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Wireless Sensor Networks (WSNs) have been developed and extensively
applied in many fields. One of the most important applications is healthcare
monitoring. However, wireless sensor networks must be able to transmit messages
with high priority. In addition, nodes are attached to patients and should have the
ability to handle different types of data transmission. Forwarding critical data to the
medical surveillance center must-be highly reliable.

The underlying aim of this research is therefore to propose an enhancement to
an incentive-based routing scheme for non-cooperative heterogeneous mobile wireless
sensor networks by using reinforcement learning (RL) algorithm, called Q-learning, in
comparison to an existing scheme which has been used to deal non-cooperative
heterogeneous mWSNSs, called the continuous value cooperation protocol (CVCP)
algorithm. The heterogeneity studied in this research covered two aspects, i.e.,
heterogeneity in terms of traffic or message classes present in the network and
heterogeneity in terms of node processing rate capabilities.

The experiments results showed that proposed RL algorithm can outperform

existing CVCP algorithms in terms of normalized average reward by up to 14%.



1Y%

However, the percentage of node processing rate did not depend on any algorithm but
only on the proportion of nodes of each type of node processing rate. Such result
suggests that the advantage of the proposed method ensures a certain degree of
fairness in node selection while maintaining the advantage of achieving higher
normalized average reward that the CVCP method. Therefore, the heterogeneity in
node processing rate did not significantly affect our experiment results. However, in
presence of diverse message class heterogeneity in the network, RL consistently
gained 2-14% of normalized average reward, depending on the reward regime of the
message classes, over the original CVCP method. The results in our experiment
suggest that RL can be applied to improve cooperation among routing nodes in

comparison to an existing incentive-based algorithm like CVCP.
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CHAPTER I

INTRODUCTION

This chapter introduces a background on routing problems in non-cooperative
heterogeneous mobile wireless sensor networks and highlights the significance of
improving router cooperation in such networks. It also presents the motivation for
applying reinforcement learning which can provide a good routing solution which is

the main focus of this thesis.

1.1  Significance of the Problem

In recent years, wireless sensor networks (WSNs) are used in many
applications (Romer and Mattern, 2004; Bonivento-ef al., 2006; Zhang et al., 2008)
such as military applications, smart home, environment monitoring, inventory
tracking as well as industrial sensors and healthcare monitoring. Healthcare
monitoring is an interesting research that poses challenges in our daily life. Due to the
growing number of population, senior people and people with disability are also on
the rise, aggravated by the dramatic increase of healthcare costs, a new technology
such as wireless sensors which are attached to patients requiring close care may help
limit costs and human resources. Such healthcare monitoring wireless sensors must
cover both indoor and outdoor areas such as in their homes, hospitals, nursing homes,
or even in public areas like parks and supermarkets. For example, (Baldus, et al.,
2004) proposed the use of wireless sensors to monitor vital signs of patients in a

hospital environment.



A WSN usually consists of numerous sensor nodes deployed in the area of
interest. Each node is able to collect and process data with neighboring devices. There
are many reasons for its popularity, including low costs, flexibility and ease of
deployment. However, WSNs have some constraints, such as limited power supply,
storage, bandwidth and computation capability. Such constraints combined with a
typical deployment of large number of sensor nodes have posed may challenges to the
design and management of sensor networks. These challenges necessitate energy-
awareness at all layers in the networking protocol stack. At the network layer, the aim
is to set up energy-efficient routes and reliably relay data from sensor nodes to the
sink so that the lifetime of the network is maximized. There are many researches
which aim at solving these routing problems in* WSNs (Wanming et al., 2007,
Liu et al., 2008; Wanzhi et a/., 2008; Chunping and Wei, 2009).

Most of current researches assume WSNs to be stationary and homogeneous.
A wireless sensor network is said to be homegeneous if its sensors have the same
storage, processing power, battery power, sensing and communication capabilities
(Koucheryavy and Salim, 2009; Puccinelli and Haenggi, 2009). However, in some
scenarios WSNs must be mobile and may even have heterogeneous sensor nodes. In
many prototype systems available today, sensor networks consist of a variety of
different devices. Nodes may differ in the type and number of attached sensors. Some
nodes may be computationally more powerful than others and thereby collect,
process, and route sensory data from many more limited sensing nodes. Some sensor
nodes may be equipped with special hardware such as a GPS receiver (Bevly et al.,
2006) to act as beacons for other nodes to infer their location. Some nodes may act as

gateways to long-range data communication networks (e.g., GSM networks, satellite



networks, or the Internet). The degree of heterogeneity in a sensor network is an
important factor since it affects the complexity of the software executed on the sensor
nodes and also the management of the whole system. Apart from sensor node
heterogeneity, sensor nodes are mobile in many applications therefore creating a
mobile wireless sensor network (mWSN). For instance, for wild life monitoring,
sensor nodes are cast into the region of interest as well as equipped on animals to be
monitored. The self-organized WSN is mobile as animals move around. In a
telemedicine application (Field, 1996), sensor nodes attached to moving patients also
form a mWSN.

In mobile wireless networks, such as mobile ad hoc networks, path breakage
occurs more frequently due to channel fading, shadowing, interference, node mobility
as well as power failure. When.a path-breaks, rerouting should be carried out
promptly to avoid packet loss and large delay.

One main reason why mWSNs immediately resemble mobile ad hoc networks
is because both are distributed wireless networks (i.e., there is not a significant
network infrastructure in place) and the fact that routing between two nodes may
involve the use of intermediate relay nodes (also known as multi-hop routing).
Besides, there is also the fact that both ad hoc and sensor nodes are usually battery-
powered and therefore there is a major concern on minimizing power consumption.
Both networks use a wireless channel placed in an unlicensed spectrum that is prone
to interference by other radio technologies operating in the same frequency.
Recent advances in WSNs have led to many new protocols specifically designed for
sensor networks where energy awareness is an essential consideration. Most of the

attention, however, has been given to the routing protocols since they might differ



depending on the application and network architecture. Routing in mWSNs is very
challenging due to several characteristics that distinguish them from contemporary
communication and mobile ad hoc networks (MANETS).

First of all, it is not possible to build a global addressing scheme for the
deployment of sensor nodes in mWSNs whereas MANETSs can. Therefore, classical
IP-based protocols cannot be applied to mWSNs like MANETs. However, there is an
ongoing development standard from IETF for mWSNs which defines encapsulation
and header compression mechanisms that allow IPv6 packets to be sent to and
received from over IEEE 802.15.4-based networks called 6LoOWPAN (Xin and Wei,
2008).

Secondly, contrary-to typical communication networks and MANETS, almost
all applications of mWSNs require the flow of sensed data from multiple regions
(sources) to a particular sink. In contrast, MANETSs can communicate directly with all
other devices within its transmission range without a centralized administrator.

Thirdly, the generated data traffic in most WSNs are significantly redundant
and are highly correlated since multiple sensors may generate same data with in the
vicinity of a phenomenon. Such redundancy may be exploited by the routing
protocols to improve energy and bandwidth utilization. By contrast, MANETS consist
of standalone nodes communicating with others via multi-hop connection, so there are
no data-redundant nodes like mWSNs.

And finally, in mWSNSs, sensor nodes have tightly constrained resources in
terms of transmission power, on-board energy supply, processing capacity and storage

and thus require carful resource management. As for MANETS, the types of nodes



include notebooks, handheld PCs, and so on. Thus, each such node has less constraint
on energy, processing capability or storage than sensor nodes.

There are many existing researches related to routing in MANETS (Shah ef al.,
2008) and mWSNs (Xiaoxia et al., 2008). (Xiaoxia et al., 2006) proposed back up
nodes and cooperative caching is proposed to enhance the robustness in routing
against path breakage in mWSNs. Guangcheng and Xiaodong (Guangcheng and
Xiaodong, 2008) proposed an opportunistic routing for mWSNs based on receive
signal strength indicator (RO-RSSI).. Their approach outperformed traditional
TinyAODV (Pham et al., 2006) in terms of successful delivery ratio for sparse
mWSNGs.

Some researches such as lIyengar, Hsiao-Chun et a/. (Hsiao-Chun et al., 2007)
investigated routing based on bielogically inspited mechanisms and the associated
techniques for resolving routing in mWSNs and MANETS, including ant-based and
genetic approaches. Hussein and Saadawi (Hussein and Saadawi, 2003) proposed the
ant routing algorithm for mobile ad-hoc networks (ARAMA), which is also a
biologically-based routing algorithm.

Most routing or packet forwarding schemes in the aforementioned literature
assume that nodes function properly, are trustworthy and cooperative. However, in
realistic scenarios, nodes may fail to operate due to lack of resources, hardware failure
or malicious behaviors. Varshney (Varshney, 2008) proposed a reliable packet
forwarding scheme in non-cooperative mWSNs for wireless health monitoring
applications with spotty coverage areas. A node cooperation based on earned or
offered incentives was proposed to encourage devices cooperate as router thereby

improving message reliability.



There are many algorithms which are used to deal with non-cooperative
routing in mWSNSs. The incentive-based concept has been applied in many algorithms
such as reputation-based routing mechanism (Lewis and Foukia, 2008), Nash-Q (Hu
and Wellman, 2003), reinforcement learning (RL) (Sutton and Barto, 1998), game
theory (Machado and Tekinay, 2008). Varshney (Varshney, 2008) proposed an
incentive-based mechanism mWSNs for healthcare monitoring to improve the routing
cooperation of mobile wireless sensor nodes which are attached to patients. Forster
(Forster et al., 2008) proposed an efficient implementation of reinforcement learning
based routing on real mWSNs which consist of ScatterWeb (Schiller et al., 2005)
sensor nodes.

So far, the above works assume homogeneous mWSNs where sensor nodes
are identical. However, in many applications like healthcare monitoring, sensor nodes
are typically heterogeneous. Huang et al. (Huang et al.; 2009) proposed a pervasive
secure access to a hierarchical sensor based-healthcare monitoring architecture in
wireless heterogeneous networks where nodes have different data collection abilities,
such as, electrocardiogram (ECG) and body temperature. Similarly, Varshney
(Varshney, 2008) proposed heterogeneous sensor nodes in the terms of data gathering
which included blood pressure, electrocardiographic activity, pulse, body core
temperature, and oxygen saturation as well as alerting (emergency) signals when one
or more vital signs exceed some predefined threshold. Jurik and Weaver (Jurik and
Weaver, 2008) described heterogeneous sensors as those which come from different
shapes and sizes and offering different functionalities and accommodating different
constraints. Typical medical applications for sensors include monitoring pulse,

temperature, motion acceleration, blood pressure, and pulse oximeter.



Heterogeneity in mWSN is a challenge to all researchers. Many recent
literature related to routing assume homogeneous, non-cooperative mWSNs (Munir
et al., 2007; Agah et al., 2004) although many applications require heterogeneous
mWSNs. Only Varshney (Varshney, 2008) and Forster et al. (Forster et al., 2008)
considered routing problems in heterogenecous mWSN for routing. The significance
and advantages of heterogeneous, non-cooperative mWSNs are that they are more
realistic for healthcare monitoring application. This is the motivation for the problem
which this thesis aims to solve. The incentive-based concept is the one of the effective
tools for solve the routing problem in heterogeneous, non-cooperative mWSNs. Many
algorithms such as reputation-based routing mechanism, Nash-Q, reinforcement
learning (RL), game theory, are all based on the mecentive-based concept. However,
reputation-based routing mechanisms-are-typically used to enhance security in ad-hoc
networks by identifying and avoiding malicious nodes in the network. Thus,
reputation-based methods may not be suitable for promoting cooperation among
nodes.

