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CHAPTER I

INTRODUCTION

1.1 Background and History

Since the mathematical models of many physical phenomena of the real
world are formulated in the form of differential equations, it is clear that the
methods of solving differential equations are essential in applications.

The group analysis method is one of the general methods of constructing
exact solutions of partial and ordinary differential equations. According to their
admitted Lie groups, all equations are separated into equivalence classes. S. Lie
himself classified all second-order ordinary differential equations with respect to
complex Lie algebras. For this classification, he used a list of all non-similar Lie
algebras.

Classification of all non-similar Lie algebras in the real domain has been
done in the papers of Gonzalez-Lopez, Kamran, and Olver (1992), and Nesterenko
(2006). Lie group classification of second-order ordinary differential equations in
the real domain was presented by Mahomed and Leach (1989), where the classifi-
cation was considered in an indirect way. This is because the direct way involves
solving the determining equations, which in the general case of second-order ordi-
nary differential equations cannot be done. There are now some studies of solving
the determining equations for particular second-order ordinary differential equa-
tions. In particular, Lie (1883) studied group classification of all second order
ordinary differential equations of the form y” = f(z,y). Later, this equation was

also studied by Ovsiannikov (2004) using a different approach. The results of this



group classification are presented in Table 1.1, where the first column lists the
nonequivalent forms of the function f, and f(y) is an arbitrary function. The

remaining three columns are the basic operators of the admitted Lie algebras.

Table 1.1 The group classification of ¢y’ = f(x,y).

f X, X, X,
f(y) 0 0 0
ev s 20, — 20, 0
v k£ -3 0, (k —1)z0, — 2yd, 0
+y 0, 220, + 40, 220, + 10,
a2 fly) w0, 0 0

More general than the equation y” = f(z,y) is the second-order ordinary

differential equation of the form:
y”:P?)(x?yu?/)y (11)

where
Py(z,y,y) = alz,y)y” + 3b(x, y)y” + 3c(z, y)y + d(z,y),
and a(z,y), b(z,y), c¢(z,y), and d(z,y) are arbitrary functions.

Equation of the form (1.1) attracted the attention of many scientists start-
ing from Lie. For instance, Lie proved that any second-order ordinary differential
equation which is equivalent to a linear second-order ordinary differential equation
has to be of the form (1.1).

Another attractive property of Equation (1.1) is that its form is not changed

under any point transformation:

t=op(r,y), u="v(zy), (1.2)



where the Jacobian A = ¢, — p,1, is assumed to not vanish. Indeed, under

the change (1.2), equation (1.1) is transformed to the following equation:
u" + a(t, u)u” + 3b(t, w)u' + 3¢(t, u)u' + d(t, u) =0, (1.3)
with the coefficients,
a = AN pybyy — @ty + Pyd + 3y + 3pyUib + 1ya),
b= AT 37 ety — Pute + 2Pytuy — Paythy)) + Padyd

+ 0y (2020, + ©yha)E + (Pathy + 20,0,10,)b + Yp2a), 14

c= A_l(?’_l(@y@bm — Paatly + 2(909:1/%3/ - @wy¢z)) + Qpi@yd
+ (szwy + 2020y %:) )€ + (%ﬂﬁ?g + 290m1/1x¢y>6 + wngd),

0 = AN (Prthar — Paatle + Pod + 3020aE + 30,002 + Y3a),
where

Oy 0% 0%

%Zé)x’ %z:W’ pry:ax—aya

and similarly for function ).

Since the form of equation is not changed, the problem of studying invari-
ants of transformation of the Equation (1.2) arrives naturally under the change of
the Equation (1.2).

For the study presented in this thesis, let us introduce some of the invari-

ants. Lie discovered that the functions:

Li=— —= —pll;; —dII 2cl1
1 u + N 11 22 + 2Zcllyo,
oIl oIl
Ly=—"—"24 22 _ (I}, — clly, + 261149,
ou ot

play a key role in the linearization problem of the second-order ordinary differential

equation y” = f(z,y,y’). Here,
H11 = 2(02 — bd) +c — du,
H22 = 2(b2 — aC) +a; — bu,

H12:H21:bc—ad+bt—cu.



As obtained in Lie (1883), any equation of the form (1.3) is linearizable if
and only if L1 =0, Ly, = 0.
The first investigation of invariants of Equation (1.3) was done by Liouville

(1889) and Tresse (1894). Liouville found the invariant:
vs = Lo(L1 Loy — LayLy) + Ly(LaLyy — Ly Loy) — aL§ + 3bL1Ly — 3cLy L3 + dL3,.

It has the property that if

U5:07

then vs = 0 after any change of the Equation (1.2). Liouville also discovered
another semi invariant:

1

= ﬁ[_Li)(HuLl — HHLQ) i Rl (L%)t — L%th + LlRl (CLl — dLQ)],
1

w1

where
Ry = LyLo; — LoLy, + bL} — 2¢Ly Ly + dL3,

and here it is assumed that L; # 0.
Barbich and Bordag (1998) proved that an equation of the form (1.3) is
equivalent to an equation of the form y” = f(x,y), if and only if v5 = 0, and

U)l:O.

1.2 Statement of the Problem

This thesis is devoted to the group classification of second-order ordinary

differential equations of the form:
Y+ a(z,y)y” + 3b(z, y)y'” + 3e(z,y)y + d(z,y) = 0. (1.5)

Notice that the group classification is invariant with respect to the change of

dependent and independent variables. By using transformations of the Equation



(1.2), such that ¢ and % satisfy the equations:

a = A"y — Pty + oyd + 350, ¢ + 30,05 + Yya) = 0,
b= A3 Pty — Puytle + 2(0ythny — Paythy)) + pupld

+ 0y (2021 + Pyta)E + (9atl + 20.0:00,)b + hatoa) = 0,
k= —3c(x,y),

f = —d(ﬂj, y)?

Equation (1.5) can be transformed to an equivalent equation of the form:

y'=k(z.y)y + f(z,y). (1.6)

Hence, for the group classification of Equation (1.5), one can study the equivalent
Equation (1.6). The main goal of this thesis is to do group classification of equation
(1.6) with k, # 0. One notes that for k, = 0, the semi invariants vz and w;
vanish. According to Barbich and Bordag (1998), this means that Equation (1.5)
is equivalent to the case studied by Lie (1883) and Ovsiannikov (2004).

For solving the problem of the thesis, the approach considered in Ovsian-
nikov (2004) is used, where the criteria of equivalence Lie group of transformations

and admitted Lie group are applied. This approach contains the following steps.

(1) Separate Equation (1.5) into classes according to the form of the admitted

generator by using the concept of equivalence transformations.
(2) Simplify the functions k(z,y) and f(z,y) by equivalence transformations.

(3) Solve the determining equations for the chosen functions k(x,y) and f(z,y).

Since each step needs a huge amount of analytical calculations, it is neces-
sary to use a computer for these calculations. A brief review of computer systems
of symbolic manipulations can be found, for example, in Davenport (1993). In

our calculations the system REDUCE (cf. Hearn (1999)) was used.



This thesis is organized as follows. Chapter II introduces some background
knowledge of Lie group analysis, which is necessary for our study. Chapter III
presents the equivalence Lie group of transformations and the determining equa-
tions of the admitted Lie group of Equation (1.6). All possible solutions of the

determining equations are given in Chapter IV.



CHAPTER II

GROUP ANALYSIS

Group analysis is a powerful method for analyzing differential equations.
One part of the group analysis method involves equivalence transformations. An
introduction to this method can be found in textbooks (cf. Ovsiannikov (1978),
Olver (1984), Ibragimov (1999), Meleshko (2006)). Many results obtained by this
method are collected in the Handbooks of Lie Group Analysis (1994), (1995),

(1996)).

2.1 Local Lie Group

In this section, one reviews some background knowledge of Lie group anal-
ysis, which is necessary for the study.

One considers invertible point transformations:
Z' =4g'(z0), (2.1)

where i = 1,2,...., N,z € V C RY and a is a parameter, a € A. The set V is an
open set in RV, and A is a symmetric interval in R with respect to zero.
For differential equations, the variable z is separated into two parts, z =
(x,u) € V.C R"x R™ N =n+m. Here, x = (21, 2, ..., x,) € R™ is considered as
1,2

the independent variable, u = (u', u®, ...,u™) € R™ is considered as the dependent

variable. Then the transformations of the Equation (2.1) can be decomposed as:
Z; :@Z(xvua CL), ﬂj :¢j($au; a)a (22)

where i =1,2,...,n, j =1,2,....m, (z,u) € V.



2.1.1 One-parameter Lie Group of Transformations

Definition 1. A set of transformation of the Equation (2.1) is called a local one-
parameter Lie group if it has the following properties:

(1) g(2;0) =z forall z € V.

(2) g(g(z;a),b) = g(z;a+0b) for all a,b,a+be Az € V.

(3) If for a € A we have g(z;a) = z for all z € V, then a = 0.
(4) g € C=(V, A).

