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The objective of this study is to find loss distribution models for mixture
models of individual data and use a suitable model to price the insurance premium.
The results of the study are as follows:

The modeling of loss (claim) for non-life insurance: It is separated into 2 parts
as shown below.

Part 1: The simulations: For the model of‘a single parametric Lognormal
distribution, the parameter estimation -is, the maximum likelihood estimate (MLE).
There are 3 sets of empirical data for fitting, namely, the empirical data which are
simulated by mixed components of loss distributions (EMD), mixed components of
discounted compound Poisson-mixed loss distributions with interest rate (EDP) and
the EMD with the bootstrap technique. For the model of finite mixture Lognormal
distributions, the estimated parameters of the model are obtained from Expectations
Maximization (EM) algorithm and the empirical data for fitting is EMD.

The goodness of fit (GOF) test measures the compatibility of a random sample

with a theoretical probability distribution function. We use the Kolmogorov-Smirnov



v

test (K-S test) and the Anderson-Darling test (A-D test).

The loss distributions are Lognormal, Gamma, Pareto and Weibull. Data sizes
are obtained through simulation using MATLAB and repeated 200 times in each case.

The simulation results: For any sample size, we found that the EMD, EDP and
EMD with the bootstrap technique cannot be fitted by any Lognormal distribution. For
the model of finite mixture Lognormal distributions, they can be fitted to EMD in any
case of simulation with a significance level of 0.10. This fitting is better when the
number of components (% ) are increased.

Part 2: we consider the individual data for motor insurance claims for the year
2009 from a non-life insurance company in Thailand. We found that 1,296
observations of type - 5 meet the mixture Lognormal distributions at a significant level
of 0.10 for both the K-S and A-D tests. The fitting is better when the number of
components (%) are increased.

The insurance pricing: We introduce the Log-transform premium principle
related to the finite mixture Lognormal distributions which can assist in the solving of
these real world management problems. We applied the Log-transform premium
principle to price motor insurance claims of type - 5 and found that the premiums
based on Log-transform are less than the premiums based on some other principles:
such as net, expected value, standard deviation and the Wang transform. The premium
of k£ =100 is the minimum. This is, therefore, a very useful method for providing

a sound basis for company decisions on premium pricing.
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CHAPTER I

INTRODUCTION

1.1 Introduction and Motivation

Many problems in actuarial science involve the building of models that can be
used to forecast or predict insurance costs. Modeling is an important procedure for
actuaries so that they can estimate the degree of uncertainty as to when a claim will be
made and how much will be paid. In particular, the modeling of claims and
outstanding claims lead to the pricing of insurance premiums and an estimation of
claim reserve, respectively. The most useful approach to uncertainty representation is
through probability, so we will concentrate on probability models.

Losses depend on two random variables, i.e., the number of losses and the
amount of loss which occur in a specified period. The number of losses (claim
number) is referred to as the _frequency of loss (claim frequency) and its probability
distribution is called the frequency distribution. The amount of loss (claim size) is
referred to as the severity of loss (claim severity) and its probability distribution is
called the severity distribution. Loss distribution and its modeling are described in
detail in the book of Klugman (2008) and in the papers of Burnecki, Janczura, and Weron
(2010). A building of a credible model for claim severity is usually more difficult than
for claim frequency. Thus we are interested in claim severity, that is, the severity
distribution will be considered in this study.

The mixture of distributions is sometimes called compounding, which is

extremely important as it can provide a superior fit. A successful use of this technique



is illustrated in Hewitt and Lefkowitz (1979). In the 1960s and 1970s, finite mixture
models appeared in the statistical literature and they proved to be useful for modeling
discrete unobserved heterogeneity in the population. Since there are many different
modes of claim possibilities, a finite mixture model should work well.

An Expectations Maximization (EM) algorithm is provided to fit the model
that introduces unobserved indicators with the goal of maximizing the complete
likelihood functions. The EM algorithm is also applicable for parameter estimation of
mixture models. For more details, see Dempster, Laird and Rubin (1977), McLachlan
and Peel (2000), Aitkin and Rubin (1985) and Hogg et al. (2005).

The bootstrap process is a tool for fitting and it is not complicated to
implement. Usually, the bootstrap process involves resampling with replacements
from the residual or the data themselves. We apply the bootstrap technique to
recalculate the estimated parameters for model fitting. For more details, see Efron and
Tibshirani (1993).

An insurance coniract is a risk exchange between two parties, i.e., the insurer
and the policyholder (insured). The''insurer promises to pay for the financial
consequences of the claims as the policyholder pays a fixed premium. In this study,
the term of risk, in insurance, refers to a loss (claim) variable that quantifies the
potential loss (claim) amount associated with an insurance contract. The insurer has
understanding to price the premium to cover the uncertainty losses that will occur in
the future. So the insurance pricing is therefore important to construct the model for
premium calculation.

Risk is often used to mean uncertainty which creates both problems and

opportunities for business and individuals. Pure risk exists when there is uncertainty



as to whether loss will occur. Speculative risk exists when there is uncertainty about
an event that could produce either a profit or a loss. In insurance risk is pure risk that
can be insurable, while most of financial risks tend to have the characteristics of
speculative risks that are uninsurable. The definitions and properties of risks are
explained in the book of James, Robert and David (2005). The risk measures and its
classification are described in the book of McNeil, Frey and Embrechts (2004) and the
paper of Dhaene et al. (2006), in detail. The summarization of risk measure families is
shown in Table C.1 of Appendix C. The premium calculation principle is the one of
risk measures families that we consider for insurance pricing in this study.

As for insurance premium, the insurer needs not only price it to cover the
losses but also to make it competitive in the market. Traditionally, the expected value
and the standard deviation are the most widely used to obtain the premium which
tends to make it be higher than needed. To provide a competitve premium in the
market, we work in the opposite direction. That is, we are interested in how much the
premium should be discounted relative to the market price of risk. The premium
which is calculated depending on-both risk and market conditions, is called the
economic premium. Then we study economic premium principles for insurance

pricing.

1.2 Historical Review

Claim modeling: Many authors have proposed and compared the parameter
estimation methods for fitting of claim severity. Some authors investigate some
special distributions of the claim severity and apply them to calculate the insurance

premium. Grzegorz and Richard (2005) proposed the modeling of hidden exposures in



claim severity of normal distribution via the EM algorithm for 2, 3 and 4 components,
using the R program. The actual auto bodily injury liability claims closed in
Massachusetts in 2001 were applied for the model. Vytaras, Bruce and Ricardas
(2009) suggested the method of trimmed moments (MTM) in the case of loss
distribution of Lognormal and Pareto and they analyzed real data sets concerning
hurricane damage in the United States. Recently, Mohamed, Ahmad and Noriszura
(2010) investigated a model of claim severity which has compound Poisson-Pareto
distribution, by simulation, and they used it to calculate insurance premiums under the
retention limit.

Insurance pricing: In the actuarial literature, there have been many discussions
on risk measures of financial and insurance risks in the context of premium
calculation principles. Wang’s premium principle has been discussed by many
authors, e.g., Wang (1995; 1996), Wang, Young and Panjer (1997) and Young (1999).
In Wang (2000), the author proposed a pricing method based on the following

transform:
F(z)=9|® YF(z))+6

where & is the standard normal cumulative distribution and F(z)is the cumulative

distribution function (CDF) of a risk interest. The key parameter 6 is called
the market price of risk. The transform is now better known as the Wang transform
among financial engineers and risk managers. Recently, Kijima and Muromachi
(2008) presented an extension of the Wang transform that is consistent with
Biithlmann’s pricing formula and proposed a new probability transform which is

related to the Student’s ¢ distribution for pricing of financial and insurance risks.



The purpose of this study is to consider the claim modeling for finite mixture
Lognormal distributions and the pricing of insurance premiums based on a new property

transform related to finite mixture Lognormal distributions.

1.3 Objective and Overview of the Thesis

The purpose of this study is to find a statistical model for the claim modeling
and insurance pricing. For claim modeling, we shall find a model that is fitted to the
claim data. Two kinds of distributions are usually considered: one for the amounts of
individual claims and the other for amounts of aggregate claims. We are interested in
the amount of individual claims. In insurance companies, there are 2 types of claim
data recording, i.e., individual and group data. We model the individual claim data in
this study. A finite mixture of Lognormal distributions is fitted to the data and the
estimated parameters for the model are calculated by the EM algorithm. We also use
the bootstrap technique to fit the data and show that the bootstrap sample for
observation and residual can.be applied to the estimated parameters.

In insurance pricing; we study the premium calculation principle and propose a
new transform, called the Log-transform that is related to the finite mixture of
Lognormal distributions. The premium shall be calculated based on Log-transform
and compared with premiums obtained by other methods.

Our work is organized as follows: In Chapter Il, we present preliminaries
which are useful for claim modeling and insurance pricing, some mathematical and
statistical background are also shown in this section. In Chapter Ill, we present the
claim modeling. That is, we present the statistical modeling for a finite mixture of

Lognormal distributions, the EM algorithm is explained and the bootstrap technique is



demonstrated. We have performed numerical experiments of empirical data for fitting
by the finite mixture of Lognormal distributions. An application with actual claim data
set is given in this chapter. In Chapter IV, we present the insurance premium
calculation which is price based on the Log-transform related to the finite mixture
Lognormal distributions. We show that the Log-transform can be derived from
BUhlmann’s economic premium principle. The insurance pricing based on Log-
transform is applied to the actual claim data set. The conclusions, discussion and

further research are shown in Chapter V.



CHAPTER II

PRELIMINARIES

In this section, the concepts and theories of some mathematical and statistical
material are presented that is useful for the claim modeling and insurance pricing.

Some of the probabilistic tools are described in Appendix B.

2.1 Random Variables

Losses of insurance are losses:caused by occurrences of unexpected events.
Examples of insured events and their consequences are damage to property and
casualties by fire, theft, flood, hail, accident, disability or death (loss of future income
and support), illness (cost of medical treatment) and personal injury resulting from
accidents or medical malpractice (cost of treatment and personal suffering).

Mostly, actuaries-are interested in some consequences of random outcomes.
For example, they are concerned with the amount which the insurance company will
pay for claim possibilities. We can think of them as functions mapping insured events
into the real line R (claim amount). Such functions are called random variables
provided they satisfy certain desirable properties, precisely stated in the following
definition:

Definition 2.1. If €2 is a given set, then a o - algebra F on (2 is a family F of
subsets of (2 with the following properties:

i) wweF

(i) FeF=FeF,where F* =Q\ F isthe complement of F in



i) A A, cF=A=|JAcF

i=1
The pair (€2, F) is called a measurable space. A probability measure P on a

measurable space (€2, F) is a function P : F — [0,1] such that
(@ P@)=0,P)=1
(b) if A,A,...€F and {4}~ isdisjoint(i.e., A N Aj =@ if 1 = j)then

| 0a- S

The triple (€2, F, P) is called a probability space.
The subsets A of €2 which belong to F are called F - measurable sets. In a
probability context these sets are called events and we use the interpretation

P(A)=“ the probability that the event A occurs”
If (€, F, P) is a given probability space, then a function Y : 2 — R" is called
F - measurable if

Y H D) 2{WEeN; Y(w)eUe F

for all opensets U € R".
If X:Q — R" isany function, then the o - algebra 77, generated by X is
the smallest o - algebra on 2 containing all the sets
X NU) ; U cR" open.
Thatis 7, ={X '(B);B € &}, where & is the Borel o - algebraon R".

A random variable X is an F - measurable function mapping €2 to the real

numbers, i.e., X : {2 — R is such that



X Y((~o0,2]) € F forany z € R,
where X '((—o0,z]) = {w € Q| X(w) < z}. Every random variable induces a

probability measure 1, on R, defined by

p is called the distribution of X .

The actuary deals with objects such as random variables. An example of a
random variable is the amount of a claim associated with the occurrence of an

automobile accident.

2.2 Distribution Functions

To each random variable X is associated a function F', called the distribution
function of X or the cumulative distribution function (CDF) of X . The distribution
F,. does not indicate what is the actual outcome of~.X", but shows how the possible
values for X are distributed. The CDF ‘of the random variable X is defined as

(z) = P[X '((—o0,z])] = P[X <z], z € R.

F

'« () represents the probability that the random variable X assumes a value that is

less than or equal to z. If X is the total amount of claims generated by some
policyholder, F(z) is the probability that this policyholder produces a total claim

amount of at most = Thai Baht.
Any distribution function F' has the following properties:

(i)  F isnondecreasing, i.e., If x <y then F(z) < F(y).
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(i) lim F(z)=0and lim F(z)=1.

T——00 T—~+00

(iif)  F isright-continuous, that is, lim F(z + h) = F(x) forall x € R.
h—0T

Definition 2.2. A random variable X is called discrete if it takes values in some

countable subset {z,z,,...} of R. The discrete random variable X has probability

mass function f: R — [0,1] given by

Definition 2.3. A random variable X is called continuous if its distribution function

can be expressed as
F(z)= ff(u)du , reR,

for some integrable function f : R — [0, 1] called the probability density function (PDF)
of X.

Definition 2.4. Suppose that X ,i = 1,2,...,n are random variables on a probability

space (£2,F, P). They can be composed.to a random vector in R"™ is defined by

X = (X, X, . X ).

1772
Definition 2.5. The expectation of a continuous random variable X with density
function f is given by
ElX]= [ af(@)ds

—0o0

whenever this integral exists.
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Definition 2.6. The variance of a continuous random variable X with density

function f is given by

Var[X] = E[(X — E[X])*].

We can rewrite as Var[X] = E[X?]— (E[X])*.
Theorem 2.1. If X has density function f with f(z)=0 when z <0, and

distribution function F', then the expected value of X is
E[X]= f [1— F(z)] dz.
0
Proof:

P(X > x)dx

:

[f f(y)dx]dy

7‘ [1 — F(J,)] dr =

0%8
—2

f(y)dy]dx

|

z

l

(y —0)f(y)dy

I
0%8

8

yf(y)dy

Conclusion that

E[X]= f [1— F(z)|dz. O
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Definition 2.7. Let X be a continuous random variable with density function f. The

moment generating function (MGF) of the random variable X is the function

M : R —[0,00) given by M, (t) = E(e™). That s,

M (t) = E[etX} = ? e dF(z) = T e f(z)dx .

Example. If X ~ N(u,0?) then E[e’“X} :exp[ur+%r202]. In the special case

2/
when X ~ N 0,1 we have MX(t):E[etX} = /7,

2.3 Lognormal Distribution

Lognormal distribution is useful as a model for the claim size distributions.

A random variable X is said to have the Lognormal distribution with parameters u
and o if Y =In X has the normal distribution with mean p and standard deviation

o . We assume that the randem variable X representing claim size has the Lognormal

distribution with parameters p and o .

Assume that X ~ Lognormal (i, o) , abbreviated X ~ LN(u,0).

CDF FX(a;)=¢[1”_“]; pER, o>0andz>0.
g
1 1 i
nr-—
PDF : fi(z)= exp ——Q'M
ToN2T 20

Moment: E[X"] = exp

1.5 9
ku+—kc
. ]
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Mean : exp

L 5
+—0
w3
Median : exp(u)

Variance : [exp(JQ) — 1} [eXp(QM + 02)}

0.45 T T T T
0.4 b
035 fe— pu=1.00=138 7
0.3 '
+— u=100=05
0.25-| .
= ool p=100 =10
015 [\ \ o ]
\ \ — 4 =200=0.3
| \ \
| AR
0.1 \ .
| A — =200=10
‘ [\ ~ n=200 = 1. |
0.05 r / — \\\ij\x%\x
0 / r ff . S
0 5 10 15 20 25
X

Figure 2.1 'The PDF of the-L.ognormal distribution.

2.4 Uniform Distribution

The random variable X has the uniform distribution with parameters « and

(3, abbreviated X ~ Uni(c, [3), if its density function is given as follows:

,a<lz <3
PDF  : [ (2)=1—% L a<f.

0 elsewhere.
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Example: X ~ Uni(0,1).

1 ,2€(0,1)
PDF @ f.(z)=
0 elsewhere.
[0 if 20
CDF @ Fy(r)=12 if0<a<l
1 ifxz>1.

Lemma 2.1. Suppose X has a continuous and strictly increasing CDF F'. Then

F(X) has the uniform distribution,

F(X) .~ Uni(0,1).

Proof:

Let u € (0,1).

The lemma has been proved.

Note that above we have used:

(1) F is strictly increasing and continuous = F~': (0,1) — R exists.
) FYF(z)=z,VzeR.

() F(F'(z) ==, Yz €(0,1).
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Corollary 2.1. Let X be a random variable with continuous and strictly increasing
CDF F and @ be the standard normal distribution. If V' = &' |F(X)|, then V' has

distribution @, i.e.,

Proof:

Let z € R, one has:

By Lemma 2.1, FI(X) ~ Uni(0,1).

Conclusion that

2.5 Mixture Models

A mixture model is a discrete  or continuous weighted combination of
distributions and represents a heterogeneous population comprised of two or more
distinct subpopulations. The source of heterogeneity could be gender, age, mode of

benefit payment, etc.

2.5.1 The Finite Mixture Models
A finite mixture model allows us to combine two or more characteristics into

one model. It can be represented by a probability density function (PDF) of the form:

f@) =7 fi(@) + -+ 7., (2)
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with z € R, 7, >0 forj=1, .., k and 7 +--+7, =1.
All f (-) are PDF (either continuous or discrete). The 7, are called the mixing
weights (mixing values) and the f, () are called the components, % is the number of

component distributions of the mixture. In most situations, the f (-) have specified
parametric forms:
f(T) =7 fl(T | 01) +"'+7-k f]f(x ’ Hk),

where Hj denotes the vector of parameters in density f].(‘) for j=1, ..., k.

2.6 Random Vector and Covariance
Definition 2.8. The joint distribution function of random variables X and Y is the
function F : R* — [0,1] given by

Fzy)=P(X Sz.Y <y).
Definition 2.9. The random-variables X and Y _are (jointly) continuous with joint

probability density function f : R* — [0,00] if

y z
F(z,y) = f f f(u,v)dudv, foreach z,y € R.

From here on, let X', Y be random variables with joint PDF f(z,y). Then the
marginal distribution functions of X and Y are

F

X(x) = P(X <z)= lim F(z,y) and Fy(y) = P(Y <y) = lim F(z,y),

Y—00 T—00

respectively. Hence,
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Fy(o) = f jf(x,y)dydx, F(y) = j Tf(x,y)dxdy

and it follows that the marginal density functions of X and Y are
f f(z,y)dy and f, (y) f f(z,y) dx, respectively.

Definition 2.10. Suppose that ¢ : R* — R is a continuous function. If X and Y are
continuous random variables with joint probability density function f, then the
expected value of the random variable g(X,Y) is given by

= [ [ gty f(y)dzdy.

—00 — 00

Definition 2.11. If X and Y are random variables, the covariance of X and Y is
Cov[ X, Y] =B|(X = BIX])(¥ - E[Y])].
It can be rewritten as
Cov[X,Y]= E[XY]— E[X]E[Y].
The correlation (coefficient) of X and Y'is

Cov[X,Y] ~ Cov[X,Y]

Corr[X,Y] = =
\/Var |Var[Y] 9x%y

as long as the variances are non-zero.
Lemma 2.2. Let V' be a random variable which has the standard normal distribution,

V ~ N(0,1). Then for every 6 € R, Cov[V,—60V]| = —0.

Proof:

Cov(V,—0V) = E[V(~60V)| — E[V]E[-0V]
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Cov[V,—0V] = —0E[V?]+ 0E[V]E[V]

= —0[E[V* ] (EV])]

= —0Var[V]

E— [
Theorem 2.2. Suppose that X, and X, are normal and independent. Then X, + X,

is normal.

Lemma 2.3. For j =1,...,k, suppose that random variables Xj are independent and

let g,: R — R, be continuous functions. Then the random variables gj(Xj),

j=1,...,k are also independent.

Definition 2.12. Let random variables (X, Y’) have the joint PDF

2
1 1 [x_lux] Y o e
o o o
flz,y) = = SAIERRED * 9 * Y ,
2mo o, N1 =p 2(1_P)+ Y My
Oy
where —oco <z <00, —00 <y <00, —00 < fiy <00, —00 < fly, <00, Oy, 0y >0

and —1<p<1. Then X,Y are said to have a bivariate normal distribution, and

EX]=py, ElY]=py,, VarlX]= Ui, VarlY] = 032,, Cov[X,Y]= po o, and
Corr[X,Y]=0p.
Definition 2.13. The joint moment generating function of (X,Y") is defined by

X+tY
MX’Y(tl,tQ):E[etl o }

and the moment generating function (MGF) for the bivariate normal distribution is
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L o 9 2 2
My (t,,) = expl iy +typy, + E(tl oy +2ptt,0 0y + 10y )],

where E[X]= pu,, E[Y]= p,, Var[X] = ai_, VarlY] = 012,, Cov[X,Y]= po o,
and Corr[X,Y]=p.

Lemma 2.4. Suppose X,Y is bivariate normal then

2
My (s, —1) = E[e_ylexp sE[X]+ %Var[X] —sCov[X,Y]

Proof:

By MGF for the bivariate normal distribution, one gets

1
My y(s,t) = exp|spy + Ly, + 5(52(7?( + 2psto o, + tQJ?/)].

2

1
MX’Y(S,—l) = eXP|Sity — [y + 5(8 O'; —2psa o, + 052/)]

= exp|sE[X] + %Var[X] — E[Y]+ ;Var[Y] — psaXUY)]

2
= exp|sE[X]+ % Var[X]— E[Y]+ %Var[Y] —sCov[ X, Y]

2
sE[X]+ %Var[X] —sCo[ X,Y]

= exp|—E[Y]+ %Var[Y]] exp

The MGF of the univariate random variable of normal distribution is

n(s) = M, (s) = exp

1
Spty + 552012/] . (2.5)

If s =—1,then n(—1)= M, (~1) = exp

1 _
— [y —0—5052,]: Ele™].

Conclusion that
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M

va(s, -1)=F [eiy] exp

Lemma 2.5. Suppose that (X,Y") is jointly normally distributed. Then

Ble f(X)| = E|e ™ |E[f(X — Cov[X,Y))

for any f(z) for which the above expectation exists.

Proof:

Let &(x,y) be the joint density of (X,Y) and define

{x(z) = fefyéz(%y)dy , —00 < T < 00.

Then

Q- 0

Ble 10| = f [ e i@)éwy) dody = Tf(az)sX(x)dx-

—00 —00

Denoting the MGF of (X,Y) by
77(8, t) ol E[esX-H‘Y]

one obtains that

o0

n(s,—1) = E[GSX_Y] = f ey (z)dr .

—00

Since

E[esX_Y} =n(s,—1)=M

xy(&—1)=FE [eSXe_Y]

sE[X]+ %Var[X] —sCov[X,Y]].