Game theory has been used extensively to deal with uncooperative wireless
sensor networking resource allocation problems (Michiardi and Molva, 2003) where
different players may have different strategies to compete for resource usage within
the network. Game theory is a formal way to analyze interactions among a group of
rational players who behave strategically. A game is the interactive situation,
specified by the set of players (i.e. sensor nodes), the possible actions of each node,
and the set of all possible payoffs. Games in which the actions of the players are
directed to maximize the profit without subsequent subdivision of the profit among

the player are called cooperative games. In cooperative games, the outcome arises as a



result of an agreement among players. These games are compared with respect to the
preferred ability of payoffs. In other words, in a cooperative game, different players
form alliance with each other in a way to influence the outcome of the game in their
favor. Hence, such game is not defined as a game in which players actually do
cooperate, but as a game in which any cooperation is enforced by an outside party.
Cooperative games have been applied to their wireless sensor networks in (Ligiang
et al., 2008; Gharehshiran and Krishnamurthy, 2009). In a non-cooperative game,
unlike cooperative ones, no outside authority assures that players stick to the same
predetermined rules and binding agreements are not feasible. In the early 50’s John
Nash recognized that in non-cooperative games, there exist sets of optimal strategies
(called Nash equilibrium)-used.by the players in-a-game such that no players can
benefit by unilaterally changing his-or her strategy if the strategies of the other players
remain unchanged. Felegyhazi ef al. (Felegyhazi et al:, 2006) and Chengnian et al.
(Chengnian et al., 2007) proposed non-cooperative games with Nash equilibrium
applied to their wireless sensor networks.

Reinforcement learning (RL) is the study of how animals and artificial
systems can learn to optimize their behavior in the face of rewards and punishments.
Reinforcement learning algorithms have been developed to approximate solutions to
problems that are closely related to dynamic programming, which is a general
approach to determine optimal control in a sequential decision problem.
Reinforcement learning phenomena have been observed in psychological studies of
animal behavior, in neurobiological investigations and some works applied to WSNs
(Egorova-Forster and Murphy, 2007; Shah and Kumar, 2007; Busoniu ef al., 2008). In

the terminology of RL, the network represents the environment whose state is



determined by the number and relative position of sensor nodes, the status of links
between them and the dynamics of packets. The destination of handled packets and
the status of local links form the sensor node’s observation. Each node is an agent
who has a choice of actions. It decides where to send the packet according to a policy.
A reinforcement learning method, called Q-learning, which directly approximates the
optimal action-value function (Q-value), is commonly applied in the literature. Each
learning agent takes an action, receives a reward, updates local information with input
from the environment, and repeats the process by learning its own optimal strategy.
RL has low complexity and computational requirement and no limitation on the
number of agents (sensor nodes), However, RL requires training time during the
learning curve in order:to-learn-to optimize-the agent’s behavior. It also requires a
certain amount of memory usage to store the Q-values for the learning process.
Nash-Q is an-algorithm which is a mixture of game theory and reinforcement
learning. Nash-Q uses the frameweork of a-general sum stochastic game, whereby each
agent’s reward depends on the joint action of all agents and the current state of the
environment. The agent attempts to learn its Nash equilibrium Q-values, which are
defined by the Q-values received in Nash equilibrium. Moreover, the agent not only
learns to find its own optimal policy, but it also learns actions and rewards of the
other agent to find the other agent’s optimal strategy. Therefore, each agent acts
rationally with respect to this expectation and eventually fairness can be achieved.
However, the theory and convergence proof of Nash-Q applies to two players only.
As a result, this algorithm is inappropriate for mWSNs which typically consist of
many sensor nodes. However, there is only one ongoing work which applied Nash-Q

to enhance packet forwarding in non-cooperative multi-domain wireless sensor
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networks controlled by two different authorities. In Nash-Q, the computational
complexity is high and global network information (i.e. information on the other
player) is required.

The similarities of game theory and RL can summarized as follows. Firstly,
both game theory and RL can support a large number of players (Minh Hanh and
Krishnamurthy, 2005). Secondly, both game theory and RL can be applied to both
centralized and distributed operations. However, several key differences between
game theory and RL are as follows. First, if we consider in terms of opponent players,
RL does not have competitors like game theory. The reason is because, in RL, we
consider the agent’s self-interest and the surrounding agents as the environment,
whereas game theory requires knowledge of the other players in the game. Second,
RL is more robust than game theory in changing environments. However, the long-
term optimality of the behavior or strategy depends on whether the environment is
static or dynamic. RL is more-suitable inra dynamic: environment scenario such as in
mWSNs where nodes can move around. Game theory, on the other hand, is more
suitable for a static environment where strategies can be determined by exhaustive
search from each possible situation. Third, game theory can achieve the optimal
strategy while RL may only achieve near-optimality. This is because the agent in RL
only requires knowledge of local information of neighboring agents whereas game
theory requires knowledge the global information from all players in the network.
Fourth, RL needs more training time than game theory because the agents in RL must
take time to learn good behaviors.

Of the above algorithms, a comparison can be made to determine their

suitability to the routing problem in heterogeneous, non-cooperative mWSNs.
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Although, both game theory and RL have the ability to cater a large number of
players, distributed operation with reasonable memory requirement, game theory
requires knowledge of the all other opponent’s strategies. Hence, game theory may
not be as scalable as RL, especially in a dynamic environment such as in mWSNs
because RL requires only local information from the neighbor nodes. Xuedong,
Balasingham et al. (Balasingham ef a/.; 2008) and Ping and Ting (Ping and Ting,
2006) used RL to solve routing problems in static WSNs. However, to the best of our
knowledge, there are no works which proposed RL to promote cooperative routing in
mWSNss yet. Reinforcement learning (RL) therefore warrants further investigation for
its potential use for routing in heterogeneous, non-cooperative mWSNs.

Therefore, the underlying objective of the thesis proposal is to solve the
routing problem for heterogeneous, -non-cooperative mWSNs using a scalable,
distributed incentive-based mechanism with reasonable resource requirements such as
RL. We also study their effects on the efficiency in heterogeneous, non-cooperative
mWSN and propose a good-optimal routing strategy under energy-constrained

conditions.

1.2 Research Objectives

1. To study routing problems in heterogeneous, non-cooperative mWSNSs.
2. To apply RL to solve the routing problem in heterogeneous, non-
cooperative mWSNs and compare with other existing incentive-based

routing algorithms.



1.3

1.4

1.5.

12

Research Hypothesis

RL can provide a good routing solution in heterogeneous, non-cooperative
mWSN:ss.

In realistic applications, many types of sensor nodes will be used. We
therefore consider heterogeneous sensor nodes.

Some sensor nodes are uncooperative due to various reasons, e.g., nodes

may drop packets from other nodes in order to conserve their energy.

Basic Agreements

L.

Visual C++ was used to simulate the routing protocols in heterogeneous,

non-cooperative mWSNs.

2. Some data in the experiments were normalized to facilitate analysis and

obtain a conclusion.

Scope and Limitation

1.

Heterogeneous, non-cooperative mWSNs were studied to model to realistic
applications.

Incentive-based methods for choosing a good routing strategy in
heterogeneous, non-cooperative mWSNs were studied.

RL methods were studied and compared with the Continuous Value
Cooperation Protocol (CVCP) for the good routing strategy in
heterogeneous, non-cooperative mWSNs.

Simulations were carried out by Visual C++. The experimental results

were analyzed to find a good routing strategy under energy constraints.
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1.6. Research Procedures

1.6.1 Progressions

1.

2.

5.

6.

Review of literature and related theories.

Study the existing routing methodologies in non-cooperative
heterogeneous mobile wireless sensor networks and their effects.
Test the proposed RL algorithm by simulation using Visual C++ to
solve routing problems in mWSNs.

Analyze and conclude results.

Prepare publication.

Write thesis.

1.6.2 Research Methodology

Objective 1: To study routing problems in heterogeneous, non-cooperative mWSNSs.

1.

Review ~ literature and related © works about routing in
heterogeneous, non-cooperative mWSNs.

Determine the advantages and disadvantages of the routing
methods chosen as benchmark for this thesis.

Apply simulation tools such as Visual C++ to evaluate routing
non-cooperative, heterogeneous mWSNs under special conditions.
Design the experiment scenario to compare with existing
incentive-based algorithm (Varshney, 2008) which is used of

incentives called vital credits (/)

I =NT*x P" xCV
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where L, M and N represent constant that can be chosen to
emphasize certain factors in vital credits. This vital credit is the
function of network traffic load (NT), message priority level (P)
and criticality of the routing device (C). Two algorithms have been
proposed in Varshney (Varshney, 2008) work namely the
Continuous Value Cooperation Protocol (CVCP) and the Discrete
Value Cooperation Protocol (DVCP).The difference between
CVCP and DVCP.-was the network size, i.e., CVCP was designed
for large metworks while DVCP was designed for smaller
networks.

Under various. network scenarios, we measured the following
parameters to-evaluate-the performance of CVCP: the average
normalized reward, success ratio, and percentage of node

processing;rate:

Objective 2: To apply RL to solve the routing problem in heterogeneous, non-

cooperative mWSNs and compare with other existing incentive-based routing

algorithms.

Survey various RL methods and type of RL which are suitable for
heterogeneous, non-cooperative mWSNs. RL can be typically
classified into 3 types: Actor Only methods (Vazquez-Abad and
Krishnamurthy, 2002) which learning rates are slow but with
performance improvement guaranteed; Critic Only methods
(Makarevitch, 2000) which learning rates are fast with

performance improvement not always guaranteed; Actor-Critic
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(Usaha and Barria, 2007) which learning rates are fast with
performance improvement guaranteed.

2. Implement the selected RL method for heterogeneous, non-
cooperative mWSNs and compare with CVCP algorithms.

3. Compare performance metrics of RL algorithm procedure with
CVCP incentive-based algorithm by considering the following
parameters, the average normalized reward, success ratio, and
percentage of node processing rate.

1.6.3 Research Location

1. Wireless ' Communication Research and Laboratory, Factory
Building 4 (F4) 111 University-Avenue, Muang District, Nakhon
Ratchasima 30000, Thailand.

2. Computer and Communication Systems Engineering, Faculty of
Engineering, University Putra Malaysia, 43400 Serdang, Selangor
Darul Ehsan, Malaysia.

1.6.4 Research Equipments
1. Personal Computer
2. Visual C++ software
1.6.5 Data Collection
1. Information collected by reviewing literatures and related works.
2. Data collected from Visual C++ simulations.
1.6.6 Data Analysis
The simulation collected data from the sensor node were analyzed,

compared and concluded in terms of graphs and tables.
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1.7 Expected Benefit

1. A good routing strategy for non-cooperative heterogeneous mobile
wireless sensor networks.
2. Improved routing reliability in non-cooperative, heterogeneous mobile

wireless sensor networks.

1.8 Organization of Thesis

The remainder of this thesis is organized as follows. Chapter 2 presents the
theoretical background which underlies the contribution of this thesis. Firstly, an
introduction of related works followed by the introduction of Markov Decision
Process theory, the birth and death process and reinforcement learning (RL). Finally,
the basic theory of Q-learning is presented which is the RL tool used to enhance
routing cooperation in this thesis.

In the first part of Chapter 3, we studied the existing algorithm CVCP and
formulated the Q-learning algorithm to evaluate the routing performance results in
homogeneous mWSNs. The Q-learning and CVCP tools were compared in terms of
the average normalized reward, success ratio, and percentage of node processing rate.
The advantages and disadvantages of these two algorithms were then explained. In the
latter part of the chapter, routing cooperation in non-cooperative heterogeneous
mWSNs was presented. The routing performance results were evaluated and
compared between the CVCP and the Q-learning algorithms.

Chapter 4 This chapter summarizes all findings and original contribution in

this thesis and points out possible future research directions.



CHAPTER 11

BACKGROUND THEORY

2.1 Introduction

In this thesis, we study incentive-based routing for non-cooperative heterogeneous
mobile wireless sensor networks (mWSNs). Typically, wireless sensor networks contain
of a large number of sensor nodes that are deployed in the interested area. Sensor nodes
may differ in types thus creating a heterogeneous WSN. These nodes may or may not
cooperate with each other in terms of routing messages for one another due to several
reasons as presented in the previous chapter: Furthermore, these sensor nodes may be
able to move around.as they are attached to the observation object such as human or
animals. The routing problem in mWSNSs is the one-of an important issue required to send
messages reliably through the network. Therefore, the main focus in this thesis is to
investigate means to enhance routing cooperation among heterogeneous sensor nodes in
mWSNSs.

