbolic tension
spline is obtained using the difference analogous of differential operators;
its computation does not require exponential functions, even if its contin-
uous extension is still a spline of hyperbolic type. We consider the basic
computational aspects and show the main features of this approach.
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1. Introduction

Spline theory is mainly grounded on two approaches: the algebraic one
(where splines are understood as smooth piecewise functions, see e.g. [29,31])
and the variational one (where splines are obtained via minimization of qua-
dratic functionals with equality and/or inequality constraints, see e.g. [15]).
Although less common, a third approach where splines are defined as the solu-
tions of differential multipoint boundary value problems (DMBVP for short),
has been considered, [9]. Even though some of the important classes of splines
can be obtained from all three schemes, specific features make sometimes the
last one an important tool in practical settings. We want to illustrate this
fact by the example of hyperbolic tension splines.

Introduced by Schweikert in 1966, [30], hyperbolic tension splines are
solutions of DMBVP where the differential operators depend on tension pa-
rameters. Their tension properties (that is the possibility of pulling the curve
toward a piecewise linear function) have kept hyperbolic splines popular (see
for example [11,24,25,27] and references quoted therein) in shape-preserving
interpolation and/or approximation. Unfortunately, it is difficult to work with
hyperbolic splines for small or large values of the tension parameters. For this



reason, in spite of the presence of refined algorithms for their calculation [25],
hyperbolic tension splines were forced out by rational splines (see for example
[6, 12]) in practical applications.

We observe that for practical purposes, it is often neccessary to know the
values of the solution S of a DMBVP only over a prescribed grid instead of
its global analytic expression. In this paper, we study a natural discretization
of the DMBVP replacing, in the given interval [a, b], the differential operator
by its difference approximation. This provides a linear system with a pen-
tadiagonal matrix. It turns out that the solution of the discretized problem,
called mesh solution, is not a tabulation of S but can be extended on [a, b]
to a smooth function U which has shape properties very similar to those of
S and which provides a second order approximation of S as the discretization
step goes to zero. Due to these properties we will refer to U as a discrete
hyperbolic tension spline.

In contrast with the continuous case, an important fact here is that the
values of a discrete hyperbolic tension spline over a prescribed grid in [a, b]
(basically the mesh solution) can be obtained solving a pentadiagonal system.
This construction is substantially cheaper than performing calculations by the
standard algorithm [25], which involves the solution of a simple 3-diagonal sys-
tem, but with hyperbolic coefficients. In addition, the classical construction
requires the evaluation of hyperbolic functions over the prescribed grid with
much larger computational cost.

Moreover, just as cubic splines can be seen as a subclass of the exponential
ones in the continuous setting, our discrete hyperbolic splines generalize the
concept of discrete polynomial splines and reduce to them as the tension
parameters go to zero.

Discrete polynomial splines have been studied extensively. They were
introduced in [18] as solutions to certain minimization problems involving
differences instead of derivatives. They are connected to best summation for-
mulas [19] and have been used in [17] for the computation of nonlinear splines
by iteration. Approximation properties of discrete splines have been studied
in [16]. Discrete B-splines on a uniform partition were introduced in [28] and
discrete B-splines on a non—uniform partition were defined in [2, p.15]. In
[3] discrete B-splines were applied to the general area of subdivision. While
discrete polynomial splines are currently attracting widespread research in-
terest [21,22,23], discrete tension splines and B-splines have been less studied.
The only results we know regarding this topic concern discrete exponential
Box-splines [5, 26] and are therefore related to uniform partitions.

The content of this paper is as follows. In Section 2 we formulate the
problem. In Section 3 we prove the existence of a mesh solution by construct-
ing its extension as a discrete hyperbolic tension spline. An upper bound for
the distance between a discrete hyperbolic tension spline and the correspond-
ing continuous one is established in Section 4. In Section 5 we give direct and
recurrence algorithms for constructing discrete hyperbolic tension B-splines.
Section 6, with its subsections, is devoted to the discussion of practical as-
pects and computational advantages of our discrete spline. Finally, Section



7 gives some graphical examples to illustrate the main properties of discrete
hyperbolic tension splines.

2. Finite Difference Approximation

Let the data
(i fi), i =0,...,N+1, (2.1)
be given, where: a =29 <21 < --- < xny4+1 =0b. Let us put
h¢:$i+1—$¢, i:O,...,N.

An interpolating hyperbolic tension spline S with a set of tension param-
eters {p; >0|i=0,...,N} is a solution of the DMBVP

d*s \ 7 d2S
- _ (p—> = 07 in each (l'i,-'171'+1)7 1= 07-"7N7 (22)

dz*  \h;) da?
S € C?[a, b], (2.3)
with the interpolation conditions
S(z;)=fi, i=0,...,N+1, (2.4)

and some end constraints. For the sake of simplicity we only consider the
following classical end conditions

S"(a) = fo and S"(b) = fyi1 (2.5)
Let us now consider a discretized version of the previous DMBVP. Let
n; € N,2=0,..., N, be given; we look for
{’U,ij, ]: —1,...,n,~+1, iZO,...,N},

satisfying the difference equations:

\ 2
A7 (F5) Afug =0, G=t.mi—1, i=0.. N, (26)
i
where 9 h
Ajugy = === R
T n;

The smoothness condition (2.3) is changed into

Ui—l,ni,l — U”iO Y
Ui—1mn;_1+1 = Ui—1n;_;—1 Ui, 1 — Uj,—1

= y t=1,...,N, (2.7)

27’1_1 27’1

Niqui—1n,_, = Nuio
while conditions (2.4)—(2.5) take the form
Uio=1Ffi,1=0,...,N, Unny = fNt1,
Aouoo = fo's  ANUNmy = fagr -
Our discrete mesh solution will be then defined as
{wij, j=0,...,n;, ¢=0,1,...,N}. (2.9)
In the next section we prove the existence of the solution of the previous

linear system while we postpone to Section 6 the comments on the practical
computation of the mesh solution.