This definition of Lie group is called local, because we only require that V'

is an open neighborhood of some zp, and A is a small symmetric interval around

Zero.
Define
% _ aQOl({L‘,u CL) J(., _ 81/1](x,u, CL)
é(l’,’d) aa azoan (JZ',’U/)— aa azov
and,

The operator X is called an infinitesimal generator or a generator of the Lie group
of transformations of the Equation (2.2), and the functions &%, 7’ are called the
coefficients of the generator.

A local Lie group of transformations (2.2) can be completely determined by
the solution of the Cauchy problem of a system of ordinary differential equations,

which are called Lie equations:

dz; . dw/ .
=@, o=@, (24)
with the initial data:
ji|a:0:xi7 ﬂj‘azozuj. (25)

Theorem 1 (Lie). Let a vector field ¢ = (§,n) : V — RY of class C*°(V) with

((z0) # 0 for some zy € V be given. Then the solution of the Cauchy problem



of the Equations (2.4), (2.5) generates a local Lie group with the infinitesimal
generator X = &(z,u)0,, + 1’ (x,u)d,;. Conversely, let functions ¢'(z,u;a), i =
1,...,n and ¥ (x,u;a), j = 1,...,m satisfy the properties of a Lie group and have
the expansion:

Ty = @Z(‘ra Uus; CL) R+ {i(x,u)a,

W = (2, u;a) = u + 0l (2, u)a,
where

¢ (x,u; a)
Oa

j 877Dj(x7 U, CL)
777‘7 (x7 u) - 5 )
oa e 0

§'(x,u) =

a= 0

then the functions ¢'(z,u;a), ¥’ (x,u;a) solve the Cauchy problem as described

of the Equations (2.4), and (2.5).

Precisely, Lie’s theorem establishes a one-to-one correspondence between Lie

groups of transformations and infinitesimal generators.

2.1.2 Prolongation of a Lie Group

Given Z = R" x R™, the space Z is prolonged by introducing the additional
variables p = (p¥). Here a = (o, g, ..., ) is a multi-index. For a multi-index
the notations || = a;+as+ ...+, and o, i = (a1, a9, ooy 1, @+ 1, Qg ey (i)
are used. The variable p® plays a role of the derivative,

L Olelyk oy k
p e = .
¢ Oxe 0zt 0x5?...0xon

The space J' of the variables:
r = (xl)vu = (uk)vp = (ploi)v
(t=1,2,...,n; k=1,2,...m; |a] <I)

is called the [-th prolongation of the space Z. This space can be provided with a

manifold structure. For convenience one agrees that J° = Z.
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Definition 2. The generator

~ X+ Nty =L ol 1)

with the coefficients:

ey, = Dyl — Zp; D', (ja] <1-1), (2.6)

is called the [-th prolongation of the generator X.

Here the operators:

Dy = (%k+§;%k T (k=1,2,...n),

are operators of the total derivatives with respect to xx, and 7} = 1/, where £, 7/
are defined as in the Equation (2.3).

For a simple illustration of using the prolongation formula as described in
the Equation (2.6), let us study the first prolongation of the generator X with n =
m = 1. In this case, the generator X' induces a local Lie group of transformations

in the space J1:
T =g, u;a), =1y(z,u;a), p= f(z,u,p;a), (2.7)
with the generator:
X' =& (z,u)0, +n"(z,u)0, + (*(x,u,p)d, (2.8)

where

¢ = Do(") — pD(€7), p=

dxr
Notice that the coefficients %, n" are defined as in the Equation (2.3). Let us

show in the following text why the coefficient (P must be of this form. Let a

function ug(x) be given. Substituting it into the Equation (2.7), one obtains:

T = p(z,up(x);a).
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Since p(z,up(z);0) = x, the Jacobian at a = 0 is

oz

T Op Oy dug
d = 1.
ox|,_, (8x+8ud:c)‘ 0

Thus, by virtue of the inverse function theorem, in some neighborhood of a = 0

one can express = as a function of z and a,
r = ¢(Z,a). (2.9)
Note that after substituting (2.9) into the Equation (2.7), one has the identity:
7 = p(6(5, ), uo(6(7, @)); @) (2.10)
Substituting (2.9) into the Equation (2.7), one obtains the transformed function:
ua(T) = Y(D(T, a), uo(4(7, a)); a). (2.11)

Differentiating the function u,(z) with respect to z, one gets:

__8ua< ) =
e = 0T . Or 0 Ou dx 0%

3¢3¢+5¢duO0¢ (&D 3¢u) ¢
Jor  Ou

— 1 ua o

where the derivative % can be found by differentiating Equation (2.10) with

respect to ,

|- 0008 Opdud¢ _ (890 dp ,>8¢>

Ox 0z  Ou dx Ox or | Ou 0z’
Since
02 62,0 5.00):0) = 1, 22 (6.0 7,0));:0) = 0 2.12
8:v(¢( )UO(QZ)(x )) )_ ) %((b(%, )7u0(¢<x7 ))7 )_ ) ( )

one has %f + %‘su{) # 0 in some neighborhood of @ = 0. Thus,

9 (0p @so, -
o \ox 6u ’

and

(o N\ (e O T ,
Uy = (_x + —uuo) (8_ + a0 ’) =: g(x, ug, uy; a). (2.13)
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Transformation as shown in the Equation (2.7) together with:

@
dz’

ui:g(x7u7u/;a)7 ]5:

is called the prolongation of the Equation (2.7). Now, one defines the coefficient

(P as follows:

dg(z,u,p;a)

Cp(x’u7p) - aa

a=0

Equation (2.13) can be rewritten:

o, u, p; a) (W%; 4;.0) +p8w<agu v a)) _ (W(:g,x u; a) *paw(gé; u; a)) |

Differentiating this equation with respect to the group parameter a and substitut-

(P P
~ \ 9z0a pauc?a

ing a = 0, one finds:

g (Op  Op % o’
(% (a— +pa—u) * g(amaa 5.5

a=0 a=0
or
dg dp Oy : dp Oy
g - = =L 4 p=r by (2.12) [ 22 + p=— =1
¢’ (@, u,p) da, . (ax +pau) ) i y (2.12) (&E P )|
B 0% N 0% 4l 0 N 0
~ \ 0200 " PBuda i Ya=0\ 9280 " Pouda 40
B on on €™ oE™
B (c% +p8u) p(@x +p8u
= D.(n") — pD.(§")
where
o 0 0 D 0y 0y
Dx:_ . T o cer Y= ) Y= ) P=_—= :
Ox +pau TP dp + ¢ da|,_, g da|,_, ¢ da|,_,

Thus, the first prolongation of the generator (2.3) is given by:
XW = X + ¢P(x,u,p)0,.

Similarly one can obtain prolongation formula for any order prolongation of an
infinitesimal generator.
Admitted Lie groups of transformations are related with differential equa-

tions by the following.
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2.1.3 Lie Groups Admitted by Differential Equations

Consider a manifold M which is defined by a system of partial differential
equations:
FFxu,p) =0, (k=1,2,..,5). (2.15)
Hence,
M = {(z,u,p)| F¥(zu,p)=0, (k=1,...5)}
Here, x is the independent variable, u is the dependent variable, and p are arbitrary

partial derivatives of u with respect to . The manifold M is assumed to be regular,

renk (86)(%) =

Definition 3. A manifold M is said to be invariant with respect to the group of

i.e.

transformations as shown in Equation (2.2), if these transformations carry every
point of the manifold M along this manifold, i.e.
FR¥z,a,p) =0, (k=1,2,..,s).

Accordingly, Equation (2.15) is not changed under the Lie group of transformations
or, in other words, the Lie group of transformations as in the Equation (2.2) is
admitted by the Equation (2.15).

In order to find an infinitesimal generator of a Lie group admitted by dif-

ferential Equation (2.15) one can use the following theorem.

Theorem 2. A system of the Equation (2.15) is not changed with respect to the

Lie group of transformations as in Equation (2.2) with the infinitesimal generator:
X = 6183&2 + njauj

if and only if,

XPFER o =0, (k=1,...,5). (2.16)

Equation (2.16) is called determining equation.
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2.2 Equivalence Lie Group

Consider a system of differential equation:
FF(z,u,p,0) =0, (k=1,2,..,5). (2.17)

Here § = 6(z,u) are arbitrary elements of system as described in the Equation
(2.17), (z,u) € V.C R™™ and § : V — R".

A nondegenerate change of dependent and independent variables, which
transforms a system of differential Equation (2.17) to a system of equations of the
same class or same differential structure is called an equivalence transformation.

