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Abstract—Relaxed control for a class of strongly nonlinear impulsive evolution equations is in-
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1. INTRODUCTION

In this paper, we present sufficient conditions of optimality for optimal relaxed control problems
arising in systems governed by strongly nonlinear impulsive evolution equations on Banach spaces.
The general descriptions of such systems were proposed in [1] as given below.

(t) + A(t, z(t)) = g(t, z(t), u(t)), tel\D,

2(0) = o, (1)
Azx(ts) = Fi(z(t:)), i=1,2...,n

where I = (0,T) is a bounded open interval of the real line and let the set D = {t1,t9,...,t,}
be a partition on (0,7) such that 0 < t; < {3 < -+ < t, < T. In general, the operator A is
a nonlinear monotone operator, g is a nonlinear nonmonotone perturbation, Az(t) = z(t}) -
z(t7) = 2(t}) — z(t:), i = 1,2,...,n, and F;s are nonlinear operators. This model includes all
the standard models used by many authors in the field (see [2,3]). The objective functional is
given by J(z,u) = [ L(t, x(t), u(t)) dt.

In a recent paper by the author [1], the existence of optimal control was proved, but sufficient
conditions of relaxation for optimality were not addressed. We wish to present just that. Before
we can consider such problems, we need some preparation. The rest of the paper is organized as
follows. In Section 2, some basic notations and terminologies are presented. Section 3 contains
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some preparatory results. Relaxed impulsive systems are presented in Section 4. Sufficient
conditions of relaxation for optimality are discussed in Section 5. In Section 6, we presented an
example for illustration.

2. SYSTEM DESCRIPTION

Let V be a real reflexive Banach space with topological dual V* and H be a real separable
Hilbert space. Let V' «— H < V* be an evolution triple and the embedding V — H be compact.

The system model considered here is based on this evolution triple (see (4, Chapter 23]).

Let (z,y) denote the paring of an element £ € V* and an element y € V. If z,y € H, then
(z,y) = (z,y), where (z,y) is the scalar product on H. The norm in any Banach space X will
be denoted by || - || x.

Let p,q > 1 be such that 2 < p < 400 and 1/p+1/q = 1 and let I = (0, 7). For p, g satisfying
the preceding conditions, it follows from reflexivity of V that both L,(I,V) and L,(I,V*) are
reflexive Banach spaces. The pairing between L,(I, V) and L, (I, V*) will be denoted by {-}).

Define .

Weg(l) = {@:z € L(I,V), t € L,(I,V*)},

with the norm

Izl w,eny = N2l vy + 12N Ly, ve),

where & denoted the derivative of z in the generalized sense. The space (Wyo(I), || - llw,. 1))
becomes a Banach space which is clearly reflexive and separable and the embedding Wp,(I) <
C(I, H) is continuous. If the embedding V < H is compact, the embedding W,,(I) < L,(I, H)
is also compact (see [4, Problem 23.13(b)]). Sometimes we write Wp,(0,T) instead of W, (I).
Similarly, we can define Wy,(s,t) for 0 < s < ¢ < T and the space (Wpy(s,t), || - llw,qs,1))
is also a separable reflexive Banach space. Moreover, the embedding Wy,(s,t) — C([s,t], H)
is continuous and the embedding Wp,(s,t) — Ly((s,t), H) is also compact. We define the
set PWpo(0,T) = {z : 2l 1,0,) € Wpelti,tig1); 1 = 0,1,2,...,n, to = 0, tnyy = T}. For
each © € PWye(0,T), we define [|zlpw,,01) = Yo 12w, (ti,ti01)- As a result, the space
(PWpe(0,T), 1| - llPw,,(0,7)) becomes a Banach space. Let PC([0,T],H) = {z : z is a map
from [0,7] into H such that = is continuous at every point ¢ # ¢;, left continuous at t = t; and
right-hand limit x(t;") exists for ¢ = 1,2,...,n}. Equipped with the supremum norm topology,
it is a Banach space. Consider the following impulsive evolution equation:

o(t) + A(t, z(t)) = g(t,2(2)), tel\D,
2(0) =z € H, (2)
Az(t;) = Fi(z(ty)), i=1,2,...,n and O0<t;<tr<---<t,<T.

By a solution z of problem (2), we mean a function z € PW,,(0,T) N PC([0, T}, H) such that
z(0) = xp and Axz(t;) = Fi(z(t;)), i = 1,2,...,n, and satisfies

(&), v) + (A, 2(1)), v) = (g(t, z(?)), v)

for all v € V' and p-a.e. on I, where i is the Lebesgue measure on 1.