(2.8)



3. System Splitting and Mesh Solution Extension

In order to analyze the solution of system (2.6)—(2.8) we introduce the notation
mi; = Nuij, j7=0,...,n;; i=0,...,N. (3.1)

Then, on the interval [z;, z;11], (2.6) takes the form

ms;o = My,
Mij—1 — 2Mij + M j41 (pi )2 .
— - --:07 :]_7..., '_]_7 3.2
Tiz h, M J n; (3.2)

Mg n; = Myi41,

where m; and m;y; are prescribed numbers. The system (3.2) has a unique
solution, which can be represented as follows

mi; = My(zi5), x5 =2 +J7, §=0,...,n4

with
Mi(z) = mg sinh k;(1 — t) sinh k;t T —

sinh(k;) “sinh(k;)’ hi
and where the parameters k; are the solutions of the transcendental equations
.k
2n; sinh — = pi, Dpi =0,
2n

(3

that is

2
ki=2n;n | 2o/ (22) +1) >0, i=0,...,N.
2ni 2n¢

From (3.1) and from the interpolation conditions (2.8) we have

U0 = fia
Ui j—1 — 2Ui5 + Uj j41 .
3 = Myj, jZO,...,ni, (33)
i
Uin, = fit1-
For each sequence m;;, j = 0,...,n;, system (3.3) has a unique solution which

can be represented as follows
U,ij:Ui(.Tij), j:—l,...,ni+1,
where

U;(2) = fill —t) + fipat + @i (1 — t)h7m; + @i () himiyq, (3.4)



with
sinh(k;t) — t sinh(k;)

p? sinh(k;)

pi(t) =

In order to solve system (2.6)—(2.8), we only need to determine the values
m;, © = 0,...,N 4+ 1, so that the smoothness conditions (2.7) and the end
conditions in (2.8) are verified. From (3.3)—(3.4), conditions (2.7) can be
rewritten as

Ui_i(x;) = U(zi),
Ui—i(x +7i—1) — Uima(z; — 7i-1) _ Ui(zi + 1) — Us(x; — ) (3.5)

2Ti_1 2’7’1;

N1 Ui () = NU(5),

where

Uj(z+ 7)) = 2U;(z) + Uj(x — 7)

75

A;Uj(z) =

, T E [.I'j,CUj+1].

Then, from (3.1)—(3.2) and (3.4), the first and the third equalities in (3.5)
are immediately satisfied, while, using (3.4) and the end conditions in (2.8),
the second equality provides the following linear system with a 3-diagonal
matrix for the unknown values m;:

174
mo = Jo,

ai—1hi—imi—1 + (Bi—1hi—1 + Bihi)m; + ashymip = d;, i=1,..., N,

"
MN+1 = fN—i—l?

(3.6)
where

g - i = fi  fi—fia

' h; hic1

0i(£) = pi(—L)  nisinh(E) — sinh(k;)
e o © pisinh(k)
pi(1+ 1) —i(1— L) nycosh(k;)sinh(£) — sinh(k;)

= Z B p? sinh(k;)

Expanding the hyperbolic functions in the above expressions as power series
we obtain

Bi > 20; >0, +=0,...,N, forall n;>1, p; >0.

Therefore, the system (3.6) is diagonally dominant and has a unique solution.
We can now conclude that system (2.6)—(2.8) has a unique solution which
can be represented as U;(x;5), j = —1,...,n; +1,9=0,..., N, whenever the
constants m; are solution of (3.6).



Let us put
U(z) :=Ui(x), =€ [zixi41], i=0,1,...,N. (3.7)

Due to the previous construction we will refer to U as discrete hyperbolic
tension spline interpolating the data (2.1). We observe that we recover the
result of [17] for discrete cubics since

, 1 1 . 1 1 : tt* - 1)
plilinoai = 8(1 - n_12>’ plilinoﬁi = 6( + n—lz), plilino wi(t) = — (3.8)

4. Error Estimates

In this section, we present a bound for the distance between the discrete
hyperbolic tension spline defined in (3.7) and the corresponding continuous
one interpolating the same set of data and having the same end conditions.

As mentioned in section 2, the classical C? hyperbolic tension spline
interpolating the data (2.1) is a function S satisfying (2.2)—(2.5). It is well
known that we can express S;(z) := S()|(z,,2,,,] a8

Si(z) = fi(l —t) + firat + @i (1 — t)hZ; + Gi(t)himiia, (4.1)

where

- dS _ sinh(p;t) — t sinh(p;)
iti = 55 (Tivj), Pilt) = :
Mg dr2 (’T +J) ¥ ( ) pg smh(pi)

i=0,...,N, j=0,1,

and the constants m,; are solutions of the linear system
mo = (/)/7
&i—1hi—imi—1 + (Bi—thi—1 + Bihi)i; + azhimigr = d;, i=1,..., N,

~ e
my41 = fN+17

(4.2)

- ~, sinh(p;) —pi p; cosh(p;) — sinh(p;)
. — = ;= (1) = - .
(0) p? sinh(p;) fi = ¢i(l) p? sinh(p;)

It is easy to verify that B, > 2a; >0, Vp; > 0, so that the 3-diagonal linear
system (4.2) is diagonally dominant. In addition, as n; — +o00, systems (3.6)
and (4.2) coincide since

nzl—lg—loo i = O nzl—lg—loo /BZ - /BZ
Let us put
A= min (B — &)h; + (Bi—1 — @i—1)hi—1 > 0. (4.3)

i=1,....N



For notational purposes, let us consider systems (3.6) and (4.2) where the
first and the last equation have been multiplied by A; let T and T be the
corresponding matrices and let m, m be the corresponding solutions. We
have T = T + 0T, where

p— 0 0 —
a,org boTO + b17‘12 017'12
ho 2 hy 2 h 2 2
alrl bl'rl b2’r2 (127'2
0 hl hl + h2 h2
(ST - 9
an 17‘2 b ’I'2 b 2 2
—1"N—-1 N—-1TN_1 _|_ NTN ANTN
hN_l hN—l hN hN
| 0 0 J
and
" — S 1 b — n? rcosh(k;) cosh(p;)
" p; Lsinh(k;)  sinh(p)d’ " Di sinh(k;) sinh(p;) !’