This thesis proposed the application of reinforcement learning (RL) to address the
issue of incentive-based routing for non-cooperative heterogeneous mWSNSs.
Reinforcement learning (Sutton and Barto, 1998) is the study of how animals or machines
can learn to optimize their behavior to obtain rewards and to avoid punishments. This
learning scheme can permit a decision maker to learn its optimal decisions (actions)

through series of trial-and-error interactions with a dynamic environment. Its main idea is
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to reinforce good behaviors of the decision maker while discouraging bad behaviors
through a scalar reward value returned by the environment. RL relies on the assumption
that the dynamics of the system satisfies a Markov decision process (MDP).

Q-learning (Watkins, 1989) is a reinforcement learning technique that
approximates the optimal action-value function which is a function that gives the
expected reward for taking a given action in a given state and following a fixed policy
thereafter. One of the strengths of Q-learning is that it is able to compare the expected
utility of the available actions without requiring a model of the environment.

Therefore, this chapter introduces the basic theory of the reinforcement learning.
It also serves as an introduction'to Q-learning algorithm which is the basis of this thesis.
The next section provides.a background theory of Markov decision process (MDP),
followed by the birth-death process, reinforcement learning (RL) and its elements. A

summary is presented.in the final section.

2.2  Markov Decision Process Theory

Markov decision processes (MDPs) is a model of a decision-maker interacting
synchronously with the environment. Since the decision-maker sees the environment’s
true state, it is referred as a completely observable Markov decision process. The basis of
Markov decision process is presented as follows.

2.2.1 Markov Property

Markov property refers to the memory-less property of a stochastic
process. A stochastic process has the Markov property if the conditional probability
distribution of future states of the process depends only upon the present state, not on the

sequence of events that preceded it. A process with this property is called a Markov
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process. The Markov property states that anything that has happened so far can be
summarized by the current state S, . Therefore, the probability of being in the next state at
time 7+1 based on the past history of state changes can be defined simply as the

conditional probability based on the current state at time ¢ by;

P(St = 41 ‘St :St""’SO :SO) :P(Sz+1 = 94l ‘St :St)' 2.1

+1

This equation is referred to as the Markov property. In other words, a
stochastic process has Markov property if the probability distribution of future states of
the process time 7+1, given the present state at time 7 and all past states, depends only
upon the present state and not on any past states.

2.2.2 Markov Decision Process

The probability that the process chooses s' as its new state is influenced by
the chosen action. Specifically, it is given by the state transition probability function.
Thus, the next state s' depends on the cuirent state s and the decision maker's action a.
But given s and q, it is conditionally independent of all previous states and actions. In
other words, the state transitions of an MDP possess the Markov property. This state

transition probability function equation is defined by;

P(s'|s,a)=P(S,,,=5"|S,=s,a, =a). (2.2)

+1

Similarly, given any current state and action, s and a, together with any next state, s', the

expected value of the incurred reward is;

R(s,a,s") = E[r,, | S, =s,a,=a,S,,, =] 23)

> M+l
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where E[.]is the expectation operator and 7, is the reward received at time¢+1. Equation

+1
(2.2) and (2.3), completely specify the most important aspects of the dynamics of the
MDP. The simulation programming requires the exact knowledge of these two functions

in order to determine the optimal policy. A MDP model can be shown in Fig. 2.1.

ar ar+1 aT—E aT—l
r;+1 Ir+2 ﬂT—l FT

Figure 2.1 A MDP model.

A Markov decision process is a 4-tuple (S, 4, P, R) which can describe the
MDP characteristics, where.S denotes the set of states, 4"1s a finite set of actions, P is the
probability that action « in state s at time 7 will lead to state s" at time ¢ + I, R is the
immediate reward (or expected immediate reward) received after transition to state s’

from state s after having taken actiona € 4. Let P(s'|s,a) € P be the state transitioning

model that denotes the probability of transiting to the next state s € S after an agent
takes action a € A at the current state s € S .
2.2.3 Policy
A policy, 7 is a description of the behavior of a decision-maker, or a
function mapping states to actions, 7: S —A. There are two types of policies. A
stationary policy is a situation-action mapping, i.e., it specifies an action to be taken at

each state. The choice of action depends only on the state and is independent of the time
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step. A non-stationary policy, on the other hand, is a sequence of situation-action
mappings, indexed by time. In this thesis, we focus on stationary policies since our data
acquisition problem is based on models of sensor readings which are obtained in a
particular time frame, such as in the mornings, afternoons, etc. Hence, within such
period, the model maybe considered stationary hence the policy is also assumed
stationary.

The objective of solving a MDP is to find a policy, 7, defined as a
mapping of the state space to the action space,z:S— P[A], where P[A] is the
distribution over the action space. The action-value function Q7 (s,a) ofa given policy
7 associates a state-action pair (s, a) with an expected reward for performing action a in
state s at time step ¢ and policy 7z

To achieve this objective, particularly in scenarios where the dynamics of

the environment is difficult to model (such as in .mWSNs), a technique called

reinforcement learning can be used to solve MDPs.

2.3 Reinforcement Learning

Reinforcement learning (RL) is a computational approach which is concerned
with how an agent ought to take actions in an environment so as to maximize some
notion of cumulative reward. In machine learning, the environment is typically
formulated as a Markov decision process (MDP), and many reinforcement learning
algorithms for this context are highly related to dynamic programming techniques. The
main difference from these classical techniques is that reinforcement learning algorithms

do not need the knowledge of the MDP and they target large MDPs where exact methods
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become infeasible. The learner is not taught which action to take, as in most forms of
machine learning, but instead must discover which actions yield the most reward by trial-
and-error interactions with its environment (Sutton and Barto, 1998).

A reinforcement learning agent interacts with its environment in discrete time
steps. At each time ¢, the agent receives an observation, which typically includes the
reward r;. It then chooses an action a, from the set of actions available. The environment
then moves to a new state s;+; and the reward 7+, associated with the transition (s;, a,,
si+1) 1s determined. The goal of a reinforcement learning agent is to collect as much
reward as possible. Figure 2.3 shows the agent-environment interaction in reinforcement

learning.

24
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Figure 2.2  Diagram of agent-environment interaction in reinforcement learning.

2.3.1 The Value Function

Define the value function V7 (s) ofa policy 7 by;

Vi(s)=E" [Rt |s, = S]



23

=E" {Zﬁ A } (2.4)

where R =7, +fr,+ 7 +..= Z,BerkH is the expected discounted return of the
k=0

agent, fis the discount factor which 0< <1 and E”[-]is the expectation operator
under policy z. Similarly, the action-value function Q7(s,a)of a given policy =
associates a state-action pair (s,a)with an expected reward for performing action a in

state s at time step ¢ and following 7 thereafter;

O7(s,a)=E" [Rf |s, =s,a, = a]

=E£ I:ZIBFHkH |St :S>at :a:|' (25)
k=0

2.3.2 The Optimal Value Function
Solving a reinforcement learning task means, roughly, finding a policy
that achieves the maximum reward over the long run. The optimal value function denoted
as V*(s) which is defined as the maximum state value function over all possible policies,

at state s.

V*(s)= max V7(s). (2.6)

Optimal policies also share the same optimal action-value function, denoted Q*(s), and

defined by;

O (s) =max 0 (s,a). (2.7)
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The standard solution to the problem above is through an iterative search
method (Puterman 1994) that searches for a fixed point of the following Bellman

equation;

V*(s) = max {R, + ﬂZP(s’ | s,a)V~ (s')}. (2.8)

The equation (2.9) is a form of the Bellman optimality equation for V*(s) .

The Bellman optimality equation for O(S) is;

QO (s)=R + ﬂZP(s' |'s,a) max o (s',a). (2.9)

2.4 Q-learning

Q-learning is a reinforcement learning technique that works by learning an action-
value function that gives the expected utility of taking a given action in a given state and
following a fixed policy thereafter. One of the strengths of Q-learning is that it is able to
compare the expected utility of the available actions without requiring a model of the
environment. Q-learning (Sutton and Barto, 1998) defines a learning method within a
MDP that is employed in single-agent RL systems. Q-learning is an algorithm that does
not need a model of the environment and can directly approximate the optimal action-
value function (Q-value) through online learning. Assume that the learning agent exists in
an environment described by some set of possible statess € S. It can perform any of the
possible actionsa € 4. The interaction between the agent and the environment at each

instant consists of the following sequence;



25
e The agent senses the state s, € S.
e Based ons,, the agent performs an actionag, € 4.
e Asaresult, the environment makes a transition to the new state s,,, =s" € S.

e The agent receives a real-valued reward (payoff) 7 that indicates the

immediate reward value of this state-action transition.

The task of the agent is to learn a policy, 7:S — A4, for selecting its next action
a, = 7(s,)based only on the current states,. For a policy, the Q-value Q"(s,a) (or
state-action value) is the expected discounted cost for executing action a at state sand
then following policy 7 thereafter. The optimal policy 7 (s) is the policy that
maximizes the total expected discount reward whichreceived over an infinite time. The
Q-learning process tries to find Q" (s;a) = Q”* (s,a).in a recursive manner using available

information (s,,a,,sya,7)where s, and s are the-states at time ¢ and 7+1

t

respectively,a, and « are the actions at.time #'and 7 +1, respectively, and r is the

immediate reward due to g,. The Q-learning rule at time step 7+1 is given by;

0,54 = (1—a>Q,(s,,a,>+a{n + fmax Qt(s',a')} (2.10)
a

where 0< <1 is a discount factor, 0 <« <1 is the learning rate and Q,(s',a') is the

action-value function for next state s and next action « .
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2.4.1 Exploration

One of the most important issues for Q-learning algorithm is maintaining a
balance between exploration and exploitation. Normally, the convergence theorem of Q-
learning requires that all state-action pairs (s,a)are tried infinitely (Sutton and Barto,
1998). Such a balanced condition is satisfied by selecting a good action according to
some probability & and exploring new actions, otherwise. Note thateis the probability

that a greedy action is selected i.e.;
a*:ar%niax O(s,a). (2.11)
This probability - termed &= greedy, significantly speeds up the
convergence of the Q-value function. If the Q-value of each admissible (s,a) pair is
visited infinitely often, and if the learning rate is decreased to zero in suitable way, then
as t >, O (s,a) convergesto O (s,a)with probability 1 (Sutton and Barto, 1998). The

optimal policy is defined by;

7' (s) =arg max O (s,a). (2.12)

2.5 Summary

In this chapter, an overview of Q-learning which is a reinforcement learning
method has been introduced. Furthermore, we also provided a concise background on
theories related to reinforcement learning including the Markov decision process. In the

next chapter, an incentive-based routing mechanism proposed for non-cooperative
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homogeneous and heterogeneous mobile wireless sensor networks using Q-learning will

be presented and its routing performance compared with an existing algorithm.



CHAPTER III

INCENTIVE-BASED ROUTING FOR NON-COOPERATIVE

MOBILE WIRELESS SENSOR NETWORKS

3.1 Introduction

A wireless sensor network (WSN) usually consists of numerous sensor nodes
deployed in the area of interest. Each node is able to collect and process data with
neighboring devices. There are many reasons for its popularity, including low costs,
flexibility and ease of deployment. However;, WSNs have some constraints, such as
limited power supply, storage, bandwidth, and computation capability. Such constraints
combined with a typical deployment of large number of sensor nodes have posed may
challenges to the design and. management of sensor networks. These challenges
necessitate energy awareness at all layers of networking protocols stack. At the network
layer, the aim is to set up energy-efficient routes and reliably relay data from sensor
nodes to the sink so that the lifetime of the network is maximized. There are many
researches which aim at solving these routing problems in WSNss.