20

(2.6)

and as (X,Y) is bivariate normally distributed, applying Lemma 2.4 it follows that
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2

n(s,—1) = E[eiy]exp sE[X]+ %Var[X] —sCov[X,Y]|. (2.7)

Next, we consider

2

exp|sE[X] +%Var[X] —sCov[X,Y]| of Eq. 2.7.

For any random variable X — Cov[X,Y], its mean and variance are

E[X — Cov[X,Y]] = E[X]—Cov[X,Y]

and
Var[X — Cov[X,Y]] = Var[X] = o%.
Since
My ) = Ble =0 [8<Em — Cou[XY]) + 25 VarlX]

then Eq. 2.7 can be written as

n(s,—1) = E[e_Y}E[eS{XOOU[Xﬂ} : (2.8)

Consider Eq. 2.6 and Eq. 2.8, one ‘gets

E[e—Y]E[es{X_C‘W[X7Y]} _ f 5% EX(x) dr
E[es{X—Cov[X,Y]} _ fe“ fX(SC) dr.
Yo Bl
Let Cov[X,Y]=a and z =u—a.
Then we get that
pletx-0)] = [ om0 M‘Y“) du.
Ele™ ]

—0o0
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Thus, the density function of the random variable (X —a) is

{x(u—a)
E[e_y] '
We have seen that
B 500)] = [ 1)@ o
Then we obtain that
E[e_yf(X)} = E[eiy} 7 f(z) EE)[;(?} dzx

We conclude that

E[e—Y f(X)} = E[eiy] B[ f(X=~ Cov[X,Y))|. O

2.7 Equilibrium Price

2.7.1 A Model for the Market

The economic premiums are not only depending on the risk but also on market
conditions. We can describe the risk by a random variable X and the market
conditions by a random variable Z; such as an aggregate risk, collective wealth,

correlation and etc.
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In the market we are considering agents j =1, 2,..., n. They constitute buyers
of insurance, insurance companies or reinsurance companies. Each agent j is
characterized by his

(i) utility function uj(a:) with first derivative and second derivative of uj(a:)
are u(z) >0 and u’(z) < 0, respectively, and
(i) initial wealth w; .

The risk aspect is modeled by a finite (for simplicity) probability space with

states s =1, 2,..., .S and probabilities 7 of state s happening, i.e.,

The states s can be described as follows:

(@) Consider a whole insurance business; states are lines of insurance business
such as the insurance of fire, motor, automaobile, marine, health and etc. The amount
of claims are produced from each line of business.

(b) Consider one line of business. Forexample, in automobile insurance; states
may be the type of coverage such as type 1 (comprehensive cover), type 2 (third party
fire and theft cover) and type 3 (third party cover).

(c) Consider one type of coverage. For example, in type 1 (comprehensive
cover) of automobile insurance, states are loss of properties, accidental benefits and

third party coverage.

Each agent j in the market has an original risk function Xj(s); the payment

caused to j if s is happening. He is buying an exchange function Yj(s); payment
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received by j if s is happening. The notion of price for this purchase is given by a

vector
P = (P, Pyreer Dg)
and
_ S
Prlce[Yj] => pSYj(s).
s=1
- - - - = S
Hence p,_ is the price for one unit of conditional moneyand > p =1
s=1

n
.. ¥ ) is a risk exchange (REX) if > Y, s =0
=1

Definition 2.14. Y = (Y}, Y,,..

forall s =12,...,5.

2.7.2 Equilibrium Price

Definition 2.15. The pair (p,Y) is called in equilibrium of the market if

S
(i) For all j, Zﬂsuj[wj—Xj(s)+Yj(s)—Zp5}/j(s)] = max for all
s=1 ' '

possible choices of exchange functions Y]. .

n
@) > Yj(s) =0 forall s=1,2,...,5.
j=1

If condition (i) and (ii) are satisfied, p is called an equilibrium price and Y is called

an equilibrium risk exchange (REX).

The notion of equilibrium price can be extended to an arbitrary probability

space (€2, F, P) where the risk function Xj(s) and exchange function Y}(s) will be
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represented by the random variables Xj(w) and Yj(w), w € (2, respectively. The

notion of price is given by a function ¢ : 2 — R and the price [Yj] is defined by

Price [Y,] = f Y () pl(w) dP(w).
Q

Definition 2.16. The pair (Yj,ga) is called in equilibrium if
(i) Forall j, Elu(w, —X, +Y, —Price(Y}))] is a maximum among all

J

possible choices of the exchange variables Y]. and
(i) > V. (w)=0 forall weQ.
j=1

In the equilibrium, Y], is called the equilibrium risk exchange and ¢ is called

the equilibrium price density.

2.7.3 Biihlmann’s Equilibrium Pricing Model
Definition 2.17. (Biihlmann’s equilibrium pricing model).

Each agent ;j has an exponential utility function

So that u}(a:) = eXp(—)\ja:), A stands for the risk aversion and )\i stands for the
J

risk tolerance unit. Then the equilibrium price density satisfies:
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where Z(w) = ZXj(w) is the aggregate risk (the sum of original risk functions in
j=1

the market) and \ satisfies

The parameters /\j can be seen as the risk aversion index of the ;™ agent.

Lemma 2.6. The equilibrium price for any risk X of Bithlmann’s equilibrium pricing

model is

where Z(w) = ZXj(w) is the aggregate risk and \ satisfies

j=1

n 1

' § %
A iy
Proof:

The price of any risk X is

H,(X,Z) = Price [X]
= [ X(@) ¢p(w) dP(w)

AZ(w))

o
— f X(w) o7 dP(w)
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1 (A2)
H,(X,2) R E[Xe ]
We conclude that
VA
Hy(x,7) = 22X 3
Ele™]

2.8 Wang Transform

Definition 2.18. Let & denote the standard normal cumulative distribution function,

z ¥l52
e, O(x) = f L e 2 ds,and let 0 be areal valued parameter. By definition, the
o N2T

Wang transform transforms a CDF F(z) to a function F~ (z):
F () = &[0 (F(z)) + 0], (2.9)

It is obvious that F"(z) is also a CDF.
The key parameter ¢ in the Wang transform of Eq. 2.9 has a positive sign as
the random variable X is keptiin-asset. On the other hand, in the insurance business,
a liability of loss variable X is viewed as a negative asset. Thus, the Wang transform

of our study has a negative sign in front of ¢ . That is
F(z) = @@ ' (F(z))— 0], (2.10)
where 6 is a positive constant that is relevant to the market price of risk.

For a liability with loss variable X, the Wang transform in Eq. 2.9 has an

equivalent representation.

S (z) = DO (S(2)) + 6], (2.11)



where S(z) =1— F(z).
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Lemma 2.7. Forany 6, S (z) =1— F (). That is, transform Eq. 2.10 and Eq. 2.11

are equivalent.

Proof:
Asa@:1_m@amgﬁ@:¢b*w@»+@

That is,

Thus, the lemma has been proved.
Note that above we have used:

1) 1—d(z)=(—z)

2 ¢ '1-w=-2"(u)

Lemma 2.8. Let F' be the Lognormal cumulative distribution function of a loss X

with p and o, i.e.,, X ~ LN(u,0). Then the Wang transform F' isa Lognormal

CDF with i + 6o and o corresponding to some loss X' i.e., X' ~ LN(u + 6o,0).



29

Proof:

InX —pu

g

As X ~ LN(p,0) then ~ N(0,1).

By the Wang transform, for any constant @, one has:

3 lnx—,u,_e]
o
iy 111[17—[L—9(T]
o

=

Inz—(pn+ 00)].
g
The proof is completed, one obtains that
In X ~ N(u+0o,0),
that is

X ~ LN(u+6o,0). O



CHAPTER 111

CLAIM MODELING

In this chapter, the finite mixture of Lognormal distributions is presented for
the modeling of insurance claims. The EM algorithm is used to perform a parametric
fit of given data to a mixture of Lognormal distributions. We have performed
numerical experiments to fit data simulated by mixtures of various loss distributions
to finite mixture Lognormal distributions, and also mathed an actual set of insurance

claim data to a finite mixture of Lognormal distributioins.

We consider individual claim policies, and the claim amount X, is paid for

the " policy. Some assumptions and restrictions are specified as below.

Assumption 1: (Policy independence): Consider n different policies. Let X,

denote the response for policy <. Then X ,..., X are independent.

Assumption 2: Severity losses are non-catastrophic losses.

Assumption 3: There are no deductibles and no reinsurance agreement.

Assumption 4: A recorded claim is equal to an actual claim (observation).

Assumption 5: The loss distributions are skewed to the right.

The right skewness of loss distributions are considered for this study. We
assume that the portfolio claim amount is arising from different loss distributions,
e.g., the empirical data are generated by mixing of Lognormal, Gamma, Pareto and

Weibull distributions. We have performed numerical experiments by simulation, see
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section A. 3 of Appendix A for details. The probability density function (PDF) and

cumulative distribution function (CDF) of loss distributions are specified in Appendix A.

3.1 Single Parametric Distribution

On the basis of the analyst’s knowledge, experience and statistical tests, the
Lognormal distribution is our selection for modeling and fitting to the data set. The
maximum likelihood estimate (MLE) is used for parameter estimation, as explained

below.

3.1.1 The Model

Assume that X ~ Lognormal (i, o), abbreviated X ~ LN(u, o), with density

fy(z) = . JER >0, z>0. (3.1)

N\
1 el (Inz —p)
20°

ToN2T

3.1.2 Estimation for the Model

Let a vector x = (z,..., xn)' be an independent observation. Consider the

amount z, paid for the i contract. We fit the Lognormal distribution in Eq. 3.1 to the

data set by MLE. The likelihood functionis L = H fx(z) i=12..,n.
=1

Then InL =1In H fx(z)
i=1 ’

= Z In f, (azz)
i—1
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(Inz, —p)’

202

lnL:i

i=1

exp|—
7, a\/_

—(lna+lnx)—lln27r—i(lnx — 1) l .
2 20°

g

We estimate 4 and ¢ for . and o respectively by ailnL =0 and ailnL =0.
7!

We obtain maximum likelihood estimates for the parameter ;1 and the parameter o

as follows:

n n

Z Inz, Z (In T, — [1,)2

p=+L— and ¢ =|\#&! , respectively. (3.2)
n n

3.2 Finite Mixture Models

Next, second-order and higher-order finite mixture models are considered. In
this section, we aim to find the mixing weights according to the number of Lognormal

distributions and estimated parameters by the MLE via EM algorithm.

3.2.1 The Model

The PDF of finite mixture Lognormal distributions is

f(z) =7/ (2) -+ 7 i (@)
{ 1 (lnx _ :ul)Q
T, —exp|———

2
201

—{—---—{—Tkiexp — , (B3)

9%

[ (Inz — uk)Q

M_

20k

K e R, o >0, >0, where 0<7'j <lforj=1, .., kand 1 +--+7 =1,

The likelihood function can be written as follows:
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I =

1
+ee+ T, —€xXp
Ty,

o1 . iexp (o, —p) 2
i=1 $i\i27r 20>

1 01 :
and the log-likelihood function is in the form

[ (Inz, — ,uk)2

2
20k

n

1
InL = Zh’l ZT].%TWGXP B

=1 |j=1

3.2.2 Estimation for the Model

Here, we construct the complete data set which is composed of observed data
(incomplete data) and unobservable (latent) data. The EM algorithm is a powerful
algorithm for parameter estimation of data arising from mixtures. The details of MLE

via EM algorithm are as follows.

Let a sample x = (z,,2,, ..., )" be observed data to be matched to the

mixture of Eq. 3.3 and having a postulated PDF as
fx,9),

where ¢ is a vector of unknown.parameters; ) = (0,7), T = (7

/
s Tpq) and

/

0= (fyyeey s Tpyeeny 0)
Let z be the unobservable data matrix; denoted by

z=1(z;, i=1...,n; j=1...,k)

(7R
The values z, are indicators defined as

1, observation z, comes from the distribution f]

0, elsewhere

The unobservable matrix z tell us, where the i observation T, comes from.
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Let Z be a random matrix whose realization is the unobservable matrix z.

Let k(= | ¢,x) denote the conditional PDF of the unobserved data and define

the PDF as
kE(z |y, x) = t
where
b= 7_] fJ(.Tl | ,uj,O].) _ ijj(xl | ,le,Oj) .
v f(z;)
j=1

Note that .. is the probability of the i observation coming from the j component.
We obtain that
P10 B, =110 =1,

Assume that X and Z are independent. Then the complete likelihood takes

form;
nk (Inz, —p.) v
L (|x z) = exp|— :
HU I‘ \/70 20?
The complete log-likelihood function is
n_k (Inz, — ) v
InL (v =In H H T, p—=—exXp —_
i=1 j=1 :z: \N27 o, 20?

—Zn:zk:ln T ! exp (nz, ;)
i=1 j=1 / xi\/27raj 20]2.
znjzk:z In|7 ! exp —Unmi_u)?
i=1 j=1 Y ! J?Z.VQWCTJ. 20?




35
We obtain that

n k
1 1
X, z) = Z Z z2;|In7; —Inz;, —Ino, —~In(27) - —(lnz, — ,LLj)Q . (3.4)

2
i=1 j=1 2 2Uj

In L (¢

/

Note that: ¢ = (0,7), 7= (..., 7, )" and 0= (p,..e; 1, 0,y 7).

For each £ components, there are 3k —1 unknown parameters that will be
estimated by the EM algorithm. We use a computer for the calculation of the
parameters and visualization as a way to see its modeling. The proper number of
components to be included in the mixture model will be considered.

Expectation Step (E-step):

Replacing z; in Eq. 3.4 by its expected value, t;.j, yields the expected

complete log-likelihood,

E[lnL (¥

n k
. 1 1
xz)|= Z Z t; |7 ~ng —Ing, — 5111(27?) ——2(lnxi - ,uj)2 : (3.5)

i=1 j=1 20
where t;j is the estimated:value of t/,'j'

Note that: t; is given by

L =P, = 1‘X. — 5 ) = T L) T epy)
1 i 2 I k f(xl) '
> o7 1 nyyo)

j=1
Maximization Step (M-step):

We maximize Eq. 3.5 to estimate ¢ . Firstly, we solve the first order
condition:

0
—F|nL

x,z)] =0,
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with constraint

T+t =1

0 n k ~
@_Tzztij

ji=1 j=1

lnT.—lnx,—lno,—111r1(27r)—i(1n:z:.—;L.)2 = 0.
j i i 9 952 i
j

Without loss of generality (w.l.g.), we consider

This has the same form as the MLE for the multinomial distribution, for details see

multinomial distribution and MLE in Appendix B. We get that

b= L NG N TN (36)
, .

Secondly, we solve the equation %E 'L (¢|x,z)] =0 for estimated parameters

of 0.=(1,0,), 5=1, 2., k.

Consider 0, = (u,,0,).

We will estimate 6, by solving;

9 BnL (¥2)] =0and -2 B (v
P) ¢ oo e

Hy 1

x,z) = 0.

Note that the relation %E[ln L.(¢|x,2)] =0 and equation (3.6) imply

Hy



n k

Z twi In7, —Inz, —Ino, —lln(27r)—%(lnx —u) =0
i = o 2 20,
1 1 )
Zt —|In7, —Inz, —Ino, ——In(27) ——(nz, —p,)"| = 0
2 2012 '
> by(nz, —p) =0
i=1
Zgﬂlnxi_zfﬂﬂl =0
i=1 i=1
| fﬂlnx
fiy = 7:171’
by
i=1
0
—FE[InL (¢|x,2)] =0
do, ¢
nk
Z t”i In7, —lnz, —lna]—lln(27r)—L(lnx —ﬂj)Q =0
Py g g 20
n 1 1 )
Zt —|In7, —Inz, —Ino, —~In(27) ———(Inz, — ;)" | = 0
2 2012
"N . 1 1 .
t, ——+—3(1r131:l.—,u1)2 =0
i=1 9 o
n R 1 .~ N2
ty|—1+—(nz, — )" = 0
i=1 Ul

1 n n .
_QZ a(nz; _1“1 = Ztil

07 i=1 i=1



38

n o2 ~ N2
. Zizl ty(Inz, —fi))
9y n -
Zizl tz’l

Similarly, one can show that

n ~
E t. Inzx.
ij i
_ =l

ﬂj__n and &j: — ,i=1 2,..., k

ot D i b
)
i=1
In summary, we obtain that
n . n R 9

L t,Inz, thj(lnxi )

A & i=1 _ |u=1

Tj o Zt’ij ! /J o n and U/ B !

T S ,
n % n_ . n_ .
=1
' § 14 E:t,,
1] )
i i=1

Note that the expected complete log-likelihood function is given by

nk
4 1 1
x z)| = Z Z tln7, —Inz, —Ino, 51n(27r) — —2(1n T, — uj)Q :

E[ln L (¢ .
75

i=1 j=I1

~

For a given set of parameters ¢/, i.e. Hj:(/lj, &j), j=1 2,.., k and

T = (T %,H)’, the E-step consists of calculating fl,j and %j for M-step. Given

%j , the M-step consists of maximizing the expected complete log-likelihood function.

The E-step and M-step are repeated in an alternating fashion until the expected
complete log-likelihood fails to increase. At this point, we conduct a final M-step in

which the set of parameters «/ is estimated. Otherwise, we return to the E-step for the

next iteration. In the final step after the m™ iteration, the EM algorithm is produced

as below:
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E-step: Given our current estimation of the parameters ™ after the m!

iteration. Thus the E-step results in the function:

m) 1
¢|¢ Zztl] lnT —lnxi—lnag)——ln(%r)—

i—1 j—1 2 26(771)
J

(Inz, — ﬂg 2| (3.7)

2

M-step: Maximizing /. That is
#m) = argmax Q(¢ | ™) and 0" = argmax Q(¢y | ™).
T 0

By taking partial derivative Eq. 3.7 with respect to ¢/ and by equating to zero, one

gets
n
(m) In 113
ZJ
m+1 m) m+1 i=1
Ztu ! n
S
i
=1
no A N2
and 0A_m+l 4 27 —) 7(7 )(IDT #;771))

J n o 2(m)
Zi:l tij

Q(w | L//,(m+])) 19 Q(’«Pl' | /l/b(m))
Q| ™) ‘

Note that < 10~* is applied for our programming.

3.3 Bootstrap Technique

We are interested in the bootstrap sample for observation and residual. We
shall recalculate the estimated parameters of the Lognormal distribution by using the
bootstrap technique and MLE. One advantage of the bootstrap technique is that we

can calculate as many replications of the sample as we want.
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3.3.1 Observation Bootstrap

Define
x = (v, Ty..., xn)'. (3.8)

The bootstrap data points z;, =,

ES - -
5> I, are arandom sample of size n with

replacement from the observation of n objects (z,, z,,..., xn)’ . Then we recalculate

the estimated parameters, /7* and 6, by MLE based on x .

3.3.2 Residual Bootstrap

There are many forms of the residual definition and it is important to use an
appropriate residual definition for the determination of each problem. We have
already run trials with some forms of residual definitions, such as the unscaled
Pearson residual and the unscaled Anscombe residual, but these forms of residual

proned not suitable for our data. Instead, we consider the residual form /i, that is, we

define the form of the residual as follows.

g, =Inz, —p,

where ¢ is the residual (i = 1,2,...,n) and £ comes from Eq. 3.2,

Let e = (e ’ 5;,..

10 &

5o ) and e = (e

* -
15 ., €)' be the resample residual.
n

By using the bootstrap technique, we obtain a resample ¢ and the bootstrap data

samples

IHLZZ: = E: +45i=12..,n (3.9)
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K

We recalculate the estimated parameters, ;l* and & by MLE based on In xj

1=1 2,.... n.

3.4  Goodness of Fit Test

The goodness of fit (GOF) test measures the compatibility of a random sample
with a theoretical probability distribution function. We use the Kolmogorov-Smirnov
test (K-S test) and the Anderson-Darling test (A-D test) for showing how well the

distribution fits our data set.
The K-S test is used to decide if a sample comes from a hypothesized

continuous distribution. It is based on the empirical cumulative distribution function

(ECDF) and denoted by

F (r)= l[Number of observations < z|.
) n

The K-S test statistic is defined by

D= sgp ‘ F;L(J;)-F;(a:) ‘

The A-D test is a general test to compare the fit of an observed cumulative
distribution function to an expected cumulative distribution function. This test gives
more weight to the tails than the K-S test.

The A-D test statistic is defined as

£ =S @D Fye) + i 1 Fye,_ ) .
n =1

where F; is the theoretical cumulative distribution of the distribution being tested.

The test, for both K-S and A-D , is defined by:
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H,: The data follow the specified distribution.

H, : The data do not follow the specified distribution.
Level critical values: The hypothesis regarding the distributional form is

rejected at the chosen significance level (alpha, «) if the test statistic, D and A2, is

greater than the critical value obtained from Appendix A, Table A.4 and Table A.5 for

D and A?, respectively. On the other hand, we can calculate the P-value and interpret
the result of hypothesis test. The interpretation of the P-value is given in Table A.6 of

Appendix A.

3.5 The Simulation

We assume that the insurance portfolio is heterogeneous, due to variability in
the parameters and distributions, and thus cannot be fitted to any single parametric
distribution. For this reason, we have performed numerical experiments matching
simulated data to finite: .mixtures of Lognormal distribution. The simulated
heterogeneous data was generated by applying various combinations of loss
distributions. The programming for this study is in MATLAB.

The data is generated by simulations that are under the following assumptions.

1) Sample size
n : 100, 300, 500, 800 and 1,000 for 2 and 4 mixed components.
n : 150, 300, 600, 900 and 1,200 for 3 mixed components.

2) The empirical data

2.1) The loss distributions: Lognormal, Gamma, Pareto and Weibull.
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2.2) The empirical data: The z; is simulated by loss distributions, due to

variability in the parameters and distributions as detailed in Table 3.1.

Table 3.1 The variability of mixed components.

Variability
Components Parameters Distributions
2 Lognormal Lognormal/Gamma
Gamma Lognormal/Pareto
Pareto Lognormal/Weibull
Weibull Gamma/Pareto
Gamma/Weibull
Pareto /Weibull
3 Lognormal Lognormal/Gamma/Weibull
Gamma Gamma/Weibull/Pareto
Pareto Weibull/Pareto/Lognormal
Weibull
4 - Lognormal/Gamma/Weibull/Pareto

The proportion of mixing is the same for each component mixed. The
empirical data are simulated according to assumed parameters for each component
mixed, see the imposed parameters for. details in"Table A.1, Table A.2 and Table A.3
of appendix A. The simulations span 90 cases.