The problem of finding a Lie group of equivalence transformations consists
of constructing a transformation of the space R (z,u,f) that preserves the
equations, only changing their representative ¢ = 6(x,u). For this purpose a
one parameter Lie group of transformations of the space R"™™* with the group

parameter a is used. Assume that the transformations:

j:fx(x7u707a)7
u= %z, u,0;a), (2.18)
e_zfe(x7u797a/>7

compose a Lie group of equivalence transformations. So the infinitesimal generator

of this group (2.18) has the form:
X© = €05, +¢" 0 + ¢ O,

with the coefficients:

of*i(x,u,b;a)

g = TLLED)
w o afuj (:c,u,@;a)

v = LB
oF ﬁfek(x,u,ﬁ; a)

¢ = la=0 ;

da
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where (i =1,...n;j=1,...m;k=1,..,1).

We use the main requirement for the Lie group of equivalence transfor-
mations that any solution ug(x) of the system as in Equation (2.17) with the
functions 0(x, u) is transformed by the Equation (2.18) into a solution u = u,(z')
of the system as in Equation (2.17) of the same equations F*  but with other
(transformed) functions 6,(x,u). The functions 6,(z,u) are defined as follows.

Solving the relations:

r=g"(z,u;a), u=g"(z,u;a). (2.19)
The transformed function is:
0.(z,0) = f*(2,u,0(z,u);a),

where, instead of (x,u) one has to substitute their expressions of the Equation
(2.19). Because of the definition of the function 6(z,u), there is the following

identity with respect to x and u:
(@0 (f7 f)(@,u, 0(z,u);a) = fO(z,u,0(z,u); a).
The transformed solution T, (u) = u,(x) is obtained by solving the relations:
7 = (2, uolx), 6a (2, uo(x)); 0),

with respect to x, then obtaining x = ¥*(Z;a). Substituting x = ¥*(Z;a) into the

Equation (2.18), one obtains the transformed function:

ua(z) = [z, up(x), 0, (z, up(x)); a).
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Notice that, there is the identity with respect to x:

(ta © f) (2, u0(), ba(, uo(x)); @) = f*(2,u0(x), Oa(z, uo(2)); ). (2.20)

Formulae for transformations of partial derivatives are obtained by differentiating

of the Equation (2.20) with respect to .

Lemma 1. The transformations T,(u) = u,(z) constructed in this way form a

Lie group.

Because the transformed function wu, (%) is a solution of system in the Equa-

tion (2.17) with transformed arbitrary elements 6,(z, u), then the equations:
F*(Z,uq(Z), pa(Z), 0a(Z, ua(2))) = 0, (k= 1,2,...,5)

must be satisfied for an arbitrary . Because of a one—to—one correspondence

between x and Z one has:
FH(f*(2(x),a), f*(2(x), a), fP(zp(), a), [P (2()))) = 0, (k =1,2,...,s) (221)

where z(z) = (z,up(x), 0(z, up())), zp(x) = (z,uo(z), 0(x, up(x)), po(x), . . .).
After differentiating the Equation (2.21) with respect to the group param-
eter a, one obtains an algorithm for finding equivalence transformation as in the
Equation (2.18). The differences in the algorithms for obtaining an admitted Lie
group and equivalence group are only in the prolongation formulae of the infinites-
imal generator.
In agreement with the construction, after differentiating Equation (2.21)

with respect to the group parameter a, one obtains the determining Equation:
XeF* (2, u,0) |[peo =0, k=1,2,..,s, (2.22)
with the prolonged operator X €,

=~ j k
X = X4 ("0, + Py + "0 + ..o
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Here the coefficients C“g% , C(’I;i ,C 95]’, ... are expressed by the following:

Cuzi _ D;icuj o uiﬁDiigﬁﬂB’
¢ = D¢ — 0k Deem — g, De e
where
Dii = alz + ugclauﬂ + (9];1 + qujjui,l)agk o
5;1_ = (7% + H'I;Zagk + ..

EZ]‘ — auj + Hl,jjagk +

The solution of the determining Equation (2.22) gives us the coefficients of an in-
finitesimal generator. By solving the Lie equations, one can obtain the equivalence

group of transformation as illustrated in Equation (2.18).



CHAPTER II1

COMPUTATIONAL PROCEDURE

Considering second-order ordinary differential equation that is written in

the form:
y' =k y)y + f(z.y). (3.1)
Suppose the equation admits the generator
X =¢&(x,y)0, +n(z,y)0,. (3.2)

This thesis is devoted to finding coefficients {(z,y) and n(z,y), which give all
possible generators that are admitted by Equation (3.1). The procedure is to

proceed as follows:
(1) find the equivalence transformations of Equation (3.1),

(2) employ equivalence transformations to obtains generators of the Lie group

of the Equation (3.1) in the simple form; and
(3) obtain the further generators of the admitted Lie group of the Equation
(3.1), and the corresponding functions k(z,y) and f(z,y).

Step 1 and 2 are performed in this chapter, while step 3 is performed in the next

chapter

3.1 Equivalence Transformation of Equation (3.1)

First, one has to find an equivalence group of transformations for Equation
(3.1), that is to find a Lie group of transformations, which transforms Equation

(3.1) into an equation with the same differential structure.
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The arbitrary elements in Equation (3.1) are the functions k(z,y) and
f(z,y), here the generator of the equivalence Lie group is written in the form:
X¢ = €8, 4+ nd, + C*o + ¢! oy,
with the coefficients
£ =&,y k. f)n=mn(z.y.k, ), "=,y k. ¢f =,y k, f).
The prolonged operator is:
X=X+ Y0y + 0y + ("0, + MOy, + (70, + 10y,
The coefficients of the prolonged generator are:
¢ =Din—y'Dig, ¢ = D¢V —y" DL,
¢t = D5t — ko D3 — kyDim, - ¢ = Dy¢* — k. Dy — ky Dy,
¢f = Di¢! — foD5g = £,D5m, ¢ = Dyl — foDy — f,Dygn.
Here, the operators D¢, [)i and [)Z are:
DS = 0y + 'Oy +y" Oy + (ki +4'ky) Ok + (fo + Y f,) 0
+ (ke + Y'kay) Ok, + (foo + Y fuy) O
D; = 0y + (ko + y'ky)O + (fo +9/£,)0y.

Dt = 0, + kyO), + f,0;.

The determining equations of the equivalence Lie group become:

=0.

O O O R e A )|

After substitutions of ¢¥", (Y, ¢k, (Fv, ¢f» (/v and transition onto the manifold

[S]: ¢" = ky' + f, the equation can be split with respect to the variables

Y'Y kg, ky, fo, fy. As a result, the determining equations are obtained:
é-y - O;é-k = 07§f = Ovnyy = Oank - Ounf = 07
Ck = 277:1:y - gzmz - kfibu

¢ = Now — [y — K — 26,
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The general solution of the last equations is:
Xe = £(2)0, — ("(2) + k' (2)) 0k — 21E )0y,
Xy =n()0y + (' (x) = kn'(2))0y, (3-3)
X¢ = y¢(2)9y + 20 ()0 + (y(" () — yk('(x) + f((2))0y

The Lie group of transformations corresponding to these generators are:

Xe: t=o+af(x), u=y,
X, t=x, u=y+an(x),
X¢: t=u, u = ye®@,

It can be rewritten in general form as:

Xe: t=op(z), u=y,

Xy t=w, u=y+7q(z), (3.4)

3.2 Admitted Lie Group of the Equation (3.1)

Infinitesimal generators of one-parameter Lie groups admitted by Equation

(3.1) are sought in the form:

with simple coefficients £ and 7.

The prolonged infinitesimal generator of (3.5) is:
X(z) = X + n(l)ay/ —+ n(z)ay//’
with the coefficients,

nW =D, -y D¢, n® =DM —y'D,E,
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where D, is the operator of the total derivative
Dy =0, +y0,+y"0y.
The generator of the Equation (3.5) is admitted by Equation (3.1), if and only if,
XO(" — ky = )] = 0.
The last equation becomes:
@ — k'Y — (ko + fo) = nlkyy’ + £,)]] 15 = 0. (3.6)

Here [S] is the manifold defined by the relation y” = ky' + f.
After substituting y” = ky' + f into Equation (3.6), and splitting it with respect

to v/, one has:

New = ke — friy + o€ + fyn +2f&, (3.7)
Moy = ko = kyn + Cao + k& + 3f&y, (3.8)
My = 2(&ay + k&), (3.9)
&y = 0. (3.10)

From equation (3.10) the general solution is:

§(o,y) = ay + b,

where a = a(x) and b = b(x) are arbitrary functions of the integration.

Applying the equivalence transformation as in the Equation (3.4):

t=e(r), u=1v(@)y+h(), (3.11)

generator as in the Equation (3.5) is transformed to the generator of the same
form:

X = gat + ﬁaua
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where

éth:%/au—l—go'(b—%), n = Xu. (3.12)

Lemma. The following properties are valid:

(i) if @ # 0, then the generator of the Equation (3.5) is equivalent to the generator:
X = y0, + 6g(x,y)0,

where g(z,y) satisfies:

yfo+69fy = 6(fgy + Gra — 3929yy);
(ii) if @ = 0 and b # 0, the generator (3.5) is equivalent to the generator:
X = 0y;
(iii) if @ = 0 and b = 0, the generator (3.5) is equivalent to the generator:
X = zyd,.

