Shape Preserving Spline Approximation

via Local Algorithms

B. I. Kvasov

Abstract. The main goal of this paper is to construct an algorithm for shape
preserving spline approximation of complex multivalued surfaces that appear
in some applications. We consider firstly two different local 1-D algorithms
of shape preserving interpolation and approximation. Then we use the direct
product of 1-D splines and special monotonizing parametrization to obtain the
surface satisfying given tolerances that inherits some shape preserving properties
of 1-D splines.

§1. Introduction

In many practical problems we deal with approximation of discrete data when geo-
metric properties of the data such as positivity, monotonicity, convexity, presence of
linear sections, the angles and the bends should be retained. Standard approaches
such as spline interpolation, NURBS and other are usually fail in the treatment
of this problem. To obtain the necessary solution many authors [1,2,5,7] introduce
some parameters in the structure of the spline. Then they choose these factors in
such a way to satisfy the geometric constraints. The key idea here is to develop
algorithms for automatic selection of these parameters. We consider two such lo-
cal 1-D algorithms based on generalized cubic splines. Then the direct product of
1-D splines and special monotonizing parametrization are used to obtain the shape
preserving approximation of complex multivalued surfaces. We formulate the shape
preserving properties of 2-D splines and give some numerical examples.
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§2. The Class of Shape Preserving Interpolants

Let the sequence of points V = {P;|i = 0,1,...,N}, P; = (x;, f;), on the plane
R? be fixed, where A : a = 29 < 1 < --- < zny = b forms a partition of the
interval [a, b]. We introduce the notation for the first two devided differences A; f =
(fixr — fi)/hiy hi = wp1 — x4, 4 = 0,1,...,N = 1; &f = Aif — Aj_1f, i =
1,2,..., N — 1. As usual, we shall say that the initial data increases monotonically
(decreases monotonically) on the subinterval [z, zx], n > k, if A;f >0 (A;f <0),
i=mn,...,k—1. We say it is convex down (up) on [z, zg], K > n+ 1if §;f >0
(0;f <0),i=m,....k—2.

We call the problem of searching for a sufficiently smooth function S(z) such
that S(z;) = fi, i =0,1,..., N, and S(z) preserves the form of the initial data, a
shape preserving interpolation problem. It means that S(z) should monotonically
increase or decrease if the data has the same behaviour. Analogously, S(z) should
also be convex (concave) in data convexity (concavity) intervals.

Evidently the solution of the shape preserving interpolation problem is not
unique. We formalize the class of functions in which we search for the solution.

Definition 2.1. The set of functions I(V') is called the class of shape preserving

functions if for any S(x) € I(V') the following conditions are met:

(1) S(x) € C?*a,b];

(2) S(z;)= fi,i=0,1,...,N;

(3) S'(x)A;f > 0 if Ajf # 0 and S'(x) = 0 if A;f = 0 for all x € [z;,z;41],
1=0,1,...,N —1; and

(4) S//(.I',)(S,f >0,2=1,2,....,.N —1; S”(CE)(ij >0,z € [ajial'i—i—l]; J =11+ 1
if §;fdi41f > 0; S(x) has no more than one inflection point T in the interval
(4, x541) if0; foi41f < 0 and also S"(z)d;f > 0 for x € [x;,T] and the number
of inflection points in the interval (z;_1,%;11) does not exceed the number of
sign changes in the sequence ;1 f,0;f,0;+1f.

Remark. When counting the number of sign changes in the sequence d;_1f,9;f,
d;+1f, the zeros are omitted.

The following propositions, characterizing the properties of shape preserving
interpolants, are proved by using simple geometric considerations.

Lemma 2.1. IfA;_;1fA;f <0, then for the function S(x) to be shape preserving,
it is necessary that S’(z;) = 0.

Lemma 2.2. If §;f = 0 and d;_1fd;+1f > 0, then the unique shape preserving
function on the interval [z;_1,x;11] is the straight line passing through the points
Pi1, P, Piqy.

Corollary 2.1. If §;f = ;41 f = 0, then the unique shape preserving function
in the interval [x;_1,x;y1| is the straight line passing through the points Pj, j =
t— 10,0+ 1,7+ 2.



