Local bases for generalized cubic splines

B. I. KVASOVT

Abstract - Direct and recursive algorithms are proposed for constructing generalized cubic
B-splines. Explicit formulae are obtained for generalized B-splines. Properties of series con-
sisting of B-splines are studied. It is shown that generalized B-splines form weak Chebyshev
systems. The presented formulae of local approximation are exact for polynomials of the
first degree. Examples of generalized B-splines including those with alternating signs are
considered.

The tool of generalized cubic splines is widely used in solving problems of
isogeometric interpolation. Introducing one or another of parameters into
the spline structure, we can preserve such characteristics of the initial data
as the convexity, monotonicity, linear and plane pieces, etc. Here the main
problem is to develop an algorithm for choosing parameters automatically.
The available algorithms are based mainly on the piecewise representation of
splines.

The method of local optimization [15], combined with recursive algo-
rithms for calculating polynomial B-splines [1], was found to be efficient in
practical applications. Although the theory of generalized B-splines is well de-
veloped [21], they are not applied widely for solving problems of isogeometric
approximation. This is due to fact that there are no simple and efficient com-
putational algorithms and explicit formulae for generalized B-splines. They
are developed only for trigonometric [16], hyperbolic [19], and some special
kinds of more general Chebyshev splines [4,14,20], which have a limited field
of application.

In this paper we propose two quite universal methods for constructing
generalized B-splines. The first method is based on solving directly a system
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of defining relations for B-splines and it allows one to obtain explicit formu-
lae for them. For this case, in [12,13] local bases for rational parabolic and
cubic splines, respectively, were constructed and algorithms for isogeometric
approximation were developed.

The other method generalizes the results of papers [8-10] dealing with
exponential splines and provides recursive algorithms for constructing a fairly
wide class of generalized B-splines (rational, exponential, and hyperbolic
splines; splines with additional nodes, etc).

The properties of generalized B-splines, in particular, the representation
of polynomial, exponents and rational functions with their help are studied.
Series of generalized B-splines are considered. It is shown that the series de-
crease variation and the systems of generalized B-splines are weak Chebyshev
systems. One- and three-point formulae are obtained for local approximation
by generalized B-splines. The formulae are exact for polynomials of the first
degree. The properties of the approximations are considered. Examples of
generalized B-splines including those with alternating signs are considered.

1. GENERALIZED CUBIC SPLINES. CONDITIONS OF EXISTENCE
AND UNIQUENESS

Assume that the division A : a = 29 < 1 < --- < zny = b is given on the
segment [a,b]. For a fufficiently smooth function S(z) we put ST = S (z;),
r =20,1,2, and introduce the notation

AiS:(SH_l—Si)/hi, hi:xi+1—azi, iZO,l,---,N—l,

5iS:AZ-S—Ai_1S, iZl,'--,N—l.

Definition 1.1. The generalized cubic spline is the function S(z) € C?[a, b]
which is of the form:

S(x) = [Si — @i (0)h7 S{1(L — t) + [Siz1 — ()R S]]t

1.1
+oi(t)hi 87 + u(t)hi Sily .

on each subsegment [x;,x;11]. Here t = (z — z;)/h;, and the functions ()
and 1;(t) are subject to the constraints

P =y0) =0, r=0,1,2 ¢(0)=1/(1) =L

We denote by S§ the set of splines satisfying Definition 1.1. The func-
tions p;(t) and ;(t) depending on parameters influence essentially the spline
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properties. Therefore, according to [25], we call them the defining functions.

In practice one takes p;(t) = ¢i(pi,t) and 1;(t) = p;(g;, 1 — t). In particular,

at ;(t) = (1 —t)2/6 and ;(t) = t3/6 we have the conventional cubic spline.
According to (1.1), we have

Si = AiS + [0i(0) + @3 (0)]hi S — i(1)hiSiy 1,

1= A8+ 9i(0)S! = [a(1) = wi(1)]hiSTs. 1-2)

The continuity conditions for S’(z) on A and the boundary relations
S’(a) = S} and S’(b) = Sy result in the system of linear algebraic equations

( —[0(0) + ¢5(0)]ho Sy + o (1)hoST = AoS — Sy,
0i-1(0)hi—1S{_1 + [¥i_1(Dhi—1 — i—1(1)hi—1 — ¢;(0)h;
— @i(0)hi]S{ + i (D hi Sy = AS — Az 15,
v=1,...,N —1,
en-1(0)hAn_1SN_1 + [¥n_1(1) — ¥n-1(1)]hn-15%
\ =Sy — An_1S.

(1.3)

Let us find constraints on the defining functions ¢;(t) and v;(¢) which
ensure that the generalized cubic spline S(x) exists and is unique.

Lemma 1.1. If the conditions
#i(0) >0, i (0) + #;5(0) + (1) <0,
pi(1) >0,  ¥i(1) —¢i(1) —i(0) >0, i=0,...,N—1
are satisfied, the generalized cubic spline S(x) exists and is unique.

Proof. By virtue of the lemma conditions, we have
©:(0) <0, ¢i(1)>0, i=0,...,N—1
and system (1.3) has the diagonal predominance:

ro = — [¢0(0) + ¢5(0) + ¢o(1)]ho > 0,
ri =[i_1(1) — i—1(1) — @i—1(0)]hi—1
— [¢i(0) + @4 (0) + s (1)]h; >0, i=1,...,N—1,
rv =[=Yn-1(1) + ¥v_1(1) = on-1(0)]An-1 > 0.
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Thus, according to the Hadamar criterion [26], the matrix of system (1.3)
is nonsingular and the generalized cubic spline S(z) exists and is unique.
Thus, the lemma is proved.

Further we need relations for S’(x) on the grid A. From (1.2) we have

Si = —{w 1AS + [9i(1) = ¢i(1)]S; — 4i(1)S; 14 },
(1.4)
i1 = {% 0)A;S +¢i(0)S; — [:(0) + ¢;(0)]S; 1 }

at T ' = [103(0) + ¢; (0)][wi (1) — wi(1)] — i (0)ei(1).
The continuity conditions for S”(x) on A and the boundary relations
S"(a) = S§ and S”(b) = S result in the system of equations

( [0 (1) = Yo(1)]Sh + ¢o(1)S] = (1) A0S — hoTy 'Sy,
Tz Ti_
907:—1( )h 15, 1 + { 801—1(0) + 90;—1(0)] h. .
1—1 i—1
/ / T /
+[ehi (1) — }S +i(1)=Si = (1.5)
/ Z / Tz—l .
wz(l)—AZS—%_1(0) Ai_lS, 1 = 1,...,N— 1,
hz' hi—l
/ / / hn— "
L (PN—l(O)SN—l - [(PN—l(O) + (PN—I(O)]SN :T]]:[[_jsN - ¥N I(O)AN—ls

Lemma 1.2. If the conditions

wi(0) >0, 2¢:(0) + ¢;(0) <0,
Pi(1) >0, (1) —2¢;(1) >0, i=0,...,N—1

are satisfied, the generalized cubic spline S(x) exists and is unique.

Proof. Tt follows from the lemma conditions that ¢’ (0) < 0 and ¢}(1) > 0
i=0,...,N —1. Then

i(0) = ¥i(1)[i(0) + #;(0)]
= 1i(1)#;(0) + ¥i (1) (0) — ¢5(1)[2:(0) + #;(0)]
> 20i(1)0i (0) + 1hi (1) (0) — 95(1)[24(0) + (0)]
= [205(0) + ;3 (0)][¢s(1) — ¢5(1)] > 0.
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Therefore, by virtue of the lemma conditions, the matrix of system (1.5)
has the diagonal predominance:

ro = —2¢o(1) + 14(1) > 0,

ri = —[2¢i-1(0) + ¢;_1(0)]

T4 / T;
T f20(1) + I >0,

i=1,...,N—1,
rn = —[2¢N-1(0) + ¢y _1(0)] > 0.

This ensures [26] that the spline S(z) exists and is unique. Thus, the lemma
is proved..

The conditions formulated in Lemma 1.2 are satisfied for the majority of
splines used in practice. This allows one to construct them, i.e. to solve, in
fact, the system (1.5), by the conventional three-point sweeping method [26].