Proof.
(i) Case a # 0.
Using the equivalence transformation as in the Equation (3.8) with:

b
wzla QO/: 9 h= -
a

)

one can assume that £ = y. Using a function g(x,y) such that n = 6g(z,vy),

determining equations (3.7) and (3.8) become:

k= 3gyy7 f = 4gxy — YGzyy — 99yy;

and
yfoc + 69fy = G(fgy + Guw — 3gxgyy)'

In this case, the admitted generator is given in the form:

X =y0, + 69(z,y)0,. (3.13)
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(ii) Case a =0, b # 0.
From Equation (3.9), where a = 0, the function 7 is linear with respect to

n=ya(r) + 5(z),
and from relation of the Equation (3.12) can be rewritten in the form:

t = ¢'b,

A
I
>

Xu:(%+a)u+bh’+ﬁw—h(%+a).

7
Again, simplifying the coefficients by choosing:

/ ]' / « ! w
— - Y0, WipY=
© 7 w—l—wb , —l—ﬁb 0,

the generator X can be reduced to the form:

X =a,. (3.14)

(iii) Case a =0, b = 0.
Substituting a = 0,b = 0 into the relation of the Equation (3.9), one gets:

§=0, n=a(r)y+Hz).
Substituting these functions into Equations (3.8) and (3.9), one has

20/ + k, =0,

("y+ ") —k(dy+ )+ af — fy(ay+B) = 0.

If « = 0, then 8 # 0, otherwise it will give generator X = 0. Solv-

P MRy 4 () which

ing the above equations, one gets k = k(x) and f =
lead to Ly = 0,Ls = 0. This means that the studied equation is linearizable.
Hence, one has to assume that a # 0. Then one can choose the Equation (3.11)

b (3.15)
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Substituting relation of the Equation (3.15) into the relation of the Equa-

tion (3.12), one gets € =0 and 1 = au = tu.The generator X has been reduced

to:

X = 2y0,. (3.16)



CHAPTER IV

GROUP CLASSIFICATION

In the previous chapter, it is evident that Equation (3.1) admitted a gener-
ator of one of the following forms: X = 0,, or X = y0, +6¢(z,y)0,, or X = xy0,.
In this chapter, one continues with the group classification of Equation (3.1) by
performing the following scheme:

Step Si: Find the general form of the functions k(z,y) and f(z,y) such
that Equation (3.1) admits the generator either X = 9,, or X = y0, + 6g(x,y)0,,
or X = xyd,. Notice that if k, = 0, then by virtue of the results of Babich and
Bordag the studied equation is reduced to the form y” = f(x,y) which was studied
by Lie (1883) and later by Ovsianikov (2004), so one shall assume that k, # 0.

Step Sy: Simplify the functions k(z,y) and f(z,y) and substitute them
into the determining Equations (3.7)-(3.9). Solving the determining equations,

additional generators are found, which one called extension of the generators.

4.1 Extension of the Generator X = 0,

Substituting the coefficients of the generator X = J, into the determining

Equations (3.7)-(3.9) and solving them, one obtains:

k=k(y), [=/fy).

Substituting the functions k£ and f into the Equation (3.7)-(3.9), one gets:

§(z,y) = &)y + &o(z),
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and

New = ek — My f +0fy + 260 + 26, fy,
Ny = 2_1(77ky ”‘f(l)l +§(I)k?+§1,y+§/1k‘y+3f§1), (4'1)
Mgy = 2(&, + k&),

where &y(z) and & (z) are arbitrary functions of the integration.
Comparing the mixed derivatives (7,5)y = (ay)z and (Nyy)z = (Nay)y, OnE

derives the equations:

Me = = (12 + kyk) = 45,6 — Af, 1y — &h°
+&87 + &0y + 36 — Ry + fRE) /hy, (42)
My = (=nkyy = 3F,6 — kybo — ky€ry + 386 + 361k) k.
Substituting the Equation (4.2) into (4.1), and equating the mixed derivatives

(N2)y = (ny)z, one finds:

where

J = (—4f;y — 6 fyykyk + fykj + kyyky f — 21@31@2)/193,
Jo = (4fyyyky - 8fyykyy - 2kyykyk + 3k§)/<2k§)7
J3 = (_4fyykyy - Qkyykyk + k3>/<2k2)7

Jy = (kyyyky — 2k§y)/k§,
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k1= (=8fyfyo — 8FuFubiy + 26" — 26k
+2f, 67y + 61,60 f — 2F 1K%Y + 2 £y G
— 8fykybok + 4f k&l y — 8fykyEiky + 3k, f&
+ 3K260 f + 3K26L fy — Ky €5 + 2k, €8k + ko K
— 2k ok® — k& + 2k, & ky — 6k, & f + k& Ky
+ 2k, &) fl — 2k, 6 K5y + 2k, FEPG + Af,ky€0) /KD,
ky = (—12fy 6 + Af koo + Afyuky &1y + 12f,60
+ 12,60k = 8 kyybo — 8 ky€iy + 2f k)
— 8k ktr + 2k & — 2y €K + 2k, €5y + 6k, € F
— 2k £ k7Y + 2y, fRE + k2Eo + 3Kk + K2y
+ k26 ky + k2 fE€ — 2k, €Y + 6k, &1k + 8k, £k?)/ (2K2),
ks = (=8 ykyyo — 8fykuy&1y + 6f,ky&s + 2k &6
+ 2k, &7y + kg€ f — 2y €15y + 2k, Ry
+3k2E0 + ki&ok + 3Ky + k& ky — 2Ky, &0k
+ k2 f& — 6k &) — 6k, 8\ k) /(2k2),
ka = (Bfyykys — 6fykyy& — kyyky&o — kyyky&ry
+ Gliyy€y + Gy k + 2k2KE) /K2
Notice that if one of the functions J;, (i = 1,2, 3, 4) is not equal to zero, then
one can find the coefficient n of the admitted generator. Since the simplest ex-

pression of these functions is Jy, further analysis proceeds by considering different

cases of Jy.
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4.1.1 Case J;=0

The equation Jy = 0 can be rewritten as:

/8///8_ 2/8/2 — O,

where 3 = k, # 0. The general solution of this equation is:

1
k, = ————
Y C’ly—l—Cg’

(4.4)
where C; and Cy are constant. Integration of the Equation (4.4) depends on the
value of (.

4.1.1.1 Case (] #0

In this case, applying the equivalence transformations related with shifting

and scaling y, one simplifies the function k(y):
k=1Iny.

From the last equation of equations (4.3), one has:

’

& = 67'6y(3yfyy +6f, +2yy) + 6716 (1~ 6lny) + é—y
Differentiating this equation with respect to y, one gets:
5/1 =676 (3 yyyy® + 9fyy +2) — %-
Differentiating &} with respect to y, one finds
fé) = =3&Y* (fyywy® + 5Fyyy + 3fyy)-
Differentiation of &) with respect to y yields:
&inly) =0, (4.5)

where

w(y) = y3fyyyyy + 992fyyyy + 18y fyyy + 6.fyy-
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I. Case u(y) =0

In this case, one finds that
c
[ = j +eIny +cylny + cs + csy,

where ¢;, (i = 1,2,3,4,5) are constant.

Substituting f into the determining Equations (4.3) and splitting them
with respect to Iny, one finds & = 0, n = 0 and & = 0 which does not give an
extension of the generator 0,.

I1. Case p(y) #0

In this case £ = 0, and system as in the Equation (4.3) becomes:

n(4y’ 2, + 6y> Iny fyy — yfy + 2yIn’*y + f) =0,
n(4y2fyyy + 8yfyy +2 1ny + 3) = 07
(4.6)
77<2y2fyyy + nyyy + 1) 12 07
n(4yfy, +2Iny +1) =0.

Here, one has to assume that n # 0, otherwise there is no extension of the

generator d,. From the Equation (4.6), one obtains:
Y,
f= —Z(ln y—Iny+ 1)+ c1y + co.

Equation (4.3) yield ¢y = 0. Solving Equation (4.2) for n, another admitted
generator X = e"y0, is obtained.

4.1.1.2 Case C; =0

Similar integration of the Equation (4.4) gives:
k=y.
Substituting k into the last equation of Equation (4.3), one has:

51(3fyy +2y) = 0.
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Notice that if 3f,, + 2y = 0, then,
3

f:_%+cy+d7

where ¢ and d are constant. In this case, the studied equation is linearizable.
Hence, 3f,, + 2y # 0, and & = 0.

From the Equation (4.3), one has:

n =3¢ — &
Substitution of 7 into Equation (4.3) yields

60 =26y + 9) + 020+ 18+ fy + 79

+ 5(/)(_4fy2yy + 8fyylfy — 4fyy?/2 +9fyy —3f) =0, (4.7)

17

$0 (3o +2) + &0 fuantt — fin) = 0.