Lemma 2.3. If§,f = 0 and 0;_1 fd;+1f < 0, then for S(x) € I(V) it is necessary
that one of the following conditions be met:

(1) S'(zi)di—1f > Aifoi—1f, S"(xi) = 0;

(2) S'(x) =A;f, S"(x) =0 for all z € [x;—1,2;11].

Lemma 2.4. Let 0;f # 0 and S"(x;)S"(x) > 0 for all x € [z1,22], 21,22 €
[€;, x;41]. Then for S(x) € I(V) it is necessary that one of the following condi-
tions be met:
(1) S'(z1) < A,S < 8'(z2) for §;f > 0,
(2) S'(z1) > A,S > S'(22) for §;f <0,
(3) S'(x) =A,S, S"(z) =0 for all x € 21, zo],

where A,S = (S(z2) — S(21))/ (22 — 21).

Lemma 2.4 immediately implies

Corollary 2.2. If §;f0;41f > 0 and S'(x;) # A;f, j =1,i+ 1, then for
S(xz) € I(V) it is necessary that the condition

S'(xi)o0if < Nifoif < S (wiv1)dif

holds.

Corollary 2.3. If 6;_1f8;f > 0 and §;f0;+1f > 0, then for S(x) to be shape
preserving it is necessary that the inequalities hold:

min(A;_1 f, Aif) < S'(z;) < max(A;,_1f, Aif).

Lemma 2.5. If S’'(z;) = 0, then for S(z) to be shape preserving it is necessary
that S”(CEZ)AZf Z 0, S”(CEZ')Ai_lf S 0.

Theorem 2.1. For the existence of a shape preserving function it is necessary and
sufficient that none of the following conditions hold:

(1) Aima fAF <0, Ajr f #0,6i—2f0;f >0,0,1f=0,1=3,....N -1,

(2) Ai1fAf <0, Aif #0,0,fiy2f 20,011 f=0,i=1,...,N =3,

(3) 0if #0,0i1f=0i01f=0,0f0f>0,k=1—-2,i+2,:=3,...,N — 3.

Necessity of this assertion is proved directly by using Lemmas 2.1-2.5. The
proof of the sufficiency consists in local constructing the shape preserving function
S(z) which interpolates arbitrary data and for which the conditions (1)—(3) of the
Theorem 2.1 are not satisfied.

We define now the admissible values Si(r) = S (x;), » = 1,2, in the knots
of the mesh A. The choice of these values should be subjected to the following
constraints:

min(Ai—Iﬁ Azf) < S,: < maX(Ai_1f7 Azf) and 57,f8;/ Z 0

. . (2.1)
if 0,f#0, 1<i<N-—-1;



(Si = Aif)diaf >0, S{Af >0, S/ =0

: , (2.2)
if (Lf =0, (51_1f(57;+1f <0, 2<:<L N — 2;
(S1—A1f)daf <0, S1A1f >0,8) =0 if 6f=0,
(ng—l - AN_lf)5N_2f > 0, S;V_IAN—lf 2 0, S;\/f—l - 0 (2-3)

if oy—1f=0;

(Aof —Sp)d1f >0, SeA0f > 0(Aof #0), Sgorf >0 if 61f #0,
(Aof = Sp)daf <0, SpAof > 0(Aof #0), Sydaf <0 (2.4)
if  01f=0,02f #0;

(Sy — An—1f)oN—1f >0, SyAn_1f > 0(An_1f #0), Syon—1f >0
if on_1f#0,
(Sy — An_1f)on—2f <0, SyAn_1f > 0(An_1f #0), Syon—2f <O
if On_1f=0,0n_2f #0.

For the constructing of the shape preserving function S(x) it is sufficient to
eliminate from the consideration the intervals of the S(z) linearity and to define
S(z) in arbitrary subinterval [z;, z;41] for the following possible configurations of
the data:

(A) 5f5,+1f>0, 0<i<N-1;
() =0, 0i— 1f(51+1f<0 1<7;§N—1;
(C) 6f61+1f<0 1<i<N-2
(if i = 0, N, then we formally set 0; f = S.').