After some computations we obtain that a;, b; are bounded functions of n;,
more precisely

la], bi| < A; = lim |b;| = 222 (p.)s1;1 (i) + 97
i oo 24 sinh” (p;)

Then, following [17], [16] and [4]
lm — 11| < 1T oo [T oo I m| oo

Since || Tr||lco > Al|r]|oo for all ¥ € RN then | T~ < AL In addition,

(4.4)

4A;
16T |00 < 7% max A , T= max_T;.
i=0,...,N h; i=0,...,N
Therefore . I,
|lm — ml|o < ||m||oo7'2—~ { max ] (4.5)
A LN h;
Then, setting
Bi :=2 max [(t)], Ci:=2n7 max (1) — ¢i(t)], (4.6)

te[0,1] te[o 1]

we obtain from the expressions of S; and U;, see (4.1) and (3.4), and from
(4.5)

2
o O [max Si(e) - )| < h2 [Hm — Ml B; + Hm“ooCi%
TE[Ti,Tit1 i
B, 4.A; C
<22 Bi il _’].
< hiT?||ml| A l:%l,a)fN h; h’zz

(4.7)



Since (see [4] for details) C; is a bounded function of n;, then from (4.7),
for each fixed sequence of the values py,...,pn, we have a second order con-
vergence of the discrete hyperbolic tension splines to the corresponding con-
tinuous spline. The results agree with the order of approximation of the
discretization which we have used for the first, second and fourth derivatives.
For example, let us consider in detail the upper bound (4.7) in the limit case
p;=0,9=0,...,N. From (3.8), (4.4) and (4.6) we obtain

1 ~ 1
pi—0

p;i—0 6 pi—0 6" pi—0

so that from (4.3) and (4.7)

1 1
A e

and we recover, with some improvements, the corresponding result of [17].

Finally, we observe that (4.7) can be used to estimate the rate of con-
vergence of a discrete hyperbolic tension spline towards a function generating
the interpolation points as max; h; — 0. To do this, it suffices to combine,
via the triangle inequality, (4.7) with the results of [20] where the convergence
of a continuous hyperbolic tension spline towards a function generating the
interpolation points is studied.

5. Discrete Hyperbolic Tension B-Splines

In this section, we use the strategy outlined in [13,14], where generalized B-
splines and their properties are discussed in more detail.

Let us associate with a partition A :a =29 < 21 < --- < xnyy1 = b of
the interval [a,b] a space of functions SPH whose restriction to an interval
[€3,2501], 4 =0, ..., N is spanned by the system of four linearly independent

functions {1, z, ®;, ¥;} and where every function in SPH satisfies smoothness
conditions (3.5) for discrete hyperbolic tension splines.

Following [14] let us rewrite formula (3.4) on the interval [x;, x;11], i =
0,...,N, in the form

U(z) = Ui(x) =[fi — @i(zi)mi] (1 — ) + [fiz1r — Vi(ig1)mipa]t

5.1
+ O (x)m; + Vi (x)miy, (5.1)
where t = (z — z;)/hi, mj = AyU;(x;), j =i,i+ 1, and
Ui(z) = pi(t)hi = »(pi, t)hi,  Pi(z) = i(1 = t)hi,
sinh(k‘it) — tni smh(k,/nz)
(1) = : 2
¥it) p? sinh(k;) (5:2)
Functions ®; and ¥; satisfy the conditions
Ui(z; + j1i) = ®4(wip1 +J7) =0, j=-1,0,1, (5.3)



Let us construct a basis for the space of discrete hyperbolic tension splines
SPH by using functions which have local supports of minimum length. Since
dim(SPH) = 4(N + 1) — 3N = N + 4 we extend the grid A by adding the
points w;, j = —3,-2, -1, N+2, N+3, N+4,such that v_3 < v_o <x_1 < a,

b < IN+2 < TN4+3 < TN44-
We demand that the discrete hyperbolic tension B-splines (HB-splines
for short) B;, i = —3,..., N have the following properties

Bi(z) >0, =z € (z;+ T, Tita — Tita),
Bi(z) =0, x¢ (z;,zit4),

Z Bj(z) =1, x¢€a,b]. (5.4)

5.1 Construction of HB-Splines

According to (5.1), on the interval [z, zj41], j =4,...,i+3, the discrete
HB-spline B; has the form

BZ(.T) = Bi’j(a?) = Pi,j(l') + Qj($)mj,]3i + \I/j (.T)mj_|_1’]3i,

where P;; is a polynomial of the first degree and my, = ABi(z;), | =
J,J + 1 are constants to be determined. The smoothness conditions (3.5) and
constraints (5.3) give the following relations

Py j(x5) = Pij-1(z;) + zjm; s,
Pyjleg — 7,25 + 73] = Pijoale; — mjo1, 25 + 7] + ¢io1,2myB;,
where
zj = zj(25) = Vi (z;) — 95(x5),
¢i-12 = Vja[z; — T, 25 + 1] = @5l — 7, 25 + 7]