2.3) The compound Poisson-mixed loss distributions: the frequency

distribution is Poisson and the severity distributions are loss distributions. For

i=1,2,..., n,theclaim X, occurs at time ¢, and is to be discounted at time zero
with the risk free of interest rate j per annum. The claim amount at time zero is

defined by

X =X 1+

2

The j are assumed as 0.5%, 1% , 2%, 3%, 4% and 5% per annum.
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3) The model of finite mixture distributions
The models for fitting to the empirical data is the finite mixture of
Lognormal distributions. The & components depend on the sample size n . The total
number of calculated components is 752 for 2, 3 and 4 components are 410, 301 and
41 cases, respectively. The single parametric distribution of Lognormal is used as a
control to compare how well the finite mixture Lognormal distributions perform.
4) The bootstrap
The bootstrap process is a tool for fitting and it is not complicated to
implement. We apply the bootstrap technique to reproduce pseudo data; reproduce
from empirical data, then recalculate the estimated parameters by MLE and compare

to the finite mixture Lognormal distributions.

The simulations run 200 iterations for the best solution that provide the
estimated parameters for model fitting. That is, the average of estimated parameters

are rather stable as the number of iterations is 200 times.

200 . 199 x 200 . 199 .
Y Y T, O O
Zt_1 i Zf,l t S 10 4 and z;;l t Zt_l t

<107*.
200 199 200 199 ‘
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The restriction of sample size.
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Stage 2 : Number of components
The restriction of k.

Y

Stage 3 : Empirical data.
The data set is generated by simulation.

A 4
Stage 4 : Parameter estimation.

Using MLE for single parametric and bootstrap
technique. Using EM for mixture distributions.

) 4
Stage 5 : Fitting of model.

Assess the goodness of fit test by
K-Sand A-D test.

Model fitting
to loss
distributions

Stage 6 : Record
of results

Figure 3.1 Flowchart of the claim modeling process.
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Iteration
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Stage 7 : Calculation of expectation,
variance and statistical test.
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of results

Y
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results

Stage 9 :
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Stage 10 : Summation and
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Stage 11 : Application and
Evaluation.
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( Stop )

Figure 3.1 Flowchart of the claim modeling process (Continued).
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3.6 Simulation Results

The purpose of claim modeling is to investigate the k components and
summarize what kind of mixed loss data can be fitted by the finite mixture of
Lognormal distributions. The empirical data is simulated by mixed components of
loss distributions; Lognormal, Gamma, Pareto and Weibull distributions. The
methodologies for parameter estimation are the MLE for single parametric Lognormal
distribution and the EM for finite mixture Lognormal distributions. The statistical test
for model fitting are K-S and A-D test. Some symbols are defined for easier
explanation.

EMD means the empirical datawhich are simulated by mixed components of

loss distributions.

EDP means the empirical data of discounted compound Poisson-mixed loss

distributions with interest rate j per annum.

SPLD means the fitting of single parametric Lognormal distribution to EMD.

SPLD with Boot means the fitting of single parametric Lognormal distribution

to the EMD with the bootstrap technique.

DCP  means the fitting of single parametric Lognormal distribution to the

EDP.
P-AS means P-value based on A-D test

P-KS means P-value based on K-S test

We analyze and present the value of 4%, D, P-AS, P-KS, /i and 6 on tables.

The results are shown as the following tables.
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Tables 3.2 - 3.20 show the values of A%, D, P-AS, P-KS, /i and & of SPLD,

SPLD with Boot and DCP for each sample size.

The results: For SPLD, the single parametric Lognormal distribution cannot be
fitted to any EMD by A-D and K-S test. The SPLD with Boot, the single parametric
Lognormal distribution is fitted to some sample sizes of EMD respective to K-S test

only. The DCP, the single parametric Lognormal distribution cannot be fitted to any

EDP by A-D and K-S test. For each sample size, the value of A* and D are mostly

reduced when interest rate j increases.

Tables 3.21 - 3.39 show the values of A%, D, P-AS and P-KS of finite mixture
Lognormal distributions for fitting in each sample size. The results show that the finite
mixture Lognormal distributions can be fitted to EMD at a significant level of
« = 0.10, for both K-S and A-D test. The mixture Lognormal distributions are a better

fit to the EMD while % is increased.
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Table 3.2 Lognormal distribution fitting to 2 mixed components of Lognormal

distributed samples.

SPLD with DCP
nfem  SPLD Boot  0.50% 1% 2% 3% 4% 5%
A2 317131 3.79915 3.17121  3.17111 3.17087 3.17059  3.17028  3.16995
0o P 0.15850  0.11702 0.15851  0.15852  0.15854  0.15857  0.15857  0.15856
P-AS  0.03009 0.01170 0.03010  0.03010 0.03011 0.03011  0.03011  0.03011
P-KS  0.01667 0.13110 0.01665 0.01664 0.01660 0.01656 0.01656  0.01658
e 8.73616 12.25058 8.73610 873601 8.73578  8.73548  8.73511  8.73469
a0 D 0.14730  0.11401 0.14730  0.14730 0.14730 0.14728  0.14727  0.14724
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
A2 1457275 12.89082 14.57307 1457336 14.57385 14.57422 14.57446 1457459
_— 0.14465  0.11374  0.14465  0.14465 0.14465 0.14470  0.14472  0.14474
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
A2 2290827 20.24887 22.90826  22.90819 22.90788 22.90733 22.90656 22.90557
— 0.14177  0.11357 014177 014176 0.14173  0.14175 0.14174  0.14173
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <001 <0.01 <0.01 <0.01 <0.01 <0.01
42 2855152 2811877 2855142 28.55125 2855071 2854990 28.54882 28.54747
tooo P 0.14111  0.13422 014109  0.14108 0.14109 0.14108 0.14110  0.14110
: P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Table 3.3 Lognormal distribution fitting to 2 mixed components of Gamma
distributed samples.
SPLD with DCP
nofem  SPLD gt T omo% 1% 2% 3% 4% 5%
A2 1765236 17.70023 17.64868 ' 17.63912 17.60802 17.56771 17.52201 17.47268
w0 P 0.33564 0.33482 0.33561  0.33556 0.33539 0.33516  0.33488  0.33458
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
42 5294636 52.91433 5293683 5290952 52.81970 52.70469 5257605 52.43828
00 P 0.33670  0.33644 0.33664  0.33647 0.33606 0.33561  0.33515  0.33470
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
42 88.25355 8824749 88.23911 88.19881 88.06382 87.88685 87.68613  87.46952
g0 P 0.33791 033643 033786  0.33772 0.33731  0.33685  0.33637  0.33588
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
42 141.18684 141.11608 141.16129 141.08858 140.84636 140.53080 140.17342 139.78778
P 0.33860  0.33755 0.33853  0.33835 0.33790 0.33742  0.33692  0.33641
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
A2 176.49137 176.40968 176.45893 176.36581 176.05765 175.65994 175.21189 174.72965
T 0.33881  0.33705 0.33872  0.33855 0.33810 0.33762  0.33713  0.33662
' P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
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Table 3.4 Lognormal distribution fitting to 2 mixed components of Pareto distributed

samples.
SPLD with DCP
nofem  SPLD a0t T oso% 1% 2% 3% 4% 5%
A* 135102 093414 135050  1.34998 134893 134787 134677  1.34567
10 D 009820 008134 009817 009815 009807 009798 009788  0.09778
P-AS >0.10 >0.10 >0.10 >0.10 >0.10 >0.10 >0.10 >0.10
P-KS >010  >010  >0.10 >010 >010  >010  >0.10 >0.10
42 325056  2.00082 325008  3.24957  3.24847 324728 324599  3.24461
s00 D 008667 006509 008665 008663 0.08661 0.08660  0.08660  0.08658
P-AS 002777 009393 002779 002780 002783 002787 0.02790  0.02795
P-KS  0.02909  >0.10 002914 002920 0.02923  0.02928  0.02927  0.02932
4> 518852 642725 518898 518940 519011 519065 5.19105  5.19130
g0 D 008365 008358 008364 008363 008365 008365 008366  0.08367
P-AS <001 <001 <001 <001 <001 <001 <001 <0.01
P-KS <001 <001 <001 <001 <00l <001 <001 <0.01
42 805050 10.06196 8.05056  8.05055 8.05030 8.04977 804896  8.04787
goo D 008192 008086 008193 008195 008198 008201 008201  0.08197
P-AS <001 <001 <001 <001 <001 <001 <001 <0.01
P-KS <001 <001 <001 <001 <001 <001 <001 <0.01
42 1021911  9.80539 10.21938 10.21954 10.21959 10.21927 10.21858 10.21753
Looo D 008271 007815 008274 © 008277 008280 008281 0.08283  (0.08282
T P-AS <001 <001 <001 <001 <001 <001 <001 <0.01
P-KS <0.01 <001 <001 <001 <001 <001 <001 <0.01
Table 3.5 Lognormal distribution fitting to 2 mixed components of Weibull
distributed samples.
SPLD with DCP
nofem  SPLD T ont, 050% 1% 2% 3% 4% 5%
A* 413089  5.22480 ' 413035+ 412976 4.12846  4.12699  4.12534  4.12352
10 D 018545 013401 018545 018545 0.18545 018542 018537  0.18530
P-AS <001 <001 <001 <001 <001 <001 <001 <0.01
P-KS <0.01 005710  <0.01 <001 <001 <001 <001 <0.01
42 1162556 10.71413 11.62469 11.62368 11.62122 1161824 1161473 11.61072
s00 D 018407 016742 018405 018406 018406  0.18404  0.18402  0.18402
P-AS <001 <001 <001 <001 <001 <001 <001 <0.01
P-KS <001 <001 <001 <001 <001 <001 <001 <0.01
42 1913908 18.09580 19.13954 19.13978 19.13966 19.13873 19.13700 19.13450
go D 018334 016448 018334 018331 018328 018327 0.18326  0.18327
P-AS <001 <001 <001 <001 <00l <001 <001 <0.01
P-KS <001 <001 <001 <001 <00l <001 <001 <0.01
42 3058181 29.84309 3058216 30.58212 30.58091 3057822 3057410 30.56858
goo D 018246 017007 018246 018246 0.18244 018241 018236  0.18230
P-AS <001 <001 <001 <001 <00l <001 <001 <0.01
P-KS <001 <001 <001 <001 <00l <001 <001 <0.01
42 37.94584 3609822 37.94626 37.94618 37.94457 37.94107 37.93574 37.92861
looo D 018131 016808 0.8134 018136 08141 0.8144 018141  0.18137
Y P-AS <001 <001 <001 <001 <001 <001 <001 <0.01
P-KS <001 <001 <001 <001 <00l <001 <001 <0.01
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Table 3.6 Lognormal distribution fitting to mixed components of Lognormal and

Gamma distributed samples.

SPLD with DCP
n o lem  SPLD Boot _ 0.50% 1% 2% 3% 4% 5%
A2 836264 10.82667 8.35954  8.35222  8.33006 8.30356  8.27557  8.24709
wo P 0.28165 0.26531 0.28157  0.28141 028101  0.28055  0.28009  0.27964
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
42 2519776 2646229 2519049 2517055 2510745 25.03090 24.94982  24.86721
200 P 0.28719  0.26883 0.28712  0.28698 0.28659  0.28617  0.28571  0.28525
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
4> 4139709 40.20186 41.38693 ~ 41.35875 4126759 41.15474 41.03406 40.91052
. 0.28791 026741 0.28785  0.28772 0.28733  0.28689  0.28642  0.28593
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
42 66.47282 6477281 66.45435 66.40370 66.24287 66.04712 6583950 65.62779
0 0.28867  0.27133  0.28858  0.28840 0.28800  0.28758  0.28713  0.28670
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
42 8291493 83.82496 82.89098 82.82538 82.61786 82.36636 82.10019 81.82904
1000 P 0.28849 027916 0.28842  0.28826  0.28784  0.28739  0.28691  0.28644
’ P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Table 3.7 Lognormal distribution fitting to mixed components of Lognormal and
Pareto distributed samples.
SPLD with DCP
n fem  SPLD Boot™ /77 0:50% 1% 2% 3% 4% 5%
A2 308540 3.39554 3.08529 | '3.08517 3.08491  3.08463  3.08431  3.08396
0o P 0.17810  0.11972 0.17812  0.17814 0.17818 0.17823 0.17827  0.17830
P-AS 003261 002352 0.03261  0.03262 0.03263 0.03263  0.03264  0.03265
P-KS <0.01 >0.10 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
4> 834191 764943 834183 834175 8.34153 834125 834092  8.34053
a0 P 0.16780  0.14207 0.16779  0.16778 0.16776  0.16776 0.16776  0.16778
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
42 1365111 10.17753 13.65103 13.65092 13.65063 13.65023 13.64973 13.64914
) 0.16685  0.13066 0.16683  0.16682 0.16680  0.16680  0.16680  0.16678
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
4> 21.85418 23.69013 21.85442 21.85460 21.85479 21.85478 21.85455 21.85413
a0 0.16603  0.15096 0.16603  0.16603 0.16603  0.16604  0.16605  0.16601
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
A2 27.27300 27.77180 27.27287 27.27268 27.27212 27.27131 27.27026  27.26899
1o P 0.16545  0.14315 0.16546  0.16546  0.16546  0.16549  0.16549  0.16551
! P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
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Table 3.8 Lognormal distribution fitting to mixed components of Lognormal and

Weibull distributed samples.

SPLD with DCP
n o lem  SPLD Boot _ 0.50% 1% 2% 3% 4% 5%
A2 4.26848 426702 4.26814 426777 4.26692  4.26591  4.26475  4.26347
wo P 0.17643  0.15871 0.17643  0.17644 017645 0.17642 0.17637  0.17635
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <001 0.01636 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
42 1220158 11.97442 1220095 1220020 12.19834 12.19601 12.19324 12.19004
200 P 0.16639  0.15430 0.16638  0.16637 0.16637 0.16635 0.16634  0.16630
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
42 2005170 16.98177 20.05237 ~ 20.05286 20.05332 20.05310 20.05223  20.05075
. 0.16271  0.15071  0.16271  0.16269  0.16264  0.16263  0.16263  0.16264
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
42 3168224  0.00000 31.68178 31.68101 31.67853 31.67486 31.67003 31.66407
0 0.16061  0.00000 0.16061  0.16063 0.16059  0.16058  0.16060  0.16059
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
A2 39.41399 39.61496 39.41407 39.41374 39.41187 39.40843 39.40347  39.39704
1000 P 0.15915  0.15700  0.15916  0.15917 0.15916  0.15915  0.15909  0.15906
’ P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Table 3.9 Lognormal distribution fitting to mixed components of Gamma and Pareto
distributed samples.
SPLD with DCP
n fem  SPLD Boot™ /77 0:50% 1% 2% 3% 4% 5%
A2 204088  2.38613  2.04071 ' '2.04052 2.04008  2.03956  2.03894  2.03825
0o P 0.10608  0.09329 0.10605  0.10604 0.10609  0.10615 0.10615  0.10612
P-AS  0.09035 0.05947 0.09037  0.09038  0.09042  0.09047  0.09052  0.09059
P-KS >0.10 >0.10 >0.10 >0.10 >0.10 >0.10 >0.10 >0.10
42 3097450 3052701 30.96801 30.95086 30.89688 30.83150 30.76228  30.69168
200 P 0.32702  0.31086 0.32696  0.32684 0.32652  0.32618  0.32583  0.32546
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
42 5157491 52.20833 51.56640 51.54279 51.46606 51.37082 51.26872 51.16397
) 0.32832 031407 0.32827 032816 0.32786 0.32752  0.32717  0.32681
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
4> 8223466 79.78941 8221950 8217711 82.04146 81.87565 81.69931 81.51910
— 0.32892 031571 0.32886  0.32873  0.32840 0.32805  0.32769  0.32732
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
42 102.82321 103.40175 102.80369 102.74892 102.57454 102.36248 102.13754 101.90794
1o P 0.32919 031637 0.32913  0.32900 0.32868  0.32832  0.32795  0.32758
! P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
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Table 3.10 Lognormal distribution fitting to mixed components of Gamma and

Weibull distributed samples.

SPLD with DCP
n o lem  SPLD Boot _ 0.50% 1% 2% 3% 4% 5%
A2 991611 883166 9.90379  9.86071 9.72101  9.55326  9.37798  9.20191
wo P 0.29076  0.26196  0.29037  0.28926  0.28641  0.28312  0.27997  0.27672
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
42 2911845 3072714 29.08552 2898218 28.63543 28.19967 27.73287  27.25684
200 P 0.29388  0.29173  0.29363  0.29299  0.29100  0.28856  0.28606  0.28337
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
4> 4849356 51.95749 4842520 4823654 47.61966 46.85123 46.03050  45.19494
. 0.29456  0.29122  0.29424  0.29340 0.29125 0.28864  0.28589  0.28323
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
A2 T7.32569 72.98106 77.19756 76.83886 75.69606 74.31018 72.85114 71.37711
0 0.29456  0.29227  0.29419  0.29316  0.29032  0.28728  0.28405  0.28074
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
42 96.61183 93.90908 96.44155 95.99545 9458801 92.87947 91.07743  89.25504
1000 P 0.29472  0.28922  0.29444  0.29360 0.29093  0.28801  0.28486  0.28206
’ P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Table 3.11 Lognormal distribution fitting to mixed components of Pareto and Weibull
distributed samples.
SPLD with DCP
n fem  SPLD Boot™ /77 0:50% 1% 2% 3% 4% 5%
A2 575862 555956 5.75743 | 575620 575361 575083  5.74787  5.74475
w P 021185 0.16336  0.21182 021179 0.21174 021170 0.21167  0.21163
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
4> 1661916 16.88498 16.61876 16.61821 16.61665 16.61448 16.61177 16.60849
200 P 021225 0.18487 0.21224 021224 021222 021219 021216  0.21214
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
A2 2761244 2888741 27.61359 27.61451 27.61570 27.61604 27.61556 27.61428
) 021162  0.19110 0.21162 021162 0.21159 0.21158  0.21159  0.21160
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
4> 4408424 4574890 44.08392 44.08320 44.08056 44.07639 44.07071 44.06359
a0 0.21117  0.19289 021116  0.21114 021113 021112 0.21109  0.21107
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
42 5494829 51.99963 54.94883 5494885 54.94733 54.94379 54.93831 54.93094
1o P 0.21034  0.19568 0.21034  0.21033  0.21033  0.21031  0.21029  0.21026
! P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
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Table 3.12 Lognormal distribution fitting to 3 mixed components of Lognormal

distributed samples.

SPLD with DCP
n o lem  SPLD Boot _ 0.50% 1% 2% 3% 4% 5%
A2 448931 432716 448752 448572  4.48213 447854 447497  4.47139
50 D 0.14444  0.09437 0.14439  0.14433  0.14424  0.14419 0.14415  0.14409
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 >0.10 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
42 880618 9.00591 8.80635  8.80651 8.80675 8.80693 8.80704  8.80709
a0 D 0.13817 0.11239 0.13816  0.13815 0.13814 0.13811 0.13808  0.13805
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
4> 17.37574 17.23807 17.37734  17.37890 17.38192 17.38480 17.38755 17.39016
00 0.13454  0.11093  0.13455  0.13457 0.13465 0.13471  0.13474  0.13475
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
A2 2546682 26.30497 2546961 2547234 2547764 2548272 2548759 2549226
oo P 0.13125  0.11949 0.13127  0.13128 0.13130  0.13133  0.13136  0.13139
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
A2 3430348 28.44723 3430430 3430507 34.30641 34.30750 34.30836  34.30899
1000 P 0.13092  0.11553  0.13091  0.13093 0.13096  0.13098  0.13097  0.13099
’ P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Table 3.13 Lognormal distribution fitting to 3 mixed components of Gamma
distributed samples.
SPLD with DCP
n fem  SPLD Boot™ /77 0:50% 1% 2% 3% 4% 5%
A2 2076018 21.67382 20.76271 ' 20.75568 20.72551 20.68476 20.63839  20.58838
0 P 034723 032125 0.34724 034710 0.34664  0.34602  0.34533  0.34461
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
42 4151742 4280644 4150194 41.46639 41.36120 41.23442 41.09670 40.95219
a0 P 0.35034 0.32819 0.35023  0.34995 0.34923  0.34845 0.34762  0.34678
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
42 8302808 84.60625 82.99630 82.93142 82.74127 8251110 82.26093 81.99847
) 035176  0.33251 0.35162  0.35135 0.35066  0.34989  0.34910  0.34830
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
4> 12454406 126.26601 124.49855 124.39603 124.09420 123.73290 123.34305 122.93572
oo P 0.35222  0.33586 0.35207  0.35176 0.35096  0.35007  0.34915  0.34820
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
42 166.04475 168.41179 165.99757 165.87944 165.51675 165.07255 164.58778 164.07784
1200 P 0.35242 033565 0.35227  0.35197 0.35114  0.35023  0.34930  0.34836
! P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
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fitting to 3 mixed components of Pareto

SPLD with DCP
n o lem  SPLD Boot _ 0.50% 1% 2% 3% 4% 5%
A2 492811 500806 4.93000  4.93186 4.93552  4.93908  4.94252  4.94585
50 D 0.15115  0.12847 0.15117  0.15120 0.15126  0.15132  0.15137  0.15141
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <001 0.01838 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
42 947184  9.89068 9.47164  9.47139  9.47078  9.47001  9.46909  9.46802
200 P 0.14693  0.13241 0.14693  0.14693 0.14689  0.14687  0.14683  0.14684
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
4> 1873960 16.96631 18.73810  18.73653 18.73324 18.72974 18.72603 18.72211
00 0.14474  0.12337  0.14475  0.14475 014475 0.14476  0.14476  0.14477
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
42 28.00193 29.38318 27.99868 27.99533 27.98836 27.98100 27.97329  27.96522
oo P 0.14364  0.13599  0.14363  0.14362 0.14358  0.14356  0.14355  0.14356
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
42 37.15138 37.33256 37.14992 37.14833 37.14476 37.14067 37.13609 37.13103
1000 P 0.14255  0.13263  0.14256  0.14256  0.14254  0.14253  0.14251  0.14251
’ P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Table 3.15 Lognormal distribution fitting to 3 mixed components of Weibull
distributed samples.
SPLD with DCP
n fem  SPLD Boot™ /77 0:50% 1% 2% 3% 4% 5%
A2 10.13939 10.34525 10.14507 ' 10.15062 10.16136 10.17162 10.18141 10.19074
0 P 0.22568  0.20598 0.22575  0.22582  0.22597  0.22613  0.22625  0.22633
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
42 20.23490 1859456 20.23273 20.23038 20.22514 20.21924 20.21266  20.20543
200 P 022712  0.20239 0.22714 022716 0.22716  0.22711  0.22705  0.22695
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
A2 39.84124 41.27956 39.83297 39.82443 39.80661 39.78779 39.76801 39.74732
) 0.22408  0.20803  0.22405  0.22401 0.22395 0.22392  0.22388  0.22383
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
42 59.96905 56.94038 59.95949 59.94944 5992787 59.90442 59.87913  59.85211
oo P 0.22474 021355 0.22472  0.22470 022470  0.22468  0.22461  0.22456
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
A2 79.73742 77.15067 79.73257  79.72710 79.71432 79.69917 79.68172  79.66202
1200 P 0.22363  0.20890 0.22361  0.22359  0.22357  0.22353  0.22352  0.22346
! P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
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Table 3.16 Lognormal distribution fitting to mixed components of Lognormal,

Gamma and Weibull distributed samples.