2. CONSTRUCTION OF BASIS SPLINES

Let us construct a basis for the space of generalized cubic splines S§ by using
functions which have local supports of minimum length. Since

dim(S¢) =4N —3(N —1) =N +3

we extend the grid A by adding the points z;, j = —3,-2,-1,N + 1, N +
2,N+3,suchthat r_3s <z_o<2_1 <a,b<znyy1 <xTnyi2 < TN43-
We demand that the basis splines B;(z), ¢ = —1,..., N + 1 have the
properties
BZ(ZU) >0, x¢€ (xi_2,$i+2),
BZ(LU) = 0, Wi §é (xi_2,$i+2),
N+1 (2.1)

> Bj(z)=1, z€ab]

i=-1

For a spline B;(z) different from zero only on the interval (z;_o,z;12)
the system (1.3) is transformed to

Bi(zi—1) = Yi—2(1)hi_y By (zi—1) (2.2)
B;(zit1) = pit1(0)hiy Bl (zi11) '
(hi—1ui—1 +vio1)Bi (zi—1) + ¢i—1(1)hi_ B (z:) = Bi(x:),

ui—1 B} (zi—1) + u; B (i) + uiy1 B (zi11) = 0, (2.3)
@i (0)h7 B} (z;) + (hitit1 — vig1)B] (wit1) = Bi(ws),
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where
ui = i1 (Dhic1 — @i(0)hi,  vi = i1 (1)hi_y — i(0)h7. (2.4)
According to (1.2) and (1.5), we also have
Bj(zi-1) = ¥i_o(Dhi2 B (zi-1),
Bi(wit1) = ¢iy1(0)hiy1 B (wig1), (2.5)

Bi(zi) = —hiBi(l’i) + [9i(0) 4+ ;i (0)]h; B () — U2+lBél(xi+1)'

7 7

Let us write the norming conditions (2.1) and the corollaries of them as
i+1
S° B (@) = b0, r=0,1,2, (2.6)
j=i—1
where g, is the Kronecker’s symbol.
Taking into account (2.2) and (2.5), we can rewrite (2.6) as

2

©i(0)h; B\ (x;) + Bi(w:) + i1 (1)hi_1 Bl 1 (z) = 1,

i (0)hi B;_ (;) — iBz‘(l’i) + [pi(0) 4 ; (0)]hi By ()

hi
v;
- h+-1 B/ (ziy1) + i _1(1)hi—1 By, (2i) = 0,
\ i1(xi) + By (x;) + B{ 1 (%) = 0.

Eliminating B;__,(z;) and B} ,(z;), we have
(Rii +vi)[Bi(x:) — i (0)h7 B ()] + vivig1 B (wi11) = hius.

The equation obtained, together with the last equation in the system
(2.3), yields

1 v;
yj =xj — . (2.7)

Bl'(riy1) = :
i (Ti) Uit 1(Yir1 — Yi) uj

Subtracting the third equation of the system (2.3) from the first in the
same system, we find

wi—1(zi — yi—1) B} (ziz1) + wi(zi — yi) Bl (x;) = —wit1(zi — yit1) B (wit1),
wi_1B! (ri—1) + u; B! (z;) = —u;y1 B (wiv1),
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and hence taking into account (2.7), we have

1 1 1 1
Bz/'/ LTi—1) = y B;/ T;) = ——< + > 2.8
( ) i—1(Yi — Yi—1) (i) Ui \Yi — Yi—1  Yi+1 — Yi (28)

Thus,

Yi+1 — Yi—1 .. ..
B’:/(xj): u-w’ 1(y_)’ .7:2_1)2,2—'_1, (29)
) — J

where w;_1(z) = (z — yi—1)(x — yi)(® — Yi+1).
If we also denote

Wf = uj+kuj_1uj__&1(yj+1 —yj)"h j=i—1,4, k=01
then
Bl (zi—1) =W,—y, Bi(z;))=—-(W2,+W}), Bl(wiz1)=W;. (2.10)

The obtained formulae allow us to write explicitly the spline B;(z) and
its derivatives at the nodes of the grid A.

Table 1.
z By(z) Bj(x) B/ (z)
Li—1 wi—2(1)h?—2Wi1—1 1/2—2(1)hi—2Wi1—1 Wil—l
1— i (VA2 W | ! (D) h_ W
25 ( ) 1 ¢z—/1( ) 10 T _(I/I/'ZO_1 ‘I—Wzl)
— i (0)h2 W0, —;(0)hs WL,
Li+1 (Pi+1(0)hz2+1Wi0 90;+1(0)hi+1Wi0 Wy

The following statement can be checked directly.

Lemma 2.1. The relations
UZB;/_+_1(.’BZ) = ui+1Bl{’(azi+1), 1= —1,...,N

hold for generalized cubic B-splines.

Now let us find an explicit formula for the spline B;(z). If z € [z;, z;4+1]
then, according to (2.2), (2.3), and (2.7), in formula (1.1) we have

li(x) = (1= 1)[Bi(z:) — @i (0)hi Bi' ()] + t[Bi(wit1) — i (1)hi Bi (zi41)]
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= (1 — t)(hiuit1 — vit1)BY (zig1) + tpir1 (0)h7 1y — ¢i(1)R7] B (zig1) =
Yi+1 — T
Yi+1 — yz

Similarly, if x € [z;_1, z;], then, according to (1.1), (2.2), (2.3), and (2.8),
we have

[(1=t) (hivit1 —vig1) —tvip1] B (Tit1) = tip1(Wit1—2) B (zig1) =

o1(2) = 22 Biaica) — i O4 B (a1-)

hi—1
r — Ti—
+ S ) — s (B B )
r; — T r — T;—
= vi—1 + —1(’%—1%‘—1 +vi—1)| B (i—1)
hi—1 hi—1
L —Yi-1
= u;_1(z — yi—1)Bj (xim1) = ——.
( ) ( ) Yi —Yi—1

Using the notation (2.10), from (1.1) we finally obtain

( \Ifi_g(x)Wil_l, T € [Ti—2, 1),

LYol g (()WE | — Uy () (WO, + W),
Yi —Yi—1
T < [5131'—1,%],

Bi(w)={ Yl =T g0 qp0 ) o (a) W,
Yi+r1 — Yi

(2.11)

T € [z, Tip1],
i1 ()W, @ € [2ig1, Tiga),
L0, ¢ [zi—2,xita],

where

Y G AR TE R =y )

The formula is very convenient for practical purposes. Its characteristic
feature is that the linear part in it is explicitly separated, which is due to the

representation (1.1).
Figures la and 1b present the graphs of rational B-splines B;(z) on a

uniform grid with step h = 1 for

pi(t) = (1=1)°/[L+pit(1-t)]P;, Pt = 2(1+p;)(3+p;), ¥(t) = @;(q5,1-1)
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(a) (b)
Figure 1. The basis splines on a uniform grid with step h = 1,

(a) p=0,p=1, and p =5; (b) p= 10, p = 20, and p = 50.

and p; = ¢q¢; =p, j =1%—2,...,9+ 1. The solid, dotted, and dashed lines
represent the graphs of B-splines for p = 0, p = 1, and p = 5, respectively
(Fig. 1a), and for p = 10, p = 20, and p = 50, respectively (Fig. 1b). If p =10
we have the conventional cubic B-spline. Passing to the limit as p — oo, we
obtain the piecewise linear function of the Schauder basis having the support

[l’i—l, $i+1]-

3. ANOTHER WAY OF DETERMINING BASIS SPLINES

In (2.11) the expressions for B;(z) differ in the subsegments [z;_;,z;] and
[xj,$j+1], j :2—2,,2—|—2 by

—®;_1(x) B (zj-1) +[®;(2) = V;_1(2) +u;(z —y;)]B{ (z;) + ¥ (x) By (z41)-
Summing up these ’jumps’, we arrive at the representation
i+1
Bi(z) = Y Bi(z;)Q(x), (3.1)
j=i—1

where

Qj(z) = V;1(z)0(z — zj-1) +[®j(z) — ¥;1(z) + uj(z — y;)]0(z — z)
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—®;(z)0(z — zj41),

1, z2>xj,

H(m—xj):{o’ xzxj.

Since §(z — z;) =1 — (z; — x), we can rewrite (3.1) as

1+1
— Y B'(x;)Q(z) + Ri(x). (3.2)

g=t—1

Here ;() can be obtained from Q;(z) by replacing 8(z — z;) with 8(z; — z).
For R;(z), taking into account (2.9), we have

i+1 i+1
Ri(z) = Y Bl(zj)uj(x —y;) = (yir1 —vic1) Y, ——~ ( J,) =
j=i—1 jmio1 Vi1

= (Yiv1 — ¥i-1)91T;¥i-1, Y5, ¥ix1] =0, g(z,y) =z —y.

The square brackets denote the second divided difference of the function
g(x,y) with respect to its argument y = y;, j =7 — 1,4,7 + 1.

It follows from formulae (3.1) and (3.2) that B;(z) = 0 for
z & (x;_2,x;12). Any of the formulae can be taken as the definition of the
generalized cubic spline.