Most current researches assume WSNs to be stationary. However, in many
scenarios WSNs must be mobile. For instance, for wild life monitoring, sensor nodes are
cast into the region of interest as well as equipped on animals to be monitored. The self-
organized WSN is mobile as animals move around. In a telemedicine application (Field,

1996) sensor nodes attached to moving patients also form a mobile WSN (mWSN).
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Furthermore, most routing schemes assume that nodes function properly, are trustworthy
and cooperative. However, in realistic scenarios, nodes may fail to operate due to lack of
resources, hardware failure or malicious behaviors. There are many algorithms which are
used to deal with non-cooperative routing in mWSNSs. The incentive-based concept has
been applied in many algorithms such as reputation-based routing mechanism (Lewis and
Foukia, 2008) Nash-Q (Hu and Wellman, 2003) reinforcement learning (RL) (Sutton and
Barto, 1998) Game theory (Machado and Tekinay, 2008).Nodes decide whether to
cooperate or not based on incentives stored or earned. Varshney (Varshney, 2008)
proposed an incentive-based mechanism called continuous value cooperation protocol
(CVCP) for healthcare monitoring to improve the routing cooperation of mobile wireless
sensor nodes which are attached to patients. Forster, Murphy et al. (Forster et al.,2008)

proposed an efficient implementation of RL-based routing on real mWSNss.

Routing related literature mostly assume homogeneous mWSNs where sensor
nodes are identical. For instance, assume homogeneous, non-cooperative mWSNs (Munir
et al, 2007, Agah et al, 2004). However, in many applications like healthcare
monitoring, sensor nodes are typically heterogeneous. Heterogeneity in mWSN is a
challenge. This is the motivation for the problem which this thesis aims to solve.

The incentive-based concept is the one of the effective tools for solving the
routing problem in non-cooperative mWSNs. Reputation mechanisms are typically used
to enhance security by identifying and avoiding malicious nodes, but not promote node
cooperation. Game theory requires knowledge of the other opponents’ strategy, thereby
may not be scalable especially in dynamic environments as mWSNs. On the other hand,
RL can cater a large number of nodes with distributed operation using only local

information from the neighboring nodes.
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In this chapter, we apply a RL method called Q-learning to promote packet
forwarding in a periodic sleep cycle homogeneous and heterogeneous mWSN. We
compare its performance with an existing sleep cycle incentive-based routing algorithm
(Varshney, 2008) under various message arrival rates and traffic scenarios and node
processing capability.

Therefore, the underlying objective of this chapter is to show that RL can be
applied to enhance the routing problem for non-cooperative homogeneous and
heterogeneous mWSNs in comparison with the existing CVCP routing algorithm.

This chapter is focused on the followingissues:

1. The formulation of the packet forwarding problem under the RL framework in

non-cooperative mWSNSs.

2. The simulation of RL and the existing CVCP algorithm in non-cooperative

mWSNSs.

3. The comparison of performance between the proposed RL algorithm and the

existing CVCP algorithm.

The rest of this chapter is organized as follows. Section 3.2 describes the CVCP
algorithm followed by RL and Q-learning in sections 3.3 and 3.4, respectively. In section
3.5, we formulate the packet forwarding problem using the RL framework using CVCP.
We then present a homogeneous mWSN experiment with its simulation results and
conclusion in section 3.6. Finally, section 3.7 presents a heterogeneous mWSN

experiment with its simulation results and conclusion.
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3.2 Continuous Value Cooperation Protocol (CVCP)

The continuous value cooperation protocol (CVCP) has been proposed to promote
router cooperation in ad hoc networks deployed to supplement infrastructure-oriented
wireless health monitoring systems (Varshney, 2008). The protocol used an incentive
called vital credit which is a function of message priority level (P), network traffic loads

(NT), and criticality of the message delivery (C). Vital credits (/,) are defined as:

I, = NT"xP" xC" 3.1

where L, M and N represent constants that can be chosen to emphasize certain factors in
vital credits. For example, the message priority level may be assigned to nodes
transmitting emergency messages or alerts in such a way that vital credits are greater than
symptoms monitoring message to-encourage delivery. The network traffic level may
depend on the frequency of monitoring, the number-of packets per message, and the
number of monitored patients. Thenode criticality may rely on the location of the routing

node and routing scheme.

Figure 3.1 shows an individual routing node using CVCP to decide whether to
forward a particular message to a destination node based on the number of vital credits
offered by the source node, and the routing node’s already earned vital credits. The
source device uses an incentive estimator to determine the vital credits it will offer to a
routing node to forward its message. The routing node stores already earned vital credits.
If the offered vital credits exceed its stored credits, the more likely a routing node will
cooperate. On the other hand, a routing node with a large number of stored credits might

not cooperate even if the offered number of credits is high. If a routing node decides to
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cooperate, it receives the offered vital credits from the source node and adds them to its

stored credits.

Message Priofity m— Incentive
Network traffic 1080 s —— ectimator

CritiCality m——

Vital credits

v

Cooperation

Stored Vital credits  — protocol

l

Decision on
cooperation

Figure 3.1  Cooperation protocol (Varshney, 2008) in which a routing node makes a

decision based on vital credits the source node offers and its stored credits.

Nodes with the most vital-credits can receive higher sleep-cycle priority, thereby
promoting energy saving. However, nodes that have used up their vital credits for a
recent sleep cycle are more likely to cooperate to increase their earned vital credits.
Figure 3.2 depicts the CVCP vital credit checking procedure at a routing node.
Furthermore, a routing node also checks whether a sleep cycle will be initiated soon and
opts to cooperate accordingly.

Furthermore, apart from checking the offered and stored credits and sleep cycles,
decisions to cooperate or not may also be dependent on state conditions of the routing
node other than shown in Figure 3.2. For instance, different states of network loads or

residual battery levels may provide different decisions in order to achieve an optimal long
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term benefit for a particular routing node. A scalable, distributed self-learning scheme
with reasonable computation requirements described in the next section warrants

potential use for finding long term benefit decisions at each routing node in a mWSN.

Receive offered

Vital credits

f offered Vita
credis >
Stored credits

if sleep cycle
start < current
time +T

Acres to cooparate Becline to cooperate

Figure 3.2  Diagram of CVCP checking procedure performed at routing node

(Varshney, 2008)

3.3 Reinforcement Learning

Reinforcement learning (RL) (Sutton and Barto, 1998) is a machine learning
scheme which can permit a decision maker to learn its optimal decisions (actions)
through a series of trial-and-error interactions with a dynamic environment. Its main idea
is to reinforce good behaviors of the decision maker while discouraging bad behaviors
through a scalar reward value returned by the environment. In RL, the decision maker is
called the agent whereas everything outside the agent is called the environment. Upon an

action taken, the environment responds to the action by transiting to a new state.
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Furthermore, the environment also feedbacks the agent the corresponding reward as a
consequence of the action selection at a given state, which the agent tries to maximize
overtime. More specifically, the agent and environment interact with each other in a
sequence of discrete time steps. At each time step (¢), the agent receives some
representation of the environment’s state (s;) and select and action (a,). On time step later,
the agent receives a numerical reward (74 ;) and finds itself in a new state (s;+;). The
agent should behave so as to maximize the long term benefit or the received reward, or
more specifically, the average amount of accumulated rewards the agent receives over

time.

3.4 Q-learning Strategy

Among the popular RL algotrithm, Q-learning (Sutton and Barto, 1998) has been
well investigated. Q-learning is a model-free algorithm which learns the values of the
function Q(s,a) which quantifies how good it is to perform a certain action in a given
state. With its ease of use, Q-learning has seen wide applications in resource allocation
and is promising for dynamic environments such as mWSNs. Since Q-learning requires
no prior model of the environment and can perform online learning, it is suitable for
learning in non-cooperative mWSNs where little information is known among nodes.

In a MDP, the tuple (S, 4, P, r) is defined to describe their characteristics, where S

denotes the set of all possible states, A denotes the set of all possible actions, P is the state
transition probability matrix such that P(s’ | s, @) € P is the probability of transiting to the
next state s’ € S after an agent takes action a € 4 at states € S . r is a function of the

reward expected from the environment as a result of taking action a € 4. The objective

is to find a policy, 7z, defined as a mapping from the state space to the probability
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distribution, 7 : S - P[4], where r[4]is the distribution over the action space. To
determine the optimal policy, 7", Q-learning requires the knowledge of a quantification
of future benefits (or returns) at a given condition called the action-value function. The
action-value function of a given policyz, denoted by O (s,a), associates a state-action
pair(s,a) with an expected reward for performing action «a in state s at time step ¢ and

following 7 thereafter;

O7(s,a)=E"{R,|s, =s,a, =a}

o0
:E”{Zﬁrﬁlﬁ-l ‘ST :S’at :a}
k=0

where R =r,  +fr ,+ B +..= Z,B"erH 1s the expected discounted return at the
k=0

time ¢ of the agent, 3 is the discount factor and £7[-]is the expectation operator of a given

policy 7. The goal of the Q-learning agent is to .determine a policy to select actions so

that its expected discounted future reward is maximized.

3.5 Problem Formulation

In this section, we propose an alternative RL approach to enhance routing
cooperation among in mWSNs and present the details of how to formulate the problem.
Based on the conjecture that different states of network loads may affect cooperation
decisions for a particular routing node, we define the state s in our model as the quantized
level of the network load experienced at a routing node where s € S , S is the state space
of the environment which is divided into 5 states, i.e. from low (0) to high (4) network

level load. Each agent can independently decide its own action whether or not to



36

cooperate with the other agent. The set of all the possible actions for a routing node is
defined by 4 = {ay, a;! where a, refers to agreeing to cooperate and ay, otherwise.
During the learning process, the agent starts with an arbitrary initial Q-value.
After executing action a at state s, the agent receives an immediate reward » and then
transits to a new state and updates the new Q-value. The update rule at time step #+/ of

Q-learning is given by;

0,.(5,0) = (1-@)0,(s, @) + ol + fmax O,(s',a)), (3.2)

where 0 < <1 is the learning rate, 0< £ <1 is the discount factor, and Q,(s',a") is

action-value function for the next state s’ and next action @' In this framework, the

reward function for node i defined by:
r=1 (3.3)

where / is vital credit as shown in equation (3.1). The process is repeated iteratively to

learn the agent’s own optimal policy. The condition for Q-learning to converge is that all
states and actions must be visited infinitely often (Sutton and Barto, 1998).

Figure 3.3 describes the procedure for applying Q-learning algorithm to CVCP.
Suppose a source node sends a message, it first uses the incentive estimator to estimate
the vital credit /, to offer the routing nodes. Upon receiving the message, each routing
node compares the offered vital credit to its stored credits Jyor. If this /, is greater than its
Lyore, this routing node will check the state of its network load (NT) and choose an action

between random action and greedy action. The decision to choose random action or
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greedy action depends on the ¢ -greedy probability. Note that & €[0,1] is the probability

that a greedy action is selected. Note that ¢ can be set to zero in the training phase so that
the agent can randomly explore all possible actions. On the other hand, ¢can be set to
unity to allow the selection of the greedy action which refers to an action such

that g* = argmax O(s,a) . The ¢ -greedy probability is required to satisfy the convergence

Vaed
condition for Q-learning which is that all states and actions must be visited infinitely
often (Sutton and Barto, 1998). Upon each decision taken at each node, QO(s,a) is updated
according to (3.2).

However, if the value of /, is less than /y,., the routing node then considers
whether or not it will initiate the sleep cycle soon, by comparing the sleep cycle start time
Tare With the system time T ent T. I Ty 15 1ess than 7,0, T, it still stays active. It
continues to operate by checking its state and select either a random action or greedy
action according to the ¢ -greedy probability. If the routing node is about to initiate the
sleep cycle; it will compare 1ts Zor. with a predefined threshold which is the vital credit
required for entering a sleep cycle. If the o of this routing node is greater than such
threshold, the node will subtract this amount from the current /.. and then checks it
state. On the other hand, if Ty, is greater than 7¢,e,+ T, this routing node will decline to
cooperate and enter sleep mode where it will remain inactive for a finite period of sleep

cycle.
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Figure 3.3  Diagram of the proposed algorithm which integrates Q-learning with

CVCP performed at a routing node.