SPLD with DCP
n o lem  SPLD Boot _ 0.50% 1% 2% 3% 4% 5%

A2 1754073 16.98817 17.54576 17.54877 17.55054 17.54924 17.54649 17.54294

50 D 0.36507  0.34467 0.36505  0.36499  0.36476  0.36445 0.36410  0.36375
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

42 3495202 36.35885 34.94652 34.93584 34.90468 34.86751 34.82806 34.78756

200 P 0.36811  0.34885 0.36804  0.36791 0.36756 0.36719  0.36681  0.36644
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

4> 69.83733 69.27511 69.82344  69.80074 69.73789 69.66355 69.58457  69.50348

00 0.36907 035310 0.36901  0.36889  0.36858  0.36823  0.36788  0.36752
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

42 10478636 105.27593 104.76816 104.73453 104.63799 104.52344 104.40195 104.27729

oo P 0.36930 035392 0.36922  0.36908 0.36875 0.36834  0.36790  0.36747
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

42 139.33974 139.79703 139.32499 139.29080 139.18486 139.05507 138.91578 138.77213

1000 P 0.36927 035557 0.36919  0.36904 0.36869  0.36827  0.36788  0.36748
’ P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Table 3.17 Lognormal distribution fitting to mixed components of Gamma, Weibull

and Pareto distributed samples.
SPLD with DCP
n fem  SPLD Boot™ /77 0:50% 1% 2% 3% 4% 5%

A2 11.27102 12.39009 11.26685 @ 11.26067 11.24421 11.22494 11.20458 11.18375

0 P 0.22300 0.20798  0.22293  0.22286  0.22274  0.22261  0.22247  0.22234
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

42 2236032 22.81061 2235977 22.35394 22.33244 2230516 2227585 22.24573

200 P 0.22243  0.20986  0.22245  0.22246 022248  0.22250  0.22253  0.22257
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

A2 4424601 41.25085 44.24877 44.24250 4421220 4417042 4412413 4407591
) 0.22127 020776  0.22132  0.22134 022137  0.22143  0.22143  0.22142
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

42 66.22609 6575394 66.22159 66.20160 66.13236 66.04541 6595203 65.85607

oo P 0.22044 021492  0.22044  0.22044 022046  0.22046  0.22047  0.22050
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

42 8841672 89.06076 88.40876 88.38116 88.28839 88.17229 88.04745 87.91913

1200 P 0.21976  0.21058 0.21978  0.21979  0.21980  0.21977  0.21975  0.21975
! P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
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Table 3.18 Lognormal distribution fitting to mixed components of Weibull, Pareto

and Lognormal distributed samples.

SPLD with DCP
Boot 0.50% 1% 2% 3% 4% 5%
A? 6.28572 570624  6.28668 6.28756  6.28916  6.29050  6.29161 6.29250
D 0.17972  0.15078  0.17977 0.17980 0.17986  0.17986  0.17986 0.17987

n Item SPLD

150 P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

A2 11.98518 1241797 11.98519 11.98510 11.98462 11.98373 11.98244 11.98076

300 D 0.17346  0.15978  0.17348 0.17350 0.17351  0.17354  0.17356 0.17360
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

A2 2456584 20.04620 24.56561 « 24.56522 24.56397 24.56210 24.55963  24.55658

600 D 0.17255  0.15626  0.17255 0.17255  0.17254  0.17251  0.17252 0.17253
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

A2 36.03477 34.90527 36.03336  36.03168 36.02754 36.02236 36.01621  36.00907

900 D 0.16922  0.15106  0.16922 0.16921  0.16921  0.16919  0.16922 0.16921
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

A2 48.27341 47.72015 48.27226  48.27079 48.26685 48.26165 48.25522  48.24761

1,200 D 0.17022  0.16139  0.17023 0.17022  0.17022  0.17019  0.17020 0.17017

P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.0% <0.01 <0.01 <0.01 <0.01 <0.01

Table 3.19 Lognormal distribution fitting to mixed components of Pareto, Lognormal

and Gamma distributed samples.

SPLD with DCP
Boot 0:50% 1% 2% 3% 4% 5%
A2 6.10410 551327  6.10241 6.09708  6.07998  6.05940  6.03776 6.01579
D 0.21850  0.18465  0.21846 0.21834  0.21800  0.21759  0.21715 0.21666

n Item SPLD

150 P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

42 1167553 11.36463 11.67077 11.65936 11.62441 11.58271 11.53884  11.49427

300 D 0.21929 0.20598  0.21924 0.21910  0.21875 0.21838  0.21800 0.21761
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

A2 2289235 22.31802 22.88289 22.86307 22.80293 22.72968 22.65165 22.57191

600 D 0.21523  0.20548  0.21518 0.21504  0.21471  0.21430  0.21382 0.21337
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

A2 34.38764 34.42791 3437717 34.34828 34.25603 34.14365 34.02461 33.90335

900 D 0.21570  0.20334  0.21562 0.21545  0.21509  0.21463  0.21416 0.21370
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

A2 45.77310 45.41784 45.75870 4572216 45.60621 45.46375 4531202 45.15707

1200 D 0.21591 0.20954  0.21581 0.21564  0.21528  0.21483  0.21435 0.21389

P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
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Table 3.20 Lognormal distribution fitting to mixed components of Lognormal,

Gamma, Pareto and Weibull distributed samples.

SPLD DCP

nootem o SPLD i Boot — 0.50% 1% 2% 3% 4% 5%
A? 3.69190  3.34164  3.68765 3.68255 3.67053  3.65724  3.64346 3.62952
100 D 0.21151  0.18386  0.21136 0.21116  0.21066  0.21012  0.20958 0.20906
P-AS 0.01484  0.02510  0.01496 0.01511 0.01546  0.01585 0.01626 0.01667
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
42 10.07180  8.36302 10.06482  10.05503 10.02959 10.00011  9.96909 9.93749
300 D 0.20773  0.17785  0.20763 0.20746  0.20706  0.20660  0.20612 0.20562
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
A2 16.67129 14.67989 16.67164  16.66489 16.63865 16.60514 16.56913  16.53219
500 D 0.20721  0.18813  0.20714 0.20695 0.20641  0.20579  0.20523 0.20466
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
A2 2651817 29.22734 26.46858  26.41662 26.30669 26.19112 26.07247  25.95251
800 D 0.20825  0.19084  0.20805 0.20783  0.20730  0.20673  0.20615 0.20555
P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
A2 33.22040 30.50589 33.15650  33.08963 32.94848 32.80035 32.64848 32.49510
1.000 D 0.20831  0.18550  0.20809 0.20786  0.20731  0.20671  0.20609 0.20551
' P-AS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
P-KS <0.01 <0.01 <001 <0.01 <0.01 <0.01 <0.01 <0.01




Table 3.21 Finite mixture Lognormal distributions fitting to 2 mixed components of Lognormal distributed samples.

n

Item

SPLD

Finite Mixture Lognormal Distributions (k)

2 5 10 15 20 30 40 50 60 70 80 90 100
A2 3.17131 0.26634 0.12402 0.07239
100 D 0.15850 0.05007 0.03404 0.02538
P-AS  0.03009 >0.10 >0.10 >0.10
P-KS  0.01667 >0.10 >0.10 >0.10
A? 8.73616 0.32404 0.12608 0.06119 0.04294 0.03543 0.03331
300 D 0.14730 0.03094 0.02197 0.01521 0.04294 0.03543 0.03331
P-AS <0.01 >0.10 >010 >0.10 =>010 >0.10 >0.10
P-KS <0.01 >010 >010 >010 >0.10 =>0.10 =>0.10
A* 1457275 0.36692 0.15159 0.05947 0.03919 0.03026 0.02403 0.01923 0.02123
500 D 0.14465 0.02536 0.01832 0.01209 0.03919 0.03026 0.02403 0.00657 0.00621
P-AS <0.01 >0.10 >010 >010 =>010 >0.10 >0.10 >010 =>0.10
P-KS <0.01 >010 >010 >010 =>0.10 >010 >0.10 >0.20 =>0.10
A? 2290827 0.47809 0.15617 0.06116 0.03865 0.02965 0.02103 0.01712 0.01590 0.01424 0.01434 0.01588
800 D 0.14177 0.02208 0.01471 0.00983 0.03865 0.02965 0.02103 0.00518 0.00476 0.00453 0.00421 0.00420
P-AS <0.01 >0.10 >010 >0.10 =>010. >010 =>010 =>010 +~>010 =>010 =>0.10 =>0.0
P-KS <0.01 >0.10 =>010 >010 =>010..>0.10 =>010 =>0.10+«->0.10 >010 >0.10 =>0.10
A? 2855152 0.56527 0.14667 0.05851 0.03872 0.02950 .0.02043 .0.01765 0.01539 0.01345 0.01304 0.01328 0.01315 0.01549
1,000 D 0.14111 0.02043 0.01314 0.00879 0.03872 0.02950%'0.02043-'0.00474 0.00423 0.00402 0.00379 0.00369 0.00348 0.00340
' P-AS <0.01 >0.10 >010 >010 =>010 >010 =>010 =>010 =>010 =>010 =>010 =>010 =>0.10 =>0.10
P-KS <0.01 >010 >010 >010 >0.10 =>010 >010 >010 =>010 >010 =>010 >0.10 =010 =>0.10

69



Table 3.22 Finite mixture Lognormal distributions fitting to 2 mixed components of Gamma distributed samples.

n

Item

SPLD

Finite Mixture Lognormal Distributions (k )

2 5 10 15 20 30 40 50 60 70 80 90 100
A% 17.65236 0.22322 0.12453 0.08752
100 D 0.33564 0.04408 0.03502 0.02700
P-AS <0.01 >0.10 >0.10 >0.10
P-KS <0.01 >0.10 >0.10 >0.10
A% 5294636 0.23524 0.13180 0.06501 0.04649 0.03684 0.04000
300 D 0.33670 0.02812 0.02203 0.01563 0.01282 0.01168 0.01007
P-AS <0.01 >0.10 >010 >0.10 >0.10 >0.10 >0.10
P-KS <0.01 >010 >010 >0.10 >0.10 =>0.10 =>0.10
A®>  88.25355 0.24133 0.13792 0.06923 0.04400 0.03570 0.02608 0.02382 0.02764
500 D 0.33791 0.02167 0.01759 0.01279 0.01011 0.00902 0.00752 0.00689 0.00647
P-AS <0.01 >010 >010 >010 =>0.10 =>0.10 >0.10 =>010 =>0.10
P-KS <0.01 >0.10 >010 >010 >010 >010 >0.10 >0.10 >0.10
A? 141.18684 0.23770 0.13703 0.07871 0.04699 0.03197 0.02254 0.01867 0.01768 0.01685 0.01633 0.01898
800 D 0.33860 0.01734 0.01400 0.01085 0.00838 0.00717 0.00599 0.00521 0.00490 0.00460 0.00433 0.00431
P-AS <0.01 >0.10 >010 =>010 >010 >010 =>010 =>010 >»010 =>010 =>010 =0.10
P-KS <0.01 >0.10 >010 >0.10 =>010..>0.10 =>010 =>0.10+«->010 =>010 =>0.10 =>0.10
A? 176.49137 0.23440 0.14020 0.06731 0.04660 0.03204 .0.02276 .0.01705 0.01510 0.01337 0.01341 0.01427 0.01590 0.01584
1,000 D 0.33881 0.01557 0.01275 0.00897 0.00749 0.00640%'0.00536" '0.00464 0.00433 0.00396 0.00379 0.00372 0.00356 0.00350
' P-AS <0.01 >0.10 >010 >0.10 =>010 =>0.10 =>010 =>010 =>0.10 =>010 =>0.10 =>010 =>0.10 =>0.10
P-KS <0.01 >0.10 >010 >010 >010 =>010 =>010 >010 >010 >010 =>010 =>010 =>010 =>0.10

09



Table 3.23 Finite mixture Lognormal distributions fitting to 2 mixed components of Pareto distributed samples.

n

Item

SPLD

Finite Mixture Lognormal Distributions (k )

2 5 10 15 20 30 40 50 60 70 80 90 100
A 1.35102 0.32670 0.11873 0.10218
100 D 0.09820 0.05078 0.03339 0.02616
P-AS >0.10 >0.10 >0.10 >0.10
P-KS >0.10 >0.10 >0.10 >0.10
A? 3.25056 0.64494 0.13860 0.06242 0.04822 0.03816 0.03728
300 D 0.08667 0.04070 0.02162 0.01492 0.01321 0.01154 0.00970
P-AS  0.02777 >0.10 >010 >0.10 >0.10 >0.10 >0.10
P-KS  0.02909 >010 >010 >0.10 >0.10 =>0.10 =>0.10
A? 5.18852 0.90194 0.17021 0.06072 0.04430 0.03428 0.02892 0.02700 0.03082
500 D 0.08365 0.03819 0.01786 0.01171 0.01003 0.00891 0.00756 0.00670 0.00638
P-AS <0.01 >010 >010 >010 =>0.10 =>0.10 >0.10 =>010 =>0.10
P-KS <0.01 >0.10 >010 >010 >010 >010 >0.10 >0.10 >0.10
A? 8.05050 1.36559 0.20996 0.06757 0.04539 0.03320 0.02485 0.01928 0.01838 0.01755 0.01676 0.01868
800 D 0.08192 0.03733 0.01570 0.00972 0.00827 0.00732 0.00604 0.00537 0.00489 0.00457 0.00440 0.00413
P-AS <0.01 >0.10 >010 =>010 >010 >010 =>010 =>010 >»010 =>010 =>010 =0.10
P-KS <0.01 >0.10 >010 >0.10 =>010..>0.10 =>010 =>0.10+«->010 =>010 =>0.10 =>0.10
A?  10.21911 1.64702 0.24620 0.06034 0.03901 0.03085 .0.02177 .0.01773 0.01711 0.01458 0.01396 0.01384 0.01481 0.01640
1,000 D 0.08271 0.03615 0.01490 0.00875 0.00715 0.00648%'0.00539-0.00468 0.00441 0.00397 0.00380 0.00363 0.00351 0.00349
’ P-AS <0.01 >0.10 >010 >0.10 =>010 =>0.10 =>010 =>010 =>0.10 =>010 =>0.10 =>010 =>0.10 =>0.10
P-KS <0.01 >0.10 >010 >010 >010 =>010 =>010 >010 >010 >010 =>010 =>010 =>010 =>0.10

19



Table 3.24 Finite mixture Lognormal distributions fitting to 2 mixed components of Weibull distributed samples.

n

Item

SPLD

Finite Mixture Lognormal Distributions (k)

2 5 10 15 20 30 40 50 60 70 80 90 100
A2 4.13089 0.34021 0.12894 0.06857
100 D 0.18545 0.04852 0.03446 0.02535
P-AS <0.01 >0.10 >0.10 >0.10
P-KS <0.01 >0.10 >0.10 >0.10
A% 11.62556 0.63526 0.17343 0.06042 0.04198 0.03436 0.02970
300 D 0.18407 0.03808 0.02314 0.01469 0.01282 0.01108 0.00979
P-AS <0.01 >0.10 >010 >0.10 =>010 >0.10 >0.10
P-KS <0.01 >010 >010 >010 >0.10 =>0.10 =>0.10
A% 19.13908 0.91302 0.19879 0.06640 0.04057 0.03206 0.02293 0.02147 0.02714
500 D 0.18334 0.03501 0.01922 0.01232 0.00983 0.00895 0.00741 0.00666 0.00631
P-AS <0.01 >0.10 >010 >010 =>010 >0.10 >0.10 >010 =>0.10
P-KS <0.01 >010 >010 >010 =>0.10 >010 >0.10 >0.20 =>0.10
A?  30.58181 1.34920 0.30919 0.06766 0.04298 0.03309 0.02244 0.01734 0.01493 0.01465 0.01344 0.01485
800 D 0.18246 0.03221 0.01813 0.00965 0.00795 0.00707 0.00590 0.00524 0.00475 0.00447 0.00429 0.00421
P-AS <0.01 >0.10 >010 >0.10 =>010. >010 =>010 =>010 +~>010 =>010 =>0.10 =>0.0
P-KS <0.01 >0.10 =>010 >010 =>010..>0.10 =>010 =>0.10+«->0.10 >010 >0.10 =>0.10
A?  37.94584 157681 0.30297 0.06958 0.04525 0.03355 .0.02132 .0.01637 0.01385 0.01245 0.01130 0.01091 0.01147 0.01241
1,000 D 0.18131 0.03116 0.01576 0.00905 0.00724 0.00639%'0.00525- '0.00460 0.00420 0.00395 0.00377 0.00356 0.00349 0.00336
' P-AS <0.01 >0.10 >010 >010 =>010 >010 =>010 =>010 =>010 =>010 =>010 =>010 =>0.10 =>0.10
P-KS <0.01 >010 >010 >010 >0.10 =>010 >010 >010 =>010 >010 =>010 >0.10 =010 =>0.10

29



Table 3.25 Finite mixture Lognormal distributions fitting to mixed components of Lognormal and Gamma distributed samples.

n

Item

SPLD

Finite Mixture Lognormal Distributions (k )

2 5 10 15 20 30 40 50 60 70 80 90 100
A 8.36264 3.11739 0.80478 1.00790
100 D 0.28165 0.15189 0.06982 0.08476
P-AS <0.01 0.01484 >0.10 =>0.10
P-KS <0.01 0.02646 >0.10 >0.10
A®> 25.19776 5.60176 0.71335 0.94281 0.39213 0.14020 0.10922
300 D 0.28719 0.09640 0.03296 0.03935 0.03103 0.02262 0.01397
P-AS <0.01 <001 >010 >010 >010 >0.10 =>0.10
P-KS <0.01 <001 >010 >010 =>0.10 =>0.10 =>0.10
A® 41.39709 7.52444 1.07958 0.97490 0.59642 0.13026 0.05963 0.05769 0.06339
500 D 0.28791 0.08001 0.02807 0.02843 0.02563 0.01858 0.01149 0.00879 0.00797
P-AS <0.01 <001 =>010 >010 =>010 =>0.10 >0.10 >010 =>0.10
P-KS <0.01 <001 >010 >010 =>010 >010 >0.10 >0.10 >0.10
A®>  66.47282 7.38030 1.42196 0.44673 0.55795 0.12492 0.04656 0.03567 0.03289 0.03738 0.03719 0.03998
800 D 0.28867 0.05421 0.02377 0.01807 0.01891 0.01549 0.01012 0.00734 0.00608 0.00563 0.00539 0.00509
P-AS <0.01 <001 >010 =>010 >010 =010 =>010 =>010 >»010 =>010 =>010 =010
P-KS <0.01 0.02433 >0.10 =>010 =>010.>0.10 =>010 =>0.10+->010 =>010 =>0.10 >0.10
A? 8291493 8.75679 4.76370 0.50893 0.92842 0.24784 .0.04736 .0.03002 0.02563 0.02539 0.02550 0.02579 0.02616 0.02998
1,000 D 0.28849 0.05080 0.03436 0.01601 0.01862 0.01474%'0.00963- '0.00680 0.00546 0.00479 0.00455 0.00425 0.00408 0.00407
’ P-AS <0.01 <001 <001 >010 =>010 =>010 =>010 =>010 =>010 =>010 =>010 =>010 =>0.10 =0.10
P-KS <001 0.01350 >0.10 =>010 >010 =>010 =>010 =>010 >010 >010 =>010 =>010 =>0.10 >0.10
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Table 3.26 Finite mixture Lognormal distributions fitting to mixed components of Lognormal and Pareto distributed samples.

n Item

SPLD

Finite Mixture Lognormal Distributions (k )

2 5 10 15 20 30 40 50 60 70 80 90 100
A 3.08540 0.36775 0.12297 0.07876
100 D 0.17810 0.05583 0.03509 0.02610
P-AS  0.03261 >0.10 >0.10 >0.10
P-KS <0.01 >0.10 >0.10 >0.10
A? 8.34191 0.68042 0.14592 0.06158 0.04301 0.03655 0.03024
D 0.16780 0.04313 0.02251 0.01551 0.01308 0.01156 0.00968
P-AS <0.01 >0.10 >010 >0.10 >0.10 >0.10 >0.10
P-KS <0.01 >010 >010 >0.10 >0.10 =>0.10 =>0.10
A®>  13.65111 1.05177 0.17300 0.05869 0.03994 0.03191 0.02490 0.02224 0.02561
500 D 0.16685 0.04028 0.01866 0.01230 0.01008 0.00892 0.00745 0.00672 0.00641
P-AS <0.01 >010 >010 >010 =>0.10 =>0.10 >0.10 =>010 =>0.10
P-KS <0.01 >0.10 >010 >010 >010 >010 >0.10 >0.10 >0.10
A?  21.85418 1.39875 0.16855 0.06056 0.03956 0.02966 0.02065 0.01656 0.01502 0.01492 0.01440 0.01648
800 D 0.16603 0.03623 0.01574 0.01024 0.00832 0.00714 0.00589 0.00531 0.00478 0.00450 0.00433 0.00409
P-AS <0.01 >0.10 >010 =>010 >010 >010 =>010 =>010 >»010 =>010 =>010 =0.10
P-KS <0.01 >0.10 >010 >0.10 =>010..>0.10 =>010 =>0.10+«->010 =>010 =>0.10 =>0.10
A?  27.27300 1.69681 0.19050 0.06158 0.03909 0.02892 .0.02101 .0.01664 0.01363 0.01361 0.01218 0.01086 0.01238 0.01330
1,000 D 0.16545 0.03529 0.01464 0.00909 0.00726 0.00639+'0.00536" '0.00473 0.00425 0.00398 0.00374 0.00355 0.00349 0.00336
' P-AS <0.01 >0.10 >010 >0.10 =>010 =>0.10 =>010 =>010 =>0.10 =>010 =>0.10 =>010 =>0.10 =>0.10
P-KS <0.01 >0.10 >010 >010 >010 =>010 =>010 >010 >010 >010 =>010 =>010 =>010 =>0.10
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Table 3.27 Finite mixture Lognormal distributions fitting to mixed components of Lognormal and Weibull distributed samples.

n

Item

SPLD

Finite Mixture Lognormal Distributions (k )