By introducing on the straight line, joining the points F;, P;11, an additional
inflection point extending the mesh A the case (C) is reduced to the case (B). In
cases (A) and (B) the problem of the shape preserving function construction can
be reduced [3] to the solution in [z;,x;11] of the Hermite interpolation problem by

the given values S J(.T), r=20,1,2; j = 4,1 + 1 with the function monotonicity and
convexity requirement in this interval and additional restrictions

min(S;, i) < Aif < max(S;, Si, ). (2.6)
AfS, >0, j=ii+1. (2.7)
SH/( i+1 ‘5’7{) > 07 .] = ia i+ 1. (28)

According to the Definition 2.1 the following relations should be satisfied too:

S"(x)S8"(x;) >0, j=4,i+1; x€ [®iTit1]. (2.9)



§3. The Solution of the Hermite Interpolation
Problem with Constraints

The question of local construction of the shape preserving function S(z) can be
solved by using generalized cubic splines [8,9].

Definition 3.1. Our generalized cubic spline on the mesh A will be a function
S(z) € C?[a,b] such that in any subinterval [z, ;1] it has the form

S(z) = [Sj — ¢;(0)h7S1(1 — t) + [Sjr1 — ¥ (1) RS 87 ]t

(3.1)
+o (h5 ST + ;i (t)h7 ST,

where t = (x — x;)/h; and the functions y;(t), ¢;(t) satisfy the conditions

PV =90)=0, r=01,2 ¢I0)=y{1)=1

We assume that ¢} (t), 17 (t) are continuous monotonic functions of the variable
t € [0,1] values and

0;i(t) = @(pj,t), ;i) =(g;,1—1), pj,q; >0. (3.2)

To solve the Hermite interpolation problem with constraints on the interval
[, 2;11] let us define a function

| S(x, i, xi1) if € x;,xinl;
S(w) = {S(xvmilalﬁ'—i—l) if =€z, wig),

which has the form (3.1) on the intervals [z;, z;1], [x;1, x;41] and satisfies the inter-
polation and smoothness conditions

SO () =7, SO (wn—0) =8 (21 +0), r=0,1,2% j=ii+l
We assume that the inequalities (2.6)—(2.8) are fulfilled and according to (2.7)

we have S;S;. | > 0.
Let us introduce the notations

Sl — Auf
hit = zin — @iy pin =1—Xin = hit/hi, 7= 75;1 53, ;
i+1 P
Si1 — fi fiv1 — Sa1 hiSY S
. By
al hil 9 /B’L h, - hil 9 0-.] S,:+1 - S;? J Z77l +

According to these notations and by the inequalities (2.6) we have

Aif =7iSi+ (1 —7m)Si,, 0<m <1, (3.3)



Using the formula (3.1) we obtain

= s (a7~ () — vi(IS! + st |
fi = — ! {(hz — hi)T;1 ' Si 1 — ©i1(0) S5 + [9i (0) + @5, (0)] z{—l—l}v (34)
¢;i1(0)

Tt =[5 (0) + @5 (][5 (1) = 5 ()] = 9 (0)9;(1),  j = i,il.

By the continuity of the spline second derivative in the knot z;; we have the
equation

/ {)\“ pa 17 Aa g _Hil o
)

T O] [T e )7 (3.5)
_ 2[0)3?1); Xirhi1 S + gojig(l); i1 (hi — hit) ;’+1 .

Now taking into account the identity p;1c; + \j13; = A;f and substituting
here the expressions for «;, f;, Si; from (3.4) and (3.5) we arrive at the equation
with respect to p;1

®;(pi1) = Aipsdy + Bipdy + Cipria + Di = 0. (3.6)

If now to set p;; = ¢; then according to (3.2) we have in (3.6) the coefficient
A; = 0 and to define p;; we obtain the quadratic equation