3.6 Homogeneous mWSN

In this section, we evaluated the proposed integrated CVCP and Q-learning
algorithm and compared it with the original CVCP. Visual C++ was used to simulate a
homogeneous mWSN under various conditions according to Table 3.1. All the 36 nodes
within the mWSN followed the random way point mobility model and had equal
initialized stored credits, while offered incentives 7, were based on (3.1). Packets were

sent from an origin node to a destination node. Intermediate routing nodes then decided
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whether to cooperate or not depending on incentives they received and their sleep cycle
period. Each node along a path received an offered vital credit from the origin node. If
the offered vital credits were more than their stored credits, then they agreed to cooperate.
Otherwise, the nodes declined to cooperate. The sleep cycle period also affected a node’s
decision. In particular, if a node had enough credits to sleep but the sleep cycle would
not be initiated any time soon within a ¢ertain window, such node can agree to cooperate.
The reward scheme, message arrival rate and message departure rate were varied to
evaluate the performance under different types of message classes. In a healthcare
scenario (Varshney, 2008) these message classes may present the significance or urgency
of the vital sign measurements transmitted from a patient such as ECG signal, blood
pressure, and oxygen saturation. Hence, in our simulation we classified the arrival
packets into message classes which signify the importance and characteristics of each
message class. The remaining simulation parameters are shown in Table 3.1. Note that
the homogeneous node processing rate was equal to 0:1 ' message/sec for all nodes.
3.6.1 Performance Metrics
In order to evaluate the benefits of our RL algorithm, the following
performance metrics were measured.
3.6.1.1 Average reward
This metric is the average normalized reward obtained over the
course of simulation. Two different types of arrival message classes were evaluated as

shown in the schemes presented in Table 3.2-3.5. Let r

average

be the average reward

function generated from accepting the message classes under a particular policy of each

algorithm, 4 (message/sec) be the message arrival rate and g (message/sec) be the
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message departure rate and P be the priority of the reward of message (7,) according to

(3.3) of classi. Let B be the rejection probability of message class; given by;

B

1

_ num _rej _unsat(i)+num _rej _sat(i) (3.4)

num _arr _msg(i)

where num _rej unsat(i) is the number of rejection messages in classias a result of a
node's (an agent's) decision when such node is unsaturated, num rej sat(i)is the
number of rejection messages in classjas a result of node's decision when such node is
saturated, and num arr msg(i)is the number of all messages arrival requests. We

divided the states of a node into 5 states according to its processing capacity status as

shown in Figure 3.4 with 0-being unsaturated and 4 being fully saturated capacity.

P _jump up P_jump up P jump up P _jump up

ofozojo)o

P jump down P _jump down P _jump down P _jump down

Figure 3.4  Birth — death diagram of node’s state.
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Table 3.1 Simulation Parameters.

Parameters Value
Number of sensor nodes 36

Node mobility Random way point
Node velocity (m/s) Min.=0.3 Max =0.7
Area size 13x13m?
Transmission range 3m

Run length (number of route requests) 200000
Routing scheme Shortest path
Sleep, wake cycle period (s) 30,30
Credits spent per sleep ¢ycle 10

C, M, N, Lin (3.1) 1

Pin (3.1) See Table 3.2-3.7 for values of P,

Note that P jump up is the probability of jumping up to the next upper state and
P _jump_down is the probability of jumping down to the next lower state. P_jump_up is

defined by;

A+

state

P jump up=—"=-—4
_] p_ p (27+21vtate+/’li)

where A, 1is a state dependent node capacity usage rate. P_jump_down equals to 1 all

states except for state 0 which is 0. If a node is in a saturated state and it still decides to
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cooperate in a message forwarding request for class i, then num rej sat(i) is

incremented. The average reward is given by;

k
A
raverage = Z_IB(I_BJ)’ (35)

i=l i
where Pis the priority level of message class i, B,is the rejection probability defined in
(3.4), 4 1s the message arrival rate of message class i, s 1is the message departure rate of

message class 7, and & is the number of all message classes.

Let r»

accept _all

be the average reward incurred when all message

classes can be accepted when the node has no capacity saturation, i.e., when the rejection

probability B equals to zero, defined by:;

k
ru(‘ceptiull = ZPI (3'6)
i=1

1

LIS

From equation (3.5) and (3.6), we defined »,__ as the normalized average reward given

norm

by;

rnorm =— . (37)
accept _all
Figure 3.5, 3.6 and 3.7 illustrate that the RL method gave better

performance results than CVCP in terms of normalized average reward. Figure 3.5 show

results for the reward scheme setting in Table 3.2. Results show that accepting more
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messages in class 2 resulted in higher average rewards for RL, while the normalized
average reward for each scheme from CVCP was indifferent. In terms of message arrival
rate, we found that in Figure 3.6 when the message arrival rate was increased following
the settings in Table 3.3, the rejection probability also increased as a result of an increase
in the probability of jumping up so nodes landed in the saturated state (i.e., state 4) more
frequently. As a result the rejection probability increased thereby decreasing the
normalized average reward. On the other hand, Figure 3.7 depicts the results when the
message departure rate was increased according to Table 3.4. Results show that the
rejection probability decreased due to faster message departure rate effect, consequently
leading to fewer node and decreasing the rejection probability, and eventually increasing
the normalized average reward. All schemes have shown that the proposed RL algorithm
obtained a normalized .average reward significantly higher than the existing CVCP

algorithm.
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Table 3.2 Varying reward scheme parameters.

Class 1 Class 2
Scheme
4 H R 4 H, P
1 0.02 0.1 1 0.02 0.1 5
2 0.02 0.1 1 0.02 0.1 30
3 0.02 0.1 1 0.02 0.1 100

Table 3.3 Varying message arrival rate scheme parameters.

Class 1 Class 2
Scheme
4 A ” A Hy F,
1 001 0.1 1 0.01 0.1 5
2 0.05 0.1 1 0.05 0.1 30
3 0.10 0.1 1 0.10 0.1 100

Table 3.4 Varying message departure rate scheme parameters.

Class 1 Class 2
Scheme
A H h 4 H, P,
1 0.02 0.01 1 0.02 0.01 5
2 0.02 0.05 1 0.02 0.05 30
3 0.02 0.10 1 0.02 0.10 100
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3.6.1.2 Success ratio

This metric was determined by the number of class i messages
successfully delivered to the destination node overselected paths. Let SR be the success

ratio of the message delivery given by ;

SR=1-B.. (3.8)

Figure 3.8, 3.9 and 3.10 illustrate the success ratio versus various
schemes in Table 3.2, Table 3.3, Table 3.4 , respectively. Figure 3.8 depicts the success
ratio of RL and CVCP reward scheme setting in Table 3.2 which show that the rejection
probability of RL class 2 is less than RL class 1. It can be seen that the CVCP results do
not depend on the weight of reward in any setting at all as evidently shown in the

unvaried SR. Figure 3.9 illustrates the successful ratio obtained from varying the message
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arrival rate. We found that when the message arrival rate was increased following Table
3.3, the rejection probability increased due to the increase in the number of node
satutation thereby decreasing the success ratio in (3.8). Figure 3.10 depicts the results
when the message departure rate was increased according to Table 3.4. Results show that
the rejection probability decreased from a lower number of node saturation and therefore
the success ratio increased. Once again, the result from these two figures showed that the
average reward from CVCP was indifferent. We noted that the ability to selectively
accept more class 2 messages (which has higher priority) than class 1 messages under

these settings was an advantage for RL over CVCP which accepted both classes equally.

T
I RL Class1
0.9k I RL Class2 i
] CVCP Classl
1 CVCP Class2

Success ratio

\¢ 7

2 3
Reward scheme

Figure 3.8  Success ratio of RL and CVCP under the reward scheme settings in Table

3.2.
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Figure 3.10  Success ratio of RL and CVCP under the message departure rate scheme

settings in Table 3.4.
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3.6.2 Homogeneous mWSN Conclusion

In this section, we proposed an incentive-based routing scheme for non-
cooperative homogeneous mWSNs. The proposed method incorporates the RL into
CVCP to solve the routing problem. Its performance was evaluated by means of
simulation in terms of normalized average reward and success ratio. We compared the
proposed RL and the existing CVCP algorithms. We found that the RL method
consistently outperformed CVCP in terms of success ratio and normalized average
reward under various reward, message arrival rate and message departure rate scheme
settings. The preliminary results suggest that the proposed RL approach based on Q-
learning algorithm can achieve better cooperation among nodes for high priority
messages than the CVCP algorithm and that RL can be applied to improve cooperation
among routing nodes in ¢omparison to the existing incentive-based algorithm like CVCP.

In the next section, we extend the framewotk to address the heterogeneity
of the sensor and routing nodes to cater more realistic scenarios which has been the main

focus of this thesis.

3.7 Heterogeneous mWSN

In this section, we evaluated the proposed integrated CVCP and Q-learning
algorithm and compared it with the original CVCP algorithm. Visual C++ was used to
simulate a heterogeneous mWSNs under various conditions according to Table 3.1. Note
that the heterogeneous mWSN may contain a mix of various types of nodes, different
data collection abilities, different shapes and sizes and offering different functionalities
and accommodating different constraints. Heterogeneity in terms of data collection has

been considered so far in this work because of the various types of data collection in a
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healthcare scenario, ECG signal, blood pressure and oxygen saturation. In particular,
certain vital signals require more reliability and priority over others. For instance, ECG
signals require more frequent measurements than blood pressure from patients. A
consistent stream of ECG measurements reliably delivered to a healthcare professional is
necessary to assess the well-being of a patient. These different requirements led us to
model vital signal measurements with messages of different classes, each with different
arrival rates, service rates and reward weights. These were preliminarily investigated in
the homogeneous mWSN section of this chapter and were found to affect the
performances of CVCP and our proposed method. However, in this section we further
consider heterogeneity in terms of node processing rates. We consider the heterogeneity
in the terms of node processing rates because. it represents a node’s ability to forward a
message in healthcare applications which is-a major task for nodes in mWSNs. Apart

from the node processing rates, all the 36 nodes in the mWSN followed the random way

point mobility model and had equal initialized stored credits. The offered incentives /,

were based on (3.1). Packets were sent from an origin node to a destination node.
Intermediate routing nodes then decide whether to cooperate or not depending on
incentives they receive and their sleep cycle period. Each node along a path receives an
offered vital credit from the origin node. If the offered vital credits are more than their
stored credits, then they will agree to cooperate. Otherwise, the nodes decline to
cooperate. The sleep cycle period affects a node’s decision when that node has enough
credits to sleep but the sleep cycle will not be initiated any time soon (within a certain
window), such node can agree to cooperate. The reward, message arrival and message
departure rates were varied to evaluate the performance under different scheme of

message classes according to Table 3.5-3.7. In (Varshney, 2008), these message classes
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represent the vital signs of the patient such as ECG signal, blood pressure, and oxygen
saturation. Hence, in our simulation we classified the messages into classes signify the
importance of each message class. In the next section, each performance metric obtained
from the simulation experiments in terms of normalized average reward, success ratio

and the percentage of node usage for each type of node processing rate will be discussed.

Table 3.5 Varying reward scheme parameters for 2 traffic classes.

Class 1 Class 2
Scheme
4 #, A A H, B,
1 0.02 0.1 1 0.02 0.1 5
2 0.02 0.1 1 0.02 0.1 20
3 0.02 0.1 1 0.02 0.1 80

Table 3.6 Varying reward scheme-parameters for 3 traffic classes.

Class 1 Class 2 Class 3
Scheme
4 H B 4 H, B A H; R
1 0.02 0.1 1 0.02 0.1 5 0.02 0.1 10
2 0.02 0.1 1 0.02 0.1 5 0.02 0.1 30
3 0.02 0.1 1 0.02 0.1 5 0.02 0.1 100
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Table 3.7 Varying reward scheme parameters for 4 traffic classes.

Class 1 Class 2 Class 3 Class 4

Scheme
4 H, R 4 H, B A 4o B A u R

1 0.02 0.1 1 002 0.1 5 002 01 10 002 0.1 30

2 0.02 0.1 1 0.02 . 0.1 5 002 01 10 0.02 0.1 100

3 0.02 0.1 1 0.02° 0.1 5 002 01 10 0.02 0.1 300

Table 3.8 Varying the number of node processing rates.