For the ordinary cubic spline [at ¢;(t) = (1 — t)¥6 and v;(t) = t¥6], in
(3.1) we have

3

Qj(x) = —(xj41 —zj)glz; i1, x5, 241], g(z,y) = (z —y)y,

Cnlr—\

where z; = max(0, z) and (3.1) takes the form:

Bz(l‘) = ($i+2 - xi—z)g[ﬂf;xz‘—% s ,l‘z'+2]-

4. RECURRENCE FORMULAE FOR GENERALIZED B-SPLINES
Let us consider the splines
Ui(z), z; <o <wmjp,

Bji(z) = ‘1’}’+1($), Tjv1 <@ < Tjyo, (4.1)
0, otherwise
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where j =i —2,i—1,i. We assume that the functions 7 (z) and @7, ,(z) are
monotonous. The splines Bj 1(x) are generalizations of ’functions-roof’ for
the polynomial B-splines. They are nonnegative and, besides, Bj 1(zj+1) =1
and Bji(x;) =0 for [ # j+ 1.

Using B, 1(z), we define recurrently the splines

" Bj g Y Bii1k—
B p(z) = Ll(ﬂdT _ j+1k=1(7) dr (4.2)
Js . .
and
Tj+k
Cjk—1 = / Bjk—i(r)dr, j=i—-2,i—k+1, k=23 (4.3)

j
Formula (4.2) can also be represented as

Titk—1 B., Ti+k B. _
Bji(z) = _/ s e A 1(7)d7+/ i1a=1(7) 4

Simple calculations result in
G =ujr1, J=i—2,i—L4 o =yip2—yi41, J=1—20—1, (44)

which makes clear the geometric sense of these quantities. Differentiating
(4.2), we also have

B B; _
fule) = Dmt@) Breneale) gy (4.5)
7,k—1 Cj4+1,k—1

The splines Bj ;(x), k = 2,3, can be written explicitly. Due to (4.1) and
(4.2), for j =i —2,i— 1 we have
(Vo (z)/ujr1, = <@ <xjp,
L4+ % (%) /ujyr — Wiy (2) /ujre, 201 <@ < xjyo,
— 05 o(x)/ujr2, wjre <@ < Tjis,

0, otherwise.

Bja(z) = (4.6)

\

Note that Bjo(jti141) = (—1)luj_+ll+1, | = 0,1. The expression for

B, 3(z) coincides with that for Bj(x) in (2.11) if we renumber the splines
with respect to the support centre.
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()
Figure 2. The rational B-splines of order k = 1,2,3 (from left to right)
with various vectors of parameters, (a) p; = 0 for all j. (b) p0 = (1,5),
p = (10,100, 0), and p = (1,5,10,10); (c) p; = 50 for all j.

Figures 2a, 2b, and 2c present the graphs of rational B-splines B; (),
k =1,2,3 (from left to right, respectively) on a uniform grid with step h =1
for

pi(t) = (1=t)*/[14pit(1=t)|P;, P71 =2(14+p;)(3+pi), i(t) = ¢i(qi, 1—t)
and p; = q;, 1 = j,...,7+ 3. For all i the case p; = 0 (Fig. 2a) corresponds to
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the conventional polynomial B-splines. In Fig. 2b the vectors of parameters
are (1,5), (10,100,0), and (1,5,10,10) for B;x(z), k = 1,2,3, respectively.
Finally, in Fig. 2c the parameters are p; = 50 for all ¢. Passing to the limit
as p; — 0o, we obtain an impulse function for B;;(z), a ‘function-step’ for
B; o(z), and a ’function-roof’ for B; 3(x) (all the functions are of unit height).

5. PROPERTIES OF GENERALIZED B-SPLINES

The functions B; ,(z), k = 2, 3, have many properties inherent in conventional
polynomial B-splines.

Theorem 5.1. The functions Bj i (x), k = 2, 3, have the following proper-
ties.

(1) Bj,k(l') > (0 for x € (xjamj—l-k—i-l) and Bj,k(l') =0 for x ¢ (xj,xj—i—k:-l—l)-
(2) The spline B, i(z) is (k — 1)-times continuously differentiable.

(3) Sy Bja(x) =1 for x € [a,b];
®}(z) = u;Bj_22(z) and ¥ () = uj11B;2(z)

for x € [a:j,:zzj+1], j=0,...,N—1.

(4) Z;.V:__l?) YiioBjs(r) = 2", r=0,1, for z € [a, b];

®j(x) = ujy; —yj-1)Bj—ss(x) and ¥;(x) = ujp1(yj2 — yj+1)Bjs(z)

for x € [:cj,:cj+1], j=0,...,N —1.

Proof. First let us consider the splines B, o(x). The values u;, | =
J+ 1,7 4+ 2, used in (4.6) are positive, since they are integrals of nonnega-
tive B-splines By ;(x). The functions ¥j(x) and —®j(z) are nonnegative and
monotonous. Therefore, according to (4.6), the spline B, »(x) is positive, in-

creases monotonously on the interval (z;,z;41), and decreases monotonously
on the interval (z;49,z;43). Since

W) VL)

Uj+1 Uj+2

<0, =ze€e [33'j.+.1,.’17j+2]

we see that the function B, 2(z) is convex upwards on this interval and thus
it is also positive.

To prove the other properties of the splines B, »(x), which are formulated
in Theorem 5.1, it is sufficient to use formula (4.6).

Since the splines Bjo(z) are nonnegative, the integral of them over the
supports (z;,x;j43), i.e. the constants ¢; 2 = yj42 —y;4+1 in (4.4), are positive.
Therefore, according to (2.9),

B/'I,S(xjﬂ) > 0, B/'/,3(93j+2) <0, Bj(rj43)>0 (5.1)

J J Js
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and by virtue of (2.2) and (2.5),
BJ(,? (zj+1) >0, (_1)TBJ(-T3) (zj43) >0, r=0,L. (5.2)

Taking into account that the functions ®;(z) and ¥;(z) are nonnegative
and monotonous on [z, z;4+1] and using formula (2.11), we see that the spline
B, 3(x) is positive and increases monotonously on the interval (z;, z;41). Sim-
ilarly, B; 3(x) > 0 decreases monotonously on the interval (z;43,z;14).

For z € [z, 2131], I = j + 1,7 + 2, we have

(@) = & (2) B} 3(z1) + V)" (z) B} 3(2141).

Here ®;'(z) < 0 and ¥;"(z) > 0, since they are derivatives of monotonous
functions. Hence, by virtue of (5.1), the function BY ;(z) decreases monotono-
usly on [x;41,%j42] and increases monotonously on [x;492,zj43]. Then there
exists two points * € [x;11, T 2] and o™ € [z;12, 71 3] such that B 3(z*) =
Bj3(z**) = 0. Taking into account (5.2), we find that the spline Bj 3(z) is
positive, increases monotonously on [z;41,2*], and decreases monotonously
on [z**,z;43]. The function B, 3(x) is convex upwards and also positive on
the segment [z*, z**].

All the other properties of the splines B; 3(x), which are formulated in
(2) and (4) of Theorem 5.1, follow directly from formula (2.11). Thus, the
theorem is proved.

The quantities y;, 7 = ¢ — 1,%,¢ + 1, are of considerable importance in
constructing the splines B;(z) = B;_2,3(x). The quantities are also important,
because they enter into relations (4) of Theorem 5.1. The following statement
allows us to estimate their values.

Lemma 5.1. If the following relations hold:

Pi—1(1) >0, o5 _1(1) —2;-1(1) >0,
©;(0) >0,  2¢;(0) + ¢}(0) <0

then the inequalities hold:
Ty — hj_1/2 < Yj < €L + h]/2

Proof. Since y; = z; — vj/u;, by using formulae (2.4) for u; and v; we
can rewrite the above inequalities as

0 < hi[—¢}(0)hj—1 + 20;(0)hy] + b3 _y[—2¢; 1 (1) 4+ ¢ _ 1 (1)],
0 < —h5[20;(0) + 5 (0)] + hj 12405 1 (D)1 + ¢} (1)hy].
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Evidently the last ones hold by virtue of the lemma conditions.

Note that the inequalities in Lemma 5.1 are also used in Lemma 1.2 to
prove the existence and uniqueness of the generalized cubic spline. Therefore,
if the conditions of Lemma 1.2 are satisfied, then u; > 0 for j =7 —1,%,¢ + 1,
and yj4+1 —y; > 0 for j =4 —1,i. According to formulae (4.3) and (4.4), the
integrals of B-splines Bj; (), k = 1,2, are positive even if the functions ®7(z)
and W7 (z) are not monotonous. According to (2.7) and (2.8), the inequalities
(5.1) hold.