1 [.- . .
Qi (pi1) = o) Bip? + Cipin + D; | =0, (3.7)
where
Bi =[1i (1)} (0) + T Moi + [0 (1) (1) — Ty orsa,
Ci = — ¥i(1)@;(0); + [~ (1)whin (1) + 2T oigr + 245(1) — (1),
Di = — Tiloivr — i(1) + mnhli(1).
Since 1
(Dz(o) =T; — m [Tizlo-i—i—l + ’l[)z(l)],

we can find such p,, g;, q;;, that for all p; > p;, ¢; > ¢;, ;1 > q;; according to
(3.3) we have ®;(0) > 0, ®;(1) < 0. Thus the equation (3.7) has a unique root
Hi1 € (07 1)



As p;1 = ¢; we can rewrite the equation (3.5) in the form
Siy = S+ pin(Sipy — S7) — Ninpar i (0)S] + iy (1) Sy 4]- (3.8)

Considering f(z) as a sufficiently smooth function we assume that
S f = O(METITT), = 1,25 j =d,i+ 1; k= 2 or k = 3. Then using (3.8) we

Obtain / / / / / / n
i1 — (@) =S; — fi = [05(0) + Y3 (D] Airpin hi f;
+ hir(hi — hin)[1/2 = 93 (DI f" + O(B5).
It implies that the approximation error order will increase for the derivative of
the spline in the point z;; if according to (3.2) we set ¢;1 = p;.
We consider now the question of the shape preserving properties for the gen-
eralized spline S(z) in the interval [x;, x;11]. The following criterion is valid.

Theorem 3.1. By the fulfillment the restrictions

pi(1) $i(1)
¥i(1) ¥i(1)

the unique shape preserving generalized cubic spline S(x) exists solving the Hermite
interpolation problem with restrictions (2.6)—(2.9).

Proof: The conditions (2.6) — (2.8) are fulfilled by the construction. The re-
quirement (2.9) means the absence on [z;,z;y1] of inflection points for the shape
preserving function S¢(z). Let us show that for the spline S(z) this condition will
be fulfilled if the inequalities are valid

(;01(0) <1- Ti, (101(0)0-1'-1—1 < T, (39)

min(a;, §;) < Sj; < max(as, 5;),
min(S;, A;f) < o; < max(S;, A;f),
min(S;, 1, A; f) < ;i < max(S;, 1, A f).

It is convenient to rewrite these inequalities in the form

a;(Siy1 —SH T < S5 (Sip1 — 8D < Bi(Sip, — SH T
Sl( 1+1 ‘5’7{)_ < ai(si—i—l - ‘5’7{) < A f( i+1 Sz{)_la (310)
Aif(Sigq — S)™H < BilS] i1~ SH~h< Si1(Sipy — S~

From (3.4) and (3.8) we find

a; = S + pir (Sip — 5{) {1 + _i( 70+ A1 (0)(0ip1 — Uz’)] , o (311)

i1 ! )
Bi = Sii1 — Xi(Sii1 — S)) o 1; { (1)0¢+1 — 1193 (0)(Gig1 — Uz')}-



It enables us to write the conditions (3.10) in the form

1”8 1+ Tzl) 0+ Arh(0)(0is1 — 03)] < 1+ Aa b (0) (041 — 0),
Bl 1 o = gl 00t = )] < 1= 0 — ),
0<p ¢ﬁ3p+1:31+&wﬂm@ﬂ—mﬂ<1—m
0< Migi 1+ ma,+1 11 04(0) (i1 — 03)] < T

To fulfill these inequalities and the conditions ®;(0) > 0, ®;(1) < 0 it is suffi-
cient to choose the parameters p;, ¢; in such a way that the restrictions (3.9) are
satisfied.

According to (3.1)

Si = i+ [0i(0) + ¢ (0)]hir S — Pi(1)hs

Then by substituting here the expression for «; from (3.11) we have

/

S! S;
= ;:r; 0 [1 + 5 (0) (piro; + >\¢1U¢+1)]- (3.12)

If the inequalities (3.9) are fulfilled, the expression in square parentheses in
(3.12) is positive and S;3(Si; — S;) > 0. As S{(Si,; —S;) 20, j = i,i+ 1, we
conclude from here that S;; S/ >0, j=14,i+ 1.