Types of 0.1 0.5 0.7 0.9
Scheme
processing rate = message/sec message/sec message/sec message/sec
1 2 18 \ 18 -
2 2 12 - 24 -
3 3 12 12 - 12
4 3 4 12 - 20

3.7.1 Two heterogeneous processing rates (18:18)

This section we present the simulation results of 2 heterogeneous
processing rates which have been symmetrically assigned to the mWSN, i.e., 18 nodes
with a processing rate equal to 0.1 message/sec and the other 18 nodes with a processing
rate of 0.7 message/sec according to Table 3.6. Under this setting, we investigated three
reward schemes presented in Table 3.5-3.7. Note that the message arrival rates and

message departure rates were not varied, because these two parameters were already
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discussed in the homogeneous experiments in section 3.5. Instead, we focused on the
effects of the node processing rates and increased message classesand discuss the results
as follows.
3.7.1.1 Two traffic classes

This sub-section presents simulation results for 2 traffic classes of
arrival messages with rewards varied according to Table 3.5. Figure 3.11 illustrates that
RL method showed a steady increase in normalized average reward as the weight of
rewards increased. On the other hand, that of the existing CVCP method remained
unchanged regardless of the reward scheme used. The reason is because CVCP decisions

were not dependent on the long term rewards, but rather the short term or immediate

reward given by / . Therefore CVCP always accepts-the decision to cooperate regardless

of the message class whereas R selectivelyaceepts to cooperate mostly in presence high
priority message classes. Such feature is most relevant in healthcare applications where
the significance of vital signals should be emphasized. For example, ECG signal is the
most significant message to be forwarded to the physician. This result suggests that RL
can select decisions to decline or cooperate according to the characteristics of the vital
signs of the patient, while CVCP can handle only with same priority. Figure 3.12 shows
the success ratio of RL compared to CVCP, RL with class 2 can obtain more success
ratio than CVCP. However, RL with class 1 obtained the lowest success ratio confirmed
how RL decisions are based on long term rewards instead of immediate rewards. Figure
3.13 depicts the percentage of nodes with each type of processing rate used in RL and
CVCP under scheme 1 in Table 3.8. The percentage of node processing rate for a

message class is given by;
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Number of nodes with type j processing rate which cooperated in a course of simulation

% mnode processing rate of type j = x100%

Number of nodes of all types of processing rate which cooperated in a course of simulation

RS1 in Figure 3.13 refers to reward scheme 1 in Table 3.5 and so

on. Note that both algorithms used each type of node equally for all reward schemes.
Hence, the percentage of node processing rates did not depend on the algorithm. The
reason is because our simulation consisted of two types of symmetrically allocated node
processing rates and the topology of the network is random way point. All nodes moved
randomly for both slow and fast processing nodes, so all of the nodes in our simulation
were used with equally probability. Thus, this proportion agreed with the nodes

processing rate proportion, 18:18.
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Figure 3.11 Normalized average reward of RL and CVCP for 18:18 heterogeneous

processing rates with 2 traffic classes.
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Figure 3.12  Success ratio of RL and CVCP for 18:18 heterogeneous processing rates

with 2 traffic classes.
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Figure 3.13 Percentage of node processing rates of RL and CVCP for 18:18

heterogeneous processing rates with 2 traffic classes.
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3.7.1.2 Three traffic classes

In this experiment, simulation results are shown for 3 traffic
classes of messages under the 18:18 heterogeneous processing rate nodes regime with
rewards varying according to Table 3.6. We expanded the experiment from 2 traffic
classes to investigate if results improved as the traffic message classes became more
diverse. A network with more traffic classes in the view of healthcare application may
represent more types of vital signs present in the network. For this reason, we expected
the cooperation among nodes to increase giving rise to higher normalized average reward
and success ratio in the simulation. From Figure 3.14, we observed that RL can get a
better normalized average reward than CV.CP in our experiment. Figure 3.15 shows the
success ratio of RL compared to.CVCP. Note that RL with class 3 which had the most
normalized average reward achieved the mostsuccess ratio gain over the CVCP method.
Similar to the 2 traffic classes, Figure 3.16 illustrates that both RL and CVCP equally
used each type of node processing rate under scheme 1 in Table 3.8. Note that RS1 refers
to reward scheme 1 in Table 3.6 and so on. Hence, the result in terms of percentage of
node processing rate did not depend on the algorithm. The reason was because all nodes
moved randomly, so all nodes had a chance to forward messages equally. To clearly
demonstrate the RL performance trend, the next experiment in the following subsection

extends to a scenario with 4 message classes.
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Figure 3.16 Percentage of node processing rates of RL and CVCP for 18:18

heterogeneous processing rates with 3 traffic classes.

3.7.1.3 Four traffic classes

In this subsection, 4 traffic classes of messages with varying

rewards according to Table 3.7 was studied to show that the RL algorithm can support

multi-classes of arrival messages and that the advantages of RL become even more

evident in presence of diverse types of traffic. Figure 3.17 illustrates that the normalized

average reward increased accordingly with the last reward scheme, RS3, attaining the

most gain against the CVCP. Figure 3.18 shows that the success ratio of RL class 4 was

consistently greater than CVCP for all reward schemes. Figure 3.19 illustrates the

percentage of node processing rate according to scheme 1 in Table 3.8. Once again, the

node usage was equally distributed for both RL and CVCP. The proportion of each type

of processing rate was equal to 18:18 due to the random way point movement, so this led

to the same result as the 2 and 3 message classes’ scenarios.
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Figure 3.19 Percentage of node processing rates of RL and CVCP for 18:18

heterogeneous processing rates with 4 traffic classes.

3.7.2 Three heterogeneous processing rates (12:12:12)
In this section, we present the simulation results under scheme 3 in Table
3.8 where 3 heterogeneous processing rates were assigned symmetrically to 12 nodes in
the 36 node mWSN, with processing rates equal to 0.1 message/sec, 0.5 message/sec and
0.9 message/sec, respectively according to Table 3.8. The purpose of this study was to
investigate the performance under more types of node processing rates and to gauge the
benefit of RL in presence of a higher degree of heterogeneity.
3.7.2.1 Two traffic classes
We initially studied two traffic classes for the sake of simplicity,
where rewards were varied according to Table 3.5. Results in Figures 3.20 and 3.21
agreed with the scenario of 2 message classes with 18:18 node proportion, with higher

normalized average rewards and success ratios for the message class with the most
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reward. Figure 3.22 which shows the percentage of node usage, also agreed with Figure

3.12 where each node type was equally used.

o

I
©
T

o
™
T

o
3
T

o
o
T

Normalized average reward
o o o o
N w S o
T T T

o

o

[ Jcver

1 2
Reward scheme

Figure 3.20 Normalized average reward of R and CVCP for 12:12:12 heterogeneous
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Figure 3.22 Percentage of node processing rates of RL and CVCP for 12:12:12

heterogeneous processing rates with 2 traffic classes.

3.7.2.2 Three traffic.classes

In this sub-section, 3 traffic classes have been investigated by
varying the reward according.to Table 3.6. Figure 3.23 and 3.24 depict the normalized
average reward and success ratio in this scenario, respectively. It can be observed that the
success ratio for RL was dependent on the reward assigned to each message class
whereas such dependency was absent in CVCP. Figure 3.25 illustrates the percentage of
node processing rate according to scheme 3 in Table 3.8. This result shows that both
CVCP and RL used 33% of each node processing rate. This was because the setting node
processing rate was 12:12:12 thus agreeing with the 18:18 heterogeneous node

processing rate case in Figure 3.15.
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Figure 3.23 Normalized average reward of RL and CVCP for 12:12:12 heterogeneous
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Figure 3.25 Percentage of node processing rates of RL and CVCP for 12:12:12

heterogeneous processing rates with 3 traffic classes.

Figure 3.26,3.27-and 328 present results for the 4 message classes
under the reward regime in Table 3.7, in a 12:12:12 heterogeneous mWSN scenario in
scheme 3 in Table 3.8. As the reward of the fourth' message class increased, so did its
success ratio with a trade off in decrease of the success ratio in other classes. Fairness can
be guaranteed by introducing a penalty parameter (Tong and Brown, 2000) to ensure that
the rejection probability of each message class does not fall below a predetermined
threshold. This would be a constrained optimization problem which can be extended from
this work (See Section 4.2). The percentage of node processing rate usage in Figure 3.28

was also proportional to the number of each type of node in the network.
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Figure 3.28 Percentage of node processing rates of RL and CVCP for 12:12:12

heterogeneous processing rates with 4 traffic classes.

3.7.3 Alternative node processing rates

In this subsection, we studied the effects of asymmetrical node processing
rates assignment in the heterogencous mWSN under scheme 2 (12:24) and 4 (4:12:20) in
Table 3.8. In particular, we studied the gain in normalized average reward of RL over the
existing CVCP method as the degree in heterogeneity in messages classes and node
processing rate increases in the mWSN. It was found that the normalized average rewards
and success ratio demonstrated similar patterns as presented in section 3.7.1 and 3.7.2, we
do not show them in this subsection for the sake of redundancy. However, a complete
presentation of results in this subsection can be found in Appendix B. In this section, we
focus the percentage of node processing rates in Figure 3.29 and 3.30 for 4 message
classes under schemes 2 and 4 in Table 3.8, respectively. Once again, the percentage of

node usage for both the RL and CVCP algorithms were found to be proportional to the
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amount of nodes of each type of processing rates, irrespective of the reward schemes.
Such results suggest that both algorithms utilized nodes in a similar manner, i.e.,
according to the node availability within the network. Nodes with faster processing rates
were not used to forward messages more often than the slower ones, thereby ensuring a

certain degree of fairness in node utilization within the network.
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Figure 3.29 Percentage of node processing rates of RL and CVCP for 12:24

heterogeneous processing rates with 4 traffic classes.
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Figure 3.31 illustrates the gain of normalized average reward for all node
processing rate heterogeneity schemes according to Table 3.8. The gain in normalized
average reward refers to the normalized average reward of RL subtracted by the
normalized average reward of CVCP. Results are shown for the maximum reward
scheme setting (RS3) and the minimum reward scheme setting (RS1) according to Table
3.5-3.7. From the figure, it can be observed that the gain in normalized average reward
was affected by reward setting of the message class schemes being used, irrespective of
the node processing rate heterogeneity regime. In particular, RS3 which was the
maximum reward scheme used in the experiments consistently obtained up to 9-14% gain
in normalized average reward over the CVCP method, whereas RS1 gained about 2-4%
gain, depending on the number of traffic classes present in the network. The fact that the
gain in normalized average reward was invariant to the diverse node processing rates
available in the network suggested that intermediate nodes' decisions on whether or not to
cooperate are based on the future expected return fora particular message class alone.
The level of node processing rate nor the amount of nodes in each type of processing rate
did not have any significant impact on the performance of the proposed algorithm and the
original CVCP algorithm. Therefore, some degree of fairness can be observed in the
routing decisions at the intermediate nodes for both algorithms. That is, nodes with faster
processing capabilities were not inclined to cooperate any more frequent than slower
processing rate nodes. However, the RL framework proposed in this work allowed the
nodes in the heterogeneous mWSN to selectively cooperate in forwarding a particular

message class and achieve a better normalized average reward than the CVCP algorithm.
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3.7.4 Heterogeneous mWSN Conclusion

In this section, we studied the proposed incentive-based routing in a non-
cooperative heterogeneous mWSNs. The proposed method incorporates a RL method
called Q-learning into an existing incentive-based scheme called CVCP to solve the
routing problem. The main focus of the proposed method was on enhancing routing
cooperation in heterogeneous mWSNs, particularly for high priority message classes
which require critical and reliable handling from intermediate nodes within the network.
The problem was formulated under the RLL framework using vital credits as incentives.
However, instead of basing decisions on the vital credits alone as the original CVCP
method, our proposed method took into consideration the future expected benefits of
agreeing or declining to ‘cooperate in the packet forwarding process. Moreover, we
studied symmetric and asymmetric node processing rates in mWSNs operating under
various message reward regimes in an order to cater @ more realistic scenario for
healthcare applications which require more complexity in terms of node and traffic
heterogeneity. Simulation results showed that for all multi-traffic class regimes, RL
outperformed CVCP in terms of normalized average rewards by up to 14%. However, the
percentage of node processing rate did not depend on any algorithm but only on the
proportion of nodes of each type of node processing rate. Such result suggests that the
advantage of the proposed method ensures a certain degree of fairness in node selection,
i.e., faster nodes were not used more frequently than slower nodes. Nodes only
cooperated based on the incentives or vital credits as well as the future benefits of their
decisions at a particular state. In the final subsection, results also showed that
heterogeneity in node processing rate did not affect our experiment results, In particular,

the normalized average rewards and success ratio did not show any significant changes as
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the node processing rate heterogeneity changed, although RL consistently gained 2-14%
of normalized average reward, depending on the reward regime, over the original CVCP
method. The percentage of node usage in each type of node processing rate only
depended on the proportion of each type of nodes for both algorithms. The results in our
experiment suggest that RL can be applied to improve cooperation among routing nodes

in comparison to an existing incentive-based algorithm like CVCP.