The known properties of polynomial B-splines [26] can be generalized in
the following way.

Lemma 5.2. The splines B; ,(z), k = 1,2, 3, have supports of minimum
length.

Proof. It is clear that the spline B; 3(z) cannot be different from zero
only on a part of the subsegment [z;,z;41], j = 4,7 + 3. If we suppose
that B, 3(x) is not zero only on the segment [z;11,%;44], then due to the
continuity of Bj'5(x), we have B3(z;11) = 0. But then it follows from the
system (2.3) that B;'3(zi12) = Bj3(ziy3) = 0, and according to (2.11) we
obtain B;3(z) = 0. If we suppose that B; 3(z) # 0 only on the segment
[x;, x;+3], we arrive at the same result.

It follows from explicit formulae (4.1) and (4.6) that the supports of the
splines Bj i (z), k = 1,2, cannot be diminished. Thus, the lemma is proved.

Denote by S& the set of splines S(z) € C¥ l[a,b] such that they

are formed by linear combinations of the functions {1,...,z"2, <I>z(3_k)(9:),
\1153_k)(az)}, k =1,2,3, on each subsegment [x;, z;y1],7=0,..., N — 1.

Theorem 5.2. The splines B; x(z), i = —k,...,N —1; k = 1,2,3, are
linearly independent and form a basis in the space S,f of generalized splines.

Proof. Let us assume the opposite. Assume there exist constant c; g,
t=—k,...,N —1; k=1,2,3, which are not all equal to zero and such that

C_k,k;B_k,k(ZC) + -4 CN—l,k:BN—l,k:(x) =0, x€ [a, b] (53)

According to formula (1.1), a spline S(z) is formed by (k 4 1) linearly
independant functions on each subsegment [z;,z;11], 7 =0,..., N — 1. Only
(k+1) terms, which have the subscripts i —k, ..., ¢,remain in the sum (5.3) for
x € [z;,z;+1] and hence taking into account formulae (4.1), (4.6), and (2.11),
we have ¢;_p r = -+ = ¢;; = 0. Continuing this process, we find that ¢; , =0
for all 2.

Since dim(SY) = N + k, we see that the splines B; x(z) € S¢, i =
—k,...,N — 1, form a basis in this space. Thus, the theorem is proved.
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6. SERIES OF GENERALIZED B-SPLINES

The statements of this section are formulated mainly for series of generalized
cubic B-splines B, 3(z), since they are of the most interest to us. Many
statements, however, can easily be reformulated for the splines B; (x), k =
1, 2. For simplicity sake, we do not do this, because such splines are auxiliary
in this paper.

According to Theorem 5.2, any generalized cubic spline S(z) € S§ can
be represented uniquely as

N+1

S(z)= Y bjBj(x), x€[ab] (6.1)

j=—1

where b; are constant coefficients.
Let us study how a spline S(z) behaves depending on the coefficients b;.
Since B-splines are local, from (6.1) we obtain the inequalities

i+2
' < — Bi(z) < oz <z <z (6
i_1%12i+2 bj < S(x) ‘ZleBJ (z) < i—lrg?%(i+2 bj, ;i <x<xip1. (6.2)
j=i—

Hence it follows that the way the spline S(z) behaves on the segment [z;, z;41]
is determined by the coefficients b;_1,---,b;4+2. In particular, in order for a
spline S(z) to be zero at a point of the segment [z;, x;11], it is necessary that
bjbjy1 <0 forsome:—1<j<i+1.

Estimate (6.2) can be essentially improved. Applying the differentiation
formula (4.5), we obtain

N-1

SB ()= 3 bB;s k() (6.3)
j=—3+k

where
bjt2, k=0,

(k) _ k—1 k—1
bj — bg ) b§—1 )

k=12

Lemma 6.1. If b; >0, j = —1,...,N + 1, then S(z) > 0 for all .

The lemma statement is obvious, because the B-splines B;(x) are non-
negative.
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Lemma 6.2. If bjy1 > b; (bj41 < bj), 5 = —1,..., N, then the function
S(z) increases (decreases) monotonously.

Proof. According to formulae (4.4) and (6.3), if we denote

A.p bit1 =0
! Yi+1 = Yj

we have
N—

Z J+1bBJ2 )

Because the splines B, »(z) are nonnegative, from the above formula and
Lemma 6.1 follows the lemma statement. Thus, the lemma is proved.

Lemma 6.3. If Aj 1 1b — Ajb > 0 (< 0), j = —1,...,N — 1, then the
function S(z) is convex downwards (upwards).

Proof. By virtue of (4.4) and (6.3), we have

N—-1

S"(@) = Y (Ajpab— Ajb)u; ) Bja(z). (6.4)

i=—1

Because the splines B; 1(x) are nonnegative, taking into account Lemma 6.1
we obtain the lemma statement. Thus, the lemma is proved.

Let Ziq4)(f(x)) be the number of isolated zeros of a function f(x) on the
segment |[a, b)].

Lemma 6.4. If the spline

N+1

= ) b;Bj(x)

j=—1
does not become zero at all points of any subsegment of [a, b], then
Ziap)(S(r)) <N +2.

Proof. According to (6.4) and (4.1), the function S”(z) has no more than
one zero on [z;, z;+1], because the function @ () and ¥/ (x) are monotonous
and nonnegative on this subsegment. Hence Zp, (5" (z)) < N. Then, ac-
cording to the Roll theorem [21], we find Zp, 3(S(z)) < N + 2. Thus, the
lemma is proved.

Denote by supp B;(x) = {x | B;(x) # 0} the support of the spline B;(z),
i.e. the interval (x;_2, T;+2).
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Theorem 6.1. Assume that 71 < 79 < --- < 7ny+1. Then
D = det(B;(1j)) #0, i,7=-1,...,N+1

if and only if
T; € supp B;(z), i=-1,...,N+ 1. (6.5)

If condition (6.5) is satisfied, then D > 0.

Proof. Let us prove the theorem by induction. It is clear that the theorem
holds for one basic function. Assume that it also holds for (1-1) basic functions.
Let us show that if (6.5) is satisfied, then D # 0 for [ basis functions.

Let 71 ¢ supp Bj(z). If 7, lies to the left (right) with respect to the
support of Bj(z) then the last column (line) of the determinant D consists of
zeros, i.e. D = 0. If 7, € supp By(z) and D = 0, then there exists a nonzero
vector ¢ = (c_1,---,c;_2) such that

-2

S(me) = Y ¢Bj(me) =0, k=-1,...,1-2,

j=—1

i.e. the spline S(z) has [ isolated zeros. But this contradicts Lemma 6.4,
which states that S(z) can have no more than (I — 1) isolated zeros. Hence
c=0and D #0.

Now it only remains to prove that D > 0 if (6.5) is satisfied. Let us
choose xp_o < 7, < xp_1 for all k. Then the diagonal elements of D are
positive and all the elements above the main diagonal are zero, i.e. D > 0.
It is clear that D depends continuously on 7%, k = —1,...,01 —2, and D # 0
for 7, € supp By (z). Hence the determinant D is positive, if condition (6.5)
is satisfied. Thus, the problem is proved.

The following three statements follows immediately from the theorem.

Corollary 6.1. The system of generalized cubic B-splines {B;(x)}, j =
—1,..., N + 1, is a weak Chebyshev system according to the definition given
in [7], i.e. for any 7_1 < 79 < -+ < Tny4+1 we have D > 0 and D > 0 if and
only if condition (6.5) is satisfied. If the latter is satisfied, the generalized
spline S(z) = Z;-V;_ll b;B;j(x) has no more than N + 2 isolated zeros.

Corollary 6.2. If the condition of Theorem 6.1 are satisfied, the solution
of the interpolation problem

S(Ti):fi, t1=—-1,...,.N+1, f,eR (66)
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exists and is unique.

Let A= {a;;},i=1,...,m, j =1,...,n be a rectangular m x n matrix
with m < n. The matrix A is said to be totally nonnegative (totally positive)
[5] if all the minors of any order of the matrix are nonnegative (positive), i.e.
for all 1 < p < m we have

1<ip <.+ <ip <m,

det(a;, ;) > 0 (> 0) for all
(@43) 2 0 (> 0) IR

Corollary 6.3. For arbitrary integers —1 < v_; < -+ < vyp_o < N +1
and 7_1 < 19 < -+ < Tp_o we have

D, =det{B,, (1)} >0, i,j=-1,...,p—2
and D, > 0 if and only if
T; € supp By, (z), i=-1,...,p—2

i.e. the matrix {B,;(7)}, i,7 = —1,..., N + 1, is totally nonnegative.