3. PREPARATORY RESULTS

For the study of relaxation for optimality it is essential to guarantee the existence and unique-
ness of solutions of the impulsive evolution equation and certain other related equations. Here
in this section, for convenience of the reader, we quote some results from the recent work of the
author [1]. First, we recall some hypotheses on the data of problem (2).
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HypoTHESIS (A). A:IxV — V* is an operator such that
(1) t — A(t,z) is weakly measurable, i.e., the functions t — (A(t,z),v) are u-measurable
onl, forallz,ve V.
(2) For each t € I, the operator A(t) : V — V* is uniformly monotone and hemicontinuous,
that is, there is a constant ¢; > 0 such that

(A(t, 1) — A(t,22), 21 = T3) > c1||z1 — 22||%

for all z1,z2 € V, and the map s — (A(t,x + sz),y) is continuous on [0,1] for all
z,y,z2€ V.
(3) Growth condition: there exists a constant c; > 0 and a nonnegative function a;(-) € L,(I)
such that
A, 2)llv < a1(t) + ezl
forallz eV, forallt e I.
(4) Coerciveness: there exists a constant cs > 0 and ¢4 > 0 such that

(A(t,z),2) > csl|z|, —cs, forallz eV, foralltel.

HypoTHESIs (G). g:I x H — V* is an operator such that

(1) g is measurable in the first variable and continuous in the second variable.
(2) g is locally Lipschitz with respect to z, i.e., for any p > 0, there exists a positive constant
L(p) such that

lgt,z1) = 9(t, ). < Lip) lz1 — 22|y,
for all t € I and all 21, %2 € H with ||z1]|. £ p, [|z2 < p.
(3) There exist cs > 0, 2 < k < p, and a nonnegative function hy(-) € Ly(I) such that

lo(t, )llve < ha(t) + eslizflf
forallzeV,tel.
Hypotuesis (F). Fi: H — H is locally Lipschitz continuous on H, i.e., for any p > 0, there
exists a constant L;(p) such that
[1Fi(z1) = Fi(z2)llm < Li(p)||z1 — 22|l
for all 1,3 € H with ||z1|{g < p, ||z2flug <p (=1,2,...,n).

It is sometimes convenient to rewrite system (2) into an operator equation. To do this, we set

X = Ly(I,V) and hence X* = L,(I,V*). Moreover, we set
Az)(t) = A, z(t)),
G(z)(t) = g(t, (1)),

for all z € X and for all ¢t € (0,T). Then the original equation (2) is equivalent to the following
operator equation (see 4, Theorem 30.A)):

=+ Az = G(z), !
z(0) =xo € H, (4)
Ax(t;) = Fi(z(ts)), 1=1,2,...,n and O<t1<tp<.---<t, <T.

®3)

It follows from Theorem 30.A of Zeidler [4] that equation (4) defines an operator 4 : X — X*
such that A is uniformly monotone, hemicontinuous, coercive, and bounded. Moreover, by using
Hypothesis (G)(3) and using the same technique as in Theorem 30.A, one can show that the
operator G : L,(I, H) — X* is also bounded and satisfies

IGW)llx- < My+Ma|oll57 gy, for allw € Ly(1, H).

We state the following results from [1, Theorem B].
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THEOREM 3.1. Under Assumptions (A), (F), and (G), system (2) has a unique solution x €
PW,e(0,T) N PC([0,T), H) and there is a constant M > 0 such that ||z| pw,, 1) < M and
llzll peo,m,m) < M.

ProOF. See [1, Theorem B] for the proof of existence and boundedness. The uniqueness follows
from Assumption (G)(2). To see this, suppose that system (2) has two solutions =1, zg. Then it
follows from integration by part formula and monotonicity of A(¢, z) that

Jox(®) = o)y =2 [ (329~ ia(s)r(6) = 22(9))_ s
/ (5,21(5)) = A(s, 72(8)), 21(5) = w2(8))y_y ds
/ (5,21(5)) = (5,22()), 21(5) = 22(s)hyo_y ds
<2 / (95, 21(5)) = (s, 22(s)), 21(5) - a(8))v+ v ds

(8) — za(s)llv ds

<2 lo(s,ma(s)) —
< 2L(p) / lm1(s) — wa(s) L 21(5) — was)llv ds

< 2L(p)Cy /0 lfox(s) — ma(s)lf% ds,

for some positive constant C;. By Gronwall’s lemma, we get z1(¢) = z2(¢t) for all t € [0,7].
Hence x; = 25 and this prove the uniqueness of the solution of system (2).