Thus
P j(w) = P, j_1(z) + [25 + ¢j_12(7 — ) m; B, (5.5)

As B; vanishes outside the interval (z;,z;+4), we have from (5.5), in
particular, P; j = 0 for j = i,i+ 3. By repeated use of formula (5.5) we get

7 +3
Pij(x) =) la+a 1a(@—z)lmp, ==Y [a+c 2@ —z))ms,
I=it1 I=j+1

In particular, the following identity is valid

1+3
> [z +¢jora(m — zj)lmup, =0,
j=itl



from which one obtains the equalities
i+3
Z cj—12yim;is, =0, r=0,1, y; =m;—
j=i+1
Thus, the formula for the discrete HB-spline B; takes the form
(U, (z)miv1B,, T € [Ti,Tit1),
(z — yi+1)ci,2mi+1,Bi
+ @1 (x)miza,B, + Yir1(x)miza B,
T € [Tit1, Tita),
Bi(r) = { (Yi+s — T)Cit2,2Mmiy3 B, (5.7)
+ @ 0(x)miza B, + Yiro(x)mizs B,
T € [Tit2, Tits),
Qiy3(r)mitsB;, T € [Tiy3, Tita),
0, otherwise.

i

(5.6)

\
Substituting formula (5.7) into the normalization condition (5.4) written
for z € [x;, x;11], we obtain

i i—1 i
Z BJ(.’IZ) = q)l(.’lf) Z minj -+ \Ifl(."l?) Z m¢+17]3j
j=i—3 j=i—3 j=i—2
+ (Yi+1 — @)ci2miv1,B; , + (¥ — ¥i)cim1,2miB, , = 1.
As according to (5.4)

i—1 2
Z m,"BJ. == Z mi_|_1,Bj =0 (58)

j=i—3 j=i—2

the following identity is valid

(Yi+1 — 2)Ci2mis1B,_, + (2 —yi)Cic12mip, , = 1.
From here one gets the equalities

Yit1Ci,2Mit1,B;_y — Y; Ci—1,2M;B;_; = 01,4, 7 =0,1,
where 07, is the Kronecker symbol. Solving this system of equations and
using (5.6) or (5.8), we obtain
mjp, = 3 YL 142,043,
Cj—1,2w;11(Y;)

wit1(2) = (& = Yi41) (@ — Yig2) (@ — Yiys)

or with the notation ¢; 3 = yj12 — ¥j4+1, J = 1,4 + 1,

1
m;+1.B;, = ’
C;i,2C; 3
1 1 1
Mit2B;, = — ( + ), (5.9)
Ci+1,2 \Ci,3 G413
1
m;43B;, =

Ci+2,2Ci+1,3



5.2 Recurrence Formulas for HB-Splines

Let us define functions

Ay V() v € lwj vip),
Bja(z) = ¢ Ajy1®jpa(x), =€ [zjp1,242], J=i64+1,i+2.  (5.10)
0, otherwise,

Using (5.2) one can readily check that A;®; and A;¥; are strictly monotonic
functions on the interval [z, z;41]. The splines B, are a generalization
of the “hat-functions” for polynomial B-splines. They are nonnegative and,
furthermore, Bj o(zj41) =61, 1 =0,1,2.

Let us denote

AU(z) = AU (=),

T € T Tiv1], t=0,...,N;
D1U(z) = Uz — 7,z + 73], [ +1]

then from (3.5) AU and D;U are well defined if U € SP#. With the previous
notation, according to (5.7), (5.9), and (5.10) we obtain

i+3
j=i+1
_ L(Bi,z(fﬂ) B Bi+1,2(fﬂ)> 1 (Bz’+1,2($) B Bz’+2,2(5'3)> (5.11)
Ci,3 Ci,2 Ci+1,2 Ci+1,3 Ci+1,2 Ci+2,2 T

In addition the function D;B; satisfies to the relation

Bis(r) Biris(z)

D1B;(z) = — , (5.12)
Ci,3 Ci+1,3
where
( c]%\pj[l'—Tj,.T—FTj], T e [xjvxj+1)7
1+ cj%q’jﬂ[ﬂﬁ — Tj+1, T + Tjy1]
B;s(z) = 5.13
7’3( ) —m\l/j+1[£l?—Tj+17£L‘+Tj+1]a YANS [$j+17$j+2)a ( )
—m¢j+2[$ — Tj4+2,T + Tj~|—2]7 S [$j+27 $j+3)’
L 0 otherwise.

’

Functions Bj 3 and Bj 4 = B; possess many of the properties inherent
in usual discrete polynomial B-splines. We collect their characteristics in the
next theorem which can be proved by using the explicit formulae (5.7), (5.10),
and (5.13) for discrete HB-splines B;x, j = 2,3,4, and the relations (5.11)
and (5.12).



Theorem 1. The functions B; i, k = 3,4 have the following properties:
1. Bja(z) > 0forx € (xj+7j,xj44—Tjya), and Bj 4(z) = 0ifx ¢ (z,2j44),
Bjs(z) >0 for x € (zj,xj43), and Bj3(x) =0 if z ¢ (x;,2j4+3);
2. Bj 4 satisfies the continuity conditions (3.5);

3. B, 3 satisfies the first and second continuity conditions in (3.5);

4. Z;'V:_z Bjs(z) =1 for x € [a, ],
Qjlr — 1j, v+ 7] = —cj_12Bj23(%), Vj[r — 15,2+ 7] = ¢;2B; 3(7)

for x € [xj,x41],7=0,...,N;

5. Zj'vz—s YiyoBja(x) =", 1 =0,1 for x € [a,b],
(I)J (ZE) = cj_172cj_273Bj—3,4($): \I/](;U) = Cj,QCj,gBjA(;[;)
for z € [zj,2j41], j=0,...,N.