The last statement is proved by induction on the basis of Theorem 6.1
and the recurrence relations for the minors of the matrix {B;(7;)}. The proof
does not differ from that cited by Schumaker [21].

Since the suport of B-splines are finite, the matrix of the system (6.6) is
bandwise and has seven nonzero diagonal in the general case. The matrix is
tridiagonal if , = x;, 1 = —1,..., N + 1.

An important specific case of the problem, in which S’ (z;) = f/,i =0, N,
can be obtained by passing to the limit as 7—1 — 79, Tv+1 — TN

De Boor and Pinkus [2] proved that linear systems with totally nonnega-
tive matrices can be solved by the Gauss method without choosing a leading
element. Thus, the system (6.6) can be solved effectively by the conventional
sweeping method.

Denote by S~ (v) the number of sign changes (variations) in the sequence
of components of the vector v = (vy,---,v,), with zeros being neglected.
Karlin [7] showed that if a matrix A is totally nonnegative then it decreases
the variation, i.e.

ST(Av) < 57 (v).

By virtue of Corollary 6.3, the totally nonnegative matrix {B;(7;)}, i,j =
—1,..., N 4+ 1, formed by generalized cubic B-splines decreases the variation.
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For a bounded real function f(z) we denote by S™(f) = S~ (f(z)) the
number of sign changes of the function on the real axis IR, with zeros being
neglected. Thus, we have

S™(f(z)) = sgpS_[f(Tl),...,f(Tn)], T <79 < oo < Ty

Theorem 6.2. The spline

N+1

S(z)= ) b;B(x)

j=—1

is a function decreasing the variation, i.e. the number of sign changes of the
spline S(z) is no more than the number of sign changes in the sequence of the
spline coefficients:

N+1 _ _
Sﬁ( Z bJBJ(ZU)> S S_(b), b = (b_l,...,bN+1).

j=—1

Proof. We use the approach proposed by Schumaker [21]. Let S~ (b) =
d — 1. Let us divide the coeflicients b; into d groups:

b1,y bhy s Dlgtts -y Bhgs e e o Dyt - -y N1

In this case in each group at least one coefficient is not zero and all the nonzero
coefficients have the same sign.
Putting k&1 = —2 and kg4+1 = N + 1, we define the function

kjt1

Bj(z)= )Y _ |b|Bi(z), j=1,....d.
i:kj—+—1

Then for arbitrary 7 < 79 < --- < 74 we have
ko kgt

det(éj(’l'i))?,jzl = Z Z ‘by1|...|byd‘det(Bj(Ti)) > 0,

vi=k1+1 vg=kq+1
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by virtue of Corollary 6.3 and because at least one coefficient b; is not zero
in each group. It is clear that we can choose 71 < 75 < ... < 74 such that
det(B;(7;)) > 0. Hence the function B;(z) are linearly independent.

Assume that 6 = +1 is the sign of the first group of the coefficients b;.
Let us take b; = (=1)*"%4,i =1,2,...,d. Then

N+1

S(x) = Zi)iéi(:c) = S(x) = > b;B;(x).

j=-1

Applying Lemma 6.4, we obtain

Z< fo bij(a;)> = Z(iBiBi(x)> <d—1=85"(b_1,...,bx11).

j=—1

Thus, the theorem is proved.

The statement of Theorem 6.2 can be refined, namely we can point out
a relation between the point at which the spline changes its sign and the
corresponding spline coefficient. The coefficient corresponds to the B-spline
whose support includes the point of the sign change [see (6.2)].

Theorem 6.3. Assume that the inequalities (—1)7S(r;) > 0,j = 1,2...,d,

are valid for the spline
N+1

S(z) = ) b;jBj(x)
j=—1
at some 71 < 79 < -+ < 74. Then thereexist —1 <11 <t < -+ <ig < N+1
such that '
(—1)Jb7;jBij (Tj) >0, j=1,2,...,d.

The proof of this statement does not differ from the proof of the corre-
sponding theorem for polynomial B-splines [21].

7. TRANSFORMATION OF A SPLINE REPRESENTATION
INTO ANOTHER ONE

If b; are known in (6.1), then by virtue of (2.11), we can write a expression in
an easy-to-use form for the generalized cubic spline S(z) on the subsegment
(@i, Tia]:

S(z) = b; + Ab(x — yi) + cihipi(t) + cis1hi; (1), (7.1)
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where
(A A -1 _ A _ b]+1 bj
cj = (Ajb—Aj_1bu;, j=ii+1, Ajb= :
Yj+1—Yj
From this, in particular, we obtain the formulae
1 . .
S(zi) = bi + ;[¢i_1(1)h?—1ﬁz‘b — i(0)h; A;_1b],
1 - -
S'(xi) = ;[%_1(1)%‘—1&1) — 23 (0)hiA;_10], (7.2)
1 - .
S”(l‘i) = —(Azb - Ai_lb).
U
Let us also write the inverse transformation
bi—1 1 yio1—x; 9i(yi-1) S(x;)
bi = 1 Y; — T4 nl(yz) S/(LEZ) y (73)
bit1 1 yit1— 2 Ki(Yit1) S (x;)

where

192(34]) = —h;- 1[% 1( ) i—1 T (yj - mi)wg—l(l)L
ki(y5) = —hilpi(0)hi + (y; — 4)#;(0)],
’il(yj) (yj)+ui(yj_yi)’ J=1—L0:+1

Therefore in (7.1) we have

’ S(xip1) + (yj — zix1) S (xig1) + kig1(y;)S" (Tig1), =i+ 1,i+2.

Formula (7.1) allows one to express the coefficients of the spline S(x) in
the representation (6.1) as

b {5(%‘) — S"(@j—1)®j-1(y;) — 8" (2)¥5-1(ys), vy <y,
;=

Suy) — ()5 (0) - 5" (a5 Uy u), v > 3 (74

Multiplying (7.3) from the left by the matrix B = {B,;|B,; = By)(:ci)},
r=20,1,2, 5 =¢—1,4,7 + 1, we arrive at the identities

i+1 1+1

> B @) =60, D (5 — ) B (i) = 1,

j=i—1 j=i—1
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141

S kily;) BS (@) + wi(ys — yie1) B () (7.5)
j=i—1
1+1
= Z v, (yj)BJ(-T)(wi) + wi (Yig1 — yz)Bl(:_)l(xz) = Or2,
j=i—1

where 9, is the Kronecker’s symbol.
By using Table 1, we can rewrite the last relations in (7.5) as

i+1

> ki) B (i) = = ()R, 1 =0,1,
j=i-1

it+1

> Wily)B (@) =~ (DR, r=0,1,
j=i—1

141 i+1

Z ki(yj) B" (x;) Z Vi (y;) B” (x;) = 0.
j=i—1 j=i—1

Now if we demand that y; = z;, ¢ = 0,..., N, then we should put v; =
Pi—1(1 )hz2 . — @i(0)h? = 0. In this case formulae (7.3) for the coefficients b;,
t =—1,..., N 4+ 1, are essentially simplified and are of the form:

bi1=5@0—'iby@0+hiﬂ—%—ﬂU+¢Lﬂwaw%
bi = S(xi) — hipi(0)S" (z:), (7.6)
bit1 = S(x:) + hi S'(ﬂ?z) hilei(0) + 5 (0)]S" (2:),

i=0,....N.

8. FORMULAE FOR LOCAL APPROXIMATION BY GENERALIZED
CUBIC SPLINES

Representations (6.1) and (7.1) allows us to find a simple and efficient way to
approximate a pointwise given function f(x).

Lemma 8.1. For b; = f(y;), j = —1,..., N+1, formula (6.1) is exact for
polynomials of the first degree and provides the local smoothing.

Proof. We should prove, in fact, that the identities

N+1

Z y;Bi(z) ==z", r=0,1 (8.1)

j=—1
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hold for € [a,b]. Using formula (7.1) with the coefficients b, = 1, y;,
j =1—1,i,i+ 1,7 + 2, for an arbitrary subsegment [z;,z;11], we find that
identities (8.1) hold.

For b; = f(y;) formula (7.1) can be rewritten as

S(z) =f(yi) + flyi, yirrl(z — vi) + (Yir1 — yz’—l)f[yi—layiayi+1]uz’_1h?90i ()

+ (yit2 — i) Fl¥, Yir 1, Virolu 5 hii(t), @ € [z, miga], (8.2)
where the square brackets denote the divided differences of the function f(z)
with respect to its arguments y;, 7 =4 — 1,%,¢ 4+ 1,¢ 4+ 2. This formula is the
formula of local smoothing.