Now, let us consider the corresponding control system. We model the control space by a
separable complete metric space Z (i.e., a Polish space). By Py (Py.), we denote a class of
nonempty closed (closed and convex) subset of Z. Let [ = (0,T). Recall that a multifunction
I': I — P¢(Z) is said to be measurable if for each F € P;Z, T"}(F) is Lebesgue measurable
in I. We defined Sr to be the set of all measurable selections of T'(), i.e.,

Sp ={u:I— Z|u(t) is measurdble and u(t) € T'(¢), p-ae. t € I},

where p1 is the Lebesgue measure on [. Note that the set Sp # ¢ if I : [ — P;(Z) is measurable
(see [5, Theorem 2.23, p. 100]). Consider the following control systems:
£(t) + A(t, (1)) = g(t, z(t), u(t)), tel,
z(0) =9 € H, (5)
Az(ty) = Fi{z(¢:)), 1=1,2,...,n, O0<t;j<ta<---<t,<T.

Here, we require the operator A and Fs of (5) to satisfy Hypotheses (A), and (F), respectively,
as in Section 3. We now give some new hypotheses for the remaining data.

HypotHEsIS (U). U : I — Ps(Z) is a measurable multifunction satisfying U(-) C F, where F'
is a compact subset of Z. For the admissible controls, we choose the set U,q = Sy .

HypotHEsIs (Gl). ¢g: I x H x Z — V* is an operator such that

(1) t = g(t,z, 2) is measurable, and the map (x, z) ~— g(t, z, ) is continuous on H x Z.

(2) For each fixed z, g(t,x, 2) is locally Lipschitz continuous with respect to x and uniformly
int.

(3) There exist constants a,b > 0 such that ,

Ntz 2)lve <a+ b“x”z—l

forallz € H,t € (0,T), and z € Z, where 2 < k < p.



Relaxed Control . 783

By Assumption (U), the control set Sy is nonempty and is called the class of original control.
Now, let us define
o Xo={xe PWy(I)nPC(I,H) |z is a solution of (5) corresponding to u}.
o Xy is called the class of original trajectories.
o Ao = {(z,u) € PW,(I)n PC(I,H) x Sy | z is a solution of (5) corresponding to u}.
e Ap is called the class of admissible state-control pairs.
The following theorem guarantees that Xo # ¢. Its proof follows immediately from Theo-
rem 3.1 by defining the function g, (t,z) = g(¢, z,u) and noting that g, satisfies all hypotheses of
Theorem 3.1.

THEOREM 3.2. Assume that Hypotheses (A),(F), (G1), and (U) hold. For every u € Sy, equa-
tion (5) has a unique solution z(u) € PW,,(I) N PC(I, H). Moreover the set X, is bounded in
Pqu(I) NPC(I,H), ie, HIIJ(U)HPWW(O,T) < M and Hx(“)nPC([O,T],H) < M for all u € Sy.

4. RELAXED IMPULSIVE SYSTEMS

We consider the following optimal control problem:

T
inf {J(m,u) = /o L(t, z(t), u(t)) dt} (P

subject to equation (5).

It is well known that, to solve the optimization problem involving (P) and obtain an optimal
state-control pair, we need some kind of convexity hypothesis on the orientor field L(t, z(t), u(t)).
If the convexity hypothesis is no longer satisfied, in order to get an optimal admissible pair, we
need to pass to a larger system with measure control (or know as “relaxed control”) in which the
orientor field have been convexified. For this purpose, we introduce the relaxed control and the
corresponding relaxed systems.

Let Z be a separable complete metric space (i.e., a Polish space) and B(Z) be its Borel o-field.
Let (©,X,u) be a measure space. We will denote the space of probability measures on the
measurable space (Z, B(Z)) by M}(Z).