2 5 10 15 20 30 40 50 60 70 80 90 100
A 4.26848 2.24381 0.15150 0.09861
100 D 0.17643 0.13301 0.04109 0.02852
P-AS <0.01 0.07220 >0.10 =>0.10
P-KS <0.01 0.06067 >0.10 >0.10
A®> 1220158 5.82170 0.18904 0.06131 0.04538 0.03700 0.03521
300 D 0.16639 0.11517 0.02772 0.01733 0.01364 0.01166 0.00958
P-AS <0.01 <001 >010 >010 >010 >0.10 =>0.10
P-KS <0.01 <001 >010 >010 =>0.10 =>0.10 =>0.10
A?>  20.05170 8.87959 0.23984 0.06025 0.04089 0.03243 0.02382 0.02125 0.02201
500 D 0.16271 0.10941 0.02378 0.01402 0.01118 0.00919 0.00753 0.00667 0.00623
P-AS <0.01 <001 =>010 >010 =>010 =>0.10 >0.10 >010 =>0.10
P-KS <0.01 <001 >010 >010 =>010 >010 >0.10 >0.10 >0.10
A?  31.68224 13.66141 0.30486 0.06251 0.04243 0.02939 0.01964 0.01762 0.01581 0.01474 0.01358 0.01633
800 D 0.16061 0.10470 0.02088 0.01153 0.00963 0.00775 0.00583 0.00513 0.00484 0.00446 0.00424 0.00414
P-AS <0.01 <001 >010 =>010 >010 =010 =>010 =>010 >»010 =>010 =>010 =010
P-KS <0.01 <001 =>010 =>0.10 =>010.>0.10 =>010 =>0.10+«->010 =>010 =>0.10 =>0.10
A?  39.41399 16.12581 0.37728 0.06482 0.04146 0.02955 .0.01963 .0.01540 0.01321 0.01266 0.01276 0.01330 0.01282 0.01358
1,000 D 0.15915 0.10206 0.02114 0.01068 0.00869 0.00718%'0.00531-'0.00463 0.00410 0.00390 0.00371 0.00359 0.00347 0.00337
' P-AS <0.01 <001 >010 >010 =>010 =>010 =>010 =>010 =>010 =>010 =>010 =>010 =>0.10 =>0.10
P-KS <0.01 <001 >010 >010 >010 =>010 =>010 =>010 >010 >010 =>010 =>010 =>010 =>0.10
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Table 3.28 Finite mixture Lognormal distributions fitting to mixed components of Gamma and Pareto distributed samples.

n

Item

SPLD

Finite Mixture Lognormal Distributions (k )

2 5 10 15 20 30 40 50 60 70 80 90 100
A 2.04088 0.29853 0.11766 0.08712
100 D 0.10608 0.04865 0.03303 0.02548
P-AS  0.09035 >0.10 >0.10 >0.10
P-KS >0.10 >0.10 >0.10 >0.10
A?  30.97450 0.95807 0.26663 0.07414 0.05440 0.04670 0.04370
300 D 0.32702 0.05058 0.02652 0.01619 0.01379 0.01205 0.01050
P-AS <0.01 >0.10 >010 >0.10 >0.10 >0.10 >0.10
P-KS <0.01 >010 >010 >0.10 >0.10 =>0.10 =>0.10
A®> 5157491 1.38866 0.33550 0.08729 0.04514 0.03688 0.02748 0.02602 0.03104
500 D 0.32832 0.04768 0.02337 0.01402 0.01083 0.00946 0.00790 0.00695 0.00651
P-AS <0.01 >010 >010 >010 =>0.10 =>0.10 >0.10 =>010 =>0.10
P-KS <0.01 >0.10 >010 >010 >010 >010 >0.10 >0.10 >0.10
A?  82.23466 2.15110 0.43387 0.09341 0.04442 0.03221 0.02311 0.02139 0.01696 0.01712 0.01801 0.02094
800 D 0.32892 0.04754 0.01931 0.01127 0.00860 0.00739 0.00605 0.00543 0.00493 0.00460 0.00442 0.00430
P-AS <0.01 0.08049 >0.10 =>010 >0.10. >010 >010 >0.10 +~>010 =>010 =>0.10 =>0.10
P-KS <0.01 0.02875 >0.10 =>010 =>010.>0.10 =>010 =>0.10+->010 =>010 =>0.10 >0.10
A? 102.82321 2.49985 0.48873 0.07753 0.04912 0.03462 .0.02313 .0.01903 0.01679 0.01455 0.01582 0.01601 0.01544 0.01633
1,000 D 0.32919 0.04566 0.01829 0.00994 0.00808 0.00676%0.00549-0.00480 0.00444 0.00414 0.00391 0.00376 0.00359 0.00356
’ P-AS <0.01 0.04977 >0.10 =>010 =>010 >010 =>010 =>010 =>010 >010 =>010 =>010 =>0.10 =>0.10
P-KS <0.01 0.08757 >0.10 =>010 >010 =>010 =>010 =>010 >010 >010 >010 =>010 =>0.10 >0.10
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Table 3.29 Finite mixture Lognormal distributions fitting to mixed components of Gamma and Weibull distributed samples.

n

Item

SPLD

Finite Mixture Lognormal Distributions (k)

2 5 10 15 20 30 40 50 60 70 80 90 100
A2 9.91611 1.74447 0.71323 0.17926
100 D 0.29076 0.10188 0.06830 0.04395
P-AS <0.01 >0.10 >0.10 >0.10
P-KS <0.01 >0.10 >0.10 >0.10
A?  29.11845 1.79016 0.62314 0.35692 0.06839 0.04008 0.03811
300 D 0.29388 0.05489 0.03304 0.03079 0.02062 0.01502 0.01110
P-AS <0.01 >0.10 >010 >0.10 =>010 >0.10 >0.10
P-KS <0.01 >010 >010 >010 >0.10 =>0.10 =>0.10
A? 4849356 251890 0.40100 0.44737 0.08569 0.04702 0.02623 0.02278 0.02079
500 D 0.29456 0.04798 0.02260 0.02428 0.01793 0.01339 0.00837 0.00710 0.00639
P-AS <0.01 0.04921 >0.10 =>010 >010 =>0.10 >0.10 =>0.10 =>0.10
P-KS <0.01 >0.10 >010 >0.10 =>010 >0.10 =>0.10 >0.10 =>0.10
A? 77.32569 3.00935 0.49369 0.57066 0.09341 0.05946 0.02506 0.01857 0.01498 0.01490 0.01338 0.01512
800 D 0.29456 0.04126 0.01903 0.01934 0.01491 0.01209 0.00750 0.00577 0.00502 0.00464 0.00442 0.00429
P-AS <0.01 0.03484 >0.10 =>010 =>0.10. >0410 >010 >0.10 +~>010 =>010 =>010 >0.10
P-KS <0.01 >0.10 =>010 >010 =>010..>0.10 =>010 =>0.10+«->0.10 >010 >0.10 =>0.10
A?  96.61183 4.27973 1.28261 0.41624 0.19029 0.07997 .0.02587 .0.01785 0.01479 0.01297 0.01244 0.01261 0.01396 0.01341
1,000 D 0.29472 0.04249 0.02086 0.01672 0.01564 0.01256%0.00708- '0.00522 0.00455 0.00421 0.00393 0.00378 0.00364 0.00348
' P-AS <0.01 <001 =>010 >010 =>010 =>010 =>010 =>010 =>010 =>010 =>010 =>010 =>0.10 =>0.10
P-KS <0.01 0.05579 >0.10 =>010 =>010 >010 =>010 =>010 >010 =>010 =>010 =>010 =>010 =>0.10
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Table 3.30 Finite mixture Lognormal distributions fitting to mixed components of Pareto and Weibull distributed samples.

n

Item

SPLD

Finite Mixture Lognormal Distributions (k )

2 5 10 15 20 30 40 50 60 70 80 90 100
A? 5.75862 0.49640 0.14982 0.08299
100 D 0.21185 0.05806 0.03742 0.02748
P-AS <0.01 >0.10 >0.10 >0.10
P-KS <0.01 >0.10 >0.10 >0.10
A?>  16.61916 1.08838 0.23330 0.06994 0.04558 0.03628 0.03423
300 D 0.21225 0.04890 0.02609 0.01647 0.01355 0.01180 0.01024
P-AS <0.01 >0.10 >010 >0.10 >0.10 >0.10 >0.10
P-KS <0.01 >010 >010 >0.10 >0.10 =>0.10 =>0.10
A®  27.61244 1.63742 0.26624 0.06603 0.04391 0.03283 0.02358 0.02249 0.02181
500 D 0.21162 0.04496 0.02104 0.01262 0.01039 0.00904 0.00737 0.00671 0.00634
P-AS <0.01 >010 >010 >010 =>0.10 =>0.10 >0.10 =>010 =>0.10
P-KS <0.01 >0.10 >010 >010 >010 >010 >0.10 >0.10 >0.10
A?  44.08424 242752 0.34147 0.07149 0.04704 0.03313 0.02244 0.01769 0.01497 0.01437 0.01343 0.01542
800 D 0.21117 0.04262 0.01829 0.01017 0.00843 0.00726 0.00605 0.00531 0.00480 0.00449 0.00426 0.00422
P-AS <0.01 0.05577 >0.10 =>010 >0.10. >010 >010 >0.10 +~>010 =>010 =>0.10 =>0.10
P-KS <0.01 >0.10 >010 >0.10 =>010..>0.10 =>010 =>0.10+«->010 =>010 =>0.10 =>0.10
A?> 5494829 3.05119 0.45614 0.07337 0.04501 0.03484 .0.02204 .0.01706 0.01390 0.01333 0.01338 0.01152 0.01232 0.01353
1,000 D 0.21034 0.04167 0.01825 0.00929 0.00751 0.00672%'0.00538-0.00473 0.00421 0.00404 0.00381 0.00358 0.00354 0.00339
’ P-AS <001 0.033¢1 =>0.10 =>010 =>010 =>010 =>010 =>010 =>010 =>010 =>010 =>010 =>0.10 =>0.10
P-KS <0.01 0.06510 >0.10 =>010 >010 =>010 =>010 =>010 >010 >010 =>010 =>010 =>0.10 >0.10
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Table 3.31 Finite mixture Lognormal distributions fitting to 3 mixed components of Lognormal distributed samples.

n

Item

SPLD

Finite Mixture Lognormal Distributions (k )

2 5 10 15 20 30 40 50 60 70 80 90 100
A2 4.48931 0.27983 0.10713 0.05725 0.06025
150 D 0.14444 0.04356 0.02742 0.02001 0.01806
P-AS <0.01 >0.10 >010 >0.10 >0.10
P-KS <0.01 >0.10 >010 >0.10 >0.10
A? 8.80618 0.32184 0.11345 0.05585 0.03999 0.03559 0.03257
300 D 0.13817 0.03358 0.02040 0.01465 0.01201 0.01094 0.00942
P-AS <0.01 >0.10 >010 >010 >0.10 =>0.10 >0.10
P-KS <0.01 >010 >0.10 >010 >0.10 =>0.10 >0.10
A?  17.37574 0.42800 0.11833 0.05760 0.03962 0.02931 0.02269 0.02038 0.01878 0.01790
600 D 0.13454 0.02692 0.01513 0.01083 0.00911 0.00767 0.00669 0.00597 0.00560 0.00534
P-AS <0.01 >010 >0.10 >010 >010 >0.10 >0.10 >010 =010 =>0.10
P-KS <0.01 >010 >0.10 >010 >010 >010 >010 >010 >0.10 =>0.10
A?>  25.46682 0.55803 0.11935 0.05811 0.04006 0.03070 0.02157 0.01765 0.01622 0.01511 0.01499 0.01357
900 D 0.13125 0.02440 0.01205 0.00888 0.00746 0.00651 0.00550 0.00481 0.00451 0.00430 0.00412 0.00384
P-AS <0.01 >010 >0.10 >010 >0.10 >010 >010 >0.10 >»010 =>010 =>010 =0.10
P-KS <0.01 >0.10 >010 >010 >0.10.>0.10 >010 >0.10+">010 >010 >0.10 >0.10
A? 3430348 0.63825 0.11860 0.05477 0.03745 0.02953 -0.02050 .0.01614 0.01351 0.01317 0.01198 0.01072 0.01110 0.01071
1.200 D 0.13092 0.02215 0.01089 0.00769 0.00650 0.00572"'0.00471-'0.00416 0.00383 0.00360 0.00346 0.00321 0.00311 0.00302
’ P-AS <0.01 >0.10 =>010 >010 >010 =>010 =>010 =>010 =>010 =>010 =>010 =>010 =>010 =>0.10
P-KS <0.01 >0.10 =>010 >010 =>010 =>010 =>0.10 =>0.10 =>010 =>010 =>010 =>010 =>010 =>0.10
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Table 3.32 Finite mixture Lognormal distributions fitting to 3 mixed components of Gamma distributed samples.

n

Item

SPLD

Finite Mixture Lognormal Distributions (k )

2 5 10 15 20 30 40 50 60 70 80 90 100
A% 20.76018 7.94694 0.51587 0.08417 0.07254
150 D 0.34723 0.22287 0.03873 0.02379 0.01982
P-AS <0.01 <001 =>010 =>0.10 >0.10
P-KS <0.01 <001 =>010 >0.10 >0.10
A®> 4151742 15.82516 0.75626 0.07892 0.05474 0.04394 0.04244
300 D 0.35034 0.22241 0.02948 0.01759 0.01426 0.01232 0.01052
P-AS <0.01 <001 >010 >010 >0.10 =>0.10 =>0.10
P-KS <0.01 <001 >010 >010 =>0.10 =>0.10 =>0.10
A?  83.02808 31.57455 1.70024 0.08129 0.05560 0.03736 0.02743 0.02645 0.02519 0.02697
600 D 0.35176 0.22225 0.02572 0.01241 0.01053 0.00859 0.00739 0.00657 0.00602 0.00573
P-AS <0.01 <001 >010 >010 >010 >010 >0.10 >010 =010 =>0.10
P-KS <0.01 <001 >010 >010 >010 =>010 >010 >010 >0.10 =>=0.10
A? 12454406 47.31848 2.73144 0.07942 0.05525 0.03830 0.02556 0.02019 0.01716 0.01701 0.01719 0.01990
900 D 0.35222 0.22226 0.02453 0.01045 0.00859 0.00746 0.00596 0.00514 0.00461 0.00432 0.00420 0.00414
P-AS <0.01 <001 >001 =>010 >0.10. >010 =>010 =>0.10 >»010 =>010 =>010 =0.10
P-KS <0.01 <001 >010 >010 >0.10.>0.10 >010 >0.10+">010 >010 >0.10 >0.10
A? 166.04475 63.06336 3.28021 0.08251 0.05383 0.041433 .0.02535 .0.01947 0.01626 0.01505 0.01369 0.01439 0.01456 0.01470
1.200 D 0.35242 0.22238 0.02180 0.00929 0.00743 0.00647“'0.00520"''0.00455 0.00404 0.00373 0.00355 0.00345 0.00327 0.00318
’ P-AS <0.01 <0.01 0.02690 >0.10 >0.10 =>010 =>010 =>010 =>010 =>010 =>010 =>010 =>010 =>0.10
P-KS <0.01 <001 =>010 >010 =>010 =>010 =>0.10 =>0.10 =>010 =>010 =>010 =>010 =>010 =>0.10

0L



Table 3.33 Finite mixture Lognormal distributions fitting to 3 mixed components of Pareto distributed samples.

n

Item

SPLD

Finite Mixture Lognormal Distributions (k )

2 5 10 15 20 30 40 50 60 70 80 90 100
A? 4,92811 0.31520 0.12734 0.06667 0.06564
150 D 0.15115 0.03937 0.02873 0.02071 0.01797
P-AS <0.01 >0.10 >010 >0.10 >0.10
P-KS <0.01 >0.10 >010 >0.10 >0.10
A? 9.47184 0.43107 0.12060 0.06237 0.04236 0.03564 0.03213
300 D 0.14693 0.03292 0.02042 0.01505 0.01277 0.01118 0.01001
P-AS <0.01 >0.10 >010 >010 >0.10 =>0.10 >0.10
P-KS <0.01 >010 >0.10 >010 >0.10 =>0.10 >0.10
A?  18.73960 0.62291 0.13007 0.06020 0.04001 0.03203 0.02531 0.02178 0.02034 0.02138
600 D 0.14474 0.02738 0.01534 0.01055 0.00887 0.00784 0.00671 0.00609 0.00554 0.00529
P-AS <0.01 >010 >0.10 >010 >010 >0.10 >0.10 >010 =010 =>0.10
P-KS <0.01 >010 >0.10 >010 >010 >010 >010 >010 >0.10 =>0.10
A?  28.00193 0.86075 0.14615 0.06090 0.04317 0.03219 0.02402 0.01889 0.01889 0.01589 0.01641 0.01593
900 D 0.14364 0.02613 0.01305 0.00886 0.00764 0.00674 0.00568 0.00489 0.00489 0.00418 0.00408 0.00385
P-AS <0.01 >010 >0.10 >010 >0.10 >010 >010 >0.10 >»010 =>010 =>010 =0.10
P-KS <0.01 >0.10 >010 >010 >0.10.>0.10 >010 >0.10+">010 >010 >0.10 >0.10
A?  37.15138 1.09048 0.15746 0.06250 0.04366 0.03427 -0.02501 .0.01899 0.01899 0.01429 0.01388 0.01279 0.01262 0.01261
1.200 D 0.14255 0.02497 0.01150 0.00771 0.00656 0.00591“'0.005060.00440 0.00440 0.00366 0.00347 0.00335 0.00320 0.00311
’ P-AS <0.01 >0.10 =>010 >010 >010 =>010 =>010 =>010 =>010 =>010 =>010 =>010 =>010 =>0.10
P-KS <0.01 >0.10 =>010 >010 =>010 =>010 =>0.10 =>0.10 =>010 =>010 =>010 =>010 =>010 =>0.10
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Table 3.34 Finite mixture Lognormal distributions fitting to 3 mixed components of Weibull distributed samples.

n

Item

SPLD

Finite Mixture Lognormal Distributions (k )

2 5 10 15 20 30 40 50 60 70 80 90 100
A% 10.13939 0.73502 0.14019 0.06339 0.05233
150 D 0.22568 0.05817 0.02878 0.02059 0.01801
P-AS <0.01 >0.10 >010 >0.10 >0.10
P-KS <0.01 >0.10 >010 >0.10 >0.10
A% 20.23490 1.24333 0.19450 0.06301 0.04242 0.03468 0.03127
300 D 0.22712 0.05416 0.02422 0.01498 0.01235 0.01096 0.00972
P-AS <0.01 >0.10 >010 >010 >0.10 =>0.10 >0.10
P-KS <0.01 >010 >0.10 >010 >0.10 =>0.10 >0.10
A?  39.84124 2.36388 0.32266 0.06487 0.04062 0.03003 0.02328 0.01943 0.01846 0.01834
600 D 0.22408 0.05197 0.02081 0.01076 0.00875 0.00774 0.00674 0.00608 0.00560 0.00525
P-AS <0.01 0.06146 >010 >010 =>010 >0.10 >0.10 >010 =>010 =>0.10
P-KS <001 0.08108 =>010 >010 >010 >0.10 >010 >0120 >010 >0.10
A?  59.96905 3.40606 0.48901 0.06838 0.04155 0.03186 0.02145 0.01731 0.01476 0.01365 0.01322 0.01350 0.01413
900 D 0.22474 0.05014 0.02022 0.00917 0.00739 0.00651 0.00544 0.00482 0.00444 0.00415 0.00394 0.00386 0.00371
P-AS <0.01 0.02321 =>010 =>010 =>0.10.  =>010 =>0.10 =>0.10 >010 =>010 =>010 =>010 =>0.0
P-KS <0.01 0.02866 >010 >0.10 >0.10.>0.10 >010 >0.10+->010 >010 >010 >0.10 >0.10
A?  79.73742 4.55088 0.57603 0.07731 0.04495 0.03303 .0.02189 .0.01635 0.01416 0.01247 0.01121 0.01049 0.01060 0.01023
1.200 D 0.22363 0.05051 0.01936 0.00830 0.00649 0.00574%'0.004740.00418 0.00383 0.00361 0.00339 0.00316 0.00310 0.00302
’ P-AS <0.01 <001 =>010 >010 >010 =>010 =>010 =>010 =>010 =>010 =>010 =>010 =>0120 =>0.10
P-KS <0.01 <001 =>010 >010 =>010 =>010 =>0.10 =>0.10 =>010 =>010 =>010 =>010 =>010 =>0.10

¢l



Table 3.35 Finite mixture Lognormal distributions fitting to mixed components of Lognormal, Gamma and Weibull distributed samples.

n

Item

SPLD

Finite Mixture Lognormal Distributions (k )

2 5 10 15 20 30 40 50 60 70 80 90 100
A% 1754073 3.26628 0.37806 0.26502 0.17572
150 D 0.36507 0.20677 0.04642 0.04168 0.03026
P-AS <0.01 0.02731 >010 >0.10 >0.10
P-KS <0.01 <001 =>010 >0.10 >0.10
A% 3495202 6.41392 0.44659 0.28768 0.19414 0.11529 0.10793
300 D 0.36811 0.20589 0.03268 0.02994 0.02445 0.01815 0.01406
P-AS <0.01 <001 >010 >010 >0.10 =>0.10 =>0.10
P-KS <0.01 <001 >010 >010 =>0.10 =>0.10 =>0.10
A?  69.83733 12.50758 0.95370 0.21901 0.22539 0.10537 0.06745 0.06862 0.06648 0.07230
600 D 0.36907 0.20520 0.02973 0.01805 0.01914 0.01461 0.01074 0.00880 0.00773 0.00740
P-AS <0.01 <001 >010 >010 >010 >010 >0.10 >010 =010 =>0.10
P-KS <0.01 <001 >010 >010 >010 =>010 >010 >010 >0.10 =>=0.10
A? 104.78636 18.72465 0.69132 0.14088 0.17316 0.14013 0.05634 0.04827 0.04816 0.04961 0.04897 0.05069 0.05522
900 D 0.36930 0.20493 0.02087 0.01317 0.01374 0.01300 0.00931 0.00725 0.00643 0.00571 0.00548 0.00520 0.00522
P-AS <0.01 <001 =>010 =>010 >0.10  >010 =>010 =>0.10 >010 =>010 =>0.10 =>010 =>0.0
P-KS <0.01 <001 >010 >010 >010r.,>010 >010 >0.10+">010 >010 >010 >0.10 >0.10
A? 139.33974 25.02787 1.57090 0.24755 0.10303 0.16347 -0.05145 .0.03951 0.03186 0.03050 0.03009 0.02870 0.02808 0.03107
1.200 D 0.36927 0.20495 0.02514 0.01206 0.01076 0.01156-'0.00826" 0.00658 0.00545 0.00475 0.00440 0.00417 0.00395 0.00381
’ P-AS <0.01 <001 =>010 >010 >010 =>010 =>010 =>010 =>010 =>010 =>010 =>010 =>0120 =>0.10
P-KS <0.01 <001 =>010 >010 =>010 =>010 =>0.10 =>0.10 =>010 =>010 =>010 =>010 =>010 =>0.10

€L



Table 3.36 Finite mixture Lognormal distributions fitting to mixed components of Gamma, Weibull and Pareto distributed samples.

n

Item

SPLD

Finite Mixture Lognormal Distributions (k )