For the cubic spline at ¢j_1 =p; =0, 5 =14 —1,...,7+ 2, we have
yj = (@1t @5 +2541)/3, uj = (2541 —2j-1)/2.

If, in addition, we assume that the grid A is uniform, i.e. h; = h for all j,
then formula (8.2) takes the form:

h
S(z) = fi(1 =1) + fipat + 8[(1 —1)°6; f + %0541 f],
where 5]f = AJf - Aj—lfa j = Z,Z + 1. In particular, S(LEZ) = (fi—l + 4fz +

fi+1)/6. Thus, the lemma is proved.
Corollary 8.1. Putting

bj = fj — —[j—1(L)h_1 A f — 0 (0)hA; 1 f], (8-3)

in (6.1), we obtain the formula of three-point local approximation, which is
exact for polynomials of the first degree.

1
uj

To prove the corollary, it is sufficient to take the monomials 1,z as f(x).
Then according to (8.3), we obtain b; = 1 and b; = y; and it only remains to
use identities (8.1).

By virtue of Theorem 6.2, the spline

N+1
Sp(x) = Y fly;)B;(x)
j=—1
decreases the variation. This allows us to write the inequalities

§7(8f(x)) < 57(F) <5 (f(x)),

where f = (f(y_1),...,f(yn+1)). Since the locally approximating spline
S¢(x) is also exact for polynomials I(z) of the first degree, we arrive at the
inequality

S7(5¢(x) = U(x)) = 57 (S5-u(x)) < 57 (f(z) — U=)).

Thus, the following statement is true.
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Theorem 8.1. If b; = f(y;), j = —1,..., N + 1, then the locally approx-
imating spline Sy (x) intersects an arbitrary straight line no more times than
the function f(z) does.

Note that according to (7.4),
-9 —
bj = S(y;) + O(hy),  hj = max(hj_y,h;).

Hence it follows that the test polygon converges quadratically to the fubction
f(z) both at b; = f(y;) and if formula (8.3) is used.

9. EXAMPLES OF GENERALIZED B-SPLINES

Let us consider the defining functions ¢;(t) and ;(t) in (1.1), which are in
most common use. In the examples given below they depend on the parsame-
ters:

vi(t) = pi(pi,t), Yi(t) =pi(qi,1—1t), 0<p;q < oo.

(1) Rational splines with a linear denominator [23]:

(34 3¢ + ¢?).

ilt) = (L=1)*/(L+pit) P, P

2
Yilt) =t /[1+ (1 —1)]Qi, Q7' =2

The conditions of Lemma 1.2 are satisfied at —1 < p;,¢q; < 00,2 =0,..., N—1,
and thus the interpolation spline exists and is unique. Lemma 1.1 holds, if,
for example, we demand additionally that p; = ¢;, : =10,..., N — 1.

Formula (3.1) allows us to write a compact representation of the rational
spline [13]:

141
Bia) =(is1 = 3i-1) Y ot { vl — gy (o =) (1))

—@ﬂw—@xnwmm—wﬂ@, (9.1

where @[z, 23] denotes the first divided difference of the truncated power
function ¢(z) = 23 = [max(0, z)]* with respect to its argument z = 21, zo.

It is easy to check that the ’averaged’ nodes y; of the B-spline B;(x)
satisfy the constraints

zj —hj_1/3 <y <xzj+h;/3, j=i—-174i+1 (9.2)
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Ifpj=q; =0, =i—2,...,i+ 1, then formula (9.1) is transformed to

Bi(z) = (ziy2 — i—2)p[T; Tiz2, . . ., Tigo] for p(z,y) = (z —y)3, which corre-
sponds to the normalized cubic B-spline [26]. Passing to the limit as p;,q¢; —
00, j=1—2,...,i+ 1, we obtain B;(z) = (z;4+1 — x;—1)p[®; i1, 2, 241 for

o(z,y) = (r — y)+, i.e. a piecewise linear function of the Schauder basis.
(2) Rational splines with a quadratic denominator [23]:

pi(t) = (1= t)*/[L+pt(L = )P, P7' =2(1+pi)(3+pi)-

Here the conditions for Lemmas 1.1 and 1.2 to hold are the same as in
(1). Formula (3.1) yields

g )
Bi(z) = (Yi+1 — ¥i—1 —

where

(2j-1)% — (L4 3gj—1 + ¢2_1)(2)% — hj—1Q7 21 (%)%
h 1 —aj-12-1%
o pop P Ca)E = (L4 30 4 01) ()% + (241)4
Y hi — pjzjzjt1

Qj(2) =Qj-1hj

zk=cr—x, k=7—1,7,7+1
(3) Exponential splines [22,23]:
pi(t) = (1 —)°e™"/(6 + 6p; +py).
(4) Hyperbolic splines (see [10] and numerous references there):

sinhp; (1 —t) — p; (1 —¢t)
p? sinh(p;)

pi(t) =

(5) Splines with additional nodes [18]:

1
()= ————[1— (14 p)t]>.
If we take a; = (1 4+ p;)~! and 3 = 1 — (1 + ¢;)~!, then the points
xi1 = x; + azh; and x;0 = x; + B;h; fix the positions of two additional nodes
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(a) (b)
Figure 3. Rational basis splines with multiple nodes. (a) z; = (0,1,2,4,4),
z; = (1,2,5,5,5), and z; = (2,6,6,6,6); (b) z; = (0,0,2,3,4), z; = (1,1,1,4,5),
and z; = (2,2,2,2,6).

of the spline on the segment [z;, z;11]. Moving them, we can go from a cubic
spline to a piecewise linear interpolation [18].

Note that in the cases (2)—(5) the 'averaged’ nodes y;, j =4 —1,i,i 4+ 1,
of the splines B;(z) also satisfy the inequalities (9.2).

Figures 3a, 3b, and 4a present the graphs of rational B-splines with a
quadratic denominator at p; =¢; =p, j =¢—2,...,7+ 1, and with multiple
nodes. The solid, dotted, and dashed lines represent the graphs of B-splines
for p =0, p = 5, and p = 15, respectively. The sequences of the nodes are
(0,1,2,4,4), (1,2,5,5,5), and (2,6,6,6,6) in Fig. 3a; (0,0,2,3,4), (1,1,1,4,5,), and
(2,2,2,2,6) in Fig. 3b; and (0,0,2,4,4), (1,1,1,5,5), and (2,4,4,4,6) in Fig. 4a.
Figure 4b duplicates Fig. 4a for splines with additional nodes (5).

Various generalizations of parabolic splines [24], which can easily be in-
cluded in our scheme, prove useful in practical calculations. In order to de-
termine them, we introduce an additional grid A = {z; | i = —2,..., N + 3},
where ;1 < 7; < x; and T;41 = z; + oshy = x;41 — B;h;. Using the rep-
resentation (1.1), we can propose the following variants of defining functions
wi(t) = @i(ai, pi,t) and ¥;(t) = ¢i(Bi, qi, 1 — t):

(a) ¢i(t) = Pi(es — )3 /(1 +pit), Pt = 2(1 + aips)?;

(b) @i(t) = Pi(ai — )3 /[ +pit(1 = )], P = 2[(1 + cipi)® + afpil;

(©) pilt) = Pre Pt (i — )2, P" = (2 + cipi)? — 2
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(a) (b)
Figure 4. Rational B-splines (a) and B-splines with additional nodes (b).
Multiple nodes are z; = (0,0,2,4,4), z; = (1,1,1,5,5), and z; = (2,4,4,4,6).

(@) i(t) = o/ (1 + pi) — 2/2.

Here the conditions of Lemma 1.2 are satisfied at p;,q; > 0, ¢ =
0,...,N — 1, and thus the corresponding interpolating splines exist and are
unique. Lemma 1.1 holds if, for example, we demand additionally that p; = g;
and a; = 3;,1=0,...,N — 1.

Formulae for generalized parabolic B-splines B, (z), k = 1,2,3, are
no different formally from the corresponding formulae for generalized cu-
bic splines (4.1), (4.6), and (2.11). It should be noted, however, that the
parabolic splines belong to the smoothness class C*~2[a,b] (they have a
discontinuity at & = 1) and their supports are narrower. A generalized
parabolic spline B;x(z), k = 1,2,3, differs from zero only on the interval
(Tj41,Tj+k+1). The ’averaged’ nodes y; of such splines are subject to the
constraints 7; < y; < Tj4+1,J =¢— 12,7+ 1.