A Caratheodory integrand on Qx Z is a function f : xZ — Rsuch that f(-, z) is 5-measurable
on Q, f(w,-) is continuous on Z for all w € Q, and sup{|f(w,2)| : z € Z} < a(w), ae., for
some functions a(-) € Li(£2). We denote the set of all Caratheodory integrands on §} x Z by
Car(§, Z). By a transition probability, we mean a function A : Q x B(Z) — [0,1] such that for
every A € B(Z), A(-, A) is Z-measurable and for every w € Q, Mw,-) € M}(Z). We use R(2, Z)
to denote the set of all transition probability from (Q, %) into (Z, B(Z)). Following Balder [6],
we can define a topology on R(§), Z) as follows: let f € Car(Q, Z) and define

uuwiééfmaxmwawwy (6)

The weak topology on R(Q, Z) is defined as the weakest topology for which all functionals f Fo
R(Q,Z) — R, f € Car(, Z), are continuous.

Suppose = I = [0,T] and Z is a compact Polish space, then the space Car(I, Z) can be
identified with the separable Banach space Li(I,C(Z)) where C(Z) is the space of all real-valued
continuous functions on Z. To see this, we associate to each Caratheodory integrand ¢(-,-) the
map ¢t — ¢(t,-) € C(Z). Let M(Z) be the space of all regular bounded countably additive
measure defined on B(Z). We note that M (Z) is a Banach space under the total variation norm,
i.e, [[Mlmzy = |AI(Z). Then by Riesz representation theorem, the dual [C(Z)]* can be identified
algebraically and metrically with M (Z). The duality pair between M(Z) and C(Z) is given by

Mﬁ=Lﬂmwﬁ (7)
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So M(Z) is a separable (see {7, p. 265]) dual Banach space and hence has a Radon-Nikodym
property. This observation, combined with Theorem 1 of Diestel and Uhr [8, p. 98], tells us that

Li(I1,C(2))" = Loo(I, M(2))-

So the weak topology on R(I, Z) coincides with the relative w*(Loo (I, M(Z))), L1(I, C(Z)) topol-
ogy. The duality pair between Loo(f, M(Z)) and L (I, C(Z)) is given by

T
1) = /O ((e), £(1)) dt
T
- / /Z.;ﬂt)(z)x(t)(dz)dt (8)
T
- / / (N (d2) dt,
o} Z

which is the same formula as in (8) with f(¢,z) = f(t)(z). This fact will be useful in the study
of the relaxed control system where the control functions are transition probability.

Now we introduce some assumptions imposed on the class of relaxed control which will be
denoted by Syx.
AssumPTION (U1l). Z is a compact Polish space, U : I — Py.(Z) is a measurable multifunction.

Define (t) = {} € M3(Z), MU(t)) = 1} and let Sz € R(I,Z) be the set of transition
probabilities on I x B(Z) that are measurable selections of ¥(-}). For any u € Sy, we define
the relaxation 4, € Sy of u by 6,(t) = Dirac probability measure at u(t). Then we can identify
Sy € Sy. From now on, we shall consider Sy and Sy as a subspace of the topological space
R(I, Z) with the weak topology defined above.

We list two lemmas which will be useful in discussing relaxation problem. The proofs can be
found in [7, Theorem IV 2.1] and (6, Corollary 3], respectively.

LEMMA 4.1. Suppose Z is a compact Polish space. Then Sy, is convex, compact, and sequentially
compact.

LEMMA 4.2. Sy Is dense in Syx.

THEOREM 4.3. Let h : I x H x Z — R be such that

1. t — (t,z, 2) is measurable and (z, z) — h(t,z, z) Is continuous.
2. |h(t,z, 2)| < (@) € Ly(I) for all (z,2) € H x Z.
Ifzi, —» x € C([0,T),H) then

Ek(‘)') —>’T7’(‘7')7 in Ll(Ivc(Z)),

as k — oo, where hi(t,2) = h(t,zx(t), 2) and h(t, z) = h(t,z(t), 2).

ProoF. The proof is similar to Lemma 3.3 in [3].

Next, let us consider this new larger system know as “relaxed impulsive system”

£(t) + At 2(t) = / ot 2(t), HAE) (dz), 0<t<T,
Z
2O =20, ®)
Afﬂ(tl) = F1($<tl)), 1= 1,2,,n

We will denote the set of trajectories of (9) by X,, i.e,, X, = {z € PW,([)N PC(I,H) | z is
a solution of (9) corresponding to A € Sg}. Moreover, the set of admissible state-control pairs
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of (9) will be denoted by A, = {(z,)) ¢ PWpe(I) N PC(I,H) x Sg | z is a solution of (9)
corresponding to A € Sy}

Note that Xy C X,, since Sy C Sy and if the hypotheses of Theorem 3.2 are satisfied,
Xo # ¢ = X, # ¢. To see this, given any relaxed control A € Sy, if we set g(t,z(t), \(t)) =
J79(t,z(t), z)A(t) (dz) then, working as in the proof of Theorem 3.2, one can show that there ex-
ists a relaxed admissible trajectory z()\) corresponding to A. We summarize the above discussion
into a theorem.