2 5 10 15 20 30 40 50 60 70 80 90 100
A% 11.27102 5.05539 0.47184 0.07689 0.06998
150 D 0.22300 0.20446 0.04353 0.02291 0.01975
P-AS <0.01 <001 =>010 =>0.10 >0.10
P-KS <0.01 <001 =>010 >0.10 >0.10
A®>  22.36032 9.94006 0.44820 0.08257 0.05099 0.04270 0.04371
300 D 0.22243 0.20697 0.03069 0.01750 0.01424 0.01251 0.01093
P-AS <0.01 <001 >010 >010 >0.10 =>0.10 =>0.10
P-KS <0.01 <001 >010 >010 =>0.10 =>0.10 =>0.10
A?  44.24601 19.79016 0.73561 0.09449 0.05179 0.03760 0.02721 0.02362 0.02326 0.02455
600 D 0.22127 0.20853 0.02571 0.01300 0.01038 0.00901 0.00729 0.00651 0.00584 0.00564
P-AS <0.01 <001 >010 >010 >010 >010 >0.10 >010 =010 =>0.10
P-KS <0.01 <001 >010 >010 >010 =>010 >010 >010 >0.10 =>=0.10
A?  66.22609 29.63144 1.70245 0.08844 0.04671 0.03629 0.02411 0.01876 0.01653 0.01592 0.01622 0.01641
900 D 0.22044 0.20905 0.02720 0.01059 0.00821 0.00735 0.00597 0.00529 0.00470 0.00441 0.00415 0.00405
P-AS <0.01 <001 >010 >010 >0.10 >010 =>010 =>0.10 >»010 =>010 =>010 =0.10
P-KS <0.01 <001 >010 >010 >0.10.>0.10 >010 >0.10+">010 >010 >0.10 >0.10
A?  88.41672 39.40209 1.41917 0.09966 0.05409 0.03873 .0.02434 .0.01853 0.01590 0.01362 0.01239 0.01180 0.01206 0.01251
1.200 D 0.21976 0.20909 0.02137 0.00949 0.00750 0.00629“'0.00519"'0.00452 0.00406 0.00376 0.00353 0.00337 0.00329 0.00316
’ P-AS <0.01 <001 =>010 >010 >010 =>010 =>010 =>010 =>010 =>010 =>010 =>010 =>0120 =>0.10
P-KS <0.01 <001 =>010 >010 =>010 =>010 =>0.10 =>0.10 =>010 =>010 =>010 =>010 =>010 =>0.10

17



Table 3.37 Finite mixture Lognormal distributions fitting to mixed components of Weibull, Pareto and Lognormal distributed samples.

n

Item

SPLD

Finite Mixture Lognormal Distributions (k )

2 5 10 15 20 30 40 50 60 70 80 90 100
A? 6.28572 1.81328 0.13784 0.07160 0.05937
150 D 0.17972 0.08703 0.03400 0.02272 0.01839
P-AS <0.01 >0.10 >010 >0.10 >0.10
P-KS <0.01 >0.10 >010 >0.10 >0.10
A®>  11.98518 3.70032 0.14434 0.05681 0.04185 0.03438 0.03360
300 D 0.17346 0.08399 0.02577 0.01664 0.01315 0.01129 0.00949
P-AS <0.01 0.01459 >010 >010 >0.10 =>0.10 =>0.10
P-KS <0.01 0.035%6 =>010 >010 >0.10 =>0.10 >0.10
A?> 2456584 6.66843 0.17260 0.06193 0.03760 0.02762 0.02142 0.01897 0.01741 0.01869
600 D 0.17255 0.07547 0.01977 0.01286 0.01008 0.00827 0.00665 0.00592 0.00559 0.00532
P-AS <0.01 <001 >010 >010 >010 >010 >0.10 >010 =010 =>0.10
P-KS <0.01 <001 >010 >010 >010 =>010 >010 >010 >0.10 =>=0.10
A?  36.03477 9.21856 0.18918 0.06226 0.03824 0.02745 0.01873 0.01663 0.01521 0.01367 0.01240 0.01313
900 D 0.16922 0.07088 0.01686 0.01087 0.00857 0.00717 0.00553 0.00488 0.00449 0.00415 0.00394 0.00382
P-AS <0.01 <001 >010 >010 >0.10 >010 =>010 =>0.10 >»010 =>010 =>010 =0.10
P-KS <0.01 <001 >010 >010 >0.10.>0.10 >010 >0.10+">010 >010 >0.10 >0.10
A?  48.27341 11.65547 0.21550 0.06226 0.03790 0.02822 -0.01879 .0.01514 0.01291 0.01186 0.01083 0.01046 0.01091 0.00986
1.200 D 0.17022 0.06892 0.01551 0.00957 0.00762 0.00655"'0.00492"'0.00421 0.00377 0.00349 0.00332 0.00322 0.00309 0.00300
’ P-AS <0.01 <001 =>010 >010 >010 =>010 =>010 =>010 =>010 =>010 =>010 =>010 =>0120 =>0.10
P-KS <0.01 <001 =>010 >010 =>010 =>010 =>0.10 =>0.10 =>010 =>010 =>010 =>010 =>010 =>0.10

Gl



Table 3.38 Finite mixture Lognormal distributions fitting to mixed components of Pareto, Lognormal and Gamma distributed samples.

n

Item

SPLD

Finite Mixture Lognormal Distributions (k )

2 5 10 15 20 30 40 50 60 70 80 90 100
A? 6.10410 3.49612 0.33681 0.29128 0.27317
150 D 0.21850 0.14142 0.04299 0.04303 0.04131
P-AS <0.01 0.02058 >0.10 =>0.10 >0.10
P-KS <0.01 <001 =>010 >0.10 >0.10
A®>  11.67553 6.28335 0.38649 0.37689 0.37772 0.12425 0.09320
300 D 0.21929 0.12979 0.03009 0.03093 0.03262 0.02242 0.01536
P-AS <0.01 <001 >010 >010 >0.10 =>0.10 =>0.10
P-KS <0.01 <001 >010 >010 =>0.10 =>0.10 =>0.10
A? 22.89235 12.40042 0.60432 0.19943 0.45647 0.24308 0.04817 0.03131 0.03121 0.03634
600 D 0.21523 0.12566 0.02523 0.01774 0.02269 0.01887 0.01185 0.00853 0.00710 0.00638
P-AS <0.01 <001 >010 >010 >010 >010 >0.10 >010 =010 =>0.10
P-KS <0.01 <001 >010 >010 >010 =>010 >010 >010 >0.10 =>=0.10
A?  34.38764 18.41292 1.16884 0.33890 0.14679 0.09774 0.03838 0.02431 0.02136 0.02121 0.02017 0.02303 0.02502
900 D 0.21570 0.12308 0.02549 0.01581 0.01302 0.01275 0.01018 0.00724 0.00582 0.00502 0.00455 0.00434 0.00421
P-AS <0.01 <001 =>010 =>010 >0.10  >010 =>010 =>0.10 >010 =>010 =>0.10 =>010 =>0.0
P-KS <0.01 <001 >010 >010 >010r.,>010 >010 >0.10+">010 >010 >010 >0.10 >0.10
A? 4577310 24.90933 0.44792 0.26307 0.41502 0.36365 -0.04868 .0.02435 0.01704 0.01555 0.01452 0.01469 0.01537 0.01587
1.200 D 0.21591 0.12687 0.01587 0.01290 0.01399 0.01376-'0.00942"'0.00663 0.00502 0.00422 0.00387 0.00358 0.00346 0.00327
’ P-AS <0.01 <001 =>010 >010 >010 =>010 =>010 =>010 =>010 =>010 =>010 =>010 =>0120 =>0.10
P-KS <0.01 <001 =>010 >010 =>010 =>010 =>0.10 =>0.10 =>010 =>010 =>010 =>010 =>010 =>0.10

9/,



Table 3.39 Finite mixture Lognormal distributions fitting to mixed components of Lognormal, Gamma, Pareto and Weibull distributed

samples.
Finite Mixture Lognormal Distributions (k )
nltem  SPLD 2 5 10 15 20 30 40 50 60 70 80 90 100
A2 3.69190 1.64132 0.36184 0.29185
100 D 0.21151 0.14229 0.06078 0.05901
P-AS 0.01484 >010 >0.10 >0.10
P-KS <0.01 0.04068 =>0.10 >0.10
A% 10.07180 4.05860 0.34923 0.30552 0.18970 0.15493 0.09622
300 D 0.20773 0.14152 0.03255 0.03070 0.02508 0.02346 0.01711
P-AS <0.01 <001 >010 >010 =>010 >0.10 =0.10
P-KS <0.01 <001 >010 =>0.10 =>0.10 =>0.10 =>0.10
A% 16.67129 6.19143 0.51195 0.26233 0.16378 0.22778 0.06812 0.04630 0.04986
500 D 0.20721 0.13976 0.02739 0.02107 0.01787 0.02038 0.01339 0.01016 0.00829
P-AS <0.01 <001 >010 >010 =>0.10 >0.10 >0.10 >0.10 >0.10
P-KS <0.01 <001 >010 =>010 =>0.10 =>0.10 >0.10 >0.10 >0.10
A% 2651817 9.86712 0.56640 0.23009 0.27439. 0.22633 0.11853 0.03832 0.02628 0.02618 0.02797 0.03179
800 D 0.20825 0.13958 0.02252 0.01545 0.01584°.0.01534 0.01211 0.00861.+0.00696 0.00578 0.00520 0.00488
P-AS <0.01 <001 >010 >0.10 =>0.10 =>0.40 - >0.10 >0.10 >010 >0.10 >010 =>0.10
P-KS <0.01 <001 >010 >010 >0.10 =>0.10-">0.10 >0.10 >010 >0.10 =>0.10 =>0.10
A?  33.22040 12.08596 0.70622 0.24885 0.19922 0.14707 0.09469 0.04085 0.02159 0.01942 0.01903 0.02024 0.02239 0.02434
1,000 D 0.20831 0.13982 0.02217 0.01417 0.01267 0.01164 0.01045 0.00785 0.00614 0.00513 0.00452 0.00413 0.00405 0.00390
' P-AS <0.01 <001 >010 =>0.10 =>0.10 >0.10 =>0.10 >0.10 >010 >0.10 >010 =>0.10 =>010 =>0.10
P-KS <0.01 <001 >010 >010 =>010 >0.10 =>0.10 >0.10 >010 =>010 >0.10 >0.10 =>0.10 =>0.10

LL
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3.7 An Application

The finite mixture of Lognormal distributions is applied to an actual set of
claims data and the bootstrap procedure is analyzed. An analysis and some
comparisons are shown with respective to statistical tests.

The data set was provided by a non-life insurance company in Thailand. We
considered it for both, a whole portfolio and various types of product coverages. The
Kolmogorov-Siminov (K-S) test and the Anderson-Darling (A-D) test were used as
statistical tests for model fitting.

Motor insurance data set: We consider the data set of motor insurance claims
for the year 2009; all types of vehicles i.e., automobiles, lorries and motorcycles are
included. The total of each claim amount is paid by the insurer. The data set is

classified by product coverage type - ¢ for : = 0,1,...,5. There are 1,296 observations

of type - 5 that can be fitted to a mixture of Lognormal distributions. The historical
data of severity claim and histogram of severity claim (log scale) are illustrated in
Figure 3.2 and 3.3, repectively.

Tables 3.40 - 3.41 show the statistical test values for fitting the finite mixture
Lognormal distributions to the data set. For both the K-S and A-D test consideration,
the summaries are as follows:

Case 1: at a significance level of « =0.05, we obtained the estimated

~

parameters, i =8.9672 and ¢ =1.1804 and that the Lognormal distribution does

not fit to type - 5. On the other hand, the mixture Lognormal distributions can be

fitted to type - 5 when the number & of components is greater than or equal to 20.
Case 2: at a significance level of o = 0.10, the mixture Lognormal

distributions are fitted to type - 5 when the number £ of components is at least 25. In
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general, the mixture of Lognormal distributions are an increasingly better fit to the

type - 5 when the number & of components are increased.

Table 3.40 The Lognormal distribution.

Single parametric K-S test A-D test

distribution =~ - ———— e
D value P value A? value P value

Lognormal 0.0466 p<0.01 3.3770 0.0241

Table 3.41 The finite mixture Lognormal distributions.

K-S test A-D test
k-components D value P.value A? value P value
15 0.0430 0.0215 3.1900 0.0296
20 0.0355 0.0793 2.0373 0.0907
25 0.0330 p=>0.1 1.6118 p>0.1
30 0.0261 p>0.1 1.1829 p>0.1
35 0.0264 p>0.1 1.0348 p>0.1
40 0.0217 p>0.1 0.7989 p>0.1
50 0.0247 p>0.1 0.6193 p>0.1
62 0.0234 p>0.1 0.5447 P>0.1
65 0.0247 p>0.1 0.4594 P>0.1
76 0.0239 p>0.1 0.4094 p>0.1
78 0.0224 p>0.1 0.3454 p>0.1
88 0.0216 p>0.1 0.3401 p>0.1
100 0.0216 p>0.1 0.3029 p>0.1

Figures 3.4 - 3.5 show the probability density function (PDF) of the

Lognormal distribution (£ =1, with 4 =8.9672 and ¢ =1.1804) and the mixture of

Lognormal distributions when & =100, respectively.
Figures 3.6 - 3.7, solid lines, show the cumulative distribution functions (CDF)
of the finite mixture Lognormal distribution when %=1 and % =100, respectively. The

dashed line is ECDF.
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Figures 3.8 - 3.9 show the P-P plots of finite mixture Lognormal distributions
when k=1 and & =100, respectively.

A bootstrap data sample can be calculated by using Eqg. 3.8 and Eq. 3.9 for
observation and residual respectively. The Lognormal distribution was fitted to the
data set, when we recalculated the new estimated parameters respective to the
bootstrap process. We have found that the Lognormal distribution can be fitted to
type - 5 at a significance level of o = 0.10. We can see some examples of this from

Table 3.42.

Table 3.42 Recalculation of the estimated parameters based on data and residual

bootstrap.
K-S test A-D test
Bootstrap = » IR e
and MLE ﬂ* o * D value = P value A?value P value
8.9024 1.1654 0.0427 0.0238 3.2188  0.0287
8.9339 1.1607 0.0377 0:0510 2.7781  0.0416
Data 8.9433 1.1185 0.0331 p>0.1 3.3329  0.0255
8.9154 1.1102 0:0309 p>0.1 3.6200  0.0170
8.9336 1.1094 0.0289 p>0.1 3.5141  0.0201
8.9182 1.1656 0.0406 0.0350 2.8866  0.0384
8.9384 1.1541 0.0359 0.0714 2.8051  0.0408
Residual  8.9334 1.1313 0.0324 p>0.1 3.0150  0.0347
8.9355 1.1215 0.0307 p>0.1 3.2072  0.0290
8.9249 1.1095 0.0295 p>0.1 3.5309 0.0196

From Table 3.42, we can see that the bootstrap technique can be applied to
refitting the model of the data set. Note that the residual bootstrap provides better A?

values within shorter computer time than the observation bootstrap.
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CHAPTER IV

INSURANCE PRICING

There are many principles involved in insurance pricing. Traditionally, the
expected value and the standard deviation are the most widely used for this purpose.
In the actuarial literature, many probability transforms have been developed for
pricing financial and insurance risks, i.e. the expected value loading, the standard
deviation loading and the Esscher transform which are written in the following form:

The expected value loading;

*

F (z)=(1+ a)F(z) — « , for some a > 0.
The standard deviation loading;

F ()= F(x) - Baf(x) , forsome 5>0.

The Esscher transform;

/ (Az)
FlEamaaa®s
E[eAX
Wang (2000) introduced the form of
Foa :@[@‘1 Fx +9], (4.1)

where ® denotes the standard normal distribution function and 6 is a constant. The
transform of Eqg. 4.1 is called the Wang transform and produces a risk-adjusted
As we are dealing with insurance risk, we will consider the Wang transform

in of the form
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F'(z) = @[@*%p(x)) - 9}, (4.2)

where F(z) is the cumulative distribution function (CDF) of arisk X, ® denotes the

standard normal CDF, 6 is a constant that is relevant to the market price of risk.

The mean value evaluated under F () will define a risk-adjusted fair value of risk

X, le,
H[X]:= 7[1 - F (@) de

Definition 4.1. The Biihlmann’s economic premium principle is of the form

E|xeV|

H (X,Z) = W

A , (4.3)

where Z = ZXj is the sum of the original risk function in the market and X is
j=1

given by X! = z/\j*l, A >0. The parameter )\ is considered to be the risk
=1 ‘

aversion index of the representative agent in the market.

The Wang transform F*(x) has a sound economic interpretation and it can be
derived from Biithlmann’s economic premium principle. Since the Wang transform is
normally distributed it does not match the severity distribution, especially the fat-
tailed and skewed right distributions for actual sets of data claims. To solve this
problem, we propose a new probability transform, called Log-transform, which is
defined by

M, (@) = Gexp|o]®7 (M, (2)) — 0] + ], (4.4)
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where G denotes the Lognormal cumulative distribution function, M, is a finite

mixture of Lognormal distributions, i.e.,

M (z) =1, F(z) + -+ 7, F (2)

and each Fj(a:) is a Lognormal CDF, O<Tj<1 (j=1, ..., k), k>1,

7, +---+ 7, =1. The function & is the same as in (4.2), 1, o and ¢ are constants

with properties that R, o >0, and 6 >0. Since G and ® ' are strictly

increasing, Mk*(a:) is also a CDF as shown in Lemma 4.1 below.

The aim of this research is to consider the problem of insurance pricing of
motor insurance claims where the data set is modeled by a finite mixture of
Lognormal distributions. We have calculated the premium based on the Log-
transform. We also calculated the premium based on other principles for a comparison
of the results and we found that the premium obtained from the Log-transform is
lower than that obtained-by the other methods.

Our work is organizedas follows:_In Section 4.1, we present the materials and
methods for calculating the insurance premiums. We also show that the Log-transform
can be derived from the equilibrium pricing as in Eq. 4.3. We applied the Log-
transform to calculate the net premium for an actual set of claim data in Section 4.2.

A comparison of the results is also given in this section.

4.1  System Descriptions

The insurance premium is comprised of a pure premium and the necessary

loading. The pure premium of the insured loss is defined as the expected value of the
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claim amounts to be paid by the insurer. In practice the insurer will add a risk (loss)
loading to the pure premium. The sum of the pure premium and the loss loading is
called the net premium. Adding the acquisition, expenses, and administration costs to
this net premium, one obtains the gross premium that will be charged to the insured or
policyholder. In this study, we shall consider only the net premium.

Let I be the set of non-negative random variables which represent the random
losses associated with insurance contracts. We can think of a loss (claim) X € I" as a

measurable non-negative real-valued function on a fixed underlying measure

space (€2, F, P), in which F C 2% isa a- algebra and P is a probability measure.

The set €2 is a collection of outcomes or states of the world and the o - algebra F is
a collection of events.
Definition 4.2. A loss is defined as a non-negative real-valued random variable

defined on a probability space (€2, 7, P) with finite mean. For each loss X, we will
denote its tail (or survival) function by S, which is defined by

S @) =B X Hap =1 — F(z),
where F', is the CDF of X . By Theorem 2.1, we obtain that the expected value of

loss X is
E[X]:f(l-FX(x)) dz .
0

Definition 4.3. A premium principle is a functional H : T" — [0, oco) that is assigned

to any loss X € I'. The premium principles which are based on the Log-transform can

be defined as follows:
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H[X]= 7[1 - M, (@) do.

Next, we shall prove that Ml*(a:) can be derived from Blihlmann’s economic
premium principle.

Lemma 4.1. The function MZ(x) in Eqg. 4.4 has the following properties:

(@ limM (x)=0, lim M,(z)=1.

(b) If z <y then M, (z) < M, (y).

(©) MZ is right-continuous, that is, MZ(J: +h)— MZ(:::) as h 0.

Proof:

(@ Since G isthe CDF of Lognormal distribution then we obtain that

lim MZ (z) =lim Glexp[o[® (M, (z)) — 0] + p]

z—0 z—0

= Glexploflim &7 (M (7)) — 0] + ]

=1G(0).=0,and

lim M, (z) = lim Glexp[o® (M, (z)) — 0] + 1]

T—00 T—00

= Glexplo lim ®'(M,(z)) — 0] + 1]
=1
(b) The increasing property of M;: follows easily from the fact that M, , G
and &' are increasing functions.

() Since M,, G and ! are increasing and right-continuous then MZ is

right-continuous.
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Here, the Lemma has been proved. L]

Lemma 4.2. Let X >0, V and Y be random variables with V +InX and Y

independent. Then Xe¢” and ¢ are independent.

Proof:
P(Xe" <z <y) =P(InX+V <Inz,Y <Ilny)
=PV <lnz—InX)Y <Iny)

=PV <lnz—InX)P(Y <lIny))

= P(InX +V <Ilnz)P" <y))

Conclusion that

Xe" and e are independent. n

Theorem 4.1. Assume that M, (x) is a CDF of a loss X which is Lognormally

distributed with p and o /That is X ~ LN(usc)«Then the Log-transform Ml* (x) as

in Eq. 4.4 can be derived from Biihlmann’s economic premium principle.
Proof:

We make the following assumptions for our proof.

Let Xj be an individual loss in the market and let us assume that the aggregate loss

Z can be approximated by a normal random variable, i.e.,

Z =% X., Z~N(u,oy), where 11, = E[Z] and o = Var(Z].
j=1

Let us re-scale Z to ZO such that
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We obtain that Z =o,7, + K, and then Blihlmann’s principle can be rewritten as

E XB)\ 0,20t H, E [X@AOZZO]
(X,Z) = = . (4.5)
Bt 7Pt E e/\UZZO]

Since M, (x) is the CDF of the Lognormal random variable X, it follows by
Corollary 2.1 that the random variable 1V which is defined by

V=" [MI(X)]

has a standard normal distribution.

To carry on the analysis of Bihlmann, we make the following set of
assumptions:

(A) (Z,,V) have a bivariate normal distribution with correlation coefficient .

(B) There exists.a normal variable Y independent of (Z,,V) such that
Zy = pV +Y . See Kijima, M. and"Muromachi, Y. (2008, page 888).

Substitute Z, = pV +Y into Eq. 4.5, and using the independence between Y

and (Z,,V’) we obtain that the random variables X&' and ¢"’7" are independent,

we thus have by Lemma 4.2,

E [XeMZ pV+Y

H)\(X,Z): Ao, pV4Y

Z

FEle
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E[ 7 | gl oY
H (X,7)=
A ? o o
FE e/\ 2 E e/\ Y
E[XeMZpV
- E e/\UZpV
Conclusion that
E[Xew}
H (X,7)= E[ GV} , 0=Xo,p. (4.6)
€

Now, we consider E[e"v} :
As we know that V' has a standard normal distribution, V' ~ N(0,1), then we get that
gm)="

Substituting into Eq. 4.6. \We obtain that

2/ Sy LAY 1
H, X,Z ='¢ O/QE[XeW} =e 0/2fx601) [Ml(x)]dMl(il?). 4.7)

0
We intend to write the pricing functional H, (X, Z) in terms of a transformed

CDF M, (z) such that
1
H,(X,7) = fx dM; () = E] | X],

0

where El* stands for the expectation operator associated with the CDF Ml* (x).