Let us start with the analysis of Equation (4.7) above.
I. Case 3f,,, +2=0

One obtains that

3

f——‘—%+by2+cy+d,

where a, b # 0 and ¢ are constant. Substitution of f into Equation (4.7) yields
¢, = 0 and n = 0, which does not provide new admitted generators.
II. Case 3f,,, +2#0

From the Equation (4.7), one gets:

¢ = _%(fyyyy — foy)
‘ (Bfywy +2)

Differentiating it with respect to y, one has:

g(l)fyyyy = 0.
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Since for & = 0, there is no extension of the generator 0,, one obtains that
Syyyy = 0 or
f=ay®+by* +cy+d,
where a # —é, b, ¢, and d are constant.
Substituting f into Equation (4.7) and 7 into the Equation(4.2), one gets

the conditions:
d = 30°b,

c=a*(27a +4).
and
o = aky,

b

where o« = Sat1

In this case, the functions k£ and f are:
k=y, [=ay’+by*+cy+d,

and the extension of the generator X = 0, is given by the generators:

a#0:X =e"(0, — (3 + ay)d,),

a=0:X =20, —yo,.

4.1.2 Case J; #0

From the Equation (4.3), one gets:

i k‘4(ZL‘, y)
Jaly)

’]7 =
Substitution of 7 into the Equation (4.2) gives:

& Jo + a&y + b€ + & =0, (4.8)
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where
Jo = ky(kyyyykyyk kayyk + kyyka )
a = ( kyyyyk + 3k§yy)/‘]f7
b= (kyyyykyykyy — Okyyyykyyk — 2k;yyk
+ 9K2, K + kyyy ki y + Bkyyykyyky — 10k ) /7
¢= (3fyyykyyyky - 6fyyyk§y - 3fyykyyyyky + 9fyykyyykyy
+ 6fykyyyykyy 9fy yyy yyykak + 12Ky kyy oy k
+ 2kyyy ky — 12k0 k — 4k k2) [ J7.
4.1.2.1 Case J; =0
Since k, # 0, then
Eyyyykyyky — 2k2yyl€ + kyyyk2 = 0.
Here, kyy, = 0 satisfies this equation, then one has to study different cases
of Kyyy.

4.1.2.1.1 Case k,,, # 0
Then,

Ky ko kg = 2K2, ey 4 Ky k2, = 0.

yyy
Dividing this equation by k,,,k,,k, and integrating it twice with respect to y, one

obtains:

hy — c1th® =0, (4.9)

where h = k, and ¢;, ¢y are constant. Since k,,, # 0, one has to assume that
coc1 7 0.
Integration of Equation (4.9) depends on the value of ¢.

I. Case ¢y =1

In this case,

h = c;e??Y
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where ¢, # 0 is constant. Scaling y and using involution if necessary, one obtains

that

ky=h=e¢e".
Integration of k, with respect to y gives:
k=¢e"+a,

where « is constant.

Substituting the function & into Equation (4.8), one obtains:

[ =371(&(2¢ =30) + & (3fyyy — 6fyy + 31y + 4e* + 2¢ar)).

Differentiating of the Equation (4.10) with respect to y, one gets:

& = &uly),

where
1Y) = =5 (fyyyy — 2Ly + foy) — 4€¥ — .
Differentiating Equation (4.11) with respect to y, one gets

&' (y) = 0.

I.1 Case i/'(y) #0

In this case £ = 0. From the Equation (4.3), one obtains:

= o (y),

where
Ml(y) = _2€_y(fyyy - 2fyy) +a

Differentiating Equation (4.12) with respect to y, one gets:

50#1( )=

(4.10)

(4.11)

(4.12)



34

Since n = —¢|, for the existence of an extension, one has to assume that & # 0.

Therefore, p}(y) =0 or
f=cie¥ 4+ coe® + c3y + ca,

where ¢;, (1 = 1,2,3,4) are constant and ¢y # —% because of the assumption that
W (y) # 0.
Substituting f into the Equation (4.3), the function f is reduced to the
form:
f = ce® — ae¥ — a2,
and the extension of the generator X, = 0, is:
a#0: X =e*(0, + ady),
a=0:X =20, —0,.
1.2 Case i/'(y) =0

In this case,

& = ce“(m),

and

2e%Y
f=e'(e1y® + cay + c3) + oy + c5 — 3

where ¢;, (i = 1,2,3,4,5) are constant.

Substituting f into the Equation (4.3), splitting them with respect
to €Y, and then with respect to y, one obtains ¢ = 0, {§§ = 0, and
¢;=0,(i=1,2,3,4,5).

In this case f = —%er and o = 0. The additional admitted generator is:
X =20, — 0.

Notice that combining the results of this case and the previous case with
a = 0, one has that for the functions k = e¥ and f = cye?” with arbitrary c,, the

admitted Lie group is defined by the generators 0,, z0, — 0.
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II. Case co(cog—1)#0

Integrating Equation (4.9), one has:
h=(ciy + o)t
Scaling and shifting y, one obtains:
k=vy+a,

where o, A = ¢y — 1 are constant and A(A —1)(A —2) # 0 because of the condition

Kyyy 7 0.

From the Equation (4.2), one can find &/. Differentiating it with respect to

1y, one obtains:

20 AN+ 3)(A — 1) + &ha(y) = 0, (4.13)
where
hl(y) :3y3fyyyy N\ 6()‘ i S)nyyyy O 3(/\2 — 5\ + 6)yfyy
+ 4y N2 (2A + 1) + 2 N2\ + 1),
and A # 0,1, 2.

II.1 Case A\ = —3

Equation (4.13) is reduced to:

§ihi(y) = 0.

II.1.1 Case hy(y) #0
In this case & = 0. From the last equation of determining equations (4.3),
one obtains:

2
5(/), = _55(,)(y5fyyy + 7y4fyy) + o

Differentiating &) with respect to y, one gets:

g(l)(nyyyy + 7y4fyy)/ =0.
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Here, one has to assume that & # 0, otherwise there is extension. Then

C1 Co

6_y2 + 30y5 + C3 + CqY,

f=

where ¢;, (i = 1,2, 3,4) are constant.
Substituting the function f into Equation (4.3), and splitting them with
respect to y, one obtains ¢ = 0, ¢; = 6, ¢4 = 20>,

Hence, & = —3a&), and n = %y. Thus, one has the additional generator:

a#0: X =e 309, — ayd,),
a=0:X =320, + yo,.
I1.1.2 Case hi(y) =0
The general solution of hy(y) = 0 is

fely oy e 2y
= — —— 4+ = + 3+ .
g5 20yt T 12y3 | 2 3T CaY

Substituting the function f into the Equation (4.3), and splitting them
with respect to y, one obtains £ = 0, n = 0 and & = 0, which does not give new
extensions.

I1.2 Case \ #+ —3

From Equation (4.13) one finds &] and differentiating it with respect to y,

one gets:
&(=5) =0. (4.14)

Since & # 0, then (%)’ = 0. For solving this equation, one needs to

consider different cases of
A=A+1DA+2)2 +1).

I1.2.1 Case A =0
Substituting each solution A of equation A = 0 into the Equation (4.14)

and solving it, one can find the function f. Substituting the obtained function f
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into Equation (4.3), and splitting them with respect to y, one gets & =0, & =0
and 1 = 0, which means that there is extension.

I1.2.2 Case A #0

Solving Equation (4.14), one obtains:

2/\y2)\+1
3A+1(A+2)’

f=c+cy+ay +eay’™ +eyt -

where ¢;, (i=1,2,3,4) are constant.
Substituting f into the Equation (4.3), and splitting them with respect to
y, one gets & = 0, & = 0 and 1 = 0 which means that there is no extension.
4.1.2.1.2 Case ky,, =0

Since Jy # 0, then the function k can be represented as:
k=9 +ay+ B,

where o and [ are constant.

From the the Equation (4.2), one obtains:

_fl#(y)

4.15
), (115

& =

where
1(y) = 3fyuy + 20y(a + y) + 2(a® + 60)
Differentiating the Equation (4.15) with respect to y, one gets the equation:
&' (y) = 0.

I. Case i/'(y) #0

In this case & = 0, and the Equation (4.3) becomes:

& = —&om(y), (4.16)
where
_ o 6 2
,ul(y>_fyyy ( +2y)fyy+05 46'
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Differentiating the Equation (4.16) with respect to y, one finds:

oty (y) =
Since for the existence of an extension one has to assume that &) # 0, one gets:
py(y) = 0.
The general solution of the equation p}(y) = 0 is:

f=c(a+2y)°+ cala+2y)° + csy + cu,

where ¢; # —55 because of the assumption that p' # 0, and
) a? — 45 A 3\2 3a\?
= Co = — Cq —= —— Cp = — .
R A T 64

Substituting the function f into the Equation (4.3), and solving them, one
obtains that £ = A and n = %ny(’). Hence, the extension of the generator 0, is

defined by the generator:
AN#0: X = eM(40, — Ma + 2y)d,),
A=0:X =420, — (a +2y)0,.
II. Case p/'(y) =0

The general solution of this equation is:

1
= —@(a +29)° + coy® + e3y® + cay + cs,
where
a? — 45 A 3a 3A(3a? +4p) 3aA(3a? + 120)
A= y, =%, (3=——, C=——F"-"", (5= .
8 2 4 32 64

Substituting into the Equation (4.3), and splitting with respect to y, one

gets that £ = A\ and n = O‘nyéé. Hence, the extension of the generator 0, is

defined by the generators:
A#0: X =eM(40, — Ma +2y)9,),

A=0:X =420, — (a+2y)0,.