THEOREM 4.4. Assume that Hypotheses (A), (F), (G1), and (Ul) hold. For every ) € Sy,
equation (9) has a unique solution z(\) € PWp,(I)n PC(I, H). Moreover the set X, is bounded
in PWPQ(I) n PC(i, H), e, ||:1:()‘)”PWW(O,T) < M and ”x(/\)HPC([O,T],H) < M for all A € Sy.
The next theorem gives us a useful relation between Xy and X,..
THEOREM 4.5. If Assumptions (A), (F), (G1), and (U1) hold, then X, = X, (closure is taken
in PC(I, H)).
Before proving this theorem, we need a lemma.
LEMMA 4.6. If Assumptions (A), (F), (G1), and (U1) hold and Ay — X in R(I, Z), suppose
that {zy,z} Is the solution of (9) corresponding to {\r, A}, by working with a subsequence if
necessary, Ty — x in PC(I,H) as k — o0, y
PROOF. Suppose that Ay — X in R(I,Z) as k — oo and {zy,z} is the solution of (9) corre-
sponding to {Ag, A}. Since (zx, Ax) € A, for each positive integer k, then (zx,us) must satisfy
the equation

B4(t) + A(t, 2 (1)) = /Z ot 2 (), )M (8) (d2),
-Tk(o) =T €& Hv
Amk(t¢)=Fz($k(tz)), 1=1,2,...,n 0<ti<ty<---<t,<T.

(10)

To finish the proof, we try to choose y € X, such that y is a solution of (9) corresponding to
this A and 2 — y in PC(I, H) as k — oo. The uniqueness property of the solution of (9) implies
x =y and hence z; — = in PC(I, H). This proves that z € Xy and we are done. We shall do
this by considering each case separately.

Cask 1. Find y on the interval (0,¢;). For notational convenience, we let I; = (0,t1), X1 =
Lp(I1,V), and X} = Ly(I1,V*). We note that X; = L,(I1,V) can be considered as a closed
subspace of X = L,(I,V). Let z} and A} be the restriction of the functions zx, Az on the
interval Iy (k= 1,2,...). Hence, by Theorem 4.4, {z}} is bounded in Wpy(I;). By reflexivity of
Wiq(11) there is a subsequence of {x}}, again denoted by {21}, such that

T = in Wyo(I1), ask — oo. (11)

Since the embedding Wpye(l1) — Xi is continuous, the embedding Wpq(l1) — L,(I1, H) is
compact and the operator A : X; — X} maps bounded sets to bounded sets, it follows from (11)
that there exists a subsequence of {z}}, again denoted by {z}}, such that

w . . w . .
i 52! in Xy, i 52!, in X7,
Az} B¢, in X7, (12)
8 .
zl 5ol in L(I1, H),

and, by [3, Theorem 3.B], z; = &' in C([0,¢1], H), as k — oo and for some £ € X. Consider
the following equation:

@y (t) + A (¢, 4 (1)) =/Zg(t,m}c(t),z) M) (dz);  0<t<ty,

71 (0) = 0.

(13)
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Define an operator Gy : Iy — V* and G : I; — V* as follows:
Gult) = [ slbak® M@ @), k=123,
z
Glt) = / g (t,22(t), 2) AL(t) (dz).
z !

It follows from Assumption (G1) that G and Gx € Ly(I1,V*).
With this new notation, equation (13) can be rewritten into an equivalent operator equation

of the form 1 L
Ty + Az = Gy; 0<t<ty,
k (k) k 1 (14)

z3(0) = zo.

For each fixed v € V, define

gr(t,2) = (g (t,zk(), 2) V) ey
g(t,z) = <g (t,xl(t),z) ’U>V*—V .

It follows from Assumption (G1) that, for each fixed t € I},
gr(t,-), and g(t,-) € C(2),

and furthermore
gk(" ')7 and g('vw’) € Ll(IhC(Z))‘

Since z} = 2! in C([0,%;], H) (see equation (12)), then Theorem 4.3 gives
gk('a') '_>§('1')7 in Ll(Ilyc(Z))7 as k — oo.