CHAPTER 1V

CONCLUSION AND FUTURE WORK

4.1 Conclusion
In this thesis, we proposed a RL method called Q-learning to enhance routing
cooperation among nodes in non-cooperative heterogeneous mobile wireless sensor
networks (mWSNs). The work carried out in this thesis was divided into two parts which
were homogeneous and heterogeneous node processing rate non-cooperative mWSNs.
We first simulate the homogeneous nede processingrate scenario to compare the results
with an existing algorithm Continuous Value Cooperation Protocol (CVCP) to analyze
the effects of traffic or message class heterogeneity alone on the routing performance
within the network. In a.subsequent experiment,-we then extend the heterogeneity to
encompass a broader case of different node processing rate scenario. These two parts
were presented in Chapter 3.The original contributions and findings in this thesis can be
summarized as follows.
4.1.1 Homogeneous mWSNs
The purpose of this section was to demonstrate that the Q-learning
algorithm can be applied to promote routing cooperation in non-cooperative
homogeneous mWSNs in comparison with an existing CVCP algorithm. Two
contributions were made here:
1)  The simulation result comparison between RL and the existing

CVCP algorithm in non-cooperative mWSNs.
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The proposed experiment results showed that the RL method consistently
outperformed CVCP in terms of success ratio and normalized average reward for all
reward, message arrival rate and message departure rate scheme settings. These
elementary results suggested that the proposed RL approach based on Q-learning
algorithm can be applied to improve cooperation among routing nodes with a
homogeneous node processing rate under the presence of different traffic classes in
comparison to the existing CVCP incentive-based algorithm.

4.1.2 Heterogeneous mWSNs

The purpose of this section 'was to extend the framework from
homogeneous mWSNs to address many challenges associated with an incentive-based
routing for non-cooperative heterogeneous mWSNs: Heterogeneity of the sensor and
routing nodes was applied to cater. more realistic scenarios. One contribution was made
here:

1) The simulation result comparison of the proposed method and the
existing CVCP algorithm in non-cooperative mWSNs in presence of
heterogeneous node processing rates under different traffic regimes.

The significance of our work was centered on proposing means to enhance
routing cooperation among nodes in heterogeneous mWSNss, particularly, in the presence
of high priority message classes which require critical and reliable handling from
intermediate nodes within the network. Moreover, we studied symmetric and asymmetric
node processing rates in mWSNs operating under various message class schemes to cater
a more realistic scenario for healthcare applications in terms of node and traffic
heterogeneity. The results showed that, RL algorithm can promote more robust

performance than CVCP algorithm in terms of success ratio and normalized average
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reward. We also evaluated the percentage of node processing rate which only depended
on the proportion of each type of nodes for both algorithms. This suggests that RL
approach based on Q-learning algorithm can obtain the better performance than the

CVCP.

4.2 Future Works

4.2.1 mWSNs with Transmission Cost Function
Each sensor node should employ a radio model (Naruephiphat and Usaha,
2008) to compute the transmission and receiving cost required for transmitting a packet.
To study the effect of this radio model, many challenges associated with incentive-based
routing for non-cooperative mWSNs with the transmission cost function should be
addressed.
4.2.2 mWSNs with Energy Consumption Condition
Energy consumption in mWSNs is one of the most important issues. To
manage the energy problems in mWSNs, a possible future direction is to study how to
manage the energy consumption to achieve the optimal solution with incentive-based

routing for non-cooperative mWSNss.

4.2.3 Performance Evaluation of Test Bed
The main objective of this thesis was to compare packet forwarding
strategies in incentive-based routing for non-cooperative mWSNs governed by using both
RL and CVCP algorithms. This experiment was simulated by Visual C++ programming
to perform the learning process and evaluate algorithms. Therefore, an important future

direction is to extend the framework either to employ raw data collected from the field
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measurement for training the learning algorithm, or to implement the framework in an
actual mMWSN.
4.2.4 Extend the State Space of RL
Larger state spaces should be investigated, particularly, the impact of this
larger state space to our performance metrics including the normalized average reward,
success ratio and percentage of node processing rate.
4.2.5 Guarantee the Fairness for Message Rejection Probability
According to the results from our work, the success ratios of message
classes with lower priority were not gunaranteed. To ensure that the rejection probability
of each message class does not fall below a predetermined threshold, a penalty parameter
can be introduced to guarantee fairness of each message class (Tong and Brown, 2000).

This would be a constrained optimization problem which can be extended from this work.
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Abstract— This paper proposes to promote cooperative routing
for homogeneous mobile wireless sensor networks (mWSNs)
using a scalable, distributed incentive-based mechanism with
reasonable resource requirements using reinforcement learning
(RL). In particular, Q-learning which is a well-known RL
method was integrated an existing Continuous: Value
Cooperation Protocol (CVCP). We also studied their effects on
the efficiency in non-cooperative mWSNs and propoese a good
routing strategy under constrained conditions such as nefwork
traffic load, degree of mobility and path loss exponent.

Keywords- Reinforcement Learning, Mobile Wireless Sensor
Network, Routing Cooperation

L INTRODUCTION

A wireless sensor network (WSN) usually consists of
numerous sensor nodes deployed in-the arca of interest. Each
node is able to collect and process data with neighboring
devices. There are many reasons for its popularity;.including
low costs, flexibility and ease of deployment. However, WSNs
have some constraints, such as limited power supply, storage,
bandwidth, and computation capability. Such constraints
combined with a typical deployment of large number of sensor
nodes have posed may challenges to the design and
management of sensor networks. These challenges necessitate
energy-awareness at all layers of networking protocols stack.
At the network layer, the aim is to set up energy-efficient
routes and reliably relay data from sensor nodes to the sink so
that the lifetime of the network is maximized. Therefore, there
are many researches which aim at solving these routing
problems in WSNs.

Most current researches assume WSNs to be stationary.
However, in many scenarios WSNs must be mobile. For
instance, for wild life monitoring, sensor nodes are cast into the
region of interest as well as equipped on animals to be
monitored. The self-organized WSN is mobile as animals move
around. In a telemedicine application [2], sensor nodes attached
to moving patients also form a mWSN. Furthermore, most
routing schemes assume that nodes function properly, are
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trustweorthy and cooperative. However, in realistic scenarios,
nodes. may fail to operate due to lack of resources, hardware
failure_or malicious behaviors. There are many algorithms
which are used to deal with non-cooperative routing in
mWSNs. The incentive-based concept has been applied in
many algorithms such as reputation-based routing mechanism
[3]«Nash-Q [4], reinforcement learning (RL) [5], Game theory
[6]. Nodes decide whether to cooperate or not based on
incentives stored or earned. In [7], the authors proposed an
incentive-based  mechanism  called  continuous  value
cooperation -protocol (CVCP) for healthcare monitoring to
mmprove the routing cooperation of mobile wireless sensor
nodes which are attached to patients. In [8], the authors
proposed an efficient implementation of RL-based routing on
real mWSNs.

The incentive-based concept is the one of the effective tools
for solving' the reuting problem in non-cooperative mWSNs.
Reputation miechanisms are typically used to enhance security
by identifying and avoiding malicious nodes, but not promote
node cooperation. Game theory requires knowledge of the
other opponents” strategy, thereby may not be scalable
especially in dynamic environments as mWSNs. On the other
hand, RL can cater a large number of nodes with distributed
operation using only local information from the neighboring
nodes.

The objective of this paper is therefore to solve the routing
problem for non-cooperative mWSNs using a scalable,
distributed incentive-based mechanism. In particular, we apply
a RL method called Q-learning to promote packet forwarding
in a periodic sleep cycle homogeneous mWSN. We compare
its performance with an existing sleep cycle incentive-based
routing algorithm [7] under various mobility and traffic
scenarios.

II.  CONTINUOUS VALUE COOPERATION PROTOCOL (CVCP)

The continuous value cooperation protocol (CVCP) [7] has
been proposed to promote router cooperation in ad hoc

b co:'h&tuter
. I:'smtlety
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networks deployed to supplement infrastructure-oriented
wireless health monitoring systems. The protocol used
incentives called vital credit which is a function of message
priority level (P), network traffic loads (NT), and criticality of

the message delivery (C). Vital credits (/) are defined as:

I, =NT"xP"xC" )

where L, M and N represent constants that can be chosen to
emphasize certain factors in vital credits. For example, nodes
transmitting emergency messages or alerts can be assigned
vital credits greater than symptoms monitoring nodes to
encourage delivery; the network traffic level depends on
frequency of monitoring, number of packets per message,
number of monitored patients; node eriticality may rely on the
location of the routing node and routing scheme.

Figure 1 shows an individual routing node using CVCP to
decide whether to forward a particular message to a destination
node based on the number of vital credits offered by the source
node, and the routing node’s already earned vital credits. The
source device uses an incentive estimator to determine the vital
credits it will offer to a routing node to forward its message.
The routing node stores already carned vital credits. If the
offered vital credits exceed its stored credits, the more likely a
routing node will cooperate. On the other hand, a routing node
with a large number of stored credits might not eaoperate even
if the offered number of credits is high. If @ routing node
decides to cooperate, it receives the offered wital credits from
the source node and adds them to its stored gredits.

Nodes with the most vital credits can receive higher sleep-
cycle priority, thereby promoting energy saving. However,
nodes that have used up their vital credits for a recent sleep
cycle are more likely to cooperate to tficrease their earned vital
credits. Figure 2 depicts the CVCP Wital eredit chegking
procedure at a routing node. Furthermore, it .also checks
whether a sleep cycle will be initiated soon and opts fo
cooperate accordingly.

However, cooperation also incurs certain  energy
consumption costs as a result of‘agreeing to forward a packet.
Such costs may vary according to the hostility of the mobile
environment. Decisions should also'.gomsider the long term
average reward which is a trade-off between eamed credits and
energy consumption costs. Furthermore, apart from checking
the offered and stored credits and sleep cycles, decisions to
cooperate or not may also be dependent on state conditions of
the routing node other than shown in Figure 2. For instance,
different states of network loads or residual battery levels may
provide different decisions in order to achieve an optimal long
term average reward for a particular routing node. A scalable,
distributed self-learning scheme with reasonable computation
requirements described in the next section warrants potential
use in highly dynamic systems such as mWSNs.

Message priofity s Incentive
Network traffic [0a0] —" estimator
Criticality m—]

Vital credits

Y
Cooperation

Stored Vitals credits s—] protocol

Decision en
cooperation

Figure 1. Cooperation protocol [7] in which a routing node makes a
decision based on vital credits the source node offers and its stored credits.

ifsieep opcie
SHRL € currant
time+T

I Agreeto ccoperate ] | Beclie to cooperate

Figure 2. Diagram of CVCP checking procedure performed at a routing node
[71.

11, REINFORCEMENT LEARNING

Reinforecement learning (RL) [5] is a machine learning
scheme which can permit a decision maker to learn its optimal
decisions (actions) through a series of trial-and-error
interactions with a dynamic environment. Its main idea is to
reinforce good behaviors of the decision maker while
discouraging bad behaviors through a scalar reward value
returned by the environment. In RL, the decision maker is
called the agent whereas everything outside the agent is call the
environment. Upon an action taken, the environment responds
to the action by transiting to a new state. Furthermore, the
environment also feedbacks the agent the corresponding
reward as a consequence of the action selection at a given state,
which the agent tries to maximize overtime. More specifically,
the agent and environment interact with each other in a
sequence of discrete time steps. At each time step (f), the agent
receives some representation of the environment’s state (s,) and
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select and action (a,). On time step later, the agent receives a
numerical reward (r,, ;) and finds itself in a new state (s, ;). The
agent should behave so as to maximize the received reward, or
more specifically, the amount of accumulated rewards the
agent receives over time.