From (3.1) on the interval [z;, ;1] we have

S () = Si'eq (t) + Siei (¢).
Since ¢} (t), i (t) > 0 for ¢t € [0,1], then
S"(x)S7 >0, j=1i,41 for € [z;z]

We arrive at an analogous conclusion by considering the subinterval [z;1, z;+1]. As a
result the function S”(z) is convex in the interval [z;, z;41] and S’(x) is monotone.
Because of the assumption S;S; ; > 0 the function S(x) has the monotonicity
property. The theorem is proved. W

The given construction completes the proof of the sufficiency conditions of
Theorem 2.1 from the previous section.



§4. The Problem of Shape Preserving Approximation

Suppose a set of intervals F' = {F;|i = 0,...,N}, F; = [fi — i, [i + &il,
t=20,...,N, with prescribed smalle; >0onagrid A:a=zg< 21 < --- <Ny =
b be given. We call the problem of searching for a sufficiently smooth function
S(z) € C?[a,b] such that S(z;) € F;, i =0,...,N, and S(x) preserves the shape of
the initial data a shape preserving approximation problem.

To formalize this problem we introduce the interval differences [6]

AF =hy Y (Fipy — F) = [Aif —ei, Aif +ei], ei=hit(ei+eir1),
i=0,... N—1,

6iF' = AF — Ay F =[6;f — Ei,6if + Ei], Ei=ei_1+e;,
i=1,... N—1,

[al, CLQ] — [bl, bz] = [a1 — b2,a/2 — bl] >0 if and only if  ay > bs.

The initial data are said to increase (decrease) monotonically on a subinterval
[r,zK], K > R, if A;F >0 (A;F <0),i=R,...,K — 1. The data are called
convex downward (upward) on [zg,zk]|, K > R+ 1,if 6, F > 0 (F < 0), i =
R+1,...,K—1.

We assume that the intervals A;F, §;F for all ¢ do not contain zeros, i.e.
(Aif)2>¢€2i=0,....N—1; () >FE?i=1,...,N—1.

If the values of a function S(z) are such that S(x;) € F;, i =0,..., N, then we
have A;S € A;F,i=0,....N—-1,6,5 € 0;F,i=1,..., N—1. Taking into account
the inequalities for the initial data, we obtain A;SA;f > 0, ¢ = 0,...,N — 1,
0;S0;f >0,9=1,...,N —1.

Definition 4.1. The set of functions I(A, F') is called the class of shape preserving
approximants if for any function S(z) € I(A, F') the following conditions are met:
1. S(x) € C?a,b);
2. S(.Tl) eF;,,t=0,...,N;
3. S(z) is monotonic in [z;,x;y1], i =1,..., N—=2if A; 1 fAf >0, AjfA 1 f >
0; S(z) is monotonic in [xg,x1] if AgfA1f >0 and in [xn_1,zN] if
An_of Any—1f > 0; S'(x) has one sign change in [z;_1,2;41],i=1,...,N —1
if Aj—1fA;f < 0; the number of sign changes of the function S'(x) in [a, D]
coincides with that in the sequence Aof, Avf,...,Anx_1f; and
4. S"(x;)0;f > 0,4 =1,...,N — 1; the number of sign changes of the function
S"(x) in z € [a,b] coincides with that in the sequence &1 f,d2f,...,0n_1f.

The shape preserving approximation problem is, by definition, the problem of
searching for a function S(z) € I(A, F'). We seek a solution of the shape preserving
approximation problem in the form of generalized cubic spline complying with the
Definition 3.1.