Since A, — Al in R(Iy, Z), by equation (7), we have AL 5 A in (Ly(Iy, C(Z)))* as k — oo.
Hence, it follows from Proposition 21.6(e) of Zeidler [4, p. 216) that

(A%, i) — <</\1,§>> , as k — oo.
This means that
oty t1
/ / (g (t,h(6), 2) ,v) AL(E) (d2) dt — / / (9 (6,2 (t),2) W) A (t) (d=) e (15)
o Jz 0o Jz
as k — oo. The convergence in (15) is true for all v € V then we get
G, 3G, as k — oo, in L, (I V").
By equation (12), =} = 2! in C([0,#1], H) and this implies z1(0) — z(0) in H as k —
oo. Referring to the initial condition, we have z}(0) = zo € H for all k = 1,2,3,.... Thus,

.’L‘l (0) = Zp.
Up to this point, we can conclude that z? satisfies the following equation:

E1(t) + £(t) = /Z o (t,21(2), 2) A(t) (d2),
z(0) = zo € H.

Next we aim to prove that £ = Az! in X7.
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To prove this we note from equation (14) that

(A (=) vl'llc>>xl*—x1 = (A (zx) 7'Tl>>x;_xl

, (16)
- <<$11cvxllc - $1>>X1»_X1 + <<Gk’$llc - $1>>x;_x1 ‘
From integration by part formula, we have
<<-’1311mfl'llc ":c1>>xf_xl = <<:i‘1,il?}1c —,7;1>>X;—X1 an)

5 (llekte) - 2@} — 20 = @)]%)

Substitute (17) into (16) and noting that the second term on the right-hand side of (17) is
always nonnegative, then we get

(A ) 2t ks x, < (AL 20 gy, = (@ ok =W

+ 24 (0) = = O[5 + (s ok — 2"y _x, -

Therefore,
klim <<A (xllc) 7mllc>>x;-x1 < <<§’m1>>X;—X1 ’

00

and hence A satisfies condition (M) (see [4, p. 474]). Then we have
A (ml) =¢£.

Now we can say that 2! is the solution of the following equation:

(1) + A1) = [ 9(62'(0,2) M) (@2),
21(0) = :E; € H.

This proves that z* satisfies (9) on the interval (0,¢;) and z' is the required y on (0,t;).
Cast 2. Find y on the interval (t1,t5). The proof is similar to Case 1. Here, let I = (t;,t2),
Xo=Ly(I,V), and X3 = Lo(I,V*). Let 2}, u? be the restriction of the functions z) and uy on
the interval I, respectively (k = 1,2,...). It follows from equation (10) that (z%,u?) satisfies
the operator equation

j)i-i-A(:E;zc):Gk; 1 <t <tog,
=i (6) = 2k (¢7) + F (=} (1)) ,

where 2 (t7) = z2(t1) = zj(t1) (k = 1,2,3,...). By using the same proof as in Case 1, we get
that

(18)

i 5 a?, in Wy(t1,ts), and 2?3 22 in C([t1,t2], H), as k — oo,

which implies that z3(t7) — 22(t]) in H as k — oo and, moreover, z is also satisfied the

operator equation
i’ + A (z?) = G; t £t < to.

We are left to verify the initial condition at t;. To see this, we note that the expression on
the right-hand side of (18) converges to z!(t;) + Fi(z!(t1)) as k — oo (see Hypothesis (F)).
On the other hand, the left-hand side z2(t) — z%(t]) in H as k — oo. Hence, 22(t]) =
zl(t1) + Fi(z' (t1)) = 2*(t7) + Fi(z?(t1)). This proves that 22 satisfies (9) on the interval (¢, 15)
and 22 is the required y on (¢1,t3). Continuing this process we can find y on the interval (¢;,t;41),
7=0,1,...,n. By piecing them together from j = 1,2,...,n and taking into account the impact
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of jump, we obtain y which is the solution of (9) corresponding to the relaxed control A satisfying
zr — yin PC(I,H) as k — oco. Since z = y, zx — z in PC({I,H) as k — oo. The proof of
Lemma 4.6 is now complete.

PROOF OF THEOREM 4.5. First, we shall show/that X, € X,. Letting z € X, then there exists
A € Sy such that (z,)) € A,. By virtue of density result Lemma 4.2, there exists a sequence
{ur} € Sy such that §,, — X in R(J, Z). Let x) be the solution of (9) corresponding to u.
Then we have a sequence {(zx,ux)} C Ao. Since (zx,ur) € Ao for each positive integer k, then
(%, ux) must satisfy the equation

Trp(t) + AL, 2 (t)) = / g(t, zi(t), 2)8y, (1) (dz),
Z
mk(O) =x0 € H,
Ail)k(tz):Fl(ZEk(tl)), i:l,?,...,n, k=1,2,3,...,
O<ty <ty <<ty <T.