The rational parabolic spline (a) was proposed in [11] for solving the
geometric interpolation problem. We give its representation similar to (9.1)
in terms of truncated rational functions:

it1 1
Bi(x) = (yi41 — ¥i-1) Y

j=i—1

X (14 Bj-1qj-1)] + Pjog "hio[(x — z;) (1 + ajp)), ¢ — Fjq1] } (9.3)

{Qj—lﬁj__llhj—l()o[x —Tj, (v — ;)

ujw;_1(y5)

Here ¢(z) = zi For a conventional parabolic spline, where p; = ¢; = 0 for
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all j, we have y; = (Z; + ZT;+1)/2 and formula (9.3) is of the form:
Bi(z) = (Tize — Ti—1)@[2;Ti—1, ..., Tita)

for p(z,y) = (z — y)3.

(a) (b)
Figure 5. Rational parabolic B-splines of orders k£ = 1,2,3 (from left to

right) with various vectors of parameters. (a) p = 0 for all j; (b) p = (1,5),
p = (10,100,0), and p = (1,5,10,10).

Figures ba and 5b present the graphs of rational parabolic splines with
a quadratic denominator (b) on a uniform grid with step h = 1 at T; =
(z; + xj4+1)/2. The vectors of the parameters p; and ¢; are the same as in
Figs. 2a and 2b. Here the supports of the splines B, (z), k = 1,2,3, are
the intervals (1/2,3/2), (3/2,7/2), and (5/2,11/2). Passing to the limit as
Pj,q; — 00, we again obtain the impulse function, the function-step’ and the
’function-roof’, each having the unit height (Fig. 2c).

10. HERMITIAN REPRESENTATION OF GENERALISED CUBIC SPLINES

The following representation is often used in constructing generalized cubic
splines. For a subsegment [z;, ;1] we have

10.1
+ 13(t)hi (Sip — AiS), (10-1)
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where 91(0) = 917 (1) = Yui(1) = 917(0) = 0, k = 0,1, and i,(0) =
P1,(1) = 1. For ¢1;(t) = t(1 — t)? and +1;(t) = —t?(1 — t), in particular, we
have the conventional cubic spline [26].

Since, according to (10.1), we have

S = ¢li(0)h (8] — AiS) + 91 (0)h; ' (Shyy — D),
1 = el(DhTH (8] = AiS) + 1 (1)hH (Si1 — AS),

then the continuity conditions S”(z; —0) = S"(z; +0),i=1,...,N — 1, and
the boundary conditions S”(a) = Sy and S”(b) = S} result in the system of
equations

[ ©10(0)Sy + ¥1p(0)S] = hoSy + [©16(0) + ¥15(0)]ApS
P (Wh Sy + [fs_1 (Db — @13 (0)hy 18] — ¢ (0)hi STy
= [pTim1 (1) + 911 (D]h 5 A0S = [13(0) + 75 (0)]R; M AS,
r=1,...,N—1
¢in_1(1)Sn_1 — wi’N+1(1)S§v = hn-15%
\ + [Pin_1(1) + v (D]AN-1S.
Lemma 10.1. If the conditions

¢13(0) < ¢1;(0) <0, L) > ¢7(1) >0, i=0,...,N—1

are satisfied, the generalized cubic spline S(x) exists and is unique.

(10.2)

(10.3)

Y

Proof. According to the lemma conditions, the matrix of the system
(10.3) has the diagonal predominance:

ro = —¢1(0) + ¥1o(0) > 0
r = [W_1(1) = @i (DR + [915(0) = 13 (0)]R;H > 0,
i=1,...,N —1,
ry =¥iy_1(1) — ¢fy_1(1) > 0.
Hence, according to the Hadamard criterion [26], the determinant of the sys-
tem (10.3) is not zero and therefore the generalized cubic spline exists and is

unique. Thus, the lemma is proved.
It follows from relations (10.2) that

St = AiS — Tiihi[97;(1)S] — 41;(0) i1 4],
z{+1 = A;S + Tk ‘[90/1/1'(1)5” 9011(0) H—l]
T = ot (1)91;(0) — o7 (0)97;(1). (10.4)



Local bases of splines 31

The continuity conditions S'(xz; — 0) = S’(z; +0),i=0,...,N — 1, and
the boundary conditions S’(a) = S and S’(b) = S result in the system of
equations

(o(1)Sg — ¢1p(0)SY = T7g hy ' (AoS — ),
Tii—197;m1(Dhio1S1 + [=T1i-197;1(0)hi—1 + T1ip1; (1) hi] S
— T3 (0)h; S’y = NS — A4S, i=1,...,N —1,
(v (DSt = @in_1(0)SY = Tiy_ Ayt (S — An—19).
Lemma 10.2. If the conditions
©1;(0) < —¢1;(1) <0, 1:(1) > —7;(0) > i1=0,...,N—1
are satisfied, the generalized cubic spline S(x) exists and is unique.

(10.5)

Proof. Since under the lemma conditions we have ¢7,;(0) < 0 and
7:(1) > 0, then according to (10.4), we get

Tt = (W[ 0) + 915 (1)] = 915 (D[ (0) + ¢7;(1)]
= —1;(0)[101;(0) + 47 ()] 4 21;(0)[07;(0) + 7;(1)] > 0.
Then the system (10.5
ro = ¥10(1) + 1¥10(0) > 0,
ri = =Ti—1[p1;21(0) + ;-1 (D]hi—1 + Ti[¢1;(0) + 4713 (1)]hi > 0,
i=1,... N—1,

rn = —¢in_1(0) — ¢{n_1(1) >0,
which ensures that the spline S(x) exists and is unique.

The conditions of Lemmas 10.1 and 10.2 are satisfied for the defining
functions ¢1;(¢) and 11;(¢) used in practice. The systems (10.3) and (10.5)
have diagonal predominance and can be solved by the Gauss method without
rotations.

Let us write formulae for transforming the spline representation (10.1)
into (1.1):

) has the diagonal predominance:

pi(t) = Tru{—¥1i(Den(t) + o1 (D[Ynt) +1 -t}
i) = Trf{hs (0)[i(t) — ] — 13 (0)¢n (1)},
[here T7y; is taken from (10.4)] and vice versa
p15(t) =Ti{[vhi (1) — i(D)]i(t) — i(0)(1 = )] + i (0)[ehi (t) — vi(1)e]},
1i(t) =Ti{ebi(1)[0i (0) (L = 1) — i ()] + [0i (0) + 3 (0)][w0s (1)t — s ()]},
T = [pi(0) + 3 (0)][wi (1) — ¥i(1)] — wi(0)hi(1)-
Using the formulae, it is easy to check directly that Lemmas 1.1 and 1.2
are equivalent to Lemmas 10.2 and 10.1, respectively.

(10.6)
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11. B-SPLINES WITH ALTERNATING SIGNS

Let us show that the representation (10.1) results in B-splines which can
change sign on the support. To use the formulae for the B-sp[lines B; j(x),
k =1,2,3, it is sufficient to express the functions ¢;(t) and 1;(¢) in (1.1) in
terms of ¢1;(t) and t1;(t) in (10.1) by using the transformation (10.6).

The following defining functions are widely used in the representation
(10.1) for ¢1;(t) = w1i(pi, t) and ¥1;(t) = —p1i(qi, 1 — 1), 0 < ps, qi < 0.

(1) Rational cubic splines with a linear denominator [23]:

w1i(t) = t(1 = 1)?/(1 + p;t).

In this case the conditions of Lemmas 10.1 and 10.2 are satisfied for any
pi,q; > —1/2 and the interpolating spline exists and is unique.
Applying the transformation (10.6), we obtain

(1 -t)’ (I +q)i +pigi + @)t
wilt) = 2(1+ p;) (1 + pst) ! 1+ qi(1—1) ’

T =@24+p)2+aq)—(14+p) "1 +ag) "

This function, generally speaking, is not monotonous on the segment
[0,1] and can have here a unique root, whose location is governed by the
parameters p; and ¢;. Using formulae (4.1), (4.6), and (2.11), we obtain B-
splines with alternating signs. Figures 6a, 6b, and 6¢ present (from left to
right) the graphs of such B-splines B; ;(z), k = 1,2, 3, on a uniform grid with
step h = 1 for various vectors of the parameters. The parameters in Fig. 6a
are the same as those in Fig. 2b. For Figs. 6b and 6¢ the parameter vectors
were taken as ((1,5), (1,5)), ((5,5),(5,5),(5,5)), ((15,0),(15,0),(0,15),(0,15)),
and ((1,1),(1,1)), ((5,0), (0,0),(0,5)), ((50,0),(0,0),(0,0),(0,50)), respectively.