IV. Q-LEARNING

Among the popular RL algorithm, Q-learning [5] has been
well-investigated and relies on a Markov decision theory
(MDP). Q-learning is a model-free algorithm which learns the
values of the function Q(s,a) which quantifies how good it is ta
perform a certain action in a given state. With its ease of use,
Q-learning has seen wide applications in resource allocation
and is promising for dynamic environments such as mW8Ns.
Since Q-learning requires no prior model of the environment
and can perform online learning, it is suitable for learning in
non-cooperative mWSNs where little information is known
among nodes.

In a MDP, the tuple (S, 4, P. R) is defined to describe their
characteristics, where § denotes the set of all possible states;
denotes the set of all possible actions, P is the state transition
probability matrix such that P(s'[s.a) e P is the
probability of transiting to the next state 58 after an
agent takes action @ € 4 at state s € § . R/is a function of
the reward expected from the environment as a result of taking
actiona € A . The objective of solving a MDP is to find-a
policy, 77, defined as a mapping from the state space to the

probability distribution, 7: 5§ — P|‘,4_! . where F[A] is the
distribution over the action space. Tordetermine the optimal

policy, 7", RL requires the knowledge of a quantification of
future benefits (or returns) at a given condition:called the
action-value function. The action-value function. of a given

policy 7, denoted by QO (s,a) . associates all state-action
pairs(s,a) with an expected reward for performing action a

in state s at time step ¢ and following 7 thereafter;
O™ (s,a)=E"{R, |5, =s,a, =a}

2
=E*{} Brnls, =s,a,=a}
k=0

0
- 2 - :.- ;
whete R, =1+ fr,+f ";»»3"'---_218 Bikn 18 the
=0

expected discounted return of the agent, £ is the discount

factor and £7 {-} is the expectation operator of a given policy

7. The goal of the RL agent is to determine a policy to select
actions so that its expected discounted future reward is
maximized.

Based on the conjecture that different states of network
loads or residual battery levels may affect cooperation
decisions for a particular routing node, we define the state s in

our game as the quantized level of the network load
experienced at a routing node wheres € §, §' is the state space
of the environment which is divided into 5 states, i.e. from low
(1) to high (5). Each agent can independently decide its own
action whether or not to cooperate with the other agent. A set
of all the possible actions is defined by 4 = {a,, a;} where a,
refers to agreeing to cooperate and ay, otherwise.

Suppose that the agent at time step ¢ executes action a in
state s, then transits to the next state 5" and obtains a scalar
reward r. During the learning process, the agent starts with an
arbitrary initial Q-value. After executing action  at state s, the
agent receives an immediate reward » and then updates both
the new state and new Q-value with input from the
environment. The update rule at time step t+1 of Q-learning is
given by:

QH-\ (59 (F) = (l - (Z)Q, (Sa a) + Q’[f" +}3 qu Q] (Sls a‘)l!

(2)

where & €[0,1] is the learning rate, S [0,1] is the discount
factor, and Q(s',a') is action-value function for the next state s*

and next action a". In this work, r is a reward function for node
i defined by:

rn=1-C(b,d) (3)

where C; is the transmission cost function of node i which
comes from the path loss exponent model given by:

C; (b, d) = E“n(,‘ x b+ (Samp xbhxd® ), (4)

where E,., = 50 nl/bit is the expended cost in the radio
electronics and we assume that b = 250 Kbits is the size of the
measurement packet transmitted, o is the path loss exponent
and L 10pJ/bitim® is the energy consumed at the output

transmitter anterha for transmitting one meter and d is the
distanee between node. The process is repeated iteratively to
learn the agent’s own optimal policy. The condition for Q-
learning to converge is that all states and actions must be
visited infinitely often [5].

Figure 4. describes the procedure of applying Q-learning
algorithm to CVCP. Suppose a source node sends a message, it
first uses the incentive estimator to estimate the vital credit 7, to
offer the routing nodes. Upon receiving the message, each
routing node compares the offered vital credit to its stored
credits /.. If this /, is greater than its /., this routing node
will check the state of its network load (NT) and chooses an
action between Random action and Greedy action. The
decision to choose Random action or Greedy action depends
on the & -greedy probability. Note that £ €[0,1] is the

probability that a Greedy action is selected which is defined as:




88

(3)

0.
£=0.9+| ———— |xcwrrent _num _event
runlength

where Greedy action refers to

a* =arg max Q(s,a)
Yaed
Otherwise, a Random action, which refers to the action being
randomly selected in a uniform fashion, is selected. The & -
greedy probability is required so as to satisfy the convergence
condition for Q-learning which is that all states and actions
must be visited infinitely often [5]. Note that the & -greedy
probability increases with time in order to encourage more
greedy action selection as the agent progressively learns. Upon
each decision taken at each node, Qfs,a) is updated according
to (2) for the state action pair at that particular node.

However, if the value of /, is less than /., the routing
node then considers whether it will intiate the sleep cycle soon
or not, by comparing the sleep cycle start time T, with the
system time T+t T. If T, is less than T, t7, it still
stays active. It continues to operate by checking its state and
select either a Random action or Greedy action according to the
& -greedy probability. If the routing node is about fo initiate
the sleep cycle; it will compare its [, with a predefined
threshold which is the vital credit spent for entering a sleep
cycle. If I, of this routing node is greater than this threshold,
the node will subtract this amount from the current /. and
then checks its state. Finally, this node will then decline to
cooperate and enter sleep mode where it remains inactive for a
finite period of sleep cycle.

V. SIMULATION RESULTS

In this section, we evaluated the proposed integrated CVCP
and Q-learning algorithm and compared. it with the original
CVCP. Visual C++ was used to simulate a homegengous,
mWSNs under various conditions according to Table:1. All the
36 nodes of mWSNs which followed the random way point
mobility model had equal initialized stored credits, while
offered incentives I, were based on (1). Packets were sent from
an origin node to a destination” node.” Intermediate routing
nodes then decide whether to cooperate or not depending on
incentives they receive and their sleep ¢yele period. Each node
along a path receives an offered vital.eredits from the origin
node. If the offered vital credits are more than their stored
credits, then they will agree to cooperate. Otherwise, the nodes
decline to cooperate. The sleep cycle period affects a node’s
decision when that node has enough credits to sleep but the
sleep cycle will not be initiated any time soon (within a certain
window), such node can agree to cooperate. The pause time
was varied to evaluate the performance under different degrees
of mobility. The remaining simulation parameters are shown in
Table 1.

A, Performance metrics

e  Percentage of cooperative nodes: the evaluation of
this metric is given by:

all _coop _node

—=———=——x100 (6)
all _node _in _ path

Y%coop = (
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Diagram of the proposed algorithm which integrates Q-learning

with CVCP performed at a routing node.

TABLE 1. SIMULATION PARAMETERS.

Parameters

Value

Number of sensor nodes

36

Node maebility

Random way point

Node'pause time (PT)

0, 30,601,180, 300 s,

Node velogity (m/s)

Min. = 0.3 Max = 0.7

Area size 13x13m’
Transmission range 3m
Runlength (number of route requests) 200000
Routing scheme Shortest path
Path loss exponent ( o ) 2-6
Sleepywake eyele period (s) 30,30
Credits spent per sleep cycle 10

From (6}, “this metric is the proportion of all
cooperative nodes in the path over all nodes in the
path. In this paper, cooperative nodes are nodes which
agree to cooperate along a route from an origin node to
a destination node. of RL in comparison with CVCP in
Figure 4 compares RL and CVCP results as the pause
time (PT) is varied. The percentage of cooperative
nodes for RL is 97% while that of CVCP is around
80%. The constant trend was because of the number of
all cooperative nodes and all nodes in the path were
both increasing at the same rate as the pause time
increased. As the pause time increased, more paths
were discovered which gave rise to an increase in the

number of nodes.

Figure 5 depicts the results of the

two algorithms as a function of 4, the message
demand, which governed the network load (NT). In
Figure 5, the percentage of cooperative nodes for RL
was consistently higher than CVCP.
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e Successful path ratio: This metric was given by the
proportion of successful paths (ie. message
successfully delivered to destination node) over all
available paths. Figure 6 illustrates the successful path
ratio for RL and CVCP as the pause time (PT) was
varied. Note that when nodes were static, the best
results were obtained. Furthermore, RL outperformed
CVCP as a result of the online learning. This result
was in agreement with the percentage of cooperative
nodes, since more paths were available therefore more
successful message deliveries as the pause time
increased. Figure 7 depicts the successful path ratio of
RL was still greater than CVCP, though constant, as
the network load increased. This was because the
proportion of number of successful path and all paths
were constantly growing. However the result in Figure
8, the cost function Ci (b, d) from equation (4) was
added and the path loss exponent (o) varied. Results
showed that successful path ratio was decreased for
RL. This was because increasing o increased the cost,
hence a reduction in reward r; in equation (3):

*  Average reward: This metric is the average reward
obtained over the course of simulation. In Figure 9, the
average reward is shown against a varying pause time
(PT). Both RL and CVCP obtained the best
performance when pause time equal 1o 300s, this is
because the effect from slow node movement. Note
that when all nodes are moving slowly, a morediverse
range of nodes were available from the slowly
changing topology when compared with the static case.
For, in static topology obtained. less average teward
than at pause time equal to 300s. Figure 10 depicts the
average reward with varying 4. Both RL. and CVCP
achieved more average reward with greater / since the
vital credit is a function of network load (see equation
(1)). Figure 11 shows the average reward when the cost
function Ci (b, d) was included and the path loss
exponent (o) was varied. Results show that RL and
attained less average reward as the path loss exponent
(o) increased for all pause times.

VI. CONCLUSIONS

We proposed an incentive-based routing to improve router
cooperation in a homogeneous mWSN. The proposed method
incorporates the RL and the CVCP to solve the routing
problem. We compared these two algorithms to and found that
the RL method can achieve up a percentage of cooperative
nodes up to 17% more than CVCP. In terms of the successful
path ratio and average reward, RL also consistently
outperformed CVCP. The results in our experiment suggest
that RL can be applied to improve cooperation among routing
nodes in comparison to an existing incentive-based algorithm
like CVCP.

Our future work will address many challenges associated
with incentive-based routing for non-cooperative mWSN,
including energy consumption condition and heterogeneity of
the sensor and routing nodes to cater more realistic scenarios.
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Figure B.3  Percentage of node processing rates of RL and CVCP for 12:24

heterogeneous processing rates with. 2 traffic classes.
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Figure B.4  Normalized average reward of RL and CVCP for 12:24 heterogeneous

processing rates with 3 traffic classes.
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Figure B.5  Success ratio of RL and CVCP for 12:24 heterogeneous processing

rates with 3 traffic-classes.
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Figure B.6  Percentage of node processing rates of RL and CVCP for 12:24

heterogeneous processing rates with 3 traffic classes.
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Figure B.9 Normalized average reward of RL and CVCP for 4:12:20

heterogeneous processing rates with-2traffic classes.
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Figure B.10 Success ratio of RL and CVCP for 4:12:20 heterogeneous processing

rates with 2 traffic classes.
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Figure B.11 Percentage of node processing rates of RL and CVCP for 4:12:20

heterogeneous processing rates with-2 traffic classes.
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Figure B.12 Normalized average reward of RL and CVCP for 4:12:20

heterogeneous processing rates with 3 traffic classes.
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Figure B.13 Success ratio of Ry and CVCP for 4:12:20 heterogeneous processing

rates with 3-traffic classes.
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Figure B.14 Percentage of node processing rates of RL and CVCP for 4:12:20

heterogeneous processing rates with 3 traffic classes.
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Figure B.15 Normalized average reward of RL and CVCP for 4:12:20

Figure B.16

heterogeneous processing rates with-4 traffic classes.
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