Applying Lemma 4.6, we get 2 — z in PC(I, H). This proves that z ¢ X, and hence X, € X,.
Finally, we will show that X, is closed in PC(I, H). Let {zx} be a sequence of points in X, such
that z — z in PC(I, H) as k — oco. By definition of X, there is a sequence {Ag} of points in Sy
such that (zx, A\x) € Ar, k=1,2,3,.... By Lemma 4.1, Sy, is compact in R(I, Z) under the weak
topology. Moreover, R(I, Z)-topology coincides with the relative w*(Loo (I, M(Z)), L1(I,C(Z)))
topology which is metrizable (see [2, p. 276}). Then, by passing to a subsequence if necessary, we
may assume that Ay — Ain R(I,Z). Applying Lemma 4.6, there is = € X, such that . — z in
PC(I,H) as k — co. Hence X, is closed in PC(I, H) and, consequently, Xo C X, = X,. The
proof of Theorem 4.5 is now complete.

The following corollary is an immediate consequence of Lemma 4.6,

COROLLARY 4.7. Under assumption of Theorem 4.5, the function \ —— z(A) is continuous from

Sz C R(I, Z) into PC(I, H).

5. EXISTENCE OF OPTIMAL CONTROLS

Consider the following Lagrange optimal control problem (P,): find a control policy A € Sy,
such that it imparts a minimum to the cost functional J given by

JA) = J (2}, )) E/]/Zl(t,z’\(t)),z) A(t) (dz) dt, (P,)

where 2* is the solution of system (9) corresponding to the control A € Ss;. We make the following
hypothesis concerning the integrand i(., ., .).

HyroTHEsIs (L). | : I x H x Z — RU {+co} is Borel measurable satisfying the following
conditions:

(1) (¢,2) — I(¢,&, 2) is lower semicontinuous on H x Z for each fixed t.
(2) ¥(t) < Ut €, z) almost everywhere with (t) € Ly(I).

Let m, = inf{J(A) : A € Sx}. We have the following theorem on the existence of optimal
impulsive control.

THEOREM 5.1. Suppose Assumptions (A), (F), (G1), (U1), (L) hold and Z is compact Polish
space, then there exists (Z,\) € A, such that J(z,}) = m,.

ProoF. If J(A) = +oo for all A € Sy, then every control is admissible. Assume inf{J(A): A e
Sn} = m, < 4co. By Assumption (L), we have m, > —oco. Hence m, is finite. Let {A\c} be a
minimizing sequence so that limy_,o J(Ax) = m,. By Lemma 4.1, Sy, is compact in the topology
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R(1,Z). Hence, by passing to a subsequence if necessary, we may assume that Ay — X in R(I, Z)
as k — co. This means that Az 5 X in Loo(I,M(Z)) as k — oco. Let {zk, T} be the solution
of (9) corresponding to {Ag, A}. By Lemma 4.6, we get zx — % in PC(I, H) and (z,)) € A,.
Next, we shall prove that (%, ) is an optimal pair.

As before, we identify the space of Caratheodory integrand Car(/, Z) with the separable Banach
space L1(1,C(Z)). We note that every semicontinuous measurable integrand | : I x H x Z —
RU {+0c0} is the limit of an increasing sequence of Caratheodory integrand {I,;} € L,(I,C(2))
for each fixed h € H. Thus, there exists an increasing sequence of Caratheodory integrand
{l;} € Li(I,C(Z)) such that

Li(e, 2(t), 2) T U(t, Z(t), 2), as j — oo, foralltel, zedZ.

Since zx — % in PC(I, H), by applying Theorem 4.3 on each subinterval of 0,7, Li(t, zx(t), 2) —
I;(t,z(t),z) as k — oo for almost all t € [ and all z € Z. We note that since Xy % Xin
Loo(I,M(Z)}) as k — oo, then

J(z,A) = {(X\1) //l M) (dz) dt

~ lim //zj (t, 2(t), ) M(¢) (d2) dt
= lim lim //l(t zx(t), 2)Ak(t) (dz) dt
< limeco Jim / / Lt 2k(8), 2) M (t) (dz) dt = m,.