(2) Rational cubic splines with a quadratic denominator [6]:

pri(t) = t(1—)*/[L + pit(1 - t)].

In this case the systems (10.3) and (10.5) have the diagonal predominance
at p;,q; > —1,19=0,...,N — 1. The functions

T;(1—1t)3 (pi — 4i)(2 4+ q;)t?
2[1 + q;t(1 —t)] L+ pit(l—¢) |’
T, =[2+p)2+q)—-1""

pi(t) =
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(c)
Figure 6. Alternating rational B-splines of orders k=1,2,3 (from left to right)
with various vectors of parameters. (a) p = q = (1,5), p = q = (10,100,0),
and p=q = (1a5’10’10); (b) (p)q) = ((1’5)’(1’5))a (p,q) = ((5a5)’(5’5)’(5a5))a
and (p7Q) = ((1570)’ (15’0)7(0’15)7(0’15))' (C) (p7Q) = ((1’1)7(1’1))7 (p7Q) -
((5’0)7(0’0)7(0’5))7 and (p,CI) - ((50’0)7(0’0)7 (0’0)7(0’50))'

can have a unique root on the segment [0,1]. If p; = ¢;, i = 4,...,7 + 3,
the basis splines B; x(x), k = 1,2, 3, are nonnegative and coincide with those
obtained on the basis of the representation (1.1).
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If formula (10.1) is used, all the other generalized cubic and parabolic
B-splines (including exponential splines and those with additional nodes) also
have alternating signs. Let us cite the corresponding defining functions.

(3) Exponential cubic splines [23]:

p1i(t) = t(1 — t)%e Pit,

(4) Cubic splines with additional nodes [17]:

orilt) = = {(1 =) = S(L =) = 3[1 = (1 p)ald}

1+ p;

For generalized parabolic B-splines we have considered the following
defining functions ¢1,(t) = ¢1i(ai,pi,t) and ¥1;(t) = —¢1:(Bi,qi, 1 — t),
0<a;=1-0;<1:

(a) @1i(t) = gi(t) (1 4+ pit)

(b) @ri(t) = gi(®)[1 + pit(1 = )]~

(c) p1i(t) = gi(t)e P!

(d) 1s(t) = [27:(1 - %)] P =1)? = (v = )3 ]y = (L +pi)

where g;(t) = (204;) " [a2(1 — )° — (a — t)2].
Let us study some characteristic properties of B-splines with alternating
signs. The following statement is an analogue to Lemma 5.1 for the represen-

tation (10.1).
Lemma 11.1. If the conditions

90,1,j(0) < w,l,j(o) <0, ¢/1/j(1) > ‘Plllj(l) >0, j=1—1.1
are satisfied, the inequalities
xi—hi_1/2<yz~ <£Ul-|-hl/2 (111)

hold.
Proof. According to (10.6), we have

Pi—1(1) = =T 197;_1(0),  ¥i_1(1) = =T1i—1[¢1;—1(0) + ¥1;_1(0)],
pi(0) = Tupf;(1), i (0) = =Tl?; (1) + 915 (1)],

where T4, j =4 — 1,4, is taken from (10.4).
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Under the lemma conditions, we get
Tl_jl = 90/1/3'(1)["‘?/114‘(0) - ‘Plfj(o)] - ‘Pﬁ/j(o)[ng(l) - 90/1/3'(1)] >0, g=1—1.1
and hence

wi—l(l) > Oa ¢7/,—1(1) > 0) 907,(0) > 0) 90;(0) < 0.
Therefore
ui = ¥i_1(Dhi—1 — ¢;(0)h; >0

and according to (2.4) and (2.7), we can rewrite inequalities (11.1) as

0 < hi_i[i_1 (1) = 2¢i—1(1)] + hi[—hi—195(0) + 2h;0:(0)],

) (11.2)
0 < hi—a[hithi_1(1) + 2hi—19i—1(1)] — hi[#}(0) + 2¢: (0)].

Since / , ,
i 1(1) = 2¢i—1(1) = Tri1[9h1;(0) — ¢73(0)] > 0,
—©;(0) = 2;(0) = T [¥7;(1) — ¢;(1)] > 0,
clearly inequalities (11.2) hold. Thus, the lemma is proved.

Based on Lemma 11.1 and formulae (2.9), (4.3), and (4.4), we can for-
mulate the following statement.

Corollary 11.1. If the conditions of Lemma 10.1 are satisfied for ¢ =
J,...,J + 3, then the inequalities

Titk41
/ Big(t)dr >0, i=4j,....7+3—-k k=12,

(—1)'BY3(wj4141) >0, 1=0,1,2
hold.

The next statement allows us to specify the form of B-splines with alter-
nating signs.

Theorem 11.1. Assume that the defining functions ¢;(¢) and ¢;(t), i =
Jy---,J + 3, satisfy the inequalities (1.6), and the derivatives ¢! (t) and ¢! (¢)
are convex downwards for ¢ € [0, 1]. Then the splines are either monotonous on
the segments [z;, x;11] and [z 1k, Tj+k+1], or have a unique point of minimum
on these segments and, besides, B, (z) > 0 for « € [zj41, 24k, kK = 2,3.

Proof. First let us consider the splines B, 2(z). Under the condition of
the theorem, the values w;, [ = j 4+ 1,7 + 2, in formula (4.6) are positive.
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Therefore according to (4.6), the spline B, 2(z) behaves on the subsegments
[zj,j4+1] and [zj42,2;43] just like the functions ¥’ (z) and —@%, ,(x) do.
They are either monotonous or have a unique point of minimum.

If B’ € [0,1] is a root of the function ¢! (t), then the function ¢;(t) is
convex downwards on the segment [0, 3]'] and

wi(t) — ¢i(0)
'

> ¢;(0), 0<t<p.

Hence it follows that the root (; of the function ¢;(t) should satisfy the
inequality —¢;(0) > B;%(0), i.e. according to (1.6), 1/2 < §; < 1. Similarly,
by virtue of (1.6), if ¢;(a;) = 0, then o; € [0,1/2]. Under the conditions of the
theorem, for the roots of the functions ¢ (¢) and ¢! (t) we have o € [0, ;]
and ;' € [8;,1]. Therefore the function

;2(93) = ;‘/+1(93)uj_-|}1 - ;‘/+1(93)uj_-;}2, x € [$j+1,93j+2]

is positive on the segment [z;41,2*] and is negative on [x**, x;42], where
' =xjr1 +ajhjy and 2 = x50 + 87, 1hj11. Since according to (1.6),
Bjo(zj41) > 0, 1 = 1,2, we see that the spline B;s(x) is positive, increases
monotonously on [z;41,2*] and decreases monotonously on [z**, z;2]. Since
B/y(z) <0 for x € [z*,2""], we see that here the function Bj () is convex
upwards and is also positive.

Lemmas 1.2 and 10.1 are equivalent. Therefore if the inequalities (1.6)
hold, then Corollary 11.1 holds and (—1)’B§-’,3(a:j+1+l) >0,1=0,1,2. Taking
into account formula (2.11) and properties of the functions ®;(x) and ¥;(x),
we find that the spline B, 4(x) is either monotonous or has a unique point of
minimum on the subsegments [x;,z;41] and [z;43, T;14].

Since

is(z) = @] (z) B 3(z1) + Vi () BY 3(z141),

for x € [x;,x141], | = j+1,7+2, then using the above line of reasoning we find
that there exist two points «’ € [zj41,zj42] and " € [zj42,zj43] such that
B/3(z') = Bj3(z") = 0 and Bj3(z) > 0 for z € [zj41,2") U (2", 2j43]
According to (1.6), (2.2), and (2.5), we also have B]('Tg)(mjﬂ) > 0 and

(—1)7’BJ(-T3)(:1;]-+3) > 0, r = 0,1. Therefore the spline B; 3(x), is positive, in-
creases monotonously on [z;41, '] and decreases monotonously on [z", x;3].
Besides, we have BY;(z) < 0 on the subsegment [z’,2"] and thus here the
spline B; 3(z) is positive, as it is a convex function upwaeds. Thus, the theo-
rem is proved.
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The B-splines with alternating signs possess many properties inherent in
conventional B-splines. In particular, statements (2)—(4) of Theorem 5.1 hold
for them. They have supports of minimum length and form a basis in the
space of generalized splines S,?. The proofs of these aand other properties are
similar to those cited for positive B-splines.

B-splines with alternating signs can be used in constructing orthogonal
bases of B-splines with supports of minimum lengths like wavelets [3]. This
allows one to develop methods of spline approximation like the method of
Fourier series.
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