39

Notice that combining the result of this case and the previous case, one has

that for the functions:

A 302 3a)2
" — 29)° + = o) — g — I
k=y +ay+p8, f=cala+2y) +8m+-w TEATR

with A = O‘fo’g, and arbitrary constant c¢;, the admitted Lie group is defined by

the generators:

AN#0: X =eM(40, — Ma+29)9,), X1 = 0,
A=0:X =420, — (o +29)0,, X1 = 0,.
4.1.2.2 Case Jg # 0

From equation (4.8), one gets:
b= 2l 8+ 6 (1.17)
Jo Jo Jo

One has to assume that & = 0, otherwise, it leads to the nonexistence of an
extension.

Differentiation of Equation (4.17) with respect to y yields:
uél + v€y +w& =0, (4.18)

where

u= (), v= () w= (5,

Differentiating the Equation (4.18) once and twice with respect to x, one gets a

system of equations:
(3) 1" /
u&y” + &l +wg =0,
' L (4.19)
u§§4) +0e® +wel =o0.

The system of the Equation (4.18) and (4.19) can be written in matrix form:

AB =0,
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where
RS ERS! u
A=leg” g g B=|u
6 g .

I. Case detA # 0

Then B =0, or

Integrating the equation © = 0, one has:
a — ’YJ() = O,
which can be rewritten in the form:

Foyyy (2kyyykyy + gy — szy)

-
yyyy kyy(”yky +6) ’

where v is constant of the integration.

Substitution of k,,,, into v = 0 yields:
(4kyy + Dkyyy = 5K2,17. (4.20)

Since ky,, # 0, then v # 0. The general solution of (4.20) up to scaling

and shifting of y has the form:
1
k(y> = E +ay + h'Oa

where o # 0 and hg are constant.

Substituting the function k into w = 0, one finds:

12h 60
y2fyyyy + 12y fyyy +30fyy — ?0 - ? + 4a(5ho + Tay) = 0.

The general solution of this equation is:

h ah a?
+ S+ B+ By — v — =,
Y 3 9

L B, B
= ety
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where f3;, (i = 1,2, 3,4) are constant.
Substituting k£ and f into the Equation (4.3), one obtains {; =0 or a =0
which is a contradiction.

I1. Case detA =0

Let us consider the minor,

A, — & &
S
II.1 Case detA; =0
In this case,
& = ady, (4.21)

where « is constant.

Substituting the Equation (4.21) into the Equation (4.13), one gets:

f(/) o 5517

where [ is constant. Substituting these relations into equation (4.2), one gets

kyne +n(2fyy + kyk) = & f(k+3a) + & (® — k2 — 4f,) (ay + B), (4.22)

and

(kym)y =& (3052 +3ak = 3fy — ky(ay + B)). (4.23)
Integrating Equation (4.23) with respect to y, one has:
kyn = &(3a’y + dag, — 3f — k(ay + B)) + A, (4.24)

where A = A(z), and the function g = g(y) is such that g,, = k.

Substitution of 7 into the Equation (4.22) gives:

X = a\ + by, (4.25)
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where
a=—2fyy +kk)/ky,
b=2f,,(3f — 3’y + aky — ag, + kB)/k, — 4f,(ay + B)
+4fk — oy — 2a”ky + o®B — 4a’g, + 6af + akB — 4akg,.

Differentiating the Equation (4.25) with respect to y, one gets
a\+b& =0. (4.26)
First, let us consider a particular case where

A= Oéofl,

and «g is constant.

Substituting A into Equation (4.24), one gets

Iod /A o= 0 (4.27)
where
© = Afk — Af,(ay + B) — 22’y — da*g, — 2a°ky
+ 6af — dagyk + ok — aoy + o?p — apk,

J = 2(=3cy — dag, + aky + 3f + kB — ap) /ky.
II1.1.1 Case J #0

From Equation (4.27), one can derive:

P(y)
Tw="7"

From Equation (4.24), one gets:
n= gl (b(y)?

where ¢ = ¢(y), and

f = (¢k, + 30’y — ayk + dag, — Bk + ap) /3.
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From the Equation (4.3), one obtains:
2a¢, = a(day + B+ 4g,) + ap. (4.28)
I1.1.1.1 Case o # 0

Integration of the Equation (4.28) gives:

«
6=2g+ay’ +(8+=0)7 +an,

where «; is constant.
From the Equation (4.3), one finds g,,,,. Substituting g,,,, into (4.27), one

obtains:
Gyyy — Gyy = 0.

Solving this equation, one gets:
k I gyy F CO€y7

which leads to a contradiction of the assumption that Jy # 0.
I1.1.1.2 Case a =0
In this case, one gets n =0, and &) = (&, where &; is constant.

Hence, the admitted generator is:
X = (y + Bz)0,.

Substitution of these coefficients into Equation (4.3), one finds:

B S aka e
k_Ta f_ 6 )

where ¢ satisfies the relation
DyyyyPyy + 3PyyydB — (byyﬁ(ﬁby +28) = 0.

I1.1.2 Case J =0
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Equation J = 0 can be rewritten in the form:
f=(=gy(ay + B) + dag, + 30y + ap) /3. (4.29)

Substitution of k = g,, and f into equations (4.3) yields:

Gy (B + ay)? — 4gy*(ay + B) + 4agy,g,
(4.30)
+ gyy(—a®y — 1508 + ag) + 12a°g, + 3a(—3aB + ap) = 0.

and

n=0.

Thus, Equation (3.1) with & = g,, and the function f defined by the Equation

(4.29) admits the generators:
X =0, X=e"(ay+1)0,.

Notice that the function g = g(y) satisfies Equation (4.30).
Now let us analyze Equation (4.26).

If ' # 0, equation (4.26) gives:

bl
A 3 ——/61
a

a

7 is constant. This particular case has

Since & # 0, one has to assume that
already been studied.

If ' =0, then & = 0 or a = ag, and b = by are constant.

Since the general solution of equation (4.30) is & = a&;, Equation (4.25)

become:

)\, = ao)\ + boCoeax. (431)

The general solution of (4.31) depends on value of (ag — «).

Case ag = «
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The general solution of the Equation (4.31) for this case is:
A = (box + 70)&:1-

From the Equation (4.3) after substituting A, and splitting them with re-
spect to x, one obtains by = 0, which leads to a case already studied.
Case ay # «

In this case, the general solution of (4.31) is:

bo

a — Qo

A= (eel®0mr 4 )1

From the Equation (4.3) after splitting it with respect to e(®=%% one
obtains ¢; = 0, which also leads to the studied a case already studied.

I1.2 Case detA; # 0

Since detA = 0, one obtains:
| = ag) + B

where a and 3 are constant.

Substituting &/ into Equation (4.17), one gets:
o = aod) + Boéi,

where g and By are constant.

Substituting these relations into Equation (4.2), one gets:
kyne = §13f + (o + B — 4f,) (0 + y)
+afo — K (a0 +y) + &(fk — 4f,50) (4.32)
+af(ao+y) + Bo(B — k?) +1(=2fyy — kyk),

and

(kyn)y = & (3a — aoky — kyy + 3k) + &(38 — 3f, — foky)- (4.33)
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Integrating Equation (4.33) with respect to y, one obtains:
kyn = & Bya — aok — ky +4g,) + &i(38y — 3f — Bok) + A, (4.34)

where A = A(z), and the function ¢ = g(y) is such that g,, = k.

Substitution of 7 into the Equation (4.32) gives:
N = a)+ b€ + &, (4.35)
where
a=—Q2fy + kyk)/ky,
b= nyy(gf - 36y + kﬁo)/ky - (4fy50 - 046030
+afy + 489, — Bkag + Bky + BBy — 4 k),
c = 2fy,(kag — 3ay + ky — 4g,) /k, — (4fy00 + 41y
+ 4ag, — a®ap + 202y — akog + 2aky — afy
+ 208y — Bay — 6f — Po + 4kg,).
Differentiating Equation (4.35) with respect to y, one gets:
aXN+b&+ & =0. (4.36)

First, let us consider the particular case where

A =& + B,

with constant aq and f.

Substituting A\ into Equation (4.34), one gets 7. Substituting 1 into the
Equation (4.3) and solving them, one gets k, = 0 which is a contradiction.

Now let us analyze Equation (4.35).