That is, we want
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1 ) a1 i
H\(X.2)= [ dM;(z) =e ek [o M anr (@),
0 0

Comparing, we obtain that

* — 2 -1 T
M (z) = e Pl m i) dM, (z)

Y * o _2)2 go
fl M (y) = fe /e [ l(y)]dMl(y)

* * — 2/, y (>_1
M, (x)— lim M, (s)=e )//Zfem [Ml(y)]dMl(y)

§——00

22 P ol
My ()< [0 aag ). (4.8)

-00

For any z, let I (y)=1 if y <z and I (y)=0 otherwise. Using the function

I (y), then the Eq. 4.8 can be written as

* —®?f P oo
(o) = el [ My )

2 —1
. 9/2E II(X)eM) (My(X))

—92/2 1 0o~ M, (x)
= e BN (M [®(V)])e

Ly’ L @w)e’ |, (4.9)

since X = M, [®(V)].
By Lemma 2.5, one has

E [h V) e—W} = E[e—W] E[h(V - Cou[V,W)).
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Setting
WV)=1 (M '[®(V)]), W=-6V and using " =) and
Cov(V,—0V) = -0,

we obtain

E (2%

I M '®(V)] e

= B[ B[1, [M; @ ~ Cou(v,-6v))]|
= B[] B[, [M; @ + o))

2 /.
As we know that E[e"v} — " then

Rl ) N [1 [M;l[cb(v + 9)]“.

E\I M '®(V)]

Substituting into Eq. 4.9, we get that

M (2)= o P ] o + )

—F [I eV + o)
Following the definition of I (y), we get that

M/ (z)= P\M @V +0) <z

= PlV+0<d (M)

= PV <o (M ()0 . (4.10)

Since X " ang v — ¢! [M,(X)] are standard normal, we thus obtain that

g
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In X —p

o

M/ (z)= P <M, (7)) — 0]

_ p[lnx <ole (0 () - 0] + ,4
= P[X < exp[a[@_l(Ml(a:)) — 0} + u”
= M, [exp[a[q)_l(Ml(a:)) - 6’} + ,u” :

If we choose G = M, we conclude that the Log-transform Ml*(a:) can be derived
from Bihlmann’s economic premium principle. OJ
Corollary 4.1. The Log-transform Ml*(x) can be reduced into a compact form as
follows:

M, (z) = Glzer®@}, , forsome 6, o > 0.

Proof:

From the Eq. 4.4, we get that

*

M@y = Glexplo|o7 (M) — 6] + 4]

e p[ @—1[@[1“—“]]-%“}

= Gexp{a lnx—u_e]_HJH

g

= G’[exp Inz—p—=0o+p ]

= G[xe_ea] . n
There is still an open question for the case of £ > 2, namely, whether the Log-

transform Mk*(a:) IS consistent with the economic principle as in Eq. 4.3 or not.
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However, from the numerical experiments, for which we used the Log-transform in
the case of £ > 2 for calculating the net premium, we found that it gives a smaller

premium than the other methods.

4.2 An Application

We apply the finite mixture of Lognormal distributions to the actual claim data
set of motor insurance which was described in Section 3.7 of Chapter Ill. The

estimated parameters of the Lognormal distribution are i = 8.9672 and 6 = 1.1804.

For a random variable X which has a Lognormal distribution with estimated

parameters, ;i and &, its mean and variance will be evaluated by the following

formulae;

E[X] = exp[[b —i—%&Q]

Var[ X] = [exp(&Q) — 1] [exp(Q,EL + &2)].

The premium calculation, principles that will be considered are net, expected
value, standard deviation Wang transform and the Log-transform as given below.
Net Premium Principle (NP):
H[X] = E[X].
Expected Value Premium Principle (EVP):
H[X]= (14 «)E[X], forsome > 0.

Standard Deviation Premium Principle (SDP):

H[X]= E|X|+ BVar{X], for some 5> 0.
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The Wang transform Premium Principle:

H[X]=E[X] = 7[1 - F'(z)] de.

F(z)= @[@*1(1?(;5)) - 0}, for some 6 > 0,
where F' denotes Lognormal cumulative distribution function.

By Lemma 2.8, the Wang transform F" has aloss X which is Lognormally
distributed with 4+ 6o and o, i.e., X ~ LN(u+ 0o, 0).

Log-transform Premium Principles:

H[X]= E'[X]= 7[1 - M, (2)] do,

(2) = G|explalo™ (M, (2)) - 0] + 4,
where G denotes a Lognormal cumulative distribution function, M, is a finite
mixture of £ Lognormal distributions and, 6 > 0.

By Mk*(:c) = G[exp[a[@‘l(M

(@) 47 0} + ,u,H is the Lognormal distribution,

then we estimate the parameters of M k*(:n) by using MLE.

The premiums are priced in Thai Baht (Bht.) according to the above principles
with some loading factors «, 5 and 6. All loading factors are set to be equal, i.e.,
« = 3 = 0. Their values are 0.05,0.08,0.10, 0.15and 0.20.

Table 4.1 shows the premiums for a Lognormal distribution according to NP,

EVP and SDP. The premiums based on EVP and SDP increase when the loading

factors increase and they are higher than the premiums based on NP.
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Table 4.2 shows net premiums based on the Wang transform. The premiums
are priced with respect some imposed ¢ constants.

Table 4.3 shows the net premiums based on Log-transform which are related to
finite mixture Lognormal distributions with k£ mixed components. At a significance
level of o = 0.10, the mixture Lognormal distributions are fitted to the set of data
claims when 25 <k <100. The premiums are priced with respect some imposed

constants 6 .

From our experiments, the net premiums in Table 4.3 are less than the net
premiums of Table 4.1 and Table 4.2 for all £ and ¢ . For each @, the premium of

k =100 is the least.

Table 4.1 Premiums for Lognormal distribution.

NP a=[3 EVP SDP
15,738.6080
0.05 16,525.5384 17,108.0249
0.08 16,997.6966 17,929.6750
0.10 17,312:4688 18,477.4418
0.15 18,099.3992 19,846.8587
0.20 18,886.3296 21,216.2756

Table 4.2 Premium based on the Wang transform depending on various values of 6 .

Wang 0
transform 0.05 0.08 0.10 0.15 0.20

16,695.4596  17,297.2720 17,710.4844  18,787.2191  19,929.4154
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Table 4.3 Premiums based on the Log-transform depending on various values of 6 .

components 0
k 0.05 0.08 0.10 0.15 0.20
25 14,843.6379  14,327.1788  13,992.8901  13,190.9020 12,434.8790
30 14,848.6346  14,332.0017 13,997.6004  13,195.3424  12,439.0649
35 14,841.3045 14,324.9266  13,990.6904  13,188.8284 12,432.9367
40 14,854.6637 14,337.8210 14,003.2839  13,200.7001  12,444.1156
50 14,622.9252  14,114.1454  13,784.8273  12,994.7641  12,249.9826
62 14,831.5488 14,315.5103 13,981.4939  13,180.1589  12,424.7517
65 14,827.5369 14,311.6380 13,977.7118 13,176.5937 12,421.3908
76 14,832.0478  14,315.9920 13,981.9643  13,180.6024 12,425.1697
78 14,831.4421  14,315.4074  13,981.3933  13,180.0641 12,424.6623
83 14,854.4800 14,337.6436  14,003.1107  13,200.5369  12,443.9617
85 14,845.2081  14,328.6944  13,994.3703  13,192.2974  12,436.2069
88 14,631.6845 14,122.5999  13,793.0845 13,002.5481 12,257.3204

100 14,095.7654  13,605.3272 @ 13,287.8811  12,526.2999  11,808.3679




CHAPTER YV

CONCLUSIONS

According to our simulations and applications to the motor insurance data set,
there are 1,296 observations of type - 5. The conclusion, discussion and further

research are as follows.

5.1 Claim Modeling

5.1.1 Conclusion
(1) The Simulations: For the model of a single parametric Lognormal
distribution; There are the fitting of SPLD, SPLD with Boot and DCP. We found that

the empirical data, EMD and EDP, cannot be fitted by the Lognormal distribution, by
means of K-S test and A-D test. The values of D and A?> of DCP are less than of

SPLD and SPLD with Boot. The values of D and-A> decrease when the interest rate

j increases. For the model of finite mixture Lognormal distributions; the empirical

data, EMD, can be fitted by the finite mixture Lognormal distributions with a
significance level 0.10. This fitting improves when the number k£ of components
increases.

(2) An Application: The finite mixture of Lognormal distributions can be fitted
to the set of actual claim data while the Lognormal distribution cannot be fitted. The
mixture of Lognormal distributions fits very well to product type - 5. The limitation of
the finite mixture model is the number of components that depends on a mean

clustering.
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Therefore, we should be careful to consider the number of components used for
computing the estimated parameters. The estimated parameters of Lognormal
distribution by using the bootstrap method is fitted to the data according to K-S test.
The bootstrap process is not as good for fitting the tail as the finite mixture of

Lognormal distributions is.

5.1.2 Discussion and Further Research

The presented model did fit the actual claim data. It can be used for actuaries
to determine which estimated parameters are acceptable or distribution functions are
suitable for their work. The finite mixture model makes the approach moderately
useful for heavy tail (fat tail) distributions. The bootstrap technique can estimate the
parameters easily and quickly and it is easy to be implemented.

In future research, we should consider infinite mixture distributions
(uncountable family) for reducing the problem of the number of components (%) and

it should be considered for the fitting of truncated and/or censored data sets.

5.2 Insurance Pricing

5.2.1 Conclusion

On application to the actual claim data set, all insurance premiums based on
the Log-transform are lower than the premiums based on the other premium
principles: net, expected value, standard deviation and the Wang transform. Our
research offers one method for insurance pricing risks for which the premium can be

adjusted (discount or surcharge) to allow for more prudent company decisions.
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5.2.2 Discussion and Further Research

In insurance pricing, the Log-transform is one methodology which can provide
a reduced premium and it is very useful for premium discounts. We should consider
and analyse the amount of claims which occur at some future time, so that it can be
discounted at time zero with the interest rate. This is a way to obtain a reduced
premium which can be compared to the premiums based on the Log-transform.

The further research: The CDF of the Log-transform produces a fat-tailed
distribution and it matches the fat-tailness of claim data better than CDF of the Wang
transform. The P-P plots of Figures 5.1 - 5.4, illustrate this proof: we obtain that the
Log-transform distribution is a better fit to the set of actual data claims than the Wang
transform distribution. However, we need to study the Log-transform with other
distributions in further research.

Figures 5.1 - 5.2 shows the P-P plot of the Log-transform and ECDF when
k=1 and 6 =0.05, § =0.20 respectively.

Figures 5.3 - 5.4 shows the P-P plot of the:Wang transform and ECDF when

k=1 and 6 =0.05, # = 0.20 respectively.

1 ir
0.8- 0.8
2 0.6 b5 0.6
- ©
£ £
8 04 & 041
0.2r 0.2
0 : : : : : 0 : : : : r
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Observed Observed

Figure5.1 6=0.05. Figure 5.2 6 =0.20.
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Figure 5.3 6 =0.05.

Estimated

0.8

0.6

0.4

0.2
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r r r r c

0.2 0.4 0.6 0.8 1
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Figure 5.4 6 =0.20.
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APPENDIX A

DISTRIBUTIONS

This section presents information about distributions, criteria and material for
our simulation and model fitting. This was summarized from some of the following
references:

- George, G.R. (1997). A Course in Mathematical Statistics.

- Hogg, R.V. and Klugman, S.A. (1984). Loss Distributions.

- Klugman, S.A., Panjer, H.H. and Willmot, G.E. (2008). Loss Models: From

Data to Decisions.
- Rama, C. and Peter, T. (2004). Financial Modelling with Jump Processes.
- http://www. parisade.com. The decision Tools, software: parisade@risk.

- http:/Amww.nist.gov/index.html. National Institute of Standards and Technology.

A.1 Loss Distributions

Lognormal Distribution

Assume that X ~ Lognormal (i, o) , abbreviated X ~ LN(u,0).

CDF FX(I)=<1>[1”_“’; WER, >0, x>0,
g
1 1 ’
nr-—
PDF  : fo(z)= exp|— 2“
TON2T 20

Moment : E[X’“} = exp

kp + %k202]
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2

Mean : exp M+%

Median : exp(u)
Variance : [exp(az) — 1} {exp(2u + 02)}

Pareto Distribution

Assume that X ~ Pareto(«,\) , abbreviated X ~ Pare(a, ).

A
Atz

CDF :F(x)—l—[ ] >0, A>0,2z>0.

PDF : f(z) = a\* (A +a) !

A'n!
= ;, a>n
IT(a—1)

1=1

Moments: F|X"

Weibull Distribution

Assume that X ~ Weibull (¢, 7) , abbreviated X ~ Wei(c, 7).

CDF : F(z)=12€“ ;c¢>0, 7220;7>0.

T

PDF : f(z)=cr 2" e

X" =

Moments: F

Gamma Distribution

Assume that X ~ Gamma(a, 3) , abbreviated X ~ Gam(«,3).

CDF : Fy(z)=T(Bax) ; o >0, 2>0.

aﬁ 1 —pBz
PDF : fX(x):@xa_e b D) = (o — D0 — 1)
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n—1 :
Moment: E|X"| = ] (aJ/rZ)
i )\n,

A.2  Skewness Distribution
Let X be a random variable with finite third moment and set p = E[X],
o? = Var[X]. Define

X—,u3

g

7= E

~ is called the skewness of the distribution of the random variable X and is
a measure of asymmetry of the distribution. If ~ > 0, the distribution is said to be
skewed to the right and if ~ < 0, the distribution is said to be skewed to the left and

~ = 0, the distribution is said to be symmetric data.

A.3 The Simulation

The empirical data-come from the simulation of mixed loss distributions
which proportion of mixing is the same for each component. The data are simulated
respective to composed parameters such that the Table A.1, Table A.2 and Table A.3.

The compound Poisson-mixed loss distributions:

- The severity distributions are empirical data of loss distributions.

- The frequency distribution is Poisson and the claim X occurs at time ¢, is

to be discounted at time zero with the risk free of assumed interest rate j per annum.

The claim amount at time zero is defined by

* t

X' =X, (1+))",
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j = 0.5%, 1%, 2%, 3%, 4% and 5% per annum.
The simulation of a Poisson process N = N,, t >0 with intensity >0

can be done in several different ways. We consider the method of exponential spacing.

Note that the PDF and CDF of exponential distribution are as follows;
PDF of Exponential : f(z) = Ae M ; x>0, A>0.
CDF of Exponential : F(z) =1—e¢ .

The method of exponential spacing make use of the fact that the inter arrival

time of the jumps of the Poisson process follows an exponential distribution, Ezp(\).

An exponential random number e, can be obtained from a uniform random number,

—log u;
U, , by ¢, = ———=—.
koY e \
Algorithm : Simulation of ;

—log u,,

Initialize k=0,¢, = , sample size : n

Set N(T')=mn ,T =1 forone year termand A\ = n

SOZO, Sk:Sk—l +ek , kzl, 2,...,72/

—log u
Simulate ¢ = —
A
k
Repeat while Y e, <Tand k<n
=1

Calculate Sp i k=12..n



Table A.1 The 2 mixed components.
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Variability

Parameters

Distributions

Lognormal

(p=6,0=1)(p=10, 0 =3)

Lognormal/Gamma
(p =10, 0 = 3) (o = 50000, 5 = 3)

Gamma
(. =2000, B =1)

(a = 50000, 3 = 3)

Lognormal/Pareto
(=12, 0 =3) (. =2000, A =1)

Pareto
(a=2000, A=1)

(a = 100000, \ = 2)

Lognormal/Weibull
(p=10, 0 =3) (¢ =50000, 7 = 3)

Weibull
(c=2000,7=1)

(c=250000, 7 = 3)

Gamma/Pareto
(v = 50000, f=3)(a=2000, A=1)

Gamma/Weibull
(e = 50000, # =1)(c =50000, 7 =3)

Pareto /Weibull
(.= 2000, A =1) (¢ =50000, 7 =3)

Table A.2 The 3 mixed components.

Variability

Parameters

Distributions

Lognormal

(p="6,0=1)(n=28, o =l1)

(p=12, 0 =3)

Lognormal/Gamma/Weibull
(p0=16,0=1) (« =150000, 8 =1)

(c = 100000, 7 = 5)

Gamma
(e =2000, B =1)

(a = 50000, 3 =1)
(o =100000,3 = 1)

Gamma/Weibull/Pareto
(a = 50000, 8 =3)(c=50000, 7 =3)

(o =100000, A =2)

Pareto
(a=2000, A =3)

(a = 100000, A = 2)
(a = 1000000, A = 7)

Weibull/Pareto/Lognormal
(¢ =50000, 7 = 3) (o« = 100000, A = 2)

(p=12, 0 =3)

Weibull
(c=2000,7=1)

(c = 50000, 7 = 3)
(c = 100000, 7 = 5)
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Table A.3 The 4 mixed components.

Variability of Distributions

Lognormal/Gamma/Weibull/Pareto
(p=12, 0 = 3) (o = 50000, g =3) (c=50000, 7 =3)
(a =100000, A =2)

A.4  Goodness of Fit Test
The K-S test statistic is defined by: D = sup ‘ F oz —F; x ‘

The A-D test statistic is defined as

£=—n-L3 @iy In£y(z) +1n 1= Fy (2,

i=1

where F;, is the theoretical cumulative distribution of the distribution being tested

and F (r) = %[Number of observations < x|.

The test, for both K-S and A-D , is defined by:

H, : The data follow the specified distribution.

H, : The data do not follow the specified distribution.

Level critical values: The hypothesis regarding the distributional form is
rejected at the chosen significance level (alpha, «) if the test statistic, D and A?, is

greater than the critical value obtained from Table A.1 and Table A.2 for D and A2,

respectively.



Table A.4 The level of significance for D.

Sample size Level of significance (@) for D

(n) 0.2 0.15 0.1 0.05 0.01
1 0.900 0.925 0.950 0.975 0.995
2 0.684 0.726 0.776 0.842 0.929
3 0.565 0.597 0.642 0.708 0.828
4 0.494 0.525 0.564 0.624 0.733
5 0.446 0.474 0.510 0.565 0.669
6 0.410 0.436 0.470 0.521 0.618
7 0.381 0.405 0.438 0.486 0.577
8 0.358 0.381 0.411 0.457 0.543
9 0.339 0.360 0.388 0.432 0.514
10 0.322 0.342 0.368 0.410 0.490
11 0.307 0.326 0.352 0.391 0.468
12 0.295 0.313 0.338 0.375 0.450
13 0.284 0.302 0.325 0.361 0.433
14 0.274 0.292 0.314 0.349 0.418
15 0.266 0.283 0.304 0.338 0.404
16 0.258 0.274 0.295 0.328 0.392
17 0.250 0.266 0.286 0.318 0.381
18 0.244 0.259 0.278 0.309 0.371
19 0.237 0.252 0.272 0.301 0.363
20 0.231 0.246 0.264 0.294 0.356
25 0.210 0.220 0.240 0.270 0.320
30 0.190 0.200 0.220 0.240 0.290
35 0.180 0.190 0.210 0.230 0.270
Over 35 ﬂ 114 g @ @
Jn Jn Jn Jn Jn

Table A.5 The level of significance for A2.

Significance Level

Significance Point

10%
5%
1%

1.933
2.492
3.857
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A.4.1 The Meaning and Interpretation of P-values

The P-value, which directly depends on a given sample, attempts to provide
a measure of the strength of the results of a test, in contrast to a simple reject or do not
reject. If the null hypothesis is true and the chance of random variation is the only
reason for sample differences, then the P-value is a quantitative measure to feed into
the decision making process as evidence. Table A.6 provides a reasonable

interpretation of P-values.

Table A.6 The interpretation of P-value.

P-value Interpretation
P<0.01 very strong evidence against H
0.01 < P<0.05 moderate evidence against H,
0.05 < P<0.10 suggestive evidence against H
P> 0.10 little or no real evidence against H,

This interpretation is widely accepted, and many scientific journals routinely

publish papers using such an interpretation for the result of test of hypothesis.

A.4.2 P-PPlot

The probability-probability (P-P) plot is a graph used to determine how well a
specific distribution fits to the observed data. The empirical CDF values plotted
against the theoretical CDF values. This plot will be approximately linear if the
specified theoretical distribution is the correct model.

A P-P plot compares the empirical cumulative distribution function (ECDF) of

a variable with a specified theoretical cumulative distribution function F(-). The


http://www.mathwave.com/help/easyfit/html/appendix_a.html#ecdf
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ECDF, denoted by F (z), is defined as the proportion of non-missing observations

less than or equal to =, so that F (z,) = L.
n



APPENDIX B

PROBABILISTIC TOOLS

For this section, we summarize the probabilistic tools from other sources,
books and paper publications, as follows:

- George, G.R. (1997). A Course in Mathematical Statistics.

- Geoffrey, G. and David, S. (2001). Probability and Random Processes.

- Hogg, R.V. and Klugman, S.A. (1984). Loss Distributions.

- Klugman, S.A., Panjer, H.H: and Willmot, G.E. (2008). Loss Models: From
Data to Decisions.

- Michel, D., Xavier, M., Sandra, P. and Jean-Francois, W. (2007). Actuarial
Modelling of Claim Counts: Risk Classification, Credibility and Bonus-

Malus Systems.

B.1 Conditional Probability and Bayes’ Theorem

The conditional probability P[A | B] of A given B is defined to be

. P[AN B]
[A| B] = —E (B.1)

where as P[B]> 0. P[A| B] is the mathematical idealization of the proportion of

times A occurs in experiments where B did occur, hence the ratio Eq. B.1.

It is easily seen that A and B are independent if, and only if,

P[A| B] = P[A| B] = P[A].
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Note that this interpretation of independence is much more intuitive than the
definition given above: indeed the identity expresses the natural idea that the

realization or not of B does not increase nor decrease the probability that A occurs.
Consider £ mutually exclusive and exhaustive events C,C,,...,C, such that

P(C;)>0.i=12,...,k. Suppose these events form a partition of sample space C.

Here the events C|,C,,,...,C, do not need to be equally likely. Let C' be another event.

Thus C occurs with one and only one of the events C|,C,,...,C, : that is,

C=CNC,uC,u..C,)=CnNC)HUCNC,)U...u(CNC,)
Since CNC,, i=12,...,k, are mutually exclusive, we have
P(C)=P(CNC)+HPCNC,)+...+P(CNC,)
However,

P(C'AC,) = P(C,)P(C

o),

]

P(C) = P(C,) P(C|CYHIPIOYIC|C,) + -+ P(C,)P(C|C))

:iHQWWQ)

This result is sometimes called the law of total probability.