Figures 1 and 2 show the graphs of discrete HB-splines B; x, k = 2,3,4
(from left to right) on a uniform mesh with step size h = 1 and with 7; = 7 for
all i. We have chosen discretization parameters 7 = 0.1 (Fig. 1, left and Fig. 2,
right), 7 = 0.33 (Fig. 1, right) and 7 = 0.5 (Fig. 2, left) for ¢;(¢) from (5.2).
In figures 1 and 2 (left) we have parameters p; = 0, i.e. we have conventional
discrete cubic B-splines (e.g., see [16]). Visually, the presence of intervals
where the B-spline B; 4 is negative is more visible with growing discretization
parameter 7. In figure 2 (right) the tension parameters are p; = 50 for all
1, whence the shape of the graphs is practically unchanged when 7 increases
from 0.1 to 0.5. As the limit for p; — oo we obtain the pulse function for B »,
the “step-function” for B; s and the “hat-function” for B; 4 (all of height 1).

Figure 3 shows the graphs of discrete HB-splines B; 4 on a uniform mesh
(left) and on a nonuniform mesh (right), where the asterisk x denotes the x;.
For both plots p; = 2 and n; = 2.

Using the approach of [14], it is easy to show that the functions Bj,
Jj = —3,..., N have supports of minimum length, are linearly independent
and form a basis in the space SPH. So any discrete hyperbolic tension spline
U € SPH can be uniquely represented in the form

U(z) = Z b;B;(x) (5.14)

Jj=-3

with some constant coefficients b;.
Applying formulae (5.11) and (5.12) to the representation (5.14) we ob-
tain

DiU(z) = Y b;3Bjs(x), AU(z)= Y b;2Bja(x), (5.15)

where

b —b.

_ Uj,4—k 7—1,4—k o . _

bis_j = - . k=0,1; bjs=b;
7,3—k




1 1
8 0.8
6 0.6
4 0.4
2 0.2
0 0
0 1 2 3 2 5 6 0 1 2 3 2 5
Fig. 1. The discrete HB-splines Bj , k = 2,3, 4 (from left to right)
on a uniform mesh with step size h = 1, no tension and
discretization parameter 7 = 0.1 (left) and 7 = 0.33 (right).
1 1
8 0.8
6 0.6
4 0.4
2 0.2
0 0
0 1 2 3 4 5 6 0 1 2 3 4 5
Fig. 2. Same as Fig. 1, but with discretization parameter 7 = 0.5
(left) and with tension parameters p; = 50 for all ¢ (right).

Fig. 3. The discrete HB-splines B; 4
on a uniform mesh (left) and on a nonuniform mesh (right).
The asterisk * denotes the x;. For both plots p; = 2 and n; = 2.




5.3 Formulas for Local Approximation by HB-Splines

If the coefficients b; in (5.14) are known then by virtue of formula (5.7)
we can write out an expression for the discrete hyperbolic tension spline U on
the interval [x;, z;11], which is convenient for calculations,

U(.T) =b;_9+ Aibi_z(.’ﬂ — yz) + ¢; P; (.T) + CH_l\Ifi (.I'), (516)

where

Ajbi_y — Aj_1b; b, b,
o .. 7—1 — Uy-2
cj = , J=1t1+1, Abj g =" "=
Cj—1,2 Cj—1,3

The representations (5.14) and (5.16) allow us to find a simple and effec-
tive way to approximate a given function f from its samples.

Theorem 2. For b; = f(yj+2), j = —3,..., N, formula (5.14) is exact for
polynomials of the first degree and provides a formula for local approximation.

Proof: It suffies to prove that the identities

Z Y oBj(z r=0,1 (5.17)
71=-3

hold for = € [a,b]. Using formula (5.16) with the coefficients b;_ = 1 and
bj_o =yj, j =1—1,i,i+1,i+ 2, for an arbitrary interval [x;, z;11], we find
that identities (5.17) hold.
For b;_o = f(y;), formula (5.16) can be rewritten as
U(x) =f (i) + flyir visl(® — yi) + Wirr — vie1) f[Yi-1, Yi> Yir1)ei 1 o Pi()
+ (Yiv2 — ¥i) fYis Vit y¢+2]C;21‘I’¢(5C), T € [Ti, Tiy1].
This is the formula of local approximation. The theorem is proved.
Corollary 1. By setting
1 fiv1 =1 fi—fima
bj—2 = fj — —— | V() Z— = ®j(w;) == (5.18)
Cj—1,2 hj hj—1

in (5.14), we obtain a formula of three-point local approximation, which is
exact for polynomials of the first degree.

Proof: To prove the corollary, it is sufficient to take the monomials 1 and z
as f. Then according to (5.18), we obtain b;_» =1 and b;_» = y; and it only
remains to make use of identities (5.17). This proves the corollary.

Equation (5.16) permits us to write the coefficients of the spline U in its
representation (5.14) in the form

by — Ulyj) = Aj—1U(z-1) @51 (y;) — AjU(z)¥5-1(y;), vy <z,
! U(y;) = AjU(2)@5(y;) — AjraUlzir0) V5(y5), - w5 = -
(5.19)
Using this formula we obtain b;_» = U(y;) + O(E?), h; = max(hj_1,hj).
Hence it follows that the control polygon (e.g., see [8]) converges quadratically
to the function f for bj_o = f(y;), or if the formula (5.18) is used. Formulas

(5.16), (5.17), and (5.19) generalize their continuous equivalents developed in
[10].



6. Computational Aspects

The aim of this section is to investigate the practical aspects related to the
numerical evaluation of the mesh solution defined in (2.9).