§5. Algorithm of Shape Preserving Local Approximation

The set of splines complying with Definition 3.1 is denoted by S§. As dim(S$)
= 4N — 3(N — 1) = N + 3, for the constructing in S§ a basis of B-splines, i. e.
nonnegative functions with local minimum-length supports, we extend mesh A by
adding the points z;, j = =3,-2, -1, N + 1, N + 2, N + 3 such that z_3 < x_5 <
r_1<a,b<zny1 <TNy2 < TN43-

Simple calculations permit us to obtain an explicit form of B-splines

(B (#i-1)Wi_2(x), € [xi_a,zi_1],
B (zi—1)[vi—1 + vi_y (v — 33_1)]
+ B} (2i—1)®i—1(z) + B/ (z;)V;_1(x), = € [wi_1,i],
Bi(w) =8 = BY (wis1)[vis1 + vy (2 — wig1)] (5.1)
+ B (2:)@i(x) + B (xi41) ¥i(2), @ € [, mi41],
B (i11)®@ir1(2), T € [Tiy1, Tiyal,
. 0, =z ¢ [l'i—% xi+2]7

where

r — Iy r — I
8560 = s (T2 )12 o) = (L )2,
J J

o =i (R - Q)R r=0,1.

j—

B!(z) = ?/z+1 ?(/z )17 yj = — /v, j=i—1ii+]1,
_] Wi 1 y]
(

wi—1(z) = ( = yi—1) (v — yi) (T — Yiy1)-

Further we consider the case when ‘averaged nodes’ of B-splines y; = z; —v; /v},
i = 0,...,N coincide with the nodes of main mesh A, i.e. v; = ¢;_1(1)h? | —
0i(0)h? =0,i=0,...,N and x_; = x¢ — tho, Tn4+; = TN + ihy_1, i = 1,2, 3.

Basis splines B;(x), i = —1,..., N +1 have the following properties: B;(z) > 0
if x € (x;_2,%;42) and B;(z) = 0 otherwise,

N+1
Z Bj(z)=1 for z € a,b].

i=—1

Any spline S(z) € S§ can be uniquely represented in the form

= i: bjBj(xz) for x € [a,b] (5.2)

j=-1

with some constant coefficients b;.



From (5.1) the expression (5.2) for spline S(x) in the subinterval [x;, z;y1] is
transformed to the form

S(.T) = b, + A,b(l’ — .T,) + (,OZ(t)h?&b/U; + wi(t)hzzfsi—l—lb/vg_;-la (53)

where 5]b = Ajb — A]’_lb, ] = 7:, T+ 1, A]b = (bj_|_1 - bj)/h,]
Whence the formulae

() 1 so;m)i)‘l
S(x;) = b; + 5zb<'¢i—1(1) s 0i(0) I , (5.4)
§'(re) = [y (i Mab — ()i _1B], (5.5)
follow, and vice versa
bim1 = S(x:) = him1S' (@3) + iy [=thio1 (1) + ¢i_1 (1)]S" (zs),
bi = S(xi) — hipi(0)S" (x:), (5.7)
bit1 = S(xi) + hiS(:) — hi[i(0) + ©;(0)]S" (2:),
i=0,...,N.

Algorithm 5.1. We compute the coefficients in (5.2) from formulae (5.7), with
S"(x;) being approximated using the second divided difference

b; = fl — Qh?(hi_l + hi)_l(pi(O)(Sif, 9 = 1, RN N — 1. (58)

To determine the coefficients b;, for : = —1,0, N, N + 1, we use the boundary
conditions: S®) (x;) = fi(k), i=0,N, k=0,1. Using the formulae (5.4)—(5.7), we
write out

b_1 = by — 2hof),
bo = fo — (fo + hofg — b1)[1 + ©(0)/00(0)] 7,
by = fv — (fn —hn-1fy —bn—1) (5.9)
X [1 =9y (1)/Ypn—1 (D],
bNt+1 =bN_1+2hNn_1fN-

We find the parameters p;, ¢;, ¢ = 0,...,N — 1, from the shape preservity
conditions formulated in Definition 4.1 in two steps. Using the constraints |b; — f;| <
gi, 1=1,...,N — 1, which in view of (6.1) are equivalent to

2hZ (hi—1 + hi) toi(0)|6:f| <&, i=1,...,N—1 (5.10)



we first find p; and obtain ¢;_; from the condition v; = 0 or ¢(gi—1,0)hZ | =

According to (5.9) the quantities py, gny_1 are selected so as to satisfy the
inequalities

[bo — fol = |fo + hofo = bil[L + ¢5(0)/¢0(0)| ™" < €0,
by — fn| = |fn — hn—1fn — bn—1] (5.11)
X |1 =4y (1)/n-1(1)]7! < en.