Suppose, also, that P(C') > 0. From the definition of conditional probability,
we have, using the law of total probability, that

P(CNC,)  PC)PC|C))
P(Cj ‘C) - P(C) y
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Which is the well-known Bayes’ theorem.

For any z such that P(X = x) > 0. The conditional distribution function and
the conditional (probability) mass function of Y given X = z are defined by

FyxWwlz)=PY <y|X=x)and f,,,(y|2)=PY =y [ X =2),
respectively.

Forany = suchthat f,(z) >0 and f(z,y) is a joint PDF of random variables

X, Y. The conditional distribution function and the conditional density function of

Y given X = x are defined by

f(x f(z,y)
d d :
i 1@ v an fY‘X y‘:z: fX(fL‘)

B.2 Random Variable and Distribution Functions

A random vector X = (Xl,XZ,...,Xn)’ is a collection of n univariate random

variables, X, X,,...,X 'y say, defined on the same probability space (€, F,P).
Random vectors are denoted by bold capital letters.

Suppose that X, X,,...,X —are n random variables defined on the same

probability space (2,7, P). Their marginal distribution functions F,F,,....F

contain all the information about their associated probabilities. The key idea is to

think of X ,X,,..,X as being components of a random vector

X =(X,X,,..,X ) taking values in R" rather than being unrelated random

variables each taking values in R .
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As was the case for random variables, each random vector X possesses a

distribution function Fy that describes its stochastic behavior. The distribution

function of the random vector X, denoted as Fy, is defined as

Fy(v),2y,..1 ) = P[Xﬁl((—oo,wl] X (—00,2,| X -+ (—00,, ])]

=P[X, <z,X, <m,..X <z ],
Ty, Ty, € R. The value Fy(v,z,,...,z, ) represents the probability that
simultaneously X, assumes a value that is less than or equal to z;, X, assumes a

value that is less than or equal to z,,..., X ~assumes a value that is less than or equal

to x_:amore compact way to express this is

Fy(x) = P[X < x|, x € R"

Even if the distribution function o does not tell us which is the actual value of X, it

thoroughly describes the range of possible values for ‘X and the probabilities assigned
to each of them.

A fundamental concept in probability theory is the notion of independence.
Roughly speaking, the random variables X, X,,...,X —are mutually independent
when the behavior of one of these random variables does not influence the others.
Formally, the random variables X, X,,..., X ~are mutually independent if, and only
if, all the random events built with these random variables are independent. It can be

shown that the random variables X, X, ,..., X are independent if, and only if,

Fy(x) = H F, (z,) holds forall x € R".
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In other words, the joint distribution of a random vector X with independent

components is thus the product of the marginal distribution functions.

B.2.1 A finite mixture model

A finite mixture model can be represented by a PDF of the form:
f@) =7/ (@) 4+ 7/ (),
with z € R, T, > 0 for j=1, ..., k and 7, +---+ 7, =1,

Let random variable X have density f(x) as above. The mean and variance

of X are
= ZTLEZ(X) and Var[X|= z TZ.Var[[X]+27i(Ei[X]—E[X])2.

=1

The details are as follows:

:ZTif(a:—E[X])Qf(x)dx—kZTi [ (B1X]- EIX)) f(x)dz



+2 307, [ (@ = BIX)(EX] - BX])/@)
k k
:ZTiVaC[X]—I—ZT [ X]-E[X ff

+227f (¢E,[X]— (E,[X]? — 2E[X] + E[X]E[X)) f(z)dz

)
Var[X] = ZT Var [ X]+ ZT (E[X]- E[X])

k

+22777 f:rE7[ | £z )d$f(EL[X])2ﬁ(x)dx]

1=1

—00

k

+227i—fa;E dx+fE E[X]()d]

1=1

I k
=2 mVar (X1 m (BX] = EIX]).

+2 37 | BLX] [ af(@)d ff

+QZT¢ []fxf ff

)

+ 2 ZT (E.[X]) —(E,[X]) — E[X]E[X]+ E,[X]|E[X]

122
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k k
— ZTZ.V% [(X]+> 7,(E [X]- E[X]) .

=1

We conclude that,

E[X]= Xk:TlEZ[X] and Var[X]|= zk: 7, Var, [ X] +zk:Tl.(E4

(3
i=1 i=1 i=1

[X] - BIX])".

B.3 Maximum Likelihood Estimates (MLE)

There are many formal parameter estimation methods; such as percentile
matching (PM), method of moment (MM), minimum distance (MD), least squares
(LS) and minimum chi-square (MC). The method of maximum likelihood provides
estimators which are usually quite satisfactory and most frequently used in actuarial
mathematics.

Maximum likelihood estimate is the one popular approach for estimating the

parameters of a probability density function. We~have n samples z. drawn
independently from the same distribution, =, ‘~ p(x | 0); this is called an independent,

identically distributed (i.i.d.) sample which we will call D (training data). The
parameter estimation is to find the parameter setting that makes the data as likely as
possible:

OME — argmax p(D | 6),
0

where p(D|6) is called the likelihood of the parameters given the data. 627 is

called a maximum likelihood estimate (MLE).

Since the data D = {z,,...,, } isi.i.d., the likelihood factorizes
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L) =[] p(a, | 6).
1=1
Hence we define the log-likelihood as 2(0) = log L(0)= p(D | 6) . For i.i.d. data this

becomes

0(0) =2 logp(z,|0) .
i=1
The MLE then maximizes /(0)to find the estimated parameters, that is

0
—/(0)=0.
00 (©)

B.3.1 Multinomial Distributions and MLE

Each trial may result in any-of % given outcomes, the i outcome having

probability P j=12,... k.Let z; be the number of occurrence of the i outcome

in n» independent trials. So that the multinomial distribution is defined as

n! 7 Ty
Felieng) paianas o
17+ k-

k
where, given data z; >0, parameters p; > 0 for j=12,...,k, Za:j =n and
j=1

pjzl.

J=1

The estimated parameters of multinomial distribution by maximum likelihood

estimate (MLE) is form of
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The details are as follows:

By the multinomial distribution as

The log-likelihood is

!
In f(z},...,7,) = £(0) = log(n!) Zlog +inlogpi,
i=1

where 6 = (p,,...,p,)" .

k
By the MLE, we need to maximize with the constraint Zpi =1, so we use a
i=1

Lagrange multiplier. The function becomes

I(0) = 2(0) &\

k
1— sz]
By posing all the derivatives to be 0, we get the most natural estimate, that is

k
L(0) = log(n Z log(z.!) + Z z logp, + A

k
1— Z pi] .
Taking derivatives with respective to p, , i = 1,2,...,k yields that is,

iL(@) = 0, we obtain that
Ip,

k
— |log(n!) Zlog +inlogpi+)\
i=1

1_?%] _

p;

k
— inlogpi + A

i=1

7
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We get that

(B.3)
k k
in = /\Z D, - (B.4)
1=1 1=1
Consider %L(G) = 0, we get that

k k
1—Zpi =0,i.e., Zpl, =1.

By Eq. B.4 and using this sum-to-one constraint, we have

i=1 =1
By Eqg. B.3, we get that
T =Ap;
_Wldaiia a b
b= XELED D g
sz‘
1=1
. N x. .
Conclusion that po=—", i=12..k.
n

B.4 Moment Generating Function (MGF)

The MGF of normal distributed, that is

If X ~ N(u,0%) then E[erx} = exp

1455
r+—r-o°|.
pr+ X ]
Proof:

Since X ~ N(u,0?), thus we have that



—00

= exp

= exp

1

oN2m

1

oN2m

1

oN2m

1

;oo < <00,

2
exp|rx (z—p) dx
20°
2 2
exp| RO Bl — 1|4
20"
2 2 2
- 2rocr— (" =2ux 4 1) i
20>
2 2 2
= (2 2
exp Ny = 2u + 2rg 4= i
20°
2412 2 2.4
_ _9 _
exp (z—=(p+r07)) rpo” —rto” | o
20°
2412 2, 2%
exp (z—=(u+ra)) exp 2ruc” +r i
20° 20
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That is,

E [erx} = exp

1
wr + §r202] has been proved. O

e B 2112
Notethat:f ! exp[—(’” (ptro ))]dle.

oo ON2m 202

B.5 Proof of Theorem 2.2
X, and X, are normal and independent then X, + X, is normal.

Proof:
Let X, ~ N(p,07) and X, ~ N(yu,,03).
We want to show that X, + X, is normal such that
X+ X ~ Ny +/‘2?Of +U§)
Let X =X + X, . Wehave

1 1
MX1 (t) = exp[,ult + 5752012] and MX2 (t) = eXp[,MQt + 575203] .

Since X, and X, are independent, we obtain that

1 1
= exp(p,t + 5252012) exp(p,t + Etzag)

(012 -+ ag)t2

— x| (1 + )+
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Conclusion that X, + X, is normal such that

X, + X, ~ N1y, + py, 00 +02). O

B.6 Proof of Lemma 2.3

For j=1,....k, let the random variables Xj be independent and consider
(measurable) functions 9;,:R—R, s0 that gj(X ), j=1,..,k. Then the random

J

variables gj(Xj), j=1,....,k are also independent.
Proof:

If X is random variable and .4, = X NB). If g(X) is ameasurable function of X
[, .

and A, =[g(X)]"(£) then A C.A

Let Ae “49()() . Then there exists B € £ such that A = [¢(X)]"'(B). But

where B — ¢ '(B) and by the measurability of g, B e #. It follows that

X !(B") € A, andthus, A € 4. Let now A = X '(&) and

Then
,4].* CA, j=1,..k,

and since ,4] j =1,....k are independent, then

A, j=1,...,k are independent. O
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B.7 The Bivariate Normal Distribution

Two random variables X and Y are said to be jointly normal if they can be
expressed in the form
X=aU+bV
Y=cU+dV

where U and V are independent normal random variables. The a,b,c and d are

some scalars. Note that if X and Y are jointly normal, then any linear combination
A le +sY

has a normal distribution for some scalars s, and s, .

A random variable which is always equal to a constant will also be called
normal, with zero variance, even-though it does not have a PDF. With this
convention, the family of normal random variables is closed under linear operations.

That is, if X is normal, then aX + 0 also normal, even if a =0.



APPENDIX C

RISK AND RISK MEASURE

We summarize the risk and risk measure from other sources, books and paper
publication. They are as follows:

- Christian, Y.R. (2011). Risk Measures for Insurance and Finance:
Definitions, properties and some applications

- Dhaene, J., Vanduffel, S., Tang, Q., Goovaetrs, M., Kaas, R. and Vyncke,
D. (2006). Risk measures and comonotonicity: a review. Stochastic Models.

- Encyclopedia of Actuarial Science. (2004).

- James, S.T., Robert, R.H. and David, W.S. (2005). Risk Management and
Insurance.

- Laeven, R. and Goovaerts, M. (2008). Premium Calculation and Insurance
Pricing. Encyclopedia -of ;Quantitative Risk Analysis and Assessment,

Melnick, E. and Everitt, E.(eds).

A risk is defined as a non-negative real-valued random variables with finite

mean. The main types of risks encountered in the insurance industry are:
1) The market risk, the credit risk, the operational risk, the model risk and
the liquidity risk. These are the main types of risks encounted in the

financial industry.
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2) The underwriting risk: the risks inherent in insurance policies that have

been sold:

- The risk that premiums will not be sufficient to cover future incurred
losses and that losses and loss adjustment expenses’ current reserves are not sufficient
although the distributions of losses have been well assessed.

- The risk that may arise from an inaccurate assessment of the risks
entailed in writing an insurance policy or from factors that are not under the insurer’s
control (changes in patterns of natural catastrophes, changes in demographic tables
underlying long-date life products, changes in customer behavior, so on)

The families of risk measures; for measurement of both financial and
insurance risks, is composed by P-quantile risk measure, risk measures based on
expected utility theory, risk measures based on distorted expectation theory and
premium calculation principle. The summary of families of risk measure is shown as
Table C.1.

Let (€0, F,P) be.a probability space: () is the set of all possible outcome (in
economics often referred to as a state of nature). F is the o - algebra, i.e. a set of
subsets of (2, called events and P is the probability measure.

A one-period risky position (or simply risk) is defined as a random variable,
i.e. a function on the probability space (€2, F,P), characterized by its distribution
function F(z) = P(X <x).

A risk measure is a functional mapping (X : {2 — R is a risk) as risk X to
real number H(X), possibly infinite, representing the extra cash which has to be
added to X to make it acceptable. The ideal is that quantifies the riskiness of X : large

values of X tell us that X is dangerous.
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We will consider two situations to interpret the properties of the risk measure:

1) A situation where the risk measure is used for calculating and actuarial
premium “Prem” (minimum amount that the insurer must raise from the insured in
order that it is in the insurer’s interest to proceed with the contract). X is possible

loss of an insurance contract and we interpret H(X) as the premium of the contract.

X is a positive random variable.

2) A situation where the risk measure is used for determining provisions and
capital requirements in order to avoid insolvency “Cap”

X is then a possible loss or profit of some financial portfolio over a time

horizon and we interpret H(X) as the.amount of capital that should be added as a

buffer to this portfolio.

X is the risk capital of the portfolio. X is a random variable with positive
values (losses) or non-positive values (gains).

Properties to characterize a risk measure can be divided into four classes:

1) Rationality properties: these properties. seem to be “rational”, in the sense
that they are appropriate for almost people and they are not really questionable.

2) Additivity and homogeneity properties: these properties deal with sums of
risks. They describe the sensitivity of the risk measure with respect to risk aggregation
or scaling.

3) Comparison properties: these properties explain how risk measures
preserve stochastic orders between risks.

4) Technical properties: these properties deal with technical requirements.
They are usually necessary for obtaining mathematical proofs and are typically

difficult to validate or the explain economically.
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C.1 Properties of Premium Priciples
Let y denote the set of non-negative random variables on the probability

space (€2, F,P). Let X,Y,Z, etc. denote typical members of x. Let H denote the

premium principle, of function, from yx to the set of non-negative real numbers.

However, in this section, we consider only the insurance payout and refer to that as the

insurance loss random variable.

1) Independence : H(X) depends only the (de)cumulative distribution function
of X, namely S (¢), in which S, (t) = P{w € Q: X(w) > t}. That is, the
premium of X depends only on the tail probabilities of X .

(2) Riskloading: H(X) > E[X] forall X € y.

(3)  No unjustified loading : If arisk X & y is identically equal to a constant
¢ > 0 (almost everywhere), then H(X) = c.

4) Maximal loss (or no rip-off) : H(X) <esssup [X] forall X € x.

(5)  Translation invariance (Transitivity) : H(X +«)= H(X)+ « forall X € y

andall > 0.

(6)  Scale invariance : H(aX) = aH(X) forall X € x andall & > 0.

(7)  Additivity: HX +Y)=H(X)+ H(Y) forall X,Y € x.

(8)  Subadditivity : H(X +Y) < H(X)+ H(Y) forall XY € .

(9)  Superadditivity : H(X +Y) > H(X)+ H(Y) forall XY € x.

(10) Additivity for independent risks : H(X+Y)=H(X)+ H(Y) for all

X,Y € xy suchthat X and Y are independent.
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(12)

(13)

(14)

(15)

C.2

C21
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Additivity for comonotonic risks : H(X +Y)=H(X)+ H(Y) for all
X,Y € xy suchthat X and Y are comonotonic.
Note : Comonotonic additivity (additive) : For all non-decreasing
functions i and g, H(MX)+ g(X)) = H(W(X))+ H(g9(Y)).
Monotonicity : If X(w) <Y(w) forall we Q) then H(X) < H(Y).
Preserves first stochastic dominance (FSD) ordering :
If S, (t) <S,(¢) forall t >0, then H(X) < H(Y).
Preserves stop-loss ordering (SL) ordering :
If E[X —d] <E[Y—d] forallt>0,then H(X) < H(Y).
Continuity : Let X € y,then

lim H[max(X —a,0)] = H(X)and lim H[min(X,a)]= H(X).

(L_>0+ a—00

Families of Risk Measures

VaR, TVaR and Other Associated Measures

There are some well-known risk measures as follows;

C.2.1.1 VaR: The Value at Risk is defined as the quantile of level o € (0,1).

VaRX:a]=inf z€R: F(z)>a =F '(a).
Note that for all z € R and for all « € (0,1)

VaR[X : o] <z < o < F(z).

C.2.1.2 TVaR: The Tail Value at Risk is defined as the arithmetic average of the

VaRs of X from « on
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1
TVaR[X : o] = IL VaR[X;&]de.
—

C.2.1.3 CTE: The Conditional Tail Expectation is defined as

CTE[X : a] = E[X|X > VaR[X;a].

C.2.2 Risk Measures Based on Expected Utility Theory

Consider a decision-maker who has to choose between two uncertain incomes

modeled by the random variables R and 7, . A decision-maker bases his preferences

on the “expected utility hypothesis™ if there exists a real-valued function » which

represents the decision-maker’s utility-of-wealth, such that R, is preferred over R, , if
Elu(@B)h= Elu(R,)].
In words, he will prefer fortune R, over R, if the expected utility of R,

exceeds the expected utility of R, . Consider an insurance company with initial wealth
R with an increasing and concave-utility. function”« . The company covers a risk X
and sets its price for coverage H(X) as the solution of the following indifference
equation
E[u(R— X + H(X))| = u(R).
The premium H(X) is fair in terms of utility: the right-hand side represents

the utility of not issuing the contract; the left-hand side represents the expected utility

of the insurer assuming the random financial loss X .
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C.2.3 Risk Measures Based on Distorted Expectation Theory
A decision-maker based his preferences on the “distorted expectation

hypothesis” if there exists a non-increasing function ¢ with ¢(0) =0 and ¢(1)=1,

call a distortion function, such that R, is preferred over R, if

H [R] > H [R,)]

where H,[R] =~ [ (1= g(F, ())dr + [ o(F, (r)dr.

—00

The decision-maker acts in order to maximize the distorted expectation of his wealth.

C.2.4 Premium Calculation Principle
We have proposed three methods of premium calculation, i.e., the ad hoc
method, the characterization method and the economic method. Some details are as

follows:

C.2.4.1 The Ad Hoc Method
(1)  NetPremium Principle : H(X) = E[X].
(2)  Expected Value Premium Principle : H(X) = (1 + 0)E[X], for some 6 > 0.

(3)  Variance Premium Principle : H(X) = E[X]+ oVar[X], for some o > 0.
(4)  Standard Deviation Premium Principle : H(X)= E[X]+ gVar{X], for

some 3> 0.

(5) Exponential Premium Principle : H(X) = [l]ln E[e™*], for some o> 0.
«
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_ E[Xe”]
Ele?]

(6) Esscher Premium Principle : H(X) , for some random variable Z.

(7) Proportional Hazards Premium Principle :
H(X)= f[SX(t)]Cdt ,forsome0<c<1.
0

The Proportional Hazards Premium Principle is a special case of Wang’s
Premium Principle.
(8) Principle of Equivalent Utility : H(X) solves the equation
w(w) = Elu(w — X + H)].
Alternatively, if « and w represent the utility function and wealth of a buyer
of insurance, then the maximum premium that the buyer is willing to pay for coverage
is the solution of the equation

Elu(w— X)]=u(w-=G).
9) Wang’s Premium Principle : H(X) = jg[SX(t)]dt ,
0

where ¢ is an increasing, concave function that maps [0,1] onto [0,1]. The
function g is called a distortion and g[S ()] is called a distorted (tail) probability.
(10)  Swiss Premium Principle: The premium H solves the equation
Elu(X — pH)] = u((1 - p)H),
for some p € [0,1] and some increasing, convex function .
(11) Dutch Premium Principle:

H(X) = E[X] +6E[(X —«E[X],] witha>1and 0 <0< 1.
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C.2.4.2 The Characterization Method

We catalog which properties from the section “Properties of Premium
Principle” are satisfied by the premium principles listed above. A ‘Y’ indicates that
the premium principle satisfies the given property. An ‘N’ indicates that the premium

principle does not satisfy the given property for all cases. They are shown in Table C.2.

C.2.4.3 The Economic Method

The Economic Method is the economic method for the Principle of
Equivalent Utility, Wang’s Premium Principle, and the Esscher Premium Principle.
The most well-known such derivation is in using expected utility theory to derive the
Principle of Equivalent Utility. Some of the premium principles mentioned in this
section can be extended to dynamic'/markets in which either the risk is modeled by a

stochastic process, the financial market is dynamic, or both.



Table C.1 Families of risk measures.

P-quantile

Risk Measures Based on Expected Utility

Theory

Risk Measures Based on Distorted
Expectation Theory

Premium Calculation Principle

VaR (Value-at-Risk)

TVaR (Tail Value-at-Risk)
CTE (Conditional Tail
Expectation)

ESF (Expected Shortfall)

Risk measures based on expected utility

theory
The insurer's utility function
Utility function

(concave downward function, Jensen's
inequality)

Risk averse, devision maker(insured)
The utility function

(exponential, the family of power and
quadratric)

Risk measure based on distorted
expectation theory

Distortion function

Theory of choice under risk
Wang transform risk measure

(The Beta distortion risk measure)

Concave distortion risk measures
Risk measures for sums of dependent
random variables

The Ad Hoc Method

- Net Premium Principle

- Expected Value Premium Principles

- Variance Premium Principle

_ Standard Deviation Premium
Principle (SD)
- Exponential Premium Principle

- Esscher Premium Principle

Proportional Hazards Premium
) Principle (PH)
- Principle of Equivalent Utility
- Wang's Premium Principle
- Swiss Premium Principle
- Dutch Premium Principle
The Characterization Method
The Economic Method

orT



Table C.2 Characterization method.

No. Property Name Net F:,);Iiug Var Stddev Exp Esscher PH EU?,THI; Wang Swiss  Dutch
1 Independent Y Y Y Y Y Y Y Y Y Y Y
2 Risk load Y Y Y Y Y N (Y ifZ=X) Y Y Y Y Y
3 Not unjustified Y N Y Y Y Y Y Y Y Y Y
4 Max loss Y N N N Y Y Y Y Y Y Y
5 Translation Y N Y Y Y Y Y Y Y N N
6 Scale Y Y Y Y N N Y N Y N Y
7 Additivity Y Y N N N N N N N N N
8 Subadditivity Y Y N N N N Y N Y N Y
9 Superadditivity Y Y N N N N N N N N N
10  Add indep. Y Y Y N Y N N N N N N
11 Add comono. Y Y N N N N Y N Y N N
12 Monotone Y Y N N Y N Y Y Y Y Y
13  FSD Y Y N N Y N Y Y Y Y Y
14 SL Y Y N N Y N Y Y Y Y Y
15  Continuity Y Y Y Y Y Y Y Y Y Y Y
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