A standard approach, [25], consists of solving the tridiagonal system (3.6)
and then evaluating (3.4) at the mesh points as is usually done for the evalu-
ation of continuous hyperbolic splines. At first sight, this approach based on
the solution of a tridiagonal system seems preferable because of the limited
waste of computational time and the good classical estimates for the condi-
tion number of the matrix in (3.6). However, it should be observed that, as
in the continuous case, we have to perform a large number of numerical com-
putations of hyperbolic functions of the form sinh(k;t) and cosh(k;t) both to
define system (3.6) and to tabulate functions (3.4). This is a very difficult
task, both for cancellation errors (when k; — 0) and for overflow problems
(when k; — o0). A stable computation of the hyperbolic functions was pro-
posed in [25], where different formulas for the cases k; < 0.5 and k; > 0.5 were
considered and a specialized polynomial approximation for sinh(-) was used.

However, we note that this approach is the only one possible if we want
a continuous extension of the discrete solution beyond the mesh point.

In contrast, the discretized structure of our construction provides us with
a much cheaper and simpler approach to compute the mesh solution (2.9).
This can be achieved both by following the system splitting approach pre-
sented in Section 3, or by a direct computation of the solution of the linear
system (2.6)—(2.8).

As for the system splitting approach, presented in Section 3, the following
algorithm can be considered.

Step 1. Solve the 3-diagonal system (3.6) form;, i=1,...,N.
Step 2. Solve N + 1 3-diagonal systems (3.2) for m;;, j = 1,...,n; — 1,

i=0,..., N,
Step 3. Solve N + 1 3-diagonal systems (3.3) for uij, j=1,...,n; — 1,
i=0,...,N.

In this algorithm, hyperbolic functions need only be computed in step 1.
Furthermore, the solution of any system (3.2) or (3.3) requires 8¢ arithmetic
operations, namely, 3¢ additions, 3¢ multiplications, and 2¢ divisions [31],
where ¢ is the number of unknowns, and is thus substantially cheaper than
direct computation by formula (3.4).

Steps 2 and 3 can be replaced by a direct splitting of the system (2.6)—
(2.8) into N + 1 systems with 5-diagonal matrices

uio = fi, Niuio=M;

N\ 2

A%m—(%)AmM:& j=1,...,n;—1, i=0,...,N.  (6.1)
i

Uin, = fit1, Niin, = Mitq,

Also, in this case the calculations for steps 2 and 3 or for system (6.1)
can be tailored for a multiprocessor computer system.



Let us discuss now the direct solution of system (2.6)—(2.8) which, of
course, only involves rational computations on the given data. In order to do
this in the next subsections we investigate in some details the structure of the
mentioned system.

6.1 The Pentadiagonal System

Eliminating the unknowns {u; 1, ¢ = 1,...,N,} and {ujn,4+1, @ =
0,...,N — 1}, from (2.7) determining the values of the mesh solution at the
data sites x; by the interpolation conditions and eliminating uo —1, UNny+1
from the end conditions (2.8) we can collect (2.6)—(2.8) into the system

Au=b, (6.2)
where
_ T
u= (U017 ce oy U0 ng—1,U11, - --7u21a---qula---qu,nN—l) )

A is the following pentadiagonal matrix (see also Fig. 1, left):

b — 1 ag 1 T
ap bo ap 1
1 ao b() ao 1
1 ap bo ap
1 a0 Mong—1 00,no—1
01,1 ma a1 1
a1 bl a1 1
1 anN bN anN 1
1 an bN an
L 1 anN bN—l_
with
) 2
a;=—(4+w;), bj=64+2w; , w; = <&> ; 1=0,1,..., N,
n;
L —p pi —
i—1m -1 =04 2w;_ 1= 6+ 2w;
Mimtnia=1 =0 F i T M =0 A T
2 p3
6'_ . _ = —)C s 6 = 2 ¢ s
t—1ln;,_1—1 pl(pl+1) 2,1 Pz+1
pPi = & ) 22172aaNa
Ti—1
and
b= (—(ao+2)fo— 15, —f0:0,...,0, = f1, —Yo,no—1.f1, —¥1,1.f1, — f1, 0,
"'707_fN+17_(a'N +2)fN+1 _T]%ff.;\/f—{—l)Ta
with

1—01)
pi  i=1,2,...,N.
Yig = —(4+w; +2(p; — 1)),

Yi—1mn;_1—1 = —(d+wi1+2



6.2 The Uniform Case

From the practical point of view it is interesting to examine the structure of
A when we are dealing with a uniform mesh, that is 7; = 7. In such a case
it is immediately seen that A is symmetric. In addition, following [17] we
observe that A = C + D, where both C and D are symmetric block diagonal
matrices. To be more specific,

Co
C,
C= : , Ci=B}—-uwB,,
Cn

where B; is the (n; — 1) x (n; — 1) tridiagonal matrix

-9 1 i
1 -2 1
B, — 1 -2 1 :
1 -2 1
L 1 =2
and
—0 0 —
0 0
0
1 1
1 1
0
D=
0
1 1
1 1
0
0 0
| 0 0.

The eigenvalues of C, \;(C), are the collection of the eigenvalues of C;. Since,
(see [17]),

A;(B;) = —2(1—cos£>, G=1,. .. mi—1,

ng

we have

S .
)\j(ci):4<1—COSE> +2w¢(1—cosﬂ> j=1,...,n;—1.
n; n;



In addition, the eigenvalues of D are 0 and 2, thus we deduce from a corol-
lary of the Courant-Fisher theorem [7] that the eigenvalues of A satisfy the
following inequalities

Ak(A) > A (C) = min Aj(C;) = min [4(1 — cos 1>2 +2w,~<1 - cos£>].

- 1,J i n; n;

Hence, A is a positive matrix and we directly obtain that the pentadiagonal
linear system has a unique solution.