If ' # 0, then A has the form:

/ /
LR
A A
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Since & # 0 and detA; # 0, one has to assume that Z—: and & are constant. This

case has already been studied.
If " = 0. Since detA; # 0, then from Equation (4.36) with the condition
detA; # 0, one gets &' =0 and ¢ =0 or a = ag, b = by and ¢ = ¢ are constant.

Equation (4.35) can be rewritten as:
N = ag) + b€y + cofy.-
From the last equation of (4.3), one obtains that
A=y + Bi&.

This case has also been studied already.

4.2 Extension of the Generator X = yd, + 6g(x,y)0,
In this case, the functions k(z,y) and f(x,y) are:

k =39y, [=—YGuyy + 492y — 699y,
where the function g = g(x,y) satisfies the relation

129992yyy — 6Y9yGeyy — 189y Gayy + 249y9ay + Y Guwyy
(4.37)
+ 6920 + 6Y9:9y5y — 18929y, + 369°gyyyy = 0.
Notice that gy, # 0, because otherwise Equation (3.1) can be reduced to the
form y” = f(x,y), which is excluded from the study.

Assume that there is an extension of the generator yd, + 690,

X1 = (&y + &) 0, + 10y,

where & # 0.

Substituting the functions k£ and f into (3.9), one obtains:

Nyy = 6gyy€1 + 2&/-



48

Integrating this equation, one gets:

n = 6&19 + y°E + ypo + i,

where g = po(x) and py = pq(x) are arbitrary functions of the integration.
Substituting 7 into the Equation (3.8), and integrating it twice with respect

to y, one has:

6£09x + 6(p1y + po + &1y gy + 6(&6 — 3E1y — 2u1)g 138)

+ (&0 — 205)y% — E1Y° + 2y + 204 = 0,
where p3 = ps(x) and py = py(x) are arbitrary functions.
Equation (4.38) is a first-order quasilinear partial differential equation with

respect to the function g(x,y). The characteristic system of this equation is:

dx dy

66 6(py + po + €92

dg
6(&0 — 381y — 2mm)g + (& — 20h)y? — &1y + 2usy + 244

If & # 0, then for finding integrals of the characteristic system of equations,

one needs to solve a Riccati type equation. In order to overcome this difficulty,

the further study is separated into two cases: { = 0, and &, # 0.

4.2.1 Case & #0

In this case, one introduces the change of the independent and dependent

variables:
t=o(@), u=y). (4.39)

The transformation of the Equation (4.39) transforms the generator X to

the same form:

X, = (éﬂt + fo)ﬁt + 70, (4.40)
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where
(éu + 50) = Xit = Xq¢' =&y’ + &'

Requiring that transformation of the Equation (4.39) transform the gener-
ator X into the same form, one has that ¢’ = .

From the Equation (4.40), one can choose the function ¢ such that & =
P& = 1. Hence, one can assume that & = 1.

In order to overcome the problem of solving a Riccati type equation, the
following analysis is performed.

Substituting ¢, found from the Equation (4.38) into the Equation (3.7),

(4.37), and taking their linear combination, one gets the equation;
aGyyy + bgyy + cg, +d =0, (4.41)

where
by = py — poét,
a = 3(bay® — by — papay — g — 24y — 2fia),
b= 3(b2y + pp),
c= —12by,
d = 2bapuy + g — 3byy — 3pgy€ + 2&1 g + Ay

Differentiating Equation (4.41) twice with respect to y, one gets:

(boy® — oy + Moty — Hg — 2013y — 2/14) Gyyyyy

(4.42)
+ (5boy — 1y — 2ptopi1 — 4413) Gyyyy = 0.
4.2.1.1 Case by # 0
Introducing the functions:
bo = — (15 + 241) /b2,
bi = —(po + popn + 2p13) / (2b2), (4.43)

bs = f1p/ba,
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Equation (4.42) becomes:

Gyyyyy _ 52y + 4b0 + bg . (444)
gyyyy ) + 2ybl + bO

Integration of the right hand side of the Equation (4.44) depends on the denomi-
nator.
I. Case b7 — by =v*> >0

Integrating equation (4.44) with respect to y, one gets:

—a (b —v+y)™
Jyyyy = (b + v +y)h1+5’

(4.45)

where hy = (20)71(b; — b3 — 5v), and a # 0.
Equating mixed derivatives (¢u)yyyy = (Gyyyy )z, and splitting with respect

to y, one obtains that h; is constant,
hl(hl -+ 5)(/()/ My v(ul — blgi)) =0.

In integration of the Equation (4.45) one needs to consider different cases
of:
A= hi(hy 4+ 1)(hs + 2)(h1 + 3)(h1 + 4)(hy + 5).
1.1 Case A\ #0

Integrating of the Equation (4.45) four times with respect to y, one finds:

N (by — v +y)mt?
16214(b1 + v+ y)h1+1(h1 + 1)(h1 + 2)(h1 + 3)(h1 + 4)

9= +Bs(y),  (4.46)

where P3(y) is a cubic polynomial of y.

Substitution of the Equation (4.46) into equation (4.37) gives:

gf u—2v 3ha gfu—2v h
Hlu U + HQU U + ng + H4 = O, (447)

where u = by + v + vy, II; = I;(a, v, hy), (i = 1,2, 3).
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For splitting Equation (4.47) with respect to y, one needs to consider A = 0

and A # 0, where

A= (b1 = 1)(h1 = 2)(2h1 — 1)(2h1 — 3)(2h1 — 5)
(3hy — 8)(3hy — 7)(3hy — 5)(3hy — 4)(3hy — 2)(3hy — 1).
I1.1.1 Case A #0
In this case Equation (4.47) yields II; = 0,(z = 1,2, 3), which implies the
contradiction o = 0.
1.1.2 Case A =0
Substituting each case of h; solving the equation A = 0 into the determining
Equations (3.8)-(3.11), and splitting them with respect to y, one gets o = 0, which
is a contradiction.
1.2 Case A\ =0
Substituting each case of hy into Equation (4.45) and integrating four times

with respect to y, one gets:

9 = ago(y) + Ps(y);

where Pj(y) is the cubic polynomial of the integration, and the expression of the
function go(y) depends on hj.

Substituting the found function g into Equations (3.8)-(3.11) and splitting
them with respect to y, one obtains a = 0, which is a contradiction.

II. Case b — by = —v? < 0

The study of this case is similar to the case where b2 — by = v > 0.

Integrating Equation (4.44) with respect to y, one gets gy, which after

bty

changing of the independent variables v = arctan ™ (or y = vtan(u) — b;)

becomes:

e)\u

g =« 4.48
e vi(tan?(u) + 1)2y/tan?(u) + 1 (4.48)
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where \ = @.
Using the chain rule, the right hand side of the Equation (4.48) can be

integrated four times with respect to y:

eM (tan?(u) + 1)3/2
9(y(u)) = a SN (A2 9) + P3(y(u)),

where « is constant, and Ps(y(u)) is the cubic polynomial of integration.
Substituting the found function g into Equations (3.8)-(3.11) and splitting
them with respect to e’ and tan(u), one obtains that o = 0, which is a contra-
diction.
ITI. Case b — by =0

Equation (4.44) becomes:

Qo _ By +AR 4 by (.49

Gyyyy (y +b1)?

For integration of the Equation (4.49), one needs to consider different cases of the
value of b;.

II1.1 Case by #0

Integrating the Equation (4.49) with respect to y, one gets:

N

Iyyyy = a(bl Ty)p (4.50)

b1—bs3
b1(b1+y) "

where \ =
Notice that for integration of Equation (4.50), one needs to consider differ-
ent cases of A.
I11.1.1 Case A\ =0

Integrating of the Equation (4.50) four times with respect to y, one obtains:

Y

=a——— + P3(y), 4.51
9= 05yt B (451)

where Ps(y) is the cubic polynomial of integration.
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Substituting the found function g into Equations (3.8)-(3.11) and splitting
them with respect to y, one obtains £ = 0, which is a contradiction.
II1.1.2 Case \ # 0

Integrating of the Equation (4.50) four times with respect to y, one obtains:

e(bl(b1+y))7l(bl—b3)y<b1 4 y)3

= b — by + B 452)

where Pj(y) is the cubic polynomial of integration.
Substituting the found function g into Equations (3.8)-(3.11) and splitting
them with respect to e¥ and y, one obtains b; = 0, which is a contradiction.
II1.2 Case b; =0

Equation (4.49) becomes:

5
Ty _ _2 . (4.53)
Jyyyy Y

Further study is similar to the case b; # 0. Finally, one arrives at the contradiction
by = 0.
4.2.1.2 Case by =0

Introducing the functions:

by = — (g + top + 243),
bo = —(pg + 2pa),

Equations (4.42) takes the form:

Juyyyy 201 + Nf). (4.54)
Gyyyy biy + by

I. Case by #0

In this case Equation (4.54) is rewritten:

Jyyyyy _ ba (4.55)

Gyyyy y+bs’
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where

bgz—bo/bl, b4:2+M6/bl

Integrating of the Equation (4.55) with respect to y, one obtains:

1

Iyyyy = O‘(y ¥ bg)he (4.56)

where « is constant.