Finally p;, ¢; we find from the constraints |S(z;) — f;| <e&;, i =0,..., N. From
(5.4) and (5.8)

thz—l%'—l(o)& f— 2hzz+190i-|—1(0)

S(w;) = fi + H7 'S — —
(w:) = 1 ’ { hi—a 4+ hi—1 hi(hi + hit1)

ditrf
(5.12)

+ [1 4 2h; Y higi (0) — 2(hi—1 + hy) ™ (Pi_y (1) hi—q — @Q(U)hi)]&f},

where

ORI OR

() hice @i(0) by
Therefore according to the estimate (5.10) by (5.12) we obtain

1S(z;) — fi| < H7'0; < e, (5.13)

where 0; = 6i_1hi__11 -+ §|5¢f| + €¢+1hi_1.
If hj—1 < h; from (5.13) we have

S(2:) — fil < 6; [(hil_l T hi> wiiﬁﬂ oL

Taking into account the constraint for generalized cubic splines ] _,(1)/t;—1(1) >
3, we can set

/
i_1(1) hi—1h; 0; )
— 3= — 3.0 =2 ...N—-2 5.14
i—1(1) A <hi—1 + hi € c)p ! Y ( )

to define ¢;_1. The value p; is calculated from condition v; = 0. The case in which
h; < h;_1 and p; < g;_1 is considered in a similar manner.

For i = 1, N — 1, according to (5.9) and (5.11) we come again to the formula
(5.14) that permits us to choose the parameters g, py_1. We fulfill the conditions
of the definition 4.1 by the final choice of the parameters p;, ¢;, ¢ = 0,..., N — 1.
This gives us the following result.



Theorem 5.1. If the inequalities

S1f(Aof — f5) > 61flerhg s foAof >0,
On_1f(fy — AN—1f) > [oN—1flen—1hN" s FNAN_1f >0,

are valid, the generalized cubic spline S(z) constructed by Algorithm 5.1 of three-
point local approximation is a shape preserving approximant.

Remark 5.1. For f(z) =1 and f(z) = = by immediate checking we have b; = 1
and b; = x;, i = —1,..., N + 1, respectively and therefore according to (5.3) the
shape preserving spline S(z) reproduces the straight lines.

§6. Shape Preserving Approximation of Surfaces

Let the domain G : [¢,d] x [0,1] C WU be partitioned by straight lines w = wj,
t =0,...,N, of the grid Ay, : ¢ = wp < wy < --- < wy = d into N rectangular
subdomains. Assume that a grid A? : 0 = ud <uf <--- < u}w =1,:=0,1,...,N,
is given on every straight line w = w;. The number of grid nodes and their positions
on grids A%, i = 0,..., N, are independent of one another. The values f;; of
some function f(w,u) are given with tolerances e;; at the nodes u;-, 3=0,..., M,
t=0,...,N. B

A surface of the class C??(@), passing through the points P;; = (w;, u?, fij)s
where ﬁj € [fij —€ij» fij +€ijl, g =0,...,M;, i = 0,...,N, can be constructed
by generalizing the algorithm of local approximation by splines from Section 5. In
addition to being efficient at constructing the surface, these algorithm also preserve
the shape of input data.

The surface is sought in the form of a function:

N+1

S(w,u) =Y bi(u)B;(w). (6.1)

i=—1

where the generalized basis splines B;(w) are the same as in (5.2). The functions
bi(u), i = —1,..., N + 1, generalize local approximation formulae from Sections 5
(Algorithms 5.1) and are linear combinations of the one-dimensional interpolation
shape preserving splines S;(u), i = 0,..., N described in Sections 2 and 3. These
splines define curves along sections w = w;, ¢ = 0,..., N, and pass through the
points (“37 fij), 5 =0,..., M.

Formally, necessary formulae (Algorithm 6.1) can be obtained by replacing
the values f;k) in Algorithm 5.1 by the functions SJ(-k)(u), k = 0,1, 2, respectively.
Similar changes are made to boundary conditions. For the scheme given below we
use the boundary conditions: S(w;,u) = S;(u), %S(wi, u) = g;(u), i =0, N, with
gi(u) = % (w;, u).