In addition, by Gershgorin’s theorem, A;(A) < max;[16 + 4w;]. Then
we obtain the following upper bound for the condition number of A which
is independent of the number of data points, N + 2, and which recovers the
result presented in [17] for the limit case p; =0, i=0,..., N,

. max; [16+4(£—i)2}
[A[[oo[|A™ oo < — Y x
min; [ (1 —cos = ) +2(£4)2(1 — cos n—)]
: ¢ 6.3
max; [16+4 () ] (6:3)

min; (;-)*[m* + (mpe)?]

12

Summarizing, in the particular but important uniform case we can com-
pute the mesh solution by solving a symmetric, pentadiagonal, positive defi-
nite system and therefore, we can use specialized algorithms, with a compu-
tational cost of 17¢ arithmetic operations, namely, 7¢ additions, 7¢ multipli-
cations, and 3¢ divisions [31], where ¢ is the number of unknowns.

Moreover, since the upper bound (6.3) for the condition number of the
matrix A does not depend on the number of interpolation points, such meth-
ods can be used with some confidence.

In the general case of a non—uniform mesh, the matrix A is no longer
symmetric, and an analysis of its condition number cannot be carried out
analytically. However, several numerical experiments have shown that the
condition number is not influenced by the non—-symmetric structure, but does
depend on the maximum number of grid points in each subinterval, exactly as
in the symmetric case. In other words, symmetric and nonsymmetric matri-
ces, with the same dimension and produced by difference equations with the
same largest n;, produce very close condition numbers. Non—uniform discrete
hyperbolic tension splines have in fact been used for the graphical tests of the
following section.

6.3 System Splitting

Sometimes the number of unknowns in (6.2) can be very large (for exam-
ple for generating a grid in bivariate interpolation) and then even the linear
computational cost of the solution of the pentadiagonal system may turn out
to be too expensive. However, as for the two first approaches proposed at
the beginning of this section for evaluating the mesh solution, if we have a
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parallel machine we can easily share the computation of the solution of our
pentadiagonal system among the processors as outlined below.

The basic idea is to transform A, which, for N = 2, n, = 18 has the
form shown in Fig. 4 left, into the form K (see Fig. 4 right). Setting r; =
Ziu_:lo(n,, — 1), we note that the rows r; + 1,...,7; + n; — 1 of A describe
equations (2.6) for the subinterval [z;, z;11]. If we extract from K the rows
ri+1,...,r+4,0=0,1,..., N, we get a block matrix E of the form shown
in Fig. 5 left. The corresponding linear system has few equations, and having
solved it, it is possible to solve in parallel the N + 1 linear systems obtained
from the “remaining” matrix F of Fig. 5 right by extracting its independent

blocks.

The problem now is how to move from A to K. From Sections 2 and 3
we have the following two facts. Having in mind the structure of A and the
corresponding Fig. 4, let us consider the section given by rows 7; +1,...,7;41.
We note that the entries of the columns with index r; +3,...,r;41 — 2 are



1, a;, b;, a;, 1 which are the coefficients of the difference equation (2.6). On the
other hand, it is shown in Section 3 that any function of the form

Ti(x) =c1(1 —t) + cot + c3pi(1 — t) + capi(t) , (6.4)

is a solution for (2.6); therefore if we multiply the row of index r; + j, j =
1,...,n;—1, by Y;(x; ;) = Ti(x; + jr;) and then add all these rows, then the
contribution of all the columns from r;+3 to 7;4..1 —2 sums up to zero. The idea
for obtaining the matrix K from A is the following: we replace the four rows
of index r; +1,7; +2,7; + 3, r; +4 with the sum of the rows from r; +1 to ;11
multiplied by the values assumed in z;; by four linearly independent functions
of the form (6.4). The remaining question is how to choose these functions.
Several numerical experiments have shown that the lowest condition number
of the matrix K (which is in general larger than that of A) is achieved when
we use the cardinal functions for Lagrange interpolation at the points x;,
closest to x;, x; + h;/3,2i+1 — hi/3, Tit1.

7. Graphical Examples

The aim of this final section is to illustrate the tension features of discrete
hyperbolic tension splines with some (famous) examples. Before, we want to
notice that the continuous form U; of our solution given in (3.4) has the good
shape-preserving properties of cubics (see e.g. [25]) in the sense that U; is
convex (concave) in [2;, z;41] if and only if m;y; > 0 (< 0), j = 0,1, and has
at most one inflection point in [z;, 2;41]. In order to preserve the shape of the
data, we therefore simply have to analyze the values A;u; o and A;u; ., and
increase the tension parameters if necessary. All the strategies proposed for
the automatic choice of tension parameters in continuous hyperbolic tension
spline interpolation can be used in our discrete context, see e.g. [24, 25].

In our first example we have interpolated the radio chemical data reported
in Table 1. The effects of changing the tension values p; are depicted in Figs. 6
7. We have adopted a non—uniform mesh, assigning the same number of points
(30) to each interval of the main mesh, and imposed natural end conditions,
that is, following formulas (3.6), mo = my41 = 0.

Table 1. Radio chemical data:

i | 7.99 8.09 8.19 8.7 9.2
fi 0 2.76429E-5 | 4.37498E-2 | 0.169183 | 0.469428

T 10 12 15 20
fi 1 0.943740 | 0.998636 | 0.999916 | 0.999994

Fig. 6 is obtained setting p; = 0, that is considering the discrete cubic spline
interpolating the data. In Fig 7 a new discrete interpolant with pg = p; =
300, p; =15, + = 2,...,7, is displayed for the same data, and the stretching
effect of the increase in tension parameters is evident.