To integrate Equation (4.56) for finding the function g, one needs to con-
sider different cases of b,.

I.1 Case (by —1)(by —2)(by —3)(by —4) #0

Integrating of the Equation (4.56) four times with respect to y, one has:

where

g = (y + 53)4
O (y + ba)s(bg — 1)(bg — 2)(by — 3)(bs — 4)

and P;(y) is the cubic polynomial of integration.

Substituting ¢ into Equations (3.7)-(3.9) and splitting them with respect
to y, one comes to the contradiction & = 0.

L2 Case (by —1)(by —2)(by —3)(by —4) =0

Substituting into the Equation (4.56) each case of by solving (by — 1)(by —

2)(by — 3)(by — 4) = 0 and integrating it four times with respect to y, one gets:

9 = ago(y) + Ps(y),

where P3(y) is the cubic polynomial of integration, and the expression of the
function go(y) depends on by.

Substituting the found function g into Equations (3.8)-(3.11) and splitting
them with respect to y, one obtains the contradiction a = 0.

II. Case b; =0
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Equation (4.54) becomes:

boGyyyyy + Nggyyyy =0. (4.57)

The analysis of this case is similar to the case defined by b; # 0 and also leads to
the contradiction a = 0.
Notice that this case is solved with assumption that one of by and py do

not vanish. The further study will consider for case that both of them are vanish.

4.2.2 Case =0

In this case, Equation (4.38) becomes:

6(£1y” + Yy + o) gy — 6(381y + 2p1)g

(4.58)
— 2uyy? = &Y + 243y + 2414 = 0,
Since ] # 0, one can introduce new functions:
ar = p1/(28y),
ap = /~60/§1~
Equation (4.12) becomes:
4 3 ",,3 4 N, 2 2 -9
0 atdy G+ A@&)y 2y — 2 (4.59)

T2+ 200y +ay 681 (y? + 2a1y + as)
For integration of the Equation (4.59), one needs to consider different cases of

(a1® — as).

I. Case a;? —ay, =02 >0

The general solution of the homogenous Equation (4.59) is:

o (2u(h = 2) +y)M
= 900(hy — 1) + g2’

a1+3v
2v

where hy = and gg is constant.
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For finding the general solution of the Equation (4.59), one needs to consider
different cases of:

)\0 - hl(hl - 1)(h1 - 2)(h1 - 3)

1.1 Case \y # 0

Solving the Equation (4.59), one gets the general solution of ¢ in the form

g = cou Pi3(y) + Pas(y),

a1—v+ty

where u = ooty

co # 0 is constant, and Py3(y) and Pag(y) are cubic polynomials
of y.

Substituting ¢ into Equation (4.37), and splitting it with respect to u, one
obtains that v = 0 or | = 0 which is a contraction.

1.2 Case \y =0

Solving of the Equation (4.59) for different cases of hy such that \g = 0,
one gets the general solution g. Substitution of the obtained function g into (4.37)
yields &/ such that gy, = 0.

II. Case a;> —ay = —v2 <0

The general solution of the homogenous Equation (4.59) is:

g = gov'e™ (tan?(u) + 1)%y/tan?(u) + 1 + Ps(y),

where A = % and u = arctan =¥ g5 # 0 is constant and P3(y) is a cubic

polynomial of y.

Substituting g into Equation (4.37) and splitting it with respect to y, one
obtains that gy = 0, which is a contraction.

ITI1. Case ;2 —ay =0

The general solution of the homogenous Equation (4.59) is

g= goey(al+y)_l(a1 +y)*,
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where gp is an arbitrary constant of the integration.

For finding the general solution of the Equation (4.59), one needs to consider
different values of a;.

II1.1 Case ay #0

The general solution of (4.59) has the form:
g= Coey(aﬁy)*l(&l )% + Py(y),

where ¢ is constant, and P;(y) is a cubic polynomial with coefficients written
through &1, a1, po, p1, p3, fia, and their derivatives.

Substituting ¢ into the Equation (4.59), and splitting it with respect to
evaty) ™! and y, one gets cop = 0 which implies that g,,,, = 0.

IIT1.2 Case a1 =0

The general solution of (4.59) takes the form:

_ 368190y" — 667" + Apsy + 3pa
! 366}y |

Substituting ¢ into the Equation (4.59) and splitting it with respect to y, one gets

tt4 = 0 which implies that gy, = 0.

4.3 Extension of the Generator X = zy0,

Substituting the coefficients of the generator X = xyd, into Equations

(3.7)-(3.9), and solving them, one obtains:

2 1
k=—lny, f=ylp-—’y), (4.60)

where p = p(x) is an arbitrary function of the integration.
For finding the admitted Lie group of Equation (3.1) the Equation (4.60)

are substituted into the determining Equations (3.7)-(3.9). From these equations,
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the derivatives 7,4, 74y, and 7, are found. Comparing the mixed derivatives
(Naw)y = (Nay)x and (yy)w = (1hay)y, One finds:
e = 20z + y(&Y2® + 4€a(lny — pa?) + €2y — 3¢ ayIn®y
+ 4oyl Iny — pa’y — 2/ &x° — 6’y — 26y In’y
+ 26y In*y — A& Iny + 28 pua’y Iny — 46y Iny))/(227), (4.61)
ny = (2nx + y(—2&0x + 3%y + 6xy€) Iny — 28,2y + 31y In’y
+ 260 — 3Epx’y + 261y)) / (22y).
Substituting 1, and n, into Equation (3.9), and splitting them with respect to
Iny, one gets that & = cx, and & = 0, where c is constant.

Equation (3.8) becomes:
cx(zp +2p) = 0.
If p is an arbitrary function, then ¢ = 0 and n = xy, which gives no
extension of the Lie algebra with the generator zyd,. If u = 2, then this case

provides an extension of generator xyd, by the generator X = x0,.



CHAPTER V

CONCLUSION

This thesis deals with the group classification of second-order ordinary dif-

ferential equations of the form:

y” = Pg(l', Y, y,)7 (51)
where

Py(z,y,9) = a(z,y)y” + 3b(z,y)y"* + 3c(z, y)y + d(z,y).

5.1 Problems

The problems considered in this thesis are related with finding all possible
admitted generators of equation « of the form (5.1).

For solving the problem of the thesis the approach considered in Ovsian-
nikov (2004) is used, where the criteria of equivalence Lie group of transformations

and admitted Lie group are applied. This approach contains the following steps.

(1) Separate Equation (5.1) into classes according to the form of the admitted

generator using the concept of equivalence transformations.
(2) Simplify the functions k(z,y) and f(z,y) by equivalence transformations.

(3) Solve the determining equations for the chosen functions k(x,y) and f(z,y).

5.2 Results

The results of the group classification of Equation (5.1) are presented in

Table 5.1, where the first and second columns present the form of functions k(x, y)
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and f(z,y) of the studied equation, the third column lists the simplified generator

obtained in Chapter III, and the last column presents the extension of the simpli-

fied generator, if there is one. Thus, the admitted Lie group have dimension one

or two only.

Table 5.1 The group classification of ¥ = k(x,y)y'+ f(x,y).

k f X X5
k(y)" fly) Oy
Iny —(In®y —Iny + D4 +cay 0y e*yo,
y ay’ +by® + cy +d, Op €0y — (3a” + ay)0,)
a # —%, b#0
y ay® +by*, (a # —5,0 #0) Oy z0, — yo,
Y+« cpe?Y — ae¥ — a? Oy e®* (0, + ady)
ey coe®y 0, 0, — 0y
YN + o =+ y% + 2a%y 0y e~3%(9, — ayd,)
o 9 0, 320, + Yo,
Yray+B8  ala+2y) + g(a+ 2y)? 0 (40, — M2y + )0
.
v: + ay + %2 - (a;r;g)5 O 420, — (2y + a)0,
b _ durtow? o, (v + B2)0,
Gouy 4&90y—90yy(a%+ﬁ)+3a2y+ao a, e (ay + 1)0,
3Gyy Ay = YGayy — 699yyy YOy
+690,
2lny y(u(e)” = n"y) Y9,
% Iny Ly — In? Y) Y0y 20,

The asterisk indicates that the functions are arbitrary, Ao # 0,1,2, A = o?—4p

8 )
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and the functions gg, g, and ¢ satisfy the conditions:
Goyyyy (Y + 5)2 - 490yy2(ay +B) + goyy(_a2y — 15af + )
+ dagoyy goy + 12a290y + 3a(=3af + ap) =0,
12ygga:yyy - 6ygyg:1:yy - 189ygxyy + 24gygxy + 6.9:5:1:
+ yzgmyy + 6Y9:9yyy — 18929y, + 36929yyyy =0,

GyyyyOyy + 3Pyyy®B — Oy B0y + 28) = 0.

5.3 Further Research

The further study will concern with the Equation (4.57), where by and g

will be vanished together.
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