Algorithm 6.1. We compute the coefficients in (6.1) by the formulae:

b-1(u) = b1(u) — 2hogo(u),
bo(u) = So(u) — [So(u) + hogo(u) — b1(u)
X [1+ ¢p(0 )/800(0)] Y
bi(u) = S;(u) — 2hZ (hi—1 + hi) " 0s(0)8;S (u),
i=1,... N—1,
by (u) = Sn(u) — [Sn(u) — hy—19n(u) — by—1(u)]
X [1 =y (D)/¢Yn—1 (D]
bnti(u) =bn_1(u) +2hn_19n(u),

(6.2)

where
515(11,) == A,S(’U,) - Ai_ls(u), A]S(’U,) == [S'j_|_1(u) - SJ(U)]/hJ, ] =1 — 1,2
The approximating spline S(w, u) possesses the following properties of preserv-
ing the shape of the initial data.

Property 6.1. Let functions Sj(u), j =i—1,...,i+2,1 <4 < N—1, be monotonic
and/or convex on the interval [um, um+1] and satisfy the conditions

S w)s; f® () <0, j#0,N, SH (e (w) <0, j=0,N,

where k = 1 and/or k = 2, respectively. Then for any fixed w € [w;, w;y1], 2 <
i < N — 3, the generalized spline S(w,u) constructed by Algorithm 6.1 will be
monotonic and/or convex in [Uy,, Uy +1]-

Property 6.2. Let the choice of parameters p;,q;, i = —2, ..., N +2, of a general-
ized spline S(w,u) ensures the following estimate for any S;(u) such that A;S(u),
9;S(u) do not change sign for all u € [0, 1],

[Sj(u) = Sj(u)] < Bj(u), j=0,...,N,
where E;(u) are given functions. Then for any fixed u the spline S, (w) = S(w, u)
is a shape preserving approximant.
To prove these assertions, it is sufficient to take advantage of the relations
N+1

Qiswu E:#“ k=12
k - 9 9
ou =

use the expressions (6.2) for the coefficients b;(u), and take into account the finite-
ness of the B-splines: B;(w) > 0 at w € (w;—2,w;42) and B;(w) = 0 at w ¢
(Wi—2, wi2)-



A nonunique shape preserving surface given point by point as a family of
curvilinear nonintersecting sections can be constructed by introducing the standard
parametrization

r=58%w,u), y=5S%w,u), z==5%(w,u). (6.3)

We choose the nodes of nonuniform meshes in the directions w and u according to
the results [4]. In our case the original points Tj; = (zij, Yij» 2ij), 7 = 0,..., M;,
i =0,...,N, are considered to belong to the parallelepiped Hij = {XijlIXi5 — xi5]| <
efj , where we put x;; = x(w;,u;) for every coordinate function in (6.3) and 6%
is the admissible deviation for the appropriate variable. The resulting surface is
obtained as a triple of shape preserving splines constructed by the above algorithm.

§7. Numerical Examples

In the numerical tests the initial data were given point by point as a collection of
nonintersecting, in general, curvilinear sections of a 3-D body. At the beginning via
the 1-D algorithm of shape preserving interpolation from sections 2 and 3 the system
of curves along the initial cross-sections was constructed. Along the orthogonal
direction the set of generalized local approximation splines was generated. On
the resulting surface the system of curvilinear coordinate lines forming the regular
mesh was constructed. Along these lines shape properties of the initial data such as
convexity, monotonicity, presence of linear sections and other were retained. The
defining functions ¢;(t), 1;(t) for the generalized cubic spline were taken in the form

pi(t) = p(pi,t) = Pi(1 — t)*/[1 + p;t(1 —1)],
that correspond to rational cubic splines with quadratic denominator. The ini-

tial data and the resulting shape preserving surface are given in figures 1 and 2,
correspondently.

Fig. 1. The initial aircraft data.



Fig. 2. The resulting shape preserving aircraft surface.
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