In the second example we have taken Akima’s data of Table 2 and con-
structed discrete interpolants with 20 points for each interval, with natural
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Fig. 8. Akima’s data with natural end conditions.
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end conditions myg = my41 = 0. Fig. 8 left shows the plot produced by a
uniform choice of tension factors, namely p; = 0. The right part of the same
figure shows a second mesh solution, which perfectly reproduces the data
shape, where we have set ps = ps = ps = 10 while the remaining p; are
unchanged.

Table 2. Akima’s data [1]:

T O 2| 3| 5] 6| 8 9 11 |12 | 14 | 15
fi |10 |10 | 10 | 10 | 10 | 10 | 10.5 | 15 | 50 | 60 | 85

Acknowledgments. Work partially supported by MURST. Appreciation is
also rendered to the Thailand Research Fund for the financial support which
has made this research possible.

10.

References

H. Akima, A new method of interpolation and smooth curve fitting based
on local procedures, J. Assoc. Comput. Mech. 17 (1970) 589-602.

de Boor, C. (1976) Splines as linear combinations of B-splines: A survey,
Approximation Theory II. G. G. Lorentz, C. K. Chui, and L. L. Schu-
maker (Eds.). Academic Press, New York, 1-47.

Cohen, E., T. Lyche, and R. Riesenfeld (1980) Discrete B-splines and
subdivision techniques in computer aided geometric design and computer
graphics, Computer Graphics and Image Processing 14, 87—111.

P. Costantini, B. I. Kvasov and C. Manni, Difference Method for Con-
structing Hyperbolic Tension Splines, Rapporto Interno 341/1998, Uni-
versita di Siena.

W. Dahmen and C. A. Micchelli, On multivariate E-splines, Advances in
Mathematics 76 (1989) 33-93.

R. Delbourgo and J. A. Gregory, Shape preserving piecewise rational
interpolation, STAM J. Sci. and Statist. Comput. 6 (1985) 967-976.

G. H. Golub and C. F. Van Loan, Matriz Computations (John Hopkins
University Press, Baltimore, 1991).

Hoschek, J. and D. Lasser, Fundamentals of Computer Aided Geometric
Design (A K Peters, Wellesley, Massachusetts, 1993).

N. N. Janenko and B. I. Kvasov, An iterative method for the construction
of polycubic spline functions, Soviet Math. Dokl. 11 (1970) 1643-1645.

P. E. Koch and T. Lyche, Exponential B-splines in tension, in: Approz-
imation Theory VI: Proceedings of the Sixth International Symposium
on Approximation Theory, Vol. II. Chui C. K., Schumaker L. L., and
Ward J. D. (eds.) (Academic Press, Boston, 1989) pp. 361-364.



11

12.

13.

14.

15.
16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

P. E. Koch and T. Lyche, Interpolation with Exponential B-splines in
Tension, in: Geometric Modelling, Computing/Supplementum 8. Farin G.
et al. (eds.) (Springer-Verlag, Wien, 1993) pp. 173-190.

B. I. Kvasov, Shape Preserving Spline Approximation via Local Algo-
rithms, in: Advanced Topics in Multivariate Approximation, F. Fontanel-
la, K. Jetter, and P. J. Laurent (eds.) (World Scientific Publ. Co., Inc.,
Singapore, 1996) pp. 181-196.

B. I. Kvasov, Local bases for generalized cubic splines, Russ. J. Numer.
Anal. Math. Modelling 10 (1995), 1, 49-80.

B. I. Kvasov, GB-splines and their properties, Annals of Numerical Math-
ematics 3 (1996) 139-149.

P. J. Laurent, Approximation et optimization (Hermann, Paris, 1972).
T. Lyche, Discrete cubic spline interpolation, BIT 16 (1976) 281-290.

M. A. Malcolm, On the computation of nonlinear spline functions, STAM
J. Numer. Anal. 14 (1977) 254-282.

O. L. Mangasarian and L. L. Schumaker, Discrete splines via mathemat-
ical programming, STAM J. Control 9 (1971) 174-183.

O. L. Mangasarian and L. L. Schumaker, Best summation formulae and
discrete spline, STAM J. Numerical Analysis 10 (1973) 448-459.

M. Marusi¢ and M. Rogina, Sharp error bounds for interpolating splines
in tension, J. of Comp. Appl. Math. 61 (1995) 205-223.

A. A. Melkman, Another proof of the total positivity of the discrete spline
collocation matrix, J. Approx. Theory 84 (1996) 265-273.

K. M. Mgrken, On total positivity of the discrete spline collocation ma-
trix, J. Approx. Theory 84 (1996) 247-264.

S. S. Rana and Y. P. Dubey, Local behaviour of the deficient discrete
cubic spline interpolator, J. Approx. Theory 86 (1996) 120-127.

R. J. Renka, Interpolation tension splines with automatic selection of
tension factors, STAM J. Sci. Stat. Comp. 8 (1987) 393-415.

P. Rentrop, An algorithm for the computation of exponential splines,
Numer. Math. 35 (1980) 81-93.

A. Ron, Exponential Box splines, Constructive Approximation 4 (1988)
357-378.

N. S. Sapidis and P. D. Kaklis, An algorithm for constructing convexity
and monotonicity-preserving splines in tension, Computer Aided Geo-
metric Design 5 (1988) 127-137.

Schumaker, L. L. (1973) Constructive aspects of discrete polynomial
spline functions, Approximation Theory, G. G. Lorentz (ed.). Academic
Press, New York, 469-476.

L. L. Schumaker, Spline functions: Basic theory (John Wiley & Sons,
New York, 1981).



30. D. G. Schweikert, An interpolating curve using a spline in tension, J.
Math. Phys. 45 (1966) 312-317.

31. Yu. S. Zav’yalov, B. I. Kvasov, and V. L. Miroshnichenko, Methods of
Spline Functions (Nauka, Moscow, 1980).