However, by definition of m., it is obvious that J(Z,A) > m,. Hence J(%, ) = m,. This implies
that (Z,)) is an optimal pair.

7NN

REMARK. If .10\1, u,) = JILU, .L\L),uv:))an is the cost functional for the original problem and
m = inf{Jo(z,u) : u € U,q}, in general we have m, < m. It is desirable that m, = m, i.e., our
relaxation is reasonable. With some stronger conditions on [, i.e., the map (£,7,2) = l(t,{, z)
is continuous and |I(t,€,2)| < r(¢t) for all most all t € I and fp € Li(I), one can show that
m; =m. The proof is similar to Theorem 4.B. in [3].

6. EXAMPLE

In this section we present an example of a strongly nonlinear impulsive system for which our
general theory can be applied. Let I = (0,7) and € C R¥ be a bounded domain with C*
boundary 6. For p > 2 and # > 0, we consider the following quasi-linear parabolic control
problem:

aaz: (t, z) — ZD (|D 2(t, 2)[P~2 Dz (t, z))‘__ ot z,2(t,2),u),  onIx, "
19

z|rxon =0, z(0, z) = zo(2),
Ax(ti, z) = Fi(z(t;, 2)), i=1,2,...,n

where (0 <t] <t < -+ <tp <T).

Here the operator D; = 53;; (i=1,2,...,N). We need the following hypotheses on the data
of (19).
HypoTHESIS (G'). f:IxQx Rx RN — R is an operator such that

(1) (t,2) — f(t,2,£,u) is measurable I x Q; and the map (&, u) — f(t,z,&,u) is continuous
on Rx RN.
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(2) There exist constants by > 0, bg(¢, z) € Lo(I x Q) such that

|f(t’Z7€7u)| S b1'£| + b?(t7 Z).

HypoTHESIs (F'). Fj: Ly(Q) — Lo(Q) (¢ = 1,2,...,n) are operators such that for any p > 0
there exists a constant L;(p) > 0 such that

[1Fi(h1) = Fi(h2)ll py00) < Li(p) h1 = hall, o
for all hl,hz & Lz(Q) with ||h1”L2(Q) < P |Ih2“L2(Q) _<_ P (’t = 1,2, o .,Tl).

THEOREM 6.1. If Hypotheses (G') and (F') hold and letting zo(-) € La(2), u € U,q (defined
below), then system (19) has a solution x € L,(I, PWbY?(Q) N PC(I, Ly(Q)) such that %{- €
Lo(I,W=14(2)). v'

PROOF. In this system, the evolution triple is V = Wy P(Q), H = Ly(f), and V* = W-1a(Q).
All embeddings are compact (Sobolev embedding theorem). Define an operator A: 1 x V — V*
by

. N
(At 2), 9}y = / S IDi(w)P-2(Dix) (Diy) do. (20)
Q2 g==1

One can easily check that A(t, x) satisfies Hypothesis (A) in Section 3. The uniform monotonicity
of A(t,) is a consequence of the result of Zeidler [4, p. 783]).

In the sequel, we suppose that f1;(:), B2:(-) (1 < i < N) are continuous functions from [0, 7]
to R and satisfy 81:(-) < Bai(-) (1 <i < N)forallt € [0,T],1<i< N. There exists a constant
a > 0 such that —a < fB15(t) < Bai(t) <aforallt € [0,7},1<i < N. Set Z = [—a,a)¥ C RV.
Then Z is a compact Polish space. Define

U(t) = {(wz(t)) [S RN : ﬂli(t) < wz(t) < ﬂgi(t), 1< <L N} .

It is clear that U : I — Py.(Z) is measurable. The set of admissible controls U,q is chosen
as Uaa = Su = {u : I — R | u is measurable and u(t) € U(t) a.e. t € [0,T]}. Hence the
multifunction U satisfies (U1). y

Next, for t € I, ¢ € H, w € Z define a function b* : I x H x V — R by b¥(t,¢,9) =
Jo f(t, 2,6, w)y(z) dz. Then, the map 1 —— b¥(t, $, ) is bounded on V and hence is a continuous
linear form on V. Thus there exists an operator g : I x H x Z — V* such that

bt ¢, ) = (9(t, by w), Y)ve-v. (21)

By using Hypothesis (G'), we obtain that g satisfies Hypothesis (G1) of Section 3.
Using the operator A and g as defined in equation (20) and (21), one can rewrite system (19)
in an abstract form as in (9). So, applying Theorem 4.4, system (19) has a